WO2022141833A1 - 一种投影设备 - Google Patents

一种投影设备 Download PDF

Info

Publication number
WO2022141833A1
WO2022141833A1 PCT/CN2021/082772 CN2021082772W WO2022141833A1 WO 2022141833 A1 WO2022141833 A1 WO 2022141833A1 CN 2021082772 W CN2021082772 W CN 2021082772W WO 2022141833 A1 WO2022141833 A1 WO 2022141833A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
projection
optical path
fly
Prior art date
Application number
PCT/CN2021/082772
Other languages
English (en)
French (fr)
Inventor
朱炜湛
唐晓峰
丁明内
杨伟樑
高志强
Original Assignee
广景视睿科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广景视睿科技(深圳)有限公司 filed Critical 广景视睿科技(深圳)有限公司
Priority to US17/543,935 priority Critical patent/US11726397B2/en
Publication of WO2022141833A1 publication Critical patent/WO2022141833A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the embodiments of the present application relate to the field of optical projection, and in particular, to a projection device.
  • DMD device is a digital optical switch with binary pulse width modulation, and it is the most complex optical switch device in the world.
  • the dumpling chain structure allows the lens to be tilted between two states, +10 degrees for "on”. -10 degrees is “off” and they are “parked” at 0 degrees.
  • the inventor of the present application found in the process of realizing the present application that the illumination optical system of the existing DLP micro projector needs to be provided with multiple light sources, and each light source must be equipped with a collimation module, so that the existing DLP micro projector needs to be equipped with a collimating module.
  • the structure of the projector is complex and the volume is too large, and if the DLP micro projector is to be widely used, it is necessary to further reduce the size and weight of the projection equipment to ensure that it has high projection quality and is more portable.
  • the main technical problem solved by the embodiments of the present application is to provide a projection device, which can further reduce the volume of the projection device.
  • a technical solution adopted in this application is to provide a projection device, including:
  • a light supply device includes an LED lamp and a collimating fly-eye lens, wherein the lamp body of the LED lamp is arranged in an array and the LED lamp can simultaneously emit three kinds of light of red, green and blue, and the collimating fly-eye lens The lens can collimate the light emitted by each of the lamp bodies;
  • the optical path conversion device converts the direction of the light emitted by the light supply device
  • the DMD device receives the light transmitted by the optical path conversion device, and feeds back the light to the optical path conversion device after processing the light;
  • the light emitted by the light supply device is irradiated to the DMD device through the optical path conversion device, and processed by the DMD device, and the processed light is conducted by the DMD device to the optical path conversion device and converted through the optical path
  • the device is transmitted to the projection lens device to complete the image projection.
  • the LED light is formed by using several MiniLEDs or several MicroLED arrays.
  • the optical path conversion device further includes a condensing lens and a conversion mirror, and the condensing lens is disposed between the collimating fly-eye lens and the conversion mirror.
  • the conversion mirror is a triangular prism, wherein the first surface of the conversion mirror is parallel to the DMD device, and the normal of the second surface of the conversion mirror coincides with the central axis of the projection lens device, Wherein, the first surface is perpendicular to the normal line of the second surface.
  • the light supply device further includes a relay lens, the relay lens is arranged between the collimating fly-eye lens and the condensing lens, and the central axis of the relay lens is connected to the fly-eye lens.
  • the central axes coincide.
  • the light supply device further includes a homogenized fly-eye lens, and the homogenized fly-eye lens is disposed between the collimating fly-eye lens and the relay lens.
  • the side of the condensing lens that emits light and the side of the oblique side of the conversion mirror are arranged at an angle.
  • the projection lens device includes a first distance increaser module and a second distance increaser module, and the first distance increaser module receives the light from the conversion mirror and transmits it to the second distance increaser module.
  • the first teleconverter module includes a first lens, a second lens, a third lens, and a fourth lens, and the first lens, the second lens, the third lens, and the fourth lens are placed in sequence and all The central axes of the first lens, the second lens, the third lens and the fourth lens are all coincident;
  • the first lens, the second lens and the fourth lens are convex lenses, and the third lens is a concave lens.
  • the second distance extender module includes a fifth lens, a sixth lens and a projection lens, the fifth lens, the sixth lens and the projection lens are placed in sequence, and the fifth lens, the sixth lens and the projection lens are arranged in sequence.
