WO2022141486A1 - 光学防抖驱动器、取像模组及电子设备 - Google Patents

光学防抖驱动器、取像模组及电子设备 Download PDF

Info

Publication number
WO2022141486A1
WO2022141486A1 PCT/CN2020/142348 CN2020142348W WO2022141486A1 WO 2022141486 A1 WO2022141486 A1 WO 2022141486A1 CN 2020142348 W CN2020142348 W CN 2020142348W WO 2022141486 A1 WO2022141486 A1 WO 2022141486A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting surface
clamping
substrate
optical anti
driving
Prior art date
Application number
PCT/CN2020/142348
Other languages
English (en)
French (fr)
Inventor
谢岳霖
Original Assignee
欧菲光集团股份有限公司
南昌欧菲光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 南昌欧菲光电技术有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2020/142348 priority Critical patent/WO2022141486A1/zh
Publication of WO2022141486A1 publication Critical patent/WO2022141486A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing

Definitions

  • the present application relates to the technical field of optical image stabilization, and in particular, to an optical image stabilization driver, a camera module and an electronic device.
  • the anti-shake function is mainly realized by the movement of the optical lens driven by a voice coil motor (Voice Coil Motor, VCM).
  • VCM Voice Coil Motor
  • the inventor found that there are at least the following problems in the prior art: due to the voice coil The motor drives the photosensitive chip to zoom along the optical axis through the internal magnets and coils to achieve anti-shake.
  • This anti-shake method will cause the camera module to be too large, which will increase the volume of the electronic equipment using the camera module.
  • the existing voice coil motor drives the optical component to rotate, it is necessary to design a guiding structure for the optical component to ensure the accuracy of the rotational movement of the optical component.
  • this requires adding additional components, further This leads to an increase in the volume of the camera module.
  • Embodiments of the present application provide an optical anti-shake driver, including:
  • a base plate with a first mounting surface, and the first mounting surface is connected with an optical component
  • the driving part is connected with the moving part and is used for driving the moving part to move along a straight line and driving the base plate to rotate.
  • the above-mentioned optical anti-shake driver drives the moving member to drive the optical assembly to move in a straight line and drives the substrate and the optical assembly to rotate, so as to compensate for the rotation of the lens, with high compensation accuracy, better anti-shake effect, and high image quality.
  • the structure is simple and the volume is small, which is beneficial to realize the thinning and miniaturization of electronic equipment.
  • the embodiment of the present application also provides a camera module, comprising:
  • the optical assembly is connected to the first mounting surface of the base plate, and the base plate can drive the optical assembly to rotate when the base plate rotates.
  • the above-mentioned camera module includes an optical anti-shake driver, and the optical anti-shake driver drives the moving part through the driver to drive the optical assembly to move in a straight line and drive the substrate and the optical assembly to rotate to compensate for the rotation of the lens, with high compensation precision and anti-shake.
  • the shaking effect is good, the imaging quality is high, the structure is simple, and the volume is small, which is beneficial to realize the thinning and miniaturization of electronic equipment.
  • the embodiment of the present application also provides an electronic device, including:
  • the camera module is arranged on the body.
  • the above-mentioned electronic equipment includes an optical anti-shake driver, and the optical anti-shake driver drives the moving part to drive the optical assembly to move in a straight line and drives the substrate and the optical assembly to rotate, so as to perform anti-shake compensation for the rotation of the lens, and the compensation precision is high.
  • the anti-shake effect is good, the image quality is high, the structure is simple, and the volume is small, which is beneficial to realize the lightness and miniaturization of electronic equipment.
  • FIG. 1 is a schematic diagram of an assembly structure of an optical anti-shake driver and an optical assembly provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an exploded structure of the optical anti-shake driver shown in FIG. 1 .
  • Fig. 3 is a schematic structural diagram of a moving part and a substrate in an embodiment of the optical anti-shake driver shown in Fig. 2 .
  • FIG. 4 is a schematic structural diagram of the moving part and the substrate in the optical anti-shake driver shown in FIG. 2 in another embodiment.
  • FIG. 5 is a schematic three-dimensional structural diagram of a camera module provided by an embodiment of the present application.
  • FIG. 6 is a schematic three-dimensional structural diagram of an electronic device provided by an embodiment of the present application.
  • the first clip 211 The first clip 211
  • a component when a component is said to be “electrically connected” to another component, it may be directly on the other component or there may also be an intervening component.
  • a component when a component is considered to be “electrically connected” to another component, it can be a contact connection, eg, by means of a wire connection, or a contactless connection, eg, by a contactless coupling.
  • an embodiment of the present application provides an optical anti-shake driver 100 for controlling the rotation of the optical assembly 300 to compensate for the rotation of the lens.
  • the optical anti-shake driver 100 can control the optical assembly 300 to rotate a corresponding angle counterclockwise.
  • the optical anti-shake driver 100 controls the optical assembly 300 to rotate 45 degrees counterclockwise, so as to realize the rotation of the lens. compensation to ensure image quality.
  • the optical anti-shake driver 100 includes a substrate 10 , a moving part 20 and a driving part 30 .
  • the substrate 10 may be an ellipse or a polygon, wherein the polygon includes a triangle, a quadrilateral, a pentagon, a hexagon, etc., but is not limited thereto.
  • the substrate 10 is a quadrilateral.
  • the substrate 10 has a first mounting surface 11 , the first mounting surface 11 is a plane, and the first mounting surface 11 is connected with the optical component 300 .
  • the moving member 20 is roughly in the shape of a rectangular plate, and it can be understood that the moving member 20 can also be a circle, a square, a polygon, a special shape, or the like. But not limited to this.
  • the moving member 20 is connected to one side of the substrate 10 .
  • the driving member 30 is connected with the moving member 20 for driving the moving member 20 to move in a straight line and driving the base plate 10 to rotate.
  • the substrate 10 is provided with a protruding structure 12 at a position close to the moving member 20
  • the protruding structure 12 is a block structure.
  • the protruding structure 211 can also be spherical, cylindrical, etc., but is not limited thereto.
  • a clamping structure 21 for clamping the protruding structure 12 is provided at the position of the moving member 20 close to the substrate 10 .
  • the protruding structure 12 can also be a pyramid-shaped structure, a pyramid-shaped structure, etc., but is not limited thereto.
