WO2022141774A1 - 一种高精度电容薄膜真空计 - Google Patents

一种高精度电容薄膜真空计 Download PDF

Info

Publication number
WO2022141774A1
WO2022141774A1 PCT/CN2021/076831 CN2021076831W WO2022141774A1 WO 2022141774 A1 WO2022141774 A1 WO 2022141774A1 CN 2021076831 W CN2021076831 W CN 2021076831W WO 2022141774 A1 WO2022141774 A1 WO 2022141774A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum gauge
fixed substrate
vacuum chamber
precision
chambers
Prior art date
Application number
PCT/CN2021/076831
Other languages
English (en)
French (fr)
Inventor
侯少毅
胡琅
胡强
徐平
何斌
黎天韵
郭远军
卫红
黄丽玲
Original Assignee
季华实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 季华实验室 filed Critical 季华实验室
Publication of WO2022141774A1 publication Critical patent/WO2022141774A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges

Definitions

  • the invention relates to the technical field of vacuum detection equipment, in particular to a high-precision capacitive thin-film vacuum gauge.
  • Capacitance film vacuum gauge is a vacuum gauge for absolute pressure and total pressure measurement. It has the characteristics of compact structure, high sensitivity, good stability, measurement value independent of gas composition, strong corrosion resistance and long service life. Core components in semiconductor equipment.
  • FIG. 4 The structure of a general capacitive thin film vacuum gauge is shown in Figure 4, including a casing 1', a connecting pipe 2', a sensing diaphragm 3', a fixed electrode 4', a suction mechanism 5', a suction port 6' and corresponding signals
  • the conversion circuit wherein the induction diaphragm 3' divides the inner cavity of the housing 1' into a vacuum chamber 7' and a detection chamber 8', a suction mechanism 5' (containing a getter), a suction port 6' and a vacuum chamber 7 'Connected, the connecting pipe 2' communicates with the detection chamber 8'.
  • sensing diaphragm 3' and the fixed electrode 4' are connected to the external power supply, they are equivalent to two electrodes of a capacitor, and are connected to the object to be detected (cavity or pipeline) through the connecting pipe 2', and then the vacuum chamber 7' is pumped.
  • the vacuum causes the pressure difference between the vacuum chamber 7' and the detection chamber 8' to cause the deformation of the induction diaphragm 3', so that the distance between the vacuum chamber 7' and the detection chamber 8' changes, and then the capacitance changes,
  • the change of capacitance is converted into the change of current or voltage, which is composed of output signal; therefore, its measurement directly reflects the change of vacuum pressure, and it is only related to pressure and has nothing to do with gas composition.
  • the capacitance value of the parallel-plate capacitor sensing component formed by the pressure-sensitive diaphragm and the fixed electrode of this capacitive thin-film vacuum gauge is very small, which is in the picofarad level. Therefore, the capacitance change caused by the pressure change is also small, which greatly increases the capacitance of the capacitance signal.
  • the processing difficulty affects the accuracy and sensitivity of the capacitive film vacuum gauge.
  • the purpose of the present invention is to provide a high-precision capacitive thin-film vacuum gauge with high measurement accuracy and sensitivity.
  • a high-precision capacitive thin-film vacuum gauge comprising:
  • the shell has an accommodating cavity
  • Two sensing diaphragms are arranged in the accommodating cavity in parallel, and the accommodating cavity is divided into a reference vacuum chamber and two to-be-measured chambers, and the two to-be-measured chambers are located in the Both sides of the reference vacuum chamber; the two chambers to be tested are connected and isolated from the reference vacuum chamber;
  • a connecting pipe communicated with one of the chambers to be tested
  • the fixed substrate is arranged in the reference vacuum chamber and is parallel to the two sensing diaphragms; the two sides of the fixed substrate are respectively provided with conductive films, and the conductive films on both sides of the fixed substrate are respectively connected with the adjacent sensing diaphragms form a capacitor.
  • the distances between the two sensing diaphragms and the corresponding conductive films are equal.
  • the high-precision capacitive thin-film vacuum gauge further includes a lead-out electrode, one end of the lead-out electrode is connected to the conductive films on both sides of the fixed substrate, and the other end extends out of the casing.
  • the fixed substrate is insulated, the fixed substrate is provided with a conductor, two ends of the conductor are respectively connected to the conductive films on both sides of the fixed substrate, and one end of the lead electrode is connected to the conductor. .
  • a communication pipe is connected to the outer side of the casing, and the communication pipe is used for connecting the two chambers to be measured.
  • the casing is also provided with a suction hole and a suction mechanism;
