WO2022139257A1 - Device for measuring low-frequency bio-signal while repeatedly injecting high-frequency current or applying voltage, and method therefor - Google Patents

Device for measuring low-frequency bio-signal while repeatedly injecting high-frequency current or applying voltage, and method therefor Download PDF

Info

Publication number
WO2022139257A1
WO2022139257A1 PCT/KR2021/018478 KR2021018478W WO2022139257A1 WO 2022139257 A1 WO2022139257 A1 WO 2022139257A1 KR 2021018478 W KR2021018478 W KR 2021018478W WO 2022139257 A1 WO2022139257 A1 WO 2022139257A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
low
bio
voltage
Prior art date
Application number
PCT/KR2021/018478
Other languages
French (fr)
Korean (ko)
Inventor
조규남
김영은
Original Assignee
주식회사 바이랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이랩 filed Critical 주식회사 바이랩
Publication of WO2022139257A1 publication Critical patent/WO2022139257A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0536Impedance imaging, e.g. by tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7228Signal modulation applied to the input signal sent to patient or subject; demodulation to recover the physiological signal

Definitions

  • the present invention relates to an apparatus and method for measuring a low-frequency biosignal while repeatedly injecting a high-frequency current or applying a voltage, and more particularly, to a plurality of electrodes attached to a subject by injecting a high-frequency current or applying a voltage When measuring a low-frequency bio-signal through two of the plurality of electrodes during It relates to an apparatus and a method for the same.
  • EMR electrical impedance tomography
  • low-frequency bio-signal measurement technology to measure low-frequency bio-signals such as the patient's electrocardiogram or brain waves, etc. Accordingly, the need for a patient monitoring technology for complexly monitoring a patient's condition by combining an electrical impedance tomography technique and a low-frequency biosignal measurement technique is also increasing.
  • the electrical impedance tomography technique injects a high-frequency current (or applies a high-frequency voltage) through a plurality of electrodes attached to the patient's body, and measures the voltage induced by the injected high-frequency current to the inside of the patient's body ( It is a technique to measure bio-impedance to the chest, lungs, etc.).
  • the low-frequency bio-signal measurement technology is a technology for measuring low-frequency bio-signals such as electrocardiogram or brain waves generated in the patient's body through a plurality of electrodes attached to the patient's body.
  • the impedance signal and the low-frequency bio-signal are simultaneously measured through the conventional patient monitoring technique, there is a problem in that the low-frequency bio-signal includes noise due to the injection of the high-frequency current.
  • a high-frequency current or voltage is repeatedly injected or applied to the plurality of electrodes periodically, but the current or voltage is injected It is intended to measure low-frequency biosignals generated in the subject during half-cycle with or without application.
  • the low-frequency bio-signal is measured in synchronization with the frequency at which current or voltage is periodically injected or applied, and the low-frequency bio-signal is modulated to obtain the synchronizing frequency, and the modulated signal is demodulated, and the modulation and demodulation are performed.
  • the signal when a low-frequency bio-signal is measured through two of the plurality of electrodes while a high-frequency current or voltage is applied to the plurality of electrodes attached to the subject, the signal is relatively compared to the low-frequency bio-signal.
  • An apparatus and method for removing high-level or high-frequency noise and measuring low-frequency biosignals are provided.
  • Korean Patent Application Laid-Open No. 2008-0088727 (2008.10.06.) relates to a meridian impedance measurement and analysis device.
  • a plurality of impedance measurement sensors and an electrocardiogram sensor are attached to a patient's body to provide a constant value for the plurality of impedance measurement sensors.
  • the present invention relates to a meridian impedance measuring and analyzing apparatus for measuring the bioimpedance of a body part by applying a current having a frequency and simultaneously measuring an electrocardiogram of a patient through the electrocardiogram sensor.
  • the prior art simply describes how to measure the bioimpedance and the electrocardiogram at the same time by using a plurality of impedance measuring sensors and electrocardiogram sensors, and does not provide a specific and practical method of measuring the electrocardiogram and the electrocardiogram.
  • the low-frequency biosignal is modulated at a frequency that is inversely synchronized with the injection of the high-frequency current or voltage through switching synchronized with repeatedly injecting a high-frequency current or applying a high-frequency voltage to a plurality of electrodes.
  • Korea Patent No. 0682941 (2007.02.08.) relates to an apparatus and method for simultaneous measurement of biosignals, by temporally separating the application and non-application of a stimulation signal through a plurality of electrodes, After measuring the first intermediate signal for the first bio-signal generated in response to the response and the second intermediate signal for the naturally occurring second bio-signal, the first intermediate signal is used using the frequency for the applied stimulus signal.
  • the prior art simply separates the process of measuring the first bio-signal from the process of measuring the second bio-signal in time to measure the second bio-signal through a separate process. Afterwards, the effect is measured as a biosignal, and the second biosignal is not measured at the same time while the stimulus signal is continuously applied.
  • the bioimpedance is measured through a plurality of electrodes using switching synchronized with the repeated injection of high-frequency current or voltage application to the plurality of electrodes, and at the same time, specific two electrodes among the plurality of electrodes are used.
  • low-frequency biosignals such as electrocardiogram, brainwave, or electromyography.
  • the present invention acquires a biosignal modulated to the reversely synchronized frequency through specific two electrodes by synchronizing inversely to a switching cycle of repeatedly injecting or applying a high-frequency current or voltage to a plurality of electrodes, By demodulating this into a low-frequency bio-signal, the low-frequency bio-signal can be effectively measured, and there is a clear difference between the prior art and the present invention.
  • the present invention was created to solve the above problems, and by repeatedly injecting a high-frequency current or applying a voltage to a plurality of electrodes attached to the object, the bio-impedance of the object and a specific one of the plurality of electrodes
  • An object of the present invention is to provide an apparatus and method for simultaneously measuring a specific low-frequency biosignal through two electrodes.
  • the present invention obtains a low-frequency bio-signal by demodulating the bio-signal modulated to the switching frequency obtained by using the two specific electrodes through the repetitive injection of high-frequency current or switching in reverse synchronization with the application of the high-frequency voltage.
  • Another object of the present invention is to provide an apparatus and a method for the same.
  • Another object of the present invention is to provide an apparatus and method for efficiently measuring low-frequency bio-signals by removing noise included in an input signal in the process of amplifying and demodulating the switched and modulated bio-signals.
  • the present invention includes filtering the differential signals for the biosignals input through the two electrodes, respectively, and removing noise (eg, motion artifacts according to the movement of the subject) included in the differential signals.
  • noise eg, motion artifacts according to the movement of the subject
  • the present invention amplifies the modulated bio-signal, samples the amplified bio-signal at high speed and converts it into a digital signal, and digitally demodulates the converted digital signal to measure a low-frequency bio-signal, or the amplified bio-signal
  • Another object of the present invention is to provide an apparatus and method for measuring a low-frequency biosignal by performing analog demodulation, including removing noise, for the signal.
  • An apparatus for measuring a low-frequency biosignal while repeatedly injecting a high-frequency current or applying a voltage obtains a biosignal by using specific two electrodes among a plurality of electrodes attached to a subject.
  • the switching unit is switched to ground while the high-frequency current or voltage is applied, and is switched to the low-frequency bio-signal acquisition unit while the high-frequency current or voltage is not injected or applied, so that the high-frequency current or voltage is applied and reversed. , and modulating the obtained bio-signal with a switching frequency according to the switching.
  • the low-frequency bio-signal acquisition unit a high-pass filter for removing noise by filtering a differential signal for the bio-signal measured using the specific two electrodes, respectively, and the differential signal from which the noise is removed It characterized in that it further comprises an amplifier which acquires the bio-signal by summing and converting it into a single-ended signal.
  • the present invention is not limited to the summation.
  • the low-frequency biosignal processing unit includes an AC amplifying unit for amplifying the modulated signal by a preset multiple, and an A/D converting unit for converting the amplified modulated signal into a digital signal by sampling the amplified modulated signal at high speed and converting the digital signal. Further comprising a digital demodulator for demodulating the modulated signal, or an analog demodulator for demodulating the amplified modulated signal, wherein the AC amplifying unit includes a preset bandwidth based on the same frequency as the switching frequency in the modulated signal. It characterized in that it comprises amplifying the modulation signal within the range.
  • an in-phase component extracting unit for extracting an in-phase component (In-phase component) from the modulated signal converted to the digital signal, a quadrature component from the modulated signal converted to the digital signal It characterized in that it further comprises a quadrature component extractor to extract and a low-frequency biosignal extractor for extracting the low-frequency biosignal by calculating the square root of the extracted in-phase component and the extracted quadrature component.
  • the analog demodulator may include: an in-phase component extractor for extracting an in-phase component from the amplified modulated signal; a quadrature component extracting unit for extracting a quadrature component from the amplified modulated signal; and a low-frequency bio-signal extractor configured to extract the low-frequency bio-signal by calculating the square root of the sum of the square of the extracted in-phase component and the square of the extracted quadrature component.
  • a biosignal is obtained by using specific two electrodes among a plurality of electrodes attached to the subject.
  • the high frequency current injection or voltage is switched to ground while the high frequency current is injected or voltage is applied, and switched to the output of the low frequency biosignal acquisition step while the high frequency current is not injected or the voltage is not applied. Synchronized with the application, it characterized in that the obtained bio-signal is modulated with a switching frequency according to the switching.
  • the low-frequency bio-signal acquisition step includes filtering each of the bio-signals measured using the two specific electrodes to remove noise, and adding the filtered signals from which the noise is removed in an amplifier to obtain a single-ended signal (Single signal).
  • -ended Signal characterized in that it further comprises the step of obtaining the bio-signal.
  • the low-frequency biosignal processing step includes an AC amplification step of amplifying the modulated signal by a preset multiple, and an A/D conversion unit that samples the amplified modulated signal at high speed and converts it into a digital signal and the digital signal A digital demodulation step of demodulating one modulated signal, or an analog demodulation step of demodulating the amplified modulated signal; further comprising, wherein the AC amplifying step is preset based on a frequency equal to the switching frequency in the modulated signal and amplifying the modulated signal within one bandwidth range.
  • the digital demodulation step includes an in-phase component extraction step of extracting an in-phase component from the modulated signal converted into the digital signal, a quadrature component extraction step of extracting a quadrature component from the modulated signal converted into the digital signal, and the It characterized in that it further comprises a low-frequency bio-signal extraction step of extracting the low-frequency bio-signal by calculating the square root of the extracted in-phase component and the extracted quadrature component.
  • the analog demodulation step may include an in-phase component extraction step of extracting an in-phase component from the amplified modulated signal; a quadrature component extraction step of extracting a quadrature component from the amplified modulated signal; and a low-frequency bio-signal extraction step of extracting the low-frequency bio-signal by calculating the square root of the sum of the square of the extracted in-phase component and the square of the extracted quadrature component.
  • the apparatus and method for measuring a low-frequency biosignal while repeatedly injecting or applying a high-frequency current or voltage include repeatedly injecting or applying a high-frequency current or voltage to a plurality of electrodes at the same time as two By synchronizing and switching reception of a low-frequency bio-signal through an electrode at a predetermined frequency, the low-frequency bio-signal is modulated with the predetermined switching frequency, and demodulating the modulated bio-signal to extract a low-frequency bio-signal, wherein By removing noise in the process of modulation and demodulation, it is possible to accurately measure low-frequency bio-signals while repeatedly injecting high-frequency current or applying voltage.
  • FIG. 1 is a conceptual diagram illustrating an apparatus and method for measuring a low-frequency biosignal while repeatedly injecting a current or applying a voltage according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of an apparatus for simultaneously measuring high-frequency impedance and low-frequency bio-signals while repeatedly injecting current according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing the configuration of a low-frequency bio-signal acquisition unit according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a process of extracting a low-frequency biosignal according to an embodiment of the present invention.
  • FIG. 5 is a block diagram showing the configuration of a low-frequency biosignal processing unit according to an embodiment of the present invention.
  • FIG. 6 is a block diagram illustrating the configuration of a demodulator according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a procedure for measuring a low-frequency biosignal while repeatedly injecting a high-frequency current or applying a voltage according to an embodiment of the present invention.
  • FIG. 1 is a conceptual diagram illustrating an apparatus and method for measuring a low-frequency biosignal while repeatedly injecting a current or applying a voltage according to an embodiment of the present invention.
  • an apparatus 100 for measuring a low-frequency bio-signal (hereinafter referred to as a low-frequency bio-signal measuring device) according to an embodiment of the present invention operates in conjunction with the high-frequency bio-signal measuring device 200 . do. That is, while the high-frequency current or high-frequency voltage is repeatedly applied to the plurality of electrodes attached to the subject (human or animal) in the high-frequency bio-signal measuring device 200, the high-frequency bio-signal measuring device 200 The internal impedance of the body to be measured is measured through the plurality of electrodes, and at the same time, the low-frequency biosignal measuring apparatus 100 uses specific two electrodes among the plurality of electrodes to measure a specific low-frequency biometric body to the subject.
  • the high-frequency biosignal measuring apparatus 200 selects a pair of electrodes from among a plurality of electrodes according to a preset period, injects the high-frequency current or applies a high-frequency voltage, and passes through the remaining electrodes. A process of measuring a voltage induced by the injected high-frequency current or the applied low-frequency voltage is repeatedly performed to obtain a high-frequency biosignal for the inside of the body of the subject.
  • the high-frequency bio-signal measuring device 200 measures the bio-impedance to the inside of the body of the subject according to the obtained high-frequency bio-signal, and processes the measured bio-impedance to determine the impedance distribution within the body or the It performs a function of outputting bio-impedance data including an image inside the body representing the impedance change.
  • the high frequency biosignal measuring device 200 is an EIT (Electrical Impedance Tomography) device or bioimpedance for outputting the bioimpedance processing data through repeated injection of a high frequency current or repeated application of a high frequency voltage to the plurality of electrodes.
  • EIT Electrometic Impedance Tomography
  • Bioimpedance may be a device.
  • the high-frequency biosignal measuring device 200 is configured as the EIT device
  • the measured impedance is processed to generate bioimpedance data including an image inside the body representing an impedance distribution or impedance change in the body
  • bioimpedance data including an image inside the body representing an impedance distribution or impedance change in the body
  • the distribution of the impedance may indicate a distribution of the amount of air in the chest due to respiration of the subject
  • the change signal may be a respiration signal indicating a change in the distribution of the air amount, through the outputted bioimpedance processing data.
  • the breathing state of the subject may be monitored.
  • repetitive current injection will be mainly described, but this may be interpreted as a meaning of repeatedly applying a high-frequency voltage in addition to repeatedly injecting a high-frequency current into the plurality of electrodes attached to the subject. .
  • the low-frequency bio-signal measuring device 100 while the high-frequency current is repeatedly injected into the plurality of electrodes in the high-frequency bio-signal measuring device 200, selects two specific electrodes selected in advance among the plurality of electrodes.
  • a biosignal for the subject is obtained by measuring the voltage using the
  • the two specific electrodes measure the high-frequency bio-signal and simultaneously acquire a bio-signal including the specific low-frequency bio-signal.
  • the low-frequency bio-signal measuring device 100 measures the specific low-frequency bio signal. It is attached to different specific positions for this purpose, and any one of the two electrodes may be a reference electrode.
  • the low-frequency biosignal is a signal generated in the subject, such as an electrocardiogram, an EEG, or an electromyogram.
  • the obtained bio-signal includes noise caused by switching for injection of the high-frequency current and repeated injection thereof, noise caused by DC offset, noise caused by a power supply (eg 60Hz), or a combination thereof. may include more.
  • noise caused by switching for injection of the high-frequency current and repeated injection thereof noise caused by DC offset, noise caused by a power supply (eg 60Hz), or a combination thereof. may include more.
  • noise caused by a power supply eg 60Hz
  • the noise by 100 kHz at the output of the low-pass filter is reduced to 10 mV, but the noise of 1 kHz of 10 V is reduced to 1 V, which is sufficient
  • the noise level is not removed, and noise due to low frequency power or DC offset is not removed either.
  • the low-frequency bio-signal measuring apparatus 100 acquires the low-frequency bio-signal by synchronizing in reverse with the switching period for repeated injection of the high-frequency current, that is, the repetition of injection and non-injection of the high-frequency current, so that the bio-signal is As a result of being modulated, the low-frequency bio-signal is restored by decoding the modulated bio-signal. Noise is removed in the process of modulation and demodulation.
  • the low-frequency bio-signal measuring apparatus 100 supports a function of outputting the measured low-frequency bio-signal to the low-frequency bio-signal display 300 to monitor the condition of the patient.
  • the high frequency biosignal measuring apparatus 200 supports a function of outputting the measured high frequency impedance to the high frequency biosignal display 400 to monitor the condition of the patient.
  • FIG. 1 shows the low-frequency bio-signal measuring device 100 and the high-frequency bio-signal measuring device 200 as separate devices, the components and functions of the high frequency bio-signal measuring device 200 are different from the low-frequency bio-signal measuring device 200. It will be natural that it can be implemented by being integrated with the measuring device 100 .
  • FIG. 2 is a block diagram showing the configuration of an apparatus for simultaneously measuring high-frequency impedance and low-frequency bio-signals while repeatedly injecting current according to an embodiment of the present invention.
  • the low-frequency biosignal measuring apparatus 100 uses two specific electrodes while repeatedly injecting high-frequency current into a plurality of electrodes attached to the body of a subject.
  • a low-frequency bio-signal acquisition unit 110 to obtain a bio-signal for the subject;
  • a switching unit 120 for generating a modulated signal by synchronizing the obtained bio-signal with a cycle of repeating injection of the high-frequency current;
  • a low-frequency bio-signal processing unit 130 for extracting a low-frequency bio-signal by demodulating a signal included in the high-frequency switching signal from the signal.
  • the low-frequency bio-signal acquisition unit 110 performs a function of acquiring a bio-signal including the low-frequency bio-signal using two specific electrodes while repeatedly injecting the high-frequency current.
  • the switching unit 120 performs a function of periodically selecting and modulating the obtained bio-signal through repeated injection of the high-frequency current and synchronized switching.
  • the switching frequency may be several tens of times higher than that of the obtained biosignal.
  • the high frequency biosignal measuring device 200 includes a current injecting unit/voltage applying unit 220 , a high frequency biosignal obtaining unit 210 , and a bioimpedance processing unit 230 .
  • the current injecting unit/voltage applying unit 220 serves to repeatedly inject a high frequency current into the plurality of electrodes according to a predetermined cycle.
  • a high-frequency voltage may be applied instead of the injection of the high-frequency current.
  • the high-frequency bio-signal acquisition unit 210 serves to acquire a high-frequency bio-signal through the remaining electrodes among the plurality of electrodes while the high-frequency current is repeatedly injected into some of the plurality of electrodes.
  • the bio-impedance processing unit 230 measures bio-impedance from the obtained high-frequency bio-signal, and processes the measured bio-impedance to include a bio-internal image of the subject, a change in the bio-impedance, or a combination thereof. It serves to generate bioimpedance data through bioimpedance processing.
  • the low-frequency bio-signal acquisition unit 110 in the low-frequency bio-signal measuring apparatus 100 will be described in detail.
  • FIG. 3 is a block diagram showing the configuration of a low-frequency bio-signal acquisition unit according to an embodiment of the present invention.
  • the low-frequency bio-signal acquisition unit 110 includes a high-pass filter 111 and an amplifier 112 for receiving and amplifying a bio-signal from an input terminal. do.
  • the high-pass filter 111 serves to remove low-frequency noise (eg, motion artifacts, etc.) included in each differential signal with respect to the bio-signal received from the subject. That is, the high-pass filter 111 receives a differential signal for the bio-signal including the low-frequency bio-signal generated in the subject measured through two specific electrodes at the input end of the low-frequency bio-signal acquisition unit 110 . It receives the input and removes noise (eg, motion artifact) included in the received differential signal.
  • noise eg, motion artifact
  • the low-frequency biosignal is measured by detecting a voltage (or current) value input through the two specific electrodes. Also, in the case of the high-frequency biosignal acquisition unit 210 , it is measured by detecting a voltage value that is connected to the plurality of electrodes and induced by the repeatedly injected current.
  • the specific frequency when the low-frequency biosignal measuring apparatus 100 intends to measure the electrocardiogram of the subject, the specific frequency may be set to 0.5 Hz to 0.05 Hz.
  • the specific frequency is variably set according to the low-frequency bio-signal to be measured by the low-frequency bio-signal measuring apparatus 100, such as the electrocardiogram, brain wave, or electromyogram.
  • the amplifier 112 serves to obtain a low-frequency bio-signal by summing each differential signal from which the low-frequency noise has been removed. That is, the amplifier 112 may be configured as a single (One) Chip Differential Amplifier, and converts the noise-removed differential signals into a single-ended signal by summing them. Accordingly, although the low-frequency biosignal is acquired, the noise induced by the switching frequency in which current is injected and not injected is not removed.
  • the present invention is not limited to the summation.
  • the high-frequency current periodically repeats injection and non-injection, if the low-frequency bio-signal is measured in a section where the high-frequency current is not injected, it will be possible to measure the low-frequency bio-signal without any problem by the ideal logic.
  • noise is induced by the frequency of repeated application and non-application.
  • FIG. 4 is a diagram illustrating a process of extracting a low-frequency biosignal according to an embodiment of the present invention.
  • the switching unit 120 is switched to ground while the high-frequency current is injected (ie, switched off), and while the high-frequency current is not injected, the low-frequency biological body It is switched to the output of the signal acquisition unit 110 (ie, switched on), and is switched to the low-frequency bio-signal obtained by the low-frequency bio-signal acquisition unit 110 . That is, when passing through the switching unit 120, the low-frequency bio-signal obtained by the low-frequency bio-signal obtaining unit 110 is modulated by a high switching frequency. Accordingly, the output of the switching unit 120 becomes a biosignal modulated by the switching frequency.
  • Fig. 4 it is synchronized to measure the specific low-frequency bio-signal while the high-frequency current is not injected, and the obtained bio-signal is selected according to the switching, and a signal modulated by the switching frequency is output As a result, the modulated signal must be restored back to a low-frequency bio-signal through demodulation. Noise due to high-frequency switching is removed through the demodulation process.
  • the low-frequency bio-signal processing unit 130 amplifies the modulated signal by a preset multiple and outputs the amplified modulated signal.
  • the low-frequency bio-signal processing unit 130 amplifies the modulated signal, but selectively amplifies only the modulated signal corresponding to the same frequency as the switching frequency (ie, the modulation frequency) to remove the additionally introduced noise.
  • the selectively amplifying is performed by amplifying a modulated signal having the same frequency as the switching frequency and corresponding to a preset bandwidth range based on the frequency.
  • the bandwidth range may be set to 30 Hz left and right around 3 kHz, that is, a total of 60 Hz. . Meanwhile, the bandwidth range may be variably set according to the type of the low-frequency bio-signal to be measured by the low-frequency bio-signal measuring apparatus 100 .
  • the low-frequency biosignal processing unit 130 samples the amplified modulated signal at high speed, converts it into a digital signal, and then digitally demodulates the modulated signal converted to the digital signal again, thereby generating the high-frequency current from the modulated signal. It performs a function of extracting and outputting the specific low-frequency bio-signal from which noise due to the repetitive application of , and noise due to the switching are removed.
  • the low-frequency bio-signal processing unit 130 may demodulate the amplified modulated signal to analog.
  • the analog demodulation extracts an in-phase component from the amplified modulated signal, extracts a quadrature component from the amplified modulated signal, and the square of the extracted in-phase component and
  • the low-frequency biosignal may be extracted by calculating a square root of the sum of the squares of the extracted quadrature components.
  • FIG. 5 is a block diagram illustrating a configuration of a signal processing unit according to an embodiment of the present invention
  • FIG. 6 is a block diagram illustrating a configuration of a digital demodulator according to an embodiment of the present invention.
  • the low-frequency biosignal processing unit 130 includes an AC amplifier 131 amplifying the modulated signal output from the switching unit 120, and the amplified modulation signal.
  • A/D converter 132 that converts a signal into a digital signal, and digital demodulation of the modulated signal converted into the digital signal or demodulation of an analog signal, extracting the specific low-frequency biosignal from the modulated signal and outputting it It is configured to include a grandfather (133). For the analog demodulation, the A/D converter 132 is unnecessary.
  • the AC amplifier 131 amplifies the modulated signal by a preset multiple (eg, 300 times), but selectively amplifies the modulated signal equal to the switching frequency to remove additional high-frequency noise from the modulated signal.
  • the low-frequency biosignal to be measured is an electrocardiogram (ECG) and the switching frequency (ie, modulation frequency) is 3 kHz, it has a frequency of 3 kHz and is within a preset bandwidth range centered on the 3 kHz.
  • ECG electrocardiogram
  • modulation frequency 3 kHz
  • the modulated signal eg 60Hz
  • the A/D converter 132 performs a function of converting the amplified modulated signal into a digital signal by high-speed sampling at 300 kHz to 600 kHz. That is, in order to digitally demodulate information on the amplified modulated signal, the A/D converter 132 samples the amplified modulated signal at high speed and converts it into digital data.
  • the demodulator 133 digitally demodulates the modulated signal converted into the digital signal, extracts only the component included in the corresponding modulation frequency component, and restores and outputs a specific low frequency biosignal.
  • the demodulator 133 may be configured to perform analog demodulation.
  • the demodulator 133 receives the modulated bio-signal converted into the digital signal, and extracts an in-phase component.
  • time t can be interpreted as a discrete signal.
  • the in-phase component extraction unit 133a from the result of multiplying the modulated biosignal converted into the digital signal by a sinusoidal component of a preset frequency, selects a portion corresponding to a plurality of periods in advance
  • the in-phase component is extracted by performing signal averaging for summing and averaging.
  • the frequency component of the sine wave is removed from the input signal and only an average value is output.
  • the quadrature extractor 133b adds up and averages portions corresponding to a plurality of preset periods in a result of multiplying the digital signal by a cosine component of a preset frequency. By performing ridging, the quadrature component is extracted.
  • the frequency component of the cosine wave is removed from the input signal and only an average value is output.
  • the preset frequency is preferably set to the same frequency as the switching frequency.
  • the extraction of the in-phase component and the quadrature component of the low-frequency bio-signal is performed in parallel and at the same time.
  • the low-frequency biosignal extractor 133c squares and sums the extracted in-phase component and the quadrature component, respectively, calculates a square root of the summed result, and converts the modulated signal into the digital signal to final demodulation. By doing so, the specific low-frequency biosignal (eg, electrocardiogram) is extracted from the modulated signal.
  • the specific low-frequency biosignal eg, electrocardiogram
  • the low-frequency bio-signal extractor 133c outputs the extracted specific low-frequency bio-signal to the low-frequency bio-signal display 300 .
  • the low-frequency biosignal processing unit 130 may be configured to include an analog demodulator 133 for demodulating the amplified modulated signal.
  • the analog demodulator includes an in-phase component extractor for extracting an in-phase component from the amplified modulated signal, and a quadrature component for extracting a quadrature component from the amplified modulated signal. and a low-frequency bio-signal extractor configured to extract the low-frequency bio-signal by calculating the square root of the sum of negative and the square of the extracted in-phase component and the square of the extracted quadrature component.
  • the configuration of the analog demodulator may correspond to each configuration of the digital demodulator and may be separately configured or provided.
  • the demodulator 133 performs analog demodulation by AC-amplifying the modulated bio-signal and then directly demodulating it without A/D conversion.
  • A/D conversion and demodulation are digital demodulation of discrete signals.
  • FIG. 7 is a flowchart illustrating a procedure for measuring a low-frequency biosignal while repeatedly injecting a high-frequency current or applying a voltage according to an embodiment of the present invention.
  • the procedure for measuring a specific low-frequency bio-signal to the subject while repeatedly injecting current or applying a voltage according to an embodiment of the present invention is first performed by the low-frequency bio-signal measuring apparatus 100 ) performs a low-frequency bio-signal acquisition step of acquiring a bio-signal for the subject by using two specific pre-selected electrodes among a plurality of electrodes (S110).
  • the low-frequency biosignal acquisition step includes removing low-frequency noise from differential signals having different phases from each other measured through the two specific electrodes, and adding the differential signals from which the low-frequency noise has been removed into a single-ended signal by converting it into a single-ended signal, and acquiring a biosignal.
  • the present invention is not limited to the summation.
  • the low-frequency bio-signal measuring apparatus 100 performs a switching step of modulating the obtained bio-signal with a switching frequency synchronized with the high-frequency current injection period (S120).
  • the obtained bio-signal is modulated with the switching frequency (ie, modulation frequency) through switching synchronized with the repeated injection of the high-frequency current, and outputting the resulting modulated signal, so that the high-frequency current and It removes the noise caused by its repetitive injection.
  • the switching frequency ie, modulation frequency
  • the low-frequency bio-signal measuring apparatus 100 performs a low-frequency bio-signal processing step of extracting and outputting the specific low-frequency bio-signal from the modulated bio-signal (ie, a modulated signal).
  • the low-frequency biosignal processing step includes an AC amplification step of amplifying the modulated signal (S130), and an A/D conversion step of converting the amplified modulated signal (the modulated biosignal) into a digital signal (S140) (step S140). is unnecessary when performing analog demodulation), extracting an in-phase component from the modulated signal converted to the digital signal (S150), extracting a quadrature component from the modulated signal converted to the digital signal A quadrature component extraction step (S151) and a low-frequency biosignal extraction step of finally extracting and outputting the specific low-frequency biosignal from the modulated signal converted into the digital signal using the extracted in-phase component and quadrature component (S160) includes
  • the in-phase component is extracted by multiplying the modulated signal converted into the digital signal by a sinusoidal signal (sin ⁇ t) of a preset frequency, and summing the parts corresponding to a plurality of preset periods from the multiplication result and averaging is as described above.
  • the quadrature component is obtained by multiplying the modulated signal converted into the digital signal by a cosine wave signal (cos ⁇ t) of a preset frequency, and summing the parts corresponding to the plurality of preset periods from the multiplication result and average
  • the extraction is as described above.
  • the extracted in-phase component and the quadrature component are squared and summed, respectively, and the square root of the summed result is calculated, thereby finally demodulating the modulated signal converted into the digital signal, Extracts specific low-frequency biosignals.
  • the low-frequency biosignal processing step may include an analog demodulation step of demodulating the amplified modulated signal.
  • the analog demodulation step includes an in-phase component extraction step for extracting an in-phase component from the amplified modulated signal, and a quadrature component for extracting a quadrature component from the amplified modulated signal. It may comprise an extraction step and a low-frequency bio-signal extraction step of extracting the low-frequency bio-signal by calculating the square root of the sum of the square of the extracted in-phase component and the square of the extracted quadrature component. It is preferable that the detailed steps of the analog demodulation step correspond to each configuration of the digital demodulator and are separately configured or provided.
  • the present invention provides an apparatus and method for measuring a low-frequency biosignal while repeatedly injecting a high-frequency current or applying a voltage, using two specific electrodes through switching synchronized with the repetitively injecting a high-frequency current or applying a high-frequency voltage to modulate the obtained bio-signal, and selectively amplify only the modulated signal within a preset bandwidth range centered on the switching frequency in the modulated bio-signal to repeatedly inject the high-frequency current or repeatedly apply the high-frequency voltage and noise due to the switching can be removed to accurately measure low-frequency biosignals for the subject.

