WO2022142132A1 - 多泵合流的流量脉动消除方法和装置 - Google Patents

多泵合流的流量脉动消除方法和装置 Download PDF

Info

Publication number
WO2022142132A1
WO2022142132A1 PCT/CN2021/098267 CN2021098267W WO2022142132A1 WO 2022142132 A1 WO2022142132 A1 WO 2022142132A1 CN 2021098267 W CN2021098267 W CN 2021098267W WO 2022142132 A1 WO2022142132 A1 WO 2022142132A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
auxiliary pump
angular position
auxiliary
main pump
Prior art date
Application number
PCT/CN2021/098267
Other languages
English (en)
French (fr)
Inventor
伍芬智
王亚平
王志成
徐必业
吴丰礼
Original Assignee
广东拓斯达科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东拓斯达科技股份有限公司 filed Critical 广东拓斯达科技股份有限公司
Publication of WO2022142132A1 publication Critical patent/WO2022142132A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/02Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations specially adapted for several machines or pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/08Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the rotational speed

Definitions

  • the present application relates to a flow pulsation elimination technology, for example, to a flow pulsation elimination method and device for multi-pump confluence.
  • the hydraulic servo system that a single servo driver controls the servo motor to drive the hydraulic pump can no longer meet the requirements. It is necessary to connect multiple single-pump hydraulic servo systems in parallel.
  • the hydraulic cylinder to be controlled can meet the flow requirements of production.
  • the hydraulic pump will generate flow pulsation during operation, which will affect the normal operation of the system when the flow pulsation is serious.
  • the flow pulsation elimination method of multi-pump confluence usually applies additional flow to compensate the actual flow, reduce the flow pulsation, and then reduce the harm caused by the flow pulsation, but it cannot guarantee the elimination of the flow pulsation in the actual flow, and the reliability is relatively high. Low.
  • the present application provides a method and device for eliminating flow pulsation of multi-pump confluence, so as to eliminate flow pulsation in the total flow of multi-pump confluence.
  • a flow pulsation elimination method for multi-pump confluence including:
  • the rotational speed of the at least one auxiliary pump is adjusted according to the rotational speed of the main pump and the rotational speed of the at least one auxiliary pump, and the mechanical angular position difference between the main pump and the at least one auxiliary pump is controlled to reach a preset target angular position difference, wherein the preset target angular position
  • the difference is an integer multiple of 2 ⁇ /N, where N is the total number of the main pump and at least one auxiliary pump;
  • the main pump and the at least one auxiliary pump are controlled to run synchronously, and the flows of the main pump and the at least one auxiliary pump are combined and output to obtain the total flow.
  • a multi-pump confluence flow pulsation elimination device comprising:
  • a rotational speed acquisition module set to acquire the rotational speed of the main pump and at least one auxiliary pump
  • a position difference control module configured to adjust the rotational speed of the at least one auxiliary pump according to the rotational speed of the main pump and the rotational speed of the at least one auxiliary pump, and control the mechanical angular position difference between the main pump and the at least one auxiliary pump to reach a preset target angular position difference,
  • the preset target angle position difference is an integer multiple of 2 ⁇ /N, and N is the total number of the main pump and at least one auxiliary pump;
  • the flow determination module is configured to control the synchronous operation of the main pump and at least one auxiliary pump based on the preset target angular position difference, and combine and output the flows of the main pump and the at least one auxiliary pump during synchronous operation to obtain the total flow.
  • Fig. 1 is the flow chart of a kind of flow pulsation elimination method of multi-pump confluence provided in the first embodiment of the present application;
  • FIG. 2 is a schematic diagram of a rotation speed change of an auxiliary pump provided in Embodiment 1 of the present application;
  • FIG. 3 is a schematic structural diagram of a main pump and an auxiliary pump provided in Embodiment 1 of the present application;
  • FIG. 4 is a schematic diagram of another auxiliary pump rotational speed change provided in Embodiment 1 of the present application.
  • FIG. 5 is a flowchart of a method for eliminating flow pulsation for multi-pump confluence provided in Embodiment 2 of the present application;
  • FIG. 6 is a schematic diagram of a closed-loop control of angular position adjustment provided in Embodiment 2 of the present application;
  • FIG. 7 is a structural block diagram of a multi-pump confluence flow pulsation elimination device provided in Embodiment 3 of the present application.
  • Q is the output flow
  • a and b are constants
  • is the flow fluctuation frequency
  • t is the time.
  • the pulsation elimination device can be implemented by software and/or hardware.
  • the device can be integrated into an electronic device such as a computer with a multi-pump confluence flow pulsation elimination function.
  • the method includes the following steps.
  • Step 110 Acquire the rotational speed of the main pump and at least one auxiliary pump.
  • the speed of the main pump is greater than or equal to zero
  • the speed of the auxiliary pump is greater than or equal to zero
  • the speed of the main pump and the speed of the auxiliary pump are the same or different
  • the multi-pump confluence flow pulsation elimination device Electromechanically connected ports capture rotational speeds of multiple pumps.
  • Step 120 Adjust the rotational speed of the auxiliary pump according to the rotational speed of the main pump and the rotational speed of the auxiliary pump, and control the mechanical angular position difference between the main pump and the auxiliary pump to reach a preset target angular position difference.
  • the preset target angle position difference is an integer multiple of 2 ⁇ /N, and N is the total number of the main pump and the auxiliary pump.
  • N is the total number of the main pump and the auxiliary pump.
  • the mechanical angle position difference between the two auxiliary pumps and the main pump must reach 2 ⁇ /3, that is, the mechanical angular positions of the two auxiliary pumps are controlled respectively. It is 2 ⁇ /3 and 4 ⁇ /3 to control the flow of the main pump and at least one auxiliary pump.
  • Fig. 2 is a schematic diagram of the rotation speed change of an auxiliary pump provided in the first embodiment of the present application. Referring to Fig.
  • the first auxiliary pump is controlled to increase the speed to n 1max and then decelerate to zero during the time period from t 0 to t 1 , and control the During the time period from t 0 to t 2 , the second auxiliary pump first accelerates to n 2max and then decelerates to zero. Adjust the acceleration and deceleration time of each auxiliary pump to ensure that the mechanical angular position of each auxiliary pump when it decelerates to zero is Preset target angular position.
  • n 1max is the highest rotational speed reached by the first auxiliary pump in the process of adjusting the rotational speed
  • n 2max is the highest rotational speed reached by the second auxiliary pump in the process of adjusting the rotational speed.
  • FIG. 3 is a schematic structural diagram of a main pump and an auxiliary pump provided in Embodiment 1 of the present application.
  • the auxiliary pump including the first auxiliary pump and the second auxiliary pump as an example, if the initial mechanical angle of the main pump is zero, the first auxiliary pump
  • the mechanical angular position difference between the auxiliary pump and the main pump is:
  • ⁇ 1 is the flow fluctuation angular frequency of the first auxiliary pump
  • ⁇ 1 2 ⁇ n 1 N L /60
  • NL is the number of blades or gears of the pump
  • n 1 is the number of the first auxiliary pump.
  • the rotational speed of a pair of pumps t 0 is the time point when the first auxiliary pump starts to adjust the rotational speed
  • t 1 is the time point when the first auxiliary pump finishes adjusting the rotational speed
  • the mechanical angular position difference between the second auxiliary pump and the main pump is:
  • the mechanical angular position difference between the second auxiliary pump and the main pump is:
  • ⁇ 2 is the flow fluctuation angular frequency of the second auxiliary pump
  • ⁇ 2 2 ⁇ n 2 N L /60
  • n 2 is the rotational speed of the second auxiliary pump
  • t 2 is the The time point when the second auxiliary pump finishes adjusting the speed.
  • FIG. 4 is a schematic diagram of another auxiliary pump rotation speed change provided in the first embodiment of the present application. Referring to FIG. 4 , the rotation speed of the main pump is n 0 , and the mechanical angular position between the first auxiliary pump and the second auxiliary pump and the main pump The differences are:
  • the mechanical angular position difference between the second auxiliary pump and the main pump is:
  • ⁇ 1 is the flow fluctuation angular frequency of the first auxiliary pump
  • ⁇ 1 2 ⁇ n 1 N L /60
  • ⁇ 0 is the flow fluctuation angular frequency of the main pump
  • ⁇ 0 2 ⁇ n 0 N L /60
  • ⁇ 2 is the flow fluctuation angular frequency of the second auxiliary pump
  • ⁇ 2 2 ⁇ n 2 N L /60
  • N L is the number of blades or gears of the pump
  • n 0 is the main Pump speed.
  • the acceleration and deceleration times can be the same.
  • the adjustment time can be set to a certain amount, and then multiple pumps can be determined according to the preset target angle position difference.