  • the suction hole is communicated with the reference vacuum chamber and is used for connecting with an external suction device;
  • the The suction mechanism includes an accommodating cavity communicated with the reference vacuum chamber, and a getter is arranged in the accommodating cavity.
  • a baffle plate is arranged at the root of the connecting pipe, and a plurality of sieve holes are arranged on the baffle plate.
  • heat dissipation fins are arranged on the outer peripheral surface of the connecting tube.
  • an impurity separation mechanism is arranged in the connecting pipe, and the impurity separating mechanism is used to separate particles and liquid droplets from the airflow flowing through the connecting pipe.
  • the present invention provides a high-precision capacitive thin-film vacuum gauge.
  • Two capacitors are formed by arranging two sensing diaphragms on both sides of the fixed substrate and two conductive films respectively on both sides of the fixed substrate, which is different from the prior art.
  • the overall size of the vacuum gauge remains unchanged, the basic capacitance value is greatly improved, and the capacitance change is also greatly increased when the same pressure to be detected is detected, thereby improving the accuracy and sensitivity of the vacuum gauge.
  • FIG. 1 is a schematic structural diagram of a high-precision capacitive thin-film vacuum gauge provided by the present invention.
  • FIG. 2 is a schematic structural diagram of a connecting tube in the high-precision capacitive thin-film vacuum gauge provided by the present invention.
  • FIG. 3 is a schematic structural diagram of another connecting tube in the high-precision capacitive thin-film vacuum gauge provided by the present invention.
  • FIG. 4 is a schematic structural diagram of a conventional capacitive thin film vacuum gauge.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second” may expressly or implicitly include one or more of said features. In the description of the present invention, “plurality” means two or more, unless otherwise expressly and specifically defined.
  • the shell 1 has an accommodating cavity
  • Two sensing diaphragms 2 are arranged in parallel in the accommodating cavity, and the accommodating cavity is divided into a reference vacuum chamber 3 and two to-be-measured chambers 4, and the two to-be-measured chambers 4 are respectively located in the reference vacuum chamber 3
  • the two sides (upper and lower sides in FIG. 1, but not limited to this); the two chambers to be measured 4 communicate with each other and are isolated from the reference vacuum chamber 3;
  • the fixed substrate 6 is arranged in the reference vacuum chamber 3 and is parallel to the two sensing diaphragms 2; the two sides of the fixed substrate 6 are respectively provided with conductive films 7, and the conductive films 7 on both sides of the fixed substrate 6 are respectively connected to the adjacent sensing films.
  • Chip 2 constitutes a capacitor.
  • the casing 1 is cylindrical
  • the sensing diaphragm 2 and the fixed substrate 6 are both circular and coaxial with the casing 1
  • the edge of the sensing diaphragm 2 is directly connected to the casing 1 .
  • the inner walls of the body 1 are connected to each other, so as to ensure that the capacitance value of the capacitor is larger, and the precision and sensitivity are larger.
  • the distances between the two sensing diaphragms 2 and the corresponding conductive films 7 are equal, so that the capacitance values of the two capacitors are the same, and for the same pressure to be detected, the deformations of the two sensing diaphragms 2 are the same,
  • the capacitance variation of the two capacitors is also the same, which is more conducive to simplifying the external capacitance detection circuit and detection logic; for the high-precision capacitance thin film vacuum gauge, compared with the prior art, when the overall size of the vacuum gauge remains unchanged , the basic capacitance value is increased by 1 times, and when the same pressure to be detected is detected, the capacitance change is also increased by 1 times.
  • the vacuum gauge can be judged to be faulty, which is conducive to detecting the fault condition of the vacuum gauge, and the judgment logic is simple and easy to implement.
  • the high-precision capacitive thin-film vacuum gauge further includes a lead-out electrode 8 , one end of the lead-out electrode 8 is connected to the conductive films 7 on both sides of the fixed substrate 6 , and the other end extends out of the casing 1 .
  • the lead-out electrode 8 is used to connect with an external capacitance detection circuit to detect the change of capacitance.
  • the fixed substrate 6 is insulated, and the fixed substrate 6 is provided with a conductor 9, two ends of the conductor 9 are respectively connected to the conductive films 7 on both sides of the fixed substrate 6, and one end of the lead-out electrode 8 is connected to the conductor 9 connections. Thereby, the lead-out electrode 8 is connected to the conductive films 7 on both sides. Since the conductive film 7, the conductors 9 and the lead-out electrodes 8 are all arranged on the fixed substrate 6, the conductive film 7, the conductors 9, the lead-out electrodes 8 and the fixed substrate can be connected. 6 After processing, it can be assembled with other components together, which is conducive to reducing the difficulty of assembly.