  • the base plate 10 and the protruding structure 12 are integral structures, and the moving member 20 and the clamping structure 21 are integral structures.
  • the base plate 10 and the protruding structure 12 are integral structures, and the moving member 20 and the clamping structure 21 are separate structures.
  • the substrate 10 and the protruding structure 12 are separate structures, and the moving member 20 and the clamping structure 21 are integral structures.
  • the substrate 10 and the protruding structure 12 are separate structures, and the moving member 20 and the clamping structure 21 are separate structures.
  • the clamping structure 21 has certain elasticity.
  • the clamping structure 21 includes a first clamping piece 211 and a second clamping piece 212 arranged oppositely, a gap exists between the first clamping piece 211 and the second clamping piece 212, and one end of the protruding structure 12 protrudes into the gap, and The first clip 211 and the second clip 212 are respectively abutted.
  • the clip structure 21 has elasticity, that is, the first clip 211 and the second clip 212 are both elastic, when the moving member 20 moves, the first clip 211 and the second clip 212 are elastic.
  • the position where the first clip 211 and the second clip 212 clamp the protruding structure 12 will also be elastically deformed, thereby driving the protruding structure 12 and the substrate 10 to rotate in a small range, thereby driving the optical assembly 300 to rotate, so as to adjust the position of the lens. Rotation to compensate.
  • the bottom of the moving member 20 is provided with an accommodating groove 22
  • the accommodating groove 22 is a groove with a substantially rectangular cross section.
  • the first clip 211 and the second clip 212 are disposed oppositely in the accommodating groove 22 at the bottom of the moving member 20 , and one end of the first clip 211 and the second clip 212 are respectively connected to the opposite groove walls of the accommodating groove 22 .
  • the other end protrudes out of the side of the moving member 20 close to the substrate 10
  • one end of the protruding structure 12 protrudes into the gap between the first clip 211 and the second clip 212 .
  • the first clip 211 and the second clip 212 are both arc-shaped spring clips.
  • the first clip 211 and the second clip 212 are both springs, one end of one spring is vertically connected to the groove wall of the accommodating slot 22, the other end extends toward the other spring, and the two There is a gap between the two springs, one end of the protruding structure 12 protrudes into the gap between the two springs, wherein the ends of the two springs that are close to each other abut on opposite sides of the protruding structure 12 .
  • the clamping structure 22 is a cylindrical rubber.
  • the setting position and connection relationship of the rubber are the same as those of the spring, which will not be repeated here.
  • a position of the clamping structure 21 close to the protruding structure 12 is provided with a receiving groove 213 , and the receiving groove 213 has a first clamping surface 2131 and a second clamping surface opposite to each other 2132, the first clamping surface 2131 and the second clamping surface 2132 are both flat surfaces, and the shape of the gap formed between the first clamping surface 2131 and the second clamping surface 2132 is adapted to the shape of the protruding structure 12, One end of the protruding structure 12 protrudes into the receiving groove 213 and abuts against the first clamping surface 2131 and the second clamping surface 2132 respectively.
  • the clamping structure 21 is a long strip of rubber.
  • the position of the moving member 20 close to the base plate 10 is provided with the protruding structure 12
  • the position of the base plate 10 close to the moving member 20 is provided with a clamping structure 21 for clamping the protruding structure 12
  • the protruding structure 12 can drive the clamping structure 21 and the substrate 10 to rotate when the protruding structure 12 follows the moving member 20 to move in a straight line.
  • the protruding structure 12 and the structure and number of the clamping structures 21 in this embodiment are the same as the structure and number of the protruding structure 12 and the clamping structure 21 in the above-mentioned embodiment. Therefore, details are not repeated in this embodiment.
  • the protruding structure 12 is an integral structure with the moving member 20
  • the clamping structure 21 is an integral structure with the substrate 10 . Understandably, in other embodiments, the protruding structure 12 and the moving member 20 are integral structures, and the clamping structure 21 and the substrate 10 are separate structures. Understandably, in other embodiments, the protruding structure 12 and the moving member 20 are separate structures, and the clamping structure 21 and the substrate 10 are integral structures.
  • the protruding structure 12 and the moving member 20 are separate structures, and the clamping structure 21 and the substrate 10 are separate structures.
  • the protruding structure 12 and the moving member 20 are set as separate structures, and the clamping structure 21 and the base plate 10 are set as separate structures. When one of them is damaged, only the damaged one needs to be replaced, and the maintenance cost is low.
  • the protruding structure 12 and the moving part 20 are set as an integrated structure, and the clamping structure 21 and the base plate 10 are set as an integrated structure, the protruding structure 12 and the base plate 10, and the installation of the clamping structure 21 and the moving part 20 are omitted steps for easy installation.
  • the optical image stabilization drive 100 also includes a carrier 40 .
  • the carrier 40 has a substantially rectangular plate shape.
  • the carrier 40 is arranged on the side of the substrate 10 away from the optical assembly, the driving member 30 is arranged on the carrier 40, and the side of the substrate 10 close to the carrier 40 also has a second mounting surface 13 opposite to the first mounting surface 11.
  • the surface 13 is a plane, wherein the second mounting surface 13 and the first mounting surface 11 are opposite surfaces of the substrate 10 .
  • the side of the carrier 40 opposite to the second mounting surface 13 has a first mounting surface 41 , and the first mounting surface 41 is flat.
  • the second mounting surface 13 has a protruding shaft structure 14
  • the first mounting surface 41 has a shaft hole structure 42 rotatably connected with the protruding shaft structure 14 .
  • the protruding shaft structure 14 and the shaft hole structure 42 are both annular structures, wherein the shaft hole structure 42 may be a blind hole structure or a through hole structure.
  • the second mounting surface 13 has a shaft hole structure 42
  • the first mounting surface 41 has a protruding shaft structure 14 rotatably connected with the shaft hole structure 42 .
  • the protruding shaft structure 14 and the shaft hole structure 42 are both annular structures, wherein the shaft hole structure 42 can be a blind hole structure or a through hole structure.
  • the protruding shaft structure 14 and the shaft hole structure 42 are used together to ensure the rotation accuracy of the carrier 40 and improve the rotation stabilization compensation effect of the optical assembly 300 .
