WO2022142232A1 - 实现无刷直流电机霍尔位置传感器故障处理的方法 - Google Patents

实现无刷直流电机霍尔位置传感器故障处理的方法 Download PDF

Info

Publication number
WO2022142232A1
WO2022142232A1 PCT/CN2021/104247 CN2021104247W WO2022142232A1 WO 2022142232 A1 WO2022142232 A1 WO 2022142232A1 CN 2021104247 W CN2021104247 W CN 2021104247W WO 2022142232 A1 WO2022142232 A1 WO 2022142232A1
Authority
WO
WIPO (PCT)
Prior art keywords
hall
angle
motor
mcu
value
Prior art date
Application number
PCT/CN2021/104247
Other languages
English (en)
French (fr)
Inventor
王桑
赵旭东
张正瑞
Original Assignee
华润微集成电路(无锡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华润微集成电路(无锡)有限公司 filed Critical 华润微集成电路(无锡)有限公司
Priority to EP21912986.3A priority Critical patent/EP4181386A1/en
Priority to US18/020,932 priority patent/US20230327522A1/en
Publication of WO2022142232A1 publication Critical patent/WO2022142232A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/12Monitoring commutation; Providing indication of commutation failure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the invention relates to the field of motor control, in particular to the field of motor fault processing, and in particular to a method for implementing fault processing of a Hall position sensor of a brushless DC motor.
  • the Hall sensor When the Hall sensor fails, it will remain in a high-level state or a low-level state without changing with the rotor position.
  • a single Hall fault will cause the commutation sector to change from the original six states. is four states, while a dual Hall fault causes the commutation sector to change from six states to two states.
  • the commutation time is given according to the timer value of the HALL phase that has not yet been confirmed to have failed.
  • the purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art, and to provide a method for realizing fault processing of a Hall position sensor of a brushless DC motor that satisfies the requirements of accurate data, small error and wide application range.
  • the method for realizing the fault handling of the Hall position sensor of the brushless DC motor of the present invention is as follows:
  • the main feature of the method for realizing the fault handling of the Hall position sensor of the brushless DC motor is that the method includes the following steps:
  • the step (1) specifically includes the following steps:
  • step (1.2) Judging whether edge transition occurs, if so, record the number of edge transitions occurring in each electrical cycle, and continue with step (1.3); otherwise, if there is no edge transition, all three HALLs are faulty;
  • the step (3) specifically includes the following steps:
  • the method also includes the step of changing phase, which specifically includes the following steps:
  • the commutation operation is performed when the angle calculated by the MCU is 30°, 90°, 150°, 210°, 270° or 330°.
  • the motor includes an angle recorder for recording the angle, and the motor is commutated according to the value of the angle recorder.
  • the motor includes an error register group, including a plurality of error registers, and the output terminals are all connected to an AND gate, respectively corresponding to different rotor position angles during commutation.
  • the method of the present invention for realizing the fault handling of the Hall position sensor of the brushless DC motor is adopted.
  • As a hardware detection method for the motor control user, the repetitive detection work is completed by the hardware, and the phase commutation can be guaranteed in time.
  • the invention designs the internal degree to record the angle, the motor changes phase according to the degree angle value, and clearly understands the current position of the motor. Compared with the simple timer method, when the speed is fast and slow, the size of the count is different, which cannot be intuitively understood.
  • Motor rotor position The present invention can make the motor run normally even if several Halls fail, and is accomplished by the idea of first ensuring the commutation and then detecting the HALL failure.
  • FIG. 1 is a motor control block diagram of a method for realizing fault handling of a Hall position sensor of a brushless DC motor according to the present invention.