  • the central axes of the lenses coincide.
  • the light emitted from the LED lamp can pass through the fly-eye collimating lens to each
  • the light emitted by the lamp body is collimated to reduce the volume of the light supply device, thereby achieving the effect of further reducing the size and weight of the projection device.
  • FIG. 1 is an overall schematic diagram of a projection device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a light supply device of a projection apparatus according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of an optical path conversion device of a projection device according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a projection lens device of a projection apparatus according to an embodiment of the present application.
  • the projection apparatus 1 includes a light supply device 10 , an optical path conversion device 20 , a DMD device 30 and a projection lens device 40 .
  • the light supply device 10 is used for providing a light source
  • the light path conversion device 20 is disposed between the light supply device 10 and the DMD device 30
  • the projection device 1 is used for projecting the light after DMD processing.
  • the light emitted by the light supply device 10 is irradiated to the optical path conversion device 20
  • the optical path conversion device 20 conducts the light to the DMD device 30
  • the DMD device 30 receives the light from the optical path conversion device 20 .
  • the DMD device 30 conducts the processed light to the optical path conversion device 20 , and the optical path conversion device 20 conducts the light processed by the DMD device 30 to the projection lens device 40 , the projection lens device 40 performs projection imaging on the light processed by the DMD device 30 .
  • the light supply device 10 includes an LED lamp 101 , a collimating fly-eye lens 102 , a relay lens 104 and a homogenizing fly-eye lens 103 .
  • the LED lamp 101 , the collimating fly-eye lens 102 and the relay lens 104 are arranged in sequence, and the even-light fly-eye lens 103 is arranged between the collimating fly-eye lens 102 and the relay lens 104 , wherein the The central axes of the straight fly-eye lens 102 and the relay lens 104 are coincident.
  • the LED light 101 is formed of a plurality of MiniLED arrays, wherein the light emitted by one of the MiniLEDs is red light, green light, or blue light, and the collimating fly-eye lens 102 collimates the light emitted by each MiniLED.
  • the light collimated by the collimating fly-eye lens 102 is irradiated to the even-light fly-eye lens 103, and the even-light fly-eye lens 103 uniformly processes the passing light, so that the light passing through the even-light fly-eye lens 103
  • the light can achieve uniform energy, thereby improving the quality of the light emitted from the uniform fly-eye lens 103 .
  • the principle of the even-light fly-eye lens 103 is as follows: the even-light fly-eye lens 103 is divided into two rows of fly-eye lenses, and the light rays parallel to the optical axis pass through the first lens and focus on the center of the second lens, and the second lens Each small lens of the two-row fly-eye lens overlaps and integrates the light emitted by the small lens corresponding to the first-row fly-eye lens. Because the first row of fly-eye lenses divides the entire broad ray of the light source into multiple thin rays for illumination, and the vertical axis inhomogeneity within the range of each thin ray is due to the superposition of the thin rays in symmetrical positions, so that the vertical axis of the thin rays is not uniform.
  • the Mini LED used in the embodiments of the present application is composed of pixel particles of 0.5mm-1.2mm, and the collimating fly-eye lens 102 collimates each pixel particle. Since the LED lamp 101 can emit red light, green light, or blue light at the same time, and the red light, green light, or blue light emitted from the LED lamp 101 is collimated by the collimating fly-eye lens 102 through the The light path conversion device 20 reaches the DMD device 30 , replacing the existing three primary color light sources and three sets of collimation mechanisms corresponding to the three primary color light sources, thereby reducing the volume of the light supply device 10 .
  • the LED is formed by an array of several MicroLEDs, and the MicroLEDs are composed of pixel particles of 0.05 mm or smaller.
  • the light supply device 10 may also have no uniform fly-eye lens 103, and the light emitted by the LED lamp 101 can pass through the light path conversion device after being collimated by the collimating fly-eye lens 102 20 arrives at the DMD device 30 .
  • the optical path conversion device 20 includes a conversion mirror 201 and a condensing lens 202, and the condensing lens 202 is disposed on the collimating fly-eye lens 102 and the conversion mirror 201 between.
  • the conversion mirror 201 is a triangular prism, wherein the first surface 2011 of the conversion mirror 201 is parallel to the DMD device 30, and the normal of the second surface 2012 of the conversion mirror 201 is parallel to the projection lens device
