WO2022139624A1 - Flat led light with a large-area light-emitting surface - Google Patents

Flat led light with a large-area light-emitting surface Download PDF

Info

Publication number
WO2022139624A1
WO2022139624A1 PCT/RU2021/000486 RU2021000486W WO2022139624A1 WO 2022139624 A1 WO2022139624 A1 WO 2022139624A1 RU 2021000486 W RU2021000486 W RU 2021000486W WO 2022139624 A1 WO2022139624 A1 WO 2022139624A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
illuminator
flat
light guide
printed circuit
Prior art date
Application number
PCT/RU2021/000486
Other languages
French (fr)
Russian (ru)
Inventor
Юрий Борисович СОКОЛОВ
Original Assignee
Юрий Борисович СОКОЛОВ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юрий Борисович СОКОЛОВ filed Critical Юрий Борисович СОКОЛОВ
Priority to DE212021000530.6U priority Critical patent/DE212021000530U1/en
Publication of WO2022139624A1 publication Critical patent/WO2022139624A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • F21V23/004Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board
    • F21V23/005Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board the substrate is supporting also the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/05Optical design plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2107/00Light sources with three-dimensionally disposed light-generating elements
    • F21Y2107/50Light sources with three-dimensionally disposed light-generating elements on planar substrates or supports, but arranged in different planes or with differing orientation, e.g. on plate-shaped supports with steps on which light-generating elements are mounted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0095Light guides as housings, housing portions, shelves, doors, tiles, windows, or the like

