WO2022141480A1 - 通信方法、装置和系统 - Google Patents

通信方法、装置和系统 Download PDF

Info

Publication number
WO2022141480A1
WO2022141480A1 PCT/CN2020/142338 CN2020142338W WO2022141480A1 WO 2022141480 A1 WO2022141480 A1 WO 2022141480A1 CN 2020142338 W CN2020142338 W CN 2020142338W WO 2022141480 A1 WO2022141480 A1 WO 2022141480A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection failure
handover
information
cell
timer
Prior art date
Application number
PCT/CN2020/142338
Other languages
English (en)
French (fr)
Inventor
曾宇
耿婷婷
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080108299.6A priority Critical patent/CN116671174A/zh
Priority to PCT/CN2020/142338 priority patent/WO2022141480A1/zh
Publication of WO2022141480A1 publication Critical patent/WO2022141480A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control

Definitions

  • the present application relates to the field of mobile communication technologies, and in particular, to a communication method, apparatus and system.
  • DAPS dual active protocol stack
  • conditional handover conditional handover
  • CHO conditional handover
  • the end device may detect more than one connection failure.
  • the latest connection (or link) failure information is recorded and reported in the radio link failure (radio link failure, RLF) report (report) of the terminal device.
  • RLF radio link failure
  • the embodiments of the present application provide a communication method, apparatus and system, which can make the processing of connection failure information more reasonable, so that it can be used to formulate a reasonable mobility strategy and improve the mobility performance of the terminal device.
  • a communication method is provided, or it can also be called a connection failure information processing method. It can be understood that the method of the first aspect can be performed by a first apparatus, and the first apparatus can be a terminal device or a communication device capable of supporting the functions required by the terminal device to implement the method, such as a chip or a circuit or a chip system.
  • the method may include: detecting a first connection failure and recording first connection failure information corresponding to the first connection failure, detecting a second connection failure that occurs after the first connection failure and the first connection failure
  • the first connection failure and the second connection failure belong to the first handover procedure; the processing method for the connection failure information is determined according to the handover type of the first handover procedure, and the handover type includes conditional handover or dual-active protocol stack handover.
  • the method may further include sending connection failure information to the network device.
  • the handover type of the first handover process is dual active protocol stack handover
  • all or part of the information in the first connection failure information may be updated with the second connection failure information.
  • the handover type of the first handover procedure is dual activation protocol stack handover
  • the second connection failure includes the first connection failure in the target cell
  • the first connection failure in the target cell can be used.
  • the connection failure of the target cell updates all or part of the information in the first connection failure information.
  • the first connection failure information may not be updated or replaced with subsequent connection failure information. Connection failure message.
  • the switching type of the first switching process is conditional switching
  • the first connection failure information is retained, that is, the saved and recorded first connection failure information will not be updated or replaced.
  • connection failure information in the first connection failure information includes at least one of the following: connection failure type, failure primary cell identifier, connection failure time, time after failure, reason for connection failure, location information, random connection Incoming information, measurement results, and time information from receiving CHO configuration to triggering CHO execution.
  • the terminal device can reasonably report the connection failure information, and the network device can obtain more helpful connection failure information, which is further used to formulate a reasonable mobility strategy and improve the mobility performance of the terminal device.
  • a communication method is provided, or it can also be called a connection failure information processing method.
  • the method of the second aspect can be performed by a second device, which can be a terminal device or a communication device capable of supporting the functions required by the terminal device to implement the method, such as a chip or a circuit or a chip system.
  • the method can not limit the number of connection failure information recorded by the terminal device, that is to say, the terminal device records and saves at least one connection failure information in a handover process.
  • the method includes: detecting at least one connection failure, where the at least one connection failure belongs to the first switching process; recording and saving connection failure information corresponding to each connection failure.
  • the method may further include: sending connection failure information to the network device.
  • a communication method is provided, or it can also be called a connection failure information processing method. It can be understood that the method of the third aspect can be performed by a third apparatus, and the third apparatus can be a network device or a communication device capable of supporting the functions required by the network device to implement the method, such as a chip or a circuit or a chip system.
  • the method may include: receiving, from the terminal device, connection failure information of at least one connection failure, where the at least one connection failure belongs to the first handover procedure; and according to the number of connection failure information in the first handover procedure in the received connection failure information Determine the first cell.
  • the method may further include: sending the received connection failure information to the network device to which the first cell belongs.
  • the network device described in the first cell and the network device receiving the connection failure information are the same network device, so it is not necessary to send the received connection failure information to the network to which the first cell belongs. equipment steps.
  • the first cell may be further determined according to the failure type of the connection failure information. For example, when the failure type is handover failure, the cell corresponding to the previous primary cell identifier may be determined as the first cell; for another example, when the failure type is conditional handover or the timer expires, the failed primary cell may be determined as the first cell. The cell corresponding to the identifier is determined as the first cell.
  • the first cell when the number of connection failure information in the first handover procedure is greater than 1 (that is, when at least two connection failures occur), the first cell may be further determined according to the handover type of the first handover procedure,
  • the handover type includes conditional handover or dual-active protocol stack handover. For example, if the handover type is conditional handover, the first cell is determined according to the failure type corresponding to the first connection failure; for another example, if the handover type is dual activation protocol stack handover, according to the first connection failure of the target cell The failure type determines the first cell.
  • the manner of determining the first cell according to the failure type is similar to when the number of connection failure information is 1.
  • connection failure information is reported by the terminal device, so that the service network device can obtain more helpful connection failure information, which is further used to formulate a reasonable mobility strategy and improve the terminal The mobility performance of the device.
  • a communication method is provided, or it can also be called a timing method in CHO. It can be understood that the method of the fourth aspect can be performed by a fourth device, and the fourth device can be a terminal device or a communication device capable of supporting the functions required by the terminal device to implement the method, such as a chip or a circuit or a chip system.
  • the method may include: receiving the condition switching CHO configuration information, and starting a timer, wherein the timer includes a first timer and/or a second timer, and the first timer is used to realize the triggering of the received CHO configuration
  • the timing of CHO execution, the second timer is used to calculate or record the time from the last time the handover message is received to the connection failure; before the terminal device does not reach the execution condition corresponding to the CHO configuration information, or, does not carry out with the target cell.
  • determine the processing mode of the timer according to whether a new handover message is received, wherein the new handover message includes a handover message carrying new CHO configuration information, a normal handover command or a dual-active protocol stack handover Order. It can be understood that the restart timing for the first timer and the second timer is similar, but the timing of recording time information or stopping the timer may be different, and the first timer and the second timer Multiple timer implementations.
  • the timer is restarted when a new handover message is received.
  • the first timer and/or the second timer may be cell granular.
  • the new CHO configuration information includes the configuration of all or part of the candidate cells in the previous CHO configuration information information to update the information, restart the first timer and/or the second timer corresponding to all or part of the updated candidate cells; if a new handover message is received, and the new handover message carries the new CHO
  • the handover message of the configuration information the new CHO configuration information includes information indicating to delete all or part of the configuration information of the candidate cells in the previous CHO configuration information, and delete the first timing corresponding to all or part of the candidate cells that are instructed to delete timer and/or a second timer; if a new handover message is received, and the new handover message is a handover message carrying new CHO configuration information, the new CHO configuration information includes an instruction to add a new candidate cell The information of the configuration information, add the first timer and/or the second timer corresponding to the newly added candidate cell; if a
  • the method of the fourth aspect may further include determining that a connection failure occurs in the target cell, the running duration of the second timer is the time from the last time a handover message is received to the connection failure, and the connection failure includes receiving a condition The first connection failure after switching the CHO configuration information and/or at least one connection failure after the first connection failure. That is to say, the time information of any one or more connection failures when the handover message is received most recently can be recorded.
  • the duration information in the CHO process can be more accurately reflected, so that the network device can correctly judge the mobility problem based on the information, and determine a reasonable mobility policy adjustment.
  • the method of the first aspect to the method of the fourth aspect may be implemented separately, or any one of the methods of the first aspect to the third aspect may be implemented in combination with the method of the fourth aspect.
  • a communication device in a fifth aspect, has a function of implementing the actions or steps in the method of the first aspect.
  • the communication means may be a terminal device or a component (eg a chip or a circuit) usable in a terminal device.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a detection unit and a processing unit.
  • the detection unit can be used to detect the first connection failure and record the first connection failure message corresponding to the first connection failure and detect the second connection failure that occurs after the first connection failure; the processing unit can be used for The processing method for the connection failure information is determined according to the switching type of the first switching process.
  • a transceiver unit may also be included, configured to send connection failure information to the network device.
  • the transceiver unit may also be configured to receive a handover message from a network device.
  • a storage unit may also be included, and the storage unit may be used to store instructions and/or data.
  • a communication device in a sixth aspect, has a function of implementing the acts or steps in the method of the second aspect.
  • the communication means may be a terminal device or a component (eg a chip or a circuit) usable in a terminal device.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a detection unit and a processing unit.
  • the detection unit may be configured to detect at least one connection failure, and the at least one connection failure belongs to the first switching process; the processing unit may be configured to record and save connection failure information corresponding to each connection failure.
  • a transceiver unit may also be included, configured to send connection failure information to the network device.
  • the transceiver unit may also be configured to receive a handover message from a network device.
  • a storage unit may also be included, and the storage unit may be used to store instructions and/or data.
  • a communication device in a seventh aspect, has a function of implementing the acts or steps in the method of the third aspect.
  • the communication apparatus may be a network device or a component (eg, a chip or circuit) usable in a network device.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a transceiver unit and a processing unit, wherein the transceiver unit is configured to receive connection failure information of at least one connection failure from the terminal device, the at least one connection failure belongs to the first handover process, and the processing unit uses The first cell is determined according to the number of connection failure information in the first handover procedure in the received connection failure information.
  • the transceiver unit may be further configured to send the received connection failure information to the network device to which the first cell belongs.
  • a storage unit may also be included, and the storage unit may be used to store instructions and/or data.
  • a communication device in an eighth aspect, has a function of implementing the steps or actions in the method of the fourth aspect.
  • the communication means may be a terminal device or a component (eg a chip or a circuit) usable in a terminal device.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a transceiver unit and a processing unit.
  • the transceiver unit is used for receiving the condition switching CHO configuration information
  • the processing unit starts a timer after the transceiver unit receives the CHO configuration information
  • the processing unit is used for before the terminal device does not reach the execution condition corresponding to the CHO configuration information, or , before time synchronization with the target cell is performed, the processing mode of the timer is determined according to whether a new handover message is received.
  • a storage unit may also be included, and the storage unit may be used to store instructions and/or data.
  • a communication apparatus in a ninth aspect, is provided, and the communication apparatus may be a communication apparatus for implementing any one of the communication methods in the above-mentioned first to fourth aspects.
  • the communication device includes a processor and a memory. Wherein, the memory is used to store computer programs or instructions or data, and the processor is coupled to the memory, and when the processor reads the computer program or instructions or data, the communication device executes the method of any aspect.
  • the communication device may further include a communication interface.
  • the communication interface may be a transceiver in a communication device.
  • the transceiver may be used for the communication device to communicate with other devices.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor for implementing any one of the methods in the first aspect to the fourth aspect.
  • the system-on-a-chip further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication system, where the system includes one or more of the communication devices of the fifth aspect to the eighth aspect.
  • a twelfth aspect provides a computer program product, the computer program product comprising: computer program code, which when executed, causes any of the methods in the above aspects to be performed.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, any method in the above-mentioned aspects is implemented.
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of the application is applied;
  • FIG. 2 is an example diagram of a possible scenario in which connection failure occurs in the CHO flow process of the embodiment of the present application
  • FIG. 3 is a flowchart of an example of a communication method provided by an embodiment of the present application.
  • FIG. 4 is a flowchart of an example of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of an example of a communication method provided by an embodiment of the present application.
  • FIG. 6 is an example of a timing provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of an example of a communication method provided by an embodiment of the present application.
  • FIG. 8 is an example of a timing provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 1 is only an example of a communication system, and the communication system may include at least one terminal device and at least one network device.
  • FIG. 1 includes one terminal device and two network devices as an example, the terminal device 1 may switch from the network device 1 to the network device 2 .
  • the number of terminal devices and network devices in FIG. 1 is only an example, and there may be more terminal devices and network devices in the communication system, and any network device can provide services for the terminal devices within the coverage.
  • the terminal device is a device with wireless transceiver function, which can be a fixed device, a mobile device, a handheld device, a wearable device, a vehicle-mounted device, or a device built into the above-mentioned device (for example, a communication module or a chip system, etc.).
  • the terminal device is used to connect people, objects, machines, etc., and can be widely used in various scenarios.
  • user equipment UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in internet of things (IoT) systems, wireless terminals in self-driving, wireless terminals in remote medical , wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home, cellular phone, cordless phone , Session Initiation Protocol (SIP) telephones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices or connected to Other processing equipment of wireless modems, in-vehicle equipment, in-vehicle communication devices, in-vehicle communication processing chips, wearable devices, terminal equipment in 5G networks or terminal equipment in the future evolved public land mobile network (PLMN) Wait.
  • PLMN
  • the network device may be an access network device, and the access network device may also be called a radio access network (RAN) device.
  • a device for wireless terminal communication can also be regarded as a device that provides a wireless communication function for the terminal device.
  • Access network equipment includes, but is not limited to, the next generation base station (generation nodeB, gNB), evolved node B (evolved node B, eNB), baseband unit (baseband unit, BBU) in 5G, transmitting and receiving points (transmitting and receiving), for example, but not limited to: point, TRP), transmitting point (transmitting point, TP), the base station in the future mobile communication system or the access point in the WiFi system, etc.
  • the access network device may also be a wireless controller, a centralized unit (centralized unit, CU), and/or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario, or a network
  • the device may be a relay station, a vehicle-mounted device, and a network device in a future evolved PLMN network, and the like.
  • CUs and DUs can be physically separate or deployed together. Multiple DUs can share one CU. A DU can also be connected to multiple CUs. The CU and the DU can be connected through an interface, such as an F1 interface. CU and DU can be divided according to the protocol layer of the wireless network. For example, one of the possible division methods is: CU is used to execute the radio resource control (Radio Resouce Control, RRC) layer, the service data adaptation protocol (service data adaptation protocol, SDAP) layer and the packet data convergence layer protocol (packet data convergence layer protocol).
  • RRC Radio Resouce Control
  • SDAP service data adaptation protocol
  • packet data convergence layer protocol packet data convergence layer protocol
  • Protocol, PDCP protocol layer function
  • DU is used to perform radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer, physical (physical) layer and other functions.
  • RLC radio link control
  • MAC media access control
  • DU physical (physical) layer and other functions.
  • RLC radio link control
  • MAC media access control
  • DU physical (physical) layer and other functions.
  • the functions of the CU or DU may also be divided according to service types or other system requirements. For example, according to the delay, the functions whose processing time needs to meet the delay requirements are set in the DU, and the functions that do not need to meet the delay requirements are set in the CU.
  • the network architecture shown in the figure above can be applied to a 5G communication system, which can also share one or more components or resources with an LTE system.
  • the CU may also have one or more functions of the core network.
  • One or more CUs can be set centrally or separately.
  • the CU can be set on the network side to facilitate centralized management.
  • the DU can have multiple radio functions, or the radio functions can be set farther away.
  • the functions of the CU can be implemented by one entity or by different entities.
  • the functions of the CU can be further segmented, for example, the control plane (CP) and the user plane (UP) can be separated, that is, the CU control plane (CU-CP) and the CU user plane (CU -UP).
  • the CU-CP and the CU-UP may be implemented by different functional entities, and the CU-CP and the CU-UP may be coupled with the DU to jointly complete the functions of the access network device.
  • a terminal device can communicate with access network devices of different technologies. For example, a terminal device can communicate with an access network device that supports long term evolution (LTE), and can also communicate with an access network device that supports 5G. It can communicate with LTE-enabled access network devices and 5G-enabled access network devices at the same time.
  • LTE long term evolution
  • 5G 5th Generationан ⁇
  • the terminal device After the terminal device receives a handover message (such as a handover command or an RRC reconfiguration message) from the source network device, it maintains data transmission with the source network device, that is, the terminal device maintains the user plane protocol stack corresponding to the source network device.
  • the corresponding user plane protocol stack does not perform layer 2 restoration/re-establishment, and the terminal device establishes a user plane protocol stack corresponding to the target network device for random access and data transmission with the target network device.
  • the terminal device Before the terminal device releases the connection with the source network device, the terminal device maintains two sets of security keys (or security contexts) and two sets of header decompression contexts (or two sets of header compression contexts).
  • the network device is also the target network device, and uses the corresponding key/header decompression context to process the received data packet.
  • the terminal device After the terminal device completes the access to the target network device, before receiving the release message sent by the target network device to release the connection between the terminal device and the source network device, the terminal device continues to perform data transmission (uplink and / or downlink data transmission); when the terminal device receives a release message sent by the target network device for releasing the connection between the terminal device and the source network device, the terminal device releases its connection with the source network device.
  • DAPS HO please refer to the description in chapter 9.2.3.2 of 3GPP TS 38.300 V16.3.0.
  • the scenario or process of detecting connection failure in DAPS HO may include: before the terminal device successfully completes random access with the target network device, the terminal device continues to perform wireless chaining on the connection between the terminal device and the source network device.
  • Road failure (radio link failure, RLF) monitoring (or detection) in the process of random access between the terminal device and the target network device, the terminal device may detect a handover failure (HOF); After the random access of the target network device, the terminal device can monitor the wireless link connected between the terminal device and the target network device to determine whether any wireless link fails.
  • RLF radio link failure
  • the command or message used to indicate the DAPS HO may also be referred to as the DAPS HO command.
  • the cell that the terminal device accesses and belongs to the source network device is called the source cell
  • the target cell that the terminal device accesses and belongs to the target network device is called the target cell.
  • the CHO configuration information sent by the source network device to the terminal device includes information of one or more candidate cells configured by the source network device for the terminal device.
  • the information of the candidate cell may include information used to indicate identification information of the candidate cell, one or more corresponding handover trigger conditions (or execution conditions) and configuration information of the candidate cell.
  • the information used to indicate the identity information of the candidate cell may be the CHO configuration identity or the CHO candidate cell information.
  • the cell information may be the cell global identifier (CGI), physical cell identifier (PCI) and frequency, cell identifier (cell ID), non-public network identifier (non-public network) of the cell.
  • the CGI may include a public land mobile network (PLMN ID) and a cell ID.
  • PLMN ID public land mobile network
  • the terminal device After receiving the configuration information of the CHO, the terminal device determines whether each CHO candidate cell satisfies the handover trigger condition according to the configuration information, and this process can be understood as a normal CHO. If the CHO candidate cell that satisfies the handover trigger condition is taken as the candidate target cell, the source cell is handed over to the target cell.
  • the terminal device If the terminal device receives a handover command without CHO configuration (that is, the handover command does not carry CHO configuration information) before any CHO execution condition is satisfied, it can also be converted into a normal handover (normal HO or legacy HO).
  • the normal handover command executes the handover process. It can be understood that the terminal device has an available CHO configuration at this time, and the handover type corresponding to this scenario can also be called CHO.
  • each scenario in which the terminal device receives the CHO configuration information and the CHO configuration information is not cleared may be referred to as the terminal device has the available CHO configuration, for example, it may include: normal CHO or if any CHO execution condition is used Before it is satisfied, the terminal device has received a handover command without CHO configuration.