  • a communication pipe 10 is connected to the outer side of the housing 1 , and the communication pipe 10 is used to communicate the two chambers 4 to be tested. Therefore, when the connecting pipe 5 is connected to the object to be measured, the pressure between the two chambers 4 to be measured can be kept the same as the pressure to be measured, thereby ensuring accurate measurement results.
  • the reference vacuum chamber 3 is a completely closed vacuum space (the high-precision capacitive film vacuum gauge is evacuated before leaving the factory), but as the use time becomes longer, the vacuum degree in the reference vacuum chamber 3 will gradually become lower, As a result, the measurement accuracy gradually decreases.
  • the housing 1 is also provided with an air suction hole and an air suction mechanism (not shown in the figure); the air suction hole communicates with the reference vacuum chamber 3 and is used for connecting with an external air suction device; the air suction mechanism includes The accommodating cavity communicated with the reference vacuum chamber 3 is provided with a getter.
  • the reference vacuum chamber 3 is evacuated through the external air suction device, and the getter in the suction mechanism can absorb the residual gas in the reference vacuum chamber 3, thereby maintaining the stability of the internal and external pressure difference, thereby ensuring the measurement accuracy .
  • the specific type of getter can be selected according to actual needs.
  • a baffle 11 is provided at the root of the connecting pipe 5 , and a plurality of sieve holes are arranged on the baffle.
  • the baffle 11 will act as a shield to prevent the airflow from directly impacting the sensing diaphragm 2 .
  • the outer peripheral surface of the connecting pipe 5 is provided with heat dissipation fins 12 .
  • the high-temperature gas can reduce the temperature of the gas when it flows through the connecting pipe 5, so that the gas that finally reaches the chamber 4 to be measured has a higher temperature.
  • the temperature is lower, thereby reducing the temperature of the gas in contact with the induction diaphragm 2, reducing the deformation of the induction diaphragm 2 caused by the temperature, and reducing the influence of the high-temperature object to be measured on the deformation of the induction diaphragm.
  • the applicable measurement environment temperature range Wide and high precision.
  • the connecting pipe 5 is provided with an impurity separating mechanism 13 , and the impurity separating mechanism 13 is used to separate particles and liquid droplets from the gas flow flowing through the connecting pipe.
  • the gas of the measured object may contain impurities such as particles and small droplets. If these impurities enter the chamber 4 to be measured, they will contaminate the sensing diaphragm 2, affect the operation of the sensing diaphragm 2 and reduce the measurement accuracy. It will corrode the induction diaphragm 2 and reduce its service life.
  • the impurity separation mechanism 13 can reduce the pollution to the induction diaphragm 3 and improve the service life.
  • the impurity separation mechanism 13 is a spiral separation spacer, which divides the inner hole of the connecting pipe 5 into a helical flow channel; in addition, the inner wall of the connecting pipe 5 can have a certain small taper (more Close to the chamber 4 to be tested, the smaller the inner diameter of the connecting pipe 5) to improve the separation efficiency.
  • the gas flows through the connecting pipe 5 it will flow spirally, and the impurities such as particles and droplets in it will move to the inner wall of the connecting pipe 5 under the action of centrifugal force, and friction and decelerate with the inner wall to realize the separation from the gas.
  • the impurity separation mechanism 13 includes a plurality of baffles arranged at intervals along the axial direction of the connecting pipe 5 .
  • the baffles partially block the inner hole of the connecting pipe 5 , and the adjacent baffles are displaced from each other.
  • a plurality of the baffles divide the inner hole of the connecting pipe 5 into a serpentine flow channel.
  • impurities such as particles and droplets will collide and rub against the inner wall of the connecting pipe 5 or the baffle plate under the action of inertia, so as to cause friction with the gas. separation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种高精度电容薄膜真空计,包括:壳体(1),具有一容置腔;两个感应膜片(2),平行地设置在容置腔中,并把容置腔分隔为参考真空室(3)和两个待测腔室(4),且两个待测腔室(4)分别位于参考真空室(3)的两侧;两个待测腔室(4)之间连通,且均与参考真空室(3)隔离;连接管(5),与其中一个待测腔室(4)连通;固定基板(6),设在参考真空室(3)中并与两个感应膜片(2)平行;固定基板(6)的两侧分别设置有导电膜(7),固定基板(6)两侧的导电膜(7)分别与相邻的感应膜片(2)组成电容器。