Definitions

  • SUBSTANCE invention relates to lighting engineering, namely to lighting devices based on an end-illuminated light guide, which can be used for general or local lighting, as well as for creating decorative, design and advertising light panels.
  • Edge lighting is currently used everywhere, because it allows you to get absolutely uniform lighting, and the illuminator itself does not have characteristic points inherent in LED lighting and allows you to get a very thin illuminator, which is impossible in illuminators with LEDs in the light.
  • the task was to create such a design that would be easy to manufacture, be as flat as possible (small height), universal, in the sense of the possibility of embedding into a decorative ceiling, often into existing holes, had the possibility of transformation in terms of power, i.e. suitable for large formats of illuminators up to a square meter or more, had the ability to be built into various types of lighting surfaces of various configurations, working as pendant and overhead illuminators.
  • the proposed device solves the problem of creating a large light-emitting surface that has a uniform glow and is capable of creating both a uniform luminous flux and areas with the required radiation brightness. Uniformity is understood as a given light output from the radiation surface.
  • a flat light guide is used as a medium for transmitting light radiation.
  • the technical result of the proposed solution is to increase the uniformity of the light flux generated on a large light-emitting surface.
  • Flat illuminator with a large light-emitting surface contains a flat light guide having at least one through hole, the cylindrical surface of which configures the end surface of the hole; a printed circuit board on which LEDs are mounted, positioned so as to illuminate the end surface of the hole of a flat light guide, while the through holes in flat light guide are in the form of straight slots arranged so that the mentioned slots do not intersect each other, and the printed circuit board has bent straight fragments on which LEDs are located, while the printed circuit board fragments are located in through straight slots of the flat light guide, which are located so that they did not cross each other.
  • the through slots can be configured into a group and arranged like the sides of a simple N-gon, where N is a natural number chosen from the inequality N>3.
  • a power source is mounted on the surface of the printed circuit board, limited by bent fragments.
  • a through hole can be located to accommodate a bent fragment of a printed circuit board with an LED directed in the direction opposite to the direction of emission of LEDs located in straight through slots.
  • two or more LED boards can be located over its entire surface, installed in the specified order.
  • the printed circuit board (1) can be made in the form of a square, inside which the first group of LEDs (8) is located on bent U-shaped cutouts (14), which in turn consists of 6 subgroups arranged in the form of a hexagon. This group of LEDs is directed into space on the outer side parallel to the plane of the board. Between the groups of this hexagon there is a second group (13) of LEDs (9) which are directed towards the center of the hexagon. In the same hexagon, in the center of the board, there is a power source that powers all the LEDs (both groups). As a rule, the so-called sequential power supply (12) is used in this design, since it consists of SMT components without the use of large components installed in holes. This board is completely performed on SMT automated lines without the use of manual labor. On fig. 2 shows a general view of the illuminator.
  • a sheet of aluminum radiator (20) covered with an insulating film (17) is installed, a fastener (16) is installed on top and this entire structure with a light guide (5) and diffuser (23) is compressed with a single screw (21) in the center of the illuminator with stops on cylindrical bushings (10,11) put on the fixing screw after the light guide and diffuser are installed on it.
  • the diffuser and the light guide with the reflector are fastened with rivets and they are covered with a white silicone shell around the perimeter, which acts as a reflector and gives the illuminator a complete structure.
  • the assembly sequence is as follows: a reflector (23), a light guide (5) are put on the screw (21), then two bushings (10) and (11), as well as a gasket (3), on which the printed circuit board (1) is installed. Since the light guide (5) has the same configuration of cutouts as the bent sections of the board with LEDs (cutouts 22, 23 Fig.
  • the LEDs are exactly opposite the inner end of the light guide, while the emission of group 1 LEDs directed from the center of the fiber to the periphery, and the radiation of group 2 is directed to the center of the illuminator.
  • a flat sheet of aluminum is superimposed on the printed circuit board (23) - a radiator (20), which is an additional heat dissipator from the printed circuit board, with a low illuminator power (up to 10 W), the printed circuit board itself can dissipate heat if its area is sufficient.
  • an insulating film (17) is applied to the radiator (20) (the edges of which roll inward, not shown) providing a breakdown voltage of 4 kV.
  • the first layer of insulation is the prepreg on the PCB and the second layer of insulation is the film (17) with high breakdown voltage.
  • a metal part (16) is put on the screw (21), which, using a nut (18, Fig. 2), presses the heatsink (20) against the printed circuit board (23), providing thermal contact between them.
  • the height of the sleeve (3) is determined by the tallest component of the driver, the lower these components, the lower the height of the sleeve (3) can be and the flatter the illuminator will be.
  • sleeve 3 provides a gap between the radiator (20) and the light guide, which contributes to better heat dissipation, since not only the outer (upper) surface of the radiator works, but also the lower one. Since the film (17) has a small thickness (40...60 ⁇ m), it practically does not prevent heat radiation, since the heat loss on the film is no more than 2..3 degrees Celsius.
  • the part (16) has corresponding holes that allow you to install springs for mounting in a ceiling hole or two figured cutouts for mounting on a wall (Fig. 4).
  • On fig. 4 shows the illuminator in disassembly for the case of a round illuminator configuration.
  • its size and shape may be different.
  • the suspension is made by holes (7 Fig. 4).
  • the entire illuminator package is fastened with rivets (21) inserted into the holes (7, Fig. 4).
  • the sleeve (3) is shown as a square piece of a certain thickness with a figured large hole that allows you to install a board with components.
  • the bends in the board for LEDs can be along any polygon.
  • the perimeter of the illuminator can have a different, both symmetrical (polygon, circle, ellipse, rhombus, etc.) and asymmetrical shape with certain restrictions.
  • defects dots, dashes, etc.
  • the light from these defects goes out into both planes of the light guide, if upward illumination is not required, then the entire surface of the light guide is covered with a reflective film (7).
  • the light will go out to both sides of the light guide and its rays, facing upwards, will illuminate the ceiling.
  • the light propagates along the light guide and, having reached the perimeter, will exit the illuminator, therefore, a white shell is installed around the perimeter (20 Fig. 4), which reflects the light back into the light guide and gives the illuminator a complete structure.
  • the design of the illuminator is universal in the sense that it can have different power and external dimensions.
  • the higher the power the larger the area of the printed circuit board and the aluminum heatsink should be, and, accordingly, the external dimensions of the illuminator may be larger.
  • the illuminator can be installed using springs in the ceiling holes. For large sizes, a suspended or overhead installation of the illuminator is advisable.
  • Figure 5 shows the design of the printed circuit board, in which the cutouts go along the octagon, this board is larger, more LEDs are installed on it, and this design is more suitable for a large-sized illuminator with a nominal diameter of up to 1 m or more. However, the design is similar.
  • On fig. 3 shows 4 holes (24), which are usually missing and are needed only when one wants to reduce the thickness of the illuminator by the thickness of the fiber sheet, usually by 4 mm, then the highest components (electrolytic capacitors) are included in these holes to the stop with a diffuser. In this case, dark circles are formed on the illuminator, which will be noticeable.
  • illuminator with two illumination centers in the form of an ellipse.
  • Edge lighting is based on the fact that microscopic defects are applied to the light guide using a laser or printer, which are radiation points in the illuminator. Therefore, when designing illuminators with several illumination centers, it is necessary to calculate the density of defects with the help of special programs, otherwise the surface of the illuminator will not have uniform illumination over the entire surface, and this will be visually perceived as an illuminator defect.
  • defects can be applied to the light guide in such a way that they will form a pattern conceived by the designer, for example, a star, a circle, a p-gon, and other arbitrary patterns and all these defects, applied according to a certain law, will glow and give the impression of a luminous picture. Where there are no defects, there will be a dark zone. And these will be not just luminous images, but images that illuminate the space as illuminators.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)

Abstract

The invention relates to lighting technology and can be used for creating decorative designer lighting devices and illuminated advertising panels. The technical result of the proposed solution is a more uniform luminous flux produced by a large light-emitting surface. A flat LED light having a light-emitting surface with an arbitrarily large area comprises: a flat light guide; a printed circuit board with two groups of light-emitting diodes, the latter being mounted on bent out portions of the board which are arranged in through-openings in the light guide so that the radiation of the light-emitting diodes is oriented in different directions; and a power supply mounted on the light-emitting diode board.

