WO2022141594A1 - 一种可叠加光路的目镜光学系统及头戴显示装置 - Google Patents

一种可叠加光路的目镜光学系统及头戴显示装置 Download PDF

Info

Publication number
WO2022141594A1
WO2022141594A1 PCT/CN2020/142550 CN2020142550W WO2022141594A1 WO 2022141594 A1 WO2022141594 A1 WO 2022141594A1 CN 2020142550 W CN2020142550 W CN 2020142550W WO 2022141594 A1 WO2022141594 A1 WO 2022141594A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical path
micro
image display
Prior art date
Application number
PCT/CN2020/142550
Other languages
English (en)
French (fr)
Inventor
郭健飞
曹鸿鹏
彭华军
Original Assignee
深圳纳德光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳纳德光学有限公司 filed Critical 深圳纳德光学有限公司
Priority to JP2023539795A priority Critical patent/JP2024502955A/ja
Priority to PCT/CN2020/142550 priority patent/WO2022141594A1/zh
Publication of WO2022141594A1 publication Critical patent/WO2022141594A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems

Definitions

  • the present invention relates to the field of optical technology, and more particularly, to an eyepiece optical system and a head-mounted display device capable of superimposing optical paths.
  • the technical problem to be solved by the present invention is that the existing optical systems are all fixed-focus optical systems, which are difficult to meet the needs of most consumers, and at the same time, the weight of the optical system is too heavy and the volume is too large.
  • An eyepiece optical system and a head-mounted display device that can superimpose optical paths.
  • the technical scheme adopted by the present invention to solve the technical problem is: constructing an eyepiece optical system that can superimpose optical paths, including an image plane, an auxiliary optical path, a beam splitter and a main optical path that are connected in sequence;
  • the optical axis of the auxiliary optical path is coincident;
  • the optical axis of the main optical path and the optical axis of the auxiliary optical path are perpendicular to each other;
  • the optical axis of the main optical path is reflected by the spectroscope and is transmitted through the spectroscope. superimpose;
  • the main optical path includes a first lens, a second lens and a third lens group sequentially arranged along the optical axis from the beam splitter to the micro-image display;
  • the first lens is a positive lens;
  • the second lens is a negative lens a lens;
  • the third lens group is a positive lens group;
  • the third lens group includes a third lens, a fourth lens and a fifth lens sequentially arranged along the optical axis direction from the beam splitter to the micro-image display;
  • the auxiliary optical path includes a sixth lens, a seventh lens and an eighth lens which are sequentially arranged along the optical axis direction from the image plane to the beam splitter;
  • the effective focal length of the optical system is set as F
  • the effective focal length of the main optical path is set as F 1
  • the effective focal length of the auxiliary optical path is set as F 2
  • F, F 1 , and F 2 satisfy the following relational formula (1) ,(2):
  • the effective focal length of the main optical path is F 1
  • the effective focal length of the auxiliary optical path is F 2
  • F 1 and F 2 satisfy the following relational formula (3):
  • the image height of the image plane is set to H
  • the image height of the micro-image display is set to h
  • H and h satisfy the following relational formula (4):
  • the light reflectivity of the spectroscope is set to ⁇
  • the transmittance of the spectroscope is n
  • ⁇ and n satisfy the following relational formula (5):
  • the included angle between the optical axes of the main optical path and the auxiliary optical path is set to ⁇ , and ⁇ satisfies the following relational formula (6):
  • the optical surface of the first lens on the side away from the micro-image display is concave toward the micro-image display, and the optical surface is spherical.
  • the optical surface of the second lens on the side close to the micro-image display is concave toward the direction of the micro-image display, and the optical surface is spherical.
  • the sixth lens is a negative lens; the seventh lens and the eighth lens are positive lenses.
  • optical surface of the sixth lens away from the image plane is cemented with the adjacent optical surface of the seventh lens.
  • the third lens is a biconvex lens; the optical surface of the fourth lens away from the side of the micro-image display is convex toward the direction of the micro-image display; the optical surface of the third lens close to the side of the micro-image display and the fourth lens Adjacent optical faces of the lens are cemented.
  • optical surface of the third lens close to the side of the micro-image display and the optical surface of the side away from the micro-image display are concave toward the micro-image display; the optical surface of the fourth lens away from the side of the micro-image display is concave toward the micro-image display. direction.
  • each lens in the beam splitter, the main optical path and the auxiliary optical path are all optical glass materials.
  • the present invention also provides a head-mounted display device, including a miniature image display, an object shape observation camera device, and the eyepiece optical system according to any one of the foregoing.
  • the miniature image display includes an organic electroluminescence light-emitting device, a transmissive liquid crystal display or a reflective liquid crystal display.
  • the object shape observation imaging device includes but is not limited to a microscope or a telescope.
  • the beneficial effects of the present invention are: superimposing the imaging light by means of semi-transmission and semi-reflection, the optical axis of the main optical path is reflected by the spectroscope and the optical axis of the auxiliary optical path projected by the spectroscope is superimposed, and the image displayed on the miniature image display is displayed.
  • the image of the object shape observation camera is superimposed and displayed with the real image captured by the camera equipment.
  • Fig. 1 is the optical path diagram of the eyepiece optical system of the first embodiment of the present invention
  • FIG. 2a is a field curvature diagram of the eyepiece optical system according to the first embodiment of the present invention
  • FIG. 2b is a distortion curve diagram of the eyepiece optical system according to the first embodiment of the present invention
  • FIG. 3 is a schematic diagram of a diffused spot array of an eyepiece optical system according to the first embodiment of the present invention
  • FIG. 4 is a schematic diagram of the optical transfer function MTF of the eyepiece optical system according to the first embodiment of the present invention.
  • Fig. 5 is the optical path diagram of the eyepiece optical system of the second embodiment of the present invention.
  • FIG. 6a is a field curvature diagram of the eyepiece optical system according to the second embodiment of the present invention
  • FIG. 6b is a distortion curve diagram of the eyepiece optical system according to the second embodiment of the present invention
  • FIG. 7 is a schematic diagram of a speckle array of an eyepiece optical system according to a second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the optical transfer function MTF of the eyepiece optical system according to the second embodiment of the present invention.
  • Fig. 9 is the optical path diagram of the eyepiece optical system of the third embodiment of the present invention.
  • FIG. 10a is a field curvature diagram of the eyepiece optical system according to the third embodiment of the present invention
  • FIG. 10b is a distortion curve diagram of the eyepiece optical system according to the third embodiment of the present invention
  • FIG. 11 is a schematic diagram of a diffused spot array of an eyepiece optical system according to a third embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the optical transfer function MTF of the eyepiece optical system according to the third embodiment of the present invention.
  • the invention constructs an eyepiece optical system capable of superimposing optical paths, including an image plane, an auxiliary optical path, a beam splitter and a main optical path connected in sequence; the optical axis of the image plane coincides with the optical axis of the auxiliary optical path; the optical axis of the main optical path and the auxiliary optical path The optical axes of the optical paths are perpendicular to each other; the optical axis of the main optical path is reflected by the spectroscope and superimposed with the auxiliary optical path transmitted by the spectroscope;