  • the substrate 10 further has an outer side surface 15 of the substrate formed between the first mounting surface 11 and the second mounting surface 13, and the optical anti-shake driver 100 further includes a limiting portion 50, and the limiting portion 50 has a block-like structure.
  • the limiting portion 50 is cylindrical, spherical, etc., but not limited thereto.
  • the limiting portion 50 is disposed on the carrier 40 and is spaced apart from the outer side surface 15 of the substrate. In this way, when the rotation angle of the substrate 10 is relatively large, the outer side surface 15 of the substrate stops at the limiting portion 50 , thereby limiting the rotation angle of the substrate 10 .
  • the limiting portion 50 and the carrier 40 are integral structures. It is understood that in other embodiments, the limiting portion 50 and the carrier 40 are separate structures. In this way, the limiting portion 50 and the carrier 40 are set as a separate structure, when one of them is damaged, only the damaged one needs to be replaced, and the maintenance cost is low; The installation steps of the limiting portion 50 and the carrier 40 are eliminated, and the installation is convenient.
  • the side of the carrier 40 away from the substrate 10 also has a second mounting surface 43 , the second mounting surface 43 is flat, the first mounting surface 41 and the second mounting surface 43 are arranged oppositely, and the carrier 40 also has a second mounting surface 43 formed on the first mounting surface.
  • the limiting portion 50 is installed on the outer side surface 44 of the carrier.
  • the limiting portion 50 is a limiting block, and the limiting block is adhered to the outer side surface 44 of the carrier through glue. It can be understood that, in other embodiments, the limiting block can also be fixed on the outer side surface 44 of the carrier by welding, clamping or the like.
  • the moving member 20 has a substantially block-like structure.
  • the driving member 30 includes a fixing part 31 and a driving part 32 .
  • the fixing portion 31 is provided on the outer side surface 44 of the carrier 40 .
  • the driving part 32 is connected to the fixed part 31 and the moving part 20 respectively.
  • a fixing hole is formed on the side of the moving member 20 close to the fixing portion 31 .
  • the fixing hole can be a through hole or a blind hole.
  • One end of the driving portion 32 is inserted into the fixing hole and is connected to the fixing hole.
  • the holes are fitted with interference, so as to realize the fixed connection between the driving part 32 and the moving part 20 .
  • one end of the driving part 32 is fixedly connected to one side of the moving member 20 by welding.
  • connection between the driving part 32 and the moving member 20 may also adopt other fixed connection methods, such as gluing, etc., which are not specifically limited herein.
  • the driving part 32 and the fixing part 31 are integral structures, and in this case, the driving member 30 is a piezoelectric ceramic rod.
  • the driving part 32 and the fixing part 31 are separate structures. In this case, the driving part 32 and the fixing part 31 can form a lead screw nut driving structure.
  • the driving member 30 includes, but is not limited to, a Stepping Motor (SM), a Voice Coil Motor (VCM), a Piezoelectric Motor (PM), and a Micro Electro-Mechanical System (Micro Electromechanical System).
  • SM Stepping Motor
  • VCM Voice Coil Motor
  • PM Piezoelectric Motor
  • Micro Electro-Mechanical System Micro Electro-Mechanical System
  • the first driving member 30 is a voice coil motor
  • the fixed part 31 is a stator on the outer side 44 of the carrier
  • the driving part 32 is a mover which is connected to the moving part 20 and can drive the moving part 20 to move in a straight line.
  • the optical anti-shake driver 100 further includes a conducting member (not shown), the conducting member is disposed on one side of the driving member, one end of the conducting member is electrically connected to the driving part 32 of the driving member 30, and the other end is connected to an external circuit. In this way, the conduction between the driving member 30 and the external circuit can be realized.
  • the optical component 300 is a circuit board and a photosensitive chip arranged on the circuit board, and the other end of the conduction member is connected to the circuit on the circuit board.
  • Conductors include, but are not limited to, wires.
  • the fixing portion 31 is disposed on the first mounting surface 41 of the carrier 40 .
  • the above-mentioned optical anti-shake driver 100 drives the moving member 20 through the driving member 30 to drive the optical assembly to move in a straight line and drives the substrate 10 and the optical assembly 300 to rotate, so as to compensate for the rotation of the lens, with high compensation accuracy, good anti-shake effect, and imaging.
  • the quality is high, the structure is simple, and the volume is small, which is beneficial to realize the thinning and miniaturization of electronic equipment.
  • an embodiment of the present application further provides a camera module 400 , which includes an optical anti-shake driver 100 , a housing 200 and an optical assembly 300 .
  • the casing 200 has a light-passing hole 210 , and the optical anti-shake driver 100 is installed in the casing 200 .
  • the optical assembly 300 is connected to the first mounting surface 11 of the base plate 10 , and the base plate 10 can drive the optical assembly 300 to rotate when the base plate 10 rotates.
  • the camera module 400 further includes a lens 310 , and the lens 310 is fixedly connected to the light-passing hole 210 of the housing 210 .
  • the above-mentioned camera module 400 includes an optical anti-shake driver 100.
  • the optical anti-shake driver 100 drives the moving member 20 through the driving member 30 to drive the optical assembly 300 to move in a straight line and drives the substrate 10 and the optical assembly 300 to rotate, so as to compensate for the rotation of the lens. , high compensation precision, good anti-shake effect, high imaging quality, simple structure and small volume, which is conducive to realizing the lightness and miniaturization of electronic equipment.
  • an embodiment of the present application also proposes an electronic device 600 .
  • the electronic device 600 includes but is not limited to a smartphone, a tablet computer, a notebook computer, an electronic book reader, a portable multimedia player (PMP), a portable phone electronic devices that support imaging, such as cameras, video phones, digital still cameras, mobile medical devices, and wearable devices.
  • PMP portable multimedia player
  • the electronic device 600 includes the above-mentioned camera module 400 and the main body 500 ; the camera module 400 is arranged on the main body 500 .
  • the electronic device 600 is a smart phone.
  • the above-mentioned electronic device 600 includes an optical anti-shake driver 100.
  • the optical anti-shake driver 100 drives the moving member 20 through the driving member 30 to drive the lens to rotate along a straight line and drive the substrate 10 and the optical assembly 300 to rotate, so as to compensate for the rotation of the lens. It has high precision, good anti-shake effect, high imaging quality, simple structure and small volume, which is conducive to realizing the lightness and miniaturization of electronic equipment.

