WO2022142220A1 - 应急泵送控制包、液压系统及泵送设备 - Google Patents
应急泵送控制包、液压系统及泵送设备 Download PDFInfo
- Publication number
- WO2022142220A1 WO2022142220A1 PCT/CN2021/103551 CN2021103551W WO2022142220A1 WO 2022142220 A1 WO2022142220 A1 WO 2022142220A1 CN 2021103551 W CN2021103551 W CN 2021103551W WO 2022142220 A1 WO2022142220 A1 WO 2022142220A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control
- valve
- pumping
- emergency
- button
- Prior art date
Links
- 238000005086 pumping Methods 0.000 title claims abstract description 88
- 238000004891 communication Methods 0.000 claims abstract description 42
- 239000002699 waste material Substances 0.000 abstract description 4
- 238000003912 environmental pollution Methods 0.000 abstract description 3
- 239000003921 oil Substances 0.000 description 113
- 238000003756 stirring Methods 0.000 description 12
- 230000000875 corresponding effect Effects 0.000 description 11
- 239000010720 hydraulic oil Substances 0.000 description 10
- 230000009471 action Effects 0.000 description 7
- 238000010276 construction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B21/00—Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
- F15B21/08—Servomotor systems incorporating electrically operated control means
- F15B21/087—Control strategy, e.g. with block diagram
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G21/00—Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
- E04G21/02—Conveying or working-up concrete or similar masses able to be heaped or cast
- E04G21/04—Devices for both conveying and distributing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B1/00—Installations or systems with accumulators; Supply reservoir or sump assemblies
- F15B1/02—Installations or systems with accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/16—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
- F15B11/20—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors controlling several interacting or sequentially-operating members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/10—Special arrangements for operating the actuated device with or without using fluid pressure, e.g. for emergency use
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B20/00—Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B21/00—Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
- F15B21/08—Servomotor systems incorporating electrically operated control means
Definitions
- the present application relates to the technical field of construction machinery, and in particular, to an emergency pumping control package, a hydraulic system and pumping equipment.
- Concrete pump truck is a construction equipment that realizes concrete transportation through pumping mechanism.
- the hydraulic system of concrete pump truck generally includes four independent systems, namely pumping hydraulic system, boom hydraulic system, distribution valve hydraulic system and mixing hydraulic system.
- reversing valves are installed on the oil circuits of the pumping hydraulic system, the boom hydraulic system and the distribution valve hydraulic system to realize the forward/reverse pumping of the concrete pump truck and the telescopic extension of the boom through the corresponding hydraulic actuators respectively. Action and swing reversal of distribution valve, etc.
- the present application provides an emergency pumping control package, a hydraulic system and pumping equipment, which are used to solve the problem that the existing concrete pump truck cannot operate normally when the electrical control of its hydraulic system fails.
- the application provides an emergency pumping control package, the control package includes an emergency operation module and an emergency communication interface; the emergency operation module is used to receive the user's forward/reverse pumping of the pumping system, and the left/right of the distribution valve. An operation instruction for starting control of at least one of the swings; the emergency communication interface is electrically connected to the emergency operation module, and the emergency communication interface is used to electrically connect with a control valve group on the oil circuit of the hydraulic system, the control valve The group is capable of controlling the conduction state of the hydraulic system for driving the pumping system and the distribution valve in response to the operating command.
- the signal lead-out lines of each control valve on the control valve group are centrally connected to a wiring harness interface, and the wiring harness interface and the emergency communication interface realize communication by plugging. connect.
- the wire harness interface includes a plurality of pins, and the emergency operation module is connected to some pins of the wire harness interface through the emergency communication interface.
- the emergency operation module includes an electric control button, and the electric control button includes four, which are respectively a first button, a second button, a third button and a fourth button,
- the first button and the second button are respectively used to control the forward/reverse pumping of the pumping system
- the third button and the fourth button are respectively used to control the left/right of the distribution valve swing.
- the emergency communication interface includes a plurality of conductive pins and ground pins, the first button, the second button, the third button and the fourth button used for forming at least part of the conductive pins and the ground pins to form a power-on loop; or, the emergency communication interface includes a plurality of conductive pins and ground pins, the first button, the second button, the third button The button and the fourth button are used to electrically connect at least part of the conductive pins to the positive pole of the external power supply, and are used to electrically connect the ground pin to the negative pole of the external power supply.
- control package further includes: a power interface module, the power interface module is electrically connected with the emergency operation module, and the power interface module is used for connecting an external power supply.
- the present application also provides a hydraulic system, the hydraulic system includes a control valve group, a system control circuit and the above-mentioned emergency pumping control package; the system control circuit is used for connecting with the control valve on the oil circuit of the hydraulic system Group electrical connections.
- the control valve group includes a first-type pilot valve; the hydraulic system includes a pumping switching oil circuit for connecting to a main oil cylinder of a pumping system, and the pumping switching oil circuit is A first reversing valve is installed, and the two pilot control ends on the first reversing valve are respectively connected to the first type of pilot valve in one-to-one correspondence, and the first type of pilot valve controls the first reversing valve. Switching of the oil circuit to the valve.
- the control valve group includes a first relief valve, and the first relief valve is installed at an oil inlet end of the pumping switching oil circuit; the control valve group includes a first relief valve.
- the control valve group includes a second-type pilot valve;
- the hydraulic system includes a distribution valve switching oil circuit for connecting a swing valve oil cylinder, and the distribution valve switching oil circuit is equipped with a first Two reversing valve, the two pilot control ends on the second reversing valve are respectively connected to the second type pilot valve in one-to-one correspondence, and the second type pilot valve controls the second reversing valve Switching of oil circuits.
- control valve group includes a second relief valve, and the second relief valve is installed at the oil inlet end of the switching oil circuit of the distribution valve; the second reversing valve A hydraulic accumulator is also installed on the oil circuit between the oil circuit and the oil inlet end of the switching oil circuit of the distribution valve.
- the control valve group includes a third type of pilot valve; the hydraulic system includes a stirring hydraulic oil circuit, and the third type of pilot valve is installed on the stirring hydraulic oil circuit.
