WO2022141603A1 - 光学指纹检测装置和电子设备 - Google Patents

光学指纹检测装置和电子设备 Download PDF

Info

Publication number
WO2022141603A1
WO2022141603A1 PCT/CN2020/142593 CN2020142593W WO2022141603A1 WO 2022141603 A1 WO2022141603 A1 WO 2022141603A1 CN 2020142593 W CN2020142593 W CN 2020142593W WO 2022141603 A1 WO2022141603 A1 WO 2022141603A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
fingerprint detection
detection device
fingerprint
cover plate
Prior art date
Application number
PCT/CN2020/142593
Other languages
English (en)
French (fr)
Inventor
王仁峰
郭益平
黄新利
刘凯
龙卫
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/142593 priority Critical patent/WO2022141603A1/zh
Publication of WO2022141603A1 publication Critical patent/WO2022141603A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • the present application relates to the technical field of biometric detection, and more particularly, to an optical fingerprint detection device and an electronic device.
  • fingerprint detection technology is widely used in mobile terminal design, automotive electronics, smart home and other fields. Consumers have increased functional requirements for various electronic terminal products, and at the same time require the product size to be as light and thin as possible. Therefore, the internal structure of electronic products is becoming more and more compact, and the structural design of the fingerprint detection function device is more difficult. As a result, the fingerprint detection device is miniaturized and combined with other functional devices. The demand for integration is increasingly urgent, requiring fingerprint detection devices to achieve more accurate functions while occupying a smaller volume of electronic products.
  • the mainstream fingerprint detection devices are mainly capacitive fingerprint detection devices and optical fingerprint detection devices.
  • the optical fingerprint detection device is generally installed inside the display screen of the electronic device or below the display screen, and integrated inside the display screen will display the display on the display screen. The function will have a certain impact, and setting it under the display screen will occupy a part of the thickness space of the electronic device, which is not conducive to the development of thin and light electronic devices.
  • the embodiments of the present application provide an optical fingerprint detection device and an electronic device, which can reduce the space occupied by the optical fingerprint detection device in the electronic device on the premise of taking into account the performance of the optical fingerprint detection device, which is beneficial to the development of miniaturization and thinning of the electronic device .
  • an optical fingerprint detection device which is used to be arranged in an accommodating area on the side of an electronic device.
  • the optical fingerprint detection device includes: a cover plate, which is arranged in the accommodating area through a support; an optical fingerprint detection module , including: an optical assembly, a fingerprint sensor and a first substrate, the optical assembly is connected to the fingerprint sensor, the first substrate is used to support the optical assembly and the fingerprint sensor; a connector, connecting the cover plate and the optical fingerprint detection module group, so that the optical fingerprint detection module is arranged in the first direction of the cover plate, and the first direction faces the inner side of the side surface of the electronic device; the light source is used to emit light signals to the user's finger at the cover plate, the The optical signal is reflected or transmitted by the finger to form a fingerprint optical signal carrying the fingerprint information of the finger, and the optical component is used to guide the fingerprint optical signal to the fingerprint sensor for fingerprint detection.
  • optical fingerprint imaging is performed by using an optical component and a fingerprint sensor, the optical component and the fingerprint sensor are connected to each other, and the overall thickness is small.
  • the optical fingerprint detection device is arranged in the accommodating area on the side of the electronic device, and the side thickness space of the electronic device is utilized, and the optical fingerprint detection device does not need to be arranged under the display screen, thereby saving the space under the screen, It is beneficial to the development of thin and light electronic devices.
  • the distance between the fingerprint sensor in the optical fingerprint detection module and the optical component and the cover plate can be kept relatively stable through the connector cover plate and the optical fingerprint detection module, so that the cover plate can be kept relatively stable.
  • the optical path between the user's finger at the board and the optical component remains relatively stable, so the fingerprint imaging performance and fingerprint detection performance of the optical fingerprint detection device can be improved.
  • the cover plate is an arc surface cover plate, and the arc surface of the arc surface cover plate protrudes toward the outer side of the side surface of the electronic device.
  • the cover plate includes a first surface and a second surface, the first surface is an arc surface, the first surface is convex toward the outer side of the side surface of the electronic device, and the second surface is a flat surface; the The cover plate is used for condensing the fingerprint light signal to the optical component.
  • the support member is an outer frame of the electronic device around the accommodating area
  • the cover plate is fixedly connected to the outer frame around the accommodating area through an adhesive layer.
  • a carrier plate is arranged at the accommodating area; the support member is arranged in the accommodating area and connects the cover plate and the carrier plate, so as to support the cover plate on the carrier plate
  • the second direction is toward the outside of the side surface of the electronic device.
  • the support member is a hollow columnar structure
  • the cover plate is connected and fixed to one end opening of the hollow columnar structure through an adhesive layer
  • the carrier plate is connected and fixed to the other end opening of the hollow columnar structure through an adhesive layer connection
  • the cover plate, the support member and the carrier plate form a closed cavity to accommodate the first substrate, the optical component and the fingerprint sensor.
  • the shape of the support is adapted to the receiving area.
  • the connector is arranged in a surrounding area of the optical component.
  • the connecting member is an annular hollow structure, and is disposed in the surrounding area of the optical component.
  • the optical fingerprint detection module includes an optical component and a fingerprint sensor; the length of the optical component along the long side of the side of the electronic device is greater than the length of the optical component along the side of the electronic device and the length of the fingerprint sensor along the long side of the side of the electronic device is greater than the length of the fingerprint sensor along the short side of the side of the electronic device.
  • the optical fingerprint detection module includes a plurality of the optical components and a plurality of the fingerprint sensors, and the plurality of the optical components correspond to the plurality of the fingerprint sensors one-to-one; a plurality of the optical components and a plurality of the fingerprint sensors The fingerprint sensors are all arranged along the long sides of the side of the electronic device.
  • the light source is disposed in the second direction of the first substrate and connected to the first substrate.
  • the optical fingerprint detection device further includes a second substrate, and the light source is disposed in the first direction of the second substrate and connected to the second substrate.
  • the cover plate, the optical fingerprint detection module and the light source are all arranged in the same accommodating area on the side of the electronic device.
  • the cover plate and the optical fingerprint detection module are arranged in a first accommodating area on the side of the electronic device, the light source is arranged in a second accommodating area on the side of the electronic device, the The first accommodating area is adjacent to the second accommodating area.
  • the optical component includes: a microlens array; at least one diaphragm layer disposed below the microlens array, and each diaphragm layer of the at least one diaphragm layer is formed with a plurality of light-passing layers A small hole; the microlens array is used for converging the fingerprint light signal into a plurality of light-passing holes in the at least one aperture layer, and the fingerprint light signal is transmitted to the fingerprint sensor through the plurality of light-passing holes for processing. Fingerprint detection.
  • each microlens in the microlens array corresponds to at least one light-passing aperture in each diaphragm layer, and at least one pixel unit in the fingerprint sensor; the fingerprint sensor is used for A fingerprint light signal in at least one direction is received to acquire at least one fingerprint image for fingerprint detection.
  • the optical fingerprint detection module further includes: a light-shielding layer in which a first window is formed, the first window is arranged in the second direction of the fingerprint sensor, and the first window is used for to be received by the fingerprint sensor through the fingerprint light signal.
  • the optical assembly is located in the first fenestration.
  • a second opening is further formed in the light shielding layer, and the top area of the first lead of the fingerprint sensor connected to the first substrate is located in the second opening.
  • the first lead is covered with lead protection glue
  • the height of the light shielding layer in the second direction is not higher than the height of the lead protection glue in the second direction
  • the height of the light shielding layer in the second direction is not higher than the height of the optical component in the second direction.
  • the optical fingerprint detection device further includes: a support layer disposed between the first substrate and the light shielding layer for supporting the light shielding layer; a third window is provided in the support layer, The fingerprint sensor is disposed in the third opening, and the height of the support layer in the second direction is not higher than the height of the optical component in the second direction.
  • the optical fingerprint detection device further includes: an adhesive tape, the adhesive tape is arranged in the second direction of the light shielding layer, a fourth window is formed in the adhesive tape, and the fourth window is arranged on the optical The second direction of the assembly and the fingerprint sensor, the fourth window is used to pass the fingerprint light signal to be received by the optical assembly and the fingerprint sensor, and the area of the fourth window is not smaller than the first window in the light shielding layer. window area.
  • the connector includes the adhesive tape, the support layer and the light shielding layer.
  • the cover plate is made of a transparent material, or the cover plate includes a filter material, and the filter material is used to pass the light signal of the target wavelength band and filter the light signal of the non-target wavelength band.
  • the optical fingerprint detection device further includes: a filter layer, disposed in the optical path between the cover plate and the fingerprint sensor, for passing the optical signal of the target wavelength band and filtering the light of the non-target wavelength band Signal.
  • the light source is used to emit light signals in an infrared wavelength band
  • the target wavelength band includes an infrared wavelength band
  • a key is provided in the accommodating area, and the optical fingerprint detection device is disposed in the key.
  • the key is only used to implement the fingerprint detection function, or the key is used to implement the fingerprint detection function and the target function of the electronic device.
  • an electronic device comprising: an accommodating area disposed on a side surface of the electronic device; and, as in the first aspect or the optical fingerprint detection device in any possible implementation manner of the first aspect, The optical fingerprint detection device is arranged in the accommodating area.
  • FIG. 1 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an optical fingerprint detection device according to an embodiment of the present application.
  • FIG. 3 is another schematic structural diagram of an optical fingerprint detection device according to an embodiment of the present application.
  • FIG. 4 is another schematic structural diagram of an optical fingerprint detection device according to an embodiment of the present application.
  • FIG. 5 is another schematic structural diagram of an optical fingerprint detection device according to an embodiment of the present application.
  • FIG. 6 is another schematic structural diagram of an optical fingerprint detection device according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a position design of a light source according to an embodiment of the present application.
  • FIG. 8 is another schematic structural diagram of an optical fingerprint detection apparatus according to an embodiment of the present application.
  • FIG. 9 is another schematic structural diagram of an optical fingerprint detection device according to an embodiment of the present application.
  • FIG. 10 is another schematic structural diagram of an optical fingerprint detection apparatus according to an embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of an optical fingerprint detection device according to an embodiment of the present application.
  • FIG. 12 is another schematic structural diagram of an optical fingerprint detection device according to an embodiment of the present application.
  • embodiments of the present application can be applied to optical biometric identification systems, including but not limited to optical fingerprint detection systems and products based on optical fingerprint imaging.
  • the embodiments of the present application only take an optical fingerprint detection system as an example for description, but should not constitute any limitation to the embodiments of the present application, and the embodiments of the present application are also applicable to other systems adopting optical imaging technology and the like.
  • the optical fingerprint detection system can be applied to smart phones, tablet computers, smart wearable devices, and other types of mobile terminals or other electronic devices. More specifically, in the above electronic device, the optical fingerprint detection system may include an optical fingerprint detection device and a processing unit, wherein the optical fingerprint detection device is used for optically imaging the fingerprint, and the processing unit is used for fingerprint detection and identification of the fingerprint image. and other processing to obtain relevant detection results and identification results and provide them to the electronic device, so as to meet the relevant needs of users.
  • the optical fingerprint detection device may be disposed on any surface of the electronic device that interacts with the user, including but not limited to the front, back, or side surface of the electronic device.
  • the electronic device in which the optical fingerprint detection system provided by the embodiment of the present application is located is a mobile phone, wherein the optical fingerprint detection device may be arranged on the side of the mobile phone. As an example, it may be embedded, raised or flat. It is arranged on the side of the mobile phone, and the present application does not specifically limit the configuration of the arrangement on the side of the mobile phone.
  • the optical fingerprint detection device can be an independent component provided on the side of the mobile phone, only for realizing the fingerprint detection function;
  • the optical fingerprint detection device can be integrated on a target button on the side of the mobile phone.
  • the target button includes but is not limited to a power button of an electronic device.
  • the power button is used to start/wake up the mobile phone.
  • it can also be used to realize the function of fingerprint detection.
  • the mobile phone on the basis of successful fingerprint detection, can be restarted/wake up to improve the security performance of mobile phone authentication.
  • FIG. 2 shows a schematic structural diagram of an optical fingerprint detection apparatus 100 in an embodiment of the present application.
  • the optical fingerprint detection device 100 can be disposed on the side of the mobile phone in FIG. 1 , optionally, it can be fixedly disposed on the side of the mobile phone, or can also be disposed on the buttons on the side of the mobile phone shown in FIG. 1 .
  • the schematic structural diagram shown in FIG. 2 may be a schematic cross-sectional structural diagram along the plane where the XZ axis in FIG. 1 is located.
  • the positive direction of the Z axis is the direction toward the outside of the side surface of the electronic device, and the negative direction of the Z axis is the direction toward the inner side of the side surface of the electronic device.
  • the X axis is the short side direction of the side of the electronic device, and the Y axis is the long side direction of the side of the electronic device.
  • an accommodating area 202 is formed on the side of the outer frame 201 of the electronic device.
  • the accommodating area 202 may be a through hole, a groove or an area in a key.
  • the optical fingerprint detection device 100 is arranged in the accommodating area. area 202.
  • the optical fingerprint detection device 100 includes:
  • the cover plate 110 is disposed in the above-mentioned accommodating area 202 through a support member;
  • the optical fingerprint detection module includes: an optical component 120, a fingerprint sensor 130 and a first substrate 140, the optical component is connected to the fingerprint sensor 130, and the first substrate 110 is used to support the optical component 120 and the fingerprint sensor 130;
  • the connector 101 connects the cover plate 110 and the optical fingerprint detection module, so that the optical fingerprint detection module is arranged in the first direction of the cover plate 110, and the first direction faces the inner side of the side surface of the electronic device;
  • the light source 160 is used for emitting a light signal to the user's finger at the cover plate 110 , the light signal is reflected or transmitted by the finger to form a fingerprint light signal carrying the fingerprint information of the finger, and the optical component 120 is used for guiding the fingerprint light signal to the fingerprint sensor 130 , for fingerprint detection and/or fingerprint recognition.
  • the optical signal formed by the reflection or transmission of the finger may also carry biometric information such as pulse, blood oxygen, and veins.
  • biometric information such as pulse, blood oxygen, and veins.
  • the optical fingerprint detection device of the embodiments of the present application can also be used to detect other biometric information such as pulse, blood oxygen, and veins, so as to perform other functions such as living body detection and human health detection.
  • first direction in the above is toward the inner side of the side of the electronic device, that is, the “first direction” may be the negative direction of the Z axis shown in Figures 1 and 2.
  • first direction can also be written as “below”.
  • second direction opposite to the "first direction” faces the outside of the side surface of the electronic device, that is, the “second direction” may be the positive direction of the Z-axis shown in FIG. 1 and FIG. 2 , in FIG. 2 , the "second direction” can also be written as "above”.
  • an embodiment of the present application provides an optical fingerprint detection device, which uses an optical component and a fingerprint sensor to perform optical fingerprint imaging, the optical component and the fingerprint sensor are connected to each other, and the overall thickness is small.
  • the optical fingerprint detection device is arranged in the accommodating area of the side of the electronic device, and the thickness space of the side of the electronic device is utilized, and the optical fingerprint detection device does not need to be arranged under the display screen, thereby The space under the screen is saved, which is conducive to the development of thin and light electronic devices.
  • the distance between the fingerprint sensor and the optical component in the optical fingerprint detection module and the cover can be kept relatively stable, so that the cover can be The optical path between the user's finger at the location and the optical component remains relatively stable, therefore, the fingerprint imaging performance and the fingerprint detection performance of the optical fingerprint detection device can be improved.
  • the above-mentioned optical fingerprint detection device may be integrated into the buttons on the side of the electronic device.