Abstract

The present invention relates to a device for measuring a low-frequency bio-signal while repeatedly having inflow of high-frequency current or applying voltage, and a method therefor, the device being capable of removing noise caused by current or voltage, which has a relatively higher signal level and higher frequency than the low-frequency bio-signal, and measuring the low-frequency bio-signal, when the low-frequency bio-signal is measured through two from among a plurality of electrodes while a high-frequency current is flowing or voltage is applied to the plurality of electrodes attached to an examinee.

Description

반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 장치 및 그 방법Apparatus and method for measuring low-frequency biosignals while repeatedly injecting high-frequency current or applying voltage
본 발명은 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 장치 및 그 방법에 관한 것으로, 더욱 상세하게는 피검체에 부착한 복수의 전극에 고주파 전류를 주입하거나 전압을 인가하는 동안 상기 복수의 전극 중 두개를 통해서 저주파 생체신호를 측정하고자 할 때, 상기 저주파 생체신호에 비해서 상대적으로 신호 레벨이 높고 고주파인 전류나 전압으로 인한 노이즈를 제거하고 저주파 생체신호를 측정할 수 있도록 하는 장치 및 그 방법에 관한 것이다.The present invention relates to an apparatus and method for measuring a low-frequency biosignal while repeatedly injecting a high-frequency current or applying a voltage, and more particularly, to a plurality of electrodes attached to a subject by injecting a high-frequency current or applying a voltage When measuring a low-frequency bio-signal through two of the plurality of electrodes during It relates to an apparatus and a method for the same.
의료기술의 급속한 발전으로 인해 환자의 신체 내부에 대한 임피던스를 측정하는 전기 임피던스 단층촬영(Electrical Impedance Tomography) 기술, 환자의 심전도나 뇌파 등의 저주파 생체신호를 측정하는 저주파 생체신호 측정 기술 등이 발전함에 따라, 최근 전기 임피던스 단층촬영 기술과 저주파 생체신호 측정 기술을 결합하여 환자의 상태를 복합적으로 모니터링하기 위한 환자 모니터링 기술에 대한 필요성도 증대하고 있다.Due to the rapid development of medical technology, electrical impedance tomography (EMR) technology to measure the internal impedance of the patient's body, low-frequency bio-signal measurement technology to measure low-frequency bio-signals such as the patient's electrocardiogram or brain waves, etc. Accordingly, the need for a patient monitoring technology for complexly monitoring a patient's condition by combining an electrical impedance tomography technique and a low-frequency biosignal measurement technique is also increasing.
상기 전기 임피던스 단층촬영 기술은, 환자의 신체에 부착되는 복수의 전극을 통해 고주파 전류를 주입(또는 고주파 전압을 인가)하고, 상기 주입한 고주파 전류로 인해 유도된 전압을 측정하여 환자의 신체 내부(예: 흉부, 폐 등)에 대한 생체 임피던스를 측정하는 기술이다.The electrical impedance tomography technique injects a high-frequency current (or applies a high-frequency voltage) through a plurality of electrodes attached to the patient's body, and measures the voltage induced by the injected high-frequency current to the inside of the patient's body ( It is a technique to measure bio-impedance to the chest, lungs, etc.).
또한 상기 저주파 생체신호 측정 기술은, 상기 환자의 신체에서 발생하는 심전도나 뇌파 등과 같은 저주파 생체신호를 환자의 신체에 부착한 복수의 전극을 통해 측정하는 기술이다.In addition, the low-frequency bio-signal measurement technology is a technology for measuring low-frequency bio-signals such as electrocardiogram or brain waves generated in the patient's body through a plurality of electrodes attached to the patient's body.
그러나 종래의 환자 모니터링 기술을 통해 상기 임피던스 신호와 상기 저주파 생체신호를 동시에 측정하는 경우, 상기 저주파 생체신호에 상기 고주파 전류의 주입으로 인한 노이즈가 포함되는 문제점이 있다.However, when the impedance signal and the low-frequency bio-signal are simultaneously measured through the conventional patient monitoring technique, there is a problem in that the low-frequency bio-signal includes noise due to the injection of the high-frequency current.
한편 상기 생체 임피던스 신호와 상기 저주파 생체신호를 동시에 측정할 때, 상기 저주파 생체신호를 증폭하기 위한 증폭기에 저역통과필터(Low Pass Filter)를 구비하여 상기 고주파 전류나 전압에 의한 노이즈를 제거하는 것이 기능적으로는 가능하지만, 실제 두개의 신호가 혼재하는 상황에서 상기 저역통과필터를 통해 고주파 전류나 전압에 의한 노이즈를 제거하는 것이 용이하지 않다.On the other hand, when measuring the bio-impedance signal and the low-frequency bio-signal at the same time, it is functional to provide a low-pass filter in the amplifier for amplifying the low-frequency bio-signal to remove the noise caused by the high-frequency current or voltage. is possible, but it is not easy to remove noise due to high-frequency current or voltage through the low-pass filter in a situation where two signals actually coexist.
현재의 전기 임피던스 단층촬영 기술은, 복수의 전극 중 일부를 통해서 고주파 전류나 전압을 피검체에 반복하여 주입 혹은 인가하여 다른 전극으로부터 생체 임피던스를 측정하는 구조를 가지기 때문에, 상기 전극을 공유하여 상기 피검체에서 발생하는 저주파 생체신호를 측정하려면 전원(예: 60Hz), DC 오프셋, 고주파 신호, 및 상기 반복해서 전류를 주입하거나 전압을 인가함으로써 발생하는 다양한 주파수와 크기의 잡음신호가 발생하며, 이 경우에는 단순히 저역통과필터만을 통해서 상기 잡음신호에 의한 노이즈를 제거하는 것에 한계가 있다.Current electrical impedance tomography technology has a structure in which bioimpedance is measured from another electrode by repeatedly injecting or applying a high-frequency current or voltage to a subject through some of a plurality of electrodes, To measure low-frequency biosignals generated from a sample, power (eg, 60Hz), DC offset, high-frequency signals, and noise signals of various frequencies and magnitudes generated by repeatedly injecting current or applying voltage are generated. There is a limit in removing noise caused by the noise signal simply through a low-pass filter.
이에 따라 본 발명에서는 복수의 전극을 공유하여 고주파 생체 임피던스 신호와 저주파 생체신호를 동시에 측정할 때, 상기 복수의 전극에 반복적으로 고주파 전류나 전압을 주기적으로 주입하거나 인가하되, 상기 전류나 전압을 주입하거나 인가하지 않는 반주기 동안에 상기 피검체에서 발생하는 저주파 생체신호를 측정고자 한다. 또한 상기 주기적으로 전류나 전압을 주입하거나 인가하는 주파수에 동기화하여 저주파 생체신호를 측정하되, 상기 저주파 생체신호를 상기 동기화하는 주파수로 변조하여 획득하고, 상기 변조된 신호를 복조하며, 상기 변조와 복조의 과정에서 잡음신호를 제거함으로써, 원하는 저주파 생체신호를 효과적으로 측정할 수 있도록 하는 방안을 제안하고자 한다.Accordingly, in the present invention, when a high-frequency bio-impedance signal and a low-frequency bio-signal are simultaneously measured by sharing a plurality of electrodes, a high-frequency current or voltage is repeatedly injected or applied to the plurality of electrodes periodically, but the current or voltage is injected It is intended to measure low-frequency biosignals generated in the subject during half-cycle with or without application. In addition, the low-frequency bio-signal is measured in synchronization with the frequency at which current or voltage is periodically injected or applied, and the low-frequency bio-signal is modulated to obtain the synchronizing frequency, and the modulated signal is demodulated, and the modulation and demodulation are performed. We propose a method to effectively measure a desired low-frequency biosignal by removing the noise signal during the
즉, 본 발명은 피검체에 부착한 복수의 전극에 고주파 전류를 주입하거나 전압을 인가하는 동안 상기 복수의 전극 중 두개를 통해서 저주파 생체신호를 측정하고자 할 때, 상기 저주파 생체신호에 비해서 상대적으로 신호 레벨이 높거나 고주파인 노이즈를 제거하고 저주파 생체신호를 측정할 수 있도록 하는 장치 및 그 방법을 제공한다.That is, in the present invention, when a low-frequency bio-signal is measured through two of the plurality of electrodes while a high-frequency current or voltage is applied to the plurality of electrodes attached to the subject, the signal is relatively compared to the low-frequency bio-signal. An apparatus and method for removing high-level or high-frequency noise and measuring low-frequency biosignals are provided.
다음으로 본 발명의 기술분야에 존재하는 선행기술에 대하여 간단하게 설명하고, 이어서 본 발명이 상기 선행기술에 비해서 차별적으로 이루고자 하는 기술적 사항에 대해서 기술하고자 한다.Next, the prior art existing in the technical field of the present invention will be briefly described, and then the technical matters that the present invention intends to achieve differently from the prior art will be described.
먼저 한국공개특허 제2008-0088727호(2008.10.06.)는 경락 임피던스 측정 및 분석 장치에 관한 것으로, 복수의 임피던스 측정 센서와 심전도 측정 센서를 환자의 인체에 부착하여 상기 복수의 임피던스 측정 센서에 일정한 주파수를 가지는 전류를 인가하여 인체 부위의 생체 임피던스를 측정함과 동시에 상기 심전도 측정 센서를 통해 환자의 심전도를 측정하는 경락 임피던스 측정 및 분석 장치에 관한 것이다.First, Korean Patent Application Laid-Open No. 2008-0088727 (2008.10.06.) relates to a meridian impedance measurement and analysis device. A plurality of impedance measurement sensors and an electrocardiogram sensor are attached to a patient's body to provide a constant value for the plurality of impedance measurement sensors. The present invention relates to a meridian impedance measuring and analyzing apparatus for measuring the bioimpedance of a body part by applying a current having a frequency and simultaneously measuring an electrocardiogram of a patient through the electrocardiogram sensor.
상기 선행기술은 단순히 복수의 임피던스 측정 센서와 심전도 측정 센서를 이용하여 생체 임피던스와 심전도를 동시에 측정하는 기재만 있을 뿐, 상기 심전도와 상기 임피던스를 어떻게 측정하는지 그 구체적이고 실질적인 방법을 제시하고 있지 못하다.The prior art simply describes how to measure the bioimpedance and the electrocardiogram at the same time by using a plurality of impedance measuring sensors and electrocardiogram sensors, and does not provide a specific and practical method of measuring the electrocardiogram and the electrocardiogram.
즉, 본 발명은 복수의 전극에 반복적으로 고주파 전류를 주입하거나 고주파 전압을 인가하는 것과 동기화된 스위칭을 통해, 상기 고주파 전류나 전압을 주입하는 것과 역으로 동기화된 주파수에 상기 저주파 생체신호가 변조되어 획득되도록 처리함으로써, 효과적으로 저주파 생체신호를 측정할 수 있도록 하는 것으로, 상기 선행기술은 이러한 본 발명의 기술적 특징을 기재하거나 시사 혹은 그 어떠한 암시도 없다.That is, according to the present invention, the low-frequency biosignal is modulated at a frequency that is inversely synchronized with the injection of the high-frequency current or voltage through switching synchronized with repeatedly injecting a high-frequency current or applying a high-frequency voltage to a plurality of electrodes. By processing to be acquired, it is possible to effectively measure low-frequency biosignals, and the prior art does not describe, suggest, or suggest any technical features of the present invention.
또한 한국등록특허 제0682941호(2007.02.08.)는 생체신호 동시 측정장치 및 방법에 관한 것으로, 복수의 전극을 통해 자극신호를 인가하는 것과 비인가하는 것을 시간적으로 분리하여, 상기 인가한 자극신호에 대한 반응으로 발생하는 제1 생체신호에 대한 제1 중간신호와 자연적으로 발생하는 제2 생체신호에 대한 제2 중간신호를 측정한 후, 상기 인가한 자극신호에 대한 주파수를 이용하여 상기 제1 중간신호로부터 제1 생체신호를 획득하며, 상기 제2 중간신호로부터 제2 생체신호가 존재하는 특정 주파수 대역을 필터링하여 상기 자연적으로 발생하는 특정 생체신호를 측정하는 생체신호 동시 측정장치 및 방법에 관한 것이다.In addition, Korea Patent No. 0682941 (2007.02.08.) relates to an apparatus and method for simultaneous measurement of biosignals, by temporally separating the application and non-application of a stimulation signal through a plurality of electrodes, After measuring the first intermediate signal for the first bio-signal generated in response to the response and the second intermediate signal for the naturally occurring second bio-signal, the first intermediate signal is used using the frequency for the applied stimulus signal. A biosignal simultaneous measurement apparatus and method for obtaining a first biosignal from a signal and for measuring the naturally occurring specific biosignal by filtering a specific frequency band in which a second biosignal exists from the second intermediate signal .
즉, 상기 선행기술은 단순히 제1 생체신호를 측정하는 과정과 상기 제2 생체신호를 측정하는 과정을 시간적으로 분리하여 별도의 과정을 통해 상기 제2 생체신호를 측정하는 것으로, 자극신호를 인가한 후에 그 영향을 생체신호로 측정하는 것이며, 실질적으로 상기 자극신호를 지속적으로 인가하는 동안 동시에 상기 제2 생체신호를 측정하는 것이 아니다.That is, the prior art simply separates the process of measuring the first bio-signal from the process of measuring the second bio-signal in time to measure the second bio-signal through a separate process. Afterwards, the effect is measured as a biosignal, and the second biosignal is not measured at the same time while the stimulus signal is continuously applied.
반면에 본 발명은 복수의 전극에 반복적으로 고주파 전류의 주입 또는 전압의 인가에 동기화한 스위칭을 이용하여 복수의 전극을 통해 생체 임피던스를 측정함과 동시에 상기 복수의 전극 중 특정 두개의 전극을 이용하여 심전도, 뇌파 또는 근전도와 같은 저주파 생체신호를 측정하는 것으로 상기 선행기술과 본 발명은 현저한 차이점이 있다.On the other hand, in the present invention, the bioimpedance is measured through a plurality of electrodes using switching synchronized with the repeated injection of high-frequency current or voltage application to the plurality of electrodes, and at the same time, specific two electrodes among the plurality of electrodes are used. There is a significant difference between the prior art and the present invention in measuring low-frequency biosignals such as electrocardiogram, brainwave, or electromyography.
상기에서 살펴본 선행기술은 생체 임피던스와 생체신호를 동시에 측정하는 개념만 기재되어 있거나, 상기 생체 임피던스와 생체신호를 각 신호의 주파수 대역으로 필터링하여 동시에 측정하는 것으로 기재하고 있다.In the prior art discussed above, only the concept of simultaneously measuring the bio-impedance and the bio-signal is described, or it describes that the bio-impedance and the bio-signal are simultaneously measured by filtering the bio-impedance and the bio-signal in the frequency band of each signal.
반면에 본 발명은 복수의 전극에 반복적으로 고주파 전류나 전압을 주입하거나 인가하는 것을 스위칭하는 주기에 역으로 동기화하여 특정 두개의 전극을 통해 상기 역으로 동기화한 주파수에 변조된 생체신호를 획득하고, 이를 저주파 생체신호로 복조함으로써, 상기 저주파 생체신호를 효과적으로 측정할 수 있도록 하는 것으로, 상기 선행기술들과 본 발명은 분명한 차이점이 있다.On the other hand, the present invention acquires a biosignal modulated to the reversely synchronized frequency through specific two electrodes by synchronizing inversely to a switching cycle of repeatedly injecting or applying a high-frequency current or voltage to a plurality of electrodes, By demodulating this into a low-frequency bio-signal, the low-frequency bio-signal can be effectively measured, and there is a clear difference between the prior art and the present invention.
본 발명은 상기와 같은 문제점을 해결하기 위해 창작된 것으로서, 피검체에 부착한 복수의 전극에 반복적으로 고주파 전류를 주입하거나 전압을 인가하여 상기 피검체에 대한 생체 임피던스와, 상기 복수의 전극 중 특정 두개의 전극을 통해 특정 저주파 생체신호를 동시에 측정하는 장치 및 그 방법을 제공하는 것을 그 목적으로 한다.The present invention was created to solve the above problems, and by repeatedly injecting a high-frequency current or applying a voltage to a plurality of electrodes attached to the object, the bio-impedance of the object and a specific one of the plurality of electrodes An object of the present invention is to provide an apparatus and method for simultaneously measuring a specific low-frequency biosignal through two electrodes.
또한 본 발명은 상기 반복적인 고주파 전류의 주입 또는 고주파 전압의 인가와 역으로 동기화한 스위칭을 통해 상기 특정 두개의 전극을 이용하여 획득한 상기 스위칭 주파수에 변조된 생체신호를 복조하여 저주파 생체신호를 획득하는 장치 및 그 방법을 제공하는 것을 또 다른 목적으로 한다.In addition, the present invention obtains a low-frequency bio-signal by demodulating the bio-signal modulated to the switching frequency obtained by using the two specific electrodes through the repetitive injection of high-frequency current or switching in reverse synchronization with the application of the high-frequency voltage. Another object of the present invention is to provide an apparatus and a method for the same.
또한 본 발명은 상기 스위칭 및 변조된 생체신호를 증폭하고 복조하는 과정에서 입력신호에 포함된 노이즈를 제거함으로써, 효율적으로 저주파 생체신호를 측정하는 장치 및 그 방법을 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide an apparatus and method for efficiently measuring low-frequency bio-signals by removing noise included in an input signal in the process of amplifying and demodulating the switched and modulated bio-signals.