  • the central axes of 40 coincide, wherein the first surface 2011 is perpendicular to the normal of the second surface 2012, the third surface 2013 connects the first surface 2011 and the second surface 2012, and the third surface 2013 faces
  • One end surface of the condensing lens 202 is a transmissive surface, and a surface of the third surface 2013 facing away from the condensing lens 202 is a reflective surface.
  • the condensing lens 202 condenses the light emitted from the light supply device 10 and enters the conversion mirror 201 through the third surface 2013.
  • the conversion mirror 201 refracts the incident light and finally reaches the The DMD device 30 , the DMD device 30 processes the light refracted by the conversion mirror 201 , and the processed light enters the conversion mirror 201 from the first surface 2011 , and passes through the DMD device 30 .
  • the processed light enters from the first surface 2011 and then reaches the reflective surface of the third surface 2013 of the conversion mirror 201 and is reflected by the reflective surface and finally exits the conversion mirror 201 through the second surface 2012 .
  • the conversion mirror 201 utilizes the principle of total reflection of light to reflect the light transmitted from the first surface 2011 to the reflection surface of the third surface 2013 out of the second surface 2012 .
  • the light emitting side of the condensing lens 202 is arranged at an angle with the hypotenuse side of the conversion mirror 201 , that is, the light emitting side of the condenser lens 202 is arranged at an angle with the third surface 2013 . Therefore, the light emitted from the light supply device 10 will all be incident within a limited range of the DMD device 30 after being converged by the condensing lens 202 and refracted by the conversion mirror 201 .
  • the light supply device 10 further includes a relay lens 104, the relay lens 104 is disposed between the collimating fly-eye lens 102 and the condensing lens 202, and the central axis of the relay lens 104 It is coincident with the central axis of the uniform fly-eye lens 103 .
  • the relay lens 104 and the condensing lens 202 work together to increase the distance of the light passing through the relay lens 104 and the condensing lens 202 , thereby enhancing the quality of the light emitted from the LED lamp 101 .
  • the projection lens device 40 includes a first distance increaser module 401 and a second distance increaser module 402 , and the first distance increaser module 401 receives data from the conversion mirror.
  • the light from 201 is transmitted to the second distance extender module 402 .
  • the first teleconverter module 401 includes a first lens 4011, a second lens 4012, a third lens 4013 and a fourth lens 4014.
  • the first lens 4011, the second lens 4012, the third lens 4013 and the fourth lens 4014 The first lens 4011 , the second lens 4012 , the third lens 4013 and the fourth lens 4014
  • the first lens 4011 , the second lens 4012 , the third lens 4013 and the fourth lens 4014 are placed in sequence and the central axes of the lenses all coincide.
  • the first lens 4011, the second lens 4012 and the fourth lens 4014 are convex lenses, and the third lens 4013 is a concave lens.
  • the second distance extender module 402 includes a fifth lens 4021, a sixth lens 4022 and a projection lens 4023, the fifth lens 4021, the sixth lens 4022 and the projection lens 4023 are placed in sequence and the fifth lens 4021, the first The central axes of the six lenses 4022 and the projection lens 4023 are coincident.
  • the light processed by the DMD device 30 is reflected by the conversion mirror 201 to the first range extender module 401 to achieve a one-time image range extension, and the light emitted from the first range extender module 401 enters the first range extender module 401.
  • the second distance increaser module 402 realizes the second distance increase and outputs the image, thereby reducing the length of the entire projection lens 4023 device 40 .
  • the lenses in the first range extender module 401 and the second range extender module 402 are both plastic lenses, and are manufactured by an injection molding process. Therefore, the weight of the projection lens 4023 device 40 can be reduced, thereby further reducing the overall weight of the projection apparatus 1 and improving the portability of the projection apparatus 1 .
  • the light emitted from the LED lamp 101 can pass through the collimating fly-eye lens 102
  • the light emitted by each lamp body is collimated to reduce the volume of the light supply device 10 and further reduce the size and weight of the projection apparatus 1 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种投影设备(1),包括:供光装置(10),供光装置(10)包括LED灯(101)和准直复眼透镜(102),LED灯(101)的灯体阵列设置并且LED灯(101)可同时发出红、绿、蓝三种光线,准直复眼透镜(102)可以对每一个灯体发射的光线进行准直;光路转换装置(20),光路转换装置(20)对供光装置(10)发射来的光线进行方向转换;DMD装置(30),DMD装置(30)接收经由光路转换装置(20)转送来的光线并将光线进行处理后反馈至光路转换装置(20);投影透镜装置(40);供光装置(10)发射的光线经由光路转换装置(20)照射至DMD装置(30),并由DMD装置(30)进行处理,处理完毕的光线由DMD装置(30)传导至光路转换装置(20)并经由光路转换装置(20)传导至投影透镜装置(40)完成影像投影。投影设备(1)能够达到进一步缩小体积的效果。