  • a command or message having CHO configuration information may also be referred to as a CHO command, and the CHO command may be, for example, an RRC reconfiguration message.
  • the terminal device detects that the connection fails. If the appropriate cell selected by the terminal device is a CHO candidate cell, the terminal device can try CHO execution once; if the target cell selected by the terminal device is not a CHO candidate cell, the terminal device The device performs the re-establishment process; if the terminal device does not find a suitable cell within a period of time, the terminal device enters an idle state. It is understandable that if the terminal device attempts to perform CHO once in the CHO process, the terminal device detects that the connection fails again, regardless of whether the appropriate cell selected by the terminal device is the target cell in the CHO candidate cells, the terminal device will no longer attempt to perform CHO.
  • the terminal device may perform the re-establishment process. It can be understood that, the embodiment of the present application is described by taking the terminal device as an example after detecting the first connection failure in the CHO process, and then trying to execute CHO again. In the CHO process, the terminal device detects the first connection failure. After that, N times of CHO execution can be attempted, where N is preset to limit the maximum number of CHO execution attempts that can be attempted after the first connection failure is detected in the CHO process, and N is greater than or equal to 1.
  • messages or commands for implementing handover configuration or handover instruction may also be collectively referred to as handover messages or handover commands.
  • FIG. 2 exemplarily shows a possible scenario of connection failure in the CHO process.
  • the terminal device first tries to handover to the target cell B (T-cell B) , after T-Cell B fails to connect, perform cell selection, and select the target cell C (T-cell C) in the CHO candidate cell, the terminal equipment tries to switch to T-cell C again, and in the target cell T-cell C A connection failure also occurred in Cell C, and this CHO process ends.
  • the above connection failures may include failures caused by HOF, RLF or timer expiration.
  • T-cell B can be called the first target cell in the CHO procedure.
  • the RLF report finally recorded by the terminal equipment for this CHO process is the connection failure information that occurred in T-cell C.
  • the first target cell is The terminal equipment selects the first cell to access based on factors such as coverage. The access success in the first cell is more important to the terminal equipment. Therefore, the connection failure information that occurs in T-cell B is used to adjust the mobility strategy. more meaningful. It can be understood that, for the legacy HO process with CHO configuration, the scenario shown in Figure 2 may also occur. In addition, there are multiple failures in other CHO scenarios.
  • the terminal device takes the terminal device performing at most one CHO attempt after detecting the first connection failure as an example: the terminal device receives the CHO configuration, does not trigger CHO handover, and detects that the connection between the terminal device and the source network device fails; the terminal device determines the execution cell Select and select the target cell B (T-cell B) in the CHO candidate cell, the terminal device performs CHO to T-Cell B, and the terminal device can detect that the connection between the terminal device and T-Cell B fails.
  • the terminal device receives the CHO configuration, does not trigger CHO handover, and detects that the connection between the terminal device and the source network device fails; the terminal device determines the execution cell Select and select the target cell B (T-cell B) in the CHO candidate cell, the terminal device performs CHO to T-Cell B, and the terminal device can detect that the connection between the terminal device and T-Cell B fails.
  • T-cell B target cell B
  • the terminal device receives the DAPS HO command in the source cell, the terminal device detects that the connection with the source cell fails, for example, RLF, the terminal equipment continues to perform DAPS HO with the target cell, and the terminal equipment detects that the connection between the terminal equipment and the target cell fails, such as HOF or RLF.
  • the connection with the source cell fails, for example, RLF
  • the terminal equipment continues to perform DAPS HO with the target cell, and the terminal equipment detects that the connection between the terminal equipment and the target cell fails, such as HOF or RLF.
  • the process before the terminal device initiates the handover to successfully access the target cell or transitions to other non-connected states may be referred to as a handover process (or a handover process). Understand CHO, DAPS HO, normal handover (can be called normal HO or legacy HO), etc. as different handover types.
  • the timing at which the base station of the source network device sends the CHO configuration information can be considered as starting the handover.
  • the timing at which the source network device sends the DAPS HO command to the terminal device can be regarded as starting the handover.
  • the timing at which the source network device sends the source-sent switching command to the terminal device can be considered as starting the switching.
  • the embodiment of the present application provides a communication method, and it can be understood that , the communication method can also be called a connection failure information processing method. As shown in Figure 3, the communication method includes:
  • the terminal device detects that the connection fails.
  • connection failure may be referred to as the first connection failure.
  • the terminal device detects a connection failure, which may be: the terminal device receives the CHO configuration, the CHO execution condition is not triggered, and the terminal device detects a connection failure between the terminal device and the source cell, such as a failure triggered by RLF or timer expiration; or
  • the terminal device receives the CHO configuration, triggers the CHO execution condition or receives a normal handover command
  • the terminal device detects that the connection to the target cell fails, such as HOF or RLF; or after the terminal device receives the DAPS HO command, it detects the terminal device
  • the connection to the source cell fails, such as RLF.
  • a connection failure of the terminal device in the source cell or the target cell may occur. If the terminal device determines that the connection failure is detected, S302 may be performed. The connection failure detected in S301 may be referred to as the first connection failure. If the terminal device does not detect the connection failure, it means that the terminal device can normally complete the handover process.
  • the terminal device records connection failure information.
  • connection failure information recorded in this step may be referred to as the first connection failure information, and may also be referred to as the first connection failure information.
  • the terminal device When the terminal device detects a connection failure, the terminal device records and saves the connection failure information this time.
  • connection failure information may include at least one of the following information:
  • Failed primary cell identifier the terminal device detects the RLF or the primary cell information whose first timer has expired, or the target primary cell information of the HOF.
  • the first timer may be a timer started after the terminal device sends a measurement report. If the terminal device has not received a handover command after the timer expires, it may be considered that a connection failure occurs, such as T312
  • the failure information may also not include the failed primary cell identifier (failedPCellId), but include the failed cell identifier (failedCellId).
  • failedPCellId failed primary cell identifier
  • failedCellId failed cell identifier
  • the failed cell identifier is information about a cell where the terminal device detects a link failure or the first timer expires, or information about a target cell where the handover fails, which is not limited in this embodiment of the present application.
  • connection failure type may be RLF or HOF or the first timer expires.
  • Connection failure types can also be referred to simply as failure types.
  • the previous primary cell identifier (previousPCellId): the previous primary cell information that the terminal device received the handover command last time.
  • the failure report may not include the previous primary cell identifier (previousPcellId), but may include the previous cell identifier (previousCellId).
  • the previous cell identifier is the previous cell information on which the terminal device received the handover command last time, which is not limited in this embodiment of the present application.
  • Reestablishment Cell Identifier cell information that is attempted to be re-established after the connection fails.
  • Connection failure time the length of time from when the last (or most recent) handover command (or reconfiguration message) is received to the connection failure.
  • Time after failure The length of time to start recording when the connection fails. Generally refers to the length of time from the connection failure to reporting the failure report.
  • Reason for connection failure (rlf-Cause): Among them, the reasons for connection failure can include HOF, RLF, reconfiguration synchronization failure, NR switching failure to other systems, integrity check failure (integrity check failure) or RRC connection re-connection. Configuration failed.
  • Location information information about the location where the terminal device fails to connect.
  • Random access information (ra-InformationCommon): information that the terminal device performs random access in the cell.
  • Measurement result it may be a measurement result of a cell and/or a beam, and the measurement result may include a measurement result of a serving cell and/or a neighboring cell.
  • connection failure information in this embodiment of the present application may also be referred to as link failure information.
  • the terminal device determines that the connection failure is detected again.
  • the terminal equipment After detecting the first connection failure, the terminal equipment continues to try to access in at least one other cell. For example, if the selected suitable cell is a CHO candidate cell, the terminal equipment can try to perform CHO; or continue to try to connect with the target cell of DAPS HO switch between.
  • connection failure may occur again, and in this embodiment of the present application, the at least one connection failure that occurs again may be referred to as a second connection failure. If the terminal device detects the connection failure again, execute S304. If the terminal device does not detect the connection failure again, it means that the terminal device can access normally.
  • the terminal device determines a processing method for the connection failure information according to the handover type.
  • the embodiment of the present application uses the determination of the processing method of the connection failure information according to the handover type as an example for description. Alternatively, it can also be called that the terminal device determines the connection failure information according to whether there is an available CHO configuration. processing method.
  • the terminal device can determine that the handover type is CHO. If the terminal device receives the DAPS HO command, the terminal device can determine that the handover type is DAPS HO.
  • the CHO configuration available to the terminal device includes a scenario in which the terminal device only receives the CHO configuration, and a scenario in which the terminal device receives the CHO configuration and receives a normal handover command before the CHO execution condition is satisfied.
  • the terminal device When the terminal device detects the connection failure again, that is, the terminal device detects the second or more connection failures, it can determine the switching type of the first switching process, and determine the currently recorded connection failure information according to the judgment result. processing method.
  • the terminal device can process the connection failure information in the following ways A or B.
  • Mode A The terminal device updates (or replaces) all or part of the information on the basis of the previous connection failure information, that is to say, the terminal device updates (replaces) all or part of the currently recorded connection failure with the information of the reconnection failure. information. It is understandable that the connection failure may occur more than once. According to this method, no matter how many times the connection failure occurs again, all or part of the previous connection failure information is replaced with the latest connection failure information. It is understood that the terminal device saves the latest connection failure information. or,
  • the terminal device may also process the connection failure information in the following manner: the terminal device finally retains (saves) the first connection failure information in the target cell.
  • the method B includes: (1) The first connection failure occurs in the source cell, and subsequent connection failures occur at least once in the target cell, then the terminal device will use the first connection failure information in the target cell to update or Replace all or part of the previous connection failure information (for example, it can be the connection failure information of the source cell).
  • the subsequent connection information information in the target cell that is not the first time may not be monitored or used to update the target cell.
  • the first connection failure occurs in the target cell, so the terminal device can update or replace the first connection failure without the subsequent connection failure information after recording the first connection failure information. information.
  • the subsequent connection information information in the target cell that is not the first time may not be monitored or used to update the first connection failure information of the target cell.
  • the above-mentioned mode B can also be understood that when the handover type is DAPS HO, the terminal device further determines the processing of the connection failure information according to whether the first connection failure occurs in the source cell. For example, when the handover type is DAPS HO, the terminal device detects the first connection failure, and the terminal device records the first connection failure information; The connection between the two failed (or called the second connection failure). If the terminal device determines that the first connection failure occurred in the source cell, the terminal device can update or replace all or part of the connection failure information in the first connection failure information with the second connection failure information. In a target cell, the terminal equipment retains the first connection failure information.
  • connection failure information may include, for example, at least one of the following: connection failure type, failure primary cell identifier, connection failure time, time after failure, reason for connection failure, location information, random Access information, measurement results, and time information from receiving CHO configuration to triggering CHO execution.
  • the terminal device can process the connection failure information in the following way: the terminal device retains the currently recorded first connection failure information, that is to say, the terminal device does not respond to the recorded first connection failure information. information is updated. It can be understood that there may be more than one connection failure that occurs again. According to this method, no matter how many times the connection failure occurs again, the information of the first connection failure is retained (or saved). Optionally, the terminal device may not record the connection failure information that occurs later. For example, when the handover type is CHO, the terminal device detects the first connection failure, the terminal device records the first connection failure information, and the second connection failure occurs, the terminal device does not update the first connection with the information of the second connection failure failure message.
  • connection failure information is generally included in a handover process.
  • the communication method in this embodiment of the present application may further include the following steps.
  • the terminal device sends an RLF report.
  • the terminal device can send all or part of the currently stored connection failure information to the currently accessed network device in the form of an RLF report.
  • the serving network device here may be the network device to which the target cell in the re-establishment or connection establishment process belongs, or the network device to which the target cell in the handover process belongs, or other devices that have wireless resource connections with the terminal device.
  • Network equipment In this embodiment of the present application, the network device that receives the RLF report may be referred to as the receiving network device.
  • the receiving network device may perform different processing according to the content in the RLF report, that is, execute S306.
  • the terminal device sends part or all of the currently stored connection failure information to the currently accessed network device in the form of an RLF report, which is only an example, and it is not limited that the terminal device sends the stored connection failure information. Report form of information.
  • the receiving network device performs corresponding processing according to the content of the received RLF report.
  • the receiving network device may determine the first target network device that forwards the RLF report according to the received connection failure information. As an example, if the connection failure type in the RLF report is HOF, the receiving network device may determine that the network device to which the corresponding cell belongs is the first target network device according to the "previous primary cell identifier", optionally, further Corresponding processing may be performed by the first target network device according to the RLF report, thereby improving mobility robustness.
  • the receiving network device may determine, according to the "failure primary cell identifier", that the network device to which the corresponding cell belongs is the first target network device, optionally, Further, corresponding processing can be performed by the first target network device according to the RLF report, so that the mobility robustness can be improved.
  • the first target network device can further determine whether the RLF report needs to be forwarded to the network device (may be referred to as the second target network device) to which the cell corresponding to the "previous primary cell identity" belongs, if so, the first target The network device may send an RLF report to the network device to which the cell corresponding to the "previous primary cell identity" belongs. For example, the first target network device determines that the first time when the terminal device performs handover to the detected connection failure with the failed primary cell is less than or equal to a certain threshold. The network device to which the cell belongs sends the RLF report.
  • forwarding may not be performed, but the receiving network device performs corresponding processing according to the RLF report, or the first target network device and the second target network device. If the target network device is the same network device, forwarding may not be performed, but the first target network device performs corresponding processing according to the RLF report, thereby improving mobility robustness.
  • This embodiment of the present application does not limit the process and method of processing the RLF report by the network device. For example, it may be to adjust mobility parameters according to the information in the RLF report, and/or perform, for example, the first target network device determines whether to send the RLF report according to the connection failure time.
  • the network device to which the cell corresponding to the previous primary cell identifier belongs sends an RLF report and other operations.
  • the processing method of the connection failure information is determined according to the handover type, so that the terminal device can reasonably report the connection failure information, and the network device can obtain more helpful connection failure information, which is further used to formulate Reasonable mobility strategy to improve the mobility performance of terminal equipment.
  • the embodiment of the present application also provides a communication method (it can be understood that the communication method may also be called a connection failure information processing method), which may not limit the number of connection failure information recorded by the terminal device, that is, the terminal device can At least one connection failure information in a handover process is recorded and saved, as shown in FIG. 4 , the method may include:
  • the terminal device detects at least one connection failure, and records the information of the at least one connection failure.
  • the terminal device will detect at least one connection failure in a handover process (handover process A), and the number of connection failures detected by the terminal device is greater than or equal to twice, please refer to FIG. 3 . related descriptions of the illustrated embodiments.
  • the terminal device records and saves the connection failure information of each connection failure in a handover process.
  • the connection failure information For the content of the connection failure information, reference may be made to the relevant descriptions of the foregoing embodiments, and details are not repeated here.
  • the terminal device sends the saved connection failure information to the service network device.
  • the terminal device After the terminal device completes access to the serving network device, it will send all or part of the saved connection failure information to the serving network device.
  • the terminal device may send all or part of the connection failure information to the service network device in the form of an RLF report, where the RLF report includes the recorded connection failure information of at least one connection failure.
  • the connection failure information of the at least one failure may be arranged in the RLF report according to the time sequence (ascending or descending order) of the connection failures. It can be understood that in this embodiment of the present application, the terminal device sends part or all of the currently stored connection failure information to the currently accessed network device in the form of an RLF report, which is only an example, and it is not limited that the terminal device sends the stored connection failure information. Report form of information.
  • the service network device will receive the connection failure information sent by the terminal device, and execute S403.
  • the connection failure information sent by the terminal device may include at least one connection failure information in the above handover process A.
  • it may be sent by one message or sent to the service network device by multiple messages. .
  • the serving network device determines the first cell according to the number of connection failure information in the handover process A in the received connection failure information.
  • the first cell is an object to which the serving network device determines to forward the connection failure information.
  • the serving network device may determine the connection failure information belonging to the handover process A in the received connection failure information, and determine the first cell at least according to the number of connection failure information belonging to the handover process A.
  • the quantity of connection failure information corresponding to one connection failure is one, and the quantity of connection failure information corresponds to the number of connection failures that occur in one handover process. For example, if there are three connection failures in a handover process, the number of connection failure messages is 3.
  • the serving network device may further determine the network device corresponding to the first cell (or the network device to which the first cell belongs). This embodiment of the present application may refer to the network device corresponding to the first cell as the network device corresponding to the first cell.
  • the first target network device may also be referred to as a receiving network device.
  • the first target network device and the receiving network device may be different network devices, or may be the same network device.
  • the forwarding process may not be performed, but the first network device (or the serving network device) performs corresponding processing on the connection failure information; if the first target network The device and the serving network device are different network devices, and the serving network device may forward the connection failure information (or RLF report) to the first target network device for corresponding processing.
  • the serving network device determines that the number of connection failure information received in a handover procedure is one, the serving network device can further determine the specific failure type, and the first cells determined by different failure types may be different.
  • the receiving network device may determine the cell corresponding to the previous primary cell identifier as the first cell, and the network device to which the first cell belongs is the first target network device.
  • it may further The first target network device performs corresponding processing according to the RLF report, so that the mobility robustness can be improved; when the connection failure type is RLF or the first timer expires, the receiving network device can identify the cell corresponding to the failed primary cell It is determined to be the first cell, and the network device to which the first cell belongs is the first target network device.
  • the first target network device may further perform corresponding processing according to the RLF report, thereby improving mobility robustness.
  • the first target network device may send the RLF report to the second target network device, and further, the second target network device may perform corresponding processing according to the RLF report, thereby improving mobility robustness.
  • the serving network device may further determine the first cell in combination with the handover type corresponding to this handover. For example, if the handover type corresponding to this handover is CHO, the first cell can be determined according to the failure type corresponding to the first connection failure information, and the specific method of determining the first cell according to the failure type and the number of failure types described above Similar to 1. If the handover type corresponding to this handover is DAPS HO, the serving network device can determine the first cell according to the failure type of the first target cell connection failure, and the specific method of determining the first cell according to the failure type is the same as the connection described above. Similar when the number of failure messages is 1.
  • connection failure information is reported by the terminal device, so that the serving network device can obtain more helpful connection failure information, which is further used to formulate a reasonable mobility strategy and improve the mobility performance of the terminal device.
  • this embodiment of the present application does not limit the manner in which the first target network device performs corresponding processing according to the RLF report.
  • the recording or calculation of some time information will be involved, and the time information can be realized by at least one timer.