또한 본 발명은 상기 두개의 전극을 통해 입력되는 생체신호에 대한 차동신호를 각각 필터링하여, 상기 차동신호에 각각 포함된 노이즈(예: 피검체의 움직임에 따른 모션 아티팩트)를 제거하는 것을 포함하여 상기 생체신호를 획득하는 장치 및 그 방법을 제공하는 것을 또 다른 목적으로 한다.In addition, the present invention includes filtering the differential signals for the biosignals input through the two electrodes, respectively, and removing noise (eg, motion artifacts according to the movement of the subject) included in the differential signals. Another object of the present invention is to provide an apparatus and method for obtaining a biosignal.
또한 본 발명은 상기 변조된 생체신호를 증폭하고, 상기 증폭한 생체신호를 고속으로 샘플링하여 디지털 신호로 변환하고, 상기 변환한 디지털 신호를 디지털 복조하여 저주파 생체신호를 측정하거나, 상기 증폭한 생체신호에 대해서 노이즈를 제거하는 것을 포함한 아날로그 복조를 수행하여 저주파 생체신호를 측정하는 장치 및 그 방법을 제공하는 것을 또 다른 목적으로 한다.In addition, the present invention amplifies the modulated bio-signal, samples the amplified bio-signal at high speed and converts it into a digital signal, and digitally demodulates the converted digital signal to measure a low-frequency bio-signal, or the amplified bio-signal Another object of the present invention is to provide an apparatus and method for measuring a low-frequency biosignal by performing analog demodulation, including removing noise, for the signal.
본 발명의 일 실시예에 따른 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 장치는, 피검체에 부착된 복수의 전극 중 특정 두개의 전극을 이용하여 생체신호를 획득하는 저주파 생체신호 획득부, 상기 복수의 전극에 반복적인 고주파 전류의 주입 또는 전압의 인가에 동기화하여 상기 획득한 생체신호를 변조한 변조신호를 출력하는 스위칭부 및 상기 변조신호로부터 저주파 생체신호를 추출하는 저주파 생체신호 처리부를 포함하며, 상기 변조신호는 상기 고주파 전류의 주입 또는 전압의 인가에 동기화한 스위칭을 통해서 생성되며, 상기 고주파 전류의 주입이나 전압의 인가에 의한 노이즈를 제거하는 것을 특징으로 한다.An apparatus for measuring a low-frequency biosignal while repeatedly injecting a high-frequency current or applying a voltage according to an embodiment of the present invention obtains a biosignal by using specific two electrodes among a plurality of electrodes attached to a subject. A low-frequency bio-signal acquisition unit, a switching unit for outputting a modulated signal obtained by modulating the obtained bio-signal in synchronization with the repeated injection of high-frequency current or voltage application to the plurality of electrodes, and extracting a low-frequency bio-signal from the modulated signal and a low-frequency biosignal processing unit, wherein the modulated signal is generated through switching synchronized with the injection of the high-frequency current or the application of a voltage, and noise caused by the injection of the high-frequency current or the application of a voltage is removed.
또한 상기 스위칭부는, 상기 고주파 전류 주입 또는 전압을 인가하는 동안 그라운드로 스위칭되고, 상기 고주파 전류 또는 전압을 비주입 또는 비인가하는 동안 상기 저주파 생체신호 획득부로 스위칭됨으로써 상기 고주파 전류 주입 또는 전압의 인가와 역으로 동기화되며, 상기 획득한 생체신호를 상기 스위칭에 따른 스위칭 주파수로 변조하는 것을 특징으로 한다.In addition, the switching unit is switched to ground while the high-frequency current or voltage is applied, and is switched to the low-frequency bio-signal acquisition unit while the high-frequency current or voltage is not injected or applied, so that the high-frequency current or voltage is applied and reversed. , and modulating the obtained bio-signal with a switching frequency according to the switching.
또한 상기 저주파 생체신호 획득부는, 상기 특정 두개의 전극을 이용하여 측정한 상기 생체신호에 대한 차동신호(Differential Signal)를 각각 필터링하여 노이즈를 제거하는 하이패스 필터 및 상기 노이즈를 각각 제거한 상기 차동신호를 합산하여 싱글 엔드 신호(Single-ended Signal)로 변환함으로써 상기 생체신호를 획득하는 증폭기를 더 포함하는 것을 특징으로 한다. 여기서 상기 합산 이외에도 다양한 연산이 사용될 수 있으므로, 상기 합산으로 한정되는 것은 아니다.In addition, the low-frequency bio-signal acquisition unit, a high-pass filter for removing noise by filtering a differential signal for the bio-signal measured using the specific two electrodes, respectively, and the differential signal from which the noise is removed It characterized in that it further comprises an amplifier which acquires the bio-signal by summing and converting it into a single-ended signal. Here, since various operations other than the summation may be used, the present invention is not limited to the summation.
또한 상기 저주파 생체신호 처리부는, 상기 변조신호를 기 설정한 배수로 증폭하는 AC 증폭부, 및 상기 증폭한 변조신호를 고속으로 샘플링하여 디지털 신호로 변환하는 A/D 변환부와 상기 디지털 신호로 변환한 변조신호를 복조하는 디지털 복조부, 또는 상기 증폭한 변조신호를 복조하는 아날로그 복조부;를 더 포함하며, 상기 AC 증폭부는, 상기 변조신호에서, 상기 스위칭 주파수와 동일한 주파수를 중심으로 기 설정한 대역폭 범위 내의 변조신호를 증폭하는 것을 포함하는 것을 특징으로 한다.In addition, the low-frequency biosignal processing unit includes an AC amplifying unit for amplifying the modulated signal by a preset multiple, and an A/D converting unit for converting the amplified modulated signal into a digital signal by sampling the amplified modulated signal at high speed and converting the digital signal. Further comprising a digital demodulator for demodulating the modulated signal, or an analog demodulator for demodulating the amplified modulated signal, wherein the AC amplifying unit includes a preset bandwidth based on the same frequency as the switching frequency in the modulated signal. It characterized in that it comprises amplifying the modulation signal within the range.
또한 상기 디지털 복조부는, 상기 디지털 신호로 변환한 변조신호에서 동위상 성분(In-phase Component)을 추출하는 동위상 성분 추출부, 상기 디지털 신호로 변환한 변조신호에서 직교위상 성분(Quadrature Component)을 추출하는 직교위상 성분 추출부 및 상기 추출한 동위상 성분과 상기 추출한 직교위상 성분의 제곱근을 계산하여 상기 저주파 생체신호를 추출하는 저주파 생체신호 추출부를 더 포함하는 것을 특징으로 한다.In addition, the digital demodulator, an in-phase component extracting unit for extracting an in-phase component (In-phase component) from the modulated signal converted to the digital signal, a quadrature component from the modulated signal converted to the digital signal It characterized in that it further comprises a quadrature component extractor to extract and a low-frequency biosignal extractor for extracting the low-frequency biosignal by calculating the square root of the extracted in-phase component and the extracted quadrature component.
또한 상기 아날로그 복조부는, 상기 증폭한 변조신호에서 동위상 성분(In-phase Component)을 추출하는 동위상 성분 추출부; 상기 증폭한 변조신호에서 직교위상 성분(Quadrature Component)을 추출하는 직교위상 성분 추출부; 및 상기 추출한 동위상 성분의 제곱과 상기 추출한 직교위상 성분의 제곱의 합의 제곱근을 계산하여 상기 저주파 생체신호를 추출하는 저주파 생체신호 추출부;를 더 포함하는 것을 특징으로 한다.In addition, the analog demodulator may include: an in-phase component extractor for extracting an in-phase component from the amplified modulated signal; a quadrature component extracting unit for extracting a quadrature component from the amplified modulated signal; and a low-frequency bio-signal extractor configured to extract the low-frequency bio-signal by calculating the square root of the sum of the square of the extracted in-phase component and the square of the extracted quadrature component.
아울러 본 발명의 일 실시예에 따른 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 방법은, 피검체에 부착된 복수의 전극 중 특정 두개의 전극을 이용하여 생체신호를 획득하는 저주파 생체신호 획득 단계, 상기 복수의 전극에 반복적인 고주파 전류의 주입 또는 전압의 인가에 동기화하여 상기 획득한 생체신호를 변조한 변조신호를 출력하는 스위칭 단계 및 상기 변조신호로부터 저주파 생체신호를 추출하는 저주파 생체신호 처리 단계를 포함하는 것을 특징으로 한다.In addition, in the method of measuring a low-frequency biosignal while repeatedly injecting a high-frequency current or applying a voltage according to an embodiment of the present invention, a biosignal is obtained by using specific two electrodes among a plurality of electrodes attached to the subject. a switching step of outputting a modulated signal obtained by modulating the obtained bio-signal in synchronization with the repeated injection of high-frequency current or voltage application to the plurality of electrodes, and extracting a low-frequency bio-signal from the modulated signal It is characterized in that it comprises a low-frequency bio-signal processing step.
또한 상기 스위칭 단계는, 상기 고주파 전류 주입 또는 전압을 인가하는 동안 그라운드로 스위칭되고, 상기 고주파 전류 비주입 또는 전압을 비인가하는 동안 상기 저주파 생체신호 획득 단계의 출력으로 스위칭됨으로써 상기 고주파 전류 주입 또는 전압의 인가와 동기화되며, 상기 획득한 생체신호를 상기 스위칭에 따른 스위칭 주파수로 변조하는 것을 특징으로 한다.In addition, in the switching step, the high frequency current injection or voltage is switched to ground while the high frequency current is injected or voltage is applied, and switched to the output of the low frequency biosignal acquisition step while the high frequency current is not injected or the voltage is not applied. Synchronized with the application, it characterized in that the obtained bio-signal is modulated with a switching frequency according to the switching.
또한 상기 저주파 생체신호 획득 단계는, 상기 특정 두개의 전극을 이용하여 측정한 상기 생체신호에 대해 각각 필터링하여 노이즈를 제거하는 단계 및 증폭기에서, 상기 노이즈를 제거한 필터링 신호를 합산하여 싱글 엔드 신호(Single-ended Signal)로 변환함으로써 상기 생체신호를 획득하는 단계를 더 포함하는 것을 특징으로 한다. 여기서 상기 합산 이외에도 다양한 연산이 사용될 수 있으므로, 상기 합산으로 한정되는 것은 아니다.In addition, the low-frequency bio-signal acquisition step includes filtering each of the bio-signals measured using the two specific electrodes to remove noise, and adding the filtered signals from which the noise is removed in an amplifier to obtain a single-ended signal (Single signal). -ended Signal), characterized in that it further comprises the step of obtaining the bio-signal. Here, since various operations other than the summation may be used, the present invention is not limited to the summation.
또한 상기 저주파 생체신호 처리 단계는, 상기 변조신호를 기 설정한 배수로 증폭하는 AC 증폭 단계, 및 상기 증폭한 변조신호를 고속으로 샘플링하여 디지털 신호로 변환하는 A/D 변환부와 상기 디지털 신호로 변환한 변조신호를 복조하는 디지털 복조 단계, 또는 상기 증폭한 변조신호를 복조하는 아날로그 복조 단계;를 더 포함하며, 상기 AC 증폭 단계는, 상기 변조신호에서, 상기 스위칭 주파수와 동일한 주파수를 중심으로 기 설정한 대역폭 범위 내의 변조신호를 증폭하는 것을 포함하는 것을 특징으로 한다.In addition, the low-frequency biosignal processing step includes an AC amplification step of amplifying the modulated signal by a preset multiple, and an A/D conversion unit that samples the amplified modulated signal at high speed and converts it into a digital signal and the digital signal A digital demodulation step of demodulating one modulated signal, or an analog demodulation step of demodulating the amplified modulated signal; further comprising, wherein the AC amplifying step is preset based on a frequency equal to the switching frequency in the modulated signal and amplifying the modulated signal within one bandwidth range.
또한 상기 디지털 복조 단계는, 상기 디지털 신호로 변환한 변조신호에서 동위상 성분을 추출하는 동위상 성분 추출 단계, 상기 디지털 신호로 변환한 변조신호에서 직교위상 성분을 추출하는 직교위상 성분 추출 단계 및 상기 추출한 동위상 성분과 상기 추출한 직교위상 성분의 제곱근을 계산하여, 상기 저주파 생체신호를 추출하는 저주파 생체신호 추출 단계를 더 포함하는 것을 특징으로 한다.In addition, the digital demodulation step includes an in-phase component extraction step of extracting an in-phase component from the modulated signal converted into the digital signal, a quadrature component extraction step of extracting a quadrature component from the modulated signal converted into the digital signal, and the It characterized in that it further comprises a low-frequency bio-signal extraction step of extracting the low-frequency bio-signal by calculating the square root of the extracted in-phase component and the extracted quadrature component.
또한 상기 아날로그 복조 단계는, 상기 증폭한 변조신호에서 동위상 성분(In-phase Component)을 추출하는 동위상 성분 추출 단계; 상기 증폭한 변조신호에서 직교위상 성분(Quadrature Component)을 추출하는 직교위상 성분 추출 단계; 및 상기 추출한 동위상 성분의 제곱과 상기 추출한 직교위상 성분의 제곱의 합의 제곱근을 계산하여 상기 저주파 생체신호를 추출하는 저주파 생체신호 추출 단계;를 더 포함하는 것을 특징으로 한다.In addition, the analog demodulation step may include an in-phase component extraction step of extracting an in-phase component from the amplified modulated signal; a quadrature component extraction step of extracting a quadrature component from the amplified modulated signal; and a low-frequency bio-signal extraction step of extracting the low-frequency bio-signal by calculating the square root of the sum of the square of the extracted in-phase component and the square of the extracted quadrature component.
이상에서와 같이 본 발명의 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 장치 및 그 방법은, 복수의 전극에 고주파 전류 또는 전압을 반복적으로 주입 또는 인가하는 것과 동시에 두개의 전극을 통하여 저주파 생체신호를 수신하는 것을 소정의 주파수로 동기화하여 스위칭함으로써, 상기 저주파 생체신호는 소정의 상기 스위칭 주파수로 변조되며, 상기 변조된 생체신호를 복조하여 저주파 생체신호를 추출하는 것으로, 상기 변조와 복조의 과정에서 노이즈를 제거함으로써, 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에도 정확한 저주파 생체신호를 측정할 수 있는 효과가 있다.As described above, the apparatus and method for measuring a low-frequency biosignal while repeatedly injecting or applying a high-frequency current or voltage according to the present invention include repeatedly injecting or applying a high-frequency current or voltage to a plurality of electrodes at the same time as two By synchronizing and switching reception of a low-frequency bio-signal through an electrode at a predetermined frequency, the low-frequency bio-signal is modulated with the predetermined switching frequency, and demodulating the modulated bio-signal to extract a low-frequency bio-signal, wherein By removing noise in the process of modulation and demodulation, it is possible to accurately measure low-frequency bio-signals while repeatedly injecting high-frequency current or applying voltage.
도 1은 본 발명의 일 실시예에 따른 반복적으로 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 장치 및 그 방법을 설명하기 위한 개념도이다.1 is a conceptual diagram illustrating an apparatus and method for measuring a low-frequency biosignal while repeatedly injecting a current or applying a voltage according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 반복적으로 전류를 주입하는 동안에 고주파 임피던스와 저주파 생체신호를 동시에 측정하는 장치의 구성을 나타낸 블록도이다. 2 is a block diagram showing the configuration of an apparatus for simultaneously measuring high-frequency impedance and low-frequency bio-signals while repeatedly injecting current according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 저주파 생체신호 획득부의 구성을 나타낸 블록도이다.3 is a block diagram showing the configuration of a low-frequency bio-signal acquisition unit according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 저주파 생체신호를 추출하는 과정을 나타낸 도면이다.4 is a diagram illustrating a process of extracting a low-frequency biosignal according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 저주파 생체신호 처리부의 구성을 나타낸 블록도이이다.5 is a block diagram showing the configuration of a low-frequency biosignal processing unit according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 복조부의 구성을 나타낸 블록도이다.6 is a block diagram illustrating the configuration of a demodulator according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 절차를 나타낸 흐름도이다.7 is a flowchart illustrating a procedure for measuring a low-frequency biosignal while repeatedly injecting a high-frequency current or applying a voltage according to an embodiment of the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 반복적으로 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 장치 및 그 방법에 대한 바람직한 실시예를 상세히 설명한다.Hereinafter, a preferred embodiment of an apparatus and method for measuring a low-frequency biosignal while repeatedly injecting a current or applying a voltage of the present invention will be described in detail with reference to the accompanying drawings.