Description

一种投影设备
本申请要求于2020年12月31日提交中国专利局,申请号为2020116387927,发明名称为“一种投影设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光学投影领域,特别是涉及一种投影设备。
背景技术
近年来,由于各种手持式电子设备的开发和应用,投影显示设备微型化、高质量成为投影技术的发展方向。随着LED光源和DLP技术的成熟,DLP微型投影机得到了快速发展,成为一种极受欢迎的投影显示方式。1987年,T1公司发明了DMD器件,使DLP数字光处理技术在世界上得以应用,更推动了DLP微型投影机的崛起。DMD器件是一种二进制脉宽调制的数字光开关,是目前世界上最复杂的光开关器件。成千上万微小的方形镜片,被建造在静态随机存取内存上方的饺链结构上而组成DMD。每一个镜片可以通断一个像素的光。饺链结构允许镜片在两个状态之间倾斜,+10度为“开”。-10度为“关”,它们处于0度“停泊”状态。
本申请的发明人在实现本申请的过程中发现:现有的DLP微型投影机的照明光学系统需要设置多个光源并且每个光源都得配置一个准直模块,由此使现有DLP微型投影机的结构复杂且体积偏大,而DLP微型投影机要得到广泛应用,就要进一步减小投影设备的尺寸和重量,保证其具有高投影品质的同时更便于携带。
申请内容
本申请实施例主要解决的技术问题是提供一种投影设备,能够进一步的缩小投影设备的体积。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种投影设备,包括:
供光装置,所述供光装置包括LED灯和准直复眼透镜,其中所述LED灯的灯体阵列设置并且所述LED灯可同时发出红、绿、蓝三种光线,所述准直 复眼透镜可以对每一个所述灯体发射的光线进行准直;
光路转换装置,所述光路转换装置对所述供光装置发射来的光线进行方向转换;
DMD装置,所述DMD装置接收经由所述光路转换装置转送来的光线并将所述光线进行处理后反馈至所述光路转换装置;
投影透镜装置;
其中,所述供光装置发射的光线经由所述光路转换装置照射至所述DMD装置,并由所述DMD装置进行处理,处理完毕的光线由DMD装置传导至所述光路转换装置并经由光路转换装置传导至所述投影透镜装置完成影像投影。
可选的,所述LED灯采用若干MiniLED或若干MicroLED阵列而成。
可选的,所述光路转换装置还包括会聚透镜和转换镜,所述会聚透镜设置于所述准直复眼透镜和所述转换镜之间。
可选的,所述转换镜为三棱镜,其中,所述转换镜的第一表面与所述DMD装置平行,所述转换镜的第二表面的法线与所述投影透镜装置的中心轴线重合,其中,所述第一表面与所述第二表面的法线垂直。
可选的,所述供光装置还包括中继镜,所述中继镜设置于所述准直复眼透镜和所述会聚透镜之间,并且所述中继镜的中心轴与所述复眼透镜的中心轴重合。
可选的,所述供光装置还包括匀光复眼透镜,所述匀光复眼透镜设置于所述准直复眼透镜和所述中继镜之间。
可选的,所述会聚透镜射出光线的一面与所述转换镜的斜边一面呈夹角设置。
可选的,所述投影透镜装置包括第一增距模块和第二增距模块,所述第一增距模块接收来自所述转换镜的光线并传递至第二增距模块。
可选的,所述第一增距模块包括第一透镜、第二透镜、第三透镜和第四透镜,所述第一透镜、第二透镜、第三透镜和第四透镜依次顺序放置并且所述第一透镜、第二透镜、第三透镜和第四透镜的中心轴均重合;
其中,所述第一透镜、第二透镜和第四透镜为凸透镜,所述第三透镜为凹透镜。
可选的,所述第二增距模块包括第五透镜、第六透镜和投影透镜,所述 第五透镜、第六透镜和投影透镜依次顺序放置并且所述第五透镜、第六透镜和投影透镜的中心轴重合。
在本申请实施例中,通过设置可以同时发出红、绿、蓝三种光线的LED灯和复眼准直透镜,使从所述LED灯发射出的光线可以通过所述复眼准直透镜对每个灯体发出的光线进行准直实现缩小供光装置的体积,达到进一步减小投影设备的尺寸和重量的效果。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例投影设备的整体示意图;