  • the maximum rotational speed n 1max and n 2max during adjustment are the planning of one cycle.
  • Step 130 Based on the preset target angular position difference, control the main pump and the auxiliary pump to run synchronously, and output the combined flow of the main pump and at least one auxiliary pump when they run synchronously to obtain the total flow.
  • the main pump and the auxiliary pump are controlled to run synchronously.
  • the actual output flow of the first auxiliary pump is Q 1
  • Q 1 a 1 sin ⁇ 1 t+b 1
  • the actual output flow of the second auxiliary pump is Q 2
  • Q 2 a 2 sin ⁇ 2 t+b 2
  • the rotational speed of the main pump and at least one auxiliary pump is the same
  • the performance of the main pump and at least one auxiliary pump is the same
  • the rotational speed of the auxiliary pump is adjusted according to the obtained rotational speed of the main pump and the rotational speed of the auxiliary pump, and the mechanical angular position difference between the main pump and the auxiliary pump is controlled to reach a preset target angular position difference , and based on the preset target angle position difference, control the synchronous operation of the main pump and the auxiliary pump, and combine the flow of the main pump and at least one auxiliary pump to obtain the total flow when the flow of the main pump and at least one auxiliary pump is in synchronous operation.
  • the flow pulsation of the auxiliary pump is staggered by a specific phase, and the peaks and troughs of the flow pulsation are superimposed, thereby eliminating the flow pulsation in the total flow of the multi-pump confluence.
  • the pulsation elimination device can be implemented by software and/or hardware.
  • the device can be integrated into an electronic device such as a computer with a multi-pump confluence flow pulsation elimination function.
  • the method includes the following steps.
  • Step 210 Acquire the rotational speed of the main pump and at least one auxiliary pump.
  • the auxiliary pump includes a first auxiliary pump and a second auxiliary pump.
  • the rotation speed of the main pump is the same or different from the rotation speed of the auxiliary pump.
  • the flow pulsation elimination device of the multi-pump confluence can be electrically connected to the motors of the multiple pumps through its own set. The port captures the rotational speed of multiple pumps.
  • Step 220 Adjust the rotational speed of the auxiliary pump according to the rotational speed of the main pump and the rotational speed of the auxiliary pump, and control the mechanical angular position difference between the main pump and the auxiliary pump to reach a preset target angular position difference.
  • the preset target angle position difference is an integer multiple of 2 ⁇ /N, and N is the total number of the main pump and the auxiliary pump.
  • N is the total number of the main pump and the auxiliary pump.
  • the mechanical angular positions of the auxiliary pumps are respectively 2 ⁇ /3 and 4 ⁇ /3, so as to control the flow of the main pump and at least one auxiliary pump.
  • the adjustment process when the rotation speed of the main pump is zero and not zero can be referred to FIG. 2 and FIG. 4 respectively. The adjustment process has been described in the above-mentioned embodiment, and will not be repeated here.
  • Step 230 Start the main pump, when the flow of the main pump is less than the required flow, start the first auxiliary pump, and control the flow of the first auxiliary pump to reach half of the required flow.
  • the main pump can be started first, and when the flow rate of the main pump is less than the required flow rate, the first auxiliary pump can be started, and the flow rate of the first auxiliary pump can be adjusted.
  • the speed makes the flow of the first auxiliary pump reach half of the required flow, so that the total flow output by the main pump and the first auxiliary pump is not lower than the required flow.
  • Step 240 Reduce the rotation speed of the main pump until the flow rate of the main pump is reduced to half of the required flow rate, and after the rotation speed of the main pump and the rotation speed of the first auxiliary pump are synchronized, control the mechanical angle of the main pump and the mechanical angle of the first auxiliary pump.
  • the angle is synchronized, so that the mechanical angular position of the main pump and the mechanical angular position of the first auxiliary pump are evenly distributed.
  • the flow rate of the first auxiliary pump has reached half of the required flow rate.
  • the rotation speed of the main pump can be reduced until the flow rate of the main pump is reduced to half of the required flow rate, so that the main pump and the The total flow output by the confluence of the first sub-pump just reaches the required flow.
  • the mechanical angle of the main pump is controlled to be synchronized with the mechanical angle of the first auxiliary pump, that is, the mechanical angle position difference between the main pump and the first auxiliary pump is controlled to maintain the preset target.
  • the angular position difference makes the mechanical angular position of the main pump and the mechanical angular position of the first auxiliary pump evenly distributed, so as to eliminate the flow pulsation in the total flow output by the main pump and the first auxiliary pump.
  • Step 250 When three pumps are required to confluence, start the second auxiliary pump, control the flow of the second auxiliary pump to reach one third of the required flow, and reduce the speed of the main pump and the speed of the first auxiliary pump, so that the main pump The flow of the first sub-pump is reduced to one third of the required flow.
  • the flow rate of the second sub-pump can be controlled by adjusting the rotational speed of the second sub-pump, and the flow rate of the second sub-pump can be controlled to reach one third of the required flow rate, At the same time, reduce the speed of the main pump and the speed of the first auxiliary pump, so that the flow of the main pump and the flow of the first auxiliary pump are both reduced to one third of the required flow, so that the total flow of the three pumps combined output reaches the required flow , to meet the actual traffic requirements and avoid waste caused by excessive traffic.
  • Step 260 Control the mechanical angle of the main pump, the mechanical angle of the first auxiliary pump, and the mechanical angle of the second auxiliary pump to synchronize the mechanical angle of the main pump, the mechanical angular position of the first auxiliary pump, and the mechanical angle of the second auxiliary pump.
  • the angular positions are evenly distributed.
  • the mechanical angular position distribution of the main pump and at least one auxiliary pump in FIG. 3 is uniform distribution, the mechanical angular position of the main pump and the mechanical angular position of the first auxiliary pump and the second auxiliary pump.
  • the mechanical angular positions of the main pump and the first auxiliary pump are evenly distributed, that is, the mechanical angular position difference between the main pump and the first auxiliary pump is the preset target angular position difference, and the mechanical angular position difference between the main pump and the second auxiliary pump is the preset target angular position difference.
  • Step 270 Control the mechanical angular position difference between the main pump and the at least one auxiliary pump to keep stable, so that the flow pulsation generated by the main pump and the at least one auxiliary pump is eliminated.
  • the preset target angular position difference between the at least one auxiliary pump and the main pump can be determined by the number and number of blades of the pump, and the preset target angular position difference and the mechanical operation of the main pump and the at least one auxiliary pump can be determined according to the The angular position determines the mechanical angular deviation ⁇ , and adjusts the mechanical angular positions of the main pump and at least one auxiliary pump until the absolute value of the mechanical angular deviation is less than the preset maximum allowable deviation.
  • FIG. 6 is a schematic diagram of a closed-loop control of angular position adjustment provided in the second embodiment of the present application. Referring to FIG.
  • the given mechanical angular position difference that needs to be achieved between the i-th auxiliary pump and the main pump is: Mechanical angle deviation is the mechanical angular position of the ith auxiliary pump, is the mechanical angular position of the main pump, is the preset target angle position difference, NL is the number of blades of the pump, and Na is the number of pumps in the multi-pump confluence.
  • the servo motor connected to the pump feeds back the mechanical angle position difference to the controller electrically connected to the servo motor, and the flow pulsation elimination device of the multi-pump confluence controls the servo motor to output the actual mechanical angle position difference between the auxiliary pump and the main pump through the controller.
  • the mechanical angle deviation of the main pump and at least one auxiliary pump is within a reasonable range, that is, the mechanical angle position difference between the main pump and at least one auxiliary pump is controlled. Keep it stable to ensure that the flow pulsation generated by the main pump and at least one auxiliary pump is eliminated in the total output flow when the three pumps are confluent.
  • the initial mechanical angle of the main pump is set to zero, and the mechanical angle position of the main pump is used as the reference to control the motor distribution of each pump through the servo driver of each pump.