각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다. 또한 본 발명의 실시예들에 대해서 특정한 구조적 내지 기능적 설명들은 단지 본 발명에 따른 실시예를 설명하기 위한 목적으로 예시된 것으로, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는 것이 바람직하다.Like reference numerals in each figure indicate like elements. In addition, specific structural or functional descriptions of the embodiments of the present invention are only exemplified for the purpose of describing the embodiments according to the present invention, and unless otherwise defined, all used herein, including technical or scientific terms, are Terms have the same meanings as commonly understood by those of ordinary skill in the art to which the present invention pertains. Terms such as those defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present specification. It is preferable not to
도 1은 본 발명의 일 실시예에 따른 반복적으로 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 장치 및 그 방법을 설명하기 위한 개념도이다.1 is a conceptual diagram illustrating an apparatus and method for measuring a low-frequency biosignal while repeatedly injecting a current or applying a voltage according to an embodiment of the present invention.
도 1에 도시한 바와 같이, 본 발명의 일 실시예에 따른 저주파 생체신호를 측정하는 장치(100)(이하, 저주파 생체신호 측정장치라 칭함)는 고주파 생체신호 측정장치(200)와 연동하여 동작한다. 즉, 상기 고주파 생체신호 측정장치(200)에서 피검체(사람이나 동물)에 부착된 복수의 전극에 반복적으로 고주파 전류를 주입하거나 고주파 전압을 인가하는 동안, 상기 고주파 생체신호 측정장치(200)에서 상기 복수의 전극을 통해 상기 피검체에 대한 신체 내부의 임피던스를 측정하고, 이와 동시에 상기 저주파 생체신호 측정장치(100)에서는 상기 복수의 전극 중 특정 두개의 전극을 통해서 상기 피검체에 대한 특정 저주파 생체신호를 측정하게 된다. 이로써, 복수의 전극을 통해서 피검체로 반복적으로 전류를 주입하거나 전압을 인가하는 동안에 이와 동시에 상기 전극 중 일부를 통해서 피검체로부터 생성되는 저주파 생체신호를 측정함으로써, 상기 측정된 고주파 생체신호 뿐만 아니라 상기 저주파 생체신호를 이용하여 피검체의 상태를 더욱 효율적으로 모니터링할 수 있다.As shown in FIG. 1 , an apparatus 100 for measuring a low-frequency bio-signal (hereinafter referred to as a low-frequency bio-signal measuring device) according to an embodiment of the present invention operates in conjunction with the high-frequency bio-signal measuring device 200 . do. That is, while the high-frequency current or high-frequency voltage is repeatedly applied to the plurality of electrodes attached to the subject (human or animal) in the high-frequency bio-signal measuring device 200, the high-frequency bio-signal measuring device 200 The internal impedance of the body to be measured is measured through the plurality of electrodes, and at the same time, the low-frequency biosignal measuring apparatus 100 uses specific two electrodes among the plurality of electrodes to measure a specific low-frequency biometric body to the subject. to measure the signal. Accordingly, by repeatedly injecting current or applying a voltage to the subject through a plurality of electrodes at the same time, by measuring a low frequency biosignal generated from the subject through some of the electrodes at the same time, not only the measured high frequency biosignal but also the low frequency The condition of the subject can be more efficiently monitored using the biosignal.
더욱 상세하게는, 상기 고주파 생체신호 측정장치(200)는, 사전에 설정한 주기에 따라 복수의 전극 중 한 쌍의 전극을 선택하여 상기 고주파 전류를 주입하거나 고주파 전압을 인가하고, 나머지 전극을 통해 상기 주입한 고주파 전류 또는 상기 인가한 저주파 전압에 의해 유도된 전압을 측정하는 과정을 반복적으로 수행하여 상기 피검체의 신체 내부에 대한 고주파 생체신호를 획득한다.More specifically, the high-frequency biosignal measuring apparatus 200 selects a pair of electrodes from among a plurality of electrodes according to a preset period, injects the high-frequency current or applies a high-frequency voltage, and passes through the remaining electrodes. A process of measuring a voltage induced by the injected high-frequency current or the applied low-frequency voltage is repeatedly performed to obtain a high-frequency biosignal for the inside of the body of the subject.
또한 상기 고주파 생체신호 측정장치(200)는, 상기 획득한 고주파 생체신호에 따라 상기 피검체의 신체 내부에 대한 생체 임피던스를 측정하고, 상기 측정한 생체 임피던스를 처리하여 상기 신체 내부의 임피던스 분포나 상기 임피던스 변화를 나타내는 신체 내부 영상을 포함하는 생체 임피던스 데이터를 출력하는 기능을 수행한다.In addition, the high-frequency bio-signal measuring device 200 measures the bio-impedance to the inside of the body of the subject according to the obtained high-frequency bio-signal, and processes the measured bio-impedance to determine the impedance distribution within the body or the It performs a function of outputting bio-impedance data including an image inside the body representing the impedance change.
이때, 상기 고주파 생체신호 측정장치(200)는, 상기 복수의 전극에 고주파 전류의 반복적 주입 또는 고주파 전압의 반복적 인가를 통해 상기 생체 임피던스 처리 데이터를 출력하기 위한 EIT(Electrical Impedance Tomography) 장치 또는 바이오 임피던스(Bio Impedance) 장치일 수 있다.In this case, the high frequency biosignal measuring device 200 is an EIT (Electrical Impedance Tomography) device or bioimpedance for outputting the bioimpedance processing data through repeated injection of a high frequency current or repeated application of a high frequency voltage to the plurality of electrodes. (Bio Impedance) may be a device.
일예로, 상기 고주파 생체신호 측정장치(200)가 상기 EIT 장치로 구성되는 경우, 상기 측정한 임피던스를 처리하여 신체 내 임피던스 분포나 임피던스 변화를 나타내는 신체 내부 영상을 포함하는 생체 임피던스 데이터를 생성하고, 상기 생성한 생체 임피던스 데이터를 고주파 생체신호 디스플레이(400)에 출력하여, 상기 신체 내부에 대한 임피던스 변화를 시각적으로 확인할 수 있도록 한다.For example, when the high-frequency biosignal measuring device 200 is configured as the EIT device, the measured impedance is processed to generate bioimpedance data including an image inside the body representing an impedance distribution or impedance change in the body, By outputting the generated bio-impedance data to the high-frequency bio-signal display 400, it is possible to visually check the impedance change in the body.
한편 상기 임피던스의 분포는 상기 피검체의 호흡에 의한 흉부 내 공기량 분포를 나타내는 것일 수 있고, 상기 변화신호는 상기 공기량의 분포에 대한 변화를 나타내는 호흡 신호일 수 있으며, 상기 출력한 생체 임피던스 처리 데이터를 통해 상기 피검체의 호흡 상태를 모니터링할 수 있다.On the other hand, the distribution of the impedance may indicate a distribution of the amount of air in the chest due to respiration of the subject, and the change signal may be a respiration signal indicating a change in the distribution of the air amount, through the outputted bioimpedance processing data. The breathing state of the subject may be monitored.
이하에서는, 상기 반복적으로 전류를 주입하는 것을 위주로 설명하지만, 이는 상기 피검체에 부착된 복수의 전극에 반복적으로 고주파 전류를 주입하는 것 외에, 반복적으로 고주파 전압을 인가하는 의미로 해석되어도 됨을 밝혀둔다.Hereinafter, the repetitive current injection will be mainly described, but this may be interpreted as a meaning of repeatedly applying a high-frequency voltage in addition to repeatedly injecting a high-frequency current into the plurality of electrodes attached to the subject. .
또한 상기 저주파 생체신호 측정장치(100)는, 상기 고주파 생체신호 측정장치(200)에서, 상기 복수의 전극에 반복적으로 고주파 전류를 주입하는 동안, 상기 복수의 전극 중 사전에 선택한 특정 두개의 전극을 이용하여 전압을 측정하여 상기 피검체에 대한 생체신호를 획득한다.In addition, the low-frequency bio-signal measuring device 100, while the high-frequency current is repeatedly injected into the plurality of electrodes in the high-frequency bio-signal measuring device 200, selects two specific electrodes selected in advance among the plurality of electrodes. A biosignal for the subject is obtained by measuring the voltage using the
상기 특정 두개의 전극은, 상기 고주파 생체신호를 측정함과 동시에 상기 특정 저주파 생체신호를 포함하는 생체신호를 획득하기 위한 것으로, 상기 저주파 생체신호 측정장치(100)에서 상기 특정 저주파 생체신호를 측정하기 위해 서로 다른 특정 위치에 부착되며, 상기 두개의 전극 중 어느 하나는 기준 전극일 수 있다.The two specific electrodes measure the high-frequency bio-signal and simultaneously acquire a bio-signal including the specific low-frequency bio-signal. The low-frequency bio-signal measuring device 100 measures the specific low-frequency bio signal. It is attached to different specific positions for this purpose, and any one of the two electrodes may be a reference electrode.
여기서 상기 저주파 생체신호는, 심전도, 뇌파, 근전도와 같이 상기 피검체에서 발생하는 신호이다.Here, the low-frequency biosignal is a signal generated in the subject, such as an electrocardiogram, an EEG, or an electromyogram.
이때, 상기 획득한 생체신호는, 상기 고주파 전류의 주입과 이의 반복적인 주입을 위한 스위칭에 의한 노이즈, DC 오프셋(offset)에 의한 노이즈, 전원(예: 60Hz)에 의한 노이즈, 또는 이들의 조합을 더 포함할 수 있다. 물론 여기서 열거한 것 이외에도 수많은 크고 작은 노이즈가 있을 수 있다.In this case, the obtained bio-signal includes noise caused by switching for injection of the high-frequency current and repeated injection thereof, noise caused by DC offset, noise caused by a power supply (eg 60Hz), or a combination thereof. may include more. Of course, there can be numerous large and small noises other than those listed here.
예를 들어, 상기 복수의 전극 중 한 쌍의 전극을 선택하여 0.5ms 동안 10V의 100kHz의 전류(교류)를 주입하고, 상기 0.5ms 동안에는 상기 전류를 비주입하는 동작(즉, 전류 주입이 1ms의 주기를 가지는 경우)을 반복하여, 상기 생체 임피던스와 저주파 생체신호(예: 5mV의 심전도)를 동시에 측정하고자하는 경우, 상기 획득한 생체신호에는 100kHz의 고주파 노이즈와 상기 주기에 의한 1kHz의 노이즈뿐만 아니라 상기 DC 오프셋(offset) 및 전원에 의한 노이즈가 포함된다. 이러한 노이즈를 제거하기 위해 종래 기술과 같이 100kHz의 차단주파수를 가지는 저역통과필터를 이용하는 경우, 저역통과필터의 출력에서 100kHz에 의한 노이즈는 10mV로 감소하나, 10V의 1kHz의 노이즈는 1V로 감소되어 충분한 정도의 노이즈가 제거되지 않으며 낮은 주파수의 전원이나 DC 오프셋(Offset)에 의한 노이즈 또한 제거되지 않는다.For example, an operation of selecting a pair of electrodes from among the plurality of electrodes and injecting a current (alternating current) of 10 V and 100 kHz for 0.5 ms, and not injecting the current during the 0.5 ms (that is, the current injection is 1 ms cycle) to simultaneously measure the bioimpedance and low frequency biosignal (eg, 5mV electrocardiogram), the obtained biosignal includes not only high frequency noise of 100kHz and noise of 1kHz due to the cycle The DC offset and noise due to power are included. In the case of using a low-pass filter having a cut-off frequency of 100 kHz as in the prior art to remove such noise, the noise by 100 kHz at the output of the low-pass filter is reduced to 10 mV, but the noise of 1 kHz of 10 V is reduced to 1 V, which is sufficient The noise level is not removed, and noise due to low frequency power or DC offset is not removed either.
이에 따라 상기 저주파 생체신호 측정장치(100)는, 상기 고주파 전류의 반복적 주입 즉, 고주파 전류의 주입 및 비주입의 반복을 위한 스위칭 주기에 역으로 동기화하여 저주파 생체신호를 획득함으로써, 상기 생체신호가 변조되는 결과가 되며, 상기 변조된 생체신호를 복호하여 저주파 생체신호를 복원한다. 상기 변조와 복조의 과정에서 노이즈가 제거된다.Accordingly, the low-frequency bio-signal measuring apparatus 100 acquires the low-frequency bio-signal by synchronizing in reverse with the switching period for repeated injection of the high-frequency current, that is, the repetition of injection and non-injection of the high-frequency current, so that the bio-signal is As a result of being modulated, the low-frequency bio-signal is restored by decoding the modulated bio-signal. Noise is removed in the process of modulation and demodulation.
상기 저주파 생체신호 측정장치(100)는 상기 측정한 저주파 생체신호를 저주파 생체신호 디스플레이(300)에 출력하여 상기 환자에 대한 상태를 모니터링할 수 있도록 하는 기능을 지원한다.The low-frequency bio-signal measuring apparatus 100 supports a function of outputting the measured low-frequency bio-signal to the low-frequency bio-signal display 300 to monitor the condition of the patient.
또한 고주파 생체신호 측정장치(200)는 상기 측정한 고주파 임피던스를 고주파 생체신호 디스플레이(400)에 출력하여 상기 환자에 대한 상태를 모니터링할 수 있도록 하는 기능을 지원한다.In addition, the high frequency biosignal measuring apparatus 200 supports a function of outputting the measured high frequency impedance to the high frequency biosignal display 400 to monitor the condition of the patient.
도 1에는 저주파 생체신호 측정장치(100)와 고주파 생체신호 측정장치(200)를 별도의 장치로 구분하여 도시하고 있으나, 상기 고주파 생체신호 측정장치(200)의 구성요소 및 기능이 상기 저주파 생체신호 측정장치(100)와 통합하여 구현될 수 있음은 당연할 것이다.Although FIG. 1 shows the low-frequency bio-signal measuring device 100 and the high-frequency bio-signal measuring device 200 as separate devices, the components and functions of the high frequency bio-signal measuring device 200 are different from the low-frequency bio-signal measuring device 200. It will be natural that it can be implemented by being integrated with the measuring device 100 .
이하에서는 반복적으로 고주파 전류를 주입하는 동안에 그와 동시에 고주파 생체 임피던스와 저주파 생체신호를 측정하는 장치의 연동에 대해서 설명하고자 한다.Hereinafter, a description will be given of the interlocking of a device that simultaneously measures a high-frequency bioimpedance and a low-frequency biosignal while repeatedly injecting a high-frequency current.
도 2는 본 발명의 일 실시예에 따른 반복적으로 전류를 주입하는 동안에 고주파 임피던스와 저주파 생체신호를 동시에 측정하는 장치의 구성을 나타낸 블록도이다. 2 is a block diagram showing the configuration of an apparatus for simultaneously measuring high-frequency impedance and low-frequency bio-signals while repeatedly injecting current according to an embodiment of the present invention.
도 2에 도시한 바와 같이, 본 발명의 일 실시예에 따른 저주파 생체신호 측정장치(100)는 피검체의 신체에 부착되는 복수의 전극에 반복적으로 고주파 전류를 주입하는 동안 특정 두개의 전극을 이용하여 피검체에 대한 생체신호를 획득하는 저주파 생체신호 획득부(110), 상기 획득한 생체신호를 상기 고주파 전류의 주입을 반복하는 주기에 동기화하여 변조신호를 생성하는 스위칭부(120), 상기 변조신호로부터 고주파 스위칭 신호에 포함된 신호를 복조함으로써 저주파 생체신호를 추출하는 저주파 생체신호 처리부(130)를 포함하여 구성된다.As shown in FIG. 2 , the low-frequency biosignal measuring apparatus 100 according to an embodiment of the present invention uses two specific electrodes while repeatedly injecting high-frequency current into a plurality of electrodes attached to the body of a subject. a low-frequency bio-signal acquisition unit 110 to obtain a bio-signal for the subject; a switching unit 120 for generating a modulated signal by synchronizing the obtained bio-signal with a cycle of repeating injection of the high-frequency current; and a low-frequency bio-signal processing unit 130 for extracting a low-frequency bio-signal by demodulating a signal included in the high-frequency switching signal from the signal.
상기 저주파 생체신호 획득부(110)는 상기 반복적으로 고주파 전류를 주입하는 동안 특정 두개의 전극을 이용하여 상기 저주파 생체신호를 포함하는 생체신호를 획득하는 기능을 수행한다.The low-frequency bio-signal acquisition unit 110 performs a function of acquiring a bio-signal including the low-frequency bio-signal using two specific electrodes while repeatedly injecting the high-frequency current.
또한 상기 스위칭부(120)는, 상기 고주파 전류의 반복적 주입과 동기화환 스위칭을 통해 상기 획득한 생체신호를 주기적으로 선택하여 변조하는 기능을 수행한다. 여기서 상기 스위칭 주파수는 상기 획득한 생체신호에 비해서 수십 배 높은 주파수가 될 수 있다.In addition, the switching unit 120 performs a function of periodically selecting and modulating the obtained bio-signal through repeated injection of the high-frequency current and synchronized switching. Here, the switching frequency may be several tens of times higher than that of the obtained biosignal.
한편, 고주파 생체신호 측정장치(200)는 전류주입부/전압인가부(220), 고주파 생체신호 획득부(210), 및 생체 임피던스 처리부(230)를 포함하여 구성된다.Meanwhile, the high frequency biosignal measuring device 200 includes a current injecting unit/voltage applying unit 220 , a high frequency biosignal obtaining unit 210 , and a bioimpedance processing unit 230 .