  • the embodiment of the present application also provides a communication method. After receiving the CHO configuration information, the at least one time information is started. timer, and then before the terminal device does not reach the execution condition corresponding to the last received CHO command, or before time synchronization with the target cell, it can determine whether the at least one timer how to handle it.
  • the embodiments shown in FIG. 5 to FIG. 8 are used as examples to illustrate below.
  • the communication method is suitable for the timing control of the CHO process in the CHO scenario. Therefore, it can also be called the timing method in the CHO.
  • the method includes:
  • the terminal device receives CHO configuration information.
  • the terminal device may receive CHO configuration information from the network device, and the CHO configuration information may be sent by the network device to the terminal device through a handover message such as an RRC reconfiguration message.
  • the message carrying the CHO configuration information may also be referred to as the last received CHO command.
  • the CHO configuration information includes the corresponding CHO execution condition, which may also be called the execution condition corresponding to the last received CHO command.
  • the terminal device starts a timer.
  • the timer may include a first timer and/or a second timer.
  • the first timer is used to realize the timing from receiving the CHO configuration to triggering the CHO execution, that is to say, calculating or recording the time duration from the latest reception of the handover message to the triggering of the CHO execution through the timer.
  • the second timer is used to calculate or record the duration from the last time the handover message is received to the connection failure (the first connection failure and/or any connection failure after the first connection failure).
  • the terminal device After receiving the CHO configuration information, the terminal device starts the first timer and/or the second timer, and starts timing from "0". It is understood that the start time of the first timer and the second timer may be the same, but the stop time may be different.
  • the first timer and the second timer may have corresponding maximum running time limits respectively, and the present application does not limit the duration and setting methods of the maximum running time.
  • first timer and the second timer may be implemented by one timer, but different time information is saved at different time points so as to be used to calculate or record different time information.
  • first timer and the second timer may be different timers.
  • the terminal device detects whether a new handover message is received.
  • the new handover message may be one of a handover message carrying new CHO configuration information (also referred to as a new CHO command), a normal handover command, and a DAPS handover command.
  • the new CHO configuration information may include information for updating the configuration information of all or part of the candidate cells in the previous CHO configuration information, and/or instruct to delete the configuration of all or part of the candidate cells in the previous CHO configuration information information, and/or information indicating the addition of configuration information of a new candidate cell, which is not limited in this embodiment of the present application.
  • the terminal device After receiving the CHO configuration information, the terminal device determines whether each candidate cell satisfies the execution condition according to the CHO configuration information. If any candidate cell satisfies the execution condition, the terminal equipment can use the candidate cell as the target cell to attempt to initiate handover to the target cell. (Start CHO). Before the terminal device reaches the execution condition corresponding to the last received CHO command, or before time synchronization with the target cell, the terminal device can detect (monitor or judge or determine) whether a new handover message is received. The device detects that there is a new handover message, and executes S504.
  • the terminal device can Before the execution condition corresponding to the received CHO command, or before time synchronization with the target cell is performed, the detection is continued. If no new handover message is detected until the time is synchronized, the timer continues to run.
  • the terminal device may not detect whether a new handover message is received after performing time synchronization on the target cell, but perform S505 and subsequent steps.
  • the terminal device If the terminal device detects a new handover message before reaching the execution condition corresponding to the last received CHO command or before time synchronization with the target cell, restarts the first timer and/or the second timer, that is Perform S502 and subsequent steps again.
  • the terminal device may perform steps S505 and S506, or perform step S506.
  • the terminal device may only perform step S506.
  • the terminal device determines to trigger CHO execution (CHO trigger).
  • the terminal device determines to trigger CHO execution (that is, the CHO trigger condition is met and CHO is executed), or the terminal device determines to complete the time synchronization with the target cell, then the running duration (time value) of the first timer is "the most recent handover message received" to trigger CHO execution time” value.
  • the terminal device may stop the first timer.
  • the terminal device may continue to run the first timer.
  • the terminal device may continue to perform step S506.
  • the terminal device determines that a connection failure occurs.
  • the running duration (time value) of the second timer is the value from the last time the handover message is received to the connection failure. It can be understood that the connection failure here may be the first connection failure, or any connection failure, such as the second connection failure.
  • the terminal device can record the running time information of the second timer when the first connection fails. After the first connection failure, the second timer can be stopped, or the second timer can continue to run. When a failure occurs, the terminal device obtains the running duration information of the second timer at this time, and then the terminal device can calculate or record the duration information of subsequent connection failures. Understandably, it is also possible that after CHO is executed, no connection failure occurs. Then, the running duration information of the second timer may not be recorded.
  • the time period from S501 to S506 is the value of the second timer, and in the case of receiving a new handover message, the time period from S504 to S506 is the value of the second timer.
  • the method may further include S507.
  • the terminal device sends connection failure information to the serving network device.
  • connection failure information includes information of the duration from the last handover message received to the triggering of CHO execution and/or the time duration from the last handover message received to the connection failure.
  • the embodiments of the present application do not limit or specifically describe the processing after the service network device receives the connection failure information. For example, reference may be made to the descriptions in the foregoing embodiments.
  • the terminal device when the terminal device receives CHO configuration 1 at cell 1 at time point t1 (the candidate cells are cell2, cell3 and cell4), and starts the timer at this time.
  • the terminal device does not reach the execution condition corresponding to the last received CHO command, or, before time synchronization with the target cell, receives the updated CHO configuration 2 sent by the network device (update the configuration of cell 2, Delete or release the configuration information of cell 3, and add the configuration information of cell 5).
  • the terminal device will restart the timer at time t2.
  • the duration of the timer can include [t2, t3] and/or [t2, t4] two messages. It can be seen that since the CHO configuration 2 is the latest switching configuration of the network device, the terminal device will also switch with this configuration. Therefore, the method of the embodiment of the present application can more accurately reflect the duration information in the CHO process, thereby making the network device Based on this information, the correct mobility problem can be judged, and a reasonable mobility policy adjustment can be determined.
  • timeCHOcfgExe and/or timeCHOcfgExe and/or timeCHOcfgExe in the connection failure information in the embodiment shown in FIG. 3 or FIG. 4 timeConnFailure may be implemented according to the embodiments shown in Figures 5-6.
  • the timing control of the CHO process can also be implemented at the cell level (the granularity is a cell).
  • the embodiment of the present application also provides a communication method (also referred to as a timing method in CHO), include:
  • the terminal device receives CHO configuration information.
  • the terminal device starts a timer.
  • the timer is at the cell level, that is, the candidate cell in the CHO configuration information corresponds to the timer.
  • the candidate cell may correspond to one timer (the candidate cell and the timer are in a one-to-one relationship), or multiple candidate cells may correspond to one timer.
  • a timer candidate cells and timers are in a many-to-one relationship).
  • the durations of the timers corresponding to each candidate cell may be the same or different.
  • the timer corresponding to the cell may also be referred to as the timer of the cell.
  • the terminal device Before the terminal device reaches the execution condition corresponding to the last received CHO command, or before time synchronization with the target cell is performed, the terminal device detects whether a new handover message is received.
  • the terminal device Before the terminal device reaches the execution condition corresponding to the last received CHO command, or before time synchronization with the target cell is performed, the terminal device can detect whether a new handover message is received. If the terminal device detects that there is a new handover message message, go to S704, if the terminal device does not detect a new handover message, it can continue to detect before the terminal device does not reach the execution condition corresponding to the last received CHO command, or before the time synchronization with the target cell is performed. Before the terminal device reaches the execution condition corresponding to the last received CHO command, or does not detect a new handover message until time synchronization with the target cell is performed, the timers corresponding to each candidate cell continue to run. Optionally, if the terminal device has performed time synchronization on the target cell, it may not detect whether a new handover message is received after performing time synchronization on the target cell, but perform S705 and subsequent steps.
  • the terminal device determines a processing method for the timer according to the new handover message.
  • the terminal device handles the timer It may be to restart the timer corresponding to all or some of the updated candidate cells.
  • the candidate cells in the CHO configuration information (that is, the previous CHO configuration information) received in S701 are cell 2, the configuration information corresponding to cell 3 and cell 4, and the new CHO handover command instructs to update the configuration information of cell 2 , then you can restart the first timer and/or the second timer corresponding to cell2, or stop the running first timer and/or second timer corresponding to cell2, and start the new first timer and/or the second timer corresponding to cell2 / or a second timer.
  • the terminal device starts the first timer T2-1 corresponding to cell 2
  • the terminal device can stop T2-1 and start a new first timer T2-2.
  • the first timer and/or the second timer of the unupdated candidate cell may continue to run.
  • the terminal device can process the timer as follows Delete the timers corresponding to all or part of the candidate cells instructed to delete.
  • the candidate cell in the CHO configuration information that is, the previous CHO configuration information
  • the configuration information corresponding to cell 3 and cell 4 the new CHO handover command indicates to delete the configuration information of cell 3, then
  • the terminal device may stop or delete the first timer and/or the second timer corresponding to cell 3.
  • the first timer and/or the second timer of the undeleted candidate cell may continue to run.
  • the terminal device may process the timer by adding a cell corresponding to the new candidate cell. timer.
  • the candidate cell in the CHO configuration information that is, the previous CHO configuration information
  • the configuration information corresponding to cell 3 and cell 4 indicates to add the configuration information of cell5
  • the terminal device can increase the first timer and/or the second timer corresponding to cell 5 and start timing.
  • the first timer and/or the second timer of other previously configured candidate cells may continue to run.
  • the terminal device may process the timer by stopping the timers corresponding to all candidate cells in the CHO configuration information.
  • the corresponding first timer and/or second timer may be restarted for DAPS HO or normal handover.
  • the terminal device may perform steps S705 and S705, or perform step S706. For example, when the terminal device performs normal handover or does not trigger CHO execution, the terminal device may only perform step 706.
  • the terminal device determines to trigger CHO execution.
  • the running duration (time value) of the first timer of the target cell is "the duration from the last handover message received to the triggering of the CHO execution" value of .
  • the terminal device may stop the first timer.
  • the terminal device may continue to run the first timer.
  • the terminal device may continue to perform step S707.
  • the timers corresponding to other candidate cells may stop running, except that the timers corresponding to the target cell continue to run, that is to say, the timers corresponding to other candidate cells are cleared (or discarded), and its corresponding time information may not be reported to the network device.
  • the timers corresponding to other candidate cells may not be stopped until the terminal device cannot attempt CHO in the candidate cells.
  • the candidate cells are cell1, cell2 and cell3
  • the terminal device can try to perform CHO at most once after the first connection failure, then the terminal device tries to perform CHO in cell 1 for the first time, then the timer of cell 1 continues to run,
  • the timers corresponding to cell2 and cell3 can be stopped, or the timers of cell2 and cell3 can continue to run. If the terminal device fails to connect at cell1, the timer of cell 1 stops. The timer stops and cell2's timer continues to run.
  • the terminal device determines whether a connection failure occurs in the target cell.
  • the running duration (time value) of the second timer of the target cell at this time is the value from the latest handover message received to the connection failure. It can be understood that the connection failure here may be the first connection failure, or any connection failure, such as the second connection failure.
  • the terminal device can record the running time information of the second timer when the first connection fails. After the first connection failure, the second timer can be stopped, or the second timer can continue to run. When a failure occurs, the terminal device obtains the running duration information of the second timer at this time, and then the terminal device can calculate or record the duration information of subsequent connection failures.
  • the time period from S701 to S706 is the value of the second timer of the target cell.
  • the time period from S704 to S706 is the value of the second timer.
  • the method may further include S707.
  • the terminal device sends connection failure information to the service network device.
  • connection failure information includes the duration information of the timer.
  • the embodiments of the present application do not limit or specifically describe the processing after the service network device receives the connection failure information. For example, reference may be made to the descriptions in the foregoing embodiments.
  • Fig. 8 when the terminal device receives CHO configuration 1 at cell 1 at time point t1 (the candidate cells are cell2, cell3 and cell4), and starts the corresponding cell2, cell3, and cell4 respectively at this time.
  • Timer timer2, timer3, timer4 timing At time t2, before the terminal device reaches the execution condition corresponding to the last received CHO command, or before time synchronization with the target cell, it receives the updated CHO configuration 2 sent by the network device (update cell 2's configuration, delete the configuration information of cell 3, and add the configuration information of cell 5).
  • the terminal device will restart the timer timer2 corresponding to the cell 2 at time t2, delete the timer timer3 corresponding to the cell3, and increase the timer timer5 corresponding to the cell 5.
  • the timing duration of the timer corresponding to cell 4 includes [t1, t3] and [t2,t4]. It can be seen that since the CHO configuration 2 is the latest switching configuration of the network device, the terminal device will also switch with this configuration. Therefore, the method of the embodiment of the present application can more accurately reflect the time information in the CHO process, thereby making the network device Based on this information, the correct mobility problem can be judged, and a reasonable mobility policy adjustment can be determined.
  • timeCHOcfgExe and/or timeCHOcfgExe and/or timeCHOcfgExe in the connection failure information in the embodiment shown in FIG. 3 or FIG. 4 timeConnFailure may be implemented according to the embodiments shown in Figures 7-8.
  • FIG. 5 to FIG. 8 illustrate the timing control for timeConnFailure by running a timer. Timing can also be implemented in other ways, such as by time stamping. This is not limited.
  • the above embodiment shown in Fig. 5-Fig. 8 illustrates the timing control in the CHO process by taking the time information from receiving CHO configuration to triggering CHO execution and the information of the time length from receiving a handover message to triggering CHO execution as an example. Other time information in the CHO process can also be processed similarly, and the embodiments of the present application do not list them one by one.
  • each network element or device may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module . Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 9 is a schematic block diagram of a communication apparatus 900 provided by an embodiment of the present application.
  • the communication apparatus 900 may correspondingly implement the functions or steps implemented by the terminal device in the method embodiment shown in FIG. 3 or FIG. 4 .
  • the communication apparatus 900 may be a terminal device or a component (eg, a chip or a circuit, etc.) applicable to the terminal device, or the communication apparatus 900 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication apparatus may include a detection unit 910 and a processing unit 920 .
  • a transceiver unit 930 may also be included.
  • the detection unit 910 may be configured to detect the first connection failure and record the first connection failure message corresponding to the first connection failure and detect the second connection failure that occurs after the first connection failure; the processing unit 920 may be used for The processing method for the connection failure information is determined according to the switching type of the first switching process.
  • the detection unit 910 may be configured to detect at least one connection failure, and the at least one connection failure belongs to the first switching process; the processing unit 920 may be configured to record and save connection failure information corresponding to each connection failure.
  • the transceiver unit 930 may be configured to send connection failure information to the network device.
  • the detection unit 910 and the processing unit 920 in this embodiment of the present application may be implemented by at least one processor or a processor-related circuit component
  • the transceiver unit 930 may be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • the foregoing units may be separated or integrated, which is not limited in this embodiment of the present application.
  • the communication device 900 may further include a storage unit 940, the storage unit 940 may be used to store instructions or data, and the processing unit 920 may execute or read the instructions or data stored in the storage unit, so that the communication device implement the corresponding operation.
  • the storage unit 940 may be implemented by at least one memory.
  • the communication apparatus 1000 provided by the embodiment of the present application can implement the functions of the network device in the method provided by the embodiment of FIG. 4 of the present application.
  • the communication apparatus 1000 may be a network device; or the communication apparatus 1000 may also be an apparatus capable of supporting the network device to implement corresponding functions in the methods provided in the embodiments of this application; or, the communication apparatus 1000 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication apparatus 1000 may include a transceiving unit 1010 and a processing unit 1020 .
  • the transceiver unit 1010 may be configured to receive connection failure information of at least one connection failure from the terminal device, where the at least one connection failure belongs to the first switching process, and the processing unit 1020 may be configured to receive connection failure information according to the received connection failure information.
  • the number of connection failure information in the first handover procedure determines the first cell.
  • the transceiver unit 1010 may be further configured to send the received connection failure information to the network device to which the first cell belongs.
  • the processing unit 1020 in this embodiment of the present application may be implemented by at least one processor or a processor-related circuit component, and the transceiver unit 1010 may be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • the foregoing units may be separated or integrated, which is not limited in this embodiment of the present application.
  • the communication device 1000 may further include a storage unit 1030, the storage unit 1030 may be used to store instructions or data, and the processing unit 1020 may execute or read the instructions or data stored in the storage unit, so that the communication device implement the corresponding operation.
  • the storage unit 1030 may be implemented by at least one memory.
  • FIG. 11 is a schematic block diagram of a communication apparatus 1100 provided by an embodiment of the present application.
  • the communication apparatus 1100 may correspondingly implement the functions or steps implemented by the terminal device in the method embodiments shown in FIGS. 5-8 above.
  • the communication apparatus 1100 may be a terminal device or a component (for example, a chip or a circuit, etc.) applicable to the terminal device, or the communication apparatus 900 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device may include a transceiver unit 1110 and a processing unit 1120 .
  • the transceiver unit 1110 is configured to receive the condition switching CHO configuration information
  • the processing unit 1120 is configured to start a timer after the transceiver unit receives the CHO configuration information
  • the processing unit 1120 is configured to start the timer when the terminal device does not reach the CHO configuration information.
  • the processing mode of the timer is determined according to whether a new handover message is received.
  • the transceiver unit 1130 may be configured to send connection failure information to the network device.
  • processing unit 1120 in this embodiment of the present application may be implemented by at least one processor or a processor-related circuit component
  • the transceiver unit 1110 may be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • the foregoing units may be separated or integrated, which is not limited in this embodiment of the present application.
  • the communication device 1100 may further include a storage unit 1130, the storage unit 1130 may be used to store instructions or data, and the processing unit 1120 may execute or read the instructions or data stored in the storage unit, so that the communication device implement the corresponding operation.
  • the storage unit 1130 may be implemented by at least one memory.
  • Embodiments of the present application further provide a communication apparatus 1200, which may be used to implement or support the communication apparatus 1200 to implement the functions of network equipment or terminal equipment in the methods provided by various embodiments of the present application.
  • the communication device 1200 includes at least one processor 1210 and at least one memory 1220 for storing program instructions and/or data. Memory 1220 and processor 1210 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1210 may cooperate with the memory 1220.
  • the processor 1210 may execute program instructions and/or data stored in the memory 1220 to cause the communication device 1200 to implement the corresponding method.
  • at least one of the at least one memory may be included in the processor.
  • the communication apparatus 1200 may also include a communication interface 1230 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 1200 may communicate with other devices.
  • connection medium between the communication interface 1230 , the processor 1210 , and the memory 1220 is not limited in the embodiments of the present application.
  • the memory 1220, the processor 1210, and the communication interface 1230 are connected through a bus 1240 in FIG. 12, and the bus is represented by a thick line in FIG. 12.
  • the connections between other components are only A schematic illustration is provided, but not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 12, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can be implemented or executed
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), such as a random Access memory (random-access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the embodiments of the present application further provide a communication system, which is used to implement all or part of the steps of the foregoing method embodiments.
  • the communication system may include the above-mentioned terminal equipment.
  • the communication system may further include at least one network device.
  • Embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the methods performed by the terminal device in the embodiments shown in FIG. 3 to FIG. 8 to be executed.
  • Embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the method performed by the network device in the embodiments shown in FIG. 3 to FIG. 8 to be executed.
  • Embodiments of the present application further provide a computer program product, including instructions, which, when executed on a computer, cause the method performed by the network device or the terminal device in the embodiments shown in FIG. 3 to FIG. 8 to be executed.
  • At least one (a) of a, b or c may represent: a, b, c, a-b, a-c, b-c or a-b-c, wherein a, b, c may be single or multiple.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are not used to limit the order, sequence, priority, or importance of multiple objects.
  • first timer and the second timer just to distinguish the role.
  • processors mentioned in the embodiments of the present application may be a CPU, and may also be other general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (application specific integrated circuits, ASICs), ready-made Field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGA Field programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SCRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the procedures or functions described in accordance with the embodiments of the present application are produced in whole or in part.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Drive (SSD)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Computer And Data Communications (AREA)