Description

Плоский светодиодный осветитель с большой площадью светоизлучающей поверхности Flat LED illuminator with large light emitting surface area
Область техники Technical field
Изобретение относится к светотехнике, а именно к осветительным устройствам на основе световода с торцевой засветкой, которые могут быть использованы для общего или местного освещения, а также для создания декоративных, дизайнерских и рекламных световых панелей. SUBSTANCE: invention relates to lighting engineering, namely to lighting devices based on an end-illuminated light guide, which can be used for general or local lighting, as well as for creating decorative, design and advertising light panels.
Известный уровень техники Prior Art
Торцевая подсветка (Edge lighting) в настоящее время применяется повсеместно, поскольку позволяет получить абсолютно равномерное освещение, а сам осветитель не имеет характерных точек, присущих светодиодному освещению и позволяет получить очень тонкий осветитель, что невозможно в осветителях со светодиодами на просвет. Edge lighting is currently used everywhere, because it allows you to get absolutely uniform lighting, and the illuminator itself does not have characteristic points inherent in LED lighting and allows you to get a very thin illuminator, which is impossible in illuminators with LEDs in the light.
Известна конструкция осветителя с характерным для лампы корпусом (патент РФ 2706799 (публикация международной заявки WO 2020106183) «Плоский светодиодный осветитель с широким диапазоном мощности света и внутренней подсветкой» автор Соколов Ю.Б.), который может быть заменой ламп типа Spot, имеющих очень широкое распространение по всему Миру. Однако, конструкция достаточно сложна и не позволяет получить высокий световой поток, что необходимо для излучателей большого формата ввиду ограниченного количества светодиодов, помещающихся на длине кольца осветителя. Наличие громоздкого корпуса ограничивает применение таких ламп. A design of an illuminator with a housing characteristic of a lamp is known (RF patent 2706799 (publication of the international application WO 2020106183) “A flat LED illuminator with a wide range of light power and internal illumination” by Yu.B. Sokolov), which can be a replacement for Spot type lamps that have very widespread throughout the world. However, the design is rather complicated and does not allow obtaining a high luminous flux, which is necessary for large format emitters due to the limited number of LEDs that fit on the length of the illuminator ring. The presence of a bulky housing limits the use of such lamps.
Техническое решение Technical solution
При разработке осветителя стояла задача создания такой конструкции, которая была бы проста в изготовлении, была максимально плоская (малая высота), универсальна, в смысле возможности встраивания в декоративный потолок, зачастую в уже имеющиеся отверстия, имела возможность трансформации по мощности, т.е. пригодна для больших форматов осветителей вплоть до квадратного метра и более, имела возможность встраивания в различного рода осветительные поверхности разной конфигурации, работающая в качестве подвесных и накладных осветителей. When developing the illuminator, the task was to create such a design that would be easy to manufacture, be as flat as possible (small height), universal, in the sense of the possibility of embedding into a decorative ceiling, often into existing holes, had the possibility of transformation in terms of power, i.e. suitable for large formats of illuminators up to a square meter or more, had the ability to be built into various types of lighting surfaces of various configurations, working as pendant and overhead illuminators.
Предлагаемое устройство решает проблему создания большой светоизлучающей поверхности, имеющей равномерное свечение и способное создавать как равномерный световой поток, так и участки с требуемой яркостью излучения. Под равномерностью понимается заданная световая отдача с поверхности излучения. В качестве среды для передачи светового излучения использован плоский световод. The proposed device solves the problem of creating a large light-emitting surface that has a uniform glow and is capable of creating both a uniform luminous flux and areas with the required radiation brightness. Uniformity is understood as a given light output from the radiation surface. A flat light guide is used as a medium for transmitting light radiation.
Техническим результатом предлагаемого решения является повышение равномерности светового потока, создаваемого на большой светоизлучающей поверхностью. The technical result of the proposed solution is to increase the uniformity of the light flux generated on a large light-emitting surface.
Для достижения указанного технического результата предлагается осуществлять ввод светового излучения через торцевую поверхность отверстия, выполненного в виде паза, ширина и длина которого достаточна для размещения ряда светодиодов, направленных в торцевые поверхности упомянутого паза в световоде. Комбинация расположения пазов позволяет получить равномерную передачу светового излучения по световоду по всем направлениям. Вывод излучения из световода осуществляется в комбинации с созданием точек оптической неоднородности на светоизлучающей поверхности световода. To achieve this technical result, it is proposed to introduce light radiation through the end surface of the hole made in the form of a groove, the width and length of which is sufficient to accommodate a number of LEDs directed to the end surfaces of the said groove in the light guide. The combination of the arrangement of the grooves makes it possible to obtain a uniform transmission of light radiation along the light guide in all directions. The output of radiation from the light guide is carried out in combination with the creation of points of optical inhomogeneity on the light-emitting surface of the light guide.