  • the key may be a dedicated key for fingerprint detection, or may also be a multifunctional key for fingerprint detection and other target functions of the electronic device.
  • the optical fingerprint detection device of the invention reuses the space of the key, which further improves the space utilization in the electronic equipment.
  • a carrier plate 211 is provided at the accommodating area 202 , the supporting member 150 is located in the accommodating area 202 , and the supporting member 150 connects the cover plate 110 and the carrier plate 211 ,
  • the cover plate 110 is supported and disposed above the carrier plate 211 , that is, the second direction, the second direction facing the outer side of the side surface of the electronic device.
  • the above-mentioned carrier board 211 is a structural member inside the electronic device, which has a certain mechanical strength and supporting function, and can be arranged inside the accommodating area 202.
  • the cross-sectional area of the carrier board 211 is smaller than that of the accommodating board 211
  • the cross-sectional area of the area 202, or the carrier 211 can also be disposed on the side of the accommodating area 202 close to the inside of the electronic device.
  • the carrier board 211 includes, but is not limited to, a mechanical structural member in an electronic device, or may also be an electrical structural member, and the specific type and specific structure of the carrier board are not limited in this embodiment of the present application.
  • the support 150 is the outer frame 201 of the electronic device around the accommodating area 202 , in other words, the cover 110 is directly fixed to the outer frame 201 on the side of the electronic device.
  • the outer frame 201 of the electronic device can be reused to support the cover plate 110 , thereby reducing the cost of the entire optical fingerprint detection device.
  • the cover plate 110 can also reuse the cover plate on the side of the electronic device, instead of disposing the cover plate separately in the optical fingerprint detection device, so that the cost of the entire optical fingerprint detection device can be further reduced.
  • the cover plate 110 may be fixedly connected to the support member 150 through an adhesive layer. Alternatively, it can also be fixedly connected to the support member 150 by other fixed connection manners. This embodiment of the present application does not specifically limit this.
  • FIG. 4 shows another schematic structural diagram of the optical fingerprint detection apparatus 100 , and the structural schematic diagram may be a cross-sectional structural schematic diagram along the plane where the XZ axis in FIG. 1 is located.
  • the cover plate 110 may be an arc surface cover plate, and the arc surface protrudes toward the outer side of the side surface of the electronic device.
  • the cover plate 110 includes a first surface and a second surface, wherein the first surface is an arc surface, the first surface is convex toward the outer side of the side surface of the electronic device, and the second surface is a flat surface, which is convenient for connecting with the supporting member 150 and the connecting piece 101 are connected to improve the stability of the connection.
  • the first surface of the curved cover is used for contact with the user's finger.
  • the curved cover can improve the contact experience of the user's finger.
  • the curved cover The curvature of the arc surface can be designed according to the curvature of the side surface of the electronic device, so that the arc surface cover plate forms a good fit with the side surface of the electronic device, and improves the appearance of the electronic device.
  • the current capacitive fingerprint detection devices installed on the surface of electronic equipment are generally flat structures, which are relatively simple in appearance, have no three-dimensional sense, and have poor customer experience. This leads to problems such as misjudgment of fingerprint identification, and when the mobile phone is dropped, it will damage the plane of the entire capacitive fingerprint detection device, which affects the performance of the fingerprint detection device. And even if the arc cover is set above the capacitive fingerprint detection device, since the detection principle of the capacitive fingerprint detection device is based on the capacitance detection between the finger and the electrode, the arc cover will affect the capacitance between the finger and the electrode, causing The fingerprint signal detected by the capacitive fingerprint detection device becomes smaller, which affects the performance of fingerprint detection.
  • the arc of the arc surface cover is too large and the distance between the finger and the capacitive fingerprint device is too far, it may cause the capacitive fingerprint detection device.
  • the detected fingerprint signal is not available, therefore, the radian of the curved cover cannot be designed correspondingly according to the radian of the surface of the electronic device. To sum up, it is not suitable to add a cover plate structure on the surface of the capacitive fingerprint detection device, and the optical fingerprint detection device is superior to the capacitive fingerprint detection device in the aesthetics and adaptability of the electronic equipment.
  • the optical component 120 may include: a microlens array 121 and a diaphragm layer 122 disposed below the microlens array 121 .
  • the microlens array 121 includes a plurality of microlenses, and each microlens is used for condensing the light signal above it and transmitting it to the diaphragm layer below it.
  • the diaphragm layer 122 is made of a light absorbing material, and is provided with a plurality of light-passing holes, which are used to select the direction of the light signal after the microlens converges, so that the light signal in the target direction passes through the light-passing hole.
  • the light hole enters the fingerprint sensor 130, and the stray light signal in the non-target direction is absorbed by the light absorbing material that does not pass through the area where the small hole is located, thereby preventing the stray light signal from interfering with fingerprint imaging.
  • the fingerprint sensor 130 includes a pixel array (Pixel Array) formed by a plurality of pixel (Pixel) units, which is used to convert the light signal passing through the diaphragm layer 122 into a corresponding image signal.
  • the fingerprint sensor 130 may be a fingerprint sensor chip fabricated by a semiconductor process, and the optical component 120 may be integrally packaged in the fingerprint sensor chip, or may be independently disposed above the fingerprint sensor chip.
  • the fingerprint sensor 130 includes a pixel array composed of a plurality of pixel units, each microlens in the microlens array 121 corresponds to at least one light-passing aperture in each diaphragm layer 122, and at least one pixel unit in the pixel array , each microlens transmits the concentrated optical signal to the inside of the corresponding light-passing hole and transmits it to the corresponding pixel unit via the light-passing hole to perform optical fingerprint imaging.
  • multiple pixel units in the fingerprint sensor 130 can be used to receive fingerprint light signals in the same direction, for example, multiple pixel units all receive fingerprint light signals perpendicular to the display screen, or multiple pixel units all receive oblique fingerprint signals.
  • the fingerprint light signal in the specific direction of the display screen.
  • the plurality of pixel units in the fingerprint sensor 130 can also be used to receive fingerprint light signals in different directions to form fingerprint image signals of a plurality of fingerprint images.
  • a first part of the pixel units in the plurality of pixel units receives one direction.
  • the fingerprint light signal of the first fingerprint image is formed;
  • the second part of the pixel unit receives the fingerprint light signal of the other direction to form the fingerprint image signal of the second fingerprint image.
  • the aperture layer 122 may be grown over the fingerprint sensor 130 by semiconductor process growth or other processes, for example, by atomic layer deposition, sputter coating, electron beam evaporation coating, ion beam coating, etc. on the fingerprint sensor A layer of non-light-transmitting material film is prepared on the top of 130, and then photolithography and etching of the pinhole pattern are performed to form a plurality of light-transmitting pinholes. It can be understood that, in the case where the optical assembly 120 includes a plurality of diaphragm layers 122, a transparent medium layer may be passed between the lowest diaphragm layer 122 and the fingerprint sensor 130, as well as between the adjacent diaphragm layers 122. isolate.
  • the optical component 120 can also be other light guiding structures, such as a collimator layer, having a plurality of collimating units or a micro-hole array, etc.,
  • the specific structure of the optical assembly 120 is not limited in this embodiment of the present application.
  • the optical assembly 120 adopts the above-mentioned structure. Compared with the optical fingerprint detection device based on optical lens imaging, it is not limited by the imaging optical path of the lens, and the thickness of the optical assembly is reduced, which is beneficial to realize the optical fingerprint detection device. Thinner. In addition, compared with the optical fingerprint detection device based on the imaging of the collimator layer, it uses a microlens array to condense the optical signal, and uses one or more diaphragm layers to guide the direction of the optical signal, which can further improve the fingerprint light intensity. The quality of the signal is improved, thereby improving the fingerprint detection performance of the optical fingerprint detection device.
  • the distance between the optical assembly 120 and the cover plate 110 should be less than 600 ⁇ m.
  • the cover plate 110 can be a convex lens structure, which has the function of condensing light, that is, the above-mentioned fingerprint light signal formed carrying fingerprint information after being reflected or transmitted by the finger is converged to the optical component 120, so as to improve the optical component 120.
  • the light intensity of the received fingerprint light signal further improves the performance of the optical fingerprint detection device 100 .
  • the first substrate 140 may be a circuit board, and the fingerprint sensor 130 may be disposed on the first substrate 140 through an adhesive layer, which includes but is not limited to a die attach film (Die Attach Film, DAF) adhesive layer. While supporting the fingerprint sensor 130 , the first substrate 140 is used for electrical connection with the fingerprint sensor 130 , and transmits the photoelectrically converted fingerprint electrical signal of the fingerprint sensor 130 to the processing unit to perform subsequent processing operations such as fingerprint detection.
  • DAF Die Attach Film
  • the first substrate 140 includes, but is not limited to, a printed circuit board (Printed Circuit Board, PCB), a flexible printed circuit board (Flexible Printed Circuit, FPC), a rigid-flex board, or other types of circuit boards, to which the embodiments of the present application There is no specific limitation.
  • the electrical connection method between the fingerprint sensor 130 and the first substrate 140 includes, but is not limited to, wire bonding (Wire Bonding), tape automated bonding (TAB), flip chip (Flip Chip, FC) ) or other types of electrical connection methods, etc., which are not specifically limited in the embodiments of the present application.
  • a reinforcing plate 141 may be further disposed below the first substrate 140 to enhance the mechanical strength of the FPC and support the fingerprint sensor 130 above it.
  • the reinforcing plate 141 includes, but is not limited to, a reinforcing steel plate, and may also be other types of reinforcing plates in the related art, which are not specifically limited in the embodiments of the present application.
  • the fingerprint sensor 130 can be directly disposed above the FPC, or a window can be formed in the FPC, and the fingerprint sensor 130 can be disposed in the window and above the reinforcing plate.
  • the preparation process is simple and the production can be improved.
  • Efficiency by adopting the latter embodiment, the height of the optical fingerprint detection apparatus 100 can be reduced, thereby reducing the space occupied by the electronic equipment.
  • the first substrate 140 may only be used as a circuit board of the fingerprint sensor 130 for transmitting electrical signals of the fingerprint sensor 130 and supporting the fingerprint sensor 130 and the supporting member 150 above it.
  • a processing unit and other types of electrical components may also be disposed on a substrate 140 for performing a complete fingerprint detection function.
  • the first substrate 140 can also be a circuit board of other functional modules in the electronic device, and on this basis, it can be multiplexed into a circuit board of the fingerprint sensor 130 at the same time.
  • the connector 101 is used to connect the first substrate 140 and the cover plate 110 , so that the first substrate 140 and the optical component 120 and the fingerprint sensor 130 above the first substrate 140 are fixedly connected under the cover plate 110 , In addition, a certain air gap exists between the optical component 120 and the lower surface of the cover plate 110 to form an optical path with a constant distance.
  • the connecting member 101 may be a bracket with an adhesive layer, or the connecting member 101 may only be a connecting adhesive layer.
  • the connecting member 101 can be made of an opaque material, and is used for connecting the first substrate 140 and the cover plate 110 and also for blocking and absorbing stray light, so as to improve the fingerprint of the optical fingerprint detection device 100 imaging performance.
  • the connector 101 can be disposed in the surrounding area of the optical component 120 to prevent interference and influence on the fingerprint optical signal received by the optical component 120 .
  • the connecting member 101 can be an annular hollow structure, disposed around the optical component 120 and the fingerprint sensor 130 , and connected to the edge area of the first substrate 140 and the cover plate 110 , and the fingerprint sensor 130 It is arranged in the middle area of the first substrate 140 , so that the optical component 120 and the fingerprint sensor 130 are arranged under the cover plate 110 .
  • a relatively stable connector 101 can be used to connect the first substrate 140 and the cover plate 110 , so as to realize a relatively stable connection between the optical component 120 and the cover plate 110 . fixed light path.
  • the cover plate 110 can be connected to the support member 150 through the adhesive layer 111 , and the support member 150 is fixedly arranged on the carrier plate 211 to fix the cover plate 110 above the optical component 120 and the fingerprint sensor 130 . .
  • the support member 150 may be a hollow cylindrical structure in which the optical component 120 and the fingerprint sensor 130 are disposed, and the surrounding edges of the cover plate 110 are fixed to the upper opening of the hollow cylindrical structure through the adhesive layer 111, so that the cover The board 110 is disposed above the optical assembly 120 and the fingerprint sensor 130 .
  • the supporter 150 is also used to protect the optical assembly 120 and the fingerprint sensor 130 while playing a supporting role.
  • the supporting member 150 that is, the lower end of the opening of the hollow cylindrical structure, is connected and fixed to the carrier plate 211 , whereby the cover plate 110 , the supporting member 150 and the carrier plate 211 together form a closed cavity, and the optical fingerprint detection device 100
  • Other components such as the optical component 120, the fingerprint sensor 130 and the like can be arranged in the airtight cavity.
  • the airtight cavity can be used to protect the components therein and improve the reliability of the optical fingerprint detection device 100 .
  • the support 150 can be reused as a structural member of the key, in other words, according to the shape and size of the key in the electronic device, The shape and size of the support member 150 and the cover plate 110 are manufactured.
  • the support member 150 may be an annular hollow cylindrical structure, or may also be a frame-shaped hollow cylindrical structure.
  • the material of the support member 150 may be an organic plastic or a metal material, which has high mechanical strength and can play a stable supporting role, so as to improve the reliability of the optical fingerprint detection device 100 in use.
  • the cover plate 110 may be disposed over the optical assembly 120 and the fingerprint sensor 130 , in other words, on a plane perpendicular to the Z direction in FIG. 4 , that is, on the XY plane, the optical assembly 120 and the fingerprint sensor 130
  • the orthographic projection of the fingerprint sensor 130 is completely located in the orthographic projection of the cover plate 110 .
  • the material of the cover plate 110 may be a transparent material, or the material of the cover plate 110 may also include a filter material for passing the target wavelength band.
  • the wavelength range of the target band should include at least part of the wavelength range of the optical signal emitted by the light source 160, and preferably, the wavelength range of the target band is the wavelength range of the optical signal emitted by the light source 160.
  • the transparent material includes, but is not limited to, glass or resin.
  • the cover plate 110 may be a cover plate structure formed by coating a filter material layer on a transparent substrate, the filter material Layers can be applied to the inner and/or outer surfaces of the transparent substrate.
  • the cover plate 110 adopts the structural scheme of this embodiment, which can realize the filtering function and have strong mechanical strength. When the electronic device is affected by external force, it can prevent the external force from causing damage to the optical fingerprint detection device 100, thereby improving the optical fingerprint detection. reliability of the detection device.
  • the light source 160 (not shown in the figure) is used to emit infrared light and/or near-infrared light to the finger above the cover plate 110, correspondingly, the infrared light and/or near-infrared light can After being reflected or transmitted by the finger, it is transmitted to the optical assembly 120 through the cover plate 110 .
  • the cover plate 110 needs to transmit light signals in the infrared and/or near-infrared band, in other words, the target band includes the infrared and/or near-infrared band.
  • the inner surface and/or the outer surface of the cover plate 110 may be coated with infrared-transmitting ink, so as to transmit the light signal in the infrared band and block the interfering light signal in the non-infrared band.
  • infrared and/or near-infrared light is emitted through a light source, and the infrared light and/or near-infrared light transmitted by the finger is mainly used for optical fingerprint imaging to perform fingerprint detection. Therefore, the position requirement of the light source is not high, and it only needs to satisfy that the infrared light can reach the finger pressing on the cover plate. Therefore, the position of the light source in the optical fingerprint detection apparatus in the embodiment of the present application can be flexibly set according to the space conditions of different electronic devices.
  • the optical fingerprint detection device 100 may further include: a filter layer, which may be disposed between the optical path from the cover plate 110 to the fingerprint sensor 130 for passing the light of the target wavelength band signal, filter out the optical signal in the non-target band.
  • a filter layer which may be disposed between the optical path from the cover plate 110 to the fingerprint sensor 130 for passing the light of the target wavelength band signal, filter out the optical signal in the non-target band.
  • the wavelength range of the target wavelength band passed by the filter layer should include at least part of the wavelength range of the optical signal emitted by the light source 160, preferably, the wavelength of the target wavelength band
  • the range is the wavelength range of the optical signal emitted by the light source 160 .
  • the filter layer can be used to pass the infrared light band and/or the near-infrared light band, and filter the non-infrared light band, such as filtering In addition to the visible light band, prevent ambient visible light or light leakage from the display from interfering with fingerprint detection.
  • the filter layer may specifically be a filter, which is fixed above the fingerprint sensor 130 through an adhesive layer and used to cover the pixel array area of the fingerprint sensor 130 .
  • the filter layer can also be directly coated and formed on the surface of the fingerprint sensor 130 and packaged together with the fingerprint sensor 130 in the chip.
  • the optical fingerprint detection device 100 may include both the filter material layer and the filter layer in the cover plate 110, or may only include the filter layer in the cover plate 110.