  • the initial mechanical angular position of each auxiliary pump (the initial mechanical angular position of the auxiliary pump is an integer multiple of 2 ⁇ /N, N is the total number of the main pump and the auxiliary pump), and based on the initial mechanical angular position of the main pump and at least one auxiliary pump,
  • the flow of the main pump and at least one auxiliary pump is adjusted so that the total flow reaches a preset flow value, and the mechanical angular position difference between the main pump and at least one auxiliary pump is controlled to keep stable, so that the flow pulsation generated by the main pump and at least one auxiliary pump is eliminated.
  • the method for eliminating flow pulsation of multi-pump confluence provided in this embodiment, by controlling the mechanical angle of the main pump, the mechanical angle of the first auxiliary pump, and the mechanical angle of the second auxiliary pump, the mechanical angle position of the main pump, the mechanical angle of the first auxiliary pump and the mechanical angle of the second auxiliary pump are synchronized.
  • the mechanical angular position of the pump and the mechanical angular position of the second auxiliary pump are evenly distributed, and the mechanical angular position difference between the main pump and at least one auxiliary pump is controlled to keep stable, so that the flow of the main pump and at least one auxiliary pump when the multi-pump confluence outputs the flow
  • the pulsation is staggered by a specific phase and superimposes the peaks and troughs of the flow pulsation, thereby eliminating flow pulsation in the total flow of the multipump.
  • the device includes a rotational speed acquisition module 310, a position difference control module 320 and a flow determination module 330; wherein, the rotational speed acquisition module 310 sets In order to obtain the rotational speed of the main pump and at least one auxiliary pump; the position difference control module 320 is configured to adjust the rotational speed of the auxiliary pump according to the rotational speed of the main pump and the rotational speed of the auxiliary pump, and control the mechanical angular position difference of the main pump and the auxiliary pump to reach the preset target.
  • the flow determination module 330 is set to control the main pump and the auxiliary pump based on the preset target angular position difference Synchronous operation, the flow of the main pump and at least one auxiliary pump in synchronous operation is combined and output to obtain the total flow.
  • the position difference control module 320 includes an angle setting unit and a speed control unit; wherein, the angle setting unit is configured to set the initial mechanical speed of the main pump to zero when the rotational speed of the main pump and at least one auxiliary pump is zero. The angle is set to zero; the speed control unit is set to control the auxiliary pump to accelerate and decelerate, and adjust the acceleration and deceleration time until the mechanical angle position when the auxiliary pump decelerates to zero is the preset target angle position.
  • the auxiliary pump includes a first auxiliary pump and a second auxiliary pump, and the initial mechanical angle of the main pump is zero, then the mechanical angle position difference between the first auxiliary pump and the main pump is:
  • ⁇ 1 is the flow fluctuation angular frequency of the first auxiliary pump
  • ⁇ 1 2 ⁇ n 1 N L /60
  • NL is the number of blades or gears of the pump
  • n 1 is the number of the first auxiliary pump.
  • the rotational speed of a pair of pumps t 0 is the time point when the first auxiliary pump starts to adjust the rotational speed
  • t 1 is the time point when the first auxiliary pump finishes adjusting the rotational speed
  • the mechanical angular position difference between the second auxiliary pump and the main pump is:
  • the mechanical angular position difference between the second auxiliary pump and the main pump is:
  • ⁇ 2 is the flow fluctuation angular frequency of the second auxiliary pump
  • ⁇ 2 2 ⁇ n 2 N L /60
  • n 2 is the rotational speed of the second auxiliary pump
  • t 2 is the The time point when the second auxiliary pump finishes adjusting the speed.
  • the position difference control module 320 includes an acceleration/deceleration control unit and a time adjustment unit; wherein, the acceleration/deceleration control unit is configured to control the auxiliary pump to perform acceleration/deceleration operation when the rotational speed of the main pump and at least one auxiliary pump is greater than zero ;
  • the time adjustment unit is set to adjust the acceleration and deceleration time of the auxiliary pump, until the speed of the auxiliary pump after acceleration and deceleration is the same as the speed of the main pump, the mechanical angular position difference of at least one auxiliary pump relative to the main pump is the preset target angular position Difference.
  • the rotational speed of the main pump is n 0
  • the auxiliary pump includes a first auxiliary pump and a second auxiliary pump
  • the mechanical angular position differences between the first auxiliary pump and the second auxiliary pump and the main pump are respectively:
  • the mechanical angular position difference between the second auxiliary pump and the main pump is:
  • ⁇ 1 is the flow fluctuation angular frequency of the first auxiliary pump
  • ⁇ 1 2 ⁇ n 1 N L /60
  • ⁇ 0 is the flow fluctuation angular frequency of the main pump
  • ⁇ 0 2 ⁇ n 0 N L /60
  • ⁇ 2 is the flow fluctuation angular frequency of the second auxiliary pump
  • ⁇ 2 2 ⁇ n 2 N L /60
  • N L is the number of blades or gears of the pump
  • n 0 is the main Pump speed.
  • the initial mechanical angle of the main pump is set to zero;
  • the flow determination module 330 includes an angle distribution unit, a flow adjustment unit and a pulsation elimination unit; Among them, the angle distribution unit is set to be based on the mechanical angular position of the main pump, and the servo driver of each pump controls the motor to distribute the initial mechanical angular position of each auxiliary pump; wherein, the initial mechanical angular position of the auxiliary pump is 2 ⁇ /N
  • the integer multiple of N is the total number of the main pump and the auxiliary pump;
  • the flow adjustment unit is set to adjust the flow of the main pump and at least one auxiliary pump based on the initial mechanical angular position of the main pump and at least one auxiliary pump so that the total flow reaches the preset flow
  • the pulsation elimination unit is set to control the mechanical angular position difference between the main pump and the at least one auxiliary pump to keep stable, so that the flow pulsation generated by the
  • the flow determination module 330 includes a first starting unit, a flow control unit, a second starting unit, an angle control unit and a position difference control unit; wherein, the starting unit is configured to start the main pump, when the flow of the main pump is less than the required flow.
  • the flow control unit is set to reduce the speed of the main pump until the flow of the main pump is reduced to half of the required flow, and the main pump After the rotation speed of the main pump is synchronized with the rotation speed of the first auxiliary pump, the mechanical angle of the main pump is controlled to be synchronized with the mechanical angle of the first auxiliary pump, so that the mechanical angular position of the main pump and the mechanical angular position of the first auxiliary pump are evenly distributed;
  • the unit is set to start the second sub-pump when the three pumps are required to confluence, control the flow of the second sub-pump to reach one third of the required flow, and reduce the speed of the main pump and the speed of the first sub-pump, so that the main pump The flow rate of the first auxiliary pump and the flow rate of the first auxiliary pump are both reduced to one third of the required flow rate; the angle control unit is set to control the mechanical angle of the main pump and the mechanical angle of the
  • the flow determination module 330 includes a position difference determination unit and an angle deviation determination unit; wherein, the position difference determination unit is configured to determine the preset target of at least one auxiliary pump and the main pump according to the number and number of blades of the pump The angle position difference; the angle deviation determination unit is set to determine the mechanical angle deviation according to the preset target angle position difference and the mechanical angular position of the main pump and the at least one auxiliary pump during operation, and adjust the mechanical angle position of the main pump and the at least one auxiliary pump until The absolute value of the mechanical angle deviation is less than the preset maximum allowable deviation.
  • the mechanical angle deviation is ⁇
  • is the mechanical angular position of the ith auxiliary pump
  • the mechanical angular position of the main pump is the preset target angular position difference
  • the mechanical angular position difference between the i-th sub-pump and the main pump in the multi-pump confluence is Expressed as:
  • NL is the number of blades of the pump
  • Na is the number of pumps in the multi-pump confluence .
  • the device for eliminating flow pulsation of multi-pump confluence provided in this embodiment and the method for eliminating flow pulsation of multi-pump confluence provided by any embodiment of the present application belong to the same concept and have corresponding effects.
  • the method for eliminating flow pulsation of multi-pump confluence provided by any embodiment of the present application belongs to the same concept and have corresponding effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