Плоский осветитель с большой светоизлучающей поверхностью, содержит плоский световод, имеющий, по меньшей мере, одно сквозное отверстие, цилиндрическая поверхность которого конфигурирует торцовую поверхность отверстия; печатную плату, на которой смонтированы светодиоды, позиционированные так, чтобы освещать торцевую поверхность отверстия плоского световода, при этом сквозные отверстия в плоском световоде имеют форму прямых пазов, расположенных так, чтобы упомянутые пазы не пересекали друг друга, а печатная плата имеет отогнутые прямые фрагменты, на которых расположены светодиоды, при этом фрагменты печатной платы расположены в сквозных прямых пазах плоского световода, которые расположены так, чтобы они не пересекали друг друга. Flat illuminator with a large light-emitting surface, contains a flat light guide having at least one through hole, the cylindrical surface of which configures the end surface of the hole; a printed circuit board on which LEDs are mounted, positioned so as to illuminate the end surface of the hole of a flat light guide, while the through holes in flat light guide are in the form of straight slots arranged so that the mentioned slots do not intersect each other, and the printed circuit board has bent straight fragments on which LEDs are located, while the printed circuit board fragments are located in through straight slots of the flat light guide, which are located so that they did not cross each other.
Сквозные пазы могут быть сконфигурированы в группу и расположены подобно сторонам простого N-угольника, где N-натуральное число, выбранное из неравенства N>3. На поверхности печатной платы, ограниченной отогнутыми фрагментами, смонтирован источник питания. The through slots can be configured into a group and arranged like the sides of a simple N-gon, where N is a natural number chosen from the inequality N>3. A power source is mounted on the surface of the printed circuit board, limited by bent fragments.
На пересечении направления соседних сквозных пазов может быть расположено сквозное отверстие для размещения отогнутого фрагмента печатной платы со светодиодом, направленным в сторону, противоположную направлению излучения светодиодов, расположенных в прямых сквозных пазах. At the intersection of the direction of neighboring through slots, a through hole can be located to accommodate a bent fragment of a printed circuit board with an LED directed in the direction opposite to the direction of emission of LEDs located in straight through slots.
В зависимости от размеров плоского световода по всей его поверхности могут быть расположено две и больше плат светодиодов, установленных в указанном порядке. Depending on the dimensions of the flat light guide, two or more LED boards can be located over its entire surface, installed in the specified order.
Печатная плата (1) может быть выполнена в виде квадрата, внутри которого на отогнутых П - образных вырезах (14) расположена первая группа светодиодов (8), которая в свою очередь состоит из 6 подгрупп выстроенных в виде шестиугольника. Это группа светодиодов направлена в пространство по внешнюю сторону параллельно плоскости платы. Между группами этого шестиугольника расположена вторая группа (13) светодиодов (9) которые направлены в сторону центра шестиугольника. В этом же шестиугольнике в центре платы расположен источник питания, который питает все светодиоды (обеих групп). Как правило, в данной конструкции применяется так называемый секвентальный источник питания (12), поскольку он состоит из SMT компонентов без применения крупных компонентов устанавливаемых в отверстия. Эта плата полностью выполняется на SMT автоматизированных линиях без применения ручного труда. На рис. 2 приведен общий вид осветителя. The printed circuit board (1) can be made in the form of a square, inside which the first group of LEDs (8) is located on bent U-shaped cutouts (14), which in turn consists of 6 subgroups arranged in the form of a hexagon. This group of LEDs is directed into space on the outer side parallel to the plane of the board. Between the groups of this hexagon there is a second group (13) of LEDs (9) which are directed towards the center of the hexagon. In the same hexagon, in the center of the board, there is a power source that powers all the LEDs (both groups). As a rule, the so-called sequential power supply (12) is used in this design, since it consists of SMT components without the use of large components installed in holes. This board is completely performed on SMT automated lines without the use of manual labor. On fig. 2 shows a general view of the illuminator.
На поверхность печатной платы (1), обратной стороне установки электронных компонентов, установлен лист алюминиевого радиатора (20) покрытого изолирующей пленкой (17), сверху установлена крепёжная деталь (16) и вся эта конструкция со световодом (5) и рассеивателем (23) сжимается единственным винтом (21) в центре осветителя с упорами на цилиндрические втулки (10,11), одетые на крепежный винт после установки на него световода и рассеивателя. On the surface of the printed circuit board (1), the reverse side of the installation of electronic components, a sheet of aluminum radiator (20) covered with an insulating film (17) is installed, a fastener (16) is installed on top and this entire structure with a light guide (5) and diffuser (23) is compressed with a single screw (21) in the center of the illuminator with stops on cylindrical bushings (10,11) put on the fixing screw after the light guide and diffuser are installed on it.
По периметру осветителя рассеиватель и световод с отражателем скреплены заклепками и на них по периметру одета белая обечайка из силикона, выполняющая роль отражателя и придающая осветителю законченную конструкцию. Последовательность сборки следующая: на винт (21) одеваются отражатель (23), световод (5) после этого две втулки (10) и (11), а также прокладка (3), на которых устанавливается печатная плата (1). Поскольку световод (5) имеет такую же конфигурацию вырезов, как и отогнутые участки платы со светодиодами (вырезы 22, 23 рис. 3), то при установке печатной платы в конструкцию, светодиоды оказываются точно напротив внутреннего торца световода, при этом излучение группы 1 светодиодов направлено от центра световода к периферии, а излучение группы 2 направлено к центру осветителя. Далее на печатную плату (23) накладывается плоский лист алюминия - радиатор (20), который является дополнительным рассеивателем тепла от печатной платы, при малой мощности осветителя (до 10 Вт) сама печатная плата может рассеивать тепло, если ее площадь достаточна. Поскольку в данной конструкции применен секвентальный драйвер, который не изолирован от сети переменного тока, необходимо дополнительно изолировать радиатор (20) от соприкосновения, обеспечивая безопасность персонала, устанавливающего осветитель, для этого, на радиатор (20) накладывается изолирующая пленка (17) (края которой заворачиваются внутрь, что не показано) обеспечивающая пробойное напряжение 4кВ. Таким образом создается двойная изоляция металлических деталей от сети переменного тока. Первый