  • the main optical path includes a first lens, a second lens and a third lens group arranged in sequence along the optical axis direction from the beam splitter to the micro-image display;
  • the first lens is a positive lens;
  • the second lens is a negative lens;
  • the third lens group is a positive lens a lens group;
  • the third lens group includes a third lens, a fourth lens and a fifth lens that are sequentially arranged along the optical axis direction from the beam splitter to the micro-image display;
  • the auxiliary optical path includes a sixth lens, a seventh lens and an eighth lens which are sequentially arranged along the optical axis direction from the image plane to the beam splitter;
  • the effective focal length of the optical system is set as F
  • the effective focal length of the main optical path is set as F 1
  • the effective focal length of the auxiliary optical path is set as F 2
  • F, F 1 and F 2 satisfy the following relational expressions (1) and (2):
  • F 1 /F can be 0.558, 0.7, 0.81, 0.833, 0.954, 1.12, 1.32, 1.57, 1.822, etc.
  • F t /F can be 2.265, 2.34, 2.57, 2.67, 2.89, 3.11, 3.32, .3.493, etc.
  • the value ranges of F 1 /F and F t /F in the above relations (1) and (2) are closely related to the correction of system aberration, the processing difficulty of optical components, and the sensitivity of optical component assembly deviation.
  • the value of F 1 /F is greater than -0.558, so that the system aberration can be fully corrected, so as to achieve high-quality optical effects, and the value of F 1 /F is less than 1.822, which improves the machinability of the optical elements in the system;
  • the value of F t /F in (2) is greater than 2.265, which improves the machinability of the optical elements in the system, and the value of F t /F is less than 3.493, so that the system aberration can be fully corrected, thereby achieving better optical effects.
  • the above-mentioned embodiment adopts the characteristics of the spectroscope, in which the optical axis of the main optical path is superimposed with the optical axis of the auxiliary optical path projected by the spectroscope after being reflected by the spectroscope, and the image displayed by the miniature image display is observed with the shape of the object.
  • the real images captured by the camera equipment are superimposed and displayed.
  • the effective focal length of the main optical path is F 1
  • the effective focal length of the auxiliary optical path is F 2
  • F 1 and F 2 satisfy the following relational formula (3):
  • F t /F 1 can be 1.413, 1.512, 1.784, 1.95, 2.111, 2.135, 3.12, 3.354, 3.785, 3.987, 4.12, 4.63 and so on.
  • the image height of the image plane is set to H
  • the image height of the micro-image display is set to h
  • H and h satisfy the following relational expression (4):
  • h/H can be 0.346, 0.461, 0.478, 0.557, 0.578, 0.613, 0.655, 0.689, 0.716 and so on.
  • the light reflectivity of the spectroscope is set to ⁇
  • the transmittance of the spectroscope is n
  • ⁇ and n satisfy the following relational formula (5):
  • ⁇ +n can be 80%, 85%, 88.5%, 89.1%, 91.2%, 99%, 100%, etc.
  • the included angle of the optical axis of the main optical path and the auxiliary optical path is set to ⁇ , and ⁇ satisfies the following relational formula (6):
  • the optical surface of the first lens on the side away from the micro-image display is concave toward the micro-image display, and the optical surface is spherical.
  • the optical surface of the second lens on the side close to the micro-image display is concave toward the micro-image display, and the optical surface is spherical.
  • Aberrations such as astigmatism and field curvature of the system are further improved, which is beneficial for the eyepiece system to achieve high-resolution optical effects with uniform image quality across the entire frame.
  • the sixth lens is a negative lens; the seventh lens and the eighth lens are positive lenses.
  • the optical surface of the sixth lens away from the image plane is cemented with the adjacent optical surface of the seventh lens.
  • the third lens is a biconvex lens; the optical surface of the fourth lens on the side away from the micro-image display is convex toward the micro-image display; the optical surface of the third lens on the side close to the micro-image display is adjacent to the fourth lens Optical face glued.
  • the optical surface of the third lens on the side close to the micro-image display and the optical surface on the side away from the micro-image display are both concave toward the micro-image display; the optical surface of the fourth lens on the side away from the micro-image display is concave toward the micro-image display direction.
  • the base material of each lens in the beam splitter, the main optical path and the auxiliary optical path is made of optical glass.
  • the aberrations of all levels of the eyepiece optical system are fully corrected, and the manufacturing cost of the optical element and the weight of the optical system are also controlled.
  • the calculation formula of the aspheric surface type is:
  • z is the sag of the optical surface
  • c is the curvature at the vertex of the aspheric surface
  • k is the aspheric coefficient
  • ⁇ 2, 4, 6... are the coefficients of each order
  • r is the distance coordinate from the point on the surface to the optical axis of the lens system.
  • the aberrations of the optical system are fully corrected, which is beneficial for the eyepiece optical system to achieve a large field of view .
  • the image quality of the central field of view and the edge of the field of view is further improved, the difference between the image quality of the central field of view and the edge of the field of view is reduced, and a more uniform image quality and low distortion are achieved.
  • FIG. 1 it includes an image plane 103, an auxiliary optical path T, a beam splitter 101 and a main optical path A that are connected in sequence; the optical axis of the image plane 103 coincides with the optical axis of the auxiliary optical path T The optical axis of the main optical path A and the optical axis of the auxiliary optical path T are perpendicular to each other; the optical axis of the main optical path A is reflected by the spectroscope 101 and superimposed with the auxiliary optical path T transmitted by the spectroscope 101 ;
  • the main optical path A includes a first lens 111, a second lens 112, a third lens 113, a fourth lens 114, and a fifth lens 115 that are sequentially arranged along the optical axis direction from the beam splitter 101 to the micro-image display 102;
  • the first lens 111 is a positive lens; the second lens 112 is a negative lens; the auxiliary optical path T includes the fourth lens 109,
  • the light emitted by the micro image display 102 passes through the fifth lens 115 , the fourth lens 114 , the third lens 113 , the second lens 112 and the first lens 111 in sequence, and then is reflected by the beam splitter 101 .
  • the light emitted by the object shape observation imaging device 110 is transmitted through the spectroscope 101, superimposed with the light of the micro-image display 102 reflected by the spectroscope 101, and passes through the sixth lens 107, the fifth lens 108 and the fourth lens 109 in sequence, and reaches Image plane 103.
  • the eyepiece design data of the first embodiment are shown in Table 1 below:
  • FIG. 1 is a 2D structural diagram of the eyepiece optical system of the first embodiment, including an image plane 103, an auxiliary optical path T, a beam splitter 101 and a main optical path A that are connected in sequence; the optical axis of the image plane 103 and the auxiliary optical path The optical axes of T coincide; the optical axis of the main optical path A and the optical axis of the auxiliary optical path T are perpendicular to each other; the optical axis of the main optical path A is reflected by the spectroscope 101 and transmitted through the spectroscope 101
  • the auxiliary optical paths T are superimposed;
  • the main optical path A includes a first lens 111, a second lens 112, a third lens 113, a fourth lens 114 and a first lens 111, a second lens 112, a third lens 113, a fourth lens 114 and The fifth lens 115;
  • the first lens 111 is a positive lens;
  • the second lens 112 is a negative lens;