- the present application also provides a pumping device equipped with the above-mentioned hydraulic system.
- the emergency pumping control package, hydraulic system and pumping equipment provided in this application by setting the emergency operation module and emergency communication interface for communication connection, it is convenient to connect the emergency communication interface directly with the control valve group on the oil circuit of the hydraulic system.
- the operator can directly input control commands to the emergency operation module to start the control of at least one of the forward/reverse pumping of the pumping system and the left/right swing of the distribution valve Operation, in order to control the conduction state of the oil circuit on the hydraulic system through the corresponding control valve group, so that the hydraulic actuator connected with the hydraulic system can complete the corresponding action, so as to ensure that the concrete pump truck is still in the case of failure of the main control system. It can continue to work, which can effectively prevent the waste of concrete and the resulting environmental pollution.
- Fig. 1 is the structural block diagram that the emergency pumping control package provided by this application is connected with the hydraulic system;
- FIG. 2 is a schematic structural diagram of a hydraulic system provided by the application.
- FIG. 3 is a schematic structural diagram of the main valve island integrated by the pumping switching oil circuit provided by the present application.
- FIG. 4 is a schematic structural diagram of an auxiliary valve island provided by the present application, which is integrated by the distribution valve switching oil circuit and the stirring hydraulic oil circuit;
- this embodiment provides an emergency pumping control package.
- the control package 1 includes: an emergency operation module 11 and an emergency communication interface 4; Operation instruction for starting control of at least one of the anti-pumping and left/right swing of the distribution valve; the emergency communication interface 4 is electrically connected with the emergency operation module 11, and the emergency communication interface 4 is used for connecting with the control valve group on the oil circuit of the hydraulic system 2 is electrically connected, and the control valve group 2 can respond to the operation command to realize the control of the conduction state of the hydraulic system 3, and the hydraulic system 3 is used to drive the pumping system and the distribution valve.
- the emergency communication interface 4 by setting the emergency operation module 11 and the emergency communication interface 4 for communication connection, it is convenient for the emergency communication interface 4 to be directly communicated with the control valve group 2 on the oil circuit of the hydraulic system 3.
- the operator can directly input control commands to the emergency operation module 11 to start the control operation of at least one of the forward/reverse pumping of the pumping system and the left/right swing of the distribution valve, so as to pass the
- the corresponding control valve group 2 controls the conduction state of the oil circuit on the hydraulic system 3, so that the hydraulic actuators connected with the hydraulic system 3 complete the corresponding actions to ensure that the concrete pump truck can still be used in the case of failure of the main control system. Continuing the operation can effectively prevent the waste of concrete and the resulting environmental pollution.
- the signal lead-out lines of each control valve on the control valve group 2 are concentrated with the wiring harness interface 5.
- the wire harness interface 5 and the emergency communication interface 4 realize communication connection by plugging.
- one of the wire harness interface 5 and the emergency communication interface 4 is a male head structure, and the other is a female head structure, and the male head structure and the female head structure are correspondingly plugged into one body.
- the wire harness interface 5 shown in this embodiment includes a plurality of pins, and the emergency operation module 11 is connected to some pins of the wire harness interface 5 through the emergency communication interface 4 .
- the emergency operation module 11 shown in this embodiment includes any one of an electric control operation handle, an electric control button and a touch screen controller.
- each valve in the control valve group 2 can be provided with a one-to-one corresponding electric control operation handle or electric control button, so as to individually control the opening and closing states of each valve in the control valve group 2 .
- a configuration interface can also be set on the touch screen controller, so that the operator can manually input control instructions in a targeted manner, so as to control the opening and closing states of each valve in the control valve group 2 .
- the emergency operation module 11 shown in this embodiment is specifically set as an electric control button, and the electric control button includes four, which are respectively a first button, a second button, a third button and a fourth button.
- the two buttons are respectively used to control the forward/reverse pumping of the pumping system, and the third button and the fourth button are respectively used to control the left/right swing of the distribution valve.
- the emergency communication interface 4 shown in this embodiment includes a plurality of conductive pins and ground pins, and the first button, the second button, the third button and the fourth button are used to form at least some of the conductive pins and the ground pins.
- a power-on loop; or, the emergency communication interface includes a plurality of conductive pins and ground pins, and the first button, the second button, the third button and the fourth button are used to electrically connect at least part of the conductive pins to the positive pole of the external power supply, and are used for Make an electrical connection between the ground pin and the negative terminal of the external power supply.
- the conductive connection state between the corresponding conductive pin and the ground pin on the emergency communication interface 4 can be directly controlled, so as to control the coils of each valve in the control valve group 2 .
- the power-on state is controlled, that is, the control of the conduction state of each valve in the control valve group 2 is realized.
- control package 1 shown in this embodiment is further provided with a power interface module 12, the power interface module 12 is electrically connected with the emergency operation module 11, and the power interface module 12 is used for connecting an external power supply.
- the power interface module 12 shown in this embodiment can be a known AC-DC conversion module or a DC conversion module in the art, and the power interface module 12 can be directly connected to the DC emergency power supply, for example, the power interface module 12 can be directly connected to the DC emergency power supply. It is electrically connected to the battery on the chassis of the current construction machine, and in the case of failure of the battery, the power interface module 12 can also be electrically connected to the battery on the chassis of other construction machines. At the same time, the power interface module 12 can also be connected to the on-site commercial power supply equipment.
- the present embodiment also provides a hydraulic system
- the hydraulic system 3 includes a control valve group 2, a system control circuit and the above-mentioned emergency pumping control package; the system control circuit is used for working with The control valve group 2 on the oil circuit of the hydraulic system 3 is electrically connected.
- the opening and closing actions of the control valve group 2 on the oil circuit of the hydraulic system 3 are controlled by the system control circuit, and when the system control circuit fails or the power supply of the system control circuit
- the emergency communication interface 4 on the emergency pumping control package can be connected to the control valve group 2, and the operator can realize the emergency control of the control valve group 2 by operating the emergency operation module 11, so that the hydraulic system 3 can operate normally. to run the job.