  • FIG. 2 is an effect diagram of the motor running sequence of the method for realizing the fault handling of the Hall position sensor of the brushless DC motor according to the present invention.
  • FIG. 3 is a HALL edge detection circuit diagram of the method for realizing the fault handling of the Hall position sensor of the brushless DC motor according to the present invention.
  • FIG. 4 is a HALL detection process and a degree count increment calculation process in the MCU of the method for realizing the fault handling of the Hall position sensor of the brushless DC motor according to the present invention.
  • FIG. 5 is a circuit diagram of converting the HALL edge detection result into the rotor position angle of the method for realizing the fault handling of the Hall position sensor of the brushless DC motor according to the present invention.
  • FIG. 6 is a schematic diagram of the commutation time and the HALL jump update to the internal degree time of the MCU in the method for realizing the fault processing of the Hall position sensor of the brushless DC motor according to the present invention.
  • the method for realizing the fault handling of the Hall position sensor of the brushless DC motor of the present invention includes the following steps:
  • step (1.2) Judging whether edge transition occurs, if so, record the number of edge transitions occurring in each electrical cycle, and continue with step (1.3); otherwise, if there is no edge transition, all three HALLs are faulty;
  • the method further includes the step of changing the phase, which specifically includes the following steps:
  • the commutation operation is performed when the angle calculated by the MCU is 30°, 90°, 150°, 210°, 270° or 330°.
  • the motor includes an angle recorder for recording the angle, and the motor is commutated according to the value of the angle recorder.
  • the motor includes an error register group, including a plurality of error registers, and the output ends are all connected to an AND-OR gate, respectively corresponding to different rotor position angles during commutation.
  • the control system when the rotor position sensor (usually using Hall) fails, the control system must be able to determine the sensor failure, and even when the failure occurs, the motor cannot stop or run out of control instantaneously, but It should continue to work as normal.
  • the use of comfort is high, after the HALL fault occurs, it is required that the vibration should not be too large, and it needs to be able to drive for a period of time, and then it will be repaired before use. Therefore, it is necessary to pay attention to ensuring that the motor can work normally after the HALL fails, and then to detect the fault.
  • an angle counter is built in, and the HALL fault of a specific phase is detected on the premise of ensuring the normal commutation.
  • the invention judges that there is indeed a fault for the sudden occurrence of the transition farther apart, and gives an early warning, and the commutation operates as usual according to the internal angle value of the MCU. After running for two electrical cycles, it will indicate which HALL has failed. For most practical applications, which HALL fault is not important, as long as there is a fault, the entire HALL board will be replaced. The key lies in the normal operation of the motor after the HALL fault. The present invention can also detect if there are some HALL situations in which only the replacement fails.
  • the motor control commutation block diagram is shown in Figure 1.
  • the HALL signal is detected by edge detection.
  • HALL ⁇ 2> means HALL_A
  • HALL ⁇ 1> means HALL_B
  • HALL ⁇ 0> means HALL_C
  • the position of the rotor represented by HALL is detected.
  • the effect is shown in Figure 2, and the hardware diagram is shown in Figure 3.
  • the degree angle is automatically added, and the incremental step is based on the motor speed. Adjust, update the speed every time the independent HALL signal has a rising edge and a falling edge, and the implementation process is shown in Figure 4.
  • the forward and reverse rotation of the motor is preset in advance, so whether the sequence of the motor rotor position is 546231 or 513264 is also determined in advance.
  • the interference term is acceleration and deceleration.