Description

一种高精度电容薄膜真空计 技术领域
本发明涉及真空检测设备技术领域,尤其涉及一种高精度电容薄膜真空计。
背景技术
电容薄膜真空计是一种绝压、全压测量的真空计,具有结构紧凑、灵敏度搞、稳定性好、测量值与气体成分无关、有较强的抗腐蚀性能及使用寿命长等特点,是半导体装备中的核心零部件。
一般的电容薄膜真空计的结构如图4所示,包括壳体1’、连接管2’、感应膜片3’、固定电极4’、吸气机构5’、抽气口6’以及相应的信号转换电路,其中,感应膜片3’把壳体1’的内腔分隔为真空腔7’和检测腔8’,吸气机构5’(内含消气剂)、抽气口6’与真空腔7’连通,连接管2’与检测腔8’连通。其工作原理是:感应膜片3’与固定电极4’连接外部电源后相当于电容的两个电极,通过连接管2’连接待检测对象(腔体或管道),然后对真空腔7’抽真空,使真空腔7’与检测腔8’之间产生压差而导致感应膜片3’变形,从而使真空腔7’与检测腔8’之间的距离产生变化,进而使电容发生变化,通过转换电路把电容变化转换成为电流或电压的变化,组成为输出信号;所以,它的测量是直接反映了真空压力的变化值,而且只与压力有关,与气体成分无关。
这种电容薄膜真空计的感压膜片与固定电极形成的平行板电容器传感组件电容值很小,为皮法级,因此压力变化引起的电容变化也很小,从而大大增加了电容信号的处理难度,影响电容薄膜真空计的精度和灵敏度。
发明内容
鉴于上述现有技术的不足之处,本发明的目的在于提供一种高精度电容薄膜真空计,其测量精度和灵敏度较高。
为了达到上述目的,本发明采取了以下技术方案:
一种高精度电容薄膜真空计,包括:
壳体,具有一容置腔;
两个感应膜片,平行地设置在所述容置腔中,并把所述容置腔分隔为参考真空室和两个待测腔室,且两个所述待测腔室分别位于所述参考真空室的两侧;两个所述待测腔室之间连通,且均与所述参考真空室隔离;
连接管,与其中一个待测腔室连通;
固定基板,设在所述参考真空室中并与两个所述感应膜片平行;固定基板的两侧分别设置有导电膜,所述固定基板两侧的导电膜分别与相邻的感应膜片组成电容器。
所述的高精度电容薄膜真空计中,两个所述感应膜片与相应的导电膜之间的距离相等。
所述的高精度电容薄膜真空计,还包括引出电极,所述引出电极一端与所述所述固定基板两侧的导电膜连接,另一端伸出所述壳体外部。
进一步的,所述固定基板绝缘,所述固定基板中设置有导电体,所述导电体的两端分别与所述固定基板两侧的导电膜连接,所述引出电极一端与所述导电体连接。
所述的高精度电容薄膜真空计中,所述壳体的外侧连接有连通管,所述连通管用于连通两个所述待测腔室。
所述的高精度电容薄膜真空计中,所述壳体上还设置有抽气孔和吸气机构;所述抽气孔与所述参考真空室连通,并用于与外部的抽气装置连接;所述吸气机构包括与所述参考真空室连通的容纳腔,所述容纳腔内设置有消气剂。
所述的高精度电容薄膜真空计中,所述连接管根部设置有挡板,所述 挡板上设置有多个筛孔。
所述的高精度电容薄膜真空计中,所述连接管外周面上设置有散热翎片。