- the control valve group 2 shown in this embodiment includes a first-type pilot valve;
- the hydraulic system 3 includes a pumping switching oil circuit 31 for connecting to the main oil cylinder of the pumping system, and the pumping switching oil circuit 31 is equipped with a first For a reversing valve, the two pilot control ends on the first reversing valve are respectively connected to the first type pilot valve in one-to-one correspondence, and the first type pilot valve controls the switching of the oil circuit on the first reversing valve.
- the pumping switching oil circuit 31 shown in this embodiment is provided with an oil inlet port P1 , an oil return port T1 , oil outlet ports A1 , B1 , and oil outlet ports A2 , B2 .
- the oil inlet P1 shown in this embodiment is used to communicate with the pumping output side of the main oil pump, and the oil outlets A1 and B1 are respectively used to communicate with the two rodless cavities on the main oil cylinder of the pumping system.
- B2 is used to communicate the two rod cavities on the master cylinder.
- a first control valve is connected in series between the two rodless cavities and between the two rodd cavities on the main oil cylinder.
- the first control valve can be a solenoid valve, and the two rodless cavities on the main oil cylinder can pass through
- the first control valve controls the on and off of the two phases, or the two rod cavities on the master cylinder can also control the on and off of the two phases through the first control valve.
- first reversing valves there are two first reversing valves shown in this embodiment.
- the two first reversing valves are respectively marked as QJ1 and QJ2 in FIG. 2 , and the oil inlet ends of the first reversing valves QJ1 and QJ2 are both It is connected with the oil inlet P1 on the main valve island, the oil return ends of the first reversing valve QJ1 and QJ2 are both connected with the oil return port T1 on the main valve island, and the two oil outlet ends of the first reversing valve QJ1 are respectively Corresponding to the oil outlet ports A1 and B1 on the main valve island, the two oil outlet ends of the first reversing valve QJ2 correspond to the oil outlet ports A2 and B2 on the main valve island respectively. Therefore, when the electrical control of the hydraulic system 3 is in normal operation, it is possible to control the working state of the master cylinder of the pumping system based on the control of the switching states of the oil passages of the two first reversing valve
- the two pilot control terminals on each first reversing valve are in a one-to-one correspondence.
- a first-type pilot valve is communicated with the ground. The operator can input an operation command through the emergency operation module 11, and realize the switching control of the upper oil circuit of the first reversing valve by controlling the switch state of the first type of pilot valve.
- the two pilot control ends of the first reversing valve QJ1 are respectively connected to the first type pilot valve DT7 and the first type pilot valve DT6.
- the first type pilot valve DT7 and the A oil port on the first type pilot valve DT6 are respectively connected to the two pilot control ends of the first reversing valve QJ1, and the first type pilot valve DT7 and the first type pilot valve DT6 on the
- the P oil ports are respectively connected to the P2 oil ports on the auxiliary valve island, and the T oil ports on the first type pilot valve DT7 and the first type pilot valve DT6 are respectively connected to the oil return port T3 on the valve island.
- the two pilot control ends of the first reversing valve QJ2 are respectively connected to the first type pilot valve DT8 and the first type pilot valve DT9.
- the specific communication states of the first reversing valve QJ2 with the first type pilot valve DT8 and the first type pilot valve DT9 will not be described in detail.
- the pumping switching oil circuit 31 shown in this embodiment is also provided with a first relief valve DT1, wherein one end of the first relief valve DT1 is communicated with the oil inlet P1, and the other end of the first relief valve DT1 is connected to the oil inlet P1. One end is communicated with the oil return port T2.
- the control valve group 2 shown in this embodiment includes a second type of pilot valve;
- the hydraulic system 3 includes a distribution valve switching oil circuit 32 for connecting the swing valve oil cylinder, and the distribution valve switching oil circuit 32 is equipped with a second reversing oil circuit
- the two pilot control ends on the second reversing valve are respectively connected to the second type of pilot valve in one-to-one correspondence, and the second type of pilot valve controls the switching of the oil circuit on the second reversing valve.
- the pilot valves of the second type shown in this embodiment are respectively identified as DT4 and DT5, and the second reversing valve is identified as QJ3.
- the oil inlet end of the distribution valve switching oil circuit 32 is the P2 oil port on the auxiliary valve island, and the P2 oil port is used to communicate with the pumping output side of the gear pump.
- the P2 oil port is connected to the P oil port of the second reversing valve QJ3 through the check valve, the T oil port of the second reversing valve QJ3 is connected to the oil return port T4 on the auxiliary valve island, and the two ports of the second reversing valve QJ3 are connected.
- the oil ports are respectively connected to the A3 and B3 oil ports on the auxiliary valve island, and the distribution valve can be connected to the A3 and B3 oil ports. Therefore, when the electrical control of the hydraulic system 3 operates normally, the switching control of the working state of the distribution valve can be realized based on the control of the switching state of the oil passage of the second reversing valve QJ3.
- this embodiment can control the switching of the oil circuit on the second reversing valve QJ3 through the second type of pilot valves DT4 and DT5 state.
- the A oil ports on the second type pilot valves DT4 and DT5 are respectively connected to the two pilot control terminals on the second reversing valve QJ3, and the P oil ports on the second type pilot valves DT4 and DT5 are both connected to the P2 oil port.
- the T oil ports on the second type of pilot valves DT4 and DT5 are both connected to the oil return port T3.
- control valve group 2 shown in this embodiment includes a second relief valve DT17.
- One end of the second relief valve DT17 is connected to the P2 oil port, and the other end is connected to the oil return port T3 on the auxiliary valve island.
- a hydraulic accumulator PL is also installed on the oil circuit between the second reversing valve QJ3 shown in this embodiment and the oil inlet end of the distribution valve switching oil circuit 32 .
- the hydraulic accumulator PL may be specifically disposed on the oil path between the one-way valve on the distribution valve switching oil path 32 and the second reversing valve QJ3.
- control valve group 2 shown in this embodiment further includes a third type of pilot valve;
- the hydraulic system 3 includes a stirring hydraulic oil circuit 33 , and a third type of pilot valve is installed on the stirring hydraulic oil circuit 33 .