  • One of the material layer and the above-mentioned filter layer may include both the filter material layer and the filter layer in the cover plate 110, or may only include the filter layer in the cover plate 110.
  • FIG. 5 shows another schematic structural diagram of the optical fingerprint detection apparatus 100 .
  • the optical fingerprint detection device 100 shown in FIG. 5 can be a schematic cross-sectional structure diagram along the plane of the YZ axis in FIG. 1 .
  • FIG. 4 and FIG. 5 may be a schematic cross-sectional view of the same optical fingerprint detection device 100 along a plane where the XZ axis is located and a schematic cross-sectional view along the plane where the YZ axis is located. It can be seen from FIG. 4 and FIG. 5 that the length of the accommodating area 202 on the side of the electronic device and the optical fingerprint detection device 100 in the Y-axis direction is greater than the length in the X-axis direction.
  • the optical fingerprint detection device 100 includes an optical component 120 and a fingerprint sensor 130;
  • the length of the optical component 120 along the long-side direction (ie, the Y direction) of the side of the electronic device is greater than the length of the optical component 120 along the short-side direction (ie, the X direction) of the side surface of the electronic device;
  • the length of the fingerprint sensor 130 in the long-side direction (ie, the Y direction) of the side of the electronic device is greater than the length of the fingerprint sensor 130 along the short-side direction (ie, the X direction) of the side of the electronic device.
  • the microlenses in the microlens array 121 in the optical component 120 are circular microlenses or square microlenses, and the microlens array 121 is arranged in M0 rows along the X-axis direction and N0 columns along the Y-axis direction, wherein , M0 and N0 are positive integers, and M0 ⁇ N0.
  • the pixel arrays in the fingerprint sensor 130 are arranged in M1 rows along the X-axis direction and N1 columns along the Y-axis direction, wherein M1 and N1 are positive integers, and M1 ⁇ N1.
  • FIG. 6 shows another schematic structural diagram of the optical fingerprint detection apparatus 100 .
  • 4 and 6 can be respectively a schematic cross-sectional view of another optical fingerprint detection device 100 along a plane where the XZ axis is located and a schematic cross-sectional view along the plane where the YZ axis is located.
  • the optical fingerprint detection device 100 includes: a plurality of optical components 120 and a plurality of fingerprint sensors 130 , and the plurality of optical components 120 are disposed above the plurality of fingerprint sensors 130 in a one-to-one correspondence.
  • the plurality of optical assemblies 120 and the plurality of fingerprint sensors 130 are arranged along the long sides of the side of the electronic device.
  • the length of each optical component 120 along the long-side direction (ie, the Y direction) of the side of the electronic device is greater than its length along the short-side direction (ie, the X direction) of the side of the electronic device.
  • the length of each fingerprint sensor 130 along the long-side direction (ie, the Y direction) of the side of the electronic device is greater than its length along the short-side direction (ie, the X direction) of the side surface of the electronic device.
  • the technical solutions shown in FIGS. 4 and 5 above, or the technical solutions shown in FIGS. 4 and 6 are used to make full use of the side space of the electronic device, and an elongated accommodating area is arranged on the side of the electronic device.
  • a longer optical assembly 120 and a fingerprint sensor 130, or a larger number of optical assemblies 120 and fingerprint sensors 130 can be set along the long side direction of the electronic device, that is, the Y-axis direction above, to expand fingerprint detection area, so as to improve the fingerprint detection effect.
  • one side of the fingerprint sensor 130 can be connected to the first substrate 140 through the first lead 131 , and the first lead 131 can be covered with lead protection glue 132 .
  • the lead protection adhesive 132 In order to support and protect the first lead 131 .
  • the stability of the electrical connection between the first substrate 140 and the fingerprint sensor 130 can be ensured, and further, the performance of the optical fingerprint detection device 100 can be guaranteed.
  • the height of the lead protection glue 132 is not greater than 150 ⁇ m, wherein the height of the lead protection glue 132 refers to the height of the highest point in the Z direction and the first A height between substrates 140 .
  • the light source 160 may be disposed above the first substrate 140 and electrically connected to the first substrate 140 .
  • the light source 160 is disposed on the side of the connector 101 away from the at least one fingerprint sensor 130 , in other words, the connector 101 can act as a light blocking layer between the light source 160 and the at least one fingerprint sensor to prevent the light source 160 from emitting light signals and/or Or the non-finger reflected light signal directly enters at least one fingerprint sensor 130 , causing interference to fingerprint detection.
  • the light source 160 may be a point light source, a line light source or a surface light source.
  • the light source 160 may include one or more light emitting diodes (Light Emitting Diode, LED), which are distributed around the fingerprint sensor 130 .
  • LED Light Emitting Diode
  • FIG. 7 shows a schematic diagram of several position designs of the light source in the embodiment of the present application, which may be a schematic cross-sectional structure diagram along the plane where the XY axis is located in FIG. 1 .
  • FIG. 7 may be a schematic cross-sectional view of another optical fingerprint detection device 100 along the plane of the XY axis.
  • the cross-section of the connector 101 in the plane where the XY axis is in a hollow frame shape and a plurality of LEDs are arranged in a line along the X axis direction and are located on one side of the hollow frame shape.
  • the cross section of the connector 101 on the plane where the XY axis is located is a hollow frame, and a plurality of LEDs are distributed and arranged at the four corners of the hollow frame.
  • the light source 160 may be other than a plurality of LEDs shown in (a) or (b) of FIG. 7 , it may also be other forms of light sources, such as line light sources.
  • the light source 160 can be disposed at any position between the connecting member 101 and the edge of the first substrate 140 in addition to the position shown in (a) or (b) of FIG. 7 , as shown in FIG. 7 Any position between the two dashed boxes shown in (c) in the figure.
  • the light source 160 and the fingerprint sensor 130 are both arranged on the same first substrate 140, which facilitates the installation of the light source 160, and does not need to provide additional electrical connectors for the light source 160. Common control of the light source 160 and the fingerprint sensor 130 .
  • the optical fingerprint detection device 100 corresponding to FIG. 2 has been described above with reference to FIGS. 4 to 7 , and the following describes two methods corresponding to another optical fingerprint detection device 100 shown in FIG. 3 with reference to FIGS. 8 and 9 .
  • the two structural schematic diagrams may be cross-sectional structural schematic diagrams along the plane where the XZ and YZ axes are located in FIG. 1 .
  • the support 150 is the outer frame 201 of the electronic device where the optical fingerprint detection device 100 is located.
  • the adhesive layer 111 is disposed above the accommodating area 202 .
  • the optical fingerprint detection module ie, the optical component 120 , the fingerprint sensor 130 and the first substrate 140 , are all completely accommodated in the accommodating area 202 .
  • the optical fingerprint detection module may be accommodated in the accommodating area 202 only in a partial area.
  • the upper area of the optical fingerprint detection module is located in the accommodating area 202, and the lower area is located in the accommodating area 202.
  • a carrier plate may be further provided below the accommodating area 202 to further support the optical fingerprint detection module, so as to improve the installation stability of the optical fingerprint detection device.
  • the outer frame 201 is directly used to support the cover plate 110 , and the optical fingerprint detection module and the cover plate 110 are further fixedly connected through the connector 101 , on the premise of ensuring the good performance of the optical fingerprint detection device 100 . Therefore, the installation method of the optical fingerprint detection device 100 is simplified, and other supporting members need not be separately provided, thereby reducing the installation cost of the optical fingerprint detection device 100 .
  • the related designs of other components in the optical fingerprint detection device 100 can be referred to the above related design description, which will not be repeated here.
  • FIG. 9 it may also include a plurality of fingerprint sensors 130 and optical components 120 in one-to-one correspondence, and the specific related design solutions can be referred to the relevant description of FIG. 6 above, which will not be repeated here. .
  • the light source 160, the cover plate 110 and the optical fingerprint detection module are arranged in the same accommodating area, that is, in the above accommodating area 202, except that the light source 160 is located in the above embodiment
  • the positions shown in the following embodiments are also possible.
  • FIG. 10 shows another schematic structural diagram of the optical fingerprint detection apparatus 100 .
  • the optical fingerprint detection device 100 shown in FIG. 10 may be a schematic cross-sectional structure diagram along the plane of the YZ axis in FIG. 1 .
  • the light source 160 is disposed in the second accommodating area 2022 in the outer frame 201 of the electronic device, and other components in the optical fingerprint detection apparatus 100 include the cover plate 110 and the optical components 120 , the fingerprint sensor 130 , the first substrate 140 and the like are all disposed in the first accommodating area 2021 .
  • the embodiment shown in FIG. 10 can be used, and the light source 160 is arranged in the second accommodating area 2022, which can be flexibly adapted to different demand for electronic equipment.
  • the second accommodating area 2022 can also be a groove, a through hole or other types of accommodating spaces.
  • the optical fingerprint detection device 100 further includes: a second substrate 161 , the second substrate 161 is disposed under the light source 160 , and the second substrate 161 and the first substrate 140 can be disposed on the same plane On or close to the same plane, for transmitting control signals to the light source 160 to control the light source 160 to emit light.
  • the second substrate may be a flexible circuit board FPC, and a reinforcing plate 162 may be disposed under the second substrate.
  • the reinforcing plate 162 and the second substrate 161 are used to jointly support the light source 160 .
  • one end of the second substrate 161 is used to connect to the light source 160
  • the other end of the second substrate 161 can be used to connect to other electrical modules of the electronic device to provide power and control signals to the light source 160 .
  • the second substrate 161 and the light source 160 are provided independently from other components of the optical fingerprint detection device 100 . It is convenient to disassemble and maintain the light source 160 .
  • the position of the light source 160 shown in the above embodiments is only a schematic illustration. In addition to the positions shown in the above embodiments, the light source 160 can also be set at other positions in the electronic device. It is sufficient to guide the optical signal emitted by the light source 160 to the finger portion above the cover plate 110 through the optical element, and the specific position of the light source 160 is not limited in this embodiment of the present application.
  • the optical component 120 and the fingerprint sensor 130 are disposed on the surface of the first substrate 140, and no light-shielding structure is provided around the optical component 120 and the fingerprint sensor 130, so they can receive more interfering light signals, which has a certain effect on fingerprint recognition. interference.
  • FIG. 11 and FIG. 12 show two other structural schematic diagrams of the optical fingerprint detection device 100 .
  • 1 is a schematic diagram of the cross-sectional structure of the plane where the XZ axis is located and the plane where the YZ axis is located.
  • the optical fingerprint detection device 100 may further include:
  • the light shielding layer 180 has a first window 1801 formed therein.
  • the first window 1801 is located above the fingerprint sensor 130 for passing the fingerprint light signal to be received by the fingerprint sensor 130 .
  • the light shielding layer 180 can be used to shield stray light signals from entering the fingerprint sensor 130, thereby reducing the interference of environmental factors on the fingerprint identification process.
  • the light shielding layer 180 may be a shielding glue layer.
  • the thickness of the light shielding layer 180 is 10-30 ⁇ m, for example, 20 ⁇ m.
  • the thickness of the light shielding layer 180 may also be other specific values or within a range of other preset values, which is not specifically limited in this application.
  • the light shielding layer 180 may also be replaced by a filter.
  • the filter is used to reduce undesired ambient light in fingerprint sensing to improve the optical sensing of the received light by the fingerprint sensor 130 .
  • the filter can specifically be used to filter out light of a specific wavelength, for example, near-infrared light and part of red light.
  • human fingers absorb most of the energy of light with wavelengths below 580 nm, based on this, filters can be designed to filter light with wavelengths from 580 nm to the infrared to reduce the effect of ambient light on optical detection in fingerprint sensing.
  • At least a part of the above-mentioned optical assembly 120 is located in the first window 1801 .
  • the microlens array 121 in the optical component 120 is located in the above-mentioned first opening 1801 , and at least one diaphragm layer in the optical component 120 is integrated into the fingerprint sensor chip together with the fingerprint sensor 130 , the surrounding area of the first window 1801 in the light shielding layer 180 is disposed on the surface of the edge area of the fingerprint sensor chip.
  • the optical fingerprint detection device 100 may further include: a support layer 190 disposed between the first substrate 140 and the light shielding layer 180 for supporting the light shielding layer 180 .
  • the support layer 190 is provided with a third opening 1901 , and the fingerprint sensor 130 is arranged in the third opening 1901 .
  • the light shielding layer 180 is disposed on the surface of the support layer 190 and extends toward the fingerprint sensor 130 , and a first window 1801 is formed around the microlens array 121 .
  • the supporting layer 190 supports a part of the light shielding layer 180, and another part of the light shielding layer 180 is suspended below or supported by the fingerprint sensor 130.
  • the upper surface of the support layer 190 is not higher than the highest point of the upper surface of the microlens array 121 in the optical assembly 120, in other words, the highest point of the support layer 190 in the Z direction is not higher than the optical assembly 120 in the Z direction the highest point on.
  • At least one diaphragm layer in the optical component 120 is integrated with the fingerprint sensor 130 in the fingerprint sensor chip, and the upper surface of the support layer 190 is not higher than the upper surface of the fingerprint sensor chip. , in other words, the highest point of the support layer 190 in the Z direction is not higher than the highest point of the fingerprint sensor chip in the Z direction.
  • the support layer 190 is fixed on the surface of the first substrate 140 by a fixing glue.
  • the material of the support layer 190 includes, but is not limited to, metal, resin, glass fiber composite board, adhesive layer, and the like.
  • the support layer 190 is a polyethylene terephthalate (polyethylene terephthalate, PET) material layer or a polyimide (polyimide, PI) material layer.
  • the support layer 190 may also be a bracket formed of a foam material.
  • the fixing adhesive can be a double-sided adhesive.
  • the disposition of the support layer 190 does not increase the thickness of the optical fingerprint detection device 100 , but only supports the light shielding layer 180 to improve the stability of the light shielding layer 180 .
  • a tape (Tape) 112 is provided under the cover plate 110 .
  • the adhesive tape 112 may be disposed at any position in the hollow cylindrical structure of the support member 150 to support the cover plate 110 .
  • the adhesive tape 112 can be arranged around the optical component 110 and the fingerprint sensor 120 , and specifically, can be arranged around the above-mentioned support layer 190 for connecting the first substrate 140 and the cover plate 110 .
  • the adhesive tape 112 is disposed above the support layer 190 and the light shielding layer 180 for connecting the light shielding layer 180 and the cover plate 110 . While supporting the function of the cover plate 110, it can further play a role of blocking stray light.
  • the adhesive tape 112 may be connected between the light shielding layer 180 and the cover plate 110 by adhesive tape.
  • the adhesive tape 112 may be provided with a fourth opening 1121 penetrating the adhesive tape 112 .
  • the fourth window 1121 is disposed above the optical assembly 120 , specifically, disposed above the microlens array 121 , so as to be received by the optical assembly 120 and the fingerprint sensor 130 through fingerprint light signals.
  • the area of the fourth opening 1121 is not smaller than the area of the first opening 1801 in the above-mentioned light shielding layer 180 .
  • the fingerprint sensor 130 is connected to the first substrate 140 through the first lead 131 , and the first lead is disposed on one side of the fingerprint sensor 130 .
  • the support layer 190 is disposed on one side of the first lead 131 and the lead protection glue 132 , and the light shielding layer 180 can directly cover the lead protection glue 132 .
  • the light shielding layer 180 may further be provided with a second opening 1802 , wherein the top area of the first lead 131 and the lead protective adhesive 132 is located in the second opening 1802 .
  • a partial light shielding layer 180 is also disposed between the first lead 131 of the fingerprint sensor 130 and the microlens array 121 , and the partial light shielding layer 180 is located at the first opening 1801 and the third opening. between windows 1802.
  • the part of the light shielding layer 180 can not only block stray light, but also block the lead protective adhesive 132 from spreading to the microlens array 121 , so as to prevent the light condensing effect of the microlens array 121 from being affected.
  • the connector 101 in the above application embodiment may include the adhesive tape 112, the light shielding layer 180 and the supporting layer 190 in the embodiment of the present application, and the three are firmly connected to each other to realize the connection between the cover plate 110 and the supporting layer 190.
  • the stable connection between the first substrates 140 enables the optical fingerprint detection module to be firmly connected under the cover plate 110 .
  • the adhesive tape 112 , the light shielding layer 180 and the supporting layer 190 are not only disposed around the optical component 120 and the fingerprint sensor 130 , but also disposed on one side of the light source 160 , or can also be disposed on the first side of the light source 160 .
  • Other positions of the base plate 140 are used to further strengthen the stable connection between the cover plate 110 and the first base plate 140 .
  • FIG. 11 and FIG. 12 only illustrate the manner in which the cover plate 110 is disposed on the carrier plate 211 through the support member 150 as an example.
  • the support member 150 can also be directly 3 or the embodiment shown in FIG. 8 is directly the outer frame 201 , that is, the cover plate 110 is directly fixed on the outer frame 201 , and the specific implementation in this embodiment can refer to the above description, which will not be repeated here.
  • the arrangement of the light source 160 can also adopt any of the above embodiments, and the relevant design of the light source 160 can refer to the above related descriptions , and will not be described in detail here.
  • the embodiment of the present application also provides an electronic device, and the electronic device may include:
  • an accommodating area disposed on the side of the electronic device; a carrier plate disposed at the accommodating area;
  • optical fingerprint detection device according to any one of the above application embodiments.
  • the disclosed systems and apparatuses may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application are essentially or part of contributions to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

