WO2022138924A1 - Surface treatment method for titanium or titanium alloy - Google Patents
Surface treatment method for titanium or titanium alloy Download PDFInfo
- Publication number
- WO2022138924A1 WO2022138924A1 PCT/JP2021/048219 JP2021048219W WO2022138924A1 WO 2022138924 A1 WO2022138924 A1 WO 2022138924A1 JP 2021048219 W JP2021048219 W JP 2021048219W WO 2022138924 A1 WO2022138924 A1 WO 2022138924A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ionized water
- titanium
- alkaline ionized
- phosphorus
- water
- Prior art date
Links
- 239000010936 titanium Substances 0.000 title claims abstract description 83
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 78
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 53
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 43
- 238000004381 surface treatment Methods 0.000 title claims abstract description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 204
- 229910001868 water Inorganic materials 0.000 claims abstract description 196
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 57
- 239000011574 phosphorus Substances 0.000 claims abstract description 57
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 57
- 239000010703 silicon Substances 0.000 claims abstract description 57
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 57
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 50
- 239000011707 mineral Substances 0.000 claims abstract description 50
- 150000003839 salts Chemical class 0.000 claims abstract description 48
- 239000007864 aqueous solution Substances 0.000 claims abstract description 27
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 12
- 238000002156 mixing Methods 0.000 claims description 33
- 239000007943 implant Substances 0.000 claims description 26
- 238000004519 manufacturing process Methods 0.000 claims description 22
- 239000000460 chlorine Substances 0.000 claims description 19
- 229910052801 chlorine Inorganic materials 0.000 claims description 17
- 239000011259 mixed solution Substances 0.000 claims description 17
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 16
- 239000011734 sodium Substances 0.000 claims description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 6
- 239000011575 calcium Substances 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 239000011591 potassium Substances 0.000 claims description 5
- 229910052700 potassium Inorganic materials 0.000 claims description 5
- 238000012986 modification Methods 0.000 abstract description 4
- 230000004048 modification Effects 0.000 abstract description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 50
- 235000010755 mineral Nutrition 0.000 description 43
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 20
- 210000000988 bone and bone Anatomy 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 19
- 238000005259 measurement Methods 0.000 description 15
- 239000002994 raw material Substances 0.000 description 14
- 239000013535 sea water Substances 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 11
- 239000007788 liquid Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 210000000689 upper leg Anatomy 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- -1 and for example Substances 0.000 description 6
- 230000021164 cell adhesion Effects 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- 238000002955 isolation Methods 0.000 description 6
- 230000005611 electricity Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000011573 trace mineral Substances 0.000 description 5
- 235000013619 trace mineral Nutrition 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000010162 Tukey test Methods 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000000921 elemental analysis Methods 0.000 description 4
- 238000004993 emission spectroscopy Methods 0.000 description 4
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- 238000001543 one-way ANOVA Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 229940123973 Oxygen scavenger Drugs 0.000 description 3
- 210000001185 bone marrow Anatomy 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 238000005443 coulometric titration Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000007872 degassing Methods 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 208000006735 Periostitis Diseases 0.000 description 2
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000004053 dental implant Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 230000005661 hydrophobic surface Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 210000003460 periosteum Anatomy 0.000 description 2
- 238000002731 protein assay Methods 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- CPKVUHPKYQGHMW-UHFFFAOYSA-N 1-ethenylpyrrolidin-2-one;molecular iodine Chemical compound II.C=CN1CCCC1=O CPKVUHPKYQGHMW-UHFFFAOYSA-N 0.000 description 1
- LCSKNASZPVZHEG-UHFFFAOYSA-N 3,6-dimethyl-1,4-dioxane-2,5-dione;1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1.CC1OC(=O)C(C)OC1=O LCSKNASZPVZHEG-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 239000006145 Eagle's minimal essential medium Substances 0.000 description 1
- 206010015548 Euthanasia Diseases 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- 229920000153 Povidone-iodine Polymers 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 229910000316 alkaline earth metal phosphate Inorganic materials 0.000 description 1
- 229910052915 alkaline earth metal silicate Inorganic materials 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 239000012888 bovine serum Substances 0.000 description 1
- GMTYREVWZXJPLF-AFHUBHILSA-N butorphanol D-tartrate Chemical compound OC(=O)[C@@H](O)[C@H](O)C(O)=O.N1([C@@H]2CC3=CC=C(C=C3[C@@]3([C@]2(CCCC3)O)CC1)O)CC1CCC1 GMTYREVWZXJPLF-AFHUBHILSA-N 0.000 description 1
- 229960001590 butorphanol tartrate Drugs 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 238000003869 coulometry Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 210000004394 hip joint Anatomy 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000002690 local anesthesia Methods 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- VPNGEIHDPSLNMU-UHFFFAOYSA-N medetomidine hydrochloride Chemical compound Cl.C=1C=CC(C)=C(C)C=1C(C)C1=CNC=N1 VPNGEIHDPSLNMU-UHFFFAOYSA-N 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- DDLIGBOFAVUZHB-UHFFFAOYSA-N midazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NC=C2CN=C1C1=CC=CC=C1F DDLIGBOFAVUZHB-UHFFFAOYSA-N 0.000 description 1
- 229960003793 midazolam Drugs 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000011587 new zealand white rabbit Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000010883 osseointegration Methods 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 229960001621 povidone-iodine Drugs 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 108700038288 rhodamine-phalloidin Proteins 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000003115 supporting electrolyte Substances 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229940072358 xylocaine Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C8/00—Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/06—Titanium or titanium alloys
Definitions
- the present invention relates to a surface treatment method for titanium or a titanium alloy.