Abstract

本申请公开了一种通信方法、装置和系统,该方法中在第一切换流程中发生多次连接失败的情况下,根据第一切换流程的切换类型确定对连接失败信息的处理方式,从而可以使得终端设备可以合理的上报连接失败信息,那么网络设备可以获取更有帮助的连接失败信息,进一步用以制定合理的移动性策略,提升终端设备的移动性性能。

Description

通信方法、装置和系统 技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法、装置和系统。
背景技术
目前,除了正常切换(legacy handover)流程之外,还有双激活协议栈(dual active protocol stack,DAPS)切换和条件切换(conditional handover,CHO)。但是在一次DAPS切换流程,或一次条件切换流程,或者正常切换但是有CHO配置(例如,终端设备接收到CHO配置后在CHO触发或执行前,UE收到了正常切换命令,但是之前收到的CHO配置依然有效)流程中,终端设备可能检测到不止一次连接失败。目前,终端设备的无线链路失败(radio link failure,RLF)报告(report)中记录和上报的是最近一次的连接(或者叫链接)失败信息,然而,本申请的发明人发现,当前RLF report的处理方式存在不合理性,从而使得移动性策略的鲁棒性不够。
发明内容
本申请实施例提供一种通信方法、装置和系统,可以使得连接失败信息的处理更合理,从而可以用于制定合理的移动性策略,提升终端设备的移动性性能。
第一方面,提供一种通信方法,或者也可以叫做连接失败信息处理方法。可以理解的是,该第一方面的方法可由第一装置执行,第一装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,例如芯片或者电路或者芯片系统。
示例性的,该方法可以包括:检测到第一次连接失败并记录第一次连接失败对应的第一连接失败信息,检测到发生在第一次连接失败之后的第二连接失败且所述第一次连接失败和第二连接失败属于第一切换流程;根据第一切换流程的切换类型确定对连接失败信息的处理方式,所述切换类型包括条件切换或者双激活协议栈切换。
可选的,该方法还可以包括向网络设备发送连接失败信息。
一些可能的实现方式中,如果所述第一切换流程的切换类型为双激活协议栈切换,那么可以用第二连接失败信息对第一连接失败信息中的全部或者部分信息进行更新。
一些可能的实现方式中,如果所述第一切换流程的切换类型为双激活协议栈切换,所述第二连接失败包括第一次在目标小区的连接失败,那么可以用所述第一次在目标小区的连接失败对第一连接失败信息中的全部或者部分信息进行更新。
一些可能的实现方式中,如果所述第一切换流程的切换类型为双激活协议栈切换,且第一次连接失败是发生在目标小区的,那么可以不用后续的连接失败信息更新或者替换第一连接失败信息。
一些可能的实现方式中,如果所述第一切换流程的切换类型为条件切换,那么保留所述第一连接失败信息,也就是说保存和记录的第一连接失败信息不会被更新或者替换掉。
可选的,上述第一连接失败信息中的全部或者部分信息包括以下至少一种:连接失败类型、失败主小区标识、连接失败时间、失败后的时间、连接失败的原因、位置信息、随 机接入信息、测量结果、收到CHO配置到触发CHO执行的时间信息。
通过以上方法,可以使得终端设备可以合理的上报连接失败信息,那么网络设备可以获取更有帮助的连接失败信息,进一步用以制定合理的移动性策略,提升终端设备的移动性性能。
第二方面,提供一种通信方法,或者也可以叫做连接失败信息处理方法。可以理解的是,该第二方面的方法可由第二装置执行,第二装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,例如芯片或者电路或者芯片系统。该方法可以不对终端设备记录的连接失败信息个数做限制,也就是说终端设备对一次切换流程中的至少一次连接失败信息进行记录并保存。该方法包括:检测到至少一次连接失败,该至少一次连接失败属于第一切换流程;记录并保存每次连接失败对应的连接失败信息。该方法还可以包括:向网络设备发送连接失败信息。
第三方面,提供一种通信方法,或者也可以叫做连接失败信息处理方法。可以理解的是,该第三方面的方法可由第三装置执行,第三装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,例如芯片或者电路或者芯片系统。该方法可以包括:从终端设备接收至少一次连接失败的连接失败信息,所述至少一次连接失败属于第一切换流程;根据接收到的连接失败信息中的第一切换流程中的连接失败信息的数量确定第一小区。
可选的,该方法还可以包括:将接收到的连接失败信息发送给所述第一小区所属的网络设备。一些可能的实现方式中,第一小区所述的网络设备和接收连接失败信息的网络设备是相同的网络设备,那么可以不执行将接收到的连接失败信息发送给所述第一小区所属的网络设备的步骤。
一些可能的实现方式中,如果第一切换流程中连接失败信息的数量为1,可以进一步根据连接失败信息的失败类型确定第一小区。例如,当所述失败类型为切换失败时,可以将之前的主小区标识对应的小区确定为第一小区;又例如,当所述失败类型为条件切换或者定时器超时时,可以将失败主小区标识对应的小区确定为第一小区。
一些可能的实现方式中,当第一切换流程中的连接失败信息的数量大于1时(即至少发生两次连接失败时),可以进一步根据第一切换流程的切换类型确定所述第一小区,所述切换类型包括条件切换或者双激活协议栈切换。例如,如果所述切换类型为条件切换,根据第一次连接失败对应的失败类型确定第一小区;又例如,如果所述切换类型为双激活协议栈切换,根据第一次目标小区的连接失败的失败类型确定所述第一小区。其中,根据失败类型确定第一小区的方式与连接失败信息数量为1时类似。
上述第二方面或者第三方面的方法,通过终端设备上报相对全面的连接失败信息,使得服务网络设备可以获取更多有帮助的连接失败的信息,进一步用以制定合理的移动性策略,提升终端设备的移动性性能。
第四方面,提供一种通信方法,或者也可以叫做CHO中的计时方法。可以理解的是,该第四方面的方法可由第四装置执行,第四装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,例如芯片或者电路或者芯片系统。该方法可以包括:接收条件切换CHO配置信息,启动计时器,其中,所述计时器包括第一计时器和/或第二计时器,所述第一计时器用于实现对收到CHO配置到触发CHO执行的计时,所述第二计时器用于计算或者记录最近一次收到切换消息到连接失败的时间;在终端设备没有达到所述 CHO配置信息对应的执行条件之前,或者,没和目标小区进行时间同步之前,根据是否接收到新的切换消息确定对所述计时器的处理方式,其中,所述新的切换消息包括携带新的CHO配置信息的切换消息、正常切换命令或者双激活协议栈切换命令。可以理解的是,对于第一计时器和第二计时器的重启时机是类似的,但是记录时间信息或者停止计时器的时机可能有所不同,第一计时器和第二计时器可以通过一个或多个计时器实现。
一些可能的实现方式中,在接收到新的切换消息的情况下,重启所述计时器。
一些可能的实现方式中,第一计时器和/或第二计时器可以是小区粒度的。
如果接收到新的切换消息,并且所述新的切换消息是携带新的CHO配置信息的切换消息,所述新的CHO配置信息包括对前一次的CHO配置信息中的全部或者部分候选小区的配置信息进行更新的信息,重启所述更新的全部或者部分候选小区对应的第一计时器和/或第二计时器;如果接收到新的切换消息,并且所述新的切换消息是携带新的CHO配置信息的切换消息,所述新的CHO配置信息包括指示删除前一次的CHO配置信息中的全部或者部分候选小区的配置信息的信息,删除被指示删除的全部或者部分候选小区对应的第一计时器和/或第二计时器;如果接收到新的切换消息,并且所述新的切换消息是携带新的CHO配置信息的切换消息,所述新的CHO配置信息包括指示增加新的候选小区的配置信息的信息,增加与新增的候选小区对应的第一计时器和/或第二计时器;如果接收到新的切换消息,且所述的新的切换消息是正常切换命令或者双激活协议栈切换命令,停止与所有候选小区对应的第一计时器和/或第二计时器。
一些可能的实现方式中,所述在对目标小区进行时间同步之后,不检测是否接收新的切换消息。
可选的,第四方面的方法还可以包括确定在目标小区发生连接失败,所述第二计时器的运行时长为最近一次收到切换消息到连接失败的时间,所述连接失败包括接收到条件切换CHO配置信息后第一次连接失败和/或所述第一次连接失败后的至少一次连接失败。也就是说,可以记录最近一次收到切换消息任意一次或者多次连接失败的时间信息。
采用上述方法,能更准确地反应CHO过程中的时长信息,从而使得网络设备可以基于该信息进行正确的移动性问题的判断,确定合理的移动性策略调整。
可以理解的是,第一方面的方法至第四方面的方法可以分别单独实现,也可以是第一方面至第三方面的方法中的任一方面与第四方面的方法结合实现。
第五方面,提供了一种通信装置,该通信装置具有实现上述第一方面的方法中的行为或者步骤的功能。该通信装置可以为终端设备或者可用于终端设备的部件(例如芯片或者电路)。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,通信装置包括:检测单元和处理单元。其中,检测单元可以用于检测到第一次连接失败并记录第一次连接失败对应的第一连接失败信以及检测到发生在第一次连接失败之后的第二连接失败;处理单元可以用于根据第一切换流程的切换类型确定对连接失败信息的处理方式。可选的,还可以包括收发单元,用于向网络设备发送连接失败信息。可选的,该收发单元还可以用于从网络设备接收切换消息。可选的,还可以包括存储单元,该存储单元可以用于存储指令和/或数据。这些模块/单元可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第六方面,提供了一种通信装置,该通信装置具有实现上述第二方面的方法中的行为 或者步骤的功能。该通信装置可以为终端设备或者可用于终端设备的部件(例如芯片或者电路)。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,通信装置包括:检测单元和处理单元。其中,检测单元可以用于检测到至少一次连接失败,该至少一次连接失败属于第一切换流程;处理单元可以用于记录并保存每次连接失败对应的连接失败信息。可选的,还可以包括收发单元,用于向网络设备发送连接失败信息。可选的,该收发单元还可以用于从网络设备接收切换消息。可选的,还可以包括存储单元,该存储单元可以用于存储指令和/或数据。这些模块/单元可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第七方面,提供了一种通信装置,该通信装置具有实现上述第三方面的方法中的行为或步骤的功能。该通信装置可以为网络设备或者可用于网络设备的部件(例如芯片或者电路)。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,通信装置包括:收发单元和处理单元,其中收发单元用于从终端设备接收至少一次连接失败的连接失败信息,所述至少一次连接失败属于第一切换流程,处理单元用于根据接收到的连接失败信息中的第一切换流程中的连接失败信息的数量确定第一小区。可选的,收发单元还可以用于将接收到的连接失败信息发送给所述第一小区所属的网络设备。可选的,还可以包括存储单元,该存储单元可以用于存储指令和/或数据。这些模块/单元可以执行上述第三方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第八方面,提供了一种通信装置,该通信装置具有实现上述第四方面的方法中的步骤或行为的功能。该通信装置可以为终端设备或者可用于终端设备的部件(例如芯片或者电路)。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,通信装置包括:收发单元和处理单元。其中,收发单元用于接收条件切换CHO配置信息,处理单元在收发单元接收到CHO配置信息后启动计时器,并且处理单元用于在终端设备没有达到所述CHO配置信息对应的执行条件之前,或者,没和目标小区进行时间同步之前,根据是否接收到新的切换消息确定对所述计时器的处理方式。可选的,还可以包括存储单元,该存储单元可以用于存储指令和/或数据。这些模块/单元可以执行上述第四方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第九方面,提供了一种通信装置,该通信装置可以为实现上述第一方面至第四方面中任何一个通信方法的通信装置。该通信装置包括处理器和存储器。其中,该存储器用于存储计算机程序或指令或者数据,处理器与存储器耦合,当处理器读取计算机程序或指令或数据时,使通信装置执行任一方面的方法。可选的,该通信装置还可以包括通信接口。
示例性的,该通信接口可以是通信装置中的收发器。该收发器可以用于该通信装置与其它设备进行通信。
第十方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于实现第一方面至第四方面中的任一方法。在一种可能的设计中,该芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,本申请实施例提供了一种通信系统,该系统包括第五方面-第八方面的通信装置中的一个或者多个。
第十二方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码并运行时,使得上述各方面中任一方法被执行。
第十三方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,使得上述各方面任一方法被实现。
附图说明
图1为本申请实施例应用的一种通信系统的架构示意图;
图2为本申请实施例CHO流程中发生连接失败的一种可能场景示例图;
图3为本申请实施例提供的通信方法的一种示例的流程图;
图4为本申请实施例提供的通信方法的一种示例的流程图;
图5为本申请实施例提供的通信方法的一种示例的流程图;
图6为本申请实施例提供的一种计时的示例;
图7为本申请实施例提供的通信方法的一种示例的流程图;
图8为本申请实施例提供的一种计时的示例;
图9为本申请实施例提供的通信装置的一种结构示意图;
图10为本申请实施例提供的通信装置的一种结构示意图;
图11为本申请实施例提供的通信装置的一种结构示意图;
图12为本申请实施例提供的通信装置的一种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下文所描述的本申请实施例的技术方案可以应用于如图1所示的网络架构,其中,图1仅是通信系统的一种示例,该通信系统可以包括至少一个终端设备和至少一个网络设备,图1以包括1个终端设备和2个网络设备为例,终端设备1可能从网络设备1切换到网络设备2。可以理解的是,图1中的终端设备和的数量只是举例,通信系统中可以有更多的终端设备和网络设备,任意一个网络设备可以为处于覆盖范围内的终端设备提供服务。
其中,终端设备是一种具有无线收发功能的设备,可以是固定设备、移动设备、手持设备、穿戴设备、车载设备,或内置于上述设备中的装置(例如,通信模块或芯片系统等)。所述终端设备用于连接人、物、机器等,可广泛用于各种场景。有时也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、物联网(internet of things,IoT)系统中的无线终端,无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、 智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、车载通信装置,车载通信处理芯片,可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。应理解,本申请对于终端设备的具体形式不作限定。
其中,网络设备可以是接入网设备,接入网设备也可以称为无线接入网(radio access network,RAN)设备,是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备,也可以认为是一种为终端设备提供无线通信功能的设备。接入网设备例如包括但不限于:5G中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、未来移动通信系统中的基站或WiFi系统中的接入点等。接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、车载设备以及未来演进的PLMN网络中的网络设备等。