상기 전류주입부/전압인가부(220)는 고주파 전류를 소정의 주기에 따라 복수이 전극에 반복적으로 주입하는 역할을 한다. 상기 고주파 전류의 주입 대신에 고주파 전압을 인가하여도 된다.The current injecting unit/voltage applying unit 220 serves to repeatedly inject a high frequency current into the plurality of electrodes according to a predetermined cycle. A high-frequency voltage may be applied instead of the injection of the high-frequency current.
또한 상기 고주파 생체신호 획득부(210)는 복수의 전극 중 일부에 상기 고주파 전류를 반복적으로 주입하는 동안 상기 복수의 전극 중 나머지 전극을 통해 고주파 생체신호를 획득하는 역할을 한다.In addition, the high-frequency bio-signal acquisition unit 210 serves to acquire a high-frequency bio-signal through the remaining electrodes among the plurality of electrodes while the high-frequency current is repeatedly injected into some of the plurality of electrodes.
또한 상기 생체 임피던스 처리부(230)는 상기 획득한 고주파 생체신호로부터 생체 임피던스를 측정하고, 상기 측정한 생체 임피던스를 처리하여 상기 피검체에 대한 생체 내부 영상, 상기 생체 임피던스의 변화 또는 이들의 조합을 포함하는 생체 임피던스 처리를 통해 생체 임피던스 데이터를 생성하는 역할을 한다.In addition, the bio-impedance processing unit 230 measures bio-impedance from the obtained high-frequency bio-signal, and processes the measured bio-impedance to include a bio-internal image of the subject, a change in the bio-impedance, or a combination thereof. It serves to generate bioimpedance data through bioimpedance processing.
이하에서는 저주파 생체신호 측정장치(100)에서 저주파 생체신호 획득부(110)에 대해서 자세하게 설명하고자 한다.Hereinafter, the low-frequency bio-signal acquisition unit 110 in the low-frequency bio-signal measuring apparatus 100 will be described in detail.
도 3은 본 발명의 일 실시예에 따른 저주파 생체신호 획득부의 구성을 나타낸 블록도이다.3 is a block diagram showing the configuration of a low-frequency bio-signal acquisition unit according to an embodiment of the present invention.
도 3에 도시한 바와 같이, 본 발명의 일 실시예에 따른 저주파 생체신호 획득부(110)는 입력단자로부터 생체신호를 수신하여 증폭하는 하이패스 필터(111) 및 증폭기(112)를 포함하여 구성된다.As shown in FIG. 3 , the low-frequency bio-signal acquisition unit 110 according to an embodiment of the present invention includes a high-pass filter 111 and an amplifier 112 for receiving and amplifying a bio-signal from an input terminal. do.
상기 하이패스 필터(High Pass Filter)(111)는 피검체로부터 수신한 생체신호에 대한 각 차동신호에 포함된 저주파 노이즈(예: 모션 아티팩트 등)를 제거하는 역할을 한다. 즉, 상기 하이패스 필터(111)는 상기 저주파 생체신호 획득부(110)의 입력단에서 특정 두개의 전극을 통해 측정한 상기 피검체에서 발생하는 저주파 생체신호를 포함하는 상기 생체신호에 대한 차동신호를 입력받아 상기 입력받은 차동신호에 포함된 노이즈(예: 모션 아티팩트)를 제거한다.The high-pass filter 111 serves to remove low-frequency noise (eg, motion artifacts, etc.) included in each differential signal with respect to the bio-signal received from the subject. That is, the high-pass filter 111 receives a differential signal for the bio-signal including the low-frequency bio-signal generated in the subject measured through two specific electrodes at the input end of the low-frequency bio-signal acquisition unit 110 . It receives the input and removes noise (eg, motion artifact) included in the received differential signal.
여기서 상기 저주파 생체신호는 상기 특정 두개의 전극을 통해 입력되는 전압(혹은 전류)값을 검출함으로써 측정된다. 또한 상기 고주파 생체신호 획득부(210)의 경우에도 상기 복수의 전극과 연결되고 상기 반복적으로 주입한 전류에 의해 유도된 전압값을 검출함으로써 측정된다.Here, the low-frequency biosignal is measured by detecting a voltage (or current) value input through the two specific electrodes. Also, in the case of the high-frequency biosignal acquisition unit 210 , it is measured by detecting a voltage value that is connected to the plurality of electrodes and induced by the repeatedly injected current.
예를 들면, 상기 저주파 생체신호 측정장치(100)가 상기 피검체의 심전도를 측정하고자 하는 경우, 상기 특정 주파수는 0.5Hz 내지 0.05Hz로 설정될 수 있다. 상기 특정 주파수는 상기 심전도, 뇌파 또는 근전도와 같이 상기 저주파 생체신호 측정장치(100)에서 측정하고자 하는 저주파 생체신호에 따라 가변적으로 설정된다.For example, when the low-frequency biosignal measuring apparatus 100 intends to measure the electrocardiogram of the subject, the specific frequency may be set to 0.5 Hz to 0.05 Hz. The specific frequency is variably set according to the low-frequency bio-signal to be measured by the low-frequency bio-signal measuring apparatus 100, such as the electrocardiogram, brain wave, or electromyogram.
또한 상기 증폭기(112)는 상기 저주파 노이즈를 제거한 각 차동신호를 합산하여 저주파 생체신호를 획득하는 역할을 한다. 즉, 상기 증폭기(112)는, 단일칩 차동 증폭기(Single(One) Chip Differential Amplifier)로 구성될 수 있으며, 상기 노이즈를 제거한 차동신호를 합산하여 싱글 엔드 신호(Single-ended Signal)로 변환한다. 이로써, 상기 저주파 생체신호를 획득하지만 전류를 주입하다가 주입하지 않기를 반복하는 스위칭 주파수에 의해서 유도된 노이즈는 제거되지 못한 상태이다. 여기서 상기 합산 이외에도 다양한 연산이 사용될 수 있으므로, 상기 합산으로 한정되는 것은 아니다.In addition, the amplifier 112 serves to obtain a low-frequency bio-signal by summing each differential signal from which the low-frequency noise has been removed. That is, the amplifier 112 may be configured as a single (One) Chip Differential Amplifier, and converts the noise-removed differential signals into a single-ended signal by summing them. Accordingly, although the low-frequency biosignal is acquired, the noise induced by the switching frequency in which current is injected and not injected is not removed. Here, since various operations other than the summation may be used, the present invention is not limited to the summation.
고주파 전류가 주입 및 비주입을 주기적으로 반복하는 경우, 고주파 전류가 주입되지 않는 구간에 저주파 생체신호를 측정한다면 이상적인 로직에 의해서는 저주파 생체신호를 아무런 문제없이 측정하는 것이 가능할 것이다. 그러나 현실에 있어서는 고주파 전류를 인가하였다가 인가하지 않았다가를 반복하면, 인가 및 비인가를 반복하는 주파수에 의한 노이즈가 유도되게 된다.If the high-frequency current periodically repeats injection and non-injection, if the low-frequency bio-signal is measured in a section where the high-frequency current is not injected, it will be possible to measure the low-frequency bio-signal without any problem by the ideal logic. However, in reality, when a high-frequency current is applied and then not applied repeatedly, noise is induced by the frequency of repeated application and non-application.
이하에서는 고주파 전류가 반복하여 주입될 때, 상기 고주파 전류가 비주입되는 구간에서 저주파 생체신호를 측정할 때 발생하는 상기 고주파 전류의 주입 및 비주입을 반복하는 스위칭 주파수에 의해 유기되는 노이즈를 제거하는 방법에 대해서 자세하게 설명하고자 한다.Hereinafter, when a high-frequency current is repeatedly injected, noise induced by a switching frequency that repeats injection and non-injection of the high-frequency current generated when measuring a low-frequency biosignal in a section in which the high-frequency current is not injected is removed. We would like to explain the method in detail.
도 4는 본 발명의 일 실시예에 따른 저주파 생체신호를 추출하는 과정을 나타낸 도면이다.4 is a diagram illustrating a process of extracting a low-frequency biosignal according to an embodiment of the present invention.
도 3에 도시된 스위칭부(120)를 참조하면, 상기 스위칭부(120)는 상기 고주파 전류를 주입하는 동안 그라운드로 스위칭되고(즉, 스위치 off), 상기 고주파 전류를 비주입하는 동안 상기 저주파 생체신호 획득부(110)의 출력으로 스위칭되어(즉, 스위치 on), 상기 저주파 생체신호 획득부(110)에서 획득된 저주파 생체신호로 스위칭되게 된다. 즉, 상기 스위칭부(120)를 통과하게 되면, 상기 저주파 생체신호 획득부(110)에서 획득된 저주파 생체신호는 높은 스위칭 주파수에 의해서 변조가 된다. 따라서 상기 스위칭부(120)의 출력은 스위칭 주파수에 의해 변조된 생체신호가 된다.Referring to the switching unit 120 shown in FIG. 3 , the switching unit 120 is switched to ground while the high-frequency current is injected (ie, switched off), and while the high-frequency current is not injected, the low-frequency biological body It is switched to the output of the signal acquisition unit 110 (ie, switched on), and is switched to the low-frequency bio-signal obtained by the low-frequency bio-signal acquisition unit 110 . That is, when passing through the switching unit 120, the low-frequency bio-signal obtained by the low-frequency bio-signal obtaining unit 110 is modulated by a high switching frequency. Accordingly, the output of the switching unit 120 becomes a biosignal modulated by the switching frequency.
도 4에 도시된 바와 같이, 상기 고주파 전류를 비주입하는 동안 상기 특정 저주파 생체신호를 측정하도록 동기화되며, 상기 스위칭에 따라 상기 획득한 생체신호가 선택되어, 상기 스위칭 주파수에 의해 변조된 신호를 출력하는 결과가 됨으로써, 상기 변조된 신호는 복조를 통해서 다시 저주파 생체신호로 복원되어야 한다. 상기 복조 과정을 통해서 고주파 스위칭에 의한 노이즈가 제거된다.As shown in Fig. 4, it is synchronized to measure the specific low-frequency bio-signal while the high-frequency current is not injected, and the obtained bio-signal is selected according to the switching, and a signal modulated by the switching frequency is output As a result, the modulated signal must be restored back to a low-frequency bio-signal through demodulation. Noise due to high-frequency switching is removed through the demodulation process.
또한 상기 저주파 생체신호 처리부(130)는, 상기 변조신호를 기 설정한 배수로 증폭하여 증폭한 변조신호를 출력한다.Also, the low-frequency bio-signal processing unit 130 amplifies the modulated signal by a preset multiple and outputs the amplified modulated signal.
이때, 상기 저주파 생체신호 처리부(130)는, 상기 변조신호를 증폭하되, 상기 스위칭 주파수(즉, 변조 주파수)와 동일한 주파수에 해당하는 변조신호만을 선택적으로 증폭하여 부가적으로 유입된 노이즈를 제거한다. 이때, 상기 선택적으로 증폭하는 것은, 상기 스위칭 주파수와 동일한 주파수를 가지고, 해당 주파수를 중심으로 기 설정한 대역폭 범위에 해당하는 변조신호를 증폭함으로써 수행된다.At this time, the low-frequency bio-signal processing unit 130 amplifies the modulated signal, but selectively amplifies only the modulated signal corresponding to the same frequency as the switching frequency (ie, the modulation frequency) to remove the additionally introduced noise. . In this case, the selectively amplifying is performed by amplifying a modulated signal having the same frequency as the switching frequency and corresponding to a preset bandwidth range based on the frequency.
예를 들어, 상기 저주파 생체신호 처리부(130)에서 스위칭 주파수가 3kHz이고 상기 피검체에 대한 심전도를 측정하고자 하는 경우, 상기 대역폭 범위는 상기 3kHz를 중심으로 좌우 30Hz 즉, 총 60Hz로 설정될 수 있다. 한편 상기 대역폭 범위는 상기 저주파 생체신호 측정장치(100)에서 측정하고자 하는 저주파 생체신호의 종류에 따라 가변적으로 설정될 수 있다.For example, when the switching frequency of the low-frequency biosignal processing unit 130 is 3 kHz and the ECG of the subject is to be measured, the bandwidth range may be set to 30 Hz left and right around 3 kHz, that is, a total of 60 Hz. . Meanwhile, the bandwidth range may be variably set according to the type of the low-frequency bio-signal to be measured by the low-frequency bio-signal measuring apparatus 100 .
또한 상기 저주파 생체신호 처리부(130)는, 상기 증폭한 변조신호를 고속으로 샘플링하여 디지털 신호로 변환 한 후, 상기 디지털 신호로 변환한 상기 변조신호를 다시 디지털 복조함으로써, 해당 변조신호로부터 상기 고주파 전류의 반복적 인가로 인한 노이즈 및 상기 스위칭으로 인한 노이즈가 제거된 상기 특정 저주파 생체신호를 추출하여 출력하는 기능을 수행한다.In addition, the low-frequency biosignal processing unit 130 samples the amplified modulated signal at high speed, converts it into a digital signal, and then digitally demodulates the modulated signal converted to the digital signal again, thereby generating the high-frequency current from the modulated signal. It performs a function of extracting and outputting the specific low-frequency bio-signal from which noise due to the repetitive application of , and noise due to the switching are removed.
또한 저주파 생체신호 처리부(130)는 상기 증폭한 변조신호를 아날로그로 복조할 수도 있다. 상기 아날로그 복조는, 상기 증폭한 변조신호에서 동위상 성분(In-phase Component)을 추출하고, 상기 증폭한 변조신호에서 직교위상 성분(Quadrature Component)을 추출하며, 및 상기 추출한 동위상 성분의 제곱과 상기 추출한 직교위상 성분의 제곱의 합의 제곱근을 계산하여 상기 저주파 생체신호를 추출할 수 있다.In addition, the low-frequency bio-signal processing unit 130 may demodulate the amplified modulated signal to analog. The analog demodulation extracts an in-phase component from the amplified modulated signal, extracts a quadrature component from the amplified modulated signal, and the square of the extracted in-phase component and The low-frequency biosignal may be extracted by calculating a square root of the sum of the squares of the extracted quadrature components.
한편 상기 저주파 생체신호 처리부(130)의 구성은 도 5 및 도 6을 참조하여 상세히 설명하도록 한다.Meanwhile, the configuration of the low-frequency biosignal processing unit 130 will be described in detail with reference to FIGS. 5 and 6 .
도 5는 본 발명의 일 실시예에 따른 신호 처리부의 구성을 나타낸 블록도이며, 도 6은 본 발명의 일 실시예에 따른 디지털 복조부의 구성을 나타낸 블록도이다.5 is a block diagram illustrating a configuration of a signal processing unit according to an embodiment of the present invention, and FIG. 6 is a block diagram illustrating a configuration of a digital demodulator according to an embodiment of the present invention.
도 5에 도시한 바와 같이, 본 발명의 일 실시예에 따른 저주파 생체신호 처리부(130)는, 상기 스위칭부(120)에서 출력한 변조신호를 증폭하는 AC 증폭부(131), 상기 증폭한 변조신호를 디지털 신호로 변환하는 A/D 변환부(132) 및 상기 디지털 신호로 변환한 변조신호를 디지털 복조하거나 혹은 아날로그 신호를 복조하여, 해당 변조신호로부터 상기 특정 저주파 생체신호를 추출하여 출력하는 복조부(133)를 포함하여 구성된다. 상기 아날로그 복조를 위해서는 A/D 변환부(132)가 불필요하다.5, the low-frequency biosignal processing unit 130 according to an embodiment of the present invention includes an AC amplifier 131 amplifying the modulated signal output from the switching unit 120, and the amplified modulation signal. A/D converter 132 that converts a signal into a digital signal, and digital demodulation of the modulated signal converted into the digital signal or demodulation of an analog signal, extracting the specific low-frequency biosignal from the modulated signal and outputting it It is configured to include a grandfather (133). For the analog demodulation, the A/D converter 132 is unnecessary.
상기 AC증폭부(131)는 기 설정한 배수(예: 300배)만큼 상기 변조신호를 증폭하되, 상기 변조신호에서 부가적인 고주파 노이즈를 제거하도록 상기 스위칭 주파수와 동일한 변조신호를 선택적으로 증폭한다.The AC amplifier 131 amplifies the modulated signal by a preset multiple (eg, 300 times), but selectively amplifies the modulated signal equal to the switching frequency to remove additional high-frequency noise from the modulated signal.
예를 들어, 상기 측정하고자 하는 저주파 생체신호가 심전도(ECG)이고, 상기 스위칭 주파수(즉, 변조 주파수)가 3kHz이면, 상기 3kHz의 주파수를 가지고, 상기 3kHz를 중심으로 사전에 설정한 대역폭 범위 내(예: 60Hz)의 변조신호를 선택적으로 증폭한다.For example, if the low-frequency biosignal to be measured is an electrocardiogram (ECG) and the switching frequency (ie, modulation frequency) is 3 kHz, it has a frequency of 3 kHz and is within a preset bandwidth range centered on the 3 kHz. Selectively amplifies the modulated signal of (eg 60Hz).
또한 상기 A/D 변환부(132)는, 상기 증폭한 변조신호를 300kHz 내지 600kHz로 고속으로 샘플링하여 디지털 신호로 변환하는 기능을 수행한다. 즉, 상기 A/D 변환부(132)는 상기 증폭한 변조신호에 대한 정보를 디지털 복조하기 위해 상기 증폭한 변조신호를 고속으로 샘플링하여 디지털 데이터로 변환한다.In addition, the A/D converter 132 performs a function of converting the amplified modulated signal into a digital signal by high-speed sampling at 300 kHz to 600 kHz. That is, in order to digitally demodulate information on the amplified modulated signal, the A/D converter 132 samples the amplified modulated signal at high speed and converts it into digital data.
또한 상기 복조부(133)는, 상기 디지털 신호로 변환한 변조신호를 디지털 복조함으로써 해당 변조주파수 성분에 포함된 성분만을 추출하여 특정 저주파 생체신호를 복원하여 출력한다. 상기 복조부(133)는 아날로그 복조를 수행하도록 구성할 수도 있다.In addition, the demodulator 133 digitally demodulates the modulated signal converted into the digital signal, extracts only the component included in the corresponding modulation frequency component, and restores and outputs a specific low frequency biosignal. The demodulator 133 may be configured to perform analog demodulation.