- the stirring hydraulic oil circuit 33 shown in this embodiment includes an oil inlet P3 provided on the auxiliary valve island, an oil return port T5 and oil ports A4 and B4 provided on the auxiliary valve island. Among them, oil ports A4 and B4 are respectively used to communicate with the stirring pump.
- the third type of pilot valve shown in this embodiment can be marked as DT10 and DT11 respectively, and the third type of pilot valve DT10 and DT11 can guide the hydraulic oil to flow from the oil inlet P3 to the oil port A4 through the third type of pilot valve DT11, so as to It is sent to the stirring pump, and at the same time, the hydraulic oil on the stirring pump passes through the oil port B4, passes through the third type of pilot valve DT10, and returns to the oil return port T5.
- control package 1 shown in this embodiment is also provided with an emergency communication interface 4, the emergency communication interface 4 is communicated with the emergency operation module 11, and a plurality of signal lead wires on the control valve group 2 are concentratedly connected to the wiring harness interface 5, The wire harness interface 5 is plugged into the emergency communication interface 4 to quickly realize the communication connection between the emergency operation module 11 and the control valve group 2 .
- a signal is given to the proportional valve on the main oil pump of the main system through the emergency operation module 11, so that the main oil pump outputs the driving oil according to a certain displacement.
- the first relief valve DT1 and the second relief valve DT17 are controlled to be energized respectively, so that the system can supply the first-come control oil to the pumping switching oil circuit 31, the distribution valve switching oil circuit 32 and the stirring hydraulic oil circuit 33 respectively. .
- the quasi-pilot valve DT5 is energized alternately, and the forward/reverse pumping control of the concrete pump truck is carried out according to the actual needs.
- control commands can also be delivered through the emergency control module to control the stirring action of the stirring pump and the telescopic action of the boom, which will not be described in detail here.
- this embodiment also provides a pumping device, the pumping device includes the hydraulic system as described above.
- the pumping equipment shown in this embodiment includes a concrete pump truck, a vehicle-mounted pump or a tow pump, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
一种应急泵送控制包、液压系统及泵送设备,所述应急泵送控制包(1)包括应急操作模块(11)与电源接口模块(12),应急操作模块(11)用于接收用户对泵送系统的正/反泵送、分配阀的左/右摆动当中至少一者的启动控制的操作指令,应急通讯接口(4)与应急操作模块(11)电连接,应急通讯接口(4)用于与液压系统的油路上的控制阀组(2)电连接。通过应急泵送控制包(1)实现对液压系统的应急控制,可确保混凝土泵车在主控系统出现故障的情况下仍然能继续作业,有效防止造成混凝土的浪费及由此带来的环境污染。
Description
相关申请的交叉引用
本申请要求于2020年12月31日提交的申请号为202011623659.4,发明名称为“应急泵送控制包、液压系统及泵送设备”的中国专利申请的优先权,其通过引用全部并入本文。
本申请涉及工程机械技术领域,尤其涉及一种应急泵送控制包、液压系统及泵送设备。