Abstract

一种光学防抖驱动器(100),包括:基板(10),具有第一安装面(11),第一安装面(11)连接有光学组件(300);移动件(20),连接于基板(10)的一侧;及驱动件(30),与移动件(20)连接,用于驱动移动件(20)沿直线运动并带动基板(10)转动。光学防抖驱动器(100)通过驱动件(30)驱动移动件(20)沿直线运动并带动基板(10)转动,来实现光学组件(300)的旋转防抖补偿。补偿精度高,防抖效果较好,成像质量较高,并且结构简单,体积较小,利于实现电子设备的轻薄化与小型化。同时,还提供摄像模组(400)及电子设备(600)。

Description

光学防抖驱动器、取像模组及电子设备 技术领域
本申请涉及光学防抖技术领域,尤其涉及一种光学防抖驱动器、摄像模组及电子设备。
背景技术
近年来,电子产品、智能设备等产品越来越多地朝向小型化和高性能的方向发展,消费者对这类产品的摄像模组的尺寸和成像能力都提出了更加苛刻的要求。这也造成现有产品中绝大部分都在追求摄像模组的紧凑型和功能集成化,而防抖功能就是在这种发展浪潮中被集成到摄像模组中去的,以实现摄像模组的防抖功能。
现有技术中防抖功能主要是通过音圈电机(Voice Coil Motor,VCM)驱动光学镜头运动来实现,在实现本申请的过程中,发明人发现现有技术中至少存在如下问题:由于音圈电机是通过内部的磁铁和线圈来驱动感光芯片沿光轴运动进行变焦以实现防抖,这种防抖方式会导致摄像模组体积过大,从而使得使用该摄像模组的电子设备的体积增大,难以做到轻质便携;同时,现有的音圈马达驱动光学组件进行旋转时需要针对光学组件设计导向结构,以保证光学组件旋转运动的精度,然而,这需要增加额外的部件,进一步导致摄像模组体积增大。
发明内容
有鉴于此,有必要提供一种光学防抖驱动器、摄像模组及电子设备,以解决上述问题。
本申请实施例提供一种光学防抖驱动器,包括:
基板,具有第一安装面,所述第一安装面连接有光学组件;
移动件,连接于所述基板的一侧;及
驱动件,与所述移动件连接,用于驱动所述移动件沿直线运动并带动所述基板转动。
上述的光学防抖驱动器通过驱动件驱动移动件带动光学组件沿直线运动并带动基板及光学组件转动,以对镜头的旋转进行补偿,补偿精度高,防抖效果较好,成像质量较高,并且结构简单,体积较小,利于实现电子设备的轻薄化与小型化。
本申请实施例还提供一种摄像模组,包括:
如上述的光学防抖驱动器;
壳体,具有一通光孔,所述光学防抖驱动器安装在所述壳体内;及
光学组件,连接在所述基板的所述第一安装面,所述基板在转动时可带动所述光学组件转动。
上述的摄像模组包括光学防抖驱动器,所述光学防抖驱动器通过驱动件驱动移动件带动光学组件沿直线运动并带动基板及光学组件转动,以对镜头的旋转进行补偿,补偿精度高,防抖效果较好,成像质量较高,并且结构简单,体积较小,利于实现电子设备的轻薄化与小型化。
本申请实施例还提供一种电子设备,包括:
本体;及
如上述的摄像模组,所述摄像模组设置在所述本体。
上述的电子设备包括光学防抖驱动器,所述光学防抖驱动器通过驱动件驱动移动件带动光学组件沿直线运动并带动基板及光学组件转动,以对镜头的旋转进行防抖补偿,补偿精度高,防抖效果较好,成像质量较高,并且结构简单,体积较小,利于实现电子设备的轻薄化与小型化。
附图说明
图1为本申请实施例提供的光学防抖驱动器和光学组件的装配结构示意图。
图2为图1所示的光学防抖驱动器的分解结构示意图。
图3为图2所示的光学防抖驱动器中的移动件和基板在一实施例中的结构 示意图。
图4为图2所示的光学防抖驱动器中的移动件和基板在另一实施例中的结构示意图。
图5为本申请实施例提供的摄像模组的立体结构示意图。
图6为本申请实施例提供的电子设备的立体结构示意图。
主要元件符号说明
光学防抖驱动器              100
基板                        10
第一安装面                  11
凸伸结构                    12
第二安装面                  13
凸轴结构                    14
基板外侧面                  15
移动件                      20
夹持结构                    21
第一夹片                    211
第二夹片                    212
收容槽                      213
第一夹持面                  2131
第二夹持面                  2132
容置槽                      22
驱动件                      30
固定部                      31
驱动部                      32
载体                        40
第一装配面                  41
轴孔结构                    42
第二装配面                  43
载体外侧面                  44
限位部                      50
壳体                        200
通光孔                      210
光学组件                    300
镜头                        310
摄像模组                    400
本体                        500
电子设备                    600