도 6에 도시한 바와 같이, 본 발명의 일 실시예에 따른 복조부(133)는, 상기 디지털 신호로 변환한 변조된 생체신호를 입력받아, 동위상(In Phase) 성분을 추출하는 동위상 성분 추출부(133a), 상기 디지털 신호로 변환한 변조신호를 입력받아 직교위상(Quadrature) 성분을 추출하는 직교위상 성분 추출부(133b) 및 상기 추출한 동위상 성분과 직교위상 성분에 대한 제곱근을 계산하여 해당 변조신호를 최종 복조함으로써, 상기 특정 저주파 생체신호를 추출하여 출력하는 저주파 생체신호 추출부(133c)를 포함하여 구성된다. 단, 디지털 복조에서는 시간 t를 이산신호로 해석하면 된다.As shown in FIG. 6 , the demodulator 133 according to an embodiment of the present invention receives the modulated bio-signal converted into the digital signal, and extracts an in-phase component. The extraction unit 133a, the quadrature component extraction unit 133b that receives the modulated signal converted into the digital signal and extracts the quadrature component, and the extracted in-phase component and the quadrature component by calculating the square root and a low-frequency bio-signal extracting unit 133c that extracts and outputs the specific low-frequency bio-signal by final demodulating the modulated signal. However, in digital demodulation, time t can be interpreted as a discrete signal.
또한 상기 동위상 성분 추출부(133a)는, 상기 디지털 신호로 변환한 상기 변조된 생체신호에 기 설정한 주파수의 정현파 성분(sin component)을 곱한 결과에서, 사전에 복수의 주기에 해당하는 부분을 합산하여 평균하는 신호 에버리징(Signal Averaging)을 수행하여 상기 동위상 성분을 추출한다. 여기서 상기 정현파를 입력 신호에 곱하여 신호 에버리징을 하면 상기 정현파의 주파수 성분이 상기 입력 신호에서 제거되고 평균치만 출력된다.In addition, the in-phase component extraction unit 133a, from the result of multiplying the modulated biosignal converted into the digital signal by a sinusoidal component of a preset frequency, selects a portion corresponding to a plurality of periods in advance The in-phase component is extracted by performing signal averaging for summing and averaging. Here, when the sine wave is multiplied by the input signal and signal averaging is performed, the frequency component of the sine wave is removed from the input signal and only an average value is output.
또한 상기 직교위상 추출부(133b)는, 상기 디지털 신호에 기 설정한 주파수의 여현파 성분(cosine component)을 곱한 결과에서, 사전에 설정한 복수의 주기에 해당하는 부분을 합산하여 평균하는 신호 에버리징을 수행하여 상기 직교위상 성분을 추출한다. 여기서 상기 여현파를 입력 신호에 곱하여 신호 에버리징을 하면 상기 여현파의 주파수 성분이 상기 입력 신호에서 제거되고 평균치만 출력된다.In addition, the quadrature extractor 133b adds up and averages portions corresponding to a plurality of preset periods in a result of multiplying the digital signal by a cosine component of a preset frequency. By performing ridging, the quadrature component is extracted. Here, when the cosine wave is multiplied by the input signal and signal averaging is performed, the frequency component of the cosine wave is removed from the input signal and only an average value is output.
이때 상기 기 설정한 주파수는, 상기 스위칭 주파수와 동일한 주파수로 설정되는 것이 바람직하다. 또한 상기 저주파 생체신호에 대한 동위상 성분과 직교위상 성분을 추출하는 것은, 병렬적으로 동시에 수행된다.In this case, the preset frequency is preferably set to the same frequency as the switching frequency. In addition, the extraction of the in-phase component and the quadrature component of the low-frequency bio-signal is performed in parallel and at the same time.
또한 상기 저주파 생체신호 추출부(133c)는, 상기 추출한 동위상 성분과 상기 직교위상 성분을 각각 제곱하여 합산하고, 상기 합산한 결과에 대한 제곱근을 계산하여 상기 디지털 신호로 변환한 변조신호를 최종 복조함으로써, 해당 변조신호로부터 상기 특정 저주파 생체신호(예: 심전도)를 추출한다.In addition, the low-frequency biosignal extractor 133c squares and sums the extracted in-phase component and the quadrature component, respectively, calculates a square root of the summed result, and converts the modulated signal into the digital signal to final demodulation. By doing so, the specific low-frequency biosignal (eg, electrocardiogram) is extracted from the modulated signal.
또한 상기 저주파 생체신호 추출부(133c)는, 상기 추출한 특정 저주파 생체신호를 저주파 생체신호 디스플레이(300)에 출력한다.In addition, the low-frequency bio-signal extractor 133c outputs the extracted specific low-frequency bio-signal to the low-frequency bio-signal display 300 .
아울러 저주파 생체신호 처리부(130)는 상기 증폭한 변조신호를 복조하는 아날로그 복조부(133)를 구비하도록 구성할 수도 있다. 여기서 상기 아날로그 복조부는, 상기 증폭한 변조신호에서 동위상 성분(In-phase Component)을 추출하는 동위상 성분 추출부, 상기 증폭한 변조신호에서 직교위상 성분(Quadrature Component)을 추출하는 직교위상 성분 추출부 및 상기 추출한 동위상 성분의 제곱과 상기 추출한 직교위상 성분의 제곱의 합의 제곱근을 계산하여 상기 저주파 생체신호를 추출하는 저주파 생체신호 추출부를 포함하여 구성할 수 있다. 상기 아날로그 복조부의 구성은 상기 디지털 복조부의 각 구성에 대응하는 것으로 별도로 구성되거나 구비되는 것이 바람직하다.In addition, the low-frequency biosignal processing unit 130 may be configured to include an analog demodulator 133 for demodulating the amplified modulated signal. Here, the analog demodulator includes an in-phase component extractor for extracting an in-phase component from the amplified modulated signal, and a quadrature component for extracting a quadrature component from the amplified modulated signal. and a low-frequency bio-signal extractor configured to extract the low-frequency bio-signal by calculating the square root of the sum of negative and the square of the extracted in-phase component and the square of the extracted quadrature component. The configuration of the analog demodulator may correspond to each configuration of the digital demodulator and may be separately configured or provided.
본 발명에서 상기 복조부(133)는 변조된 생체신호를 AC증폭한 다음, A/D 변환하지 않고 바로 복조를 하면 아날로그 복조를 수행하는 것이 되며, 반면에 변조된 생체신호를 AC증폭한 다음, A/D 변환하고 복조를 하면 이산신호를 디지털 복조하는 것이 된다.In the present invention, the demodulator 133 performs analog demodulation by AC-amplifying the modulated bio-signal and then directly demodulating it without A/D conversion. On the other hand, after AC-amplifying the modulated bio-signal, A/D conversion and demodulation are digital demodulation of discrete signals.
도 7은 본 발명의 일 실시예에 따른 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 절차를 나타낸 흐름도이다.7 is a flowchart illustrating a procedure for measuring a low-frequency biosignal while repeatedly injecting a high-frequency current or applying a voltage according to an embodiment of the present invention.
도 7에 도시한 바와 같이 본 발명의 일 실시예에 따른 반복적으로 전류를 주입하거나 전압을 인가하는 동안 상기 피검체에 대한 특정 저주파 생체신호를 측정하는 절차는 우선, 상기 저주파 생체신호 측정장치(100)는, 복수의 전극 중 사전에 선택한 특정 두개의 전극을 이용하여 상기 피검체에 대한 생체신호를 획득하는 저주파 생체신호 획득 단계를 수행한다(S110).As shown in FIG. 7 , the procedure for measuring a specific low-frequency bio-signal to the subject while repeatedly injecting current or applying a voltage according to an embodiment of the present invention is first performed by the low-frequency bio-signal measuring apparatus 100 ) performs a low-frequency bio-signal acquisition step of acquiring a bio-signal for the subject by using two specific pre-selected electrodes among a plurality of electrodes (S110).
상기 저주파 생체신호 획득 단계는, 상기 특정 두개의 전극을 통해 측정한 서로 위상이 다른 차동신호에서 저주파 노이즈를 제거하는 단계 및 상기 저주파 노이즈를 각각 제거한 차동신호를 합산하여 싱글 엔드 신호로 변환함으로써, 상기 생체신호를 획득하는 단계를 포함하여 구성된다. 여기서 상기 합산 이외에도 다양한 연산이 사용될 수 있으므로, 상기 합산으로 한정되는 것은 아니다.The low-frequency biosignal acquisition step includes removing low-frequency noise from differential signals having different phases from each other measured through the two specific electrodes, and adding the differential signals from which the low-frequency noise has been removed into a single-ended signal by converting it into a single-ended signal, and acquiring a biosignal. Here, since various operations other than the summation may be used, the present invention is not limited to the summation.
한편, 생체신호를 획득하는 구체적인 절차는 도 3을 참조하여 설명하였으므로 더 이상의 상세한 설명은 생략하도록 한다.Meanwhile, since the detailed procedure for acquiring the biosignal has been described with reference to FIG. 3 , further detailed description will be omitted.
다음으로 상기 저주파 생체신호 측정장치(100)는 상기 고주파 전류 주입 주기와 동기화된 스위칭 주파수로 상기 획득한 생체신호를 변조하는 스위칭 단계를 수행한다(S120).Next, the low-frequency bio-signal measuring apparatus 100 performs a switching step of modulating the obtained bio-signal with a switching frequency synchronized with the high-frequency current injection period (S120).
즉, 상기 스위칭 단계는, 상기 고주파 전류의 반복적 주입과 동기화한 스위칭을 통해 상기 획득한 생체신호를 상기 스위칭 주파수(즉, 변조 주파수)로 변조하여 그 결과인 변조신호를 출력함으로써, 상기 고주파 전류와 이의 반복적 주입으로 인한 노이즈를 제거한다.That is, in the switching step, the obtained bio-signal is modulated with the switching frequency (ie, modulation frequency) through switching synchronized with the repeated injection of the high-frequency current, and outputting the resulting modulated signal, so that the high-frequency current and It removes the noise caused by its repetitive injection.
다음으로 상기 저주파 생체신호 측정장치(100)는, 상기 변조한 생체신호(즉, 변조신호)로부터 상기 특정 저주파 생체신호를 추출하여 출력하는 저주파 생체신호 처리 단계를 수행한다.Next, the low-frequency bio-signal measuring apparatus 100 performs a low-frequency bio-signal processing step of extracting and outputting the specific low-frequency bio-signal from the modulated bio-signal (ie, a modulated signal).
상기 저주파 생체신호 처리 단계는, 상기 변조신호를 증폭하는 AC 증폭 단계(S130), 상기 증폭한 변조신호(상기 변조한 생체신호)를 디지털 신호로 변환하는 A/D 변환 단계(S140)(단계 S140은 아날로그 복조를 수행할 경우 불필요함), 상기 디지털 신호로 변환한 변조신호로부터 동위상 성분을 추출하는 동위상 성분 추출 단계(S150), 상기 디지털 신호로 변환한 변조신호로부터 직교위상 성분을 추출하는 직교위상 성분 추출 단계(S151) 및 상기 추출한 동위상 성분과 직교위상 성분을 이용하여 상기 디지털 신호로 변환한 변조신호로부터 상기 특정 저주파 생체신호를 최종적으로 추출하여 출력하는 저주파 생체신호 추출 단계(S160)를 포함한다.The low-frequency biosignal processing step includes an AC amplification step of amplifying the modulated signal (S130), and an A/D conversion step of converting the amplified modulated signal (the modulated biosignal) into a digital signal (S140) (step S140). is unnecessary when performing analog demodulation), extracting an in-phase component from the modulated signal converted to the digital signal (S150), extracting a quadrature component from the modulated signal converted to the digital signal A quadrature component extraction step (S151) and a low-frequency biosignal extraction step of finally extracting and outputting the specific low-frequency biosignal from the modulated signal converted into the digital signal using the extracted in-phase component and quadrature component (S160) includes
상기 변조신호를 증폭하고, 상기 증폭한 변조신호를 디지털 신호로 변환하는 것은, 도 5를 참조하여 설명하였으므로 더 이상의 상세한 설명은 생략한다.Amplifying the modulated signal and converting the amplified modulated signal into a digital signal has been described with reference to FIG. 5, and thus a further detailed description will be omitted.
또한 상기 동위상 성분은, 상기 디지털 신호로 변환한 변조신호에 기 설정한 주파수의 정현파 신호(sinωt)를 곱하고 상기 곱한 결과에서, 사전에 설정한 복수의 주기에 해당하는 부분을 합산하여 평균함으로써 추출됨은 상술한 바와 같다.In addition, the in-phase component is extracted by multiplying the modulated signal converted into the digital signal by a sinusoidal signal (sinωt) of a preset frequency, and summing the parts corresponding to a plurality of preset periods from the multiplication result and averaging is as described above.
또한 상기 직교위상 성분은, 상기 디지털 신호로 변환한 변조신호에 기 설정한 주파수의 여현파 신호(cosωt)를 곱하고 상기 곱한 결과에서, 상기 사전에 설정한 복수의 주기에 해당하는 부분을 합산하여 평균함으로써 추출됨은 상술한 바와 같다.In addition, the quadrature component is obtained by multiplying the modulated signal converted into the digital signal by a cosine wave signal (cosωt) of a preset frequency, and summing the parts corresponding to the plurality of preset periods from the multiplication result and average The extraction is as described above.
또한 상기 저주파 생체신호 추출 단계는, 상기 추출한 동위상 성분과 상기 직교위상 성분을 각각 제곱하여 합산하고, 상기 합산한 결과에 대한 제곱근을 계산함으로써, 상기 디지털 신호로 변환한 변조신호를 최종 복조하여 상기 특정 저주파 생체신호를 추출한다.In the low-frequency biosignal extraction step, the extracted in-phase component and the quadrature component are squared and summed, respectively, and the square root of the summed result is calculated, thereby finally demodulating the modulated signal converted into the digital signal, Extracts specific low-frequency biosignals.
아울러 저주파 생체신호 처리 단계는 상기 증폭한 변조신호를 복조하는 아날로그 복조 단계를 포함하여 구성할 수도 있다. 여기서 상기 아날로그 복조 단계는, 상기 증폭한 변조신호에서 동위상 성분(In-phase Component)을 추출하는 동위상 성분 추출 단계, 상기 증폭한 변조신호에서 직교위상 성분(Quadrature Component)을 추출하는 직교위상 성분 추출 단계 및 상기 추출한 동위상 성분의 제곱과 상기 추출한 직교위상 성분의 제곱의 합의 제곱근을 계산하여 상기 저주파 생체신호를 추출하는 저주파 생체신호 추출 단계를 포함하여 구성할 수 있다. 상기 아날로그 복조 단계의 세부 단계는 상기 디지털 복조부의 각 구성에 대응하는 것으로 별도로 구성되거나 구비되는 것이 바람직하다.In addition, the low-frequency biosignal processing step may include an analog demodulation step of demodulating the amplified modulated signal. Here, the analog demodulation step includes an in-phase component extraction step for extracting an in-phase component from the amplified modulated signal, and a quadrature component for extracting a quadrature component from the amplified modulated signal. It may comprise an extraction step and a low-frequency bio-signal extraction step of extracting the low-frequency bio-signal by calculating the square root of the sum of the square of the extracted in-phase component and the square of the extracted quadrature component. It is preferable that the detailed steps of the analog demodulation step correspond to each configuration of the digital demodulator and are separately configured or provided.
상기에서는 본 발명에 따른 바람직한 실시예를 위주로 상술하였으나, 본 발명의 기술적 사상은 이에 한정되는 것은 아니며 본 발명의 각 구성요소는 동일한 목적 및 효과의 달성을 위하여 본 발명의 기술적 범위 내에서 변경 또는 수정될 수 있을 것이다.In the above, the preferred embodiment according to the present invention has been mainly described above, but the technical spirit of the present invention is not limited thereto, and each component of the present invention is changed or modified within the technical scope of the present invention to achieve the same purpose and effect. it could be
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.In addition, although preferred embodiments of the present invention have been illustrated and described above, the present invention is not limited to the specific embodiments described above, and the technical field to which the present invention belongs without departing from the gist of the present invention as claimed in the claims In addition, various modifications may be made by those of ordinary skill in the art, and these modifications should not be individually understood from the technical spirit or perspective of the present invention.
본 발명인 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 장치 및 그 방법은, 반복적으로 고주파 전류를 주입하거나 고주파 전압을 인가하는 것과 동기화된 스위칭을 통해 특정 두개의 전극을 이용하여 획득한 생체신호를 변조하고, 상기 변조한 생체신호에서 상기 스위칭 주파수를 중심으로 기 설정한 대역폭 범위내의 변조신호만을 선택적으로 증폭하여 상기 고주파 전류의 반복적 주입 또는 상기 고주파 전압의 반복적 인가에 의한 노이즈와 상기 스위칭으로 인한 노이즈를 제거하여 상기 피검체에 대한 정확한 저주파 생체신호를 측정할 수 있다.The present invention provides an apparatus and method for measuring a low-frequency biosignal while repeatedly injecting a high-frequency current or applying a voltage, using two specific electrodes through switching synchronized with the repetitively injecting a high-frequency current or applying a high-frequency voltage to modulate the obtained bio-signal, and selectively amplify only the modulated signal within a preset bandwidth range centered on the switching frequency in the modulated bio-signal to repeatedly inject the high-frequency current or repeatedly apply the high-frequency voltage and noise due to the switching can be removed to accurately measure low-frequency biosignals for the subject.