混凝土泵车是通过泵送机构实现混凝土输送的施工设备,混凝土泵车的液压系统一般包含四个独立系统,即泵送液压系统、臂架液压系统、分配阀液压系统和搅拌液压系统。其中,泵送液压系统、臂架液压系统及分配阀液压系统的油路上均装有换向阀,以分别通过相应的液压执行部件,实现混凝土泵车的正/反泵送、臂架的伸缩动作及分配阀的摆动换向等。
当前,混凝土泵车在作业过程中,当液压系统的电气控制出现故障,甚至完全失效时,无法通过混凝土泵车上的液压系统进行正常的泵送、操作臂架等动作,即混凝土泵车无法正常地进行作业,致使混凝土凝固在输送缸、输送管、料斗里面,不仅造成混凝土的浪费,还污染环境。
发明内容
本申请提供一种应急泵送控制包、液压系统及泵送设备,用以解决现有的混凝土泵车在其液压系统的电气控制出现故障时,混凝土泵车无法正常作业的问题。
本申请提供一种应急泵送控制包,所述控制包包括应急操作模块与应急通讯接口;所述应急操作模块用于接收用户对泵送系统的正/反泵送、分配阀的左/右摆动当中至少一者的启动控制的操作指令;所述应急通讯接口与所述应急操作模块电连接,所述应急通讯接口用于与液压系统的油路上 的控制阀组电连接,所述控制阀组能够响应于所述操作指令,以实现对所述液压系统的导通状态的控制,所述液压系统用于驱动所述泵送系统及分配阀。
根据本申请提供的一种应急泵送控制包,所述控制阀组上的各个控制阀的信号引出线集中与线束接口连接,所述线束接口与所述应急通讯接口通过插接的方式实现通讯连接。
根据本申请提供的一种应急泵送控制包,所述线束接口包括多个引脚,所述应急操作模块通过所述应急通讯接口与所述线束接口的部分引脚连接。
根据本申请提供的一种应急泵送控制包,所述应急操作模块包括电控按钮,所述电控按钮包括四个,分别为第一按钮、第二按钮、第三按钮及第四按钮,所述第一按钮与所述第二按钮分别用于控制所述泵送系统的正/反泵送,所述第三按钮与所述第四按钮分别用于控制所述分配阀的左/右摆动。
根据本申请提供的一种应急泵送控制包,所述应急通讯接口包括多个导电针脚和接地针脚,所述第一按钮、所述第二按钮、所述第三按钮及所述第四按钮用于使至少部分所述导电针脚与所述接地针脚形成通电回路;或者,所述应急通讯接口包括多个导电针脚和接地针脚,所述第一按钮、所述第二按钮、所述第三按钮及所述第四按钮用于使至少部分所述导电针脚与外接电源的正极电连接,且用于使所述接地针脚与所述外接电源的负极电连接。
根据本申请提供的一种应急泵送控制包,所述控制包还包括:电源接口模块,所述电源接口模块与所述应急操作模块电连接,所述电源接口模块用于连接外接电源。
本申请还提供一种液压系统,所述液压系统包括控制阀组、系统控制电路及如上所述的应急泵送控制包;系统控制电路用于与所述液压系统的油路上的所述控制阀组电连接。根据本申请提供的一种液压系统,所述控制阀组包括第一类先导阀;所述液压系统包括用于连接泵送系统的主油缸的泵送切换油路,所述泵送切换油路上装有第一换向阀,所述第一换向阀上的两个先导控制端分别一一对应地连通所述第一类先导阀,由所述第一 类先导阀控制所述第一换向阀上油路的切换。
根据本申请提供的一种液压系统,所述控制阀组包括第一溢流阀,所述第一溢流阀安装于所述泵送切换油路的进油端;所述控制阀组包括第一控制阀;所述第一换向阀包括两个,两个所述第一换向阀的进油端相连通,两个所述第一换向阀的回油端相连通,两个所述第一换向阀的两个出油端之间均串联有所述第一控制阀。
根据本申请提供的一种液压系统,所述控制阀组包括第二类先导阀;所述液压系统包括用于连接摆阀油缸的分配阀切换油路,所述分配阀切换油路上装有第二换向阀,所述第二换向阀上的两个先导控制端分别一一对应地连通所述第二类先导阀,由所述第二类先导阀控制所述第二换向阀上油路的切换。
根据本申请提供的一种液压系统,所述控制阀组包括第二溢流阀,所述第二溢流阀安装于所述分配阀切换油路的进油端;所述第二换向阀与所述分配阀切换油路的进油端之间的油路上还装有液压蓄能器。
根据本申请提供的一种液压系统,所述控制阀组包括第三类先导阀;所述液压系统包括搅拌液压油路,所述搅拌液压油路上安装有所述第三类先导阀。
本申请还提供一种泵送设备,所述泵送设备上装有如上所述的液压系统。
本申请提供的应急泵送控制包、液压系统及泵送设备,通过设置通讯连接的应急操作模块与应急通讯接口,便于将应急通讯接口直接与液压系统的油路上的控制阀组通讯连接,在混凝土泵车上液压系统的电气控制出现故障时,操作者可直接向应急操作模块输入控制指令,启动对泵送系统的正/反泵送及分配阀的左/右摆动当中至少一者的控制操作,以便通过相应的控制阀组来控制液压系统上油路的导通状态,以使得与液压系统连通的液压执行部件完成相应的动作,确保混凝土泵车在主控系统出现故障的情况下仍然能继续作业,可有效防止造成混凝土的浪费及由此带来的环境污染。
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例 或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的应急泵送控制包与液压系统相连接的结构框图;
图2是本申请提供的液压系统的结构示意图;
图3是本申请提供的由泵送切换油路集成的主阀岛的结构示意图;
图4是本申请提供的由分配阀切换油路与搅拌液压油路集成的辅阀岛的结构示意图;
附图标记:
1:控制包;11:应急操作模块;12:电源接口模块;
2:控制阀组;3:液压系统;31:泵送切换油路;
32:分配阀切换油路;33:搅拌液压油路;4:应急通讯接口;
5:线束接口。
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合图1-图4描述本申请的应急泵送控制包、液压系统及泵送设备。
如图1所示,本实施例提供一种应急泵送控制包,所述控制包1包括:应急操作模块11与应急通讯接口4;应急操作模块11用于接收用户对泵送系统的正/反泵送、分配阀的左/右摆动当中至少一者的启动控制的操作指令;应急通讯接口4与应急操作模块11电连接,应急通讯接口4用于与液压系统的油路上的控制阀组2电连接,控制阀组2能够响应于所述操作指令,以实现对液压系统3的导通状态的控制,液压系统3用于驱动泵送系统及分配阀。
具体的,本实施例通过设置通讯连接的应急操作模块11与应急通讯接口4,便于将应急通讯接口4直接与液压系统3的油路上的控制阀组2 通讯连接,在混凝土泵车上液压系统3的电气控制出现故障时,操作者可直接向应急操作模块11输入控制指令,启动对泵送系统的正/反泵送及分配阀的左/右摆动当中至少一者的控制操作,以便通过相应的控制阀组2来控制液压系统3上油路的导通状态,以使得与液压系统3连通的液压执行部件完成相应的动作,确保混凝土泵车在主控系统出现故障的情况下仍然能继续作业,可有效防止造成混凝土的浪费及由此带来的环境污染。
进一步地,为了便于实现应急通讯接口4与液压系统3的油路上的控制阀组2之间的通讯连接,本实施例将控制阀组2上的各个控制阀的信号引出线集中与线束接口5连接,线束接口5与应急通讯接口4通过插接的方式实现通讯连接。其中,线束接口5与应急通讯接口4当中的一者为公头结构,另一者为母头结构,公头结构与母头结构对应插接为一体。
具体地,本实施例所示的线束接口5包括多个引脚,应急操作模块11通过应急通讯接口4与线束接口5的部分引脚连接。