一种光学指纹检测装置和电子设备,能够兼顾光学指纹检测装置的性能的前提下,减小其在电子设备中的占用空间。光学指纹检测装置用于设置在电子设备的侧面的容置区域,包括:盖板,通过支撑件设置于容置区域;光学指纹检测模组,包括:光学组件、指纹传感器和第一基板,光学组件连接于指纹传感器,第一基板用于支撑光学组件和指纹传感器;连接件,连接盖板和光学指纹检测模组,以将光学指纹检测模组设置于盖板的第一方向,第一方向朝向电子设备的侧面的内侧;光源,用于发射光信号至盖板处的用户手指,光信号经由手指反射或透射后形成携带有手指指纹信息的指纹光信号,光学组件用于将指纹光信号引导至指纹传感器,以进行指纹检测。

Description

光学指纹检测装置和电子设备 技术领域
本申请涉及生物特征检测技术领域,并且更具体地,涉及一种光学指纹检测装置和电子设备。
背景技术
随着生物识别技术发展,指纹检测技术广泛应用于移动终端设计、汽车电子、智能家居等领域。消费者对各种电子终端产品的功能需求增多的同时要求产品尺寸尽量轻薄,因此电子产品内部结构日益紧凑,指纹检测功能装置结构设计难度增大,由此指纹检测装置小型化以及和其他功能装置集成化需求日益迫切,要求指纹检测装置在占有电子产品更小的体积空间的条件下去实现更加精准的功能。
目前,主流的指纹检测装置主要为电容指纹检测装置和光学指纹检测装置,其中,光学指纹检测装置一般设置于电子设备的显示屏内部或者显示屏下方,集成于显示屏内部会对显示屏的显示功能造成一定影响,而设置在显示屏下方则会占用电子设备的一部分厚度空间,不利于电子设备的轻薄化发展。
因此,如何在兼顾光学指纹检测装置的性能的前提下,减小其在电子设备中的占用空间,是一项亟待解决的技术问题。
发明内容
本申请实施例提供一种光学指纹检测装置和电子设备,能够在兼顾光学指纹检测装置的性能的前提下,减小其在电子设备中的占用空间,有利于电子设备的小型化和轻薄化发展。
第一方面,提供一种光学指纹检测装置,用于设置在电子设备的侧面的容置区域,该光学指纹检测装置包括:盖板,通过支撑件设置于该容置区域;光学指纹检测模组,包括:光学组件、指纹传感器和第一基板,该光学组件连接于该指纹传感器,该第一基板用于支撑该光学组件和该指纹传感器;连接件,连接该盖板和该光学指纹检测模组,以将该光学指纹检测模组设置于该盖板的第一方向,该第一方向朝向该电子设备的侧面的内侧;光源,用于 发射光信号至该盖板处的用户手指,该光信号经由该手指反射或透射后形成携带有手指指纹信息的指纹光信号,该光学组件用于将该指纹光信号引导至该指纹传感器,以进行指纹检测。
本申请实施例中,利用光学组件和指纹传感器进行光学指纹成像,光学组件和指纹传感器相互连接,整体厚度较小。另外,该光学指纹检测装置设置于电子设备的侧面的容置区域中,利用了电子设备的侧面厚度空间,而不需将该光学指纹检测装置设置在显示屏下,从而节省了屏下空间,有利于电子设备的轻薄化发展。
进一步地,在本申请实施例中,通过连接件盖板和光学指纹检测模组,可以使得光学指纹检测模组中的指纹传感器和光学组件与盖板之间的距离相对保持稳定,从而使得盖板处的用户手指至光学组件之间的光路相对保持稳定,因此,可以提高光学指纹检测装置的指纹成像性能以及指纹检测性能。
在一些可能的实施方式中,该盖板为弧面盖板,该弧面盖板的弧面朝向该电子设备侧面的外侧凸起。
在一些可能的实施方式中,该盖板包括第一面和第二面,该第一面为弧面,该第一面朝向该电子设备侧面的外侧凸起,该第二面为平面;该盖板用于会聚该指纹光信号至该光学组件。
在一些可能的实施方式中,该支撑件为该容置区域四周的该电子设备的外框,该盖板通过胶层固定连接于该容置区域四周的该外框。
在一些可能的实施方式中,该容置区域处设置有载板;该支撑件设置于该容置区域中,且连接该盖板与该载板,以将该盖板支撑设置于该载板的第二方向,该第二方向朝向该电子设备侧面的外侧。
在一些可能的实施方式中,该支撑件为空心柱状结构,该盖板通过胶层连接固定于该空心柱状结构的一端开口,该载板通过胶层连接固定于该空心柱状结构的另一端开口,该盖板、该支撑件以及该载板形成密闭腔体以容纳该第一基板、该光学组件和该指纹传感器。
在一些可能的实施方式中,该支撑件的外形适配于该容置区域。
在一些可能的实施方式中,该连接件设置于该光学组件的四周区域。
在一些可能的实施方式中,该连接件为环状空心结构,设置于该光学组件的四周区域。
在一些可能的实施方式中,该光学指纹检测模组包括一个该光学组件和 一个该指纹传感器;该光学组件沿该电子设备的侧面的长边方向的长度大于该光学组件沿该电子设备的侧面的短边方向的长度;且,该指纹传感器沿该电子设备的侧面的长边方向的长度大于该指纹传感器沿该电子设备的侧面的短边方向的长度。
在一些可能的实施方式中,该光学指纹检测模组包括多个该光学组件和多个该指纹传感器,多个该光学组件与多个该指纹传感器一一对应;多个该光学组件和多个该指纹传感器均沿该电子设备的侧面的长边排列。
在一些可能的实施方式中,该光源设置于该第一基板的该第二方向,并连接至该第一基板。
在一些可能的实施方式中,该光学指纹检测装置还包括第二基板,该光源设置于该第二基板的该第一方向,并连接至该第二基板。
在一些可能的实施方式中,该盖板、该光学指纹检测模组和该光源均设置于该电子设备的侧面的同一容置区域中。
在一些可能的实施方式中,该盖板和该光学指纹检测模组设置于该电子设备的侧面的第一容置区域,该光源设置于该电子设备的侧面的第二容置区域中,该第一容置区域与该第二容置区域相邻设置。
在一些可能的实施方式中,该光学组件包括:微透镜阵列;至少一光阑层,设置于该微透镜阵列下方,该至少一光阑层中每层光阑层中形成有多个通光小孔;该微透镜阵列用于将该指纹光信号汇聚至该至少一光阑层的多个通光小孔中,该指纹光信号通过该多个通光小孔传输至该指纹传感器以进行指纹检测。
在一些可能的实施方式中,该微透镜阵列中的每个微透镜对应于每层光阑层中的至少一个通光小孔,以及该指纹传感器中的至少一个像素单元;该指纹传感器用于接收至少一个方向的指纹光信号,以获取至少一张指纹图像以进行指纹检测。
在一些可能的实施方式中,该光学指纹检测模组还包括:遮光层,其中形成有第一开窗,该第一开窗设置于该指纹传感器的该第二方向,该第一开窗用于通过该指纹光信号以被该指纹传感器接收。
在一些可能的实施方式中,该光学组件位于该第一开窗中。
在一些可能的实施方式中,该遮光层中还形成有第二开窗,该指纹传感器连接该第一基板的第一引线的顶部区域位于该第二开窗中。
在一些可能的实施方式中,该第一引线包覆有引线保护胶,该遮光层在该第二方向上的高度不高于该引线保护胶在该第二方向上的高度,和/或,该遮光层在该第二方向上的高度不高于该光学组件在该第二方向上的高度。
在一些可能的实施方式中,该光学指纹检测装置还包括:支撑层,设置于该第一基板与该遮光层之间,用于支撑该遮光层;该支撑层中设置有第三开窗,该指纹传感器设置于该第三开窗中,且该支撑层在该第二方向上的高度不高于该光学组件在该第二方向上的高度。
在一些可能的实施方式中,该光学指纹检测装置还包括:胶带,该胶带设置于该遮光层的该第二方向,该胶带中形成有第四开窗,该第四开窗设置于该光学组件和该指纹传感器的该第二方向,该第四开窗用于通过该指纹光信号以被该光学组件和该指纹传感器接收,该第四开窗的面积不小于该遮光层中该第一开窗的面积。
在一些可能的实施方式中,该连接件包括该胶带、该支撑层和该遮光层。
在一些可能的实施方式中,该盖板的材料为透明材料,或者,该盖板包括滤光材料,该滤光材料用于通过目标波段的光信号,滤除非目标波段的光信号。
在一些可能的实施方式中,该光学指纹检测装置还包括:滤光层,设置于该盖板和该指纹传感器之间的光路中,用于通过目标波段的光信号,滤除非目标波段的光信号。
在一些可能的实施方式中,该光源用于发射红外波段的光信号,该目标波段包括红外波段。
在一些可能的实施方式中,该容置区域中设置有按键,该光学指纹检测装置设置于该按键中。
在一些可能的实施方式中,该按键仅用于实现指纹检测功能,或者,该按键用于实现指纹检测功能以及该电子设备的目标功能。
第二方面,提供一种电子设备,包括:设置于该电子设备的侧面的容置区域;以及,如上述第一方面或者第一方面中任一种可能的实施方式中的光学指纹检测装置,该光学指纹检测装置设置于该容置区域。
附图说明
图1为本申请实施例提供的一种电子设备的示意图。
图2为根据本申请实施例的光学指纹检测装置的一种结构示意图。
图3为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图4为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图5为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图6为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图7为根据本申请实施例的光源的一种位置设计示意图。
图8为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图9为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图10为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图11为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图12为根据本申请实施例的光学指纹检测装置的另一结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例可以应用于光学生物特征识别系统,包括但不限于光学指纹检测系统和基于光学指纹成像的产品。本申请实施例仅以光学指纹检测系统为例进行说明,但不应对本申请实施例构成任何限定,本申请实施例同样适用于其他采用光学成像技术的系统等。
作为一种常见的应用场景,本申请实施例提供的光学指纹检测系统可以应用在智能手机、平板电脑、智能穿戴设备以及其他类型的移动终端或者其他电子设备中。更具体地,在上述电子设备中,光学指纹检测系统可包括光学指纹检测装置和处理单元,其中,光学指纹检测装置用于对指纹进行光学成像,处理单元用于对指纹图像进行指纹检测和识别等处理,以获取相关的检测结果和识别结果提供给电子设备,从而相应用户的相关需求。在本申请实施例中,光学指纹检测装置可设置于电子设备与用户交互的任意面,包括但不限于是电子设备的正面、背面或者侧面。
作为示例,如图1所示,本申请实施例提供的光学指纹检测系统所在的电子设备为手机,其中,光学指纹检测装置可以设置在手机的侧面,作为示例,其可以嵌入、凸起或者平整设置于手机的侧面,本申请对其在手机侧面的设置形态不做具体限定。
在一些实施方式中,该光学指纹检测装置可以为设置在手机侧面的一个 独立部件,仅用于实现指纹检测功能;
在另一些实施方式中,该光学指纹检测装置可以集成设置于手机侧面的目标按键上,例如,该目标按键包括但不限于是电子设备的电源按键,该电源按键除了用于实现启动/唤醒手机外,还可以用于实现指纹检测功能。进一步地,在该实施方式中,可以在指纹检测成功的基础上,再启动/唤醒手机,提高手机认证的安全性能。
图2示出了本申请实施例中光学指纹检测装置100的一种结构示意图。该光学指纹检测装置100可设置在图1中手机的侧面,可选地,其可固定设置于手机的侧面,或者也可设置在图1中所示的手机侧面的按键上。具体地,图2中所示的结构示意图可为沿图1中XZ轴所在平面的截面结构示意图。其中,Z轴的正方向为朝向电子设备侧面的外侧的方向,Z轴的负方向为朝向电子设备侧面的内侧方向。X轴为电子设备侧面的短边方向,Y轴为电子设备侧面的长边方向。
如图2所示,电子设备的外框201的侧面形成有容置区域202,该容置区域202可以为通孔、凹槽或者按键中的区域,该光学指纹检测装置100设置于该容置区域202中。
该光学指纹检测装置100包括:
盖板110,通过支撑件设置于上述容置区域202;
光学指纹检测模组,包括:光学组件120、指纹传感器130和第一基板140,光学组件连接于指纹传感器130,第一基板110用于支撑光学组件120和指纹传感器130;
连接件101,连接盖板110和光学指纹检测模组,以将光学指纹检测模组设置于盖板110的第一方向,第一方向朝向电子设备的侧面的内侧;
光源160,用于发射光信号至盖板110处的用户手指,光信号经由手指反射或透射后形成携带有手指指纹信息的指纹光信号,光学组件120用于将指纹光信号引导至指纹传感器130,以进行指纹检测和/或指纹识别。
可以理解的是,经由手指反射或透射后形成的光信号除了上述携带有手指指纹信息的指纹光信号以外,还可以携带有脉搏、血氧、静脉等生物特征信息。换言之,本申请实施例的光学指纹检测装置除了可以检测指纹以外,还可以用于检测脉搏、血氧、静脉等其它生物特征信息,以进行活体检测、人体健康检测等其它功能。
还可以理解的是,上文中的“第一方向”朝向电子设备的侧面的内侧,即“第一方向”可为图1和图2中所示Z轴的负方向,在图2中,“第一方向”也可写为“下方”。对应的,与“第一方向”相反的“第二方向”朝向电子设备的侧面的外侧,即“第二方向”可为图1和图2中所示Z轴的正方向,在图2中,“第二方向”也可写为“上方”。为了便于结合附图对本申请中的相关实施例进行说明,除了特殊情况下的说明以外,下文中的“上方”指朝向电子设备的外侧的“第二方向”,“下方”指朝向电子设备的内侧的“第一方向”。