- titanium or titanium alloy has been mainly used as a material.
- the reason is that the surface of titanium or titanium alloy is coated with an oxide film mainly composed of titanium oxide, and this film becomes a passivation film against corrosion in body fluid and suppresses corrosion of titanium or titanium alloy. , And this capsule has a high affinity for bone.
- Patent Document 1 a method for treating a medical implant including a step of irradiating the medical implant with high-energy radiation (ultraviolet rays) has been proposed (for example, Patent Document 1).
- Item 1 A method for surface treating titanium or a titanium alloy, which comprises a step of immersing titanium or a titanium alloy in alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus.
- Item 2. The surface treatment method according to Item 1, wherein the alkaline ionized water contains 0.4 to 400 mass ppm of silicon and 400 to 800 mass ppm of phosphorus.
- Item 3. Item 2. The surface treatment method according to Item 1 or 2, wherein the alkaline ionized water further contains at least one mineral selected from the group consisting of calcium, potassium, sodium, and magnesium.
- Item 5. The surface treatment method according to any one of Items 1 to 4, wherein the pH of the alkaline ionized water is 10 to 12.5.
- Item 6. The surface treatment method according to any one of Items 1 to 5, wherein the surface tension of the alkaline ionized water is 55 to 68 mN / m.
- Item 7. An electrolysis step in which the alkaline ionized water electrolyzes an aqueous solution containing a mineral salt containing silicon and phosphorus and water, and the alkaline water on the cathode side obtained in the step and a mineral containing silicon and phosphorus.
- the surface treatment method according to any one of Items 1 to 6, which is obtained by an electron supply step of mixing with a salt to obtain a mixed solution and supplying electrons to the mixed solution.
- Item 8 An implant made of titanium or a titanium alloy whose surface is treated with alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus.
- Item 9. A step of electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus to obtain alkaline ionized water, and A method for manufacturing an implant made of titanium or a titanium alloy, comprising a step of treating the surface of titanium or a titanium alloy with the alkaline ionized water.
- the surface properties of titanium or a titanium alloy can be easily and inexpensively modified.
- FIG. 1 is a schematic diagram illustrating an apparatus for producing alkaline ionized water.
- the results of trace element analysis by X-ray photoelectron spectroscopy (XPS) on the alkaline ionized water treatment group immediately after the pretreatment and after 4 weeks, and the control group immediately after the pretreatment and after 4 weeks are shown in FIG. 2A. It is the result of wide scan analysis, and FIG. 2B is the result of narrow scan analysis.
- FIG. 3 is a photograph at the time of contact angle measurement.
- a (upper row) shows the control group
- B (middle row) shows the alkaline ionized water treatment group
- C (lower row) shows the UV group.
- FIG. 4 is a diagram showing the measurement results of the contact angle.
- FIG. 5 is a diagram showing the results of a protein adsorption test.
- FIG. 6 is a diagram showing the results of the cell adhesion test.
- FIG. 7 is a diagram showing the results of the cell proliferation test.
- FIG. 8 is a photograph of the rabbit femur at the time of implanting the titanium disc,
- FIG. 8A shows the groove formation for implanting the titanium disc, and
- FIG. 2B shows the state after implanting the titanium disc.
- FIG. 9 is a micro CT image of a rabbit femur.
- FIG. 9 is a micro CT image of a rabbit femur.
- FIG. 10 is a Villanueva bone-stained image of a rabbit femur.
- FIG. 11 is a schematic diagram illustrating a BIC measurement range. a: Length of titanium disk surface (dotted line), b: Length of bone bonded to titanium disk surface (arrow), c: New bone
- FIG. 12 is a diagram showing the measurement results of BIC.
- the present invention relates to a surface treatment method for titanium or a titanium alloy.
- the titanium or titanium alloy is titanium or a titanium alloy for implants to be implanted in a living body.
- alkaline ionized water (hereinafter, simply referred to as "alkaline ionized water") obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus may be used.
- the surface treatment method of the present invention simply immerses titanium or a titanium alloy in alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus, and the surface properties of titanium or the titanium alloy. Can be modified, so that surface modification can be performed inexpensively and easily as compared with conventional ultraviolet irradiation that requires expensive equipment.
- alkaline ionized water can be paraphrased as alkaline electrolyzed water.
- the target of surface treatment is titanium or titanium alloy.
- titanium alloys for example, an alloy of titanium (Ti), aluminum (Al) and vanadium (V), an alloy of titanium (Ti), aluminum (Al) and niobium (Nb), titanium (Ti) and nickel (Ni). ), An alloy of titanium (Ti) and platinum (Pt), and the like. It is preferable to use Ti, Ti-6Al-4V alloy, Ti-6Al-7Nb alloy or the like as the target of surface modification.
- alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus is used.
- the alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus contains silicon and phosphorus.
- silicon (Si) is about 0.4 to 400 mass ppm (mg / L), preferably about 0.8 to 390 mass ppm, and more preferably about 1.0 to 380 mass ppm in the alkaline ionized water.