  • angle increment can be updated in time affects the error between the internal angle calculation result of the MCU and the external HALL detection result. If the HALL edge changes immediately, it may lead to wrong update due to fault. Therefore, it is necessary to give an acceptable range according to the original value of the last degree increment, which is determined according to the error angle set by the register in the commutation hardware circuit. set up. If the error is 20 degrees, the acceptable increment range is: original increment * 0.75 ⁇ 1.5 * original increment
  • the angle increment calculated according to the HALL edge transition is 1.5 times the original increment, it may be an acceleration or a malfunction.
  • the angle degree calculated by the MCU inside the MCU must reach the commutation point 20 degrees ahead of the original increment condition (when the HALL fault occurs instead of acceleration). If the MCU internal degree has reached the commutation point ( For example, it is 90 degrees), but the HALL does not jump. When the HALL edge jump occurs, the internal degree of the MCU has reached 110 degrees according to the original speed increment.
  • the degree corresponding to HALL can be updated to the degree inside the MCU, otherwise it cannot be updated. If the acceleration occurs, the HALL jump must occur before the degree is 110 degrees. At this time, the angle corresponding to the HALL can also be updated to the degree inside the MCU.
  • the commutation point is the commutation when the degree angle calculated by the MCU is 30°, 90°, 150°, 210°, 270°, 330°. If the external HALL is out of phase, the internal degree will continue to count without affecting the commutation, ensuring that the motor can still run normally without sudden commutation abnormality.
  • an error register is added in the present invention.
  • the absolute value of the difference between the rotor position angle corresponding to the HALL and the Degree calculated inside the MCU is less than 20 degrees, the HALL detection result is updated to the Degree calculated inside the MCU, and vice versa.
  • the method of the present invention does not consider whether the HALL has failed, but firstly judges whether there is a HALL failure.
  • the method is to pass the sequence before and after, and must satisfy 513264, or 546231; secondly, compare the number of times of each HALL flip, and compare who has the most times. The number of flips of the failed HALL will not increase, and it is determined to be a failure. Commutation is also continuous and not affected by HALL faults.
  • An angle recorder is set in the circuit, and by maintaining the synchronization between the angle value and the HALL, the commutation of the motor can be based on the value of the angle recorder to ensure that the motor can work even when the three Halls fail.
  • the present invention determines whether to transmit the HALL edge jump value to the MCU internal angle count value by comparing the difference between the MCU's internal angle count value and the rotor position indicated by the HALL edge jump and the acceptable difference range preset by the register. It also constrains whether the angle increment should be updated.
  • the method of the present invention for realizing the fault handling of the Hall position sensor of the brushless DC motor is adopted.
  • As a hardware detection method for the motor control user, the repetitive detection work is completed by the hardware, and the phase commutation can be guaranteed in time.
  • the invention designs the internal degree to record the angle, the motor changes phase according to the degree angle value, and clearly understands the current position of the motor. Compared with the simple timer method, when the speed is fast and slow, the size of the count is different, which cannot be intuitively understood.
  • Motor rotor position The present invention can make the motor run normally even if several Halls fail, and is accomplished by the idea of first ensuring the commutation and then detecting the HALL failure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种实现无刷直流电机霍尔位置传感器故障处理的方法,包括通过边沿检测的方式检测HALL信号,记录沿跳变次数;判断HALL代表的转子的位置变化和MCU内部计算的角度值差值的绝对值在预设的误差范围内,如果是则MCU内部的角度值被更新为HALL检测出的转子位置代表的角度,否则MCU内部的角度值根据前面由电机转速计算出的角度增量递增;根据上一次的角度增量原始值得出可接受的范围。采用了实现无刷直流电机霍尔位置传感器故障处理的方法,设计了内部degree记录角度,电机根据degree角度值来换相,清晰地了解到电机当前位置,相比用单纯定时器的方式,在速度快与慢时,计数的大小不同,不能直观了解电机转子位置。