基于图1和图2的相关说明,本申请实施例提供了一种光学指纹检测装置,其利用光学组件和指纹传感器进行光学指纹成像,光学组件和指纹传感器相互连接,整体厚度较小。另外,本申请实施例中,该光学指纹检测装置设置于电子设备的侧面的容置区域中,利用了电子设备的侧面厚度空间,而不需将该光学指纹检测装置设置在显示屏下,从而节省了屏下空间,有利于电子设备的轻薄化发展。
另外,在本申请实施例中,通过连接件盖板和光学指纹检测模组,可以使得光学指纹检测模组中的指纹传感器和光学组件与盖板之间的距离相对保持稳定,从而使得盖板处的用户手指至光学组件之间的光路相对保持稳定,因此,可以提高光学指纹检测装置的指纹成像性能以及指纹检测性能。
进一步地,上述光学指纹检测装置可以集成设置于电子设备的侧面的按键中。可选地,该按键可以为用于指纹检测的专用按键,或者也可以为用于指纹检测和执行电子设备其它目标功能的多功能按键。采用该实施方式,可以方便用户快速找到电子设备表面的按键,以进行指纹检测,能够提高用户体验,进一步地,若按键为电子设备中用于执行其它目标功能的按键,则本申请实施例中的光学指纹检测装置复用了该按键的空间,进一步提高了电子设备中的空间利用率。
在一些可能的实施方式中,如图2所示,容置区域202处设置有载板211,支撑件150位于该容置区域202中,且该支撑件150连接盖板110与载板211,以将盖板110支撑设置于载板211的上方,即第二方向,该第二方向朝向电子设备侧面的外侧。
具体地,上述载板211为电子设备内部的结构件,其具有一定的机械强度以及支撑作用,其可设置于容置区域202内部,在同一平面上,该载板211 的截面面积小于容置区域202的截面面积,或者,该载板211也可以设置于容置区域202靠近电子设备内部的一侧,在同一平面上,该载板211的截面面积大于容置区域202的截面面积。
该载板211包括但不限于是电子设备中的机械结构件,或者也可以是电学结构件,本申请实施例对该载板的具体类型和具体结构不做限定。
在另一些可能的实施方式中,如图3所示,支撑件150即为容置区域202四周的电子设备的外框201,换言之,盖板110直接固定于电子设备的侧面的外框201。采用该实施方式的技术方案,可以复用电子设备的外框201用于支撑盖板110,从而能够降低整个光学指纹检测装置的成本。
可选地,该实施方式中,盖板110也可以复用电子设备的侧面的盖板,而不在光学指纹检测装置中单独设置盖板,从而可以进一步降低整个光学指纹检测装置的成本。
在上文两种实施方式中,盖板110可通过胶层与支撑件150固定连接。或者,也可以通过其它固定连接方式与支撑件150固定连接。本申请实施例对此不做具体限定。
对应于图2,图4示出了光学指纹检测装置100的另一结构示意图,该结构示意图可为沿图1中XZ轴所在平面的截面结构示意图。
可选地,在本申请实施例中,上述盖板110可为弧面盖板,弧面朝向所述电子设备侧面的外侧凸起。
在一些实施方式中,盖板110包括第一面和第二面,其中,第一面为弧面,该第一面朝向电子设备侧面的外侧凸起,第二面为平面,便于与支撑件150以及连接件101进行连接,提高连接的稳定度。
具体地,该弧面盖板的第一面用于与用户手指接触,相比于平面盖板,该弧面盖板可以改善用户手指的接触体验,更重要的是,该弧面盖板的弧面弧度可根据电子设备的侧面的弧度进行相应设计,使得该弧面盖板与电子设备的侧面形成良好配合,提升电子设备的外观的美观度。
在这一点上,目前设置于电子设备表面的电容指纹检测装置则一般为平面结构,外观上比较单一,没有立体感,客户体验不佳,另外,灰尘等物质经常会很容易吸附在平面上,导致指纹识别出现误判等问题,且手机在摔落时,会对整个电容指纹检测装置的平面造成损伤,影响指纹检测装置的性能。且即使在电容指纹检测装置上方设置弧面盖板,由于电容指纹检测装置的检 测原理是基于手指与电极之间的电容检测,因此,弧面盖板会影响手指与电极之间的电容,造成电容指纹检测装置检测到的指纹信号变小,从而影响指纹检测的性能,进一步地,若弧面盖板的弧度过大,手指与电容指纹装置的距离过远,则可能会造成电容指纹检测装置检测到的指纹信号不可用,因此,弧面盖板的弧度不能根据电子设备的表面的弧度进行对应设计。综上,对于电容指纹检测装置,不适合在其表面增加盖板结构,在电子设备的美观度和适配性上,光学指纹检测装置优于电容指纹检测装置。
继续参见图4,可选地,在该光学指纹检测装置100中,光学组件120可以包括:微透镜阵列121以及设置于该微透镜阵列121下方的光阑层122。其中,微透镜阵列121包括多个微透镜,每个微透镜用于将其上方的光信号进行会聚后传输至其下方的光阑层。光阑层122为光吸收材料制备形成,其中设置有多个通光小孔,该多个通光小孔用于对微透镜会聚后的光信号进行方向选择,使得目标方向的光信号经过通光小孔进入至指纹传感器130中,而非目标方向的杂散光信号则被非通过小孔所在区域的光吸收材料吸收,从而防止杂散光信号对指纹成像造成干扰。
指纹传感器130中包括多个像素(Pixel)单元形成的像素阵列(Pixel Array),用于将经过光阑层122的光信号转换为对应的图像信号。具体地,该指纹传感器130可以为通过半导体工艺制作的指纹传感器芯片,上述光学组件120可以一体封装于该指纹传感器芯片中,或者也可以独立设置于指纹传感器芯片的上方。
需要说明的是,图4中仅示出了光学组件120包括一层光阑层122的情况,可选地,光学组件120也可以包括多层光阑层122。指纹传感器130中包括多个像素单元组成的像素阵列,微透镜阵列121中的每个微透镜对应于每层光阑层122中的至少一个通光小孔,以及像素阵列中的至少一个像素单元,每个微透镜将汇聚的光信号传输至对应的通光小孔内部并经由通光小孔传输到对应的像素单元以进行光学指纹成像。
可选地,该指纹传感器130中的多个像素单元可以用于接收相同方向的指纹光信号,例如,多个像素单元均接收垂直于显示屏的指纹光信号,或者多个像素单元均接收倾斜于显示屏的特定方向的指纹光信号。
可选地,该指纹传感器130中的多个像素单元还可以用于接收不同方向的指纹光信号以形成多张指纹图像的指纹图像信号,例如,多个像素单元中 第一部分像素单元接收一个方向的指纹光信号,形成第一指纹图像的指纹图像信号;第二部分像素单元接收另一方向的指纹光信号,形成第二指纹图像的指纹图像信号。
在一些实施方式中,该光阑层122可以通过半导体工艺生长或者其它工艺形成在指纹传感器130上方,例如,通过原子层沉积、溅射镀膜、电子束蒸发镀膜、离子束镀膜等方法在指纹传感器130上方制备一层非透光材料薄膜,再进行小孔图形光刻和刻蚀,形成多个通光小孔。可以理解的是,在光学组件120包括多层光阑层122的情况下,其中最底层光阑层122与指纹传感器130之间,以及相邻的光阑层122之间,可以通过透明介质层进行隔离。
可以理解的是,光学组件120除了可以为图3中所示的结构以外,其还可以为其它光引导结构,例如准直器(collimator)层,具有多个准直单元或者微孔阵列等,本申请实施例对该光学组件120的具体结构不做限定。
在本申请实施例中,光学组件120采用上述结构,相比于基于光学透镜成像的光学指纹检测装置,可以不受制透镜成像光路的限制,降低光学组件的厚度,有利于实现光学指纹检测装置的轻薄化。此外,相比于基于准直器层成像的光学指纹检测装置,其利用微透镜阵列进行光信号的会聚,且利用一层或者多层光阑层对光信号进行方向引导,能够进一步提高指纹光信号的质量,从而提高光学指纹检测装置的指纹检测性能。
可选地,为了保证光学组件120和指纹传感器130的检测性能,在Z方向上,光学组件120与盖板110之间的距离应小于600μm。
另外,可以理解的是,盖板110可为一种凸透镜结构,具有会聚光的作用,即将上述经由手指反射或透射后形成携带有指纹信息的指纹光信号会聚至光学组件120,提高光学组件120接收的指纹光信号的光强,从而进一步提高光学指纹检测装置100的性能。
进一步地,图4所示的实施例中,第一基板140可为电路板,指纹传感器130可通过胶层设置于第一基板140上,该胶层包括但不限于是芯片粘接薄膜(Die Attach Film,DAF)胶层。第一基板140在支撑指纹传感器130的同时,用于与指纹传感器130电连接,并传输该指纹传感器130经过光电转换后的指纹电信号至处理单元中,以执行后续的指纹检测等处理动作。
作为示例,第一基板140包括但不限于印刷电路板(Printed Circuit Board,PCB),柔性电路板(Flexible Printed Circuit,FPC)、软硬结合板或 者其它类型的电路板,本申请实施例对此不作具体限定。可选地,指纹传感器130和第一基板140的电连接方式包括但不限于是:引线键合(Wire Bonding)、载带自动焊(Tape Automated Bonding,TAB)、倒装芯片(Flip Chip,FC)或者其它类型的电连接方式等,本申请实施例对此也不作具体限定。
可以理解的是,如图4所示,若第一基板140为FPC,则其下方可进一步设置补强板141,以增强FPC的机械强度,对其上方的指纹传感器130起到支撑作用。作为示例,该补强板141包括但不限于是补强钢板,其还可以为相关技术中其它类型的补强板,本申请实施例对此不做具体限定。
可选地,指纹传感器130可直接设置于FPC上方,或者FPC中可形成有窗口,指纹传感器130设置于该窗口中并位于补强板上方,采用前一种实施方式,制备工艺简单能够提高生产效率,采用后一种实施方式,则能够降低光学指纹检测装置100的高度,从而减小其占用的电子设备空间。
在一些实施方式中,第一基板140可仅作为指纹传感器130的电路板,用于传输指纹传感器130的电信号并对其上方的指纹传感器130和支撑件150起到支撑作用,进一步地,第一基板140上还可设置处理单元以及其他类型的电学元器件,用于执行完整的指纹检测功能。
在另一些实施方式中,第一基板140也可为电子设备中其它功能模块的电路板,在此基础上,同时复用为指纹传感器130的电路板。
进一步地,如图4所示,连接件101用于连接第一基板140和盖板110,以使得第一基板140及其上方的光学组件120和指纹传感器130固定连接于盖板110的下方,且光学组件120和盖板110的下表面存在一定的空气间隙,以形成恒定距离的光路。
可选地,在一些实施方式中,该连接件101可以为具有胶层的支架,或者,该连接件101可以仅为连接胶层。可选地,该连接件101可为不透光材料制备形成,在用于连接第一基板140和盖板110的同时,还用于阻挡和吸收杂散光,以提高光学指纹检测装置100的指纹成像性能。
可选地,该连接件101可设置于光学组件120的四周区域,防止对光学组件120接收的指纹光信号造成干扰和影响。作为示例,如图4所示,该连接件101可为环状空心结构,设置于光学组件120和指纹传感器130的四周,并连接至第一基板140的边缘区域以及盖板110,指纹传感器130设置于第一基板140的中间区域,使得该光学组件120和指纹传感器130设置于盖板 110的下方。
采用该实施方式,可以在保证光学组件120接收到指纹光信号的前提下,采用较为稳固的连接件101,连接第一基板140和盖板110,实现光学组件120和盖板110之间具有较为固定的光路。
进一步地,如图4所示,盖板110可通过胶层111连接于支撑件150,支撑件150固定设置于载板211上,以将盖板110固定设置于光学组件120和指纹传感器130上方。
可选地,支撑件150可为空心柱状结构,光学组件120和指纹传感器130设置于该空心柱状结构中,盖板110的四周边缘通过胶层111固定于空心柱状结构的上端开口,以使得盖板110设置于光学组件120和指纹传感器130的上方。支撑件150在起到支撑作用的同时,还用于保护光学组件120和指纹传感器130。
此外,对于该支撑件150,即空心柱状结构的开口的下端,连接固定至载板211,由此,盖板110、支撑件150以及载板211共同形成一密闭腔体,光学指纹检测装置100中的光学组件120、指纹传感器130等其它组件均可设置于该密闭腔体中。该密闭腔体可用于保护其中的各组件,提高光学指纹检测装置100的可靠性。
可选地,若将本申请实施例中的光学指纹检测装置100设置于电子设备的按键中,该支撑件150可复用为按键的结构件,换言之,可根据电子设备中按键的形态大小,制造支撑件150和盖板110的形态大小。作为示例,若按键为圆形或者腰圆形按键,则支撑件150可为环形的空心柱状结构,或者也可以为框型的空心柱状结构。
作为一些示例,在本申请实施例中,支撑件150的材料可为有机塑料或者金属材料,具有较高机械强度,能够起到稳固的支撑作用,以提高光学指纹检测装置100的使用可靠度。
具体地,在本申请实施例中,盖板110可覆盖设置于光学组件120和指纹传感器130上方,换言之,在垂直于图4中Z方向的平面上,即在XY平面上,光学组件120和指纹传感器130的正投影完全位于盖板110的正投影之中。
可选地,该盖板110的材料可为透明材料,或者,该盖板110的材料也可包括用于通过目标波段的滤光材料。可以理解的是,该目标波段的波长范 围应包括光源160发射的光信号的至少部分波长范围,优选地,该目标波段的波长范围即为光源160发射的光信号的波长范围。