进一步地,本实施例所示的应急操作模块11包括电控操作手柄、电控按钮及触摸屏控制器当中的任一种。
具体的,本实施例可对控制阀组2中的各个阀设置一一对应的电控操作手柄或电控按钮,以单独对控制阀组2中的各个阀的开闭状态进行操控。本实施例也可在触摸屏控制器上设置组态界面,以便操作者针对性地手动输入控制指令,以对控制阀组2中的各个阀的开闭状态进行操控。
进一步地,本实施例所示的应急操作模块11具体设置为电控按钮,电控按钮包括四个,分别为第一按钮、第二按钮、第三按钮及第四按钮,第一按钮与第二按钮分别用于控制泵送系统的正/反泵送,第三按钮与第四按钮分别用于控制分配阀的左/右摆动。
进一步地,本实施例所示的应急通讯接口4包括多个导电针脚和接地针脚,第一按钮、第二按钮、第三按钮及第四按钮用于使至少部分所述导电针脚与接地针脚形成通电回路;或者,应急通讯接口包括多个导电针脚和接地针脚,第一按钮、第二按钮、第三按钮及第四按钮用于使至少部分导电针脚与外接电源的正极电连接,且用于使接地针脚与外接电源的负极电连接。
由此,本实施例通过操作各个电控按钮,可直接控制应急通讯接口4 上的相应的导电针脚与接地针脚之间的导电接通状态,以对控制阀组2中的各个阀的线圈的得电状态进行控制,即实现对控制阀组2中的各个阀的导通状态的控制。
进一步地,本实施例所示的控制包1还设置有电源接口模块12,电源接口模块12与应急操作模块11电连接,电源接口模块12用于连接外接电源。
具体地,本实施例所示的电源接口模块12可以为本领域所述公知的交直流转换模块或者直流变换模块,电源接口模块12可直接与直流应急电源相连接,例如将电源接口模块12直接与当前作业的工程机械的底盘上的电瓶通电连接,在该电瓶失效的情况下,也可将电源接口模块12与其它工程机械的底盘上的电瓶通电连接。与此同时,还可将电源接口模块12与现场的市电的供电设备连接。
如图1与图2所示,本实施例还提供一种液压系统,所述液压系统3包括控制阀组2、系统控制电路及如上所述的应急泵送控制包;系统控制电路用于与液压系统3的油路上的控制阀组2电连接。
由此,在泵送设备的液压系统正常运行的情况下,由系统控制电路控制液压系统3的油路上的控制阀组2的开闭动作,而在系统控制电路出现故障或者系统控制电路的供电出现故障时,可将应急泵送控制包上的应急通讯接口4与控制阀组2相连,操作人员可通过操作应急操作模块11实现对控制阀组2的应急控制,以使得液压系统3能够正常地运行作业。
优选地,本实施例所示的控制阀组2包括第一类先导阀;液压系统3包括用于连接泵送系统的主油缸的泵送切换油路31,泵送切换油路31上装有第一换向阀,第一换向阀上的两个先导控制端分别一一对应地连通第一类先导阀,由第一类先导阀控制第一换向阀上油路的切换。
如图2与图3所示,本实施例所示的泵送切换油路31设置有进油口P1、回油口T1及出油口A1、B1与出油口A2、B2。本实施例所示的进油口P1用于连通主油泵的泵送输出侧,出油口A1、B1分别用于连通泵送系统的主油缸上的两个无杆腔,出油口A2、B2用于连通主油缸上的两个有杆腔。其中,主油缸上的两个无杆腔之间及两个有杆腔之间均串联有第一控制阀,该第一控制阀可以为电磁阀,主油缸上的两个无杆腔可通过第 一控制阀控制两者的相导通与关断,或者,主油缸上的两个有杆腔也可通过第一控制阀控制两者的相导通与关断。
在此,本实施例所示的第一换向阀设有两个,两个第一换向阀在图2中分别标识为QJ1与QJ2,第一换向阀QJ1与QJ2的进油端均与主阀岛上的进油口P1连通,第一换向阀QJ1与QJ2的回油端均与主阀岛上的回油口T1连通,第一换向阀QJ1的两个出油端分别对应连通主阀岛上的出油口A1、B1,第一换向阀QJ2的两个出油端分别对应连通主阀岛上的出油口A2、B2。由此,在液压系统3的电气控制正常运行时,可基于对两个第一换向阀油路切换状态的控制,以实现对泵送系统的主油缸的工作状态的控制。
然而,在液压系统3的电气控制出现故障或失效时,为了确保泵送系统的主油缸能够正常地工作,本实施例在每个第一换向阀上的两个先导控制端分别一一对应地连通有第一类先导阀。操作者可通过应急操作模块11输入操作指令,通过控制第一类先导阀的开关状态,来实现对第一换向阀上油路的切换控制。
如图2所示,第一换向阀QJ1的两个先导控制端分别连通第一类先导阀DT7与第一类先导阀DT6。其中,第一类先导阀DT7与第一类先导阀DT6上的A油口分别连通第一换向阀QJ1的两个先导控制端,第一类先导阀DT7与第一类先导阀DT6上的P油口分别连通辅阀岛上的P2油口,第一类先导阀DT7与第一类先导阀DT6上的T油口分别连通阀岛上的回油口T3。
与此同时,第一换向阀QJ2的两个先导控制端分别连通第一类先导阀DT8与第一类先导阀DT9。在此,对于第一换向阀QJ2分别与第一类先导阀DT8、第一类先导阀DT9的具体连通状态不再作具体描述。
另外,本实施例所示的泵送切换油路31上还设有第一溢流阀DT1,其中,第一溢流阀DT1的一端与进油口P1连通,第一溢流阀DT1的另一端与回油口T2连通。
优选地,本实施例所示的控制阀组2包括第二类先导阀;液压系统3包括用于连接摆阀油缸的分配阀切换油路32,分配阀切换油路32上装有第二换向阀,第二换向阀上的两个先导控制端分别一一对应地连通所述第 二类先导阀,由第二类先导阀控制第二换向阀上油路的切换。
如图2与图4所示,本实施例所示的第二类先导阀分别标识为DT4与DT5,第二换向阀标识为QJ3。分配阀切换油路32的的进油端为辅阀岛上的P2油口,且P2油口用于连通齿轮泵的泵送输出侧。P2油口通过单向阀连通第二换向阀QJ3的P油口,第二换向阀QJ3的T油口连通辅阀岛上的回油口T4,第二换向阀QJ3的两个出油口分别连通辅阀岛上的A3与B3油口,可通过A3与B3油口连通分配阀。由此,在液压系统3的电气控制正常运行时,可基于对第二换向阀QJ3油路切换状态的控制,以实现对分配阀工作状态的切换控制。
然而,在液压系统3的电气控制出现故障或失效时,为了确保分配阀能够正常地工作,本实施例可通过第二类先导阀DT4与DT5来控制第二换向阀QJ3上油路的切换状态。其中,第二类先导阀DT4与DT5上的A油口分别连通第二换向阀QJ3上的两个先导控制端,第二类先导阀DT4与DT5上的P油口均连通P2油口,且第二类先导阀DT4与DT5上的T油口均连通回油口T3。
与此同时,本实施例所示的控制阀组2包括第二溢流阀DT17,第二溢流阀DT17的一端连通P2油口,另一端连通辅阀岛上的回油口T3。
为了便于有效地控制分配阀的动作,本实施例所示的第二换向阀QJ3与分配阀切换油路32的进油端之间的油路上还装有液压蓄能器PL。其中,液压蓄能器PL可具体设置于分配阀切换油路32上的单向阀与第二换向阀QJ3之间的油路上。
进一步地,本实施例所示的控制阀组2还包括第三类先导阀;液压系统3包括搅拌液压油路33,搅拌液压油路33上安装有第三类先导阀。