所述的高精度电容薄膜真空计中,所述连接管内设置有杂质分离机构,所述杂质分离机构用于把颗粒物和液滴从流过所述连接管的气流中分离出来。
有益效果:
本发明提供的一种高精度电容薄膜真空计,通过在固定基板的两侧设置各设置一个感应膜片,并在固定基板的两侧分别设置导电膜,从而形成两个电容器,与现有技术相比,在真空计整体尺寸不变的情况下,基础电容值大大提高,检测相同的待检测压力时,电容变化量也大大提高,进而提高真空计的精度和灵敏度。
附图说明
图1为本发明提供的高精度电容薄膜真空计的结构示意图。
图2为本发明提供的高精度电容薄膜真空计中,一种连接管的结构示意图。
图3为本发明提供的高精度电容薄膜真空计中,另一种连接管的结构示意图。
图4为现有的电容薄膜真空计的结构示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
下文的公开提供的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本发明提供的一种高精度电容薄膜真空计,包括:
壳体1,具有一容置腔;
两个感应膜片2,平行地设置在容置腔中,并把容置腔分隔为参考真空室3和两个待测腔室4,且两个待测腔室4分别位于参考真空室3的两侧(在图1中为上下两侧,但不限于此);两个待测腔室4之间连通,且均与参考真空室3隔离;
连接管5,与其中一个待测腔室4连通;
固定基板6,设在参考真空室3中并与两个感应膜片2平行;固定基板 6的两侧分别设置有导电膜7,固定基板6两侧的导电膜7分别与相邻的感应膜片2组成电容器。
该高精度电容薄膜真空计,由于在固定基板6的两侧形成两个电容器,与现有技术相比,在真空计整体尺寸不变的情况下,基础电容值大大提高,检测相同的待检测压力时,电容变化量也大大提高,进而提高真空计的精度和灵敏度。
在一些优选实施方式中,见图1,壳体1为圆筒状,感应膜片2和固定基板6均为与该壳体1同轴设置的圆形,感应膜片2的边缘直接与壳体1的内壁相连,从而可保证电容器的电容值较大,精度和灵敏度较大。
优选的,两个感应膜片2与相应的导电膜7之间的距离相等,从而使两个电容器的电容值相同,且对于同一个待检测压力,两个感应膜片2的变形量相同,使两个电容器的电容变化量也相同,更有利于简化外部的电容检测电路和检测逻辑;对于该高精度电容薄膜真空计,与现有技术相比,在真空计整体尺寸不变的情况下,基础电容值提高1倍,检测相同的待检测压力时,电容变化量也提高1倍。而且,若两个电容器在同一时刻的电容值相差过大,可判断真空计故障,有利于检测真空计的故障情况,且判断逻辑简单,容易实现。
进一步的,该高精度电容薄膜真空计,还包括引出电极8,该引出电极8一端与固定基板6两侧的导电膜7连接,另一端伸出壳体1外部。该引出电极8用于与外部的电容检测电路连接,以检测电容变化情况。
在一些实施方式中,固定基板6绝缘,该固定基板6中设置有导电体9,该导电体9的两端分别与固定基板6两侧的导电膜7连接,引出电极8一端与该导电体9连接。从而实现引出电极8与两侧的导电膜7连接,由于导电膜7、导电体9和引出电极8均设置在固定基板6上,可把导电膜7、导电体9、引出电极8和固定基板6加工好后,再一同与其他部件进行装配,有利于降低装配难度。