- phosphorus (P) is contained in an amount of about 2 to 800 mass ppm, preferably about 4 to 780 mass ppm, and more preferably about 10 to 770 mass ppm. Elemental analysis was performed by inductively coupled plasma (ICP) emission spectroscopy (SPECTRO ACROSII manufactured by Hitachi High-Tech Science Co., Ltd.).
- the alkaline ionized water obtained by electrolyzing an aqueous solution containing silicon and a mineral salt containing phosphorus may contain phosphorus and other elements other than silicon, and for example, calcium (Ca) may be 0.0001 to 900 mass ppb. About 0.001 to 800 mass ppm, more preferably about 0.01 to 700 mass ppm, potassium (K) about 0.0005 to 3000 mass ppm, preferably about 1 to 2900 mass ppm, more preferably about 5 to 2800 mass.
- magnesium (Mg) about 0.0001 to 300 mass ppb, preferably about 0.001 to 250 mass ppm, more preferably about 0.01 to 200 mass ppm, sodium (Na) about 34 to 8000 mass ppm, preferably about 34 to 8000 mass ppm. It may contain about 40 to 7900 mass ppm, more preferably about 50 to 7800 mass ppm.
- chlorine (Cl) may be contained in the alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus, and for example, chlorine (Cl) is 1.5 to 1.5 to. It may be contained in an amount of about 450 mg / kg, preferably about 1.5 to 440 mg / kg, and more preferably about 1.5 to 430 mg / kg.
- the silicon contained in the alkaline ionized water can be present in a state of silicate ions such as H 3 SiO 4 ⁇ , H 5 Si 2 O 7 ⁇ , H 5 Si 3 O 9 ⁇ and the like.
- Phosphorus contained in the alkaline ionized water can be present in the state of phosphate ions, for example, H 2 PO 4- , H 3 P 2 O 7- , H 4 P 3 O 10- , and the like.
- the pH of alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus is usually about 10 to 12.5.
- the surface tension is usually 70 mN / m or less, preferably about 50 to 69 mN / m, and more preferably about 55 to 68 mN / m. Further, the alkaline ionized water physically contains an excessive amount of electrons.
- the alkaline ionized water used in the present invention includes an electrolysis step of electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus and water, and the alkaline water on the cathode side obtained in the above step, silicon and phosphorus. It can be obtained by an electron supply step of mixing with a mineral salt containing the above water to obtain a mixed solution and supplying electrons to the mixed solution.
- a mineral salt containing silicon and phosphorus for example, an electrolyte containing silicon and phosphorus obtained from seawater can be used. Seawater can be used without particular limitation, and for example, Japanese seawater can be used.
- Mineral salts containing silicon and phosphorus may be added in an amount of about 0.001 to 3% by mass of the amount of water used.
- the method for producing alkaline ionized water includes a deoxidizing step of deoxidizing an aqueous solution containing a mineral salt containing silicon and phosphorus and water to reduce the dissolved oxygen concentration to 1 ppm or less, and the above-mentioned method. It is preferable to include a stabilizing step of applying a pressure of 1 kg / cm 2 to 12 kg / cm 2 to a mixed solution of alkaline water on the cathode side and a mineral salt containing silicon and phosphorus.
- the mineral salt containing silicon and phosphorus mixed with the alkaline water on the cathode side the same mineral salt containing silicon and phosphorus used in the electrolysis step can be used, for example, Japan. It is possible to use the one collected from the seawater of.
- the first step is an electrolysis step of electrolyzing an aqueous solution containing water and a mineral salt containing silicon and phosphorus.
- Pure water, ion-exchanged water, etc. can be used as the raw material water.
- a mineral salt containing silicon and phosphorus obtained from seawater as a supporting electrolyte is dissolved. It is preferable to use water in which the concentration of dissolved oxygen in the water is reduced to 1 ppm or less by deoxidizing treatment.
- the deoxidizing treatment there are a physical treatment method and a chemical treatment method, and conventionally, a method of using the chemical treatment method alone or a method of using the physical treatment method and the chemical treatment method in combination is adopted.
- the physical treatment method include degassing treatment using a heating degassing device, a membrane degassing device, and the like.
- Examples of the chemical treatment method include a method of adding hydrazine, sodium sulfite, a saccharide (glycose, etc.) as a deoxidizing agent.
- a deoxidizing treatment for example, the oxygen removing agent can be added to water.
- the electrolysis is performed in a closed space such as an electrolytic cell.
- the inside of the electrolytic cell is preferably an inert atmosphere such as nitrogen and carbon dioxide.
- electrolysis is carried out in the electrolytic tank. It is also possible to put an oxygen scavenger into the electrolytic bath when performing in.
- the electric energy applied by electrolysis is preferably 1000 W to 3000 W.
- the second step is an electron supply step of mixing the alkaline water on the cathode side obtained in the first step with a mineral salt containing silicon and phosphorus to obtain a mixed solution, and supplying electrons to the mixed solution.
- the alkaline water on the cathode side obtained by electrolysis is taken out from the electrolytic cell and supplied to the mixing tank. It is preferable that the mixing tank is provided with a means for supplying a mineral salt containing silicon and phosphorus obtained from seawater and an electron supply means for supplying electricity to alkaline water.