如图2所示,本实施例所示的搅拌液压油路33包括设置于辅阀岛上的进油口P3、回油口T5及设置于辅阀岛上的油口A4与B4。其中,油口A4与B4分别用于连通搅拌泵。本实施例所示的第三类先导阀可分别标识为DT10与DT11,可由第三类先导阀DT10与DT11引导液压油由进油口P3经过第三类先导阀DT11流动至油口A4,以输送至搅拌泵,同时,搅拌泵上的液压油通过油口B4,经过第三类先导阀DT10,回流至回油口T5。
进一步地,本实施例所示的控制包1上还设有应急通讯接口4,应急 通讯接口4与应急操作模块11通讯连接,控制阀组2上多个信号引出线集中与线束接口5连接,线束接口5与应急通讯接口4插接,以快速实现应急操作模块11与控制阀组2之间的通讯连接。
由上可知,基于上述实施例所示的液压系统3,在控制系统失效情况下,可通过本实施例所示的控制包1,快速插入系统,可实现混凝土泵车的正/反泵送、臂架的伸缩动作及分配阀的摆动换向等动作,其操作过程如下:
首先,通过应急操作模块11向主系统的主油泵上的比例阀给定信号,使得主油泵按照一定排量输出驱动油液。
然后,控制第一溢流阀DT1与第二溢流阀DT17分别得电,使得系统分别得以向泵送切换油路31、分配阀切换油路32及搅拌液压油路33提供先到控制油液。
接着,控制与第一换向阀QJ2相应的第一类先导阀DT8与第一类先导阀DT9交替得电,同时,控制与第二换向阀QJ3相应的第二类先导阀DT4与第二类先导阀DT5交替得电,按照实际需要进行混凝土泵车的正/反泵送控制。
在此过程中,还可通过急操控模块输送控制指令,以控制搅拌泵的搅拌动作及控制臂架的伸缩动作,在此不做具体描述。
优选地,本实施例还提供一种泵送设备,所述泵送设备包括如上所述的液压系统。
其中,本实施例所示的泵送设备包括混凝土泵车、车载泵或拖泵等。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (10)
- 一种应急泵送控制包,所述控制包包括:应急操作模块,用于接收用户对泵送系统的正/反泵送、分配阀的左/右摆动当中至少一者的启动控制的操作指令;应急通讯接口,与所述应急操作模块电连接,所述应急通讯接口用于与液压系统的油路上的控制阀组电连接,所述控制阀组能够响应于所述操作指令,以实现对所述液压系统的导通状态的控制,所述液压系统用于驱动泵送系统及分配阀。
- 根据权利要求1所述的应急泵送控制包,其中所述控制阀组上的各个控制阀的信号引出线集中与线束接口连接,所述线束接口与所述应急通讯接口通过插接的方式实现通讯连接。
- 根据权利要求2所述的应急泵送控制包,其中所述线束接口包括多个引脚,所述应急操作模块通过所述应急通讯接口与所述线束接口的部分引脚连接。
- 根据权利要求1所述的应急泵送控制包,其中所述应急操作模块包括电控按钮,所述电控按钮包括四个,分别为第一按钮、第二按钮、第三按钮及第四按钮,所述第一按钮与所述第二按钮分别用于控制所述泵送系统的正/反泵送,所述第三按钮与所述第四按钮分别用于控制所述分配阀的左/右摆动。
- 根据权利要求4所述的应急泵送控制包,其中所述应急通讯接口包括多个导电针脚和接地针脚,所述第一按钮、所述第二按钮、所述第三按钮及所述第四按钮用于使至少部分所述导电针脚与所述接地针脚形成通电回路;或者,所述应急通讯接口包括多个导电针脚和接地针脚,所述第一按钮、所述第二按钮、所述第三按钮及所述第四按钮用于使至少部分所述导电针脚与外接电源的正极电连接,且用于使所述接地针脚与所述外接电源的负极电连接。
- 根据权利要求1所述的应急泵送控制包,其中所述控制包还包括:电源接口模块,所述电源接口模块与所述应急操作模块电连接,所述电源接口模块用于连接外接电源。
- 一种液压系统,包括:如权利要求1至6任一所述的应急泵送控制包;控制阀组;系统控制电路,其用于与所述液压系统的油路上的所述控制阀组电连接。
- 根据权利要求7所述的液压系统,其中所述控制阀组包括第一类先导阀;所述液压系统包括用于连接泵送系统的主油缸的泵送切换油路,所述泵送切换油路上装有第一换向阀,所述第一换向阀上的两个先导控制端分别一一对应地连通所述第一类先导阀,由所述第一类先导阀控制所述第一换向阀上油路的切换。
- 根据权利要求7所述的液压系统,其中所述控制阀组包括第二类先导阀;所述液压系统包括用于连接摆阀油缸的分配阀切换油路,所述分配阀切换油路上装有第二换向阀,所述第二换向阀上的两个先导控制端分别一一对应地连通所述第二类先导阀,由所述第二类先导阀控制所述第二换向阀上油路的切换;所述控制阀组包括第二溢流阀,所述第二溢流阀安装于所述分配阀切换油路的进油端;所述第二换向阀与所述分配阀切换油路的进油端之间的油路上还装有液压蓄能器。
- 一种泵送设备,其中所述泵送设备包括如权利要求7至9任一所述的液压系统。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011623659.4A CN114688128B (zh) | 2020-12-31 | 2020-12-31 | 应急泵送控制包、液压系统及泵送设备 |
CN202011623659.4 | 2020-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022142220A1 true WO2022142220A1 (zh) | 2022-07-07 |
Family
ID=82134627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/103551 WO2022142220A1 (zh) | 2020-12-31 | 2021-06-30 | 应急泵送控制包、液压系统及泵送设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114688128B (zh) |
WO (1) | WO2022142220A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117948310A (zh) * | 2024-03-25 | 2024-04-30 | 四平市顺邦农机制造有限公司 | 秸秆饲料打捆机液压系统、液压方法及切换方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05332304A (ja) * | 1992-05-25 | 1993-12-14 | Komatsu Ltd | 圧力比例制御弁による4位置クローズドセンタの切換弁の油圧回路 |
CN102400968A (zh) * | 2011-11-18 | 2012-04-04 | 三一重工股份有限公司 | 一种液压阀、液压系统及混凝土泵送设备 |
CN102477975A (zh) * | 2010-11-22 | 2012-05-30 | 北汽福田汽车股份有限公司 | 应急操作盒、泵车泵送控制系统以及泵车泵送系统 |
CN102926539A (zh) * | 2012-11-06 | 2013-02-13 | 三一重工股份有限公司 | 泵送机械及其应急驱动系统 |
CN202787993U (zh) * | 2012-07-18 | 2013-03-13 | 山推楚天工程机械有限公司 | 混凝土泵车紧急处理装置 |