一种多泵合流的流量脉动消除方法和装置,多泵合流的流量脉动消除方法包括:获取主泵和至少一个副泵的转速;根据主泵的转速和至少一个副泵的转速调节至少一个副泵的转速,控制主泵和至少一个副泵之间的机械角度位置差达到预设目标角度位置差,其中,预设目标角度位置差为2π/N的整数倍,N为主泵和至少一个副泵的总数;基于预设目标角度位置差,控制主泵和副泵同步运行,将主泵和至少一个副泵同步运行时的流量合流输出,得到总流量。

Description

多泵合流的流量脉动消除方法和装置
本申请要求在2020年12月28日提交中国专利局、申请号为202011580642.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及流量脉动消除技术,例如涉及一种多泵合流的流量脉动消除方法和装置。
背景技术
对于大功率的机械生产设备,由于电机功率或者油泵排量有限,单个伺服驱动器控制伺服电机驱动液压泵的液压伺服系统已经不能满足要求,需通过将多个单泵液压伺服系统并联的方式,驱动所要控制的液压缸,才能满足生产的流量要求。而液压泵在运行过程中会产生流量脉动,流量脉动严重时影响系统的正常运行。
多泵合流的流量脉动消除方法,通常是施加额外的流量补偿实际流量,减小流量脉动,进而减小流量脉动产生的危害,但并不能保证在实际产生的流量中消除流量脉动,可靠性较低。
发明内容
本申请提供一种多泵合流的流量脉动消除方法和装置,以实现在多泵合流的总流量中消除流量脉动。
提供了一种多泵合流的流量脉动消除方法,包括:
获取主泵和至少一个副泵的转速;
根据主泵的转速和至少一个副泵的转速调节至少一个副泵的转速,控制主泵和至少一个副泵之间的机械角度位置差达到预设目标角度位置差,其中,预设目标角度位置差为2π/N的整数倍,N为主泵和至少一个副泵的总数;
基于预设目标角度位置差,控制主泵和至少一个副泵同步运行,将主泵和至少一个副泵同步运行时的流量合流输出,得到总流量。
还提供了一种多泵合流的流量脉动消除装置,包括:
转速获取模块,设置为获取主泵和至少一个副泵的转速;
位置差控制模块,设置为根据主泵的转速和至少一个副泵的转速调节至少 一个副泵的转速,控制主泵和至少一个副泵之间的机械角度位置差达到预设目标角度位置差,其中,预设目标角度位置差为2π/N的整数倍,N为主泵和至少一个副泵的总数;
流量确定模块,设置为基于预设目标角度位置差,控制主泵和至少一个副泵同步运行,将主泵和至少一个副泵同步运行时的流量合流输出,得到总流量。
附图说明
图1是本申请实施例一提供的一种多泵合流的流量脉动消除方法的流程图;
图2是本申请实施例一提供的一种副泵转速变化的示意图;
图3是本申请实施例一提供的一种主泵和副泵的结构示意图;
图4是本申请实施例一提供的另一种副泵转速变化的示意图;
图5是本申请实施例二提供的一种多泵合流的流量脉动消除方法的流程图;
图6是本申请实施例二提供的一种角度位置调节的闭环控制的示意图;
图7是本申请实施例三提供的一种多泵合流的流量脉动消除装置的结构框图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的实施例仅仅用于解释本申请,而非对本申请的限定。为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
对于每个单泵系统,由于液压泵本身结构特性,使得在吸油和压油过程中,瞬时流量是不均匀的,随时间而变化。在液压泵连续转动时,每转中多个瞬时的流量却按同一规律重复变化,这种现象称为液压泵的流量脉动。以正弦波流量脉动为例,这个流量脉动的简化模型用公式表示为:
Q=asinωt+b
其中,Q为输出流量,a、b为常数,ω为流量波动频率,t为时间。这种流量脉动除了会造成系统振动、甚至产生噪声污染外,更会使得系统控制能力减弱、降低产品质量、甚至危害到系统的元器件。
实施例一
图1是本申请实施例一提供的一种多泵合流的流量脉动消除方法的流程图, 本实施例可适用于对多泵合流进行流量脉动消除等方面,该方法可以由多泵合流的流量脉动消除装置来执行,该装置可以由软件和/或硬件的方式实现,该装置可以集成在具有多泵合流的流量脉动消除功能的电子设备如计算机中,该方法包括如下步骤。
步骤110、获取主泵和至少一个副泵的转速。
其中,主泵的转速大于或等于零,副泵的转速大于或等于零,主泵的转速和副泵的转速相同或不同,多泵合流的流量脉动消除装置可通过自身设置的与多个泵的电机电连接的端口获取多个泵的转速。
步骤120、根据主泵的转速和副泵的转速调节副泵的转速,控制主泵和副泵的机械角度位置差达到预设目标角度位置差。
其中,预设目标角度位置差为2π/N的整数倍,N为主泵和副泵的总数。以两个副泵为例,若设定主泵的初始机械角度为零,则两个副泵与主泵的机械角度位置差需达到2π/3,即控制两个副泵的机械角度位置分别为2π/3和4π/3,以对主泵和至少一个副泵的流量进行控制。
在一实施例中,当主泵和至少一个副泵的转速均为零时,将主泵的初始机械角度设定为零,控制副泵进行加速和减速,并调节加速和减速的时间,直到副泵减速到零时的机械角度位置为预设目标角度位置。图2是本申请实施例一提供的一种副泵转速变化的示意图,参考图2,控制第一副泵在t 0到t 1时间段内先增速到n 1max再减速到零,并控制第二副泵在t 0到t 2时间段内先增速到n 2max再减速到零,调节每个副泵加速和减速的时间,以保证每个副泵减速到零时的机械角度位置为预设目标角度位置。其中,n 1max为第一副泵在调节转速过程中所达到的最高转速,n 2max为第二副泵在调节转速过程中所达到的最高转速。图3是本申请实施例一提供的一种主泵和副泵的结构示意图,以副泵包括第一副泵和第二副泵为例,若主泵的初始机械角度为零,则第一副泵与主泵的机械角度位置差为:
Figure PCTCN2021098267-appb-000001
其中,
Figure PCTCN2021098267-appb-000002
为第一副泵的机械角度位置,ω 1为第一副泵的流量波动角频率,ω 1=2πn 1N L/60,N L为泵的叶片数或齿轮数,n 1为所述第一副泵的转速,t 0为所述第一副泵开始调节转速的时间点,t 1为所述第一副泵结束调节转速的时间点;
第二副泵与主泵的机械角度位置差为:
Figure PCTCN2021098267-appb-000003
第二副泵与主泵的机械角度位置差为:
Figure PCTCN2021098267-appb-000004
其中,
Figure PCTCN2021098267-appb-000005
为第二副泵的机械角度位置,ω 2为第二副泵的流量波动角频率,ω 2=2πn 2N L/60,n 2为所述第二副泵的转速,t 2为所述第二副泵结束调节转速的时间点。
另外,当主泵和至少一个副泵的转速大于零时,控制副泵进行加减速运行,调节副泵进行加减速的时间,直到副泵加减速后的速度和主泵的速度相同时,至少一个副泵相对主泵的机械角度位置差值为预设目标角度位置差。图4是本申请实施例一提供的另一种副泵转速变化的示意图,参考图4,主泵的转速为n 0,第一副泵和第二副泵与主泵之间的机械角度位置差分别为:
Figure PCTCN2021098267-appb-000006
Figure PCTCN2021098267-appb-000007
第二副泵与主泵之间的机械角度位置差为:
Figure PCTCN2021098267-appb-000008
其中,
Figure PCTCN2021098267-appb-000009