图2是本申请实施例投影设备的供光装置示意图;
图3是本申请实施例投影设备的光路转换装置示意图;
图4是本申请实施例投影设备的投影透镜装置示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅,1,投影设备1包括供光装置10、光路转换装置20、DMD装置30以及投影透镜装置40。所述供光装置10用于提供光源,所述光路转换装置20设置于所述供光装置10和所述DMD装置30之间,所述投影设备1用于对DMD处理后的光线进行投影。其中,所述供光装置10发射的光线照射至所述 光路转换装置20,所述光路转换装置20将光线传导至所述DMD装置30,所述DMD装置30接收来自所述光路转换装置20的光线并进行处理,然后所述DMD装置30将处理后的光线传导至所述光路转换装置20,所述光路转换装置20将经由所述DMD装置30处理后的光线传导至所述投影透镜装置40,所述投影透镜装置40对经由所述发DMD装置30处理的光线进行投影成像。
对于上述供光装置10,请参阅图2,所述供光装置10包括LED灯101、准直复眼透镜102、中继镜104以及匀光复眼透镜103。所述LED灯101、准直复眼透镜102和中继镜104依次顺序排列,所述匀光复眼透镜103设置于所述准直复眼透镜102和所述中继镜104之间,其中所述准直复眼透镜102和所述中继镜104的中心轴重合。
具体的,所述LED灯101采用若干MiniLED阵列而成,其中一所述MiniLED发射的光线为红光、绿光、或蓝光,所述准直复眼透镜102对每一MiniLED发射出来的光线进行准直,经过所述准直复眼透镜102准直后的光照射至所述匀光复眼透镜103,所述匀光复眼透镜103对经过的光线进行均匀处理,使得经过所述匀光复眼透镜103的光线实现能量均匀,从而提高光线从所述匀光复眼透镜103出射后的质量。其中,所述匀光复眼透镜103的原理如下:所述匀光复眼透镜103分为两排复眼透镜,与光轴平行的光线通过第一块透镜后聚焦在第二块透镜的中心处,第二排复眼透镜的每个小透镜将第一排复眼透镜对应的小透镜射出来的光线重叠整合。由于第一排复眼透镜将光源的整个宽光线分为多个细光线照明,且每个细光线范围内的垂轴不均匀性由于处于对称位置细光线的相互叠加,使细光线的垂轴不均匀性获得补偿,从而实现整个孔径内的光能量均匀的。值得说明的是,本申请实施例中采用的MiniLED由0.5mm-1.2mm的像素颗粒组成,所述准直复眼透镜102对每一个像素颗粒进行准直。由于所述LED灯101可同时发射红光、绿光、或蓝光,并且所述从所述LED灯101发射的红光、绿光、或蓝光在经过准直复眼透镜102进行光线准直后经由所述光路转换装置20抵达所述DMD装置30,取代了现有的分置三原色光源和与三原色光源对应的三套准直机构,进而缩小了所述供光装置10的体积。
在一些实施例中,所述LED由若干MicroLED阵列而成,所述MicroLED由0.05mm或者更小的像素颗粒组成。
在另一些实施例中,所述供光装置10也可以没有匀光复眼透镜103,所述LED灯101发射出的光线经由所述准直复眼透镜102进行准直后可通过所述光路转换装置20抵达所述DMD装置30。