作为一种示例,若盖板110的材料为透明材料,该透明材料包括但不限于是玻璃或者树脂。
作为另一种示例,若盖板110的材料包括用于通过目标波段的滤光材料,则该盖板110可为在透明基底上涂覆滤光材料层形成的盖板结构,该滤光材料层可涂覆于透明基底的内表面和/或外表面。盖板110采用该实施方式的结构方案,可在实现滤光功能的同时具有较强的机械强度,在电子设备受到外力影响时,可防止外力对光学指纹检测装置100造成损坏,从而提高光学指纹检测装置的可靠性。
优选地,在一些实施方式中,光源160(图中未示出)用于发射红外光和/或近红外光至盖板110上方的手指,对应的,该红外光和/或近红外光能够经过手指反射或者透射后,再经过盖板110传输至光学组件120。在此情况下,盖板110需透过红外和/或近红外波段的光信号,换言之,上述目标波段包括红外和/或近红外波段。作为示例,盖板110的内表面和/或外表面可涂覆透红外油墨,用于透过红外波段的光信号,而阻挡非红外波段的干扰光信号。
采用本申请实施例的方案,通过光源发射红外和/或近红外光,并主要利用经过手指透射的红外光和/或近红外光进行光学指纹成像,以进行指纹检测。因而对光源的位置要求不高,仅需满足红外光能够达到按压于盖板处的手指即可。因而,可以根据不同的电子设备的空间情况,灵活设置本申请实施例中光学指纹检测装置中的光源位置。
可选地,在图4所示的实施例中,光学指纹检测装置100还可包括:滤光层,其可设置于盖板110至指纹传感器130的光路之间,用于通过目标波段的光信号,滤除非目标波段的光信号。
具体地,与上文中盖板110中的滤光材料层类似,该滤光层通过的目标波段的波长范围应包括光源160发射的光信号的至少部分波长范围,优选地,该目标波段的波长范围即为光源160发射的光信号的波长范围。
若光源160用于发射红外光和/或近红外光至盖板110上方的手指,对应的,该滤光层可用于通过红外光波段和/或近红外波段,而滤除非红外波段,例如滤除可见光波段,防止环境可见光或者显示屏的漏光对指纹检测造成干 扰。
可选地,该滤光层具体可以为滤光片,其通过胶层固定于指纹传感器130上方,用于覆盖指纹传感器130的像素阵列区域。或者,该滤光层也可直接镀膜形成于指纹传感器130的表面,与指纹传感器130共同封装于芯片中。
可以理解的是,在本申请实施例中,光学指纹检测装置100可同时包括上述盖板110中的滤光材料层和上述滤光层,或者,也可以仅包括上述盖板110中的滤光材料层和上述滤光层中其中一个。
图5示出了光学指纹检测装置100的另一结构示意图。该图5中所示的光学指纹检测装置100可为沿图1中YZ轴所在平面的截面结构示意图。
可选地,图4和图5可分别为同一光学指纹检测装置100沿XZ轴所在平面的截面示意图和沿YZ轴所在平面的截面示意图。通过图4和图5可以看出,电子设备侧面的容置区域202以及光学指纹检测装置100在Y轴方向上的长度大于在X轴方向上的长度。
具体地,在本申请实施例中,光学指纹检测装置100包括一个光学组件120和一个指纹传感器130;
光学组件120沿电子设备的侧面的长边方向(即Y方向)的长度大于光学组件120沿电子设备的侧面的短边方向(即X方向)的长度;且
指纹传感器130沿电子设备的侧面的长边方向(即Y方向)的长度大于指纹传感器130沿电子设备的侧面的短边方向(即X方向)的长度。
作为示例,光学组件120中的微透镜阵列121中的微透镜为圆形微透镜或者方形微透镜,该微透镜阵列121沿X轴方向排列为M0行,沿Y轴方向排列为N0列,其中,M0、N0为正整数,且M0<N0。类似地,指纹传感器130中的像素阵列沿X轴方向排列为M1行,沿Y轴方向排列为N1列,其中,M1、N1为正整数,且M1<N1。
作为另一示例,图6示出了光学指纹检测装置100的另一结构示意图。该图4和图6可分别为另一光学指纹检测装置100沿XZ轴所在平面的截面示意图和沿YZ轴所在平面的截面示意图。
如图4和图6所示,光学指纹检测装置100中,包括:多个光学组件120和多个指纹传感器130,多个光学组件120一一对应的设置于该多个指纹传感器130的上方,该多个光学组件120和多个指纹传感器130均沿电子设备的侧面的长边排列。
可选地,在本申请实施例中,每个光学组件120沿电子设备的侧面的长边方向(即Y方向)的长度大于其沿电子设备的侧面的短边方向(即X方向)的长度,且每个指纹传感器130沿电子设备的侧面的长边方向(即Y方向)的长度大于其沿电子设备的侧面的短边方向(即X方向)的长度。
在本申请实施例中,采用上文图4和图5,或者图4和图6中所示的技术方案,充分利用电子设备的侧面空间,在电子设备侧面配合设置长条形的容置区域,可以在沿电子设备的长边方向,即上文中的Y轴方向上,设置较长的光学组件120和指纹传感器130,或者设置数量较多的光学组件120和指纹传感器130,以扩大指纹检测区域,从而提高指纹检测效果。
此外,在图5和图6所示实施例中,指纹传感器130的一侧可通过第一引线131连接至第一基板140,且该第一引线131的周围可包覆有引线保护胶132,以对该第一引线131进行支撑和保护。通过引线保护胶132,能够保证第一基板140和指纹传感器130之间的电连接的稳定性,进一步的,能够保证光学指纹检测装置100的性能。
在本申请实施例中,为了限制整个光学指纹检测装置100的厚度,该引线保护胶132的高度不大于150μm,其中,该引线保护胶132的高度是指其在Z方向上的最高点与第一基板140之间的高度。
如图5和图6所示,在本申请实施例中,光源160可设置于第一基板140上方,且与该第一基板140电连接。该光源160设置于连接件101的远离至少一指纹传感器130的一侧,换言之,连接件101可充当光源160与至少一指纹传感器之间的挡光层,以防止光源160的发射光信号和/或非手指反射光信号直接进入至少一指纹传感器130,对指纹检测造成干扰。
可选地,该光源160可为点光源、线光源或者面光源。作为示例,该光源160可以包括一个或多个发光二极管(Light Emitting Diode,LED),分布设置于指纹传感器130的周围。
图7示出了本申请实施例中光源的几种位置设计示意图,其可以是沿图1中XY轴所在平面的截面结构示意图。该图7可分别为另一光学指纹检测装置100沿XY轴所在平面的截面示意图。
如图7中的(a)图所示,连接件101在XY轴所在平面的截面为空心框形,多个LED沿X轴方向排成一行,并位于空心框形其中一边的一侧。如图7中的(b)图所示,连接件101在XY轴所在平面的截面为空心框形, 多个LED分布设置于空心框型的四角。
当然,光源160除了可以设置为图7中的(a)图或者(b)图中所示的多个LED以外,其还可以为其它形式的光源,例如线光源等。
此外,光源160除了设置于图7中的(a)图或者(b)图所示位置以外,光源160还可设置于连接件101与第一基板140边缘之间的任意位置,即如图7中的(c)图中所示的两个虚线框之间任意位置。
在本申请实施例中,将光源160和指纹传感器130均设置在同一第一基板140上,便于光源160的安装,不需对光源160设置额外的电学连接件,在降低成本的同时方便实现对光源160和指纹传感器130的共同控制。
上文结合图4至图7,对图2对应的光学指纹检测装置100进行了说明,下面结合图8和图9,说明一种对应于图3所示的另一光学指纹检测装置100的两种示意结构图。该两种结构示意图可为沿图1中XZ和YZ轴所在平面的截面结构示意图。
如图8和图9所示,在本申请实施例中,支撑件150为光学指纹检测装置100所在的电子设备的外框201,该外框201中形成有容置区域202,盖板110通过胶层111设置于容置区域202的上方。
可选地,在一些实施方式中,光学指纹检测模组,即光学组件120、指纹传感器130以及第一基板140,均完全容纳于该容置区域202中。或者,在另一些实施方式中,光学指纹检测模组也可以仅局部区域容纳于该容置区域202中,例如光学指纹检测模组的上部区域位于该容置区域202中,而下部区域位于该容置区域202之外,在该实施方式中,容置区域202的下方还可进一步设置载板,用于对光学指纹检测模组进行进一步支撑,以提高光学指纹检测装置的安装稳定性。
采用该实施方式的技术方案,直接利用外框201支撑盖板110,且进一步通过连接件101实现光学指纹检测模组与盖板110的固定连接,在保证光学指纹检测装置100的良好性能的前提下,简化光学指纹检测装置100的安装方式,不需要单独额外设置其它的支撑件,从而降低光学指纹检测装置100的安装成本。
具体地,在本申请实施例中,除了支撑件150的设置与上文中图4和图5所示的实施例不同以外,光学指纹检测装置100中的其它部件的相关设计均可参见上文相关描述,此处不再过多赘述。
此外,对于图9所示的实施例,其中也可包括一一对应的多个指纹传感器130和光学组件120,其具体的相关设计方案可以参见上文中图6的相关描述,此处不再赘述。
可选地,在上文实施例中,光源160和盖板110、光学指纹检测模组设置于同一个容置区域中,即上文的容置区域202中,光源160除了位于如上文实施例所示的位置以外,还可以位于下文实施例所示的位置。
图10示出了光学指纹检测装置100的另一种结构示意图。该图10中所示的光学指纹检测装置100可为沿图1中YZ轴所在平面的截面结构示意图。
如图10所示,在本申请实施例中,光源160设置于电子设备外框201中的第二容置区域2022中,而光学指纹检测装置100中的其它部件,包括盖板110、光学组件120、指纹传感器130、第一基板140等均设置于第一容置区域2021中。
在电子设备中可提供的第一容置区域2021空间较小的情况下,可选用图10中所示的实施例方案,将光源160设置于第二容置区域2022中,灵活适配于不同电子设备的需求。可选地,该第二容置区域2022同样可以为凹槽、通孔或者其它类型的容置空间。
在图10所示的实施例中,光学指纹检测装置100还包括:第二基板161,该第二基板161设置于光源160的下方,该第二基板161与第一基板140可设置于同一平面上或者接近于同一平面,用于传输控制信号至光源160以控制光源160发光。作为示例,该第二基板可为柔性电路板FPC,其下方可设置有补强板162,该补强板162和第二基板161用于共同支撑光源160。可选地,图10所示的实施例中,第二基板161的一端用于连接光源160,其另一端可用于连接至电子设备的其它电学模块,以对光源160提供电源以及控制信号。
在图10所示实施例中,第二基板161和光源160独立于光学指纹检测装置100的其它部件单独设置。便于对该光源160的拆卸和维修。
需要说明的是,上文实施例中所示的光源160的位置仅为示意性说明,除了上述几种实施例所示出了位置以外,光源160还可以设置于电子设备中的其它位置,再通过光学元件将光源160发出的光信号导引至盖板110上方的手指部位即可,本申请实施例对光源160的具体位置不做限定。
在上文实施例中,光学组件120和指纹传感器130设置于第一基板140 表面,光学组件120和指纹传感器130周围未设置遮光结构,因而能够接收较多的干扰光信号,对指纹识别有一定的干扰。为了进一步提高光学指纹检测装置100的性能,在上文实施例的基础上,图11和图12示出了光学指纹检测装置100的另两种结构示意图,该两种结构示意图可分别为沿图1中XZ轴所在平面和YZ轴所在平面的截面结构示意图。
可选地,如图11和图12所示,光学指纹检测装置100还可以包括:
遮光层180,其中形成有第一开窗1801,该第一开窗1801位于指纹传感器130上方,用于通过指纹光信号以被指纹传感器130接收。具体地,遮光层180可以用于遮挡杂散光光信号,防止其进入至指纹传感器130中,从而减小环境因素对指纹识别过程的干扰。
在本申请的一些实施例中,遮光层180可为遮挡胶层,可选地,遮光层180的厚度为10-30μm,例如20μm。当然,遮光层180的厚度也可以为其它具体数值或在一个其他预设数值范围内,本申请对此不做具体限定。
当然,在其他可替代实施例中,也可以利用滤光片替代遮光层180。其中,滤光片用于来减少指纹感应中的不期望的环境光,以提高指纹传感器130对接收到的光的光学感应。滤光片具体可以用于过滤掉特定波长的光,例如,近红外光和部分的红光等。例如,人类手指吸收波长低于580nm的光的能量中的大部分,基于此,滤光片可以设计为过滤波长从580nm至红外的光,以减少环境光对指纹感应中的光学检测的影响。
可选地,在一些实施方式中,上述光学组件120中的至少部分区域位于该第一开窗1801中。
例如,如图11和图12所示,光学组件120中的微透镜阵列121位于上述第一开窗1801中,光学组件120中的至少一光阑层与指纹传感器130一起集成于指纹传感器芯片中,该遮光层180中第一开窗1801的四周区域设置于指纹传感器芯片的边缘区域的表面。
可选地,如图11和图12所示,光学指纹检测装置100还可以包括:支撑层190,设置于第一基板140和遮光层180之间,用于支撑该遮光层180。
在本申请实施例中,支撑层190中设置有第三开窗1901,指纹传感器130设置于该第三开窗1901中。
具体地,遮光层180设置于支撑层190表面,并向指纹传感器130延伸,且在微透镜阵列121四周形成第一开窗1801。换言之,该支撑层190支撑遮 光层180中的一部分区域,遮光层180中的另一部分区域下方悬空或者被指纹传感器130支撑。