为第一副泵的机械角度位置,ω 1为第一副泵的流量波动角频率,ω 1=2πn 1N L/60,
Figure PCTCN2021098267-appb-000010
为主泵的机械角度位置,ω 0为主泵的流量波动角频率,ω 0=2πn 0N L/60,
Figure PCTCN2021098267-appb-000011
为第二副泵的机械角度位置,ω 2为第二副泵的流量波动角频率,ω 2=2πn 2N L/60,N L为泵的叶片数或齿轮数,n 0为所述主泵的转速。并且,加速和减速时间可以相同,在加速和减速时间相同时需控制转速和时间两个量,在进行一次调节前,可设定调节时间一定,再根据预设目标角度位置差确定多个泵调节时最大转速n 1max、n 2max,即为一个周期的规划。
步骤130、基于预设目标角度位置差,控制主泵和副泵同步运行,将主泵和至少一个副泵同步运行时的流量合流输出,得到总流量。
在一实施例中,当控制主泵和副泵的机械角度位置差达到预设目标角度位置差后,控制主泵和副泵同步运行,若主泵的实际输出流量为Q 0,Q 0=a 0sinω 0t+ b 0,第一副泵的实际输出流量为Q 1,Q 1=a 1sinω 1t+b 1,第二副泵的实际输出流量为Q 2,Q 2=a 2sinω 2t+b 2,则合流输出的总流量为Q,Q=Q 0+Q 1+Q 2=a 0sinω 0t+a 1sinω 1t+a 2sinω 2t+b 0+b 1+b 2;当主泵和至少一个副泵的转速相同时,ω 0=ω 1=ω 2;主泵和至少一个副泵的性能相同,则a 0=a 1=a 2,b 0=b 1=b 2;当主泵和至少一个副泵的流量波形相位差为2π/3时,所述总流量
Figure PCTCN2021098267-appb-000012
Figure PCTCN2021098267-appb-000013
Figure PCTCN2021098267-appb-000014
可以看出,合流输出的总流量为3b 0,即主泵和至少一个副泵的流量脉动在总流量中相互抵消,从而消除了多泵合流中的流量脉动。
本实施例提供的多泵合流的流量脉动消除方法,根据获取的主泵的转速和副泵的转速调节副泵的转速,控制主泵和副泵的机械角度位置差达到预设目标角度位置差,并基于预设目标角度位置差,控制主泵和副泵同步运行,将主泵和至少一个副泵同步运行时的流量合流输出得到总流量,使多泵合流输出流量时主泵和至少一个副泵的流量脉动错开特定相位,并使流量脉动的波峰和波谷叠加,从而在多泵合流的总流量中消除流量脉动。
实施例二
图5是本申请实施例二提供的一种多泵合流的流量脉动消除方法的流程图,本实施例可适用于对多泵合流进行流量脉动消除等方面,该方法可以由多泵合流的流量脉动消除装置来执行,该装置可以由软件和/或硬件的方式实现,该装置可以集成在具有多泵合流的流量脉动消除功能的电子设备如计算机中,该方法包括如下步骤。
步骤210、获取主泵和至少一个副泵的转速。
其中,副泵包括第一副泵和第二副泵,主泵的转速和副泵的转速相同或不同,多泵合流的流量脉动消除装置可通过自身设置的与多个泵的电机电连接的端口获取多个泵的转速。
步骤220、根据主泵的转速和副泵的转速调节副泵的转速,控制主泵和副泵的机械角度位置差达到预设目标角度位置差。
其中,预设目标角度位置差为2π/N的整数倍,N为主泵和副泵的总数。以两个副泵为例,若主泵的转速为零,可设定主泵的初始机械角度为零,则两个副泵与主泵的机械角度位置差需达到2π/3,即控制两个副泵的机械角度位置分别为2π/3和4π/3,以对主泵和至少一个副泵的流量进行控制。主泵转速为零和不为零时的调节过程可分别参考图2和图4,调节过程在上述实施例中已说明, 在此不再赘述。
步骤230、启动主泵,当主泵的流量小于所需流量时,启动第一副泵,并控制第一副泵的流量达到所需流量的一半。
在一实施例中,若主泵和至少一个副泵的转速均为零,则可先启动主泵,当主泵的流量小于所需流量时,启动第一副泵,可调节第一副泵的速度使第一副泵的流量达到所需流量的一半,从而使主泵和第一副泵合流输出的总流量不低于所需流量。
步骤240、降低主泵的转速直到主泵的流量降低到所需流量的一半,并在主泵的转速和第一副泵的转速同步后,控制主泵的机械角度和第一副泵的机械角度同步,使主泵的机械角度位置和第一副泵的机械角度位置均匀分布。
在一实施例中,第一副泵的流量已达到所需流量的一半,为避免流量过多浪费,可降低主泵的转速直到主泵的流量降低到所需流量的一半,使主泵和第一副泵合流输出的总流量正好达到所需流量。并在主泵的转速和第一副泵的转速同步后,控制主泵的机械角度和第一副泵的机械角度同步,即控制主泵和第一副泵的机械角度位置差保持预设目标角度位置差,使主泵的机械角度位置和第一副泵的机械角度位置均匀分布,以消除主泵和第一副泵合流输出的总流量中的流量脉动。
步骤250、当需要三泵合流时,启动第二副泵,控制第二副泵的流量达到所需流量的三分之一,并降低主泵的转速和第一副泵的转速,使主泵的流量和第一副泵的流量均降低到所需流量的三分之一。
在一实施例中,启动第二副泵后,可通过调节第二副泵的转速对第二副泵的流量进行控制,并控制第二副泵的流量达到所需流量的三分之一,同时降低主泵的转速和第一副泵的转速,使主泵的流量和第一副泵的流量均降低到所需流量的三分之一,使三泵合流输出的总流量达到所需流量,满足实际流量所需并避免流量过多造成浪费。
步骤260、控制主泵的机械角度、第一副泵的机械角度以及第二副泵的机械角度同步,使主泵的机械角度位置、第一副泵的机械角度位置以及第二副泵的机械角度位置均匀分布。
在一实施例中,参考图3,图3中主泵和至少一个副泵的机械角度位置分布即为均匀分布,主泵的机械角度位置和第一副泵的机械角度位置以及第二副泵的机械角度位置均匀分布,即主泵和第一副泵的机械角度位置差为预设目标角度位置差,主泵和第二副泵的机械角度位置差为预设目标角度位置差。
步骤270、控制主泵和至少一个副泵的机械角度位置差保持稳定,使主泵和 至少一个副泵产生的流量脉动消除。
在一实施例中,可通过泵的叶片数和个数确定至少一个副泵和主泵的预设目标角度位置差,根据预设目标角度位置差和主泵和至少一个副泵运行时的机械角度位置确定机械角度偏差δ,并调节主泵和至少一个副泵的机械角度位置直至机械角度偏差的绝对值小于预设最大允许偏差。图6是本申请实施例二提供的一种角度位置调节的闭环控制的示意图,参考图6,第i个副泵与主泵所需达到的给定机械角度位置差为
Figure PCTCN2021098267-appb-000015
机械角度偏差
Figure PCTCN2021098267-appb-000016
Figure PCTCN2021098267-appb-000017
为第i个副泵的机械角度位置,
Figure PCTCN2021098267-appb-000018
为主泵的机械角度位置,
Figure PCTCN2021098267-appb-000019
为预设目标角度位置差,
Figure PCTCN2021098267-appb-000020
N L为泵的叶片数,N a为多泵合流中泵的个数。在安装泵以及与泵连接的电机时,应固定电机转子和泵的轴的相对位置,每个单泵系统与其他的单泵系统固定方式应相同。与泵连接的伺服电机将机械角度位置差反馈至与伺服电机电连接的控制器,多泵合流的流量脉动消除装置通过控制器控制伺服电机输出副泵与主泵的实际机械角度位置差
Figure PCTCN2021098267-appb-000021
直至机械角度偏差的绝对值小于最大允许偏差δ 0,从而实现闭环控制,保证主泵和至少一个副泵的机械角度偏差在合理范围内,即控制主泵和至少一个副泵的机械角度位置差保持稳定,以保证三泵合流时在输出的总流量中主泵和至少一个副泵产生的流量脉动消除。