CU和DU在物理上可以是分离的也可以部署在一起。多个DU可以共用一个CU。一个DU也可以连接多个CU。CU和DU之间可以通过接口相连,例如可以是F1接口。CU和DU可以根据无线网络的协议层划分。例如其中一种可能的划分方式是:CU用于执行无线资源控制(Radio Resouce Control,RRC)层、业务数据适配协议(service data adaptation protocol,SDAP)层以及分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,而DU用于执行无线链路控制(radio link control,RLC)层,媒体接入控制(media access control,MAC)层,物理(physical)层等的功能。可以理解对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分。例如可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议层的部分处理功能。在一设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。上图所示的网络架构可以应用于5G通信系统,其也可以与LTE系统共享一个或多个部件或资源。在另一种设计中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。
CU的功能可以由一个实体来实现也可以由不同的实体实现。例如,可以对CU的功能进行进一步切分,例如,将控制面(control panel,CP)和用户面(user panel,UP)分离,即CU的控制面(CU-CP)和CU用户面(CU-UP)。例如,CU-CP和CU-UP可以由不同的功能实体来实现,所述CU-CP和CU-UP可以与DU相耦合,共同完成接入网设备的功能。
终端设备可以与不同技术的接入网设备进行通信,例如,终端设备可以与支持长期演进(long term evolution,LTE)的接入网设备通信,也可以与支持5G的接入网设备通信, 还可以同时与支持LTE的接入网设备以及支持5G的接入网设备进行通信。本申请实施例并不限定。
本申请实施例先对CHO和DAPS HO进行简要介绍。
一、DAPS HO
终端设备从源网络设备接收到切换消息(例如切换命令或者RRC重配置消息)后,保持与源网络设备的数据传输,即终端设备保持源网络设备对应的用户面协议栈,对与源网络设备对应的用户面协议栈不进行层2的恢复/重建立,而且,终端设备建立与目标网络设备对应的用户面协议栈,用于与目标网络设备进行随机接入以及数据传输。在终端设备释放与源网络设备的连接前,终端设备维护两套安全密钥(或者说安全上下文)、两套头解压缩上下文(或者说两套头压缩上下文),终端设备根据数据包是来自于源网络设备还是目标网络设备,采用相应的密钥/头解压缩上下文对接收到的数据包进行处理。当终端设备完成在目标网络设备的接入后,在接收到目标网络设备发送的释放终端设备和源网络设备之间的连接的释放消息之前,终端设备继续和源网络设备进行数据传输(上行和/或下行数据传输);当终端设备接收到目标网络设备发送的用于释放终端设备和源网络设备之间的连接的释放消息后,终端设备释放其与源网络设备的连接。可选的,关于DAPS HO的流程或者信令可以进一步参考3GPP TS 38.300 V16.3.0 9.2.3.2章节中的描述。示例性的,在DAPS HO中检测连接失败的场景或者过程可能包括:在终端设备成功完成和目标网络设备的随机接入之前,终端设备继续对终端设备和源网络设备之间的连接进行无线链路失败(radio link failure,RLF)监测(或检测);在终端设备和目标网络设备进行随机接入的过程中,终端设备可能检测到切换失败(handover failure,HOF);在终端设备成功完成和目标网络设备的随机接入之后,终端设备可以监测终端设备和目标网络设备之间的连接的无线链路,确定是否有无线链路失败。本申请实施例中,为便于说明,也可以将用于指示DAPS HO的命令或者消息称为DAPS HO命令。其中,终端设备接入的属于源网络设备的小区称为源小区,终端设备进行接入的属于目标网络设备的小区称为目标小区。
二、CHO
源网络设备向终端设备发送的CHO配置信息中包括源网络设备为该终端设备配置的一个或多个候选小区的信息。候选小区的信息可以包括用于指示候选小区的标识信息的信息以及对应的一个或多个切换触发条件(或者也可以叫执行条件)和候选小区的配置信息。用于指示候选小区的标识信息的信息可以为CHO配置标识或者CHO候选小区信息。小区信息可以为小区的小区全局标识(cell global identifier,CGI)、物理小区标识(physical cell identifier,PCI)和频点、小区标识(cell identifier,cell ID)、非公网标识(non-public network identifier,NPN ID)、非陆地网络标识(non-terrestrial network identifier,NTN ID)或者其它小区标识中的至少一种。CGI可以包括公共陆地移动网络(public land mobile network,PLMN ID)和cell ID。
终端设备在接收到该CHO的配置信息后,根据该配置信息判断各CHO候选小区是否满足切换触发条件,这种流程可以理解为正常的CHO。如果满足切换触发条件的CHO候选小区作为候选目标小区,从而从源小区切换到该目标小区。
若在任一CHO执行条件满足前,终端设备收到了没有CHO配置的切换命令(也就是说该切换命令没有携带CHO配置信息),也可以转换为正常切换(normal HO或者legacy HO),终端设备根据正常切换命令执行切换流程。可以理解的,此时终端设备有可用的CHO 配置,也可以将与此场景对应的切换类型称为CHO。本申请实施例中,终端设备接收到CHO配置信息并且CHO配置信息没有被清除的各个场景都可以称为终端设备有可用的CHO配置,例如可以包括:正常的CHO或者是若在任一CHO执行条件满足前,终端设备收到了没有CHO配置的切换命令。本申请实施例中,为便于说明,也可以将有CHO配置信息的命令或者消息称为CHO命令,该CHO命令例如可以是RRC重配置消息。
当终端设备有可用的CHO配置时,终端设备检测到连接失败,若终端设备选择的合适小区为CHO候选小区,终端设备可以尝试一次CHO执行;若终端设备选择的目标小区不是CHO候选小区,终端设备执行重建立流程;若终端设备在一段时间内没有找到合适的小区,终端设备进入空闲态。可以理解的,若CHO流程中终端设备尝试了1次CHO执行后,终端设备再次检测到连接失败,无论终端设备选择的合适小区是否为CHO候选小区中的目标小区,终端设备不再尝试CHO执行,可选的,终端设备可以执行重建立流程。可以理解的是,本申请实施例以终端设备在CHO流程中检测到第一次连接失败后,可以再尝试1次CHO执行为例进行说明,在CHO流程中终端设备检测到第一次连接失败后,可以尝试N次CHO执行,N是预设的用于限制在CHO流程中检测到第一次连接失败后可以尝试的CHO执行的最大次数,N大于或者等于1。
可以理解的是,本申请实施例中,也可以将用于实现切换配置或者切换指示的消息或者命令统称为切换消息或者切换命令。
图2示例性的给出了在CHO流程中发生连接失败的一种可能场景,如图2所示,终端设备在源小区触发条件切换后,首先尝试切换到目标小区B(T-cell B),在T-Cell B发生连接失败后,执行小区选择,并选择了CHO候选小区中的目标小区C(T-cell C),终端设备再尝试切换到T-cell C,并在目标小区T-Cell C中也发生了连接失败,此次的CHO流程结束。上述连接失败可以包括HOF,RLF或者定时器到期导致的失败。此处,可以将T-cell B称为CHO流程中的第一次目标小区。如果按照现有技术,终端设备针对此次CHO流程最终记录的RLF report是发生在T-cell C的连接失败信息,然而,本申请的发明人发现,对于CHO而言,第一次目标小区是终端设备基于覆盖等因素选择的第一个进行接入的小区,在第一个小区的接入成功对终端设备更为重要,因此发生在T-cell B的连接失败信息对于移动性策略的调整更有意义。可以理解的是,对于有CHO配置的legacy HO流程,也有可能出现如图2示出的场景。此外,也存在其它CHO场景下的多次失败。以终端设备检测到第一次连接失败后最多执行一次CHO尝试为例:终端设备收到了CHO配置,未触发CHO切换且检测到了终端设备和源网络设备之间的连接失败;终端设备确定执行小区选择,并选择了CHO候选小区中的目标小区B(T-cell B),终端设备执行CHO到T-Cell B,终端设备可以检测到终端设备和T-Cell B之间的连接失败。
对于DAPS HO流程,在一次DAPS HO流程中,也有可能发生多于一次的连接失败,例如终端设备在源小区收到DAPS HO命令后,终端设备检测到和源小区之间的连接失败,比如,RLF,终端设备继续执行和目标小区之间的DAPS HO,终端设备又检测到终端设备和目标小区之间的连接失败,比如HOF或者RLF。
本申请实施例中,可以将终端设备启动切换到成功接入目标小区或者转入其他非连接态的状态之前的流程称为一次切换流程(或者一次切换过程)。将CHO,DAPS HO,正常切换(可以称为normal HO或legacy HO)等理解为不同的切换类型。对于CHO场景,可以将源网络设备基站发送CHO配置信息的时机认为是启动切换,对于DAPS HO的场景, 可以将源网络设备向终端设备发送DAPS HO命令的时机认为是启动切换,对于正常切换,可以将源网络设备向终端设备发送源发送切换命令的时机认为是启动切换。
为解决在一次切换流程(第一切换流程)中,发生连接失败的次数大于1次的情况下,如何合理的记录RLF report的问题,本申请实施例提供了一种通信方法,可以理解的是,该通信方法也可以叫做连接失败信息处理方法。如图3所示,该通信方法包括:
S301,终端设备检测到连接失败。
可以理解的,在本实施例中,该连接失败可以称为第一次连接失败。终端设备检测到连接失败,可以为:终端设备接收到CHO配置,未触发CHO执行条件,终端设备检测到终端设备和源小区之间的连接失败,比如RLF或者定时器到期触发的失败;或者终端设备接收到CHO配置,触发CHO执行条件或者接收到正常切换命令,终端设备检测到和目标小区之间的连接失败,比如HOF或RLF;或者终端设备收到DAPS HO命令后,检测到终端设备和源小区之间的连接失败,比如RLF。
在启动切换流程后,在结束切换流程前,可能会发生终端设备在源小区或者目标小区的连接失败。如果终端设备确定检测到连接失败,可以执行S302。可以将S301所检测到的连接失败称为第一次连接失败。如果终端设备没有检测到连接失败,那么意味着终端设备可以正常的完成切换流程。
S302,终端设备记录连接失败信息。
相应的,该步骤中记录的连接失败信息可以称为第一次连接失败信息,也可以称为第一连接失败信息。
在终端设备检测到连接失败的情况下,终端设备会将此次的连接失败信息记录并保存。
作为一种示例,连接失败信息可以包括以下至少一种信息:
1)失败主小区标识(failedPCellId):终端设备检测到RLF或者第一定时器超期的主小区信息,或者HOF的目标主小区信息。该第一定时器例如可以是终端设备发送测量报告后启动的定时器,如果该定时器超时后终端设备还没有收到切换命令,可以认为发生连接失败,比如T312
可选的,失败信息中也可以不包括失败主小区标识(failedPCellId),而是包括失败小区标识(failedCellId)。其中,失败小区标识即终端设备检测到链路失败或者第一定时器超期的小区信息,或者切换失败的目标小区信息,本申请实施例对此不作限定。
2)连接失败类型(connectionFailureType)。
作为示例,连接失败类型可以为RLF或者HOF或者第一定时器到期。连接失败类型也可以简称为失败类型。
3)之前的主小区标识(previousPCellId):终端设备上一次收到切换命令的前主小区信息。
可选的,失败报告中也可以不包括之前的主小区标识(previousPcellId),而是包括之前的小区标识(previousCellId)。其中,之前的小区标识即终端设备上一次收到切换命令的前小区信息,本申请实施例对此不作限定。
4)重建立小区标识(reestablishmentCellId):连接失败后尝试重建立的小区信息。
5)连接失败时间(timeConnFailure):最后(或者说最近)一次收到切换命令(或者重配置消息)到连接失败的时间长度。
6)失败后的时间(timeSinceFailure):连接失败时开始记录的时间长度。一般指连接 失败到上报失败报告的时间长度。
7)连接失败的原因(rlf-Cause):其中,连接失败的原因可以包括HOF、RLF、重配同步失败、NR向其他系统切换失败、完整性校验失败(integrity check failure)或者RRC连接重配置失败。
8)位置信息(locationInfo):终端设备发生连接失败的位置的信息。
9)随机接入信息(ra-InformationCommon):终端设备在该小区进行随机接入的信息。
9)测量结果:可以为小区和/或波束的测量结果,该测量结果可以包括服务小区和/或邻区的测量结果。
10)收到CHO配置到触发CHO执行的时间信息(timeCHOcfgExe)
本申请实施例中的连接失败信息也可以称为链接失败信息。
S303,终端设备确定再次检测到连接失败。
在检测到第一次连接失败后,终端设备继续尝试在其他至少一个小区进行接入,比如选择的合适小区为CHO候选小区,终端设备可以尝试CHO执行;或者继续尝试和DAPS HO的目标小区之间的切换。
可以理解的是,在第一次连接失败的基础上,可能会再次发生至少一次的连接失败,本申请实施例中可以将再次发生的至少一次的连接失败称为第二连接失败。如果终端设备再次检测到连接失败,执行S304。如果终端设备没有再次检测到连接失败,那么意味着终端设备可以正常的接入。
S304,终端设备根据切换类型确定对连接失败信息的处理方式。
需要说明的是,本申请实施例是以根据切换类型确定对连接失败信息的处理方式为例进行说明,可替换的,也可以称为终端设备根据是否有可用的CHO配置来确定对连接失败信息的处理方式。
可以理解的是,若终端设备有可用的CHO配置,终端设备可以确定切换类型为CHO。若终端设备收到了DAPS HO命令,终端设备可以确定切换类型为DAPS HO。其中,终端设备有可用的CHO配置包括终端设备仅收到CHO配置的场景,以及,终端设备收到CHO配置在CHO执行条件满足前收到正常切换命令的场景。
终端设备在再次检测到连接失败的情况下,即终端设备检测到第二次或更多次连接失败,可以判断第一切换流程的切换类型,根据判断的结果来确定对当前记录的连接失败信息的处理方式。
如果终端设备判断出切换类型为DAPS HO,该终端设备对连接失败信息的处理方式可以是为以下方式A或者B。
方式A:终端设备在前一次连接失败信息的基础上进行全部或者部分信息的更新(或者说替换),也就是说终端设备使用再次连接失败的信息更新(替换)当前记录的全部或者部分连接失败信息。可以理解的是,再次发生的连接失败可能不止一次,按照该方式,不管再次发生连接失败的次数是多少,都是用最近一次的连接失败信息替换前一次的全部或者部分连接失败信息,那么可以理解为终端设备保存的是最近一次的连接失败信息。或者,
方式B:在切换类型为DAPS HO的情况下,该终端设备对连接失败信息的处理方式还可以是:终端设备最终保留(保存)在目标小区的第一次连接失败信息。该方式B包括:(1)第一次连接失败是发生在源小区,后续再次的连接失败至少有一次是发生在目标小 区,那么终端设备会用在目标小区的第一次连接失败信息更新或者替换前一次的全部或者部分连接失败信息(例如可以是源小区的连接失败信息),可选的,后续的在非第一次在目标小区的连接信息信息可以不做监测或者不用来更新目标小区的第一次连接失败信息;(2)第一次连接失败是发生在目标小区,那么终端设备可以在记录第一次连接失败信息后,不用后续的连接失败信息更新或者替换第一次连接失败信息,可选的,后续的在非第一次在目标小区的连接信息信息可以不做监测或者不用来更新目标小区的第一次连接失败信息。上述方式B也可以理解为在切换类型为DAPS HO时,终端设备进一步根据第一次连接失败是否发生在源小区确定对连接失败信息的处理。比如在切换类型为DAPS HO时,终端设备检测到第一次连接失败,终端设备记录第一连接失败信息;终端设备检测到和第一目标小区(即终端设备尝试连接的第一个目标小区)之间的连接失败(或者称为第二次连接失败)。若终端设备确定第一次连接失败发生在源小区,终端设备可以用第二次连接失败信息更新或者替换第一连接失败信息中的全部或者部分连接失败信息,若第一次连接失败发生在第一目标小区,终端设备保留第一连接失败信息。