Description

实现无刷直流电机霍尔位置传感器故障处理的方法
相关申请的交叉引用
本申请主张2020年12月30日提交的申请号为202011609195.1的中国发明专利申请的优先权,其内容通过引用的方式并入本申请中。
技术领域
本发明涉及电机控制领域,尤其涉及电机故障处理领域,具体是指一种实现无刷直流电机霍尔位置传感器故障处理的方法。
背景技术
霍尔传感器发生故障时,会维持在高电平状态或低电平状态,而不随转子位置变化而变化,对于BLDC电机来说,单霍尔故障会导致换向扇区从原来的六状态转化为四状态,而在双霍尔故障时导致换相扇区从六状态变为两状态。
现有技术有:
1、利用转子位置观测器,比较观测结果与霍尔传感器的输出,利用两者的差值来检测传感器的故障。检测到故障后,改用观测器输出作为转子位置反馈,实现容错控制;该方法对于方波控制来说较复杂,而且需要增加硬件外围。
2、根据前一次的电机运行速度,建立上一次换相到下一次换相间的时间置信区间,若发现不在置信区间内,则放大置信区间一倍,如果还不在置信区间内,则判定该HALL发生故障。换相则按照当前确认还未发生故障的HALL相的定时器值,给出换相时刻。
发明内容
本发明的目的是克服了上述现有技术的缺点,提供了一种满足数据精准、误差小、适用范围较为广泛的实现无刷直流电机霍尔位置传感器故障处理的方法。
为了实现上述目的,本发明的实现无刷直流电机霍尔位置传感器故障处理的方法如下:
该实现无刷直流电机霍尔位置传感器故障处理的方法,其主要特点是,所述的方法包括以下步骤:
(1)通过边沿检测的方式检测HALL信号,记录沿跳变次数;
(2)判断HALL代表的转子的位置变化和MCU内部计算的角度值差值的绝对值在预设 的误差范围内,如果是则MCU内部的角度值被更新为HALL检测出的转子位置代表的角度,否则MCU内部的角度值根据前面由电机转速计算出的角度增量递增;
(3)根据上一次的角度增量原始值得出可接受的范围。
较佳地,所述的步骤(1)具体包括以下步骤:
(1.1)检测出HALL信号改变发生次序,提示故障;
(1.2)判断是否发生沿跳变,如果有,则记录每个电周期下发生沿跳变次数,继续步骤(1.3);否则,如果没有沿跳变,则三个HALL均发生故障;
(1.3)每个HALL上升沿和下降沿均发生后,记录了round_x+1的发生沿跳变次数,其中,x分别表示为a、b、c三相,将每次发生沿跳变时round_a、round_b和round_c的最大值分别减去round_x,如果结果大于1则为HALL故障相;否则,没发生故障。
较佳地,所述的步骤(3)具体包括以下步骤:
(3.1)根据上一次的角度增量原始值以及换相硬件电路中寄存器设置的误差角度设置角度增量可接受的范围;
(3.2)判断HALL沿跳变发生时,MCU内部角度计数值和HALL对应的角度之间的差值是否在可接受的范围内,如果是,则将HALL对应的角度更新给MCU内部的角度计数值;否则,不更新角度。
较佳地,所述的方法还包括换相的步骤,具体包括以下步骤:
在MCU内部计算的角度为30°、90°、150°、210°、270°或330°的时候进行换相操作。
较佳地,所述的电机包括角度记录器,用于记录角度,根据角度记录器的值使电机的换相。
较佳地,所述的电机包括误差寄存器组,包含多个误差寄存器,输出端均和与或门相连接,分别对应换相时不同的转子位置角度。
采用了本发明的实现无刷直流电机霍尔位置传感器故障处理的方法,作为硬件检测方式,对于电机控制用户来说,重复性的检测工作都由硬件完成,并能保证及时换相。本发明设计了内部degree记录角度,电机根据degree角度值来换相,清晰地了解到电机当前位置,相比用单纯定时器的方式,在速度快与慢时,计数的大小不同,不能直观了解电机转子位置。本发明在发生无论是几个霍尔发生故障的情况下都能让电机正常运转起来,是在先保证换相后再检测出HALL故障的思路来完成的。
附图说明
图1为本发明的实现无刷直流电机霍尔位置传感器故障处理的方法的电机控制框图。
图2为本发明的实现无刷直流电机霍尔位置传感器故障处理的方法的电机运行时序效果图。
图3为本发明的实现无刷直流电机霍尔位置传感器故障处理的方法的HALL沿检测电路图。
图4为本发明的实现无刷直流电机霍尔位置传感器故障处理的方法的HALL检测流程及MCU内部degree计数增量计算流程图。
图5为本发明的实现无刷直流电机霍尔位置传感器故障处理的方法的HALL沿检测结果转化成转子位置角度电路图。