- silicon-containing raw material examples include alkali metal silicates such as sodium silicate and potassium silicate; alkaline earth metal silicates such as calcium silicate; magnesium silicate and the like. Can be mentioned.
- the content of silicon contained in the mixed solution is preferably about 0.005 to 5% by mass, more preferably 0.01 to 1% by mass, when the total amount of the mixed solution is 100% by mass. ..
- Examples of the phosphorus-containing raw material include alkali metal phosphates such as sodium phosphate and potassium phosphate; alkaline earth metal phosphates such as calcium phosphate; magnesium phosphate and the like. ..
- the content of phosphorus contained in the mixed solution is preferably about 0.005 to 5% by mass, more preferably 0.01 to 1% by mass, when the total amount of the mixed solution is 100% by mass. ..
- the mass ratio of the silicon-containing mineral salt added to the alkaline water to the phosphorus-containing mineral salt is preferably 1: 0.5 to 1.5.
- Electrons can be supplied by contacting the cathode terminal with alkaline water on the cathode side obtained by electrolysis. Electrons are discharged from the cathode electrons, and many electrons are supplied to alkaline water.
- a direct current is applied to the cathode terminal.
- the voltage of the direct current applied to the cathode terminal is, for example, 10 to 1000 V, preferably 50 to 300 V, and more preferably 100 to 300 V. It is considered that the produced alkaline ionized water can effectively modify the surface properties of titanium or a titanium alloy by supplying electrons to the mixed solution.
- a direct current having a voltage of 100 to 300 V is applied to the mixing tank and the amount of electricity emitted from the cathode electrons is 1000 to 3000 W.
- a pressure of 1 kg / cm 2 to 12 kg / cm 2 (98 to 1177 kPa) to the mixing tank, and more preferably 2 kg / cm 2 to 6 kg / cm 2 (196 to 588 kPa). Applying pressure improves the stability of alkaline ionized water.
- the inside of the mixing tank is preferably an inert atmosphere such as nitrogen and carbon dioxide. It is also possible to put an oxygen scavenger into the mixing tank. It is preferable that the mixing tank is insulated from the ambient temperature by a heat insulating means so as not to be affected by the ambient temperature, and the inside of the mixing tank is adjusted to the range of -5 ° C to 25 ° C by the temperature adjusting means. ..
- the temperature of the mixed solution is preferably 0 ° C to 10 ° C.
- the mixing tank is preferably arranged in an isolation tank isolated from the outside air atmosphere, and the isolation tank is preferably filled with nitrogen or carbon dioxide. As a result, deterioration of alkaline ionized water can be prevented, so that the performance can be maintained for a long period of time.
- alkaline ionized water By stabilizing the alkaline ionized water in the above mixing tank for 24 to 36 hours, the final product, alkaline ionized water, can be obtained.
- the obtained alkaline ionized water can be taken out directly from the alkaline ionized water outlet.
- alcohol can be mixed with alkaline ionized water and taken out from the outlet of the mixed alkaline ionized water.
- the alcohol it is preferable to use an alcohol having a high compatibility with water, and examples thereof include methanol, ethanol, and isopropyl alcohol.
- FIG. 1 shows a schematic diagram illustrating an apparatus for producing alkaline ionized water.
- the alkaline ionized water producing apparatus 101 includes an electrolytic cell 1 and a mixing tank 11, and the electrolytic cell 1 and the mixing tank 11 are connected by an alkaline water outlet pipe 9.
- a water pipe 2 is connected to the electrolytic cell 1, and raw water (an aqueous solution containing a mineral salt containing silicon and phosphorus and water) is supplied by the water pipe 2.
- the electrolytic cell 1 has an anode chamber 4 and a cathode chamber 5 partitioned by a diaphragm 3.
- the anode chamber 4 is provided with an anode 6, and the cathode chamber 5 is provided with a cathode 7. Electrolytic current is applied to both electrodes, acidic water is taken out from the acidic water discharge pipe 8 connected to the anode chamber 4, and alkaline water is taken out from the alkaline water outlet pipe 9 connected to the cathode chamber 5.
- the alkaline water is cooled by a cooling device 10 provided with a cooling pipe in which a refrigerant is circulated while passing through the alkaline water outlet pipe 9, and is introduced into the mixing tank 11.
- the mixing tank 11 is connected to the alkaline water outlet pipe 9, the raw material liquid storage tank 12, and the outlet pipe 16.
- the raw material liquid is supplied to the mixing tank 11 from the raw material liquid storage tank 12 via the inflow amount adjusting device 13.
- the amount of raw material liquid supplied is adjusted by the amount of electricity that is energized.
- As the raw material liquid a mineral salt containing silicon and phosphorus collected from Japanese seawater is used.
- a stirring device 14 is provided in the mixing tank 11 so that the alkaline ionized water and the raw material liquid are uniformly mixed.
- the cathode terminal 100 is arranged in the mixing tank 11. A direct current of 200 V is applied to the cathode terminal 100.
- the amount of electricity emitted from the cathode terminal 100 is preferably 1000 W to 3000 W.
- the mixing tank 11 is insulated by the heat insulating means 15 so as not to be affected by the ambient temperature, and the internal temperature is adjusted to about 15 ° C to 25 ° C by the temperature adjusting means (not shown).