  • the optical surface of the first lens 111 on the side away from the micro-image display 102 is concave in the direction of the micro-image display 102, and the optical surface is an even-order aspheric surface; the optical surface of the second lens 112 on the side close to the micro-image display 102 is concave Micro-image display 102, and the optical surface is spherical.
  • the base of the optical lens and beam splitter 101 of the optical system is made of optical glass, wherein the focal length F of the optical system is 79.47mm, the focal length F1 of the main optical path A is 100.62mm, the focal length Ft of the auxiliary optical path T is 180mm, and the image plane 103 has an image height H is 23 mm, and the image height of the micro-image display 102 is 8 mm, so F1/F is 1.267, Ft/F is 2.265, Ft/F1 is 1.789, and h/H is 0.348.
  • Fig. 2a, Fig. 2b, Fig. 3, Fig. 4 are the field curvature diagram, the distortion curve diagram, the scattered spot array diagram and the optical transfer function MTF diagram of the optical system, respectively, reflecting that the light of each field of view in this embodiment is
  • the unit pixel of the image plane (display device I) has high resolution and small optical field curvature distortion, the resolution per 10mm per unit period reaches more than 0.8, and the optical system aberration is well corrected. Through the eyepiece optical system Uniform, high optical performance display images can be observed.
  • the eyepiece design data of the second embodiment are shown in Table 2 below:
  • FIG. 5 is a 2D structural diagram of the eyepiece optical system of the second embodiment, including an image plane 103, an auxiliary optical path T, a beam splitter 101 and a main optical path A that are connected in sequence; the optical axis of the image plane 103 and the auxiliary optical path The optical axes of T coincide; the optical axis of the main optical path A and the optical axis of the auxiliary optical path T are perpendicular to each other; the optical axis of the main optical path A is reflected by the spectroscope 101 and transmitted through the spectroscope 101
  • the auxiliary optical paths T are superimposed;
  • the main optical path A includes a first lens 111, a second lens 112, a third lens 113, a fourth lens 114 and a first lens 111, a second lens 112, a third lens 113, a fourth lens 114 and The fifth lens 115;
  • the first lens 111 is a positive lens;
  • the second lens 112 is a negative lens;
  • the optical surface of the first lens 111 on the side away from the micro-image display 102 is concave in the direction of the micro-image display 102, and the optical surface is an even-order aspheric surface; the optical surface of the second lens 112 on the side close to the micro-image display 102 is concave The direction of the micro-image display 102, and the optical surface is spherical.
  • the base of the optical lens and beam splitter 101 of the optical system is made of optical glass, wherein the focal length F of the optical system is 77.48mm, the focal length F1 of the main optical path A is 100.22mm, the focal length Ft of the auxiliary optical path T is 180mm, and the image plane 103 has an image height H is 16.2 mm, and the image height of the micro-image display 102 is 6 mm, so F1/F is 1.29, Ft/F is 2.32, Ft/F1 is 1.80, and h/H is 0.37.
  • Fig. 6a, Fig. 6b, Fig. 7, Fig. 8 are the field curvature diagram, the distortion curve diagram, the scattered spot array diagram and the optical transfer function MTF diagram of the optical system, respectively, reflecting the light of each field of view of this embodiment
  • the unit pixel of the image plane display device I
  • there is a very high resolution and a small optical field curvature distortion the resolution per 20mm per unit period reaches 0.9 or more, and the optical system aberration is well corrected.
  • the system observes a uniform, high optical performance display image.
  • the eyepiece design data of the third embodiment are shown in Table 3 below:
  • FIG. 9 is a 2D structural diagram of the eyepiece optical system of the third embodiment, including an image plane 103, an auxiliary optical path T, a beam splitter 101 and a main optical path A that are connected in sequence; the optical axis of the image plane 103 and the auxiliary optical path The optical axes of T coincide; the optical axis of the main optical path A and the optical axis of the auxiliary optical path T are perpendicular to each other; the optical axis of the main optical path A is reflected by the spectroscope 101 and transmitted through the spectroscope 101
  • the auxiliary optical paths T are superimposed;
  • the main optical path A includes a first lens 111, a second lens 112, a third lens 113, a fourth lens 114 and a first lens 111, a second lens 112, a third lens 113, a fourth lens 114 and The fifth lens 115;
  • the first lens 111 is a positive lens;
  • the second lens 112 is a negative lens;
  • the optical surface of the first lens 111 on the side away from the micro-display screen is concave to the micro-image display 102, and the optical surface is an even-order aspherical surface; the optical surface of the second lens 112 on the side of the micro-image display 102 is concave to the micro-image display Display 102, and the optical surface is spherical.
  • the base of the optical lens and beam splitter 101 of the optical system is made of optical glass, wherein the focal length F of the optical system is 65.17mm, the focal length F1 of the main optical path A is 107.96mm, the focal length Ft of the auxiliary optical path T is 180mm, and the image plane 103 has an image height H is 23.5 mm, and the image height of the micro-image display 102 is 16.2 mm, so F1/F is 1.65, Ft/F is 2.76, Ft/F1 is 1.67, and h/H is 0.69.
  • Fig. 10a, Fig. 10b, Fig. 11, Fig. 12 are the field curvature diagram, the distortion curve diagram, the scattered spot array diagram and the optical transfer function MTF diagram of the optical system, respectively, reflecting the light of each field of view of this embodiment
  • the unit pixel of the image plane display device I
  • there is a very high resolution and a small optical field curvature distortion the resolution per 20mm per unit period reaches 0.9 or more, and the optical system aberration is well corrected.
  • the system observes a uniform, high optical performance display image.
  • the present invention also provides a head-mounted display device, including a miniature image display, an object shape observation camera device, and an eyepiece optical system according to any one of the foregoing.
  • the miniature image display comprises an organic electroluminescent light emitting device, a transmissive liquid crystal display or a reflective liquid crystal display.
  • the object shape observation imaging device includes but is not limited to a microscope or a telescope.
  • the above-mentioned head-mounted display device adopts an eyepiece optical system that can superimpose optical paths.
  • the system uses a transflective method to superimpose the imaging light rays.
  • the optical axis of the main optical path is reflected by the spectroscope and the auxiliary optical path projected by the spectroscope.
  • the superposition of the optical axis of the micro-image display and the real image captured by the object shape observation camera equipment are superimposed and displayed, and the high-definition coincidence is achieved through the combination of positive, negative and positive lenses and the characteristic relationship between the optical components.
  • High-efficiency, clearer imaging, less distortion, and high imaging quality make the imaging of the miniature image display and the double-optical path imaging overlap more perfect and realistic.
  • the user can explain, analyze and process the images of the optical instrument through the multiple imaging overlay display, so that people who are not proficient in the optical instrument can make a better judgment on the operation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种可叠加光路的目镜光学系统及头戴显示装置,目镜光学系统包括依次相接的像面(103)、辅助光路(T)、分光镜(101)以及主光路(A);像面(103)的光轴与辅助光路(T)的光轴重合;主光路(A)的光轴与辅助光路(T)的光轴相互垂直;主光路(A)的光轴经分光镜(101)反射并与经分光镜(101)透射的辅助光路(T)叠加;主光路(A)包括从分光镜(101)至微型图像显示器(102)沿光轴方向依次排列的第一透镜(111)、第二透镜(112)和第三透镜组(116);第一透镜(111)为正透镜;第二透镜(105)为负透镜;第三透镜组(116)为正透镜组;第三透镜组(116)包括从分光镜(101)至微型图像显示器(102)沿光轴方向依次排列的第三透镜(113)、第四透镜(114)以及第五透镜(115);辅助光路(T)包括从像面(103)至分光镜(101)沿光轴方向依次排列的第六透镜(109)、第七透镜(108)和第八透镜(107);将微型图像显示器(102)所显示的图像与物体外形观测摄像设备摄取的实物图像进行叠加显示,配合各光学部件之间的特征关系,具有成像更为清晰,畸变小,成像质量高的特点。