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当一个组件被称为“电连接”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“电连接”另一个组件,它可以是接触连接,例如,可以是导线连接的方式,也可以是非接触式连接,例如,可以是非接触式耦合的方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,本申请实施例提供一种光学防抖驱动器100,用于控制光学组件300进行旋转,以对镜头的转动进行补偿,具体地,当镜头由于外界因素顺 时针转动一定角度时,光学防抖驱动器100可控制光学组件300逆时针转动相应角度,例如,拍摄过程中,镜头顺时针转动45度,光学防抖驱动器100控制光学组件300逆时针转动45度,以实现镜头的旋转进行补偿,保证成像质量。光学防抖驱动器100包括基板10、移动件20及驱动件30。
请参见图2,基板10可以为椭圆形或多边形,其中多边形包括三角形、四边形、五边形、六边形等,但不限于此,具体到本实施例中,基板10为四边形。基板10具有第一安装面11,第一安装面11为平面,第一安装面11连接有光学组件300。移动件20大致为矩形板状,可以理解地,移动件20也可为圆形、方形、多边形、异形等。但不限于此。移动件20连接于基板10的一侧。驱动件30与移动件20连接,用于驱动移动件20沿直线运动并带动基板10转动。
请一并参见图3,基板10的靠近移动件20的位置设有凸伸结构12,凸伸结构12为块状结构。可以理解地,凸伸结构211也可为球形、圆柱状等,但不限于此。移动件20的靠近基板10的位置设有用于夹持凸伸结构12的夹持结构21,夹持结构21跟随移动件20沿直线运动时可带动凸伸结构12及基板10转动。可以理解地,在其他实施例中,凸伸结构12也可为棱锥状、棱台状等结构,但不限于此。
在本实施例中,基板10和凸伸结构12为一体结构,移动件20和夹持结构21为一体结构。
可以理解地,在其他的实施例中,基板10和凸伸结构12为一体结构,移动件20和夹持结构21为分体结构。
可以理解地,在其他的实施例中,基板10和凸伸结构12为分体结构,移动件20和夹持结构21为一体结构。
可以理解地,在其他的实施例中,基板10和凸伸结构12为分体结构,移动件20和夹持结构21为分体结构。
如此,将凸伸结构12与基板10设置为分体结构,以及夹持结构21与移动件20设置为分体结构时,当其中一者损坏时,只需更换损坏的一者,维修成本较低;将凸伸结构12与基板10设置为一体结构,以及夹持结构21与移动件20设置为一体结构时,省略了凸伸结构12与基板10,以及夹持结构21与移动件 20的安装步骤,方便安装。
夹持结构21具有一定的弹性。夹持结构21包括相对设置的第一夹片211和第二夹片212,第一夹片211和第二夹片212之间存在间隙,凸伸结构12的一端凸伸至该间隙内,且分别抵接第一夹片211和第二夹片212,如此,由于夹持结构21具有弹性,也即,第一夹片211和第二夹片212均具有弹性,移动件20运动时,第一夹片211和第二夹片212夹持凸伸结构12的位置也会发生弹性形变,从而带动凸伸结构12及基板10在小范围内旋转,进而带动光学组件300转动,以对镜头的旋转进行补偿。
具体地,移动件20的底部设有容置槽22,容置槽22为截面大致呈矩形的槽。第一夹片211和第二夹片212相对设置在移动件20底部的容置槽22内,且第一夹片211和第二夹片212的一端分别连接容置槽22的相对的槽壁,另一端凸伸出移动件20的靠近基板10的侧边,凸伸结构12的一端凸伸第一夹片211和第二夹片212之间的间隙中。
在本实施例中,第一夹片211和第二夹片212均为弧形的弹簧片。
可以理解地,在其他的实施例中,第一夹片211和第二夹片212均为弹簧,其中一个弹簧的一端垂直连接容置槽22的槽壁,另一端朝另一弹簧延伸,两个弹簧之间存在间隙,凸伸结构12的一端凸伸至两个弹簧之间的间隙中,其中两个弹簧的相互靠近的一端抵持在凸伸结构12的相对两侧。
可以理解地,在其他的实施例中,夹持结构22为圆柱状的橡胶。橡胶的设置位置和连接关系与弹簧相同,在此不再赘述。
在本申请的另一实施例中,请参见图4,夹持结构21靠近凸伸结构12的位置设有收容槽213,收容槽213具有相对的第一夹持面2131和第二夹持面2132,第一夹持面2131和第二夹持面2132均为平面,第一夹持面2131和第二夹持面2132之间形成的间隙的形状与凸伸结构12的外形相适配,凸伸结构12的一端凸伸至收容槽213内,且分别抵接第一夹持面2131和第二夹持面2132。如此,由于夹持结构21具有弹性,凸伸结构12在移动时,第一夹持面2131和第二夹持面2132会发生形变从而使得夹持结构21发生弹性形变,进而夹持结构21带动基板10在小范围内旋转,带动光学组件300转动,以对镜头的旋转进行补偿。 具体地,夹持结构21为长条状的橡胶。
可以理解地,在其他的实施例中,移动件20的靠近基板10的位置设有凸伸结构12,基板10的靠近移动件20的位置设有用于夹持凸伸结构12的夹持结构21,凸伸结构12跟随移动件20沿直线运动时可带动夹持结构21及基板10转动。
需要说明的是,该实施例中的凸伸结构12的结构,以及夹持结构21的结构和数量跟上述实施例中的凸伸结构12的结构,以及夹持结构21的结构和数量相同,故该实施例中不再赘述。在该实施例中,凸伸结构12与移动件20为一体结构,夹持结构21与基板10为一体结构。可以理解地,在其他的实施例中,凸伸结构12与移动件20为一体结构,夹持结构21与基板10为分体结构。可以理解地,在其他的实施例中,凸伸结构12与移动件20为分体结构,夹持结构21与基板10为一体结构。可以理解地,在其他的实施例中,凸伸结构12与移动件20为分体结构,夹持结构21与基板10为分体结构。如此,将凸伸结构12与移动件20设置为分体结构,以及夹持结构21与基板10设置为分体结构,当其中一者损坏时,只需更换损坏的一者,维修成本较低;将凸伸结构12与移动件20设置为一体结构,以及夹持结构21与基板10设置为一体结构时,省略了凸伸结构12与基板10,以及夹持结构21与移动件20的安装步骤,方便安装。