其中,上述可以更新或替换的全部或者部分的连接失败信息例如可以包括以下至少一种:连接失败类型、失败主小区标识、连接失败时间、失败后的时间、连接失败的原因、位置信息、随机接入信息、测量结果、收到CHO配置到触发CHO执行的时间信息。
如果终端设备判断出切换类型为CHO,那么终端设备对连接失败信息的处理方式可以是:终端设备保留当前记录的第一次连接失败信息,也就是说终端设备不对记录的第一次连接失败的信息进行更新。可以理解的是,再次发生的连接失败可能不止一次,按照该方式,不管再次发生连接失败的次数是多少,保留(或者说保存)的都是第一次连接失败信息。可选的,终端设备可以不对后面发生的连接失败信息进行记录。比如在切换类型为CHO时,终端设备检测到第一次连接失败,终端设备记录第一连接失败信息,并且又发生了第二次连接失败,终端设备不用第二连接失败的信息更新第一连接失败信息。
可以理解的是,对于正常切换,一般一次切换流程中包括一次连接失败信息。
可选的,在终端设备按照S304对连接失败信息处理后,本申请实施例的通信方法还可以包括以下步骤。
S305,终端设备发送RLF report。
终端设备在当前网络设备完成接入,那么终端设备可以将当前存储的全部或者部分连接失败信息以RLF report的形式向当前接入的网络设备发送。此处的服务网络设备可以是重建立或者连接建立流程中的目标小区所属的网络设备,也可以是切换流程中的目标小区所属的网络设备,也可以为其它和终端设备间有无线资源连接的网络设备。本申请实施例中,可以将接收到RLF report的网络设备称为接收网络设备。接收网络设备可以根据RLF report中的内容进行不同的处理,即执行S306。
可以理解的,本申请实施例以终端设备将当前存储的部分或全部连接失败信息以RLF report的形式向当前接入的网络设备发送,仅为一种示例,不限定终端设备发送存储的连接失败信息的报告形式。
S306,接收网络设备根据接收到的RLF report的内容进行相应的处理。
接收网络设备可以根据接收到的连接失败信息确定转发该RLF report的第一目标网络设备。作为一种示例,若该RLF report中的连接失败类型为HOF,接收网络设备可以根据“之前的主小区标识”确定其对应的小区所属的网络设备为第一目标网络设备,可选的, 进一步可以由第一目标网络设备根据RLF report进行相应的处理,从而可以提升移动性鲁棒性。
若该RLF report中的连接失败类型为RLF或者第一定时器到期,接收网络设备可以根据“失败主小区标识”确定其对应的小区所属的网络设备为第一目标网络设备,可选的,进一步可以由第一目标网络设备根据RLF report进行相应的处理,从而可以提升移动性鲁棒性。可选的,若第一目标网络设备可以进一步确定该RLF report是否需要转发到“之前的主小区标识”对应的小区所属的网络设备(可以称为第二目标网络设备),若是,第一目标网络设备可以向“之前的主小区标识”对应的小区所属的网络设备发送RLF report。比如第一目标网络设备确定终端设备执行切换到检测到和失败主小区之间的连接失败的第一时间小于或等于某一门限,第一目标网络设备可以向“之前的主小区标识”对应的小区所属的网络设备发送RLF report。
可以理解的是,当第一目标网络设备和接收网络设备是相同的网络设备,那么可以不执行转发,而是接收网络设备根据RLF report进行相应的处理,或者,第一目标网络设备和第二目标网络设备是相同的网络设备,那么可以不执行转发,而是第一目标网络设备根据RLF report进行相应的处理,从而可以提升移动性鲁棒性。
本申请实施例对于网络设备对RLF report的处理过程和方式不做限定,例如可以是根据RLF report中的信息调整移动性参数等和/或执行例如第一目标网络设备根据连接失败时间确定是否向之前的主小区标识对应的小区所属的网络设备发送RLF report等操作。
本申请实施例的通信方法,根据切换类型确定对连接失败信息的处理方式,从而可以使得终端设备可以合理的上报连接失败信息,那么网络设备可以获取更有帮助的连接失败信息,进一步用以制定合理的移动性策略,提升终端设备的移动性性能。
本申请实施例还提供了一种通信方法(可以理解的是,该通信方法也可以叫做连接失败信息处理方法),可以不对终端设备记录的连接失败信息个数做限制,也就是说终端设备对一次切换流程中的至少一次连接失败信息进行记录并保存,如图4所示,该方法可以包括:
S401,终端设备检测到至少一次连接失败,并记录该至少一次连接失败的信息。
对于本申请实施例的场景而言,终端设备会在一次切换流程(切换流程A)中检测到至少一次连接失败,终端设备检测到的连接失败次数大于或等于两次的场景可以参考图3所示实施例的相关描述。
与现有技术中只记录最近一次连接失败的信息不同的是,本申请实施例中,终端设备对一次切换流程中的每次连接失败的连接失败信息都会进行记录并保存。关于连接失败信息的内容可以参考前面实施例的相关描述,此处不再赘述。
S402,终端设备将保存的连接失败信息发送给服务网络设备。
当终端设备在服务网络设备完成接入后,会将保存的全部或者部分连接失败信息发送给服务网络设备。例如,终端设备可以通过RLF report的形式将全部或者部分连接失败信息发送给服务网络设备,该RLF report中包括记录的至少一次连接失败的连接失败信息。可选的,该至少一次失败的连接失败信息可以在RLF report中按照连接失败发生的时间顺序(升序或者降序)排列。可以理解的,本申请实施例以终端设备将当前存储的部分或全部连接失败信息以RLF report的形式向当前接入的网络设备发送,仅为一种示例,不限定终端设备发送存储的连接失败信息的报告形式。
相应的,服务网络设备会接收到终端设备发送的连接失败信息,并执行S403。可以理解的是,终端设备发送的连接失败信息可以包括上述切换流程A中的至少一次连接失败信息,对于多次连接失败信息,可以通过一个消息发送,也可以通过多个消息发送给服务网络设备。
S403,服务网络设备根据接收到的连接失败信息中切换流程A中的连接失败信息的数量确定第一小区。
其中该第一小区是服务网络设备确定要转发连接失败信息的对象。
可选的,服务网络设备可以确定接收到的连接失败信息中属于切换流程A的连接失败信息,并至少根据属于切换流程A的连接失败信息的数量确定第一小区。可以理解的是,一次连接失败对应的连接失败信息的数量为1个,连接失败信息的数量与一次切换流程中发生连接失败的次数对应。例如,一次切换流程中发生了三次连接失败,那么连接失败信息的数量为3。
当第一小区确定后,服务网络设备可以进一步确定与第一小区对应的网络设备(或者说第一小区所属的网络设备),本申请实施例可以将与该第一小区对应的网络设备称为第一目标网络设备。此处的服务网络设备也可以称为接收网络设备。第一目标网络设备和接收网络设备可以是不同的网络设备,也可以是相同的网络设备。如果第一目标网络设备和接收网络设备是相同的网络设备,可以不执行转发的处理,而是由第一网络设备(或者服务网络设备)对连接失败信息进行相应的处理;如果第一目标网络设备和服务网络设备是不同的网络设备,可以由服务网络设备将连接失败信息(或者RLF report)转发给第一目标网络设备进行相应的处理。当服务网络设备确定接收到的一次切换流程中连接失败信息的数量为1个时,该服务网络设备可以进一步确定该失败类型具体是什么,不同的失败类型确定得到的第一小区可能不同。例如,当连接失败类型为HOF时,接收网络设备可以将之前的主小区标识对应的小区确定为第一小区,该第一小区所属的网络设备为第一目标网络设备,可选的,进一步可以由第一目标网络设备根据RLF report进行相应的处理,从而可以提升移动性鲁棒性;当连接失败类型为RLF或者第一定时器到期时,接收网络设备可以将失败主小区标识对应的小区确定为第一小区,该第一小区所属的网络设备为第一目标网络设备,可选的,进一步可以由第一目标网络设备根据RLF report进行相应的处理,从而可以提升移动性鲁棒性。可选的,第一目标网络设备可以向第二目标网络设备发送RLF report,进一步可以由第二目标网络设备根据RLF report进行相应的处理,从而可以提升移动性鲁棒性。
当服务网络设备确定接收到的连接失败信息数量大于1个时,服务网络设备可以进一步结合此次切换对应的切换类型确定第一小区。例如,如果此次切换对应的切换类型是CHO,可以根据第一次连接失败信息对应的失败类型确定第一小区,具体的根据失败类型确定第一小区的方式与前文所述的失败类型的数量为1时类似。如果此次切换对应的切换类型是DAPS HO,服务网络设备可以根据第一次目标小区的连接失败的失败类型确定第一小区,具体的根据失败类型确定第一小区的方式与前文所述的连接失败信息的数量为1时类似。
本申请实施例中,通过终端设备上报相对全面的连接失败信息,使得服务网络设备可以获取更多有帮助的连接失败的信息,进一步用以制定合理的移动性策略,提升终端设备的移动性性能。此外,本申请实施例对于第一目标网络设备根据RLF report进行相应的处 理的方式不做限定。
需要说明的是,本申请上述各个实施例对于如何判断或者如何区分多次连接失败是否属于一次切换流程不做限定。
在CHO过程中,会涉及到一些时间信息的记录或者计算,该时间信息可以通过至少一个计时器实现,本申请实施例还提供了一种通信方法,在接收到CHO配置信息后启动该至少一个计时器,然后在终端设备没有达到最近一次接收到的CHO命令对应的执行条件之前,或者,没和目标小区进行时间同步之前,可以根据是否接收到新的切换消息确定对该至少一个计时器的处理方式。下面通过图5-图8所示实施例举例说明。
如图5所示,提供了一种通信方法,该通信方法适用于CHO场景下,对CHO过程的计时控制,因此也可以称为CHO中的计时方法,该方法包括:
S501,终端设备接收CHO配置信息。
一些可能的实现方式中,终端设备可以从网络设备接收CHO配置信息,该CHO配置信息可以通过RRC重配置消息等切换消息由网络设备发送给终端设备。承载该CHO配置信息的消息也可以称为最近一次接收到的CHO命令。在CHO配置信息中包括对应的CHO执行条件,也可以叫做最近一次接收到的CHO命令对应的执行条件。
S502,终端设备启动计时器。
其中,该计时器可以包括第一计时器和/或第二计时器。第一计时器用于实现对收到CHO配置到触发CHO执行的计时,也就是说通过计时器来计算或者记录最近一次收到切换消息到触发CHO执行的时长。或者,第二计时器用于计算或者记录最近一次收到切换消息到连接失败(第一次连接失败和/或第一次连接失败后的任意一次连接失败)的时长。终端设备在接收到CHO配置信息后,启动该第一计时器和/或第二计时器,从“0”开始计时。可以理解的是,第一计时器和第二计时器的启动时间可以是相同的,但是停止时间可能不同。可选的,第一计时器和第二计时器可以分别有对应的最大运行时间的限制,本申请对于最大运行时间的时长以及设置方式不做限制。
此外,第一计时器和第二计时器可以通过一个计时器实现,只是在不同的时间点保存不同的时间信息从而用来计算或者记录不同的时间信息。或者,第一计时器和第二计时器也可以是不同的计时器。
S503,在终端设备没有达到最近一次接收到的CHO命令对应的执行条件之前,或者,没和目标小区进行时间同步,终端设备检测是否接收到新的切换消息。
其中,该新的切换消息可以是携带新的CHO配置信息的切换消息(也可以称为新的CHO命令)、正常切换命令、DAPS切换命令中的一种。其中,该新的CHO配置信息可以包括对前一次的CHO配置信息中的全部或者部分候选小区的配置信息进行更新的信息,和/或指示删除前一次CHO配置信息中全部或者部分候选小区的配置信息的信息,和/或指示增加新的候选小区的配置信息的信息,本申请实施例对此不做限定。
终端设备在接收到CHO配置信息后,根据该CHO配置信息判断各候选小区是否满足执行条件,如果有候选小区满足执行条件,则终端设备可以将该候选小区作为目标小区尝试启动切换到该目标小区(启动CHO)。在终端设备没有达到最近一次接收到的CHO命令对应的执行条件之前,或者,没和目标小区进行时间同步之前,终端设备可以检测(监测或者判断或者确定)是否接收到新的切换消息,若终端设备检测到有新的切换消息,执行S504。
此外,如果在终端设备没有达到最近一次接收到的CHO命令对应的执行条件之前,或者,没和目标小区进行时间同步之前,终端设备没有检测到新的切换消息,可以在终端设备没有达到最近一次接收到的CHO命令对应的执行条件之前,或者,没和目标小区进行时间同步之前持续检测,如果在终端设备没有达到最近一次接收到的CHO命令对应的执行条件之前,或者,没和目标小区进行时间同步之前一直没有检测到新的切换消息,则计时器继续运行。可选的,如果终端设备已经对目标小区进行时间同步,则可以在对目标小区进行时间同步之后不检测是否接收到新的切换消息,而是执行S505以及后续步骤。
S504,终端设备重启计时器。
如果终端设备在没有达到最近一次接收到的CHO命令对应的执行条件或者没有对目标小区进行时间同步之前,检测到新的切换消息,重启第一计时器和/或第二计时器,也就是说再次执行S502以及后续步骤。
可选的,S503或者S504之后,终端设备可以执行步骤S505和步骤S506,或者执行步骤S506,比如终端设备执行正常切换或者未触发CHO执行时,终端设备可以仅执行步骤S506。
S505,终端设备确定触发CHO执行(CHO触发)。
如果终端设备确定触发CHO执行(即满足CHO触发条件并执行CHO),或者终端设备确定和目标小区完成时间同步,此时第一计时器的运行时长(计时值)为“最近一次收到切换消息到触发CHO执行的时长”的数值。可选的,终端设备可以停止第一计时器。或者,终端设备可以继续运行第一计时器。可选的,终端设备可以继续执行步骤S506。
S506,终端设备确定发生连接失败。
在执行CHO后,如果终端设备确定发生连接失败,此时第二计时器的运行时长(计时值)为最近一次收到切换消息到连接失败的数值。可以理解的是,此处的连接失败可以是第一次连接失败,也可以是任意一次连接失败,例如第二次连接失败。
终端设备可以在第一次连接失败时记录第二计时器的运行时长信息,在发生第一次连接失败后,可以停止第二计时器,也可以是第二计时器继续运行,在后续的连接失败发生时,终端设备获取此时的第二计时器的运行时长信息,那么终端设备可以计算或者记录后续的连接失败的时长信息。可以理解的是,也有可能执行CHO之后,没有发生连接失败。那么可以不记录第二计时器的运行时长信息。
那么在没有收到新的切换消息的情况下,从S501到S506之间的时间段为第二计时器的数值,在收到新的切换消息的情况下,从S504到S506之间的时间段为第二计时器的数值。
可选的,该方法还可以包括S507。
S507,终端设备向服务网络设备发送连接失败信息。
终端设备在接入到服务网络设备后,会向服务网络设备发送连接失败信息,以用于后续处理。如前所述,该连接失败信息包括最近一次收到切换消息到触发CHO执行的时长和/或最近一次收到切换消息到连接失败的时长的信息。本申请实施例对于服务网络设备接收到连接失败信息后的处理不做限定和具体描述,例如可以参考前述实施例的描述。
以图6的具体示例而言,当终端设备在t1时间点,在cell 1接收到CHO配置1(候选小区为cell2,cell3和cell4),并于此时启动计时器计时。在t2时刻,终端设备没有达到最近一次接收到的CHO命令对应的执行条件,或者,没和目标小区进行时间同步之前,又 收到网络设备发送的更新的CHO配置2(更新cell 2的配置,删除或释放cell 3的配置信息,以及增加了cell 5的配置信息)。按照本申请实施例的方法,终端设备在t2时刻会重启计时器。假设终端设备在t3时刻开始触发切换到Cell4,并在t4时刻在cell 4发生了连接失败(例如HOF或者RLF),那么计时器的计时时长为可以包括[t2,t3]和/或[t2,t4]两个信息。可见,由于CHO配置2是网络设备的最新的切换配置,终端设备也会以此配置进行切换,因而采用本申请实施例的方法,能更准确地反映CHO过程中的时长信息,从而使得网络设备可以基于该信息进行正确的移动性问题的判断,确定合理的移动性策略调整。
上述图5-6所示的实施例,可以独立实施,也可以和前面图3或者图4实施例结合实现,例如图3或者图4所示实施例中的连接失败信息中的timeCHOcfgExe和/或timeConnFailure可以按照图5-6所示实施例进行实施。
此外,对CHO过程的计时控制也可以按照小区级(粒度是小区)来实现,如图7所示,本申请实施例还提供了一种通信方法(也可以称为CHO中的计时方法),包括:
S701,终端设备接收CHO配置信息。
S702,终端设备启动计时器。