Description

一种可叠加光路的目镜光学系统及头戴显示装置 技术领域
本发明涉及光学技术领域,更具体地说,涉及一种可叠加光路的目镜光学系统及头戴显示装置。
背景技术
随着科学技术的不断提高,人们对一些高端光学仪器仪表的使用也越加频繁,但是目前市场的很多光学仪器仪表对使用者有着特殊的要求,需要使用者自身具有相关知识储备才能够熟悉使用,这就大大收小了使用人群。
例如,在对于光学行业的业余爱好者使用望远镜、夜视仪等光学成像仪器的过程中,使用者往往对其所观测到的物体有所陌生,需要不停借助书籍或者上网设备进行查询才能得知所观测的物体的信息,甚至可能存在查询不到对应物体信息的情况出现。这种情况导致使用者在使用过程中需要花费大量时间去查询资料,大大降低了使用者对高端仪器的使用兴趣。
随着使用高端光学仪器仪表的人群增加,高端光学仪器仪表的入门门槛需要得到降低。如何在不改变仪器原有的使用功能的同时,又能便于使用者熟悉使用成为主要的挑战。
发明内容
本发明要解决的技术问题在于现有的光学系统均为定焦光学系统,难以满足大部分消费者的需求,同时光学系统的重量偏重体积偏大,针对现有技术的 上述缺陷,提供一种可叠加光路的目镜光学系统及头戴显示装置。
本发明解决其技术问题所采用的技术方案是:构造一种可叠加光路的目镜光学系统,包括依次相接的像面、辅助光路、分光镜以及主光路;所述像面的光轴与所述辅助光路的光轴重合;所述主光路的光轴与所述辅助光路的光轴相互垂直;所述主光路的光轴经所述分光镜反射并与经所述分光镜透射的辅助光路叠加;
所述主光路包括从所述分光镜至微型图像显示器沿光轴方向依次排列的第一透镜、第二透镜以及第三透镜组;所述第一透镜为正透镜;所述第二透镜为负透镜;所述第三透镜组为正透镜组;所述第三透镜组包括从所述分光镜至微型图像显示器沿光轴方向依次排列的第三透镜、第四透镜以及第五透镜;
所述辅助光路包括从所述像面至所述分光镜沿光轴方向依次排列的第六透镜、第七透镜以及第八透镜;
所述光学系统的有效焦距设为F,所述主光路的有效焦距设为F 1,所述辅助光路的有效焦距设为F 2,且F、F 1、F 2满足下列关系式(1)、(2):
0.558≤F 1/F≤1.822   (1);
2.265≤F t/F≤3.493   (2)。
进一步地,所述主光路的有效焦距为F 1,所述辅助光路的有效焦距为F 2,且F 1、F 2满足下列关系式(3):
1.413≤F t/F 1≤4.63   (3)。
进一步地,所述像面的像高设为H,所述微型图像显示器的像高设为h,且H、h满足下列关系式(4):
0.346≤h/H≤0.716   (4)。
进一步地,所述分光镜的光线反射率设为μ,所述分光镜的透射率为n, 且μ、n足下列关系式(5):
80%≤μ+n≤100%   (5)。
进一步地,所述主光路与所述辅助光路的光轴夹角设为θ,且θ满足下列关系式(6):
θ<180°   (6)。
进一步地,所述第一透镜远离所述微型图像显示器侧的光学面凹向微型图像显示器方向,且该光学面为球面面型。
进一步地,所述第二透镜靠近微型图像显示器侧的光学面凹向微型图像显示器方向,且该光学面为球面面型。
进一步地,所述第六透镜为负透镜;所述第七透镜和所述第八透镜为正透镜。
进一步地,所述第六透镜远离像面侧的光学面与所述第七透镜的相邻光学面胶合。
进一步地,非球面面型计算公式为:
Figure PCTCN2020142550-appb-000001
进一步地,所述第三透镜为双凸透镜;所述第四透镜远离微型图像显示器侧的光学面凸向微型图像显示器方向;所述第三透镜靠近微型图像显示器侧的光学面与所述第四透镜的相邻光学面胶合。
进一步地,所述第三透镜靠近微型图像显示器侧的光学面以及远离微型图像显示器侧的光学面均凹向微型图像显示器;所述第四透镜远离微型图像显示器侧的光学面凹向微型图像显示器方向。
进一步地,所述分光镜、所述主光路以及所述辅助光路内各透镜的基底材 质均为光学玻璃材质。
本发明还提供一种头戴显示装置,包括微型图像显示器以及物体外形观测摄像设备,还包括如前述中任一项所述的目镜光学系统。
进一步地,所述微型图像显示器包括有机电致发光发光器件、透射式液晶显示器或反射式液晶显示器。
进一步地,所述物体外形观测摄像设备包括但不限于显微镜或望远镜。
本发明的有益效果在于:采用通过半透半反的方式进行成像光线的叠加,主光路的光轴通过分光镜反射后与经分光镜投射的辅助光路的光轴叠加,将微型图像显示器所显示的图像与物体外形观测摄像设备摄取的实物图像进行叠加显示,通过正、负、正的透镜组合以及各光学部件之间的特征关系,达到高清重合度高效果,成像更为清晰,畸变小,成像质量高的特点,使微型图像显示器的成像与双光路成像重叠更为完美逼真。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将结合附图及实施例对本发明作进一步说明,下面描述中的附图仅仅是本发明的部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图:
图1是本发明第一实施例的目镜光学系统光路图;
图2a是本发明第一实施例的目镜光学系统场曲图,图2b是本发明第一实施例的目镜光学系统畸变曲线图;
图3是本发明第一实施例的目镜光学系统弥散斑阵列示意图;
图4是本发明第一实施例的目镜光学系统光学传递函数MTF示意图;
图5是本发明第二实施例的目镜光学系统光路图;
图6a是本发明第二实施例的目镜光学系统场曲图,图6b是本发明第二实施例的目镜光学系统畸变曲线图;
图7是本发明第二实施例的目镜光学系统弥散斑阵列示意图;
图8是本发明第二实施例的目镜光学系统光学传递函数MTF示意图;
图9是本发明第三实施例的目镜光学系统光路图;
图10a是本发明第三实施例的目镜光学系统场曲图,图10b是本发明第三实施例的目镜光学系统畸变曲线图;
图11是本发明第三实施例的目镜光学系统弥散斑阵列示意图;
图12是本发明第三实施例的目镜光学系统光学传递函数MTF示意图。
具体实施方式
为了使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的部分实施例,而不是全部实施例。基于本发明的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
本发明构造一种可叠加光路的目镜光学系统,包括依次相接的像面、辅助光路、分光镜以及主光路;像面的光轴与辅助光路的光轴重合;主光路的光轴与辅助光路的光轴相互垂直;主光路的光轴经分光镜反射并与经分光镜透射的辅助光路叠加;