在一些实施方式中,见图1,壳体1的外侧连接有连通管10,该连通管10用于连通两个待测腔室4。从而当连接管5与被测对象连接时,两个待测腔室4之间的压力可以保持与待测压力相同,从而保证测量结果准确。
在一些实施方式中,参考真空室3是完全封闭的真空空间(高精度电容薄膜真空计出厂前抽真空),但是随着使用时间变长,参考真空室3中的真空度会逐渐变低,从而导致测量精度逐渐降低。
在另一些实施方式中,壳体1上还设置有抽气孔和吸气机构(图中没画);抽气孔与参考真空室3连通,并用于与外部的抽气装置连接;吸气机构包括与参考真空室3连通的容纳腔,容纳腔内设置有消气剂。在工作时,通过外部的抽气装置对参考真空室3抽真空,而吸气机构中的消气剂可吸收参考真空室3内残余的气体,从而保持内外压差的稳定性,进而保证测量精度。其中消气剂的具体类型可根据实际需要进行选择。
在一些实施方式中,见图1,连接管5根部设置有挡板11,挡板上设置有多个筛孔。当被测气体从连接管5进入待测腔室4时,挡板11会起遮挡作用以避免气流直接冲击感应膜片2。
在一些优选实施方式中,见图2、3,连接管5外周面上设置有散热翎片12。工作时,可配合外部的扇热风扇使用,当被测对象的温度较高时,其高温气体在流过连接管5时,可降低气体的温度,使最终到达待测腔室4的气体的温度较低,从而降低与感应膜片2接触的气体的温度,减小因为温度引起的感应膜片2的变形,可降低高温待测对象对感应膜片变形的影响,适用的测量环境温度范围广、精度高。
在一些优选实施方式中,见图2、3,连接管5内设置有杂质分离机构13,杂质分离机构13用于把颗粒物和液滴从流过连接管的气流中分离出来。在实际使用时,被测对象的气体中可能含有颗粒物、小液滴等杂质,这些杂质若进入待测腔室4会污染感应膜片2,影响感应膜片2工作而降低测量精度,还可能会腐蚀感应膜片2而降低其使用寿命,此处,通过杂质分离 机构13可减小对感应膜片3的污染,提高使用寿命。
例如图2中,该杂质分离机构13为螺旋分离隔片,该螺旋分离隔片把连接管5的内孔分隔为螺旋状流道;此外,连接管5的内壁可带一定的小锥度(越靠近待测腔室4,连接管5内径越小)以提高分离效率。当气体流过连接管5时会螺旋流动,其中的颗粒物、液滴等杂质会在离心力的作用下移动至连接管5的内壁处,并与内壁摩擦减速,实现与气体的分离。
又例如图3中,该杂质分离机构13包括多个沿连接管5轴向间隔排布的隔挡片,该隔挡片部分隔挡连接管5的内孔,相邻的隔挡片相互错位设置,多个该隔挡片把连接管5的内孔分隔为一个蛇形流道。当气体流过连接管5时会蛇形流道,在气流转弯时,颗粒物、液滴等杂质会在惯性的作用下与连接管5的内壁或隔挡片发生碰撞和摩擦,从而与气体的分离。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,其方案与本发明实质上相同。