- the temperature of the mixing tank 11 is preferably about 0 ° C to 10 ° C.
- the pH of the alkaline ionized water derived from the mixing tank 11 is measured by the pH measuring means 17 provided in the outlet pipe 16.
- the pH of the alkaline ionized water taken out from the mixing tank 11 is preferably about 10 to 12.5.
- the outlet pipe 16 connected to the mixing tank 11 is branched into an alkaline ionized water outlet pipe 18 and a mixed alkaline ionized water outlet pipe 21.
- the alkaline ionized water in the mixing tank 11 is directly taken out from the alkaline ionized water outlet pipe 18.
- the alkaline ionized water can also be mixed with alcohol to obtain mixed alkaline ionized water.
- alkaline ionized water and alcohol may be mixed in the alcohol mixing tank 20 in which alcohol is injected from the alcohol storage tank 19 and taken out as mixed alkaline ionized water from the mixed alkaline ionized water outlet pipe 21.
- alcohol to be mixed with alkaline ionized water alcohol having a high compatibility with water, for example, methanol, ethanol, isopropyl alcohol and the like can be used.
- the above-mentioned alkaline ionized water production apparatus 101 is isolated from the outside air by being housed in the isolation chamber 22.
- the isolation chamber 22 is replaced with nitrogen or is coupled to the outside air atmosphere by a ventilation device filled with carbon dioxide, an oxygen scavenger, or the like.
- alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus.
- examples of commercially available products include trade names S-100 and S-100G (both manufactured by AI System Products Co., Ltd.).
- the surface treatment method of the present invention is characterized in that titanium or a titanium alloy is immersed in alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus.
- the temperature of the alkaline ionized water is usually about 0 to 40 ° C, preferably 10 to 30 ° C. Titanium or a titanium alloy may be immersed in alkaline ionized water at room temperature (normal temperature).
- the processing time is not particularly limited. It is usually 1 minute or more, preferably 3 minutes or more and 10 minutes or less.
- the surface treatment method of the present invention simply immerses titanium or a titanium alloy in alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus, and the surface properties of titanium or the titanium alloy. Can be modified, so that surface modification can be performed inexpensively and easily as compared with conventional ultraviolet irradiation that requires expensive equipment.
- the present invention also includes an implant made of titanium or a titanium alloy surface-treated by the above-mentioned surface treatment method. Therefore, the implant of the present invention is an implant made of titanium or a titanium alloy whose surface is treated with alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus.
- the implant made of titanium or a titanium alloy means a molded body formed of titanium or a titanium alloy for use in a living body.
- the shape, usage form, and the like of the titanium or titanium alloy implant are not particularly limited as long as they have the physical properties and safety necessary for use in a living body.
- the artificial bone metal material any shape such as a columnar shape, a plate shape, a block shape, a sheet shape, a fibrous shape, and a pellet shape can be used. Further, it may be in the form of a product such as a stem material for an artificial hip joint, a bone filling material, an artificial vertebral body, an artificial tooth root, an artificial intervertebral disc, a bone plate, and a bone screw.
- Alkaline ionized water was produced as follows using the above-mentioned alkaline ionized water production apparatus 101.
- Ion-exchanged water was prepared as the raw material water.
- Ion-exchanged water was produced by removing impurities from tap water using an ion-exchange resin (manufactured by Samsung).
- An aqueous solution prepared by adding 1% by mass of a mineral salt containing silicon and phosphorus collected from Japanese seawater to ion-exchanged water was introduced into an electrolytic cell 1 through a water guide tube 2, and electricity was passed through the anode 6 and the cathode 7.
- the conditions for electrolysis were a voltage of 200 V and an electric energy of 2500 W.
- the ion-exchanged water was electrolyzed, acidic water was generated in the anode chamber 4, and alkaline water was generated in the cathode chamber 5.
- the acidic water generated in the anode chamber 4 was discharged from the acidic water discharge pipe 8.
- the alkaline water generated in the cathode chamber 5 was led out to the alkaline water outlet pipe 9, and the alkaline water passing through the alkaline water outlet pipe 9 was cooled by the cooling device 10 and introduced into the mixing tank 11.
- the mixing tank 11 the cooled alkaline water and the silicon and phosphorus-containing mineral salts collected from the Japanese seawater supplied from the raw material liquid storage tank 12 were mixed by the stirring device 14.
- the mineral salt containing silicon and phosphorus collected from Japanese seawater in the raw material liquid storage tank 12 contains the silicon and phosphorus-containing mineral salt collected from Japanese seawater in the mixed liquid in the mixing tank 11. However, it was adjusted and supplied by the inflow amount adjusting device 13 so as to be 0.3% by mass.
- the mixed solution was stored at a pressure of 294 kPa and a temperature of 4 ⁇ 3 ° C. for 24 hours. During storage, electrons were emitted from the cathode terminal 100 into the mixed solution.
- the alkaline ionized water was taken out from the outlet pipe 16, the pH of the alkaline ionized water was measured by the pH measuring means 17, and then the alkaline ionized water was taken out from the alkaline ionized water outlet pipe 18.
- the alkaline ionized water (Sample 1) of Production Example 1 taken out from the alkaline ionized water outlet tube is separately used by the Japan Food Research Laboratories Center.