另外,若主泵和至少一个副泵的转速均为零,则设定主泵的初始机械角度为零,并以主泵的机械角度位置为基准,通过每个泵的伺服驱动器控制电机分配每个副泵的初始机械角度位置(副泵的初始机械角度位置为2π/N的整数倍,N为主泵和副泵的总数),并基于主泵和至少一个副泵的初始机械角度位置,调节主泵和至少一个副泵的流量使总流量达到预设流量值,控制主泵和至少一个副泵的机械角度位置差保持稳定,使主泵和至少一个副泵产生的流量脉动消除。
本实施例提供的多泵合流的流量脉动消除方法,通过控制主泵的机械角度、第一副泵的机械角度以及第二副泵的机械角度同步,使主泵的机械角度位置、 第一副泵的机械角度位置以及第二副泵的机械角度位置均匀分布,并控制主泵和至少一个副泵的机械角度位置差保持稳定,使多泵合流输出流量时主泵和至少一个副泵的流量脉动错开特定相位,并使流量脉动的波峰和波谷叠加,从而在多泵合流的总流量中消除流量脉动。
实施例三
图7是本申请实施例三提供的一种多泵合流的流量脉动消除装置的结构框图,该装置包括转速获取模块310、位置差控制模块320和流量确定模块330;其中,转速获取模块310设置为获取主泵和至少一个副泵的转速;位置差控制模块320设置为根据主泵的转速和副泵的转速调节副泵的转速,控制主泵和副泵的机械角度位置差达到预设目标角度位置差,其中,预设目标角度位置差为2π/N的整数倍,N为主泵和副泵的总数;流量确定模块330设置为基于预设目标角度位置差,控制主泵和副泵同步运行,将主泵和至少一个副泵同步运行时的流量合流输出,得到总流量。
在上述实施方式的基础上,位置差控制模块320包括角度设定单元和速度控制单元;其中,角度设定单元设置为当主泵和至少一个副泵的转速为零时,将主泵的初始机械角度设定为零;速度控制单元设置为控制副泵进行加速和减速,并调节加速和减速的时间,直到副泵减速到零时的机械角度位置为预设目标角度位置。
可选的,副泵包括第一副泵和第二副泵,主泵的初始机械角度为零,则第一副泵与主泵的机械角度位置差为:
Figure PCTCN2021098267-appb-000022
其中,
Figure PCTCN2021098267-appb-000023
为第一副泵的机械角度位置,ω 1为第一副泵的流量波动角频率,ω 1=2πn 1N L/60,N L为泵的叶片数或齿轮数,n 1为所述第一副泵的转速,t 0为所述第一副泵开始调节转速的时间点,t 1为所述第一副泵结束调节转速的时间点;
第二副泵与主泵的机械角度位置差为:
Figure PCTCN2021098267-appb-000024
第二副泵与主泵的机械角度位置差为:
Figure PCTCN2021098267-appb-000025
其中,
Figure PCTCN2021098267-appb-000026
为第二副泵的机械角度位置,ω 2为第二副泵的流量波动角频率,ω 2=2πn 2N L/60,n 2为所述第二副泵的转速,t 2为所述第二副泵结束调节转速的时间点。
在一种实施方式中,位置差控制模块320包括加减速控制单元和时间调节单元;其中,加减速控制单元设置为当主泵和至少一个副泵的转速大于零时,控制副泵进行加减速运行;时间调节单元设置为调节副泵进行加减速的时间,直到副泵加减速后的速度和主泵的速度相同时,至少一个副泵相对主泵的机械角度位置差值为预设目标角度位置差。其中,主泵的转速为n 0,副泵包括第一副泵和第二副泵,第一副泵和第二副泵与主泵的机械角度位置差分别为:
Figure PCTCN2021098267-appb-000027
Figure PCTCN2021098267-appb-000028
第二副泵与主泵之间的机械角度位置差为:
Figure PCTCN2021098267-appb-000029
其中,
Figure PCTCN2021098267-appb-000030
为第一副泵的机械角度位置,ω 1为第一副泵的流量波动角频率,ω 1=2πn 1N L/60,
Figure PCTCN2021098267-appb-000031
为主泵的机械角度位置,ω 0为主泵的流量波动角频率,ω 0=2πn 0N L/60,
Figure PCTCN2021098267-appb-000032
为第二副泵的机械角度位置,ω 2为第二副泵的流量波动角频率,ω 2=2πn 2N L/60,N L为泵的叶片数或齿轮数,n 0为所述主泵的转速。
在一种实施方式中,若主泵和至少一个副泵的转速均为零,则设定主泵的初始机械角度为零;流量确定模块330包括角度分配单元、流量调节单元和脉动消除单元;其中,角度分配单元设置为以主泵的机械角度位置为基准,通过每个泵的伺服驱动器控制电机分配每个副泵的初始机械角度位置;其中,副泵的初始机械角度位置为2π/N的整数倍,N为主泵和副泵的总数;流量调节单元设置为基于主泵和至少一个副泵的初始机械角度位置,调节主泵和至少一个副泵的流量使总流量达到预设流量值;脉动消除单元设置为控制主泵和至少一个副泵的机械角度位置差保持稳定,使主泵和至少一个副泵产生的流量脉动消除。
可选的,流量确定模块330包括第一启动单元、流量控制单元、第二启动单元、角度控制单元和位置差控制单元;其中,启动单元设置为启动主泵,当主泵的流量小于所需流量时,启动第一副泵,并控制第一副泵的流量达到所需 流量的一半;流量控制单元设置为降低主泵的转速直到主泵的流量降低到所需流量的一半,并在主泵的转速和第一副泵的转速同步后,控制主泵的机械角度和第一副泵的机械角度同步,使主泵的机械角度位置和第一副泵的机械角度位置均匀分布;第二启动单元设置为当需要三泵合流时,启动第二副泵,控制第二副泵的流量达到所需流量的三分之一,并降低主泵的转速和第一副泵的转速,使主泵的流量和第一副泵的流量均降低到所需流量的三分之一;角度控制单元设置为控制主泵的机械角度和第一副泵的机械角度以及第二副泵的机械角度同步,使主泵的机械角度位置和第一副泵的机械角度位置以及第二副泵的机械角度位置均匀分布;位置差控制单元设置为控制主泵和至少一个副泵的机械角度位置差保持稳定,使主泵和至少一个副泵产生的流量脉动消除。
在一种实施方式中,流量确定模块330包括位置差确定单元和角度偏差确定单元;其中,位置差确定单元设置为通过泵的叶片数和个数确定至少一个副泵和主泵的预设目标角度位置差;角度偏差确定单元设置为根据预设目标角度位置差和主泵和至少一个副泵运行时的机械角度位置确定机械角度偏差,并调节主泵和至少一个副泵的机械角度位置直至机械角度偏差的绝对值小于预设最大允许偏差。其中,机械角度偏差为δ,
Figure PCTCN2021098267-appb-000033
Figure PCTCN2021098267-appb-000034
为第i个副泵的机械角度位置,
Figure PCTCN2021098267-appb-000035
为主泵的机械角度位置,
Figure PCTCN2021098267-appb-000036
为预设目标角度位置差;多泵合流中第i个副泵与主泵的机械角度位置差为
Figure PCTCN2021098267-appb-000037
表示为:
Figure PCTCN2021098267-appb-000038
其中,N L为泵的叶片数,N a为多泵合流中泵的个数。
本实施例提供的多泵合流的流量脉动消除装置与本申请任意实施例提供的多泵合流的流量脉动消除方法属于相同的构思,具备相应的效果,未在本实施例详尽的技术细节详见本申请任意实施例提供的多泵合流的流量脉动消除方法。