光学防抖驱动器100还包括载体40。载体40大致为矩形板状。载体40设于基板10背离光学组件的一侧,驱动件30设于载体40上,基板10靠近载体40的一侧还具有与第一安装面11相对设置的第二安装面13,第二安装面13为平面,其中第二安装面13和第一安装面11为基板10的相对的表面。载体40的与第二安装面13相对的一侧具有第一装配面41,第一装配面41为平面。
在一些实施例中,第二安装面13具有一凸轴结构14,第一装配面41具有与凸轴结构14转动连接的轴孔结构42。具体到本实施例中,凸轴结构14和轴孔结构42均为圆环状结构,其中轴孔结构42可为盲孔结构,也可为通孔结构。
可以理解地,在其他的实施例中,第二安装面13具有轴孔结构42,第一装配面41具有与轴孔结构42转动连接的凸轴结构14。具体到该实施例中,凸轴 结构14和轴孔结构42均为圆环状结构,其中轴孔结构42可为盲孔结构,也可为通孔结构。
如此,凸轴结构14和轴孔结构42配合使用,保证了载体40的转动精度,提升了光学组件300的旋转防抖补偿的效果。
基板10还具有形成于第一安装面11和第二安装面13之间的基板外侧面15,光学防抖驱动器100还包括限位部50,限位部50位块状结构,可以理解地,在其他的实施例中,限位部50位圆柱状、球形等,但不限于此。限位部50设于载体40,且与基板外侧面15间隔设置。如此,当基板10的转动角度较大时,基板外侧面15挡止在限位部50,从而限制了基板10的转动角度。
在本实施例中,限位部50和载体40为一体结构,可以理解地,在其他的实施例中,限位部50和载体40为分体结构。如此,将限位部50与载体40设置为分体结构,当其中一者损坏时,只需更换损坏的一者,维修成本较低;将限位部50与载体40设置为一体结构,省略了限位部50与载体40的安装步骤,方便安装。
载体40的背离基板10的一侧还具有一第二装配面43,第二装配面43为平面,第一装配面41和第二装配面43相对设置,载体40还具有形成于第一装配面41和第二装配面43之间的载体外侧面44,限位部50安装于载体外侧面44。具体到本实施例中,限位部50为限位块,限位块通过胶粘接在载体外侧面44。可以理解地,在其他的实施例中,限位块也可通过焊接、卡接等方式固定在载体外侧面44。
移动件20大致为块状结构。
驱动件30包括固定部31和驱动部32。
固定部31设置在载体40的载体外侧面44。驱动部32分别与固定部31和移动件20连接。在本实施例中,移动件20的靠近固定部31的一侧开设形成有固定孔,固定孔可为通孔,也可为盲孔,驱动部32的一端插设于固定孔内且与固定孔过盈配合,以实现驱动部32和移动件20的固定连接。在一些实施例中,驱动部32的一端通过焊接的方式固定连接在移动件20的一侧。可以理解地,驱动部32和移动件20的连接还可采用其他的固定连接方式,例如胶粘等,在 此不作具体限制。在一些实施例中,驱动部32和固定部31为一体式结构,此时,驱动件30为压电陶瓷杆。在一些实施例中,驱动部32和固定部31为分体式结构,此时,驱动部32和固定部31可组成丝杠螺母驱动结构。在一些实施例中,驱动件30包括但不限于是步进马达(Stepping Motor,SM)、音圈马达(Voice Coil Motor,VCM)、压电马达(Piezoelectric Motor,PM)和微机电系统(Micro-electromechanical Systems,MEMS)。例如,当第一驱动件30为音圈马达时,固定部31为载体外侧面44的定子,驱动部32为动子,动子与移动件20连接,并可带动移动件20沿直线运动。可以理解地,图示中的结构仅为示意,并不代表实际结构。其他马达的连接关系与音圈马达类似,故不再做具体说明。
光学防抖驱动器100还包括导通件(图未示),导通件设于驱动件的一侧,导通件的一端与驱动件30的驱动部32电连接,另一端与外部电路连接。如此,可实现驱动件30与外部电路的导通,在图1中,光学组件300为电路板和设置在电路板上的感光芯片,导通件的另一端与电路板上的电路连接。导通件包括但不限于为导线。
可以理解地,在其他的实施例中,固定部31设置在载体40的的第一装配面41。
上述的光学防抖驱动器100通过驱动件30驱动移动件20带动光学组件沿直线运动并带动基板10及光学组件300转动,以对镜头的旋转进行补偿,补偿精度高,防抖效果较好,成像质量较高,并且结构简单,体积较小,利于实现电子设备的轻薄化与小型化。
请参见图5,本申请实施例还提出了一种摄像模组400,包括光学防抖驱动器100、壳体200及光学组件300。
壳体200具有一通光孔210,光学防抖驱动器100安装在壳体200内。
光学组件300连接在基板10的第一安装面11,基板10在转动时可带动光学组件300转动。在图5中,摄像模组400还包括镜头310,镜头310固定连接在壳体210的通光孔210处。
上述的摄像模组400包括光学防抖驱动器100,光学防抖驱动器100通过驱动件30驱动移动件20带动光学组件300沿直线运动并带动基板10及光学组件 300转动,以对镜头的旋转进行补偿,补偿精度高,防抖效果较好,成像质量较高,并且结构简单,体积较小,利于实现电子设备的轻薄化与小型化。
请参见图6,本申请实施例还提出了一种电子设备600,电子设备600包括但不限于为智能手机、平板电脑、笔记本电脑、电子书籍阅读器、便携多媒体播放器(PMP)、便携电话机、视频电话机、数码静物相机、移动医疗装置、可穿戴式设备等支持成像的电子设备。
电子设备600包括上述摄像模组400和本体500;摄像模组400设置在本体500。在本实施例中,电子设备600为智能手机。
上述的电子设备600包括光学防抖驱动器100,光学防抖驱动器100通过驱动件30驱动移动件20带动镜头转动沿直线运动并带动基板10及光学组件300转动,以对镜头的旋转进行补偿,补偿精度高,防抖效果较好,成像质量较高,并且结构简单,体积较小,利于实现电子设备的轻薄化与小型化。
以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。本领域技术人员还可在本申请精神内做其它变化等用在本申请的设计,只要其不偏离本申请的技术效果均可。这些依据本申请精神所做的变化,都应包含在本申请所要求保护的范围之内。