主光路包括从分光镜至微型图像显示器沿光轴方向依次排列的第一透镜、第二透镜以及第三透镜组;第一透镜为正透镜;第二透镜为负透镜;第三透镜 组为正透镜组;第三透镜组包括从分光镜至微型图像显示器沿光轴方向依次排列的第三透镜、第四透镜以及第五透镜;
辅助光路包括从像面至分光镜沿光轴方向依次排列的第六透镜、第七透镜以及第八透镜;
光学系统的有效焦距设为F,主光路的有效焦距设为F 1,辅助光路的有效焦距设为F 2,且F、F 1、F 2满足下列关系式(1)、(2):
0.558≤F 1/F≤1.822   (1);
2.265≤F t/F≤3.493   (2)。
其中,F 1/F可取值为0.558、0.7、0.81、0.833、0.954、1.12、1.32、1.57、1.822等等,F t/F可取值为2.265、2.34、2.57、2.67、2.89、3.11、3.32、.3.493等等。
上述关系式(1)、(2)中F 1/F和F t/F的取值范围对系统像差的校正、光学元件的加工难度、以及光学元件装配偏差的灵敏度密切相关,关系式(1)中F 1/F的取值大于-0.558,使系统像差得以充分校正,从而实现优质的光学效果,其取值小于1.822,改善了所述系统中光学元件的可加工性;关系式(2)中的F t/F取值大于2.265,改善了所述系统中光学元件的可加工性,其取值小于3.493,使系统像差得以充分校正,从而实现更加优质的光学效果。
上述实施例采用分光镜半透半反的特性,其中,主光路的光轴通过分光镜反射后与经分光镜投射的辅助光路的光轴叠加,将微型图像显示器所显示的图像与物体外形观测摄像设备摄取的实物图像进行叠加显示,通过正、负、正的透镜组合以及各光学部件之间的特征关系,达到高清重合度高效果,成像更为清晰,畸变小,成像质量高的特点,使微型图像显示器的成像与双光路成像重叠更为完美逼真。
在进一步的实施例中,主光路的有效焦距为F 1,辅助光路的有效焦距为F 2,且F 1、F 2满足下列关系式(3):
1.413≤F t/F 1≤4.63   (3)。
其中,F t/F 1可取值为1.413、1.512、1.784、1.95、2.111、2.135、3.12、3.354、3.785、3.987、4.12、4.63等等。
在进一步的实施例中,像面的像高设为H,微型图像显示器的像高设为h,且H、h满足下列关系式(4):
0.346≤h/H≤0.716   (4)。
其中,h/H可取值为0.346、0.461、0.478、0.557、0.578、0.613、0.655、0.689、0.716等等。
在进一步的实施例中,分光镜的光线反射率设为μ,分光镜的透射率为n,且μ、n足下列关系式(5):
80%≤μ+n≤100%   (5)。
其中,μ+n可取值为80%、85%、88.5%、89.1%、91.2%、99%、100%等。
在进一步的实施例中,主光路与辅助光路的光轴夹角设为θ,且θ满足下列关系式(6):
θ<180°   (6)。
在进一步的实施例中,第一透镜远离微型图像显示器侧的光学面凹向微型图像显示器方向,且该光学面为球面面型。
在进一步的实施例中,第二透镜靠近微型图像显示器侧的光学面凹向微型图像显示器方向,且该光学面为球面面型。
进一步改善了系统的像散和场曲等像差,有利于目镜系统实现全画幅均匀像质的高分辨率光学效果。
在进一步的实施例中,第六透镜为负透镜;第七透镜和第八透镜为正透镜。
在进一步的实施例中,第六透镜远离像面侧的光学面与第七透镜的相邻光学面胶合。
在进一步的实施例中,第三透镜为双凸透镜;第四透镜远离微型图像显示器侧的光学面凸向微型图像显示器方向;第三透镜靠近微型图像显示器侧的光学面与第四透镜的相邻光学面胶合。
在进一步的实施例中,第三透镜靠近微型图像显示器侧的光学面以及远离微型图像显示器侧的光学面均凹向微型图像显示器;第四透镜远离微型图像显示器侧的光学面凹向微型图像显示器方向。
在进一步的实施例中,分光镜、主光路以及辅助光路内各透镜的基底材质均为光学玻璃材质。
使得所述目镜光学系统的各级像差得到充分校正的同时,又控制了光学元件的制造成本和光学系统的重量。
在进一步的实施例中,非球面面型计算公式为:
Figure PCTCN2020142550-appb-000002
其中,z为光学面的矢高,c为非球面顶点处曲率,k为非球面系数,α2,4,6…为各阶系数,r为曲面上点到透镜系统光轴的距离坐标。
使所述光学系统的像差(包括球差、慧差、畸变、场曲、像散、色差和其它高阶像差)得到充分的校正,有利于所述目镜光学系统在实现大视场角、大孔径的同时,进一步提升中心视场和边缘视场的图像质量、缩小中心视场和边缘视场图像质量的差别,实现更均匀的图像质量和低畸变。
下面通过更加具体的实施例对上述目镜光学系统的原理、方案及显示结果 进行更进一步的阐述。
以下实施例中,如图1所示,包括依次相接的像面103、辅助光路T、分光镜101以及主光路A;所述像面103的光轴与所述辅助光路T的光轴重合;所述主光路A的光轴与所述辅助光路T的光轴相互垂直;所述主光路A的光轴经所述分光镜101反射并与经所述分光镜101透射的辅助光路T叠加;所述主光路A包括从所述分光镜101至微型图像显示器102沿光轴方向依次排列的第一透镜111、第二透镜112、第三透镜113、第四透镜114、第五透镜115;所述第一透镜111为正透镜;所述第二透镜112为负透镜;所述辅助光路T包括从所述像面103至所述分光镜101沿光轴方向依次排列的第四透镜109、第五透镜108以及第六透镜107;像面103可以为目镜光学系统成像的出瞳,为一个虚拟的出光孔径,可以观察到最佳的成像效果。微型图像显示器102发出的光,依次经过第五透镜115、第四透镜114、第三透镜113、第二透镜112和第一透镜111后,经过分光镜101反射。物体外形观测摄像设备110发出的光线经过分光镜101透射,与经分光镜101反射的微型图像显示器102的光线叠加,并依次经过第六透镜107、第五透镜108和第四透镜109后,到达像面103。
第一实施例
所述第一实施例目镜设计数据如下表一所示:
表一
Figure PCTCN2020142550-appb-000003
Figure PCTCN2020142550-appb-000004
表一