Claims (12)

  1. 피검체에 부착된 복수의 전극 중 특정 두개의 전극을 이용하여 생체신호를 획득하는 저주파 생체신호 획득부;a low-frequency bio-signal obtaining unit for obtaining bio-signals by using specific two electrodes among a plurality of electrodes attached to the subject;
    상기 복수의 전극에 반복적인 고주파 전류의 주입 또는 전압의 인가에 동기화하여 상기 획득한 생체신호를 변조한 변조신호를 출력하는 스위칭부; 및a switching unit for outputting a modulated signal obtained by modulating the obtained biosignal in synchronization with the repeated injection of high-frequency current or application of voltage to the plurality of electrodes; and
    상기 변조신호로부터 저주파 생체신호를 추출하는 저주파 생체신호 처리부;를 포함하며,and a low-frequency bio-signal processing unit that extracts a low-frequency bio-signal from the modulated signal.
    상기 변조신호는 상기 고주파 전류의 주입 또는 전압의 인가에 동기화한 스위칭을 통해서 생성되며, 상기 고주파 전류의 주입이나 전압의 인가에 의한 노이즈를 제거하는 것을 특징으로 하는 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 장치.The modulation signal is generated through switching synchronized with the injection of the high-frequency current or the application of a voltage, and repeatedly injecting a high-frequency current or applying a voltage, characterized in that the noise caused by the injection of the high-frequency current or the application of a voltage is removed A device that measures low-frequency biosignals during application.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 스위칭부는,The switching unit,
    상기 고주파 전류 주입 또는 전압을 인가하는 동안 그라운드로 스위칭되고, 상기 고주파 전류 비주입 또는 전압을 비인가하는 동안 상기 저주파 생체신호 획득부로 스위칭됨으로써 상기 고주파 전류 주입 또는 전압의 인가와 동기화되며,It is switched to ground while the high-frequency current is injected or voltage is applied, and is switched to the low-frequency biosignal acquisition unit while the high-frequency current is not injected or voltage is not applied, so that it is synchronized with the high-frequency current injection or voltage application,
    상기 획득한 생체신호를 상기 스위칭에 따른 스위칭 주파수로 변조하는 것을 특징으로 하는 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 장치.An apparatus for repeatedly injecting a high-frequency current or measuring a low-frequency bio-signal while applying a voltage, characterized in that the obtained bio-signal is modulated with a switching frequency according to the switching.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 저주파 생체신호 획득부는,The low-frequency bio-signal acquisition unit,
    상기 특정 두개의 전극을 이용하여 측정한 상기 생체신호에 대한 차동신호(Differential Signal)를 각각 필터링하여 노이즈를 제거하는 하이패스 필터; 및a high-pass filter for removing noise by filtering a differential signal with respect to the bio-signal measured using the two specific electrodes; and
    상기 노이즈를 제거한 차동신호를 싱글 엔드 신호(Single-ended Signal)로 변환함으로써 상기 생체신호를 획득하는 증폭기;를 더 포함하는 것을 특징으로 하는 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 장치.An amplifier for obtaining the bio-signal by converting the noise-removed differential signal into a single-ended signal; device to measure.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 저주파 생체신호 처리부는,The low-frequency biosignal processing unit,
    상기 변조신호를 기 설정한 배수로 증폭하는 AC 증폭부; 및an AC amplifier for amplifying the modulated signal by a preset multiple; and
    상기 증폭한 변조신호를 고속으로 샘플링하여 디지털 신호로 변환하는 A/D 변환부와 상기 디지털 신호로 변환한 변조신호를 복조하는 디지털 복조부, 또는 상기 증폭한 변조신호를 아날로그 곱셈기나 스위치를 사용해서 복조하는 아날로그 복조부;를 더 포함하며,An A/D converter that samples the amplified modulated signal at high speed and converts it into a digital signal, and a digital demodulator that demodulates the modulated signal converted into the digital signal, or converts the amplified modulated signal into an analog multiplier or switch using an analog multiplier or switch. It further includes; an analog demodulator that demodulates;
    상기 AC 증폭부는, 상기 변조신호에서, 스위칭 주파수와 동일한 주파수를 중심으로 기 설정한 대역폭 범위 내의 변조신호를 증폭하는 것을 특징으로 하는 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 장치.The AC amplifier is, in the modulation signal, measuring a low-frequency bio-signal while repeatedly injecting a high-frequency current or applying a voltage, characterized in that it amplifies a modulation signal within a preset bandwidth range centered on a frequency equal to a switching frequency device to do.
  5. 청구항 4에 있어서,5. The method according to claim 4,
    상기 디지털 복조부는,The digital demodulator,
    상기 디지털 신호로 변환한 변조신호에서 동위상 성분(In-phase Component)을 추출하는 동위상 성분 추출부;an in-phase component extracting unit for extracting an in-phase component from the modulated signal converted into the digital signal;
    상기 디지털 신호로 변환한 변조신호에서 직교위상 성분(Quadrature Component)을 추출하는 직교위상 성분 추출부; 및 a quadrature component extracting unit for extracting a quadrature component from the modulated signal converted into the digital signal; and
    상기 추출한 동위상 성분의 제곱과 상기 추출한 직교위상 성분의 제곱의 합의 제곱근을 계산하여 상기 저주파 생체신호를 추출하는 저주파 생체신호 추출부;를 더 포함하는 것을 특징으로 하는 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 장치.A low-frequency bio-signal extractor that extracts the low-frequency bio-signal by calculating the square root of the sum of the square of the extracted in-phase component and the square of the extracted quadrature component; A device that measures low-frequency biosignals while applying
  6. 청구항 4에 있어서,5. The method according to claim 4,
    상기 아날로그 복조부는,The analog demodulator,
    상기 증폭한 변조신호에서 동위상 성분(In-phase Component)을 추출하는 동위상 성분 추출부;an in-phase component extracting unit for extracting an in-phase component from the amplified modulated signal;
    상기 증폭한 변조신호에서 직교위상 성분(Quadrature Component)을 추출하는 직교위상 성분 추출부; 및 a quadrature component extracting unit for extracting a quadrature component from the amplified modulated signal; and
    상기 추출한 동위상 성분의 제곱과 상기 추출한 직교위상 성분의 제곱의 합의 제곱근을 계산하여 상기 저주파 생체신호를 추출하는 저주파 생체신호 추출부;를 더 포함하는 것을 특징으로 하는 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 장치.A low-frequency bio-signal extractor that extracts the low-frequency bio-signal by calculating the square root of the sum of the square of the extracted in-phase component and the square of the extracted quadrature component; A device that measures low-frequency biosignals while applying
  7. 피검체에 부착된 복수의 전극 중 특정 두개의 전극을 이용하여 생체신호를 획득하는 저주파 생체신호 획득 단계;A low-frequency bio-signal acquisition step of acquiring a bio-signal by using specific two electrodes among a plurality of electrodes attached to the subject;
    상기 복수의 전극에 반복적인 고주파 전류의 주입 또는 전압의 인가에 동기화하여 상기 획득한 생체신호를 변조한 변조신호를 출력하는 스위칭 단계; 및a switching step of outputting a modulated signal obtained by modulating the obtained bio-signal in synchronization with the repetitive injection of high-frequency current or application of voltage to the plurality of electrodes; and
    상기 변조신호로부터 저주파 생체신호를 추출하는 저주파 생체신호 처리 단계;를 포함하며,a low-frequency bio-signal processing step of extracting a low-frequency bio-signal from the modulated signal;
    상기 변조신호는 상기 고주파 전류의 주입 또는 전압의 인가에 동기화한 스위칭을 통해서 생성되며, 상기 고주파 전류의 주입 또는 전압의 인가에 의한 노이즈를 제거하는 것을 특징으로 하는 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 방법.The modulation signal is generated through switching synchronized with the injection of the high-frequency current or the application of a voltage, and repeatedly injecting a high-frequency current or applying a voltage, characterized in that noise caused by the injection of the high-frequency current or the application of a voltage is removed A method for measuring low-frequency biosignals during application.
  8. 청구항 7에 있어서,8. The method of claim 7,
    상기 스위칭 단계는,The switching step is
    상기 고주파 전류 주입 또는 전압을 인가하는 동안 그라운드로 스위칭되고, 상기 고주파 전류 비주입 또는 전압을 비인가하는 동안 상기 저주파 생체신호 획득 단계의 출력으로 스위칭됨으로써 상기 고주파 전류 주입 또는 전압의 인가와 동기화되며,It is switched to ground while the high-frequency current is injected or voltage is applied, and is switched to the output of the low-frequency bio-signal acquisition step while the high-frequency current is not injected or voltage is not applied, so that it is synchronized with the high-frequency current injection or voltage application,
    상기 획득한 생체신호를 상기 스위칭에 따른 스위칭 주파수로 변조하는 것을 특징으로 하는 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 방법.A method of repeatedly injecting a high-frequency current or measuring a low-frequency bio-signal while applying a voltage, characterized in that the obtained bio-signal is modulated with a switching frequency according to the switching.
  9. 청구항 7에 있어서,8. The method of claim 7,
    상기 저주파 생체신호 획득 단계는,The low-frequency biosignal acquisition step includes:
    상기 특정 두개의 전극을 이용하여 측정한 상기 생체신호에 대한 차동신호(Differential Signal)를 각각 필터링하여 노이즈를 제거하는 단계; 및removing noise by filtering a differential signal with respect to the biosignal measured using the specific two electrodes; and
    증폭기에서, 상기 노이즈를 제거한 차동신호를 싱글 엔드 신호(Single-ended Signal)로 변환함으로써, 상기 생체신호를 획득하는 단계;를 더 포함하는 것을 특징으로 하는 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 방법.In the amplifier, by converting the noise-removed differential signal into a single-ended signal, obtaining the bio-signal; repeatedly injecting a high-frequency current or applying a voltage, characterized in that it further comprises A method of measuring low-frequency biosignals during
  10. 청구항 7에 있어서,8. The method of claim 7,
    상기 저주파 생체신호 처리 단계는,The low-frequency biosignal processing step,
    상기 변조신호를 기 설정한 배수로 증폭하는 AC 증폭 단계; 및an AC amplification step of amplifying the modulated signal by a preset multiple; and
    상기 증폭한 변조신호를 고속으로 샘플링하여 디지털 신호로 변환하는 A/D 변환과 상기 디지털 신호로 변환한 변조신호를 복조하는 디지털 복조 단계, 또는 상기 증폭한 변조신호를 아날로그 곱셈기나 스위치를 사용해서 복조하는 아날로그 복조 단계;를 더 포함하며,A/D conversion of high-speed sampling of the amplified modulated signal to convert it into a digital signal, and a digital demodulation step of demodulating the modulated signal converted into the digital signal, or demodulating the amplified modulated signal using an analog multiplier or switch It further comprises; an analog demodulation step to
    상기 AC 증폭 단계는, 상기 변조신호에서, 상기 스위칭 주파수와 동일한 주파수를 중심으로 기 설정한 대역폭 범위 내의 변조신호를 증폭하는 것을 특징으로 하는 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 방법.In the AC amplification step, the low-frequency biosignal while repeatedly injecting a high-frequency current or applying a voltage, characterized in that in the modulated signal, amplifying a modulated signal within a preset bandwidth range centered on the same frequency as the switching frequency How to measure.
  11. 청구항 10에 있어서,11. The method of claim 10,
    상기 디지털 복조 단계는,The digital demodulation step is
    상기 디지털 신호로 변환한 변조신호에서 동위상 성분을 추출하는 동위상 성분 추출 단계;an in-phase component extraction step of extracting an in-phase component from the modulated signal converted into the digital signal;
    상기 디지털 신호로 변환한 변조신호에서 직교위상 성분을 추출하는 직교위상 성분 추출 단계; 및 a quadrature component extraction step of extracting a quadrature component from the modulated signal converted into the digital signal; and
    상기 추출한 동위상 성분의 제곱과 상기 추출한 직교위상 성분의 제곱의 합의 제곱근을 계산하여, 상기 저주파 생체신호를 추출하는 저주파 생체신호 추출 단계;를 더 포함하는 것을 특징으로 하는 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 방법.A low-frequency bio-signal extraction step of extracting the low-frequency bio-signal by calculating the square root of the sum of the square of the extracted in-phase component and the square of the extracted quadrature component; A method of measuring low-frequency biosignals while voltage is applied.
  12. 청구항 10에 있어서,11. The method of claim 10,
    상기 아날로그 복조 단계는,The analog demodulation step is
    상기 증폭한 변조신호에서 동위상 성분(In-phase Component)을 추출하는 동위상 성분 추출 단계;an in-phase component extraction step of extracting an in-phase component from the amplified modulated signal;
    상기 증폭한 변조신호에서 직교위상 성분(Quadrature Component)을 추출하는 직교위상 성분 추출 단계; 및a quadrature component extraction step of extracting a quadrature component from the amplified modulated signal; and
    상기 추출한 동위상 성분의 제곱과 상기 추출한 직교위상 성분의 제곱의 합의 제곱근을 계산하여 상기 저주파 생체신호를 추출하는 저주파 생체신호 추출부;를 더 포함하는 것을 특징으로 하는 반복적으로 고주파 전류를 주입하거나 전압을 인가하는 동안에 저주파 생체신호를 측정하는 방법.A low-frequency bio-signal extractor that extracts the low-frequency bio-signal by calculating the square root of the sum of the square of the extracted in-phase component and the square of the extracted quadrature component; A method of measuring low-frequency biosignals while applying
PCT/KR2021/018478 2020-12-21 2021-12-07 Device for measuring low-frequency bio-signal while repeatedly injecting high-frequency current or applying voltage, and method therefor WO2022139257A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0179556 2020-12-21
KR1020200179556A KR102478292B1 (en) 2020-12-21 2020-12-21 Apparatus and method for measuring low frequency biological signal while repeatedly injecting high frequency current and applying voltage