关于S701和S702的描述可以参考图5所示实施例的相关描述,此处不再赘述。所不同的是,在本申请实施例中,计时器是小区级的,也就是说CHO配置信息中的候选小区与计时器对应。以第一计时器和/或第二计时器是一个计时器为例,可以是一个候选小区对应一个计时器(候选小区和计时器是一对一的关系),也可以是多个候选小区对应一个计时器(候选小区和计时器是多对一的关系)。每个候选小区对应的计时器的时长可以相同或者不同。本申请实施例中,小区对应的计时器也可以称为小区的计时器。
S703,在终端设备没有达到最近一次接收到的CHO命令对应的执行条件之前,或者,没和目标小区进行时间同步之前,终端设备检测是否接收到新的切换消息。
在终端设备没有达到最近一次接收到的CHO命令对应的执行条件之前,或者,没和目标小区进行时间同步之前,终端设备可以检测是否接收到新的切换消息,若终端设备检测到有新的切换消息,执行S704,如果终端设备没有检测到新的切换消息,可以在终端设备没有达到最近一次接收到的CHO命令对应的执行条件之前,或者,没和目标小区进行时间同步之前持续检测,如果在终端设备没有达到最近一次接收到的CHO命令对应的执行条件之前,或者,没和目标小区进行时间同步之前一直没有检测到新的切换消息,则各候选小区对应的计时器继续运行。可选的,如果终端设备已经对目标小区进行时间同步,则可以对目标小区进行时间同步之后不检测是否接收到新的切换消息,而是执行S705以及后续步骤。
S704,终端设备根据新的切换消息确定对计时器的处理方式。
如果新的切换消息是新的CHO命令,且该新的CHO命令包括包括对前一次的CHO配置信息中的全部或者部分候选小区的配置信息进行更新的信息,那么终端设备对计时器的处理方式可以是重启该更新的全部或者部分候选小区对应的计时器。例如,S701中接收到的CHO配置信息(即前一次CHO配置信息)中的候选小区为cell 2,cell 3和cell 4对应的配置信息,新的CHO切换命令指示对cell 2的配置信息进行更新,那么可以重启cell2对应的第一计时器和/或第二计时器,或者,停止cell2对应的运行的第一计时器和/或第二计时器,启动cell2对应的新的第一计时器和/或第二计时器。比如S701中,终端设备启动cell 2对应的第一计时器T2-1,在S704中,终端设备可以停止T2-1,启动新的第一计 时器T2-2。可选的,未更新的候选的小区的第一计时器和/或第二计时器,可以继续运行。
如果新的切换消息是新的CHO命令,且该新的CHO命令包括指示删除前一次的CHO配置信息中的全部或者部分候选小区的配置信息的信息,那么终端设备对计时器的处理方式可以是删除该被指示删除的全部或者部分候选小区对应的计时器。例如,S701中接收到的CHO配置信息(即前一次CHO配置信息)中的候选小区为cell 2,cell 3和cell 4对应的配置信息,新的CHO切换命令指示删除cell 3的配置信息,那么终端设备可以停止或者删除cell 3对应的第一计时器和/或第二计时器。可选的,未删除的候选的小区的第一计时器和/或第二计时器,可以继续运行。
如果新的切换消息是新的CHO命令,且该新的CHO命令包括指示增加新的候选小区的配置信息的信息,那么终端设备对计时器的处理方式可以是增加与该新增的候选小区对应的计时器。例如,S701中接收到的CHO配置信息(即前一次CHO配置信息)中的候选小区为cell 2,cell 3和cell 4对应的配置信息,S704中新的CHO切换命令指示增加cell5的配置信息,那么终端设备可以增加与cell 5对应的第一计时器和/或第二计时器,并启动计时。可选的,其他之前配置的候选的小区的第一计时器和/或第二计时器,可以继续运行。
可选的,如果新的切换消息是正常切换命令或者DAPS切换命令,那么该终端设备对计时器的处理方式可以是停止CHO配置信息中的所有候选小区对应的计时器。可选的,可以针对DAPS HO或者正常切换重新启动对应的第一计时器和/或第二计时器。
S704之后,终端设备可以执行步骤S705和步骤S705,或者执行步骤S706,比如终端设备执行正常切换或者未触发CHO执行时,终端设备可以仅执行步骤706。
S705,终端设备确定触发CHO执行。
如果终端设备确定触发CHO执行,或者终端设备确定和目标小区完成时间同步,此时目标小区的第一计时器的运行时长(计时值)为“最近一次收到切换消息到触发CHO执行的时长”的数值。可选的,终端设备可以停止第一计时器。或者,终端设备可以继续运行第一计时器。可选的,终端设备可以继续执行步骤S707。可选的,当终端设备启动向目标小区的切换之后,除了目标小区对应的计时器继续运行,其他候选小区对应的计时器可以停止运行,也就是说其他候选小区对应的计时器被清除(或者丢弃),其相应的时间信息可以不上报给网络设备。
可替换的,其他候选小区对应的计时器也可以不停止,直到终端设备不可能在候选小区尝试CHO。例如,假设候选小区有cell1,cell2和cell3,终端设备在第一次连接失败后最多可以尝试一次CHO执行,那么终端设备第一次尝试在cell 1执行CHO,那么cell 1的计时器继续运行,cell2和cell3对应的计时器可以停止,或者也可以是cell2和cell3的计时器继续运行,终端设备在cell1发生连接失败,cell 1的计时器停止,如果终端设备继续尝试在cell2的CHO,cell3的计时器停止,cell2的计时器继续运行。
S706,终端设备确定在目标小区是否发生连接失败。
如果终端设备确定发生连接失败,此时目标小区的第二计时器的运行时长(计时值)为最近一次收到切换消息到连接失败的数值。可以理解的是,此处的连接失败可以是第一次连接失败,也可以是任意一次连接失败,例如第二次连接失败。
终端设备可以在第一次连接失败时记录第二计时器的运行时长信息,在发生第一次连接失败后,可以停止第二计时器,也可以是第二计时器继续运行,在后续的连接失败发生 时,终端设备获取此时的第二计时器的运行时长信息,那么终端设备可以计算或者记录后续的连接失败的时长信息。
那么在没有收到新的切换消息的情况下或者新的切换消息不是对该目标小区进行CHO配置更新的情况下,从S701到S706之间的时间段为目标小区的第二计时器的数值,或者,在收到新的切换消息且该新的切换消息是对目标小区的CHO配置消息进行更新的情况下,从S704到S706之间的时间段为第二计时器的数值。
可选的,该方法还可以包括S707。
S707,终端设备向服务网络设备发送连接失败信息。
终端设备在接入到服务网络设备后,会向服务网络设备发送连接失败信息,以用于后续处理。如前所述,该连接失败信息包括该计时器的时长信息。本申请实施例对于服务网络设备接收到连接失败信息后的处理不做限定和具体描述,例如可以参考前述实施例的描述。
以图8的具体示例而言,当终端设备在t1时间点,在cell 1接收到CHO配置1(候选小区为cell2,cell3和cell4),并于此时分别启动cell2,cell 3,cell4对应的计时器timer2,timer3,timer4计时。在t2时刻,在终端设备没有达到最近一次接收到的CHO命令对应的执行条件之前,或者,没和目标小区进行时间同步之前,又收到网络设备发送的更新的CHO配置2(更新cell 2的配置,删除cell 3的配置信息,以及增加了cell 5的配置信息)。按照本申请实施例的方法,终端设备在t2时刻会重启cell 2对应的计时器timer2,删除cell3对应的计时器timer3,以及增加cell 5对应的计时器timer5。假设终端设备在t3时刻开始触发切换到Cell4,timer2和timer5停止运行,并在t4时刻在cell 4发生了连接失败(例如HOF或者RLF),那么cell 4对应的计时器的计时时长包括[t1,t3]和[t2,t4]。可见,由于CHO配置2是网络设备的最新的切换配置,终端设备也会以此配置进行切换,因而采用本申请实施例的方法,能更准确地反映CHO过程中的时间信息,从而使得网络设备可以基于该信息进行正确的移动性问题的判断,确定合理的移动性策略调整。
上述图7-8所示的实施例,可以独立实施,也可以和前面图3或者图4实施例结合实现,例如图3或者图4所示实施例中的连接失败信息中的timeCHOcfgExe和/或timeConnFailure可以按照图7-8所示实施例进行实施。
可以理解的是,以上图5-图8所示实施例以通过计时器运行的方式举例说明对于timeConnFailure的计时控制,也可以通过其他的方式实现计时,例如通过时间戳的方式,本申请实施例对此不做限定。此外,以上图5-图8所示实施例以收到CHO配置到触发CHO执行的时间信息和最近一次收到切换消息到触发CHO执行的时长的信息为例说明CHO过程中的计时控制,对于CHO过程中的其他时间信息也可以类似处理,本申请实施例不一一例举。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。为了实现上述本申请实施例提供的方法中的各功能,各网元或者装置可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图9为本申请实施例提供的通信装置900的示意性框图。该通信装置900可以对应实 现上述图3或图4所示方法实施例中由终端设备实现的功能或者步骤。该通信装置900可以为终端设备或者可以适用于该终端设备的部件(例如芯片或者电路等)或者,该通信装置900可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在一些可能的实现方式中,该通信装置可以包括检测单元910、处理单元920。可选的,还可以包括收发单元930。
示例性的,当用于实现图3所示实施例的方法时:
检测单元910可以用于检测到第一次连接失败并记录第一次连接失败对应的第一连接失败信以及检测到发生在第一次连接失败之后的第二连接失败;处理单元920可以用于根据第一切换流程的切换类型确定对连接失败信息的处理方式。
示例性的,当用于实现图4所示实施例的方法时:
检测单元910可以用于检测到至少一次连接失败,该至少一次连接失败属于第一切换流程;处理单元920可以用于记录并保存每次连接失败对应的连接失败信息。
可选的,收发单元930可以用于用于向网络设备发送连接失败信息。
应理解,本申请实施例中的检测单元910和处理单元920可以由至少一个处理器或处理器相关电路组件实现,收发单元930可以由收发器或收发器相关电路组件或者通信接口实现。此外,上述各个单元可以分离也可以集成,本申请实施例对此不做限定。
可选的,该通信装置900还可以包括存储单元940,该存储单元940可以用于存储指令或者数据,处理单元920可以执行或者读取该存储单元中存储的指令或者数据,以使该通信装置实现相应的操作。可选的,该存储单元940可以通过至少一个存储器实现。
可以理解的是,关于通信装置900各个单元之间的耦合以及具体实现可以参考方法实施例中的描述,此处不再赘述。
如图10所示,为本申请实施例提供的通信装置1000,能够实现本申请图4实施例提供的方法中网络设备的功能。该通信装置1000可以是网络设备;或者通信装置1000也可以是能够支持网络设备实现本申请实施例提供的方法中对应的功能的装置;或者,该通信装置1000可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置1000可以包括收发单元1010和处理单元1020。示例性的,收发单元1010可以用于从终端设备接收至少一次连接失败的连接失败信息,所述至少一次连接失败属于第一切换流程,处理单元1020可以用于根据接收到的连接失败信息中的第一切换流程中的连接失败信息的数量确定第一小区。可选的,收发单元1010还可以用于将接收到的连接失败信息发送给所述第一小区所属的网络设备。
本申请实施例中的处理单元1020可以由至少一个处理器或处理器相关电路组件实现,收发单元1010可以由收发器或收发器相关电路组件或者通信接口实现。此外,上述各个单元可以分离也可以集成,本申请实施例对此不做限定。
可选的,该通信装置1000还可以包括存储单元1030,该存储单元1030可以用于存储指令或者数据,处理单元1020可以执行或者读取该存储单元中存储的指令或者数据,以使该通信装置实现相应的操作。可选的,该存储单元1030可以通过至少一个存储器实现。
可以理解的是,关于通信装置1000各个单元之间的耦合以及具体实现可以参考方法实施例中的描述,此处不再赘述。
图11为本申请实施例提供的通信装置1100的示意性框图。该通信装置1100可以对应实现上述图5-8所示方法实施例中由终端设备实现的功能或者步骤。该通信装置1100可以为终端设备或者可以适用于该终端设备的部件(例如芯片或者电路等)或者,该通信装置900可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该通信装置可以包括收发单元1110和处理单元1120。
一些可能的实现方式中,收发单元1110用于接收条件切换CHO配置信息,处理单元1120用于在收发单元接收到CHO配置信息后启动计时器,并且处理单元1120用于在终端设备没有达到所述CHO配置信息对应的执行条件之前,或者,没和目标小区进行时间同步之前,根据是否接收到新的切换消息确定对所述计时器的处理方式。
可选的,收发单元1130可以用于用于向网络设备发送连接失败信息。
应理解,本申请实施例中的处理单元1120可以由至少一个处理器或处理器相关电路组件实现,收发单元1110可以由收发器或收发器相关电路组件或者通信接口实现。此外,上述各个单元可以分离也可以集成,本申请实施例对此不做限定。
可选的,该通信装置1100还可以包括存储单元1130,该存储单元1130可以用于存储指令或者数据,处理单元1120可以执行或者读取该存储单元中存储的指令或者数据,以使该通信装置实现相应的操作。可选的,该存储单元1130可以通过至少一个存储器实现。
可以理解的是,关于通信装置1100各个单元之间的耦合以及具体实现可以参考方法实施例中的描述,此处不再赘述。
可以理解的是,关于通信装置1100各个单元之间的耦合以及具体实现可以参考方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种通信装置1200,可以用于实现或用于支持通信装置1200实现本申请各个实施例提供的方法中网络设备或终端设备的功能。该通信装置1200包括至少一个处理器1210和至少一个存储器1220,用于存储程序指令和/或数据。存储器1220和处理器1210耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1210可能和存储器1220协同操作。处理器1210可能执行存储器1220中存储的程序指令和/或数据,以使得通信装置1200实现相应的方法。可选的,所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置1200还可以包括通信接口1230,用于通过传输介质和其它设备进行通信,从而用于通信装置1200中的装置可以和其它设备进行通信。
本申请实施例中不限定上述通信接口1230、处理器1210以及存储器1220之间的具体连接介质。示例性的,本申请实施例在图12中以存储器1220、处理器1210以及通信接口1230之间通过总线1240连接,总线在图12中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例还提供一种通信系统,用于实现上述方法实施例的全部或者部分步骤。例如,该通信系统可以包括上述终端设备。可选的,该通信系统还可以包括至少一个网络设备。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得图3-图8所示实施例中终端设备执行的方法被执行。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得图3-图8所示实施例中网络设备执行的方法被执行。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得图3-图8所示实施例中网络设备或终端设备执行的方法被执行。
应理解,本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一计时器和第二计时器,只是为了区分作用。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM, SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请的实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Drive(SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以 权利要求的保护范围为准。