附图1为第一实施例目镜光学系统的2D结构图,包括依次相接的像面103、辅助光路T、分光镜101以及主光路A;所述像面103的光轴与所述辅助光路T的光轴重合;所述主光路A的光轴与所述辅助光路T的光轴相互垂直;所述主光路A的光轴经所述分光镜101反射并与经所述分光镜101透射的辅助光路T叠加;所述主光路A包括从所述分光镜101至微型图像显示器102沿光轴方向依次排列的第一透镜111、第二透镜112、第三透镜113、第四透镜114和第五透镜115;所述第一透镜111为正透镜;所述第二透镜112为负透镜;所述辅助光路T包括从所述像面103至所述分光镜101沿光轴方向依次排列的第四透镜109、第五透镜108以及第六透镜107;所述主光路A与所述辅助光路T的光轴夹角设为θ,θ角小于180°。第一透镜111远离微型图像显示器102侧的光学面为凹向微型图像显示器102方向,且该光学面为偶次非球面面型;第二透镜112靠近微型图像显示器102侧的光学面为凹向微型图像显示器102,且该光学面为球面面型。本光学系统光学透镜和分光镜101基底为光学玻璃材质,其中光学系统的焦距F为79.47mm,主光路A的焦距F 1为100.62mm,辅助光路T的焦距Ft为180mm,像面103像高H为23mm,微型图像显示器102像高为8mm,则F1/F为1.267,Ft/F为2.265,Ft/F1为1.789,h/H为0.348。
附图2a、附图2b、附图3、附图4分别为该光学系统场曲图、畸变曲线图、弥散斑阵列图及光学传递函数MTF图,反映出了本实施例各个视场光线在像平面(显示器件I)的单位像素内有着很高的分辨率及很小的光学场曲畸变,单位周期每10mm分辨率达到0.8以上,光学系统像差得到良好校正,通过所述目镜光学系统可观察到均匀、高光学性能的显示画像。
第二实施例
所述第二实施例目镜设计数据如下表二所示:
表二
Figure PCTCN2020142550-appb-000005
附图5为第二实施例目镜光学系统的2D结构图,包括依次相接的像面103、辅助光路T、分光镜101以及主光路A;所述像面103的光轴与所述辅助光路T的光轴重合;所述主光路A的光轴与所述辅助光路T的光轴相互垂直; 所述主光路A的光轴经所述分光镜101反射并与经所述分光镜101透射的辅助光路T叠加;所述主光路A包括从所述分光镜101至微型图像显示器102沿光轴方向依次排列的第一透镜111、第二透镜112、第三透镜113、第四透镜114和第五透镜115;所述第一透镜111为正透镜;所述第二透镜112为负透镜;所述辅助光路T包括从所述像面103至所述分光镜101沿光轴方向依次排列的第四透镜109、第五透镜108以及第六透镜107;所述主光路A与所述辅助光路T的光轴夹角设为θ,θ角小于180°。第一透镜111远离微型图像显示器102侧的光学面为凹向微型图像显示器102方向,且该光学面为偶次非球面面型;第二透镜112靠近微型图像显示器102侧的光学面为凹向微型图像显示器102方向,且该光学面为球面面型。本光学系统光学透镜和分光镜101基底为光学玻璃材质,其中光学系统的焦距F为77.48mm,主光路A的焦距F 1为100.22mm,辅助光路T的焦距Ft为180mm,像面103像高H为16.2mm,微型图像显示器102像高为6mm,则F1/F为1.29,Ft/F为2.32,Ft/F1为1.80,h/H为0.37。
附图6a、附图6b、附图7、附图8分别为该光学系统的场曲图、畸变曲线图、弥散斑阵列图及光学传递函数MTF图,反映出了本实施例各个视场光线在像平面(显示器件I)的单位像素内有着很高的分辨率及很小的光学场曲畸变,单位周期每20mm分辨率达到0.9以上,光学系统像差得到良好校正,通过所述目镜光学系统可观察到均匀、高光学性能的显示画像。
第三实施例
所述第三实施例目镜设计数据如下表三所示:
表三
Figure PCTCN2020142550-appb-000006
附图9为第三实施例目镜光学系统的2D结构图,包括依次相接的像面103、辅助光路T、分光镜101以及主光路A;所述像面103的光轴与所述辅助光路T的光轴重合;所述主光路A的光轴与所述辅助光路T的光轴相互垂直;所述主光路A的光轴经所述分光镜101反射并与经所述分光镜101透射的辅助光路T叠加;所述主光路A包括从所述分光镜101至微型图像显示器102沿光轴方向依次排列的第一透镜111、第二透镜112、第三透镜113、第四透镜114和第五透镜115;所述第一透镜111为正透镜;所述第二透镜112为负透镜;所述辅助光路T包括从所述像面103至所述分光镜101沿光轴方向依次排列的第四透镜109、第五透镜108以及第六透镜107;所述主光路A与所述辅助光路T的光轴夹角设为θ,θ角小于180°。第一透镜111远离微显示屏侧的光 学面为凹向微型图像显示器102,且该光学面为偶次非球面面型;第二透镜112靠近微型图像显示器102侧的光学面为凹向微型图像显示器102,且该光学面为球面面型。本光学系统光学透镜和分光镜101基底为光学玻璃材质,其中光学系统的焦距F为65.17mm,主光路A的焦距F 1为107.96mm,辅助光路T的焦距Ft为180mm,像面103像高H为23.5mm,微型图像显示器102像高为16.2mm,则F1/F为1.65,Ft/F为2.76,Ft/F1为1.67,h/H为0.69。
附图10a、附图10b、附图11、附图12分别为该光学系统的场曲图、畸变曲线图、弥散斑阵列图及光学传递函数MTF图,反映出了本实施例各个视场光线在像平面(显示器件I)的单位像素内有着很高的分辨率及很小的光学场曲畸变,单位周期每20mm分辨率达到0.9以上,光学系统像差得到良好校正,通过所述目镜光学系统可观察到均匀、高光学性能的显示画像。
上述实施例一至三的各项数据均满足发明内容中所记录的参数要求,结果如下表四所示:
表四
  F 1/F Ft/F Ft/F 1 h/H
实施例一 1.27 2.27 1.79 0.35
实施例二 1.29 2.32 1.80 0.37
实施例三 1.66 2.76 1.67 0.69
本发明还提供一种头戴显示装置,包括微型图像显示器以及物体外形观测摄像设备,还包括如前述中任一项的目镜光学系统。
优选地,微型图像显示器包括有机电致发光发光器件、透射式液晶显示器或反射式液晶显示器。
优选地,物体外形观测摄像设备包括但不限于显微镜或望远镜。
上述头戴显示装置采用一种可叠加光路的目镜光学系统,该系统采用通过半透半反的方式进行成像光线的叠加,主光路的光轴通过分光镜反射后与经分光镜投射的辅助光路的光轴叠加,将微型图像显示器所显示的图像与物体外形观测摄像设备摄取的实物图像进行叠加显示,通过正、负、正的透镜组合以及各光学部件之间的特征关系,达到高清重合度高效果,成像更为清晰,畸变小,成像质量高的特点,使微型图像显示器的成像与双光路成像重叠更为完美逼真。
在具体实际应用中,使用者通过多重成像叠加显示,对光学仪器仪表所成像进行讲解分析处理,让对该光学仪器仪表不精通的人员也能更好的进行操作做出判断。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (15)