图6为本发明的实现无刷直流电机霍尔位置传感器故障处理的方法的换相时刻和HALL跳变更新给MCU内部degree时刻示意图。
具体实施方式
为了能够更清楚地描述本发明的技术内容,下面结合具体实施例来进行进一步的描述。
本发明的该实现无刷直流电机霍尔位置传感器故障处理的方法,其中包括以下步骤:
(1)通过边沿检测的方式检测HALL信号,记录沿跳变次数;
(1.1)检测出HALL信号改变发生次序,提示故障;
(1.2)判断是否发生沿跳变,如果有,则记录每个电周期下发生沿跳变次数,继续步骤(1.3);否则,如果没有沿跳变,则三个HALL均发生故障;
(1.3)每个HALL上升沿和下降沿均发生后,记录了round_x+1的发生沿跳变次数,其中,x分别表示为a、b、c三相,将每次发生沿跳变时round_a、round_b和round_c的最大值分别减去round_x,如果结果大于1则为HALL故障相;否则,没发生故障;
(2)判断HALL代表的转子的位置变化和MCU内部计算的角度值差值的绝对值在预设的误差范围内,如果是则MCU内部的角度值被更新为HALL检测出的转子位置代表的角度,否则MCU内部的角度值根据前面由电机转速计算出的角度增量递增;
(3)根据上一次的角度增量原始值得出可接受的范围;
(3.1)根据上一次的角度增量原始值以及换相硬件电路中寄存器设置的误差角度设置角度增量可接受的范围;
(3.2)判断HALL沿跳变发生时,MCU内部角度计数值和HALL对应的角度之间的 差值是否在可接受的范围内,如果是,则将HALL对应的角度更新给MCU内部的角度计数值;否则,不更新角度。
作为本发明的优选实施方式,所述的方法还包括换相的步骤,具体包括以下步骤:
在MCU内部计算的角度为30°、90°、150°、210°、270°或330°的时候进行换相操作。
作为本发明的优选实施方式,所述的电机包括角度记录器,用于记录角度,根据角度记录器的值使电机的换相。
作为本发明的优选实施方式,所述的电机包括误差寄存器组,包含多个误差寄存器,输出端均和与或门相连接,分别对应换相时不同的转子位置角度。
本发明的具体实施方式中,当转子位置传感器(一般是用霍尔)发生故障时,控制系统要能判断出传感器故障,并且即使在发生故障的时候,电机不能瞬间停转或失控,而是应该继续保持正常工作。对于一些人机应用的场合,如电动车,对使用舒适度较高,则在HALL故障发生后,要求不能振动太大,并且需要能在行驶一段时间,之后会修理后再使用。因此需要重视在HALL发生故障后也要保证电机能正常工作,其次再是检测出故障。同时也要保障在电机未发生故障时候,电机的加减速工作,加减速是判断HALL发生故障的重要影响因素。
目前的方法中,更重视故障的检测。另外对于三故障的突然发生,也未考虑其中。这依旧存在隐患。也有一些方法是当HALL发生故障时采用无感模式,这仅是故障发生后的替代方案,但不能在HALL突然发生故障的时候起作用。
本发明是内设了角度计数器,在保证换相正常的前提下再检测出具体那一相HALL故障。
本发明通过会区分下一个跳变沿和上一个跳变沿的关系,对于相隔较远的跳变突然发生,则判断确实存在故障,提出预警,换相则根据MCU内部角度值照常运行,在运转完两个电周期后再说明哪一个HALL发生了故障。对于实际大部分应用来说,哪一个HALL故障并不重要,只要有一个故障就会把整个HALL板全部替换掉,关键还在于HALL故障后电机的正常运行。如果对于有些只换发生故障的HALL情况,本发明也能检测出来。
电机控制换相框图如图1所示,首先通过边沿检测的方式检测HALL信号,HALL<2>表示HALL_A,HALL<1>表示HALL_B,HALL<0>表示HALL_C,检测出HALL代表的转子的位置变化后,更新当前的degree值,实现效果如图2所示,硬件图如图3所示,在未检测到HALL代表的转子位置的时候则degree角度自动加,递增的步进根据电机转速来调整,每 当独立的HALL信号发生完一次上升沿和下降沿后更新一次速度,实现流程如图4所示。
HALL故障检测方法:
1、电机正反转是提前预设的,因此电机转子位置的序列是546231还是513264也是提前确定的。HALL发生故障判别过程中干扰项即加减速,当电机匀速工作时,HALL位置和degree如图2所示;