уровень изоляции - это препрег на печатной плате, а второй уровень изоляции это пленка (17) с высоким пробойным напряжением. Далее, на винт (21) одевается металлическая деталь (16), которая с помощью гайки (18 рис. 2) прижимает радиатор (20) к печатной плате (23), обеспечивая тепловой контакт между ними. Высота втулки (3) определяется самым высоким компонентом драйвера, чем ниже эти компоненты, тем меньше может быть высота втулки (3) и тем более плоским будет осветитель. Кроме этого, втулка 3 обеспечивает зазор между радиатором (20) и световодом, что способствует лучшему теплоотводу, так как работает не только внешняя (верхняя) поверхность радиатора, но и нижняя. Поскольку пленка (17) имеет малую толщину (40...60 мкм), то она практически не препятствует излучению тепла, поскольку тепловые потери на пленке составляют не более 2..3 градусов Цельсия. В детали (16) имеются соответствующие отверстия, позволяющие поставить пружины для крепления в потолочное отверстие или два фигурных выреза для крепления на стену (рис. 4). На рис. 4 показан осветитель в разборе для случая круглой конфигурации осветителя. Фактически его размеры и форма может быть различной. При большой мощности и больших размерах возможен только подвесной вариант, когда подвес производится за отверстия (7 рис. 4). В общем случае, по периметру весь пакет осветителя скрепляется заклепками (21) вставленными в отверстия (7 рис. 4). На этом рисунке втулка (3) показана как деталь квадратной формы определённой толщины с фигурным большим отверстием, позволяющим установить плату с компонентами. В принципе отгибы в плате под светодиоды могут быть по любому многоугольнику. Чем больше углов, тем более сложная плата (больше отгибов), чем меньше углов (минимум треугольник), тем более вероятны темные места на рассеивателе вблизи светодиодов первой группы. Периметр осветителя может иметь различную, как симметричную (многоугольник, круг, эллипс, ромб и т.д.), так и несимметричную форму с определенными ограничениями. Для того чтобы осветитель работал, на поверхность световода наносятся дефекты (точки, черточки и т.д.), которые фактически являются вторичными излучателями света. Свет от этих дефектов выходит в обе плоскости световода, если вверх освещения не требуется, то всю поверхность световода покрывают отражательной пленкой (7). Along the perimeter of the illuminator, the diffuser and the light guide with the reflector are fastened with rivets and they are covered with a white silicone shell around the perimeter, which acts as a reflector and gives the illuminator a complete structure. The assembly sequence is as follows: a reflector (23), a light guide (5) are put on the screw (21), then two bushings (10) and (11), as well as a gasket (3), on which the printed circuit board (1) is installed. Since the light guide (5) has the same configuration of cutouts as the bent sections of the board with LEDs (cutouts 22, 23 Fig. 3), when the printed circuit board is installed in the structure, the LEDs are exactly opposite the inner end of the light guide, while the emission of group 1 LEDs directed from the center of the fiber to the periphery, and the radiation of group 2 is directed to the center of the illuminator. Next, a flat sheet of aluminum is superimposed on the printed circuit board (23) - a radiator (20), which is an additional heat dissipator from the printed circuit board, with a low illuminator power (up to 10 W), the printed circuit board itself can dissipate heat if its area is sufficient. Since a sequential driver is used in this design, which is not isolated from the AC mains, it is necessary to additionally isolate the radiator (20) from contact, ensuring the safety of the personnel installing the illuminator, for this, an insulating film (17) is applied to the radiator (20) (the edges of which roll inward, not shown) providing a breakdown voltage of 4 kV. This creates a double insulation of metal parts from the AC mains. The first layer of insulation is the prepreg on the PCB and the second layer of insulation is the film (17) with high breakdown voltage. Next, a metal part (16) is put on the screw (21), which, using a nut (18, Fig. 2), presses the heatsink (20) against the printed circuit board (23), providing thermal contact between them. The height of the sleeve (3) is determined by the tallest component of the driver, the lower these components, the lower the height of the sleeve (3) can be and the flatter the illuminator will be. In addition, sleeve 3 provides a gap between the radiator (20) and the light guide, which contributes to better heat dissipation, since not only the outer (upper) surface of the radiator works, but also the lower one. Since the film (17) has a small thickness (40...60 μm), it practically does not prevent heat radiation, since the heat loss on the film is no more than 2..3 degrees Celsius. The part (16) has corresponding holes that allow you to install springs for mounting in a ceiling hole or two figured cutouts for mounting on a wall (Fig. 4). On fig. 4 shows the illuminator in disassembly for the case of a round illuminator configuration. In fact, its size and shape may be different. With high power and large dimensions, only a suspended version is possible, when the suspension is made by holes (7 Fig. 4). In the general case, along the perimeter, the entire illuminator package is fastened with rivets (21) inserted into the holes (7, Fig. 4). In this picture, the sleeve (3) is shown as a square piece of a certain thickness with a figured large hole that allows you to install a board with components. In principle, the bends in the board for LEDs can be along any polygon. The more corners, the more complex the board (more bends), the fewer corners (minimum triangle), the more likely dark spots on the diffuser near the LEDs of the first group. The perimeter of the illuminator can have a different, both symmetrical (polygon, circle, ellipse, rhombus, etc.) and asymmetrical shape with certain restrictions. In order for the illuminator to work, defects (dots, dashes, etc.) are applied to the surface of the light guide, which are actually secondary light emitters. The light from these defects goes out into both planes of the light guide, if upward illumination is not required, then the entire surface of the light guide is covered with a reflective film (7).