对于上述光路转换装置20,请参阅图1和图3,所述光路转换装置20包括转换镜201和会聚透镜202,所述会聚透镜202设置于所述准直复眼透镜102和所述转换镜201之间。具体的,所述转换镜201为三棱镜,其中,所述转换镜201的第一表面2011与所述DMD装置30平行,所述转换镜201的第二表面2012的法线与所述投影透镜装置40的中心轴线重合,其中,所述第一表面2011与所述第二表面2012的法线垂直,第三表面2013连接所述第一表面2011和第二表面2012,所述第三表面2013面向所述会聚透镜202的一端面为透射面,所述第三表面2013背向所述会聚透镜202的一面为反射面。所述会聚透镜202将从所述供光装置10射出的光进行会聚并经由所述第三表面2013射入所述转换镜201内,所述转换镜201对入射的光线进行折射并最终到达至所述DMD装置30,所述DMD装置30对经过所述转换镜201折射的光线进行处理并将处理后的光线从所述第一表面2011入射至所述转换镜201,经过所述DMD装置30处理后的光线从所述第一表面2011进入后到达所述转换镜201的第三表面2013的反射面并由反射面进行反射最终通过所述第二表面2012射出所述转换镜201。值得说明的是,所述转换镜201利用光的全反射原理实现将从所述第一表面2011传导至所述第三表面2013反射面的光线反射出所述第二表面2012。
另外,所述会聚透镜202射出光线的一面与所述转换镜201的斜边一面呈夹角设置,即所述会聚透镜202射出光线的一面与所述第三表面2013呈夹角设置。由此,从所述供光装置10发射的光线在经过所述会聚透镜202的会聚后经由所述转换镜201的折射将全部射入所述DMD装置30的有限范围内。
进一步的,所述供光装置10还包括中继镜104,所述中继镜104设置于所述准直复眼透镜102和所述会聚透镜202之间,并且所述中继镜104的中心轴与所述匀光复眼透镜103的中心轴重合。所述中继镜104和所述会聚透镜202共同作用,对经过所述中继镜104和所述会聚透镜202的光线进行增距,从而增强从所述LED灯101发射出的光线的质量。
请参阅图1和图4,对于上述投影透镜装置40,所述投影透镜装置40包 括第一增距模块401和第二增距模块402,所述第一增距模块401接收来自所述转换镜201的光线并传递至第二增距模块402。所述第一增距模块401包括第一透镜4011、第二透镜4012、第三透镜4013和第四透镜4014,所述第一透镜4011、第二透镜4012、第三透镜4013和第四透镜4014依次顺序放置并且所述第一透镜4011、第二透镜4012、第三透镜4013和第四透镜4014的中心轴均重合。其中,所述第一透镜4011、第二透镜4012和第四透镜4014为凸透镜,所述第三透镜4013为凹透镜。所述第二增距模块402包括第五透镜4021、第六透镜4022和投影透镜4023,所述第五透镜4021、第六透镜4022和投影透镜4023依次顺序放置并且所述第五透镜4021、第六透镜4022和投影透镜4023的中心轴重合。经过所述DMD装置30处理过的光线通过所述转换镜201反射至所述第一增距模块401后实现影像一次增距,从所述第一增距模块401射出的光线射入所述第二增距模块402后实现二次增距并进行影像输出,由此缩小了整个投影透镜4023装置40的长度。
在一些实施例中,所述第一增距模块401和所述第二增距模块402中的透镜均为塑料材质的透镜,并且采用注塑工艺制备而成。由此可减轻所述投影透镜4023装置40的重量,从而进一步降低所述投影设备1的整体重量,提升所述投影设备1的便携性。
本申请实施例中,通过设置可以同时发出红、绿、蓝三种光线的LED灯101和准直复眼透镜102,使从所述LED灯101发射出的光线可以通过所述准直复眼透镜102对每个灯体发出的光线进行准直从而实现缩小供光装置10的体积,达到进一步减小投影设备1的尺寸和重量的效果。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但是,本申请可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本申请内容的额外限制,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施例,均视为本申请说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (10)