Claims (27)

  1. 一种通信方法,其特征在于,所述方法包括:
    检测到第一次连接失败并记录第一次连接失败对应的第一连接失败信息;
    检测到第二连接失败,其中,所述第一次连接失败和第二连接失败属于第一切换流程,第二连接失败是发生在第一次连接失败之后的连接失败;
    根据第一切换流程的切换类型确定对连接失败信息的处理方式,所述切换类型包括条件切换或者双激活协议栈切换;
    发送连接失败信息。
  2. 根据权利要求1所述的方法,其特征在于,所述根据第一切换流程的切换类型确定对连接失败信息的处理方式,包括:
    如果所述第一切换流程的切换类型为双激活协议栈切换,用第二连接失败信息对第一连接失败信息中的全部或者部分信息进行更新。
  3. 根据权利要求1所述的方法,其特征在于,所述根据第一切换流程的切换类型确定对连接失败信息的处理方式,包括:
    如果所述第一切换流程的切换类型为双激活协议栈切换,所述第二连接失败包括第一次在目标小区的连接失败,用所述第一次在目标小区的连接失败对第一连接失败信息中的全部或者部分信息进行更新。
  4. 根据权利要求1所述的方法,其特征在于,所述根据第一切换流程的切换类型确定对连接失败信息的处理方式,包括:
    如果所述第一切换流程的切换类型为条件切换,保留所述第一连接失败信息。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述第一连接失败信息中的全部或者部分信息包括以下至少一种:连接失败类型、失败主小区标识、连接失败时间、失败后的时间、连接失败的原因、位置信息、随机接入信息、测量结果。
  6. 一种通信方法,其特征在于,包括:
    从终端设备接收至少一次连接失败的连接失败信息,所述至少一次连接失败属于第一切换流程;
    根据接收到的连接失败信息中的第一切换流程中的连接失败信息的数量确定第一小区。
  7. 根据权利要求6所述的方法,其特征在于,还包括:将接收到的连接失败信息发送给所述第一小区所属的网络设备。
  8. 根据权利要求6或7所述的方法,其特征在于,当所述第一切换流程中连接失败信息的数量为1时,根据所述连接失败信息的失败类型确定所述第一小区。
  9. 根据权利要求8所述的方法,其特征在于,根据所述失败类型确定所述第一小区,包括:
    当所述失败类型为切换失败时,将之前的主小区标识对应的小区确定为第一小区。
  10. 根据权利要求8或9所述的方法,其特征在于,根据所述失败类型确定所述第一小区,包括:
    当所述失败类型为条件切换或者定时器超时时,将失败主小区标识对应的小区确定为第一小区。
  11. 根据权利要求6或7所述的方法,其特征在于,当所述第一切换流程中的连接失败信息的数量大于1时,根据所述第一切换流程的切换类型确定所述第一小区,所述切换类型包括条件切换或者双激活协议栈切换。
  12. 根据权利要求11所述的方法,其特征在于,根据所述第一切换流程的切换类型确定所述第一小区,包括:
    如果所述切换类型为条件切换,根据第一次连接失败对应的失败类型确定第一小区。
  13. 根据权利要求11所述的方法,其特征在于,根据所述第一切换流程的切换类型确定所述第一小区,包括:
    如果所述切换类型为双激活协议栈切换,根据第一次目标小区的连接失败的失败类型确定所述第一小区。
  14. 一种通信方法,其特征在于,包括:
    接收条件切换CHO配置信息,启动计时器,其中,所述计时器用于计算或者记录最近一次收到切换消息到连接失败的时间,所述CHO配置信息包括至少一个候选小区的信息;
    在终端设备没有达到所述CHO配置信息对应的执行条件之前,或者,没和目标小区进行时间同步之前,根据是否接收到新的切换消息确定对所述计时器的处理方式,其中,所述新的切换消息包括携带新的CHO配置信息的切换消息、正常切换命令或者双激活协议栈切换命令。
  15. 根据权利要求14所述的方法,其特征在于,根据是否接收到新的切换消息确定对所述计时器的处理方式,包括:
    在接收到新的切换消息的情况下,重启所述计时器。
  16. 根据权利要求14所述的方法,其特征在于,所述计时器与所述至少一个候选小区对应,所述根据是否接收到新的切换消息确定对所述计时器的处理方式,包括:
    如果接收到新的切换消息,并且所述新的切换消息是携带新的CHO配置信息的切换消息,所述新的CHO配置信息包括对前一次的CHO配置信息中的全部或者部分候选小区的配置信息进行更新的信息,重启所述更新的全部或者部分候选小区对应的计时器。
  17. 根据权利要求14或16所述的方法,其特征在于,所述计时器与所述至少一个候选小区对应,所述根据是否接收到新的切换消息确定对所述计时器的处理方式,包括:
    如果接收到新的切换消息,并且所述新的切换消息是携带新的CHO配置信息的切换消息,所述新的CHO配置信息包括指示删除前一次的CHO配置信息中的全部或者部分候选小区的配置信息的信息,删除被指示删除的全部或者部分候选小区对应的计时器。
  18. 根据权利要求14、16或17所述的方法,其特征在于,所述计时器与所述至少一个候选小区对应,所述根据是否接收到新的切换消息确定对所述计时器的处理方式,包括:
    如果接收到新的切换消息,并且所述新的切换消息是携带新的CHO配置信息的切换消息,所述新的CHO配置信息包括指示增加新的候选小区的配置信息的信息,增加与新增的候选小区对应的计时器。
  19. 根据权利要求14、16-18任一项所述的方法,其特征在于,所述计时器与所述至少一个候选小区对应,所述根据是否接收到新的切换消息确定对所述计时器的处理方式,包括:
    如果接收到新的切换消息,且所述的新的切换消息是正常切换命令或者双激活协议栈 切换命令,停止与所有候选小区对应的计时器。
  20. 根据权利要求14-19任一项所述的方法,其特征在于,还包括:所述在对目标小区进行时间同步之后,不检测是否接收新的切换消息。
  21. 根据权利要求14-20任一项所述的方法,其特征在于,还包括:确定在目标小区发生连接失败,所述计时器的运行时长为最近一次收到切换消息到连接失败的时间,所述连接失败包括接收到条件切换CHO配置信息后第一次连接失败和/或所述第一次连接失败后的至少一次连接失败。
  22. 根据权利要求14-21任一项所述的方法,其特征在于,还包括:
    发送连接失败信息,所述连接失败信息包括所述计时器的运行时间信息。
  23. 一种通信装置,其特征在于,用于实现如权利要求1-5任一项所述的方法。
  24. 一种通信装置,其特征在于,用于实现如权利要求6-13任一项所述的方法。
  25. 一种通信装置,其特征在于,用于实现如权利要求14-22任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被执行时,使得如权利要求1-22中任一项所述的方法被执行。
  27. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被执行时,使得如权利要求1-22任一项所述的方法被实现。
PCT/CN2020/142338 2020-12-31 2020-12-31 通信方法、装置和系统 WO2022141480A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080108299.6A CN116671174A (zh) 2020-12-31 2020-12-31 通信方法、装置和系统
PCT/CN2020/142338 WO2022141480A1 (zh) 2020-12-31 2020-12-31 通信方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142338 WO2022141480A1 (zh) 2020-12-31 2020-12-31 通信方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2022141480A1 true WO2022141480A1 (zh) 2022-07-07

Family

ID=82258908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142338 WO2022141480A1 (zh) 2020-12-31 2020-12-31 通信方法、装置和系统

Country Status (2)

Country Link
CN (1) CN116671174A (zh)
WO (1) WO2022141480A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115834436A (zh) * 2022-11-24 2023-03-21 中国联合网络通信集团有限公司 网络连通性检测方法、装置及存储介质
WO2023116392A1 (zh) * 2021-12-23 2023-06-29 大唐移动通信设备有限公司 一种信息处理方法、装置及可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298004A (zh) * 2012-02-28 2013-09-11 北京三星通信技术研究有限公司 汇报无线链路失败信息的方法
US20200314716A1 (en) * 2019-03-27 2020-10-01 Lg Electronics Inc. Method and apparatus for mobility in wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298004A (zh) * 2012-02-28 2013-09-11 北京三星通信技术研究有限公司 汇报无线链路失败信息的方法
US20200314716A1 (en) * 2019-03-27 2020-10-01 Lg Electronics Inc. Method and apparatus for mobility in wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on CHO and DAPS Mobility Enhancement", 3GPP DRAFT; R2-2008844, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051941924 *
LENOVO, MOTOROLA MOBILITY: "MRO for CHO and DAPS Handover", 3GPP DRAFT; R2-2007465, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051912203 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023116392A1 (zh) * 2021-12-23 2023-06-29 大唐移动通信设备有限公司 一种信息处理方法、装置及可读存储介质
CN115834436A (zh) * 2022-11-24 2023-03-21 中国联合网络通信集团有限公司 网络连通性检测方法、装置及存储介质
CN115834436B (zh) * 2022-11-24 2024-05-03 中国联合网络通信集团有限公司 网络连通性检测方法、装置及存储介质

Also Published As

Publication number Publication date
CN116671174A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2018171514A1 (zh) 信息指示的方法和装置
WO2018059299A1 (zh) 小区切换的方法、装置及系统和计算机存储介质
WO2018196855A1 (zh) 波束恢复处理方法和终端
US20240121680A1 (en) Method and wireless device for handling handover
WO2020108220A1 (zh) 通信方法及装置
WO2022017400A1 (zh) 一种移动性信息上报的方法和ue
TWI733083B (zh) 與基地台處理一雙連結的裝置及方法
US20210251032A1 (en) Communication method, apparatus, and system
WO2020221193A1 (zh) 条件切换方法及对应的用户设备
WO2022141480A1 (zh) 通信方法、装置和系统
WO2020199992A1 (zh) 一种通信方法及装置
WO2021254497A1 (zh) 小区组处理方法、装置及通信设备
US20230262572A1 (en) Communication method and related device
US20220330056A1 (en) Communication Method and Apparatus
WO2014206179A1 (zh) 一种实现自动邻区关系建立的方法、终端、基站及系统、存储介质
WO2022152220A1 (zh) 连接失败信息的处理方法、装置和系统
EP2475199A1 (en) Handover method and device for an access service network
US20230308250A1 (en) Managing cellular radio access technology operations
US20170223581A1 (en) Method and user equipment for recovering service in universal mobile telecommunications system (umts) network
JP2023547842A (ja) Mro臨界シーンの判定方法、装置及び機器
US20230388873A1 (en) Method and apparatus for determining daps handover failure type
WO2022083612A1 (zh) 用户信息的发送方法、装置及终端
WO2023011612A1 (zh) 移动性管理的方法及通信装置
WO2022222893A1 (zh) 通信方法及装置
WO2022099516A1 (zh) 通信方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080108299.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967819

Country of ref document: EP

Kind code of ref document: A1