CN104019076A (zh) * | 2014-05-27 | 2014-09-03 | 安徽星马专用汽车有限公司 | 闭式系统泵车主油泵换向系统及闭式系统泵车 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201381976Y (zh) * | 2009-03-12 | 2010-01-13 | 张邦球 | 细石混凝土输送泵的液压控制系统 |
CN202247623U (zh) * | 2011-09-07 | 2012-05-30 | 中联重科股份有限公司 | 摊铺机及其紧急操纵装置 |
-
2020
- 2020-12-31 CN CN202011623659.4A patent/CN114688128B/zh active Active
-
2021
- 2021-06-30 WO PCT/CN2021/103551 patent/WO2022142220A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05332304A (ja) * | 1992-05-25 | 1993-12-14 | Komatsu Ltd | 圧力比例制御弁による4位置クローズドセンタの切換弁の油圧回路 |
CN102477975A (zh) * | 2010-11-22 | 2012-05-30 | 北汽福田汽车股份有限公司 | 应急操作盒、泵车泵送控制系统以及泵车泵送系统 |
CN102400968A (zh) * | 2011-11-18 | 2012-04-04 | 三一重工股份有限公司 | 一种液压阀、液压系统及混凝土泵送设备 |
CN202787993U (zh) * | 2012-07-18 | 2013-03-13 | 山推楚天工程机械有限公司 | 混凝土泵车紧急处理装置 |
CN102926539A (zh) * | 2012-11-06 | 2013-02-13 | 三一重工股份有限公司 | 泵送机械及其应急驱动系统 |
CN104019076A (zh) * | 2014-05-27 | 2014-09-03 | 安徽星马专用汽车有限公司 | 闭式系统泵车主油泵换向系统及闭式系统泵车 |
Non-Patent Citations (1)
Title |
---|
SHIN YOO HOON: "Design and application of emergency operating system for pump truck", INDEPENDENT INNOVATION, ACADEMIC EXCHANGE - THE 10TH HENAN PROVINCE AUTOMOTIVE ENGINEERING SCIENCE AND TECHNOLOGY SEMINAR; ZHENGZHOU, HENAN, CHINA; 2013-09-27, CN, 1 September 2014 (2014-09-01) - 27 September 2013 (2013-09-27), CN, pages 142 - 143, XP055947656 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117948310A (zh) * | 2024-03-25 | 2024-04-30 | 四平市顺邦农机制造有限公司 | 秸秆饲料打捆机液压系统、液压方法及切换方法 |
CN117948310B (zh) * | 2024-03-25 | 2024-05-31 | 四平市顺邦农机制造有限公司 | 秸秆饲料打捆机液压系统、液压方法及切换方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114688128A (zh) | 2022-07-01 |
CN114688128B (zh) | 2023-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101229902B (zh) | 起重机液压系统液压油分配控制装置 | |
CN103047207B (zh) | 分合流阀组、液压系统、负载敏感式液压系统及工程机械 | |
US9512596B2 (en) | Hybrid excavator boom actuating system and method for controlling same | |
CN102229328A (zh) | 一种多泵合流的车辆机械节能液压系统 | |
CN102345749B (zh) | 一种合流阀及设有该合流阀的起重机液压控制系统 | |
WO2022142220A1 (zh) | 应急泵送控制包、液压系统及泵送设备 | |
CN108502816A (zh) | 旁通式能量再生叉车液压系统 | |
CN102951198A (zh) | 一种车辆及液压转向驱动系统 | |
CN103303801B (zh) | 汽车起重机液压合流控制系统 | |
CN111734701A (zh) | 一种工程机械、正流量液压系统及其控制方法 | |
CN107532627A (zh) | 建筑机械的控制系统 | |
CN104595273B (zh) | 工程机械精细化操作液压系统 | |
CN208454429U (zh) | 旁通式能量再生叉车液压系统 | |
CN109114053B (zh) | 一种多绞车液压系统 | |
CN204400460U (zh) | 一种起重机及其多路阀液压系统 | |
CN216590201U (zh) | 一种安全阀岛 | |
CN104179739A (zh) | 双泵双向合流控制系统及应用该系统的消防车 | |
CN105984364A (zh) | 自卸车用冗余操控电控气路液压阀及系统 | |
WO2012113208A1 (zh) | 混凝土泵送设备的动力驱动装置和混凝土泵送设备 | |
CN108167237B (zh) | 工程机械的液压控制系统和挖掘机 | |
CN109538557B (zh) | 用于起重机的伸缩油缸的控制系统、方法及起重机 | |
CN216447218U (zh) | 液压阀组、液压驱动系统和作业车辆 | |
CN202414996U (zh) | 液压控制回路和起重机 | |
CN208916683U (zh) | 用于双卷筒绞车的闭式系统冗余油源 | |
CN104314901A (zh) | 阀装置、流量优先控制回路及车辆 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21912976 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21912976 Country of ref document: EP Kind code of ref document: A1 |