Claims (10)

  1. 一种多泵合流的流量脉动消除方法,包括:
    获取主泵和至少一个副泵的转速;
    根据所述主泵的转速和所述至少一个副泵的转速调节所述至少一个副泵的转速,控制所述主泵和所述至少一个副泵之间的机械角度位置差达到预设目标角度位置差,其中,所述预设目标角度位置差为2π/N的整数倍,N为所述主泵和所述至少一个副泵的总数;
    基于所述预设目标角度位置差,控制所述主泵和所述至少一个副泵同步运行,将所述主泵和所述至少一个副泵同步运行时的流量合流输出,得到总流量。
  2. 根据权利要求1所述的方法,其中,所述根据所述主泵的转速和所述至少一个副泵的转速调节所述至少一个副泵的转速,控制所述主泵和所述至少一个副泵之间的机械角度位置差达到预设目标角度位置差,包括:
    在所述主泵和所述至少一个副泵的转速均为零的情况下,将所述主泵的初始机械角度设定为零;
    控制所述至少一个副泵进行加速和减速,并调节加速和减速的时间,直到所述至少一个副泵减速到零时的机械角度位置为预设目标角度位置。
  3. 根据权利要求2所述的方法,其中,所述至少一个副泵包括第一副泵和第二副泵,所述第一副泵与所述主泵之间的机械角度位置差为:
    Figure PCTCN2021098267-appb-100001
    其中,
    Figure PCTCN2021098267-appb-100002
    为所述第一副泵的机械角度位置,ω 1为所述第一副泵的流量波动角频率,ω 1=2πn 1N L/60,N L为泵的叶片数或齿轮数,n 1为所述第一副泵的转速,t 0为所述第一副泵开始调节转速的时间点,t 1为所述第一副泵结束调节转速的时间点;
    所述第二副泵与所述主泵之间的机械角度位置差为:
    Figure PCTCN2021098267-appb-100003
    其中,
    Figure PCTCN2021098267-appb-100004
    为所述第二副泵的机械角度位置,ω 2为所述第二副泵的流量波动角频率,ω 2=2πn 2N L/60,n 2为所述第二副泵的转速,t 2为所述第二副泵结束 调节转速的时间点。
  4. 根据权利要求1所述的方法,其中,所述根据所述主泵的转速和所述至少一个副泵的转速调节所述至少一个副泵的转速,控制所述主泵和所述至少一个副泵之间的机械角度位置差达到预设目标角度位置差,包括:
    在所述主泵和所述至少一个副泵的转速均大于零的情况下,控制所述至少一个副泵进行加速和减速运行;
    调节所述至少一个副泵进行加速和减速的时间,直到所述至少一个副泵加速和减速后的转速和所述主泵的转速相同时,所述至少一个副泵相对所述主泵的机械角度位置差值为所述预设目标角度位置差。
  5. 根据权利要求4所述的方法,其中,所述主泵的转速为n 0,所述至少一个副泵包括第一副泵和第二副泵,所述第一副泵和所述第二副泵与所述主泵之间的机械角度位置差分别为:
    Figure PCTCN2021098267-appb-100005
    Figure PCTCN2021098267-appb-100006
    其中,
    Figure PCTCN2021098267-appb-100007
    为所述第一副泵的机械角度位置,ω 1为所述第一副泵的流量波动角频率,ω 1=2πn 1N L/60,
    Figure PCTCN2021098267-appb-100008
    为所述主泵的机械角度位置,ω 0为所述主泵的流量波动角频率,ω 0=2πn 0N L/60,
    Figure PCTCN2021098267-appb-100009
    为所述第二副泵的机械角度位置,ω 2为所述第二副泵的流量波动角频率,ω 2=2πn 2N L/60,N L为泵的叶片数或齿轮数,n 0为所述主泵的转速。
  6. 根据权利要求1所述的方法,其中,在所述主泵和所述至少一个副泵的转速均为零的情况下,设定所述主泵的初始机械角度为零;所述基于所述预设目标角度位置差,控制所述主泵和所述至少一个副泵同步运行,包括:
    以所述主泵的机械角度位置为基准,通过每个泵的伺服驱动器控制电机分配每个副泵的初始机械角度位置,其中,副泵的初始机械角度位置为2π/N的整数倍,N为所述主泵和所述至少一个副泵的总数;
    基于所述主泵和所述至少一个副泵的初始机械角度位置,调节所述主泵和所述至少一个副泵的流量使所述总流量达到预设流量值;
    控制所述主泵和所述至少一个副泵的机械角度位置差保持稳定,使所述主泵和所述至少一个副泵产生的流量脉动消除。
  7. 根据权利要求1所述的方法,其中,所述至少一个副泵包括第一副泵和第二副泵;所述基于所述预设目标角度位置差,控制所述主泵和所述至少一个 副泵同步运行,包括:
    启动所述主泵,在所述主泵的流量小于所需流量的情况下,启动所述第一副泵,并控制所述第一副泵的流量达到所需流量的一半;
    降低所述主泵的转速直到所述主泵的流量降低到所需流量的一半,并在所述主泵的转速和所述第一副泵的转速同步后,控制所述主泵的机械角度位置和所述第一副泵的机械角度位置同步,使所述主泵的机械角度位置和所述第一副泵的机械角度位置均匀分布;
    在三泵合流的情况下,启动所述第二副泵,控制所述第二副泵的流量达到所需流量的三分之一,并降低所述主泵的转速和所述第一副泵的转速,使所述主泵的流量和所述第一副泵的流量均降低到所需流量的三分之一;
    控制所述主泵的机械角度位置、所述第一副泵的机械角度位置以及所述第二副泵的机械角度位置同步,使所述主泵的机械角度位置、所述第一副泵的机械角度位置以及所述第二副泵的机械角度位置均匀分布;
    控制所述主泵和所述至少一个副泵的机械角度位置差保持稳定,使所述主泵和所述至少一个副泵产生的流量脉动消除。
  8. 根据权利要求1所述的方法,其中,所述基于所述预设目标角度位置差,控制所述主泵和所述至少一个副泵同步运行,包括:
    通过泵的叶片数和个数确定所述至少一个副泵和所述主泵之间的预设目标角度位置差;
    根据所述预设目标角度位置差和所述主泵和所述至少一个副泵运行时的机械角度位置确定机械角度偏差,并调节所述主泵和所述至少一个副泵的机械角度位置直至所述机械角度偏差的绝对值小于预设最大允许偏差。
  9. 根据权利要求8所述的方法,其中,所述机械角度偏差为δ,
    Figure PCTCN2021098267-appb-100010
    为第i个副泵的机械角度位置,
    Figure PCTCN2021098267-appb-100011
    为所述主泵的机械角度位置,
    Figure PCTCN2021098267-appb-100012
    为所述预设目标角度位置差;
    多泵合流中所述第i个副泵与所述主泵的机械角度位置差为
    Figure PCTCN2021098267-appb-100013
    表示为:
    Figure PCTCN2021098267-appb-100014
    其中,N L为泵的叶片数,N a为多泵合流中泵的个数。
  10. 一种多泵合流的流量脉动消除装置,包括:
    转速获取模块,设置为获取主泵和至少一个副泵的转速;
    位置差控制模块,设置为根据所述主泵的转速和所述至少一个副泵的转速调节所述至少一个副泵的转速,控制所述主泵和所述至少一个副泵之间的机械角度位置差达到预设目标角度位置差,其中,所述预设目标角度位置差为2π/N的整数倍,N为所述主泵和所述至少一个副泵的总数;
    流量确定模块,设置为基于所述预设目标角度位置差,控制所述主泵和所述至少一个副泵同步运行,将所述主泵和所述至少一个副泵同步运行时的流量合流输出,得到总流量。
PCT/CN2021/098267 2020-12-28 2021-06-04 多泵合流的流量脉动消除方法和装置 WO2022142132A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011580642.5A CN112727752B (zh) 2020-12-28 2020-12-28 一种多泵合流的流量脉动消除方法和装置
CN202011580642.5 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022142132A1 true WO2022142132A1 (zh) 2022-07-07