- a combustion-coulometric titration method about 10 mg of the above sample 1 was burned using a chlorine / sulfur analyzer TSX-10 manufactured by Nittoseiko Analytech Co., Ltd., and the chloride ion concentration was calculated by optimizing the coulometric amount. ..
- the amount of chlorine in the sample can be obtained regardless of whether it is organic chlorine or inorganic chlorine.
- the amount of organic chlorine the value obtained by subtracting the amount of inorganic chlorine from the total amount of chlorine was used.
- the amount of inorganic chlorine was determined by extracting 5 g of a sample with hot water and measuring chlorine ions in the extract by an ion chromatograph method. As a result, it was found that the alkaline ionized water of Production Example 1 contained 410 mg / kg of chlorine.
- the surface tension of the alkaline ionized water obtained in Production Example 1 was measured by using the Wilhelmy method. As a result, the surface tension of the alkaline ionized water obtained in Production Example 1 was about 65.41 mN / m (20 ° C.). When the surface tension of purified water was measured by the same method, it was about 72.96 mN / m (20 ° C.). Therefore, the alkaline ionized water containing a mineral salt containing silicon and phosphorus used in the present invention. The surface tension was about 7.55 mN / m lower than the surface tension of purified water.
- Example 2 it was found that sodium was contained in an amount of 6900 mass ppm, potassium was contained in an amount of 1 mass ppm or less, calcium was contained in an amount of 0.9 mass ppm or less, and magnesium was contained in an amount of 0.3 mass ppm or less. Further, as a result of measuring chlorine contained in the alkaline ionized water obtained in Example 2 at the Japan Food Research Laboratories using the combustion-coulometric titration method in the same manner as in Example 1, Example 2 It was found that 410 mg / kg of chlorine was contained in the alkaline ionized water.
- Titanium Disc a mirror-polished Ti-6Al-4V disc (manufactured by Osaka Yakken) having a diameter of 9.5 mm and a thickness of 1.0 mm was used.
- the titanium disc was immersed in ethanol, acetone, and two-stage distilled water (DDW), and ultrasonic treatment was performed for 10 minutes.
- the pretreated titanium disc was subjected to the following treatment immediately after the pretreatment, after standing in a clean bench for 1 week, or after standing for 4 weeks. (1) The product was immersed in the alkaline ionized water produced in Production Example 1 for 3 minutes.
- the treated group is referred to as an alkaline ionized water treatment group.
- those subjected to the treatment are referred to as a control group.
- a 15 W germicidal lamp ( ⁇ 253.7 nm, manufactured by Panasonic Corporation) in a clean bench was irradiated for 48 hours.
- those subjected to the treatment are referred to as UV groups.
- the following tests were performed on the titanium discs (alkaline ionized water treatment group, control group, or UV group) that had been subjected to the above treatment immediately after the pretreatment, 1 week later, or 4 weeks later.
- Example 1 Scanning X-ray photoelectrons by X-ray photoelectron spectroscopy (XPS) for the alkaline ionized water treatment group immediately after pretreatment and 4 weeks after the trace element analysis , and the control group immediately after pretreatment and after 4 weeks.
- XPS X-ray photoelectron spectroscopy
- Figure 3 shows a photograph when measuring the contact angle.
- A upper row
- B middle row
- C lower row
- 1 left column
- 2 center column
- 3 right column
- Figure 4 shows the measurement results of the contact angle. The measurement results were tested by the Tukey method after performing one-way ANOVA. In FIG. 4, * indicates p ⁇ 0.01.
- the surface energy of titanium was increased by treatment with alkaline ionized water, and it was possible to modify the surface from a hydrophobic surface to a hydrophilic surface.
- the contact angle in the alkaline ionized water treatment group was about 10 °, and the reason why it did not become super-hydrophilic (less than 5 °) was that the titanium disc used was mirror-polished, and the original surface energy was reduced. Probably because it was very small.
- Example 3 Titanium disk surface of each of the alkali ionized water treatment group immediately after the protein adsorption test and 4 weeks after the pretreatment, the control group immediately after the pretreatment and 4 weeks, and the UV group immediately after the pretreatment and 4 weeks after the pretreatment.
- the UV group showed a significantly higher value than the control group, but no significant difference was observed between the control group and the alkaline ionized water treatment group. After 4 weeks, the values in the alkaline ionized water treatment group and the UV group were significantly higher than those in the control group. Since a significant difference was observed between the control group after pretreatment and after 4 weeks, the surface changed to hydrophobic after 4 weeks due to aging, and the amount of protein adsorbed compared to immediately after pretreatment. Is thought to have decreased.
- Example 4 Cell adhesion test Osteoblast-like cell line MC3T3E-1 (RIKEN cell bank) was used as a medium ⁇ -MEM (manufactured by Nakarai Tesk Co., Ltd., Eagle's minimum essential medium ⁇ modified type), 10% FBS (fetal bovine serum). ), 1% penicillin-streptomycin (manufactured by Gibco) was cultured at 37 ° C. and under 5% CO 2 . The culture solution was changed every 3 days.