Если отражателя (7) нет, то свет будет выходить в обе стороны световода и его лучи, обращенные вверх, буду освещать потолок. Свет, распространяется по световоду и, дойдя до периметра, выйдет из осветителя, поэтому по периметру устанавливается белая обечайка (20 рис. 4), которая отражает свет обратно в световод и придает осветителю законченную конструкцию. If there is no reflector (7), then the light will go out to both sides of the light guide and its rays, facing upwards, will illuminate the ceiling. The light propagates along the light guide and, having reached the perimeter, will exit the illuminator, therefore, a white shell is installed around the perimeter (20 Fig. 4), which reflects the light back into the light guide and gives the illuminator a complete structure.
Конструкция осветителя универсальна в том смысле, что он может иметь различную мощность и внешние размеры. Чем больше мощность, тем больше должна быть площадь печатной платы и алюминиевого радиатора и, соответственно, могут быть больше внешние размеры осветителя. До диаметра 300...350 мм осветитель может быть установлен с помощью пружин в отверстия потолка. При больших размерах целесообразна подвесная или накладная установка осветителя. The design of the illuminator is universal in the sense that it can have different power and external dimensions. The higher the power, the larger the area of the printed circuit board and the aluminum heatsink should be, and, accordingly, the external dimensions of the illuminator may be larger. Up to a diameter of 300...350 mm, the illuminator can be installed using springs in the ceiling holes. For large sizes, a suspended or overhead installation of the illuminator is advisable.
На рисунке 5 показана конструкция печатной платы, в которой вырезы идут по восьмиугольнику, эта плата большего размера, на ней установлено большее количество светодиодов, и такая конструкция больше подходит для осветителя большого размера с условным диаметром до 1 м и более. Однако конструкция аналогична. Figure 5 shows the design of the printed circuit board, in which the cutouts go along the octagon, this board is larger, more LEDs are installed on it, and this design is more suitable for a large-sized illuminator with a nominal diameter of up to 1 m or more. However, the design is similar.
На рис. 3 показаны 4 отверстия (24), которые, как правило, отсутствуют и нужны только тогда, когда хотят сократить толщину осветителя на толщину листа световода, как правило, на 4 мм, тогда самые высокие компоненты (электролитические конденсаторы) входят в эти отверстия до упора с рассеивателем. При этом образуются темные круги на осветителе, которые будут заметны. On fig. 3 shows 4 holes (24), which are usually missing and are needed only when one wants to reduce the thickness of the illuminator by the thickness of the fiber sheet, usually by 4 mm, then the highest components (electrolytic capacitors) are included in these holes to the stop with a diffuser. In this case, dark circles are formed on the illuminator, which will be noticeable.
Ввиду бокового свечения светодиодов, по контуру п-угольника печатной платы будет повышенное свечение, которое будет видно на рассеивателе. Для минимизации этого, на внутреннюю поверхность рассеивателя может быть нанесено кольцо краски, уменьшающее перепад освещения в зонах бокового излучения светодиодов. Due to the lateral glow of the LEDs, there will be an increased glow along the contour of the PCB n-gon, which will be visible on the diffuser. To minimize this, a ring of paint can be applied to the inner surface of the diffuser, which reduces the illumination drop in the side emission zones of the LEDs.
На основе такой конструкции могут быть построены осветители очень большого формата (в пределах размеров листа PC или ПММА), до 2x3м с несколькими центрами освещения. На рис. 6 для примера показан осветитель с двумя центрами освещения в виде эллипса. Необходимо отметить, что принцип Edge lighting основан на том, что на световод с помощью лазера или принтера наносят микроскопические дефекты, которые в осветителе являются точками излучения. Поэтому при проектировании осветителей с несколькими центрами освещения необходимо с помощью специальных программ рассчитывать плотность нанесения дефектов, иначе поверхность осветителя не будет иметь равномерное освещение по всей поверхности, и это будет визуально восприниматься как дефект осветителя. В то же время при больших размерах осветителя, при правильно выбранной программе нанесения дефектов, эта неравномерность освещения может восприниматься как дизайнерский прием и хорошо приниматься экспертами. Также при больших размерах осветителя при наличии нескольких центров освещения, дефекты на световод могут наноситься таким образом, что они будут образовывать рисунок задуманный дизайнером, например звезду, круг, п- угольник и др. произвольные рисунки и все эти дефекты, нанесенные по определенному закону, будут светиться и создавать впечатление светящейся картины. Там где нет дефектов, будет темная зона. И это будут не просто светящиеся образы, а образы, которые освещают пространство как осветители. On the basis of such a design, very large format illuminators (within the dimensions of a PC or PMMA sheet), up to 2x3m with several illumination centers, can be built. On fig. 6 shows, for example, an illuminator with two illumination centers in the form of an ellipse. It should be noted that the principle of Edge lighting is based on the fact that microscopic defects are applied to the light guide using a laser or printer, which are radiation points in the illuminator. Therefore, when designing illuminators with several illumination centers, it is necessary to calculate the density of defects with the help of special programs, otherwise the surface of the illuminator will not have uniform illumination over the entire surface, and this will be visually perceived as an illuminator defect. At the same time, with a large illuminator, with a correctly chosen program for applying defects, this illumination unevenness can be perceived as a design trick and is well accepted by experts. Also, with large sizes of the illuminator in the presence of several centers of illumination, defects can be applied to the light guide in such a way that they will form a pattern conceived by the designer, for example, a star, a circle, a p-gon, and other arbitrary patterns and all these defects, applied according to a certain law, will glow and give the impression of a luminous picture. Where there are no defects, there will be a dark zone. And these will be not just luminous images, but images that illuminate the space as illuminators.