Family

ID=75606355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098267 WO2022142132A1 (zh) 2020-12-28 2021-06-04 多泵合流的流量脉动消除方法和装置

Country Status (2)

Country Link
CN (1) CN112727752B (zh)
WO (1) WO2022142132A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112727752B (zh) * 2020-12-28 2022-10-14 广东拓斯达科技股份有限公司 一种多泵合流的流量脉动消除方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1420422A (en) * 1972-12-28 1976-01-07 Tokyo Keiki Kk Pump arrangements
EP0367099A2 (de) * 1988-11-03 1990-05-09 Bruker Franzen Analytik GmbH Flüssigkeits-Kolbenpumpe für chromatographische Analysegeräte
JP2012097586A (ja) * 2010-10-29 2012-05-24 Hitachi Automotive Systems Ltd 電動ポンプ
CN107100908A (zh) * 2017-05-23 2017-08-29 中国人民解放军海军工程大学 一种基于辅助泵源配置的流体脉动抑制方法
CN112727752A (zh) * 2020-12-28 2021-04-30 广东拓斯达科技股份有限公司 一种多泵合流的流量脉动消除方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709629B2 (ja) * 2005-10-19 2011-06-22 株式会社日立ハイテクノロジーズ ポンプ装置
US7648349B2 (en) * 2006-02-22 2010-01-19 Fluid Management Operations, Llc Nutating pump with reduced pulsations in output flow
RU2012147256A (ru) * 2010-04-07 2014-05-27 Вейр Минералз Незерландс Б.В. Контроллер сдвига фазы для системы поршневых насосов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1420422A (en) * 1972-12-28 1976-01-07 Tokyo Keiki Kk Pump arrangements
EP0367099A2 (de) * 1988-11-03 1990-05-09 Bruker Franzen Analytik GmbH Flüssigkeits-Kolbenpumpe für chromatographische Analysegeräte
JP2012097586A (ja) * 2010-10-29 2012-05-24 Hitachi Automotive Systems Ltd 電動ポンプ
CN107100908A (zh) * 2017-05-23 2017-08-29 中国人民解放军海军工程大学 一种基于辅助泵源配置的流体脉动抑制方法
CN112727752A (zh) * 2020-12-28 2021-04-30 广东拓斯达科技股份有限公司 一种多泵合流的流量脉动消除方法和装置

Also Published As

Publication number Publication date
CN112727752A (zh) 2021-04-30
CN112727752B (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
CN1296615C (zh) 发动机、发动机的排气温度控制装置及控制方法
WO2022142132A1 (zh) 多泵合流的流量脉动消除方法和装置
US5628188A (en) Torque control of hydrostatic machines via the pivot angle or the eccentricity of said machines
MX2012011512A (es) Controlador de desplazamiento de face para un sistema de bombas alternativas.
RU2418990C1 (ru) Система управления центробежным насосом
GB2226430A (en) Gas turbine engine control system
CN103929106A (zh) 可变速扬水发电系统的控制装置以及控制方法
CN105207566B (zh) 他控式双馈电机的失步振荡抑制方法及其双馈电机系统
EP3115602B1 (en) Hydraulic transmission, power generating apparatus of renewable-energy type, and method of operating the same
JP2013160230A (ja) 逆回転オープンロータガスタービンエンジン用の非モデルベース制御のための方法および装置
CN104912856A (zh) 双油缸同步伺服控制系统装置
EP2889514B1 (en) Hydraulic transmission, power generating apparatus of renewable energy type and operation method thereof
CN109861618B (zh) 混合动力汽车用bsg交流电机抗干扰复合控制器的构造方法
CN109611224A (zh) 一种防止工程机械启动时产生故障的方法
CN112727745B (zh) 压缩机的控制方法、装置、制冷设备和可读存储介质
JPH02191824A (ja) ターボファンの位相同期装置及び位相を同期させる方法
US11750131B2 (en) Motor drive method and motor drive apparatus
CN106394246B (zh) 液压马达同步的控制系统及控制方法、双车体全地形车
JP4047980B2 (ja) 並列接続されたポンプの運転方法
JPH10141110A (ja) 油圧式建設機械のエンジン−ポンプ制御方法
CN109724329A (zh) 用于空调器压缩机转速波动抑制的方法
Khamudkhanova et al. Construction principle of automatic control system adjustable multi-engine drive water lift pump unit
CN109724320A (zh) 空调压缩机转速控制方法及装置
CN109713963A (zh) 用于空调压缩机转速波动抑制的方法
JP5773964B2 (ja) エンジン発電機並列運転システムおよびエンジン発電機並列運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21912893

Country of ref document: EP

Kind code of ref document: A1