Claims (9)

  1. 一种高精度电容薄膜真空计,其特征在于,包括:
    壳体,具有一容置腔;
    两个感应膜片,平行地设置在所述容置腔中,并把所述容置腔分隔为参考真空室和两个待测腔室,且两个所述待测腔室分别位于所述参考真空室的两侧;两个所述待测腔室之间连通,且均与所述参考真空室隔离;
    连接管,与其中一个待测腔室连通;
    固定基板,设在所述参考真空室中并与两个所述感应膜片平行;固定基板的两侧分别设置有导电膜,所述固定基板两侧的导电膜分别与相邻的感应膜片组成电容器。
  2. 根据权利要求1所述的高精度电容薄膜真空计,其特征在于,两个所述感应膜片与相应的导电膜之间的距离相等。
  3. 根据权利要求1所述的高精度电容薄膜真空计,其特征在于,还包括引出电极,所述引出电极一端与所述所述固定基板两侧的导电膜连接,另一端伸出所述壳体外部。
  4. 根据权利要求3所述的高精度电容薄膜真空计,其特征在于,所述固定基板绝缘,所述固定基板中设置有导电体,所述导电体的两端分别与所述固定基板两侧的导电膜连接,所述引出电极一端与所述导电体连接。
  5. 根据权利要求1所述的高精度电容薄膜真空计,其特征在于,所述壳体的外侧连接有连通管,所述连通管用于连通两个所述待测腔室。
  6. 根据权利要求1所述的高精度电容薄膜真空计,其特征在于,所述壳体上还设置有抽气孔和吸气机构;所述抽气孔与所述参考真空室连通,并用于与外部的抽气装置连接;所述吸气机构包括与所述参考真空室连通的容纳腔,所述容纳腔内设置有消气剂。
  7. 根据权利要求1所述的高精度电容薄膜真空计,其特征在于,所述连接管根部设置有挡板,所述挡板上设置有多个筛孔。
  8. 根据权利要求1所述的高精度电容薄膜真空计,其特征在于,所述连接管外周面上设置有散热翎片。
  9. 根据权利要求1所述的高精度电容薄膜真空计,其特征在于,所述连接管内设置有杂质分离机构,所述杂质分离机构用于把颗粒物和液滴从流过所述连接管的气流中分离出来。
PCT/CN2021/076831 2020-12-30 2021-02-19 一种高精度电容薄膜真空计 WO2022141774A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011604898.5A CN112834110A (zh) 2020-12-30 2020-12-30 一种高精度电容薄膜真空计
CN202011604898.5 2020-12-30

Publications (1)

Publication Number Publication Date
WO2022141774A1 true WO2022141774A1 (zh) 2022-07-07

Family

ID=75925303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076831 WO2022141774A1 (zh) 2020-12-30 2021-02-19 一种高精度电容薄膜真空计

Country Status (2)

Country Link
CN (1) CN112834110A (zh)
WO (1) WO2022141774A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264403A (zh) * 2021-12-03 2022-04-01 北京晨晶精仪电子有限公司 真空规颗粒阻挡结构
CN114323363B (zh) * 2022-03-15 2022-06-03 季华实验室 一种电容式真空压力传感器
CN114486062B (zh) * 2022-03-31 2022-07-15 季华实验室 一种消除薄膜应力的电容薄膜真空计
CN114459670B (zh) * 2022-04-12 2022-06-17 季华实验室 一种电容薄膜真空计
CN115386856B (zh) * 2022-10-19 2023-06-02 季华实验室 金刚石薄膜电容及其制造方法、真空计及其制造方法
CN115493744B (zh) * 2022-11-21 2023-03-07 季华实验室 一种宽量程的电容薄膜真空计及真空度检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267560A (ja) * 2001-03-13 2002-09-18 Anelva Corp 圧力センサの製造方法
CN107356367A (zh) * 2017-07-20 2017-11-17 中国电子科技集团公司第四十九研究所 一种小型化差动式双电容式薄膜真空传感器
CN107843385A (zh) * 2016-09-19 2018-03-27 中国科学院微电子研究所 一种三氧化二铝薄膜真空规管
CN207248416U (zh) * 2017-09-06 2018-04-17 宁国市大荣电器有限公司 一种电容式薄膜真空压力传感器
CN109813491A (zh) * 2019-04-02 2019-05-28 上海振太仪表有限公司 一种高灵敏度电容薄膜真空计
CN209470807U (zh) * 2019-04-02 2019-10-08 上海振太仪表有限公司 一种电容式薄膜真空计
WO2020011559A1 (de) * 2018-07-10 2020-01-16 Robert Bosch Gmbh Mikromechanische drucksensorvorrichtung und entsprechendes herstellungsverfahren