- ⁇ -MEM manufactured by Nakarai Tesk Co., Ltd., Eagle's minimum essential medium ⁇ modified type
- FBS fetal bovine serum
- penicillin-streptomycin manufactured by Gibco
- MC3T3E was placed on the titanium discs of the alkaline ionized water treatment group immediately after the pretreatment and after 4 weeks, the control group immediately after the pretreatment and 4 weeks, and the UV group immediately after the pretreatment and after 4 weeks, which were placed in the 24-well plate.
- -1 cells were seeded at 500 ⁇ L (4.0 ⁇ 10 4 cells / well) and incubated for 24 hours. Then, those stained with rhodamine phalloidin and 4', 6-diamidino-2-phenylindole (DAPI) were observed with a confocal laser scanning microscope (LSM700, manufactured by Carl Zeiss).
- the cell adhesion area immediately after the pretreatment showed a significantly larger value in the UV group than in the control group and the alkaline ionized water treatment group.
- the alkaline ionized water treatment group and the UV group showed significantly larger values than the control group. It is known that cell adhesion is reduced on the surface that has become hydrophobic due to aging, which also affects the subsequent cellular response and contributes to the proliferation and differentiation of osteoblasts. From the above results, it is considered that in the control group, cells are less likely to adhere to the titanium surface due to a decrease in surface energy due to adhesion of carbon or the like, a change in surface potential, and the like. On the other hand, in the alkaline ionized water treatment group and the UV group, it is considered that more cells were attached due to an increase in surface energy due to carbon removal, a change in surface potential, and the like.
- Example 5 Cell proliferation test The cell proliferation ability was measured after seeding the cells on the surface of the titanium disk immediately after the pretreatment under the same conditions as the cell contact test and incubating for 24 hours or 72 hours. The proliferation ability was 24.
- Celltiter 96 registered trademark (manufactured by Promega Co., Ltd.) is added to the well plate, and the cells are incubated at 37 ° C. for 15 minutes for colorimetric color development.
- Microplate reader Bio-Rad Model 680, manufactured by Bio-Rad Laboratories Co., Ltd.
- n 5
- Example 6 Animal experiment Six New Zealand white rabbits were given a general anesthesia by intramuscularly injecting a three-kind mixed anesthetic (butorphanol tartrate, medetomidin hydrochloride, and midazolam) into the thigh. After disinfecting the left and right femurs with povidone iodine, local anesthesia was performed with 2% xylocaine, the skin was incised with a # 15 scalpel, the muscle layer was peeled off, the periosteum was incised, and the femur was excised.
- a three-kind mixed anesthetic butorphanol tartrate, medetomidin hydrochloride, and midazolam
- the femur was formed into a groove having a length of 10.0 mm, a width of 1.0 mm, and a depth of 10.0 mm using an ultrasonic bone cutting tool (PIEZOSURGERY (registered trademark)) (see FIG. 8A). Titanium discs immersed in alkaline ionized water or saline for 3 minutes were embedded in the groove (see FIG. 8B). For the wound, the periosteum was sutured with 5-0 VICRYL suture and the skin was sutured with 5-0 nylon thread. Four weeks after implantation, sodium pantobarbital was overdose from the auricular vein for euthanasia, and the femur was collected.
- PIEZOSURGERY registered trademark
- a micro CT was taken of the collected femur.
- the micro CT image is shown in FIG.
- a (upper row) shows a control group
- B (lower row) shows an alkaline ionized water treatment group.
- 1 (left column) is the XY plane
- 2 (center row) is the YY plane
- 3 (right column) is the ZZ plane.
- FIG. A indicates a control group
- B indicates an alkaline ionized water treatment group.
- the scale bar in FIG. 10 is 100 ⁇ m.
- BIC bone-implant contact rate
- the length of the bone bonded to the surface of the titanium disk in BIC and the length of the surface of the titanium disk were measured based on the schematic diagram of the BIC measurement range shown in FIG.
- a indicates the length of the titanium disk surface (dotted line)
- b indicates the length of the bone bonded to the titanium disk surface (arrow)
- c indicates new bone.
- the result of BIC is shown in FIG.
- the measurement results were subjected to t-test.
- * indicates p ⁇ 0.05.
- Electrolyzer 2 Water guide tube 3 Diaphragm 4 Anodium 5 Cathode room 6 Cathode 7 Cathode 8 Acidic water discharge tube 9 Alkaline water outlet tube 10 Cooling device 11 Mixing tank 12 Raw material liquid storage tank 13 Inflow amount adjusting device 14 Stirring device 15 Insulation means 16 Outlet pipe 17 pH measuring means 18 Alkaline ionized water outlet pipe 19 Alcohol storage tank 20 Alcohol mixing tank 21 Mixed alkaline ionized water outlet pipe 22 Isolation chamber 100 Cathode electron 101 Alkaline ionized water production equipment
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Transplantation (AREA)
- Chemical & Material Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Dentistry (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Inorganic Chemistry (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
The purpose of the present invention is to provide a surface treatment method that enables, easily at a low cost, property modification of the surface of titanium or a titanium alloy. The present invention pertains to a surface treatment method for titanium or a titanium alloy, the method comprising immersing titanium or a titanium alloy in an alkaline ionized water obtained through electrolysis of an aqueous solution containing a mineral salt including silicon and phosphorus.
Description
本発明は、チタン又はチタン合金の表面処理方法に関する。
The present invention relates to a surface treatment method for titanium or a titanium alloy.