Publications (1)

Publication Number Publication Date
WO2022139257A1 true WO2022139257A1 (en) 2022-06-30

Family

ID=82159522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018478 WO2022139257A1 (en) 2020-12-21 2021-12-07 Device for measuring low-frequency bio-signal while repeatedly injecting high-frequency current or applying voltage, and method therefor

Country Status (2)

Country Link
KR (1) KR102478292B1 (en)
WO (1) WO2022139257A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127556A (en) * 1999-10-27 2001-05-11 Asahi Kasei Microsystems Kk Differential amplifier circuit
JP2010535544A (en) * 2007-08-09 2010-11-25 インぺディメッド リミテッド Impedance measurement method
KR20150133631A (en) * 2014-05-20 2015-11-30 삼성전자주식회사 Method and apparatus for processing signal
KR20180027500A (en) * 2015-07-09 2018-03-14 퀄컴 인코포레이티드 Impedance sensing
JP2019187637A (en) * 2018-04-20 2019-10-31 セイコーエプソン株式会社 Living body analysis apparatus, living body analysis method, and program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682941B1 (en) * 2004-03-27 2007-02-15 삼성전자주식회사 Apparatus and method for simultaneously measuring bio signals
KR20080088727A (en) * 2007-03-30 2008-10-06 오존스코리아 주식회사 Measuring and analyzing device for impedance of blood vessel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127556A (en) * 1999-10-27 2001-05-11 Asahi Kasei Microsystems Kk Differential amplifier circuit
JP2010535544A (en) * 2007-08-09 2010-11-25 インぺディメッド リミテッド Impedance measurement method
KR20150133631A (en) * 2014-05-20 2015-11-30 삼성전자주식회사 Method and apparatus for processing signal
KR20180027500A (en) * 2015-07-09 2018-03-14 퀄컴 인코포레이티드 Impedance sensing
JP2019187637A (en) * 2018-04-20 2019-10-31 セイコーエプソン株式会社 Living body analysis apparatus, living body analysis method, and program

Also Published As

Publication number Publication date
KR20220089171A (en) 2022-06-28
KR102478292B1 (en) 2022-12-16

Similar Documents

Publication Publication Date Title
EP2294979B1 (en) Method and electronic medical device for simultaneously measuring an impedance and a biopotential signal
Kusche et al. Combining bioimpedance and EMG measurements for reliable muscle contraction detection
US8914099B2 (en) Biomedical acquisition system with motion artifact reduction
TW201025857A (en) Bioelectricity signal sensing apparatus and method and device for canceling baseline drift in bioelectricity signal
SG174302A1 (en) Ecg device with impulse and channel switching adc noise filter and error corrector for derived leads
WO2019004710A1 (en) Electroencephalogram and electrocardiogram measurement device and method
US6654633B2 (en) Mobile neurological signal data acquisition system and method
KR20030063547A (en) Apparatus and method for measuring electroencephalogram
CN110840454B (en) Electroencephalogram signal acquisition device and method
WO2015048822A1 (en) Systems and methods for preventing contamination of recorded biological signals during surgery
Yang et al. A low-cost wireless multichannel surface EMG acquisition system
KR101268498B1 (en) Biological electric signal measuring apparatus and biological electric signal measuring method
Guerrero et al. Surface EMG multichannel measurements using active, dry branched electrodes
WO2022139257A1 (en) Device for measuring low-frequency bio-signal while repeatedly injecting high-frequency current or applying voltage, and method therefor
Yama et al. Development of a wireless capacitive sensor for ambulatory ECG monitoring over clothes
JP4524441B2 (en) Apparatus and method for recording biological origin signals
US5615687A (en) Heart monitoring system and method with reduced signal acquisition range
Rahal et al. High frame rate electrical impedance tomography system for monitoring of regional lung ventilation
WO2019066604A1 (en) Treatment device for reducing biopotential of target portion
WO2022098219A1 (en) System and method for measuring bio-impedance
CN214434253U (en) Recovered wearing formula equipment of upper limbs and system
Orsolini et al. Wireless Electrocardiography and Impedance Cardiography Devices Using a Network Time Protocol for Synchronized Data
Debbarma et al. An Intra-oral EEG System with Accelerometer For Motion Artifact Free EEG Recording
CN220894413U (en) Device for detecting electrocardio lead connection state through alternating current impedance
Raichur et al. A step towards home-based robotic rehabilitation: An interface circuit for EEG/SEMG actuated orthosis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21911324

Country of ref document: EP

Kind code of ref document: A1