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578735A (en) * 1984-10-12 1986-03-25 Knecht Thomas A Pressure sensing cell using brittle diaphragm
SE506558C2 (sv) * 1994-04-14 1998-01-12 Cecap Ab Givarelement för tryckgivare
US6058780A (en) * 1997-03-20 2000-05-09 Alliedsignal Inc. Capacitive pressure sensor housing having a ceramic base
CN208704961U (zh) * 2018-06-11 2019-04-05 成都倍特科技有限责任公司 真空度在线检测报警系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267560A (ja) * 2001-03-13 2002-09-18 Anelva Corp 圧力センサの製造方法
CN107843385A (zh) * 2016-09-19 2018-03-27 中国科学院微电子研究所 一种三氧化二铝薄膜真空规管
CN107356367A (zh) * 2017-07-20 2017-11-17 中国电子科技集团公司第四十九研究所 一种小型化差动式双电容式薄膜真空传感器
CN207248416U (zh) * 2017-09-06 2018-04-17 宁国市大荣电器有限公司 一种电容式薄膜真空压力传感器
WO2020011559A1 (de) * 2018-07-10 2020-01-16 Robert Bosch Gmbh Mikromechanische drucksensorvorrichtung und entsprechendes herstellungsverfahren
CN109813491A (zh) * 2019-04-02 2019-05-28 上海振太仪表有限公司 一种高灵敏度电容薄膜真空计
CN209470807U (zh) * 2019-04-02 2019-10-08 上海振太仪表有限公司 一种电容式薄膜真空计

Also Published As

Publication number Publication date
CN112834110A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
WO2022141774A1 (zh) 一种高精度电容薄膜真空计
CN109813491A (zh) 一种高灵敏度电容薄膜真空计
CN114323363B (zh) 一种电容式真空压力传感器
CN202141554U (zh) 陶瓷结构金属敏感膜片电容式压力传感器
JP6538243B1 (ja) 真空測定装置
CN111982383A (zh) 一种差压接触式mems电容薄膜真空规
CN208621210U (zh) 一种高精度压力传感器
CN107389747B (zh) 气液两相干度测量系统
CN107843384A (zh) 一种石英薄膜片真空规管
CN106323416B (zh) 一种电容式油量测量装置
CN102435381B (zh) 液态金属钠实验回路压力传感器
CN105021325B (zh) 电容式压力传感器
CN116659694A (zh) 一种ntc温度传感器及其制作方法
CN107845560A (zh) 一种高精度真空规管
CN107843385A (zh) 一种三氧化二铝薄膜真空规管
CN110006584A (zh) 一种耐高温压力传感器
CN209470806U (zh) 一种高灵敏度电容薄膜真空计
CN110398075A (zh) 槽式太阳能集热管真空性能测量装置
CN210604480U (zh) 一种在线检测露点腐蚀探针装置
CN204881935U (zh) 电容式压力传感装置
CN208383383U (zh) 检测真空度用的连接端子
CN108731706B (zh) 一种传感器
US2805371A (en) Capacitance sensing element
CN117213709A (zh) 一种绝压电容薄膜真空计
CN115493744B (zh) 一种宽量程的电容薄膜真空计及真空度检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21912544

Country of ref document: EP

Kind code of ref document: A1