Claims (13)

  1. 一种光学防抖驱动器,其特征在于,包括:
    基板,具有第一安装面,所述第一安装面连接有光学组件;
    移动件,连接于所述基板的一侧;及
    驱动件,与所述移动件连接,用于驱动所述移动件沿直线运动并带动所述基板转动。
  2. 如权利要求1所述的光学防抖驱动器,其特征在于,所述基板的靠近所述移动件的位置设有凸伸结构,所述移动件的靠近所述基板的位置设有用于夹持所述凸伸结构的夹持结构,所述夹持结构具有弹性,所述夹持结构跟随所述移动件沿直线运动时可带动所述凸伸结构及所述基板转动。
  3. 如权利要求1所述的光学防抖驱动器,其特征在于,所述移动件的靠近所述基板的位置设有凸伸结构,所述基板的靠近移动件的位置设有用于夹持所述凸伸结构的夹持结构,所述夹持结构具有弹性,所述凸伸结构跟随所述移动件沿直线运动时可带动所述夹持结构及所述基板转动。
  4. 如权利要求2或3所述的光学防抖驱动器,其特征在于,所述夹持结构包括第一夹片和第二夹片,所述第一夹片和所述第二夹片之间存在间隙,所述凸伸结构的一端凸伸至所述间隙内,且分别抵接所述第一夹片和所述第二夹片。
  5. 如权利要求2或3所述的光学防抖驱动器,其特征在于,所述夹持结构的靠近所述凸伸结构的位置设有收容槽,所述收容槽具有相对的第一夹持面和第二夹持面,所述凸伸结构的一端凸伸至所述收容槽内,且分别抵接所述第一夹持面和所述第二夹持面。
  6. 如权利要求1所述的光学防抖驱动器,其特征在于,还包括:
    载体,设于所述基板背离所述光学组件的一侧,所述驱动件设于所述载体上,所述基板靠近所述载体的一侧还具有与所述第一安装面相对设置的第二安装面,所述载体的与所述第二安装面相对的一侧具有第一装配面;
    所述第二安装面具有一凸轴结构,所述第一装配面具有与所述凸轴结构转动连接的轴孔结构;或者所述第二安装面具有轴孔结构,所述第一装配面具有与所述轴孔结构转动连接的凸轴结构。
  7. 如权利要求6所述的光学防抖驱动器,其特征在于,所述基板为椭圆形或多边形,所述基板还具有形成于所述第一安装面和所述第二安装面之间的基板外侧面,所述光学防抖驱动器还包括限位部,所述限位部设于所述载体,且与所述基板外侧面间隔设置。
  8. 如权利要求7所述的光学防抖驱动器,其特征在于,所述载体的背离所述基板的一侧还具有一第二装配面,所述第一装配面和所述第二装配面相对设置,所述载体还具有形成于所述第一装配面和所述第二装配面之间的载体外侧面,所述限位部安装于所述载体外侧面。
  9. 如权利要求8所述的光学防抖驱动器,其特征在于,所述限位部为限位块,所述限位块通过胶粘接在所述载体外侧面。
  10. 如权利要求1所述的光学防抖驱动器,其特征在于,还包括:
    导通件,设于所述驱动件的一侧,所述导通件的一端与驱动件电连接,另一端与外部电路连接。
  11. 如权利要求1所述的光学防抖驱动器,其特征在于,所述驱动件包括:
    驱动部和固定部,所述驱动部分别与所述固定部和所述移动件连接,所述固定部与所述移动件连接,所述驱动部用于驱动所述移动件沿直线运动。
  12. 一种摄像模组,其特征在于,包括:
    如权利要求1-11任意一项所述的光学防抖驱动器;
    壳体,具有一通光孔,所述光学防抖驱动器安装在所述壳体内;及
    光学组件,连接在所述基板的所述第一安装面,所述基板在转动时可带动所述光学组件转动。
  13. 一种电子设备,其特征在于,包括:
    本体;及
    如权利要求12所述的摄像模组,所述摄像模组设置在所述本体。
PCT/CN2020/142348 2020-12-31 2020-12-31 光学防抖驱动器、取像模组及电子设备 WO2022141486A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142348 WO2022141486A1 (zh) 2020-12-31 2020-12-31 光学防抖驱动器、取像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142348 WO2022141486A1 (zh) 2020-12-31 2020-12-31 光学防抖驱动器、取像模组及电子设备