2、当电机还未发生故障后,以转子所在位置是HALL<2:0>=0x5为例(沿检测结果),电平检测结果是100,当前角度degree为30度~90度。正常情况下下一个沿发生结果HALL<2:0>=0x1,如果不是1,则可能是3或2或4或6,后四者情况皆表明HALL有故障。此时当然也能分析哪个出现故障,但分析出故障项需要在单霍尔故障或双霍尔故障等情况下分析,较为繁琐,也不是电机运行中最关键的,因此当发现hall信号改变发生次序问题时仅给出提示。
3、记录每个电周期(等同于MCU内部记录的degree角度)下发生沿跳变次数,若无沿跳变则三个HALL都发生了故障;
4、每个HALL上升沿和下降沿均发生后则记录转过了一圈round_x+1(x分别表示为a,b,c三相),该HALL正常。每次发生沿跳变时都比较出round_a,round_b,round_c的最大值,最大值分别减去round_x(x包括a,b,c),结果大于1的则为HALL故障相。操作简单。
角度增量计算过程:
角度增量能否及时更新影响着MCU内部角度计算结果和外部HALL检测结果的误差大小。HALL沿发生变化就立刻更新则可能导致由于故障而导致的误更新,因此需要根据上一次的degree增量原始值给出可接受的范围,该范围根据换相硬件电路中寄存器设置的误差角度来设置。如误差是20度,则可接受的增量范围是:原始增量*0.75~1.5*原始增量
假设角度增量可接受的范围是原始增量的1.5倍,若根据HALL沿跳变计算出的角度增量为原始增量的1.5倍,可能是加速或故障,在可接受范围内,在原始增量的1.5倍条件下MCU内部计算的角度degree必然比原始增量条件下(发生的是HALL故障而非加速时)超前20度到达换相点,如果当MCU内部degree已经到达换相点(例如是90度),HALL却未发生跳变,当HALL沿跳变发生时,MCU内部degree按照原始速度增量已经到达110度,此时若MCU内部degree和HALL对应的degree之间的差值在20度以内则可以将HALL对应的degree更新给MCU内部的degree,否则不能更新。如果是发生了加速,则必然HALL发生跳变必然在degree为110度之前发生,此时HALL对应的角度也能更新给MCU内部的 degree。
换相方法:
换相点是MCU内部计算的degree角度在30°,90°,150°,210°,270°,330°时换相。如果外部HALL掉相,内部degree是会继续计数而不会影响换相,保证电机还能正常运转而不会突然换相失常。
由于加减速会导致HALL检测出的转子位置和MCU内部计算的Degree存在误差,因此在本发明中增加了误差寄存器,根据实际运用配置,配置范围在0到60度以内,常规应用配置20度。当HALL对应的转子位置角度和MCU内部计算的Degree差值的绝对值小于20度时,则将HALL检测结果更新给MCU内部计算的Degree,反之亦然。
换相点和HALL更新给MCU的时刻如图6所示。
本发明判断的方法不考虑是否HALL已经故障,而是首先判断是否有HALL故障,方法是通过前后顺序,必须满足513264,或546231;其次是比较每个HALL翻转的次数,比较谁的次数多,已经故障的HALL必然翻转次数不会递增,也就确定是故障了。换向也是连续的,不受HALL故障影响。
在电路里内设一个角度记录器,通过保持角度值和HALL的同步性,来使得电机的换相可以依据角度记录器的值,保障在三霍尔故障时电机也能工作。
本发明通过比较MCU内部角度计数值和HALL沿跳变表示的转子位置之间的差值与寄存器预设的可接受差值范围,决定是否将HALL沿跳变值传递给MCU内部角度计数值,同时也约束了角度增量是否要更新。
采用了本发明的实现无刷直流电机霍尔位置传感器故障处理的方法,作为硬件检测方式,对于电机控制用户来说,重复性的检测工作都由硬件完成,并能保证及时换相。本发明设计了内部degree记录角度,电机根据degree角度值来换相,清晰地了解到电机当前位置,相比用单纯定时器的方式,在速度快与慢时,计数的大小不同,不能直观了解电机转子位置。本发明在发生无论是几个霍尔发生故障的情况下都能让电机正常运转起来,是在先保证换相后再检测出HALL故障的思路来完成的。
在此说明书中,本发明已参照其特定的实施例作了描述。但是,很显然仍可以作出各种修改和变换而不背离本发明的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。