  1. 一种投影设备,其特征在于,包括:
    供光装置,所述供光装置包括LED灯和准直复眼透镜,其中所述LED灯的灯体阵列设置并且所述LED灯可同时发出红、绿、蓝三种光线,所述准直复眼透镜可以对每一个所述灯体发射的光线进行准直;
    光路转换装置,所述光路转换装置对所述供光装置发射来的光线进行方向转换;
    DMD装置,所述DMD装置接收经由所述光路转换装置转送来的光线并将所述光线进行处理后反馈至所述光路转换装置;
    投影透镜装置;
    其中,所述供光装置发射的光线经由所述光路转换装置照射至所述DMD装置,并由所述DMD装置进行处理,处理完毕的光线由DMD装置传导至所述光路转换装置并经由光路转换装置传导至所述投影透镜装置完成影像投影。
  2. 根据权利要求1所述的投影设备,其特征在于,
    所述LED灯采用若干MiniLED或若干MicroLED阵列而成。
  3. 根据权利要求2所述的投影设备,其特征在于,
    所述光路转换装置还包括会聚透镜和转换镜,所述会聚透镜设置于所述准直复眼透镜和所述转换镜之间。
  4. 根据权利要求3所述的投影设备,其特征在于,
    所述转换镜为三棱镜,其中,所述转换镜的第一表面与所述DMD装置平行,所述转换镜的第二表面的法线与所述投影透镜装置的中心轴线重合,其中,所述第一表面与所述第二表面的法线垂直。
  5. 根据权利要求4所述的投影设备,其特征在于,
    所述供光装置还包括中继镜,所述中继镜设置于所述准直复眼透镜和所述会聚透镜之间,并且所述中继镜的中心轴与所述复眼透镜的中心轴重合。
  6. 根据权利要求5所述的投影设备,其特征在于,
    所述供光装置还包括匀光复眼透镜,所述匀光复眼透镜设置于所述准直复眼透镜和所述中继镜之间。
  7. 根据权利要求6所述的投影设备,其特征在于,
    所述会聚透镜射出光线的一面与所述转换镜的斜边一面呈夹角设置。
  8. 根据权利要求7所述的投影设备,其特征在于,
    所述投影透镜装置包括第一增距模块和第二增距模块,所述第一增距模块接收来自所述转换镜的光线并传递至第二增距模块。
  9. 根据权利要求8所述的投影设备,其特征在于,
    所述第一增距模块包括第一透镜、第二透镜、第三透镜和第四透镜,所述第一透镜、第二透镜、第三透镜和第四透镜依次顺序放置并且所述第一透镜、第二透镜、第三透镜和第四透镜的中心轴均重合;
    其中,所述第一透镜、第二透镜和第四透镜为凸透镜,所述第三透镜为凹透镜。
  10. 根据权利要求9所述的投影设备,其特征在于,
    所述第二增距模块包括第五透镜、第六透镜和投影透镜,所述第五透镜、第六透镜和投影透镜依次顺序放置并且所述第五透镜、第六透镜和投影透镜的中心轴重合。
PCT/CN2021/082772 2020-12-31 2021-03-24 一种投影设备 WO2022141833A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/543,935 US11726397B2 (en) 2020-12-31 2021-12-07 Projection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011638792.7A CN112731751A (zh) 2020-12-31 2020-12-31 一种投影设备
CN202011638792.7 2020-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/543,935 Continuation US11726397B2 (en) 2020-12-31 2021-12-07 Projection apparatus