Publications (1)

Publication Number Publication Date
WO2022141486A1 true WO2022141486A1 (zh) 2022-07-07

Family

ID=82258925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142348 WO2022141486A1 (zh) 2020-12-31 2020-12-31 光学防抖驱动器、取像模组及电子设备

Country Status (1)

Country Link
WO (1) WO2022141486A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070188620A1 (en) * 2006-02-10 2007-08-16 Tatsuyuki Takahashi Image stabilizer, lens device and imaging apparatus
CN105022204A (zh) * 2015-08-07 2015-11-04 深圳市世尊科技有限公司 一种移动终端用摄像头模组和移动终端
CN204989717U (zh) * 2015-06-30 2016-01-20 中山联合光电科技股份有限公司 一种新型镜头防抖装置
CN105700272A (zh) * 2016-03-30 2016-06-22 中山联合光电科技股份有限公司 一种带自锁结构的镜片防抖装置
CN108490638A (zh) * 2018-05-23 2018-09-04 中山联合光电科技股份有限公司 一种光学防抖结构
KR102145146B1 (ko) * 2020-03-17 2020-08-18 (주)이즈미디어 카메라 모듈용 손떨림 보정기 검사 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070188620A1 (en) * 2006-02-10 2007-08-16 Tatsuyuki Takahashi Image stabilizer, lens device and imaging apparatus
CN204989717U (zh) * 2015-06-30 2016-01-20 中山联合光电科技股份有限公司 一种新型镜头防抖装置
CN105022204A (zh) * 2015-08-07 2015-11-04 深圳市世尊科技有限公司 一种移动终端用摄像头模组和移动终端
CN105700272A (zh) * 2016-03-30 2016-06-22 中山联合光电科技股份有限公司 一种带自锁结构的镜片防抖装置
CN108490638A (zh) * 2018-05-23 2018-09-04 中山联合光电科技股份有限公司 一种光学防抖结构
KR102145146B1 (ko) * 2020-03-17 2020-08-18 (주)이즈미디어 카메라 모듈용 손떨림 보정기 검사 장치

Similar Documents

Publication Publication Date Title
CN107277304B (zh) 摄像模块及其控制方法
CN107277305B (zh) 摄像模块及其控制方法
CN212115444U (zh) 一种摄像模组及电子设备
CN111953881A (zh) 镜头模组
US20200196447A1 (en) Circuit board having multiple degrees of freedom and anti-shaking miniature actuator
TWI627491B (zh) 攝像模組及其控制方法
JP5802796B2 (ja) 3軸閉ループフィードバック制御ユニットを有する電磁式レンズ駆動装置
US20220137324A1 (en) Lens driving device, camera module, and optical device
CN112788217A (zh) 光学防抖驱动器、摄像模组及电子设备
CN112616001A (zh) 光学防抖驱动器、摄像模组及电子设备
CN111913267A (zh) 镜头驱动机构
WO2021108972A1 (zh) 摄像头模组及电子设备
US11493727B2 (en) Optical system
WO2023025027A1 (zh) 摄像头模组和电子设备
US20180074415A1 (en) Optical element driving mechanism
KR102380842B1 (ko) 카메라 모듈
US20230072601A1 (en) Prism actuator
WO2022141486A1 (zh) 光学防抖驱动器、取像模组及电子设备
US10972646B2 (en) Camera device and mobile terminal
WO2022141487A1 (zh) 光学防抖驱动器、取像模组及电子设备
WO2022141485A1 (zh) 光学防抖驱动器、取像模组及电子设备
CN213938088U (zh) 光学防抖驱动器、摄像模组及电子设备
CN213938089U (zh) 光学防抖驱动器、摄像模组及电子设备
CN213938087U (zh) 光学防抖驱动器、摄像模组及电子设备
CN214228341U (zh) 光学防抖摄像头模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967825

Country of ref document: EP

Kind code of ref document: A1