  1. 一种可叠加光路的目镜光学系统,其特征在于:包括依次相接的像面、辅助光路、分光镜以及主光路;所述像面的光轴与所述辅助光路的光轴重合;所述主光路的光轴与所述辅助光路的光轴相互垂直;所述主光路的光轴经所述分光镜反射并与经所述分光镜透射的辅助光路叠加;
    所述主光路包括从所述分光镜至微型图像显示器沿光轴方向依次排列的第一透镜、第二透镜以及第三透镜组;所述第一透镜为正透镜;所述第二透镜为负透镜;所述第三透镜组为正透镜组;所述第三透镜组包括从所述分光镜至微型图像显示器沿光轴方向依次排列的第三透镜、第四透镜以及第五透镜;
    所述辅助光路包括从所述像面至所述分光镜沿光轴方向依次排列的第六透镜、第七透镜以及第八透镜;
    所述光学系统的有效焦距设为F,所述主光路的有效焦距设为F 1,所述辅助光路的有效焦距设为F 2,且F、F 1、F 2满足下列关系式(1)、(2):
    0.558≤F 1/F≤1.822  (1);
    2.265≤F t/F≤3.493  (2)。
  2. 根据权利要求1所述的可叠加光路的目镜光学系统,其特征在于,所述主光路的有效焦距为F 1,所述辅助光路的有效焦距为F 2,且F 1、F 2满足下列关系式(3):
    1.413≤F t/F 1≤4.63  (3)。
  3. 根据权利要求1所述的可叠加光路的目镜光学系统,其特征在于,所述像面的像高设为H,所述微型图像显示器的像高设为h,且H、h满足下列关系式(4):
    0.346≤h/H≤0.716  (4)。
  4. 根据权利要求1所述的可叠加光路的目镜光学系统,其特征在于,所述分光镜的光线反射率设为μ,所述分光镜的透射率为n,且μ、n足下列关系式(5):
    80%≤μ+n≤100%  (5)。
  5. 根据权利要求1所述的可叠加光路的目镜光学系统,其特征在于,所述主光路与所述辅助光路的光轴夹角设为θ,且θ满足下列关系式(6):
    θ<180°  (6)。
  6. 根据权利要求1所述的可叠加光路的目镜光学系统,其特征在于,所述第一透镜远离所述微型图像显示器侧的光学面凹向微型图像显示器方向,且该光学面为球面面型。
  7. 根据权利要求1所述的可叠加光路的目镜光学系统,其特征在于,所述第二透镜靠近微型图像显示器侧的光学面凹向微型图像显示器方向,且该光学面为球面面型。
  8. 根据权利要求1所述的可叠加光路的目镜光学系统,其特征在于,所述第六透镜为负透镜;所述第七透镜和所述第八透镜为正透镜。
  9. 根据权利要求1所述的可叠加光路的目镜光学系统,其特征在于,所述第六透镜远离像面侧的光学面与所述第七透镜的相邻光学面胶合。
  10. 根据权利要求1所述的可叠加光路的目镜光学系统,其特征在于,所述第三透镜为双凸透镜;所述第四透镜远离微型图像显示器侧的光学面凸向微型图像显示器方向;所述第三透镜靠近微型图像显示器侧的光学面与所述第四透镜的相邻光学面胶合。
  11. 根据权利要求1所述的可叠加光路的目镜光学系统,其特征在于,所 述第三透镜靠近微型图像显示器侧的光学面以及远离微型图像显示器侧的光学面均凹向微型图像显示器;所述第四透镜远离微型图像显示器侧的光学面凹向微型图像显示器方向。
  12. 根据权利要求1所述的可叠加光路的目镜光学系统,其特征在于,所述分光镜、所述主光路以及所述辅助光路内各透镜的基底材质均为光学玻璃材质。
  13. 一种头戴显示装置,包括微型图像显示器以及物体外形观测摄像设备,其特征在于,还包括如权利要求1-12中任一项所述的目镜光学系统。
  14. 根据权利要求13所述的头戴显示装置,其特征在于,所述微型图像显示器包括有机电致发光发光器件、透射式液晶显示器或反射式液晶显示器。
  15. 根据权利要求13所述的头戴显示装置,其特征在于,所述物体外形观测摄像设备包括但不限于显微镜或望远镜。
PCT/CN2020/142550 2020-12-31 2020-12-31 一种可叠加光路的目镜光学系统及头戴显示装置 WO2022141594A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023539795A JP2024502955A (ja) 2020-12-31 2020-12-31 光路を重ね合せることができる接眼レンズ光学システム及び頭部装着型表示装置
PCT/CN2020/142550 WO2022141594A1 (zh) 2020-12-31 2020-12-31 一种可叠加光路的目镜光学系统及头戴显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142550 WO2022141594A1 (zh) 2020-12-31 2020-12-31 一种可叠加光路的目镜光学系统及头戴显示装置