Publications (1)

Publication Number Publication Date
WO2022141833A1 true WO2022141833A1 (zh) 2022-07-07

Family

ID=75608871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082772 WO2022141833A1 (zh) 2020-12-31 2021-03-24 一种投影设备

Country Status (2)

Country Link
CN (1) CN112731751A (zh)
WO (1) WO2022141833A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218630492U (zh) 2022-09-30 2023-03-14 深圳博浪科技有限公司 用于产生银河星空灯光效果的投影装置和投影灯

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037638A (ja) * 2010-08-05 2012-02-23 Seiko Epson Corp 光源装置及びプロジェクター
CN102375236A (zh) * 2010-08-24 2012-03-14 台达电子工业股份有限公司 光学系统
CN103048862A (zh) * 2011-10-14 2013-04-17 广景科技有限公司 Dlp微型摄影机及其投影方法
CN103376632A (zh) * 2012-04-12 2013-10-30 鸿富锦精密工业(深圳)有限公司 投影机光源结构
CN103529629A (zh) * 2012-08-30 2014-01-22 广景科技有限公司 Dlp微型投影机
CN107167997A (zh) * 2017-06-05 2017-09-15 深圳奥比中光科技有限公司 激光投影模组及深度相机
CN208026987U (zh) * 2017-12-19 2018-10-30 苏州莱能士光电科技股份有限公司 一种高远心度的双远心光学成像系统
CN110058387A (zh) * 2019-04-01 2019-07-26 广景视睿科技(深圳)有限公司 一种双远心投影镜头及投影系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201293911Y (zh) * 2008-11-20 2009-08-19 天津力伟创科技有限公司 微型投影非成像照明光机
CN201376531Y (zh) * 2009-03-25 2010-01-06 任涛 车窗反射成像装置
CN103728718B (zh) * 2013-12-24 2016-04-06 浙江大学 一种多光谱显微镜多重光照明方法和装置
CN205374009U (zh) * 2016-01-12 2016-07-06 佛山市亿欧光电科技有限公司 一种镜头调焦机
CN105511087B (zh) * 2016-01-13 2017-09-22 晋煤激光科技股份有限公司 基于复眼透镜的激光显示匀场整形装置
CN107843412A (zh) * 2016-09-20 2018-03-27 深圳市光峰光电技术有限公司 光检测系统及光检测装置
CN206472206U (zh) * 2016-11-25 2017-09-05 襄阳市雄狮光电科技有限公司 一种镜片调焦设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037638A (ja) * 2010-08-05 2012-02-23 Seiko Epson Corp 光源装置及びプロジェクター
CN102375236A (zh) * 2010-08-24 2012-03-14 台达电子工业股份有限公司 光学系统
CN103048862A (zh) * 2011-10-14 2013-04-17 广景科技有限公司 Dlp微型摄影机及其投影方法
CN103376632A (zh) * 2012-04-12 2013-10-30 鸿富锦精密工业(深圳)有限公司 投影机光源结构
CN103529629A (zh) * 2012-08-30 2014-01-22 广景科技有限公司 Dlp微型投影机
CN107167997A (zh) * 2017-06-05 2017-09-15 深圳奥比中光科技有限公司 激光投影模组及深度相机
CN208026987U (zh) * 2017-12-19 2018-10-30 苏州莱能士光电科技股份有限公司 一种高远心度的双远心光学成像系统
CN110058387A (zh) * 2019-04-01 2019-07-26 广景视睿科技(深圳)有限公司 一种双远心投影镜头及投影系统

Also Published As

Publication number Publication date
CN112731751A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
US7246923B2 (en) Reshaping light source modules and illumination systems using the same
US7427146B2 (en) Light-collecting illumination system
US7300177B2 (en) Illumination system having a plurality of light source modules disposed in an array with a non-radially symmetrical aperture
US20220019062A1 (en) Double telecentric projection lens and projection system
US8382293B2 (en) Light source module
US20180120682A1 (en) Lighting projection device and projection module having same
WO2015172537A1 (zh) Dlp微型投影机
WO2019080506A1 (zh) 一种图案投影灯光学模组结构
CN202083837U (zh) 激光投影显示系统
US20070047092A1 (en) LED light converging system
US10712641B2 (en) Image projection apparatus
WO2022141833A1 (zh) 一种投影设备
US11726397B2 (en) Projection apparatus
CN113960868A (zh) 激光光源及激光投影设备
CN212207949U (zh) 照明系统与投影装置
US20100103380A1 (en) Critical abbe illumination configuration
CN220154786U (zh) 投影光机
CN213690210U (zh) 照明系统及投影装置
CN221056819U (zh) 投影光机和ar显示装置
TWI432779B (zh) 非對稱式照明系統及非對稱式投影裝置
WO2023029718A1 (zh) 光源及激光投影设备
US20240069425A1 (en) Illumination system and projection apparatus
WO2023045882A1 (zh) 激光投影设备
US20230324781A1 (en) Illumination system and projection device
Dwivedi et al. Design and evaluation of illumination system for pocket projector using single element freeform optics with fly eye integrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21912603

Country of ref document: EP

Kind code of ref document: A1