Claims

ФОРМУЛА FORMULA
1. Плоский осветитель с большой светоизлучающей поверхностью, содержащий: 1. Flat illuminator with a large light emitting surface, containing:
-плоский световод (5), имеющий, по меньшей мере, одно сквозное отверстие, цилиндрическая поверхность которого конфигурирует торцовую поверхность отверстия; a flat light guide (5) having at least one through hole, the cylindrical surface of which configures the end surface of the hole;
-печатную плату, на которой смонтированы светодиоды, позиционированные так, чтобы освещать торцевую поверхность отверстия плоского световода; отличающийся тем, что: сквозные отверстия в плоском световоде имеют форму прямых пазов, расположенных так, чтобы упомянутые пазы не пересекали друг друга, печатная плата имеет отогнутые прямые фрагменты, на которых расположены упомянутые светодиоды, при этом упомянутые фрагменты печатной платы расположены в упомянутых сквозных прямых пазах плоского световода. - a printed circuit board on which LEDs are mounted, positioned so as to illuminate the end surface of the hole of a flat light guide; characterized in that: through holes in a flat light guide are in the form of straight grooves arranged so that said grooves do not intersect each other, the printed circuit board has bent straight fragments on which said LEDs are located, while said fragments of the printed circuit board are located in the mentioned through straight lines grooves of a flat light guide.
2. Плоский осветитель с большой светоизлучающей поверхностью по пункту 1, отличающийся тем, что сквозные пазы сконфигурированы в группу и расположены подобно сторонам простого N-угольника, где N- натуральное число, выбранное из неравенства N>3. 2. A flat illuminator with a large light-emitting surface according to claim 1, characterized in that the through slots are configured into a group and are located like the sides of a simple N-gon, where N is a natural number selected from the inequality N>3.
3. Плоский осветитель с большой светоизлучающей поверхностью по пункту 2, отличающийся тем, что на поверхности печатной платы, ограниченной её отогнутыми фрагментами, смонтирован источник питания. 3. A flat illuminator with a large light-emitting surface according to item 2, characterized in that a power source is mounted on the surface of the printed circuit board, limited by its bent fragments.
4. Плоский осветитель с большой светоизлучающей поверхностью по пункту 2, отличающийся тем, что между соседними сквозными пазами расположено сквозное отверстие для размещения отогнутого фрагмента печатной платы со светодиодом, излучение которого направлено в сторону противоположную направлению излучения светодиодов в прямых сквозных пазах. 4. A flat illuminator with a large light-emitting surface according to claim 2, characterized in that between adjacent through grooves there is a through hole for accommodating a bent fragment of a printed circuit board with an LED, the radiation of which is directed in the direction opposite to the direction of emission of LEDs in straight through grooves.
8 eight
5. Плоский осветитель с большой светоизлучающей поверхностью по п. 2, отличающийся тем, что плоский световод большого формата имеет по меньшей мере, две группы сквозных пазов, в которых установлены светодиоды, смонтированные на отогнутых фрагментах печатной платы. 5. A flat illuminator with a large light-emitting surface according to claim 2, characterized in that a large-format flat light guide has at least two groups of through slots in which LEDs mounted on bent fragments of a printed circuit board are installed.
9 9
PCT/RU2021/000486 2020-12-22 2021-11-08 Flat led light with a large-area light-emitting surface WO2022139624A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212021000530.6U DE212021000530U1 (en) 2020-12-22 2021-11-08 Flat LED light with a large light emission surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2020142265 2020-12-22
RU2020142265A RU2761176C1 (en) 2020-12-22 2020-12-22 Flat led illuminator with a large area of the light-emitting surface