Publications (1)

Publication Number Publication Date
WO2022141594A1 true WO2022141594A1 (zh) 2022-07-07

Family

ID=82258938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142550 WO2022141594A1 (zh) 2020-12-31 2020-12-31 一种可叠加光路的目镜光学系统及头戴显示装置

Country Status (2)

Country Link
JP (1) JP2024502955A (zh)
WO (1) WO2022141594A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8149403B2 (en) * 2008-02-22 2012-04-03 Olympus Corporation Optical equipment having wavelength-independent optical path division element
CN106338831A (zh) * 2016-08-31 2017-01-18 深圳超多维科技有限公司 图像显示装置及头戴式显示设备
CN106338830A (zh) * 2016-08-31 2017-01-18 深圳超多维科技有限公司 图像显示装置及头戴式显示设备
CN109188692A (zh) * 2018-09-21 2019-01-11 歌尔智能科技有限公司 光学系统及头戴显示设备
CN111474723A (zh) * 2020-05-09 2020-07-31 Oppo广东移动通信有限公司 显示光学系统及头戴显示设备
CN112666712A (zh) * 2020-12-31 2021-04-16 深圳纳德光学有限公司 一种可叠加光路的目镜光学系统及头戴显示装置
CN213934406U (zh) * 2020-12-31 2021-08-10 深圳纳德光学有限公司 一种可叠加光路的目镜光学系统及头戴显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8149403B2 (en) * 2008-02-22 2012-04-03 Olympus Corporation Optical equipment having wavelength-independent optical path division element
CN106338831A (zh) * 2016-08-31 2017-01-18 深圳超多维科技有限公司 图像显示装置及头戴式显示设备
CN106338830A (zh) * 2016-08-31 2017-01-18 深圳超多维科技有限公司 图像显示装置及头戴式显示设备
CN109188692A (zh) * 2018-09-21 2019-01-11 歌尔智能科技有限公司 光学系统及头戴显示设备
CN111474723A (zh) * 2020-05-09 2020-07-31 Oppo广东移动通信有限公司 显示光学系统及头戴显示设备
CN112666712A (zh) * 2020-12-31 2021-04-16 深圳纳德光学有限公司 一种可叠加光路的目镜光学系统及头戴显示装置
CN213934406U (zh) * 2020-12-31 2021-08-10 深圳纳德光学有限公司 一种可叠加光路的目镜光学系统及头戴显示装置

Also Published As

Publication number Publication date
JP2024502955A (ja) 2024-01-24

Similar Documents

Publication Publication Date Title
CN108474946B (zh) 用于近眼显示的目镜光学系统及头戴显示装置
US20170371147A1 (en) Eyepiece optical system with large field-of-view angle and head-mounted display apparatus
CN108604007B (zh) 用于近眼显示的目镜光学系统及头戴显示装置
CN213934402U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN214011639U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112630973A (zh) 一种大视场角的目镜光学系统及头戴显示装置
WO2017022670A1 (ja) 接眼光学系および電子ビューファインダー
CN213934403U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN214041889U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112630977A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112630976A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112731666A (zh) 一种大视场角的目镜光学系统及头戴显示装置
WO2022141385A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112630975B (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112764221B (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN213934399U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN213934405U (zh) 一种可叠加光路的目镜光学系统及头戴显示装置
CN213934404U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN213934401U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112630979A (zh) 一种可叠加光路的目镜光学系统及头戴显示装置
CN108463762B (zh) 用于近眼显示的目镜光学系统及头戴显示装置
WO2021102685A1 (zh) 一种大视场角高像质的目镜光学系统及设备
CN213934406U (zh) 一种可叠加光路的目镜光学系统及头戴显示装置
WO2022141594A1 (zh) 一种可叠加光路的目镜光学系统及头戴显示装置
CN108463761B (zh) 用于近眼显示的目镜光学系统及头戴显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967932

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539795

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967932

Country of ref document: EP

Kind code of ref document: A1