Claims (6)

  1. 一种实现无刷直流电机霍尔位置传感器故障处理的方法,其特征在于,所述的方法包括以下步骤:
    (1)通过边沿检测的方式检测HALL信号,记录沿跳变次数;
    (2)判断HALL代表的转子的位置变化和MCU内部计算的角度值差值的绝对值在预设的误差范围内,如果是则MCU内部的角度值被更新为HALL检测出的转子位置代表的角度,否则MCU内部的角度值根据前面由电机转速计算出的角度增量递增。
    (3)根据上一次的角度增量原始值得出可接受的角度增量范围。
  2. 根据权利要求1所述的实现无刷直流电机霍尔位置传感器故障处理的方法,其特征在于,所述的步骤(1)具体包括以下步骤:
    (1.1)检测出HALL信号改变发生次序,提示故障;
    (1.2)判断是否发生沿跳变,如果有,则记录每个电周期下发生沿跳变次数,继续步骤(1.3);否则,如果没有沿跳变,则三个HALL均发生故障;
    (1.3)每个HALL上升沿和下降沿均发生后,记录了round_x+1的发生沿跳变次数,其中,x分别表示为a、b、c三相,将每次发生沿跳变时round_a、round_b和round_c的最大值分别减去round_x,如果结果大于1则为HALL故障相;否则,没发生故障。
  3. 根据权利要求1所述的实现无刷直流电机霍尔位置传感器故障处理的方法,其特征在于,所述的步骤(3)具体包括以下步骤:
    (3.1)根据上一次的角度增量原始值以及换相硬件电路中寄存器设置的误差角度设置角度增量可接受的范围;
    (3.2)判断HALL沿跳变发生时,MCU内部角度计数值和HALL对应的角度之间的差值是否在可接受的范围内,如果是,则将HALL对应的角度更新给MCU内部的角度计数值;否则,不更新角度。
  4. 根据权利要求1所述的实现无刷直流电机霍尔位置传感器故障处理的方法,其特征在于,所述的方法还包括换相的步骤,具体包括以下步骤:
    在MCU内部计算的角度为30°、90°、150°、210°、270°或330°的时候进行换相操作。
  5. 根据权利要求1所述的实现无刷直流电机霍尔位置传感器故障处理的方法,其特征在于,所述的电机包括角度记录器,用于记录角度,根据角度记录器的值使电机换相。
  6. 根据权利要求1所述的实现无刷直流电机霍尔位置传感器故障处理的方法,其特征在于,所述的电机包括误差寄存器组,包含多个误差寄存器,输出端均和与或门相连接,分别对应换相时不同的转子位置角度。
PCT/CN2021/104247 2020-12-30 2021-07-02 实现无刷直流电机霍尔位置传感器故障处理的方法 WO2022142232A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21912986.3A EP4181386A1 (en) 2020-12-30 2021-07-02 Method for implementing brushless direct current motor hall position sensor fault processing
US18/020,932 US20230327522A1 (en) 2020-12-30 2021-07-02 Method for fault processing of hall position sensor in brushless direct current motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011609195.1 2020-12-30
CN202011609195.1A CN114696669A (zh) 2020-12-30 2020-12-30 实现无刷直流电机霍尔位置传感器故障处理的方法

Publications (1)

Publication Number Publication Date
WO2022142232A1 true WO2022142232A1 (zh) 2022-07-07