Publications (1)

Publication Number Publication Date
WO2022139624A1 true WO2022139624A1 (en) 2022-06-30

Family

ID=79174212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2021/000486 WO2022139624A1 (en) 2020-12-22 2021-11-08 Flat led light with a large-area light-emitting surface

Country Status (3)

Country Link
DE (1) DE212021000530U1 (en)
RU (1) RU2761176C1 (en)
WO (1) WO2022139624A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049144A (en) * 2009-07-27 2011-03-10 Fuji Electric Fa Components & Systems Co Ltd Led illumination system
RU177561U1 (en) * 2017-02-14 2018-03-01 Игорь Юрьевич Лапушкин LED LAMP
RU2660376C1 (en) * 2017-06-23 2018-07-10 Юрий Борисович Соколов Flat lighting device with side lighting
WO2020106183A1 (en) * 2018-11-20 2020-05-28 Юрий Борисович СОКОЛОВ Flat led lighting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101604290B1 (en) * 2015-04-21 2016-03-17 구소연 Lighting for edge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049144A (en) * 2009-07-27 2011-03-10 Fuji Electric Fa Components & Systems Co Ltd Led illumination system
RU177561U1 (en) * 2017-02-14 2018-03-01 Игорь Юрьевич Лапушкин LED LAMP
RU2660376C1 (en) * 2017-06-23 2018-07-10 Юрий Борисович Соколов Flat lighting device with side lighting
WO2020106183A1 (en) * 2018-11-20 2020-05-28 Юрий Борисович СОКОЛОВ Flat led lighting device

Also Published As

Publication number Publication date
RU2761176C1 (en) 2021-12-06
DE212021000530U1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
US8262249B2 (en) Linear solid-state lighting with broad viewing angle
US20060146531A1 (en) Linear lighting apparatus with improved heat dissipation
KR101444521B1 (en) Lighting fixture
JP2012104476A (en) Lighting device
US9927100B2 (en) LED lamp with LED board brace
WO2012044541A1 (en) Incandescent led replacement lamp
JP2009129809A (en) Lighting system
KR101370917B1 (en) Illuminator
JP2002197901A (en) Led luminaire
JP2012204162A (en) Lighting device and lighting fixture
JP2011076919A (en) Led array lighting unit, and planar indirect lighting fixture using this unit
JP2012199163A (en) Lighting device and lighting fixture
RU2761176C1 (en) Flat led illuminator with a large area of the light-emitting surface
RU2706799C1 (en) Flat led illuminator with wide range of light power and internal illumination
KR101042996B1 (en) Lighting system
KR20110002865U (en) Led lamp
KR101214378B1 (en) Led lighting apparatus
KR100920019B1 (en) Diffusion type led lighting fitting
JP6424924B2 (en) Light source unit and lighting apparatus
JP2010176904A (en) Light emitting device
JP2006031969A (en) Lighting system
JP2015018650A (en) Lighting apparatus and indirect light unit
JP7231596B2 (en) lighting equipment
JP2009104197A (en) Light source structure of internal illumination type bulletin apparatus
JP2011077394A (en) Light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911657

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 212021000530

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21911657

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.11.2023)