可选地,该支撑层190的上表面不高于光学组件120中微透镜阵列121的上表面的最高点,换言之,支撑层190在Z方向上的最高点不高于光学组件120在Z方向上的最高点。
进一步地,如图11和图12所示,光学组件120中至少一层光阑层与指纹传感器130集成在指纹传感器芯片中,该支撑层190的上表面不高于该指纹传感器芯片的上表面,换言之,支撑层190在Z方向上的最高点不高于指纹传感器芯片在Z方向上的最高点。
在一些实施方式中,支撑层190通过固定胶固定在第一基板140的表面。例如,支撑层190的材料包括但不限于金属、树脂、玻纤复合板以及胶层等。例如,支撑层190为聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate,PET)材料层或者聚酰亚胺(polyimide,PI)材料层。再如,支撑层190也可以是由泡棉材料形成的支架。可选地,固定胶可以为双面胶。
通过本申请实施例的方案,该支撑层190的设置不会额外增加光学指纹检测装置100的厚度,而仅为支撑遮光层180,以提高遮光层180的稳定性。
继续参见图11和图12,为了实现盖板110与光学指纹模组的连接,可选地,在盖板110的下方设置有胶带(Tape)112。
在本申请实施例中,胶带112可设置于支撑件150的空心柱状结构中的任意位置,以对盖板110进行支撑。可选地,在一些实施方式中,该胶带112可设置于光学组件110和指纹传感器120四周,具体地,可设置于上述支撑层190的四周,用于连接第一基板140和盖板110。
优选地,在另一些实施方式中,如图10和图11所示,该胶带112设置于支撑层190和遮光层180上方,用于连接遮光层180和盖板110,该胶带112在起到支撑盖板110的作用的同时,还能进一步起到阻挡杂散光的作用。可选地,该胶带112可以通过胶带连接在遮光层180和盖板110之间。
可选地,如图10和图11所示,该胶带112可以设置有贯通该胶带112的第四开窗1121。可选地,该第四开窗1121设置于光学组件120的上方,具体的,设置于微透镜阵列121的上方,以通过指纹光信号被光学组件120以及指纹传感器130接收。可选地,该第四开窗1121的面积不小于上述遮光层180中第一开窗1801的面积。
进一步地,继续参见图12,指纹传感器130通过第一引线131连接至第一基板140,该第一引线设置于指纹传感器130的其中一边。上述支撑层190设置于第一引线131以及引线保护胶132的一侧,且上述遮光层180可直接覆盖于该引线保护胶132上方。
可选地,遮光层180中还可设置有第二开窗1802,其中,第一引线131和引线保护胶132顶部区域位于该第二开窗1802中。
需要说明的是,如图12所示,指纹传感器130的第一引线131与微透镜阵列121之间也设置有部分遮光层180,该部分遮光层180位于上述第一开窗1801和第三开窗1802之间。该部分遮光层180除了可以用于阻挡杂散光以外,还可以阻挡用于阻挡引线保护胶132蔓延至微透镜阵列121,防止影响微透镜阵列121的光会聚效果。
可以理解的是,上文申请实施例中的连接件101可包括本申请实施例中的胶带112、遮光层180以及支撑层190,该三者之间相互之间稳固连接以实现盖板110与第一基板140之间的稳固连接,从而实现光学指纹检测模组稳固连接于盖板110的下方。
此外,如图12所示,上述胶带112、遮光层180以及支撑层190除了设置在光学组件120、指纹传感器130的四周以外,还设置于光源160的一侧,或者,还可以设置于第一基板140的其他位置,用于进一步加强盖板110与第一基板140之间的稳固连接。
可以理解的是,图11和图12仅以盖板110通过支撑件150设置于载板211的方式作为示例进行说明,图11和图12所示实施例中,支撑件150也可以直接如图3或者图8所示实施例,直接为外框201,即盖板110直接固定设置于外框201,该实施方式下的具体实施方式可以参见上文描述,此处不再赘述。
还可以理解的是,在图11和图12所示的实施例中,光源160的设置方式还可以采用上文实施例中的任一种实施方式,光源160的相关设计可以参见上文相关描述,此处不再具体赘述。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的 情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
本申请实施例还提供了一种电子设备,该电子设备可以包括:
设置于电子设备的侧面的容置区域;设置于容置区域处的载板;以及
上述任一申请实施例的光学指纹检测装置。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种光学指纹检测装置,其特征在于,用于设置在电子设备的侧面的容置区域,所述光学指纹检测装置包括:
    盖板,通过支撑件设置于所述容置区域;
    光学指纹检测模组,包括:光学组件、指纹传感器和第一基板,所述光学组件连接于所述指纹传感器,所述第一基板用于支撑所述光学组件和所述指纹传感器;
    连接件,连接所述盖板和所述光学指纹检测模组,以将所述光学指纹检测模组设置于所述盖板的第一方向,所述第一方向朝向所述电子设备的侧面的内侧;
    光源,用于发射光信号至所述盖板处的用户手指,所述光信号经由所述手指反射或透射后形成携带有手指指纹信息的指纹光信号,所述光学组件用于将所述指纹光信号引导至所述指纹传感器,以进行指纹检测。
  2. 根据权利要求1所述的光学指纹检测装置,其特征在于,所述盖板为弧面盖板,所述弧面盖板的弧面朝向所述电子设备侧面的外侧凸起。
  3. 根据权利要求1或2所述的光学指纹检测装置,其特征在于,所述盖板包括第一面和第二面,所述第一面为弧面,所述第一面朝向所述电子设备侧面的外侧凸起,所述第二面为平面;
    所述盖板用于会聚所述指纹光信号至所述光学组件。
  4. 根据权利要求1至3中任一项所述的光学指纹检测装置,其特征在于,所述支撑件为所述容置区域四周的所述电子设备的外框,所述盖板通过胶层固定连接于所述容置区域四周的所述外框。
  5. 根据权利要求4所述的光学指纹检测装置,其特征在于,所述容置区域处设置有载板;
    所述支撑件设置于所述容置区域中,且连接所述盖板与所述载板,以将所述盖板支撑设置于所述载板的第二方向,所述第二方向朝向所述电子设备侧面的外侧。
  6. 根据权利要求1至3中任一项所述的光学指纹检测装置,其特征在于,所述支撑件为空心柱状结构,所述盖板通过胶层连接固定于所述空心柱状结构的一端开口,所述载板通过胶层连接固定于所述空心柱状结构的另一端开口,所述盖板、所述支撑件以及所述载板形成密闭腔体以容纳所述第一 基板、所述光学组件和所述指纹传感器。
  7. 根据权利要求6所述的光学指纹检测装置,其特征在于,所述支撑件的外形适配于所述容置区域。
  8. 根据权利要求1至7中任一项所述的光学指纹检测装置,其特征在于,所述连接件设置于所述光学组件的四周区域。
  9. 根据权利要求8所述的光学指纹检测装置,其特征在于,所述连接件为环状空心结构,设置于所述光学组件的四周区域。
  10. 根据权利要求1至8中任一项所述的光学指纹检测装置,其特征在于,所述光学指纹检测模组包括一个所述光学组件和一个所述指纹传感器;
    所述光学组件沿所述电子设备的侧面的长边方向的长度大于所述光学组件沿所述电子设备的侧面的短边方向的长度;且,
    所述指纹传感器沿所述电子设备的侧面的长边方向的长度大于所述指纹传感器沿所述电子设备的侧面的短边方向的长度。
  11. 根据权利要求1至8中任一项所述的光学指纹检测装置,其特征在于,所述光学指纹检测模组包括多个所述光学组件和多个所述指纹传感器,多个所述光学组件与多个所述指纹传感器一一对应;
    多个所述光学组件和多个所述指纹传感器均沿所述电子设备的侧面的长边排列。
  12. 根据权利要求1至11中任一项所述的光学指纹检测装置,其特征在于,所述光源设置于所述第一基板的第二方向,并连接至所述第一基板,所述第二方向朝向所述电子设备侧面的外侧。
  13. 根据权利要求1至11中任一项所述的光学指纹检测装置,其特征在于,所述光学指纹检测装置还包括第二基板,所述光源设置于所述第二基板的所述第一方向,并连接至所述第二基板。
  14. 根据权利要求12或13所述的光学指纹检测装置,其特征在于,所述盖板、所述光学指纹检测模组和所述光源均设置于所述电子设备的侧面的同一容置区域中。
  15. 根据权利要求12或13所述的光学指纹检测装置,其特征在于,所述盖板和所述光学指纹检测模组设置于所述电子设备的侧面的第一容置区域,所述光源设置于所述电子设备的侧面的第二容置区域中,所述第一容置区域与所述第二容置区域相邻设置。
  16. 根据权利要求1至15中任一项所述的光学指纹检测装置,其特征在于,所述光学组件包括:
    微透镜阵列;
    至少一光阑层,设置于所述微透镜阵列下方,所述至少一光阑层中每层光阑层中形成有多个通光小孔;
    所述微透镜阵列用于将所述指纹光信号汇聚至所述至少一光阑层的多个通光小孔中,所述指纹光信号通过所述多个通光小孔传输至所述指纹传感器以进行指纹检测。
  17. 根据权利要求16所述的光学指纹检测装置,其特征在于,所述微透镜阵列中的每个微透镜对应于每层光阑层中的至少一个通光小孔,以及所述指纹传感器中的至少一个像素单元;
    所述指纹传感器用于接收至少一个方向的指纹光信号,以获取至少一张指纹图像以进行指纹检测。
  18. 根据权利要求1至17中任一项所述的光学指纹检测装置,其特征在于,所述光学指纹检测模组还包括:
    遮光层,其中形成有第一开窗,所述第一开窗设置于所述指纹传感器的第二方向,所述第一开窗用于通过所述指纹光信号以被所述指纹传感器接收,所述第二方向朝向所述电子设备侧面的外侧。
  19. 根据权利要求18所述的光学指纹检测装置,其特征在于,所述光学组件位于所述第一开窗中。
  20. 根据权利要求18或19所述的光学指纹检测装置,其特征在于,所述遮光层中还形成有第二开窗,所述指纹传感器连接所述第一基板的第一引线的顶部区域位于所述第二开窗中。
  21. 根据权利要求20所述的光学指纹检测装置,其特征在于,所述第一引线包覆有引线保护胶,所述遮光层在所述第二方向上的高度不高于所述引线保护胶在所述第二方向上的高度,和/或,所述遮光层在所述第二方向上的高度不高于所述光学组件在所述第二方向上的高度。
  22. 根据权利要求18至21中任一项所述的光学指纹检测装置,其特征在于,所述光学指纹检测装置还包括:
    支撑层,设置于所述第一基板与所述遮光层之间,用于支撑所述遮光层;
    所述支撑层中设置有第三开窗,所述指纹传感器设置于所述第三开窗 中,且所述支撑层在所述第二方向上的高度不高于所述光学组件在所述第二方向上的高度。
  23. 根据权利要求18至22中任一项所述的光学指纹检测装置,其特征在于,所述光学指纹检测装置还包括:
    胶带,所述胶带设置于所述遮光层的所述第二方向,所述胶带中形成有第四开窗,所述第四开窗设置于所述光学组件和所述指纹传感器的所述第二方向,所述第四开窗用于通过所述指纹光信号以被所述光学组件和所述指纹传感器接收,所述第四开窗的面积不小于所述遮光层中所述第一开窗的面积。
  24. 根据权利要求23所述的光学指纹检测装置,其特征在于,所述连接件包括所述胶带、所述支撑层和所述遮光层。
  25. 根据权利要求1至24中任一项所述的光学指纹检测装置,其特征在于,所述盖板的材料为透明材料,或者,所述盖板包括滤光材料,所述滤光材料用于通过目标波段的光信号,滤除非目标波段的光信号。
  26. 根据权利要求1至25中任一项所述的光学指纹检测装置,其特征在于,所述光学指纹检测装置还包括:滤光层,设置于所述盖板和所述指纹传感器之间的光路中,用于通过目标波段的光信号,滤除非目标波段的光信号。
  27. 根据权利要求25或26所述的光学指纹检测装置,其特征在于,所述光源用于发射红外波段的光信号,所述目标波段包括红外波段。
  28. 根据权利要求1至27中任一项所述的光学指纹检测装置,其特征在于,所述容置区域中设置有按键,所述光学指纹检测装置设置于所述按键中。
  29. 根据权利要求28所述的光学指纹检测装置,其特征在于,所述按键仅用于实现指纹检测功能,或者,
    所述按键用于实现指纹检测功能以及所述电子设备的目标功能。
  30. 一种电子设备,其特征在于,包括:
    设置于所述电子设备的侧面的容置区域;以及
    如上述权利要求1至29中任一项所述的光学指纹检测装置,所述光学指纹检测装置设置于所述容置区域。
PCT/CN2020/142593 2020-12-31 2020-12-31 光学指纹检测装置和电子设备 WO2022141603A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142593 WO2022141603A1 (zh) 2020-12-31 2020-12-31 光学指纹检测装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142593 WO2022141603A1 (zh) 2020-12-31 2020-12-31 光学指纹检测装置和电子设备