Family

ID=82132777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104247 WO2022142232A1 (zh) 2020-12-30 2021-07-02 实现无刷直流电机霍尔位置传感器故障处理的方法

Country Status (4)

Country Link
US (1) US20230327522A1 (zh)
EP (1) EP4181386A1 (zh)
CN (1) CN114696669A (zh)
WO (1) WO2022142232A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472263A (zh) * 2013-09-03 2013-12-25 清华大学 一种永磁同步电机霍尔传感器故障诊断方法
CN108322106A (zh) * 2018-02-27 2018-07-24 牟特科技(北京)有限公司 一种直流无刷电机换相的方法及装置
CN109905058A (zh) * 2017-12-07 2019-06-18 现代自动车株式会社 电机控制方法
EP3644495A1 (en) * 2018-10-25 2020-04-29 Mitsuba Corporation Motor control device and control method of motor control device
US20200186060A1 (en) * 2018-12-10 2020-06-11 Agave Semiconductor, Llc Position corrected commutation of brushless direct current motors
CN111817616A (zh) * 2020-07-10 2020-10-23 上海钧正网络科技有限公司 电机控制方法以及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472263A (zh) * 2013-09-03 2013-12-25 清华大学 一种永磁同步电机霍尔传感器故障诊断方法
CN109905058A (zh) * 2017-12-07 2019-06-18 现代自动车株式会社 电机控制方法
CN108322106A (zh) * 2018-02-27 2018-07-24 牟特科技(北京)有限公司 一种直流无刷电机换相的方法及装置
EP3644495A1 (en) * 2018-10-25 2020-04-29 Mitsuba Corporation Motor control device and control method of motor control device
US20200186060A1 (en) * 2018-12-10 2020-06-11 Agave Semiconductor, Llc Position corrected commutation of brushless direct current motors
CN111817616A (zh) * 2020-07-10 2020-10-23 上海钧正网络科技有限公司 电机控制方法以及装置

Also Published As

Publication number Publication date
US20230327522A1 (en) 2023-10-12
CN114696669A (zh) 2022-07-01
EP4181386A1 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
US5650779A (en) Position encoder
US5652494A (en) Angle controller for a switched reluctance drive utilizing a high frequency clock
CN104165649A (zh) 一种无刷直流电机霍尔传感器上电自检测方法
WO2016091091A1 (zh) 四相开关磁阻电机两只位置传感器故障诊断与定位方法
WO2016091090A1 (zh) 一种三相开关磁阻电机位置传感器故障诊断与定位方法
WO2016091092A1 (zh) 四相开关磁阻电机四只位置传感器故障诊断与定位方法
WO2022142232A1 (zh) 实现无刷直流电机霍尔位置传感器故障处理的方法
CN109286353B (zh) 一种电机控制模式故障检测方法及装置
CN108512477B (zh) 一种电机转子位置采样的诊断方法、装置及设备
CN111181469A (zh) 伺服驱动器位置反馈异常跳变多周期联合检测处理方法
JP3047809B2 (ja) ロータリーエンコーダ
CN108445340A (zh) 五相永磁同步电机逆变器开路故障的检测方法
CN113127273B (zh) 单片机检测电路及相应的检测的方法
JP2001249154A (ja) エンコーダの断線検出装置および断線検出方法
US6246343B1 (en) Increment encoder failure detection
JPS60162959A (ja) 電子式エンジン制御装置
JP2002350184A (ja) Acサーボ用エンコーダの故障検出方法
CN111845350A (zh) 一种电机缺相诊断的方法、电机控制器、管理系统及车辆
CN115980460A (zh) 一种pwm信号输出安全监测的方法
JPH03189736A (ja) 選択回路の障害検出方式
JPS6348179A (ja) 回転数監視装置
CN111211712B (zh) 一种无人机电机驱动系统及电机容错控制方法
CN117914190A (zh) 电机控制方法、装置、终端设备及存储介质
JPS6363932B2 (zh)
JP2003004486A (ja) 回転角度検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021912986

Country of ref document: EP

Effective date: 20230213

NENP Non-entry into the national phase

Ref country code: DE