Publications (1)

Publication Number Publication Date
WO2022141603A1 true WO2022141603A1 (zh) 2022-07-07

Family

ID=82258945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142593 WO2022141603A1 (zh) 2020-12-31 2020-12-31 光学指纹检测装置和电子设备

Country Status (1)

Country Link
WO (1) WO2022141603A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106203412A (zh) * 2015-01-16 2016-12-07 宁波舜宇光电信息有限公司 光学成像装置及其制造方法和应用
CN109564623A (zh) * 2018-10-26 2019-04-02 深圳市汇顶科技股份有限公司 复合透镜结构、指纹识别装置和电子设备
CN109817481A (zh) * 2017-11-21 2019-05-28 上海箩箕技术有限公司 按键结构和电子设备
CN208908034U (zh) * 2018-11-12 2019-05-28 南昌欧菲生物识别技术有限公司 光学指纹模组和电子装置
CN208956098U (zh) * 2018-09-06 2019-06-07 牧东光电科技有限公司 一种侧面指纹识别的全面屏
CN211319252U (zh) * 2019-12-27 2020-08-21 Oppo广东移动通信有限公司 一种电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106203412A (zh) * 2015-01-16 2016-12-07 宁波舜宇光电信息有限公司 光学成像装置及其制造方法和应用
CN109817481A (zh) * 2017-11-21 2019-05-28 上海箩箕技术有限公司 按键结构和电子设备
CN208956098U (zh) * 2018-09-06 2019-06-07 牧东光电科技有限公司 一种侧面指纹识别的全面屏
CN109564623A (zh) * 2018-10-26 2019-04-02 深圳市汇顶科技股份有限公司 复合透镜结构、指纹识别装置和电子设备
CN208908034U (zh) * 2018-11-12 2019-05-28 南昌欧菲生物识别技术有限公司 光学指纹模组和电子装置
CN211319252U (zh) * 2019-12-27 2020-08-21 Oppo广东移动通信有限公司 一种电子设备

Similar Documents

Publication Publication Date Title
US11501555B2 (en) Under-screen biometric identification apparatus and electronic device
US10963667B2 (en) Under-screen biometric identification apparatus and electronic device
US11232317B2 (en) Fingerprint identification apparatus and electronic device
CN110770746B (zh) 指纹识别装置和电子设备
CN109716351B (zh) 指纹识别装置和电子设备
CN111095277B (zh) 光学指纹装置和电子设备
CN212135449U (zh) 指纹识别装置和电子设备
CN210864756U (zh) 光学指纹装置和电子设备
WO2021036703A1 (zh) 一种指纹装置、电子设备及其制造方法
CN211529180U (zh) 指纹检测装置和电子设备
CN209911987U (zh) 指纹识别装置和电子设备
WO2022141603A1 (zh) 光学指纹检测装置和电子设备
WO2022141607A1 (zh) 光学指纹检测装置和电子设备
CN214225937U (zh) 光学指纹检测装置和电子设备
CN214225938U (zh) 光学指纹检测装置和电子设备
WO2022141605A1 (zh) 光学指纹检测装置和电子设备
WO2022141606A1 (zh) 光学指纹检测装置和电子设备
WO2022141604A1 (zh) 光学指纹检测装置和电子设备
CN213958081U (zh) 光学指纹检测装置和电子设备
WO2022056935A1 (zh) 指纹识别装置和电子设备
WO2022056938A1 (zh) 指纹识别装置和电子设备
WO2022056939A1 (zh) 指纹识别装置和电子设备
CN212749865U (zh) 指纹识别装置和电子设备
CN212749868U (zh) 指纹识别装置和电子设备
WO2022056936A1 (zh) 指纹识别装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967941

Country of ref document: EP

Kind code of ref document: A1