歯科用インプラントの分野では、主としてチタン又はチタン合金が素材として利用されてきた。その理由として、チタン又はチタン合金の表面が酸化チタンを主体とする酸化被膜で被覆されており、この被膜が体液中での腐食に対する不動態膜となってチタン又はチタン合金の腐食を抑制すること、及びこの被膜が骨に対して高い親和性をもつことが挙げられる。
In the field of dental implants, titanium or titanium alloy has been mainly used as a material. The reason is that the surface of titanium or titanium alloy is coated with an oxide film mainly composed of titanium oxide, and this film becomes a passivation film against corrosion in body fluid and suppresses corrosion of titanium or titanium alloy. , And this capsule has a high affinity for bone.
特に歯科用インプラントにおいては、インプラントを一旦顎骨に埋入してインプラントと骨との十分な結合を待ってからインプラント体上部に補綴物を装着する必要があり、このインプラントの埋入から上部補綴物の装着までの時間はインプラントと骨との結合が得られる時間に依存する。骨結合に要する時間は下顎で3~4か月、上顎で6か月という長期間を要する。現在、患者を中心に考えるインプラント治療への気運が高まる中で、骨結合を得るために要するこの3~6か月の期間を短縮することが課題となっている。
Especially for dental implants, it is necessary to place the implant in the jawbone once and wait for sufficient connection between the implant and the bone before attaching the prosthesis to the upper part of the implant body. The time it takes to attach the implant depends on the time it takes for the implant to bond to the bone. The time required for bone connection is 3 to 4 months for the lower jaw and 6 months for the upper jaw. At present, as the momentum for implant treatment that focuses on patients is increasing, it is an issue to shorten the period of 3 to 6 months required to obtain bone connection.
そのためには骨結合を早期に達成させることが極めて重要であり、そのためにインプラント材料表面を改質する技術の開発が進められている。このような表面改質方法の一つとして、医療用インプラントを高エネルギー放射線(紫外線)で照射する工程を含む医療用インプラントの処理方法が提案されている(例えば、特許文献1)。
For that purpose, it is extremely important to achieve bone connection at an early stage, and for that purpose, the development of a technique for modifying the surface of the implant material is underway. As one of such surface modification methods, a method for treating a medical implant including a step of irradiating the medical implant with high-energy radiation (ultraviolet rays) has been proposed (for example, Patent Document 1).
しかしながら、特許文献1の方法を用いてインプラント材料表面を改質するためには、高価な器材を用いて高エネルギー放射線(紫外線)を長時間照射する必要であり、そのため該方法で処理されたインプラントは、高コストとなる等の問題点があった。
かかる状況において、本発明は、安価かつ簡便にチタン又はチタン合金の表面の性状を改質することができる表面処理方法を提供することを目的とする。 However, in order to modify the surface of the implant material using the method ofPatent Document 1, it is necessary to irradiate high-energy radiation (ultraviolet rays) for a long time using expensive equipment, and therefore the implant treated by this method. Has problems such as high cost.
Under such circumstances, it is an object of the present invention to provide a surface treatment method capable of modifying the surface properties of titanium or a titanium alloy easily and inexpensively.
かかる状況において、本発明は、安価かつ簡便にチタン又はチタン合金の表面の性状を改質することができる表面処理方法を提供することを目的とする。 However, in order to modify the surface of the implant material using the method of
Under such circumstances, it is an object of the present invention to provide a surface treatment method capable of modifying the surface properties of titanium or a titanium alloy easily and inexpensively.
本発明者らが安価かつ簡便にチタン又はチタン合金の表面の性状を改質することができる表面処理方法を開発すべく鋭意検討した結果、チタン表面を特定の製造方法により製造されたアルカリイオン水で処理することにより、チタン表面が親水性となり、タンパク吸着量及び細胞接着率が向上することを見出した。本発明は、このような知見に基づき完成されたものである。
As a result of diligent studies to develop a surface treatment method capable of modifying the surface properties of titanium or a titanium alloy easily and inexpensively by the present inventors, alkaline ionized water produced on a titanium surface by a specific production method. It was found that the titanium surface became hydrophilic and the amount of protein adsorbed and the cell adhesion rate were improved by the treatment with. The present invention has been completed based on such findings.
すなわち、本発明は、以下のとおりである。
項1.
チタン又はチタン合金を、ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水に浸漬する工程を含む、チタン又はチタン合金の表面処理方法。
項2.
前記アルカリイオン水中に、前記ケイ素が0.4~400mass ppm、及びリンが400~800mass ppm含まれる、上記項1に記載の表面処理方法。
項3.
前記アルカリイオン水中に、さらに、カルシウム、カリウム、ナトリウム、及びマグネシウムからなる群より選ばれる少なくとも一種のミネラルが含まれる、上記項1又は2に記載の表面処理方法。
項4.
前記アルカリイオン水中に、さらに、塩素が含まれる、上記項1~3の何れか一項に記載の表面処理方法。
項5.
前記アルカリイオン水のpHが10~12.5である、上記項1~4の何れか一項に記載の表面処理方法。
項6.
前記アルカリイオン水の表面張力が55~68mN/mである、上記項1~5の何れか一項に記載の表面処理方法。
項7.
前記アルカリイオン水が、ケイ素及びリンを含有するミネラル塩と水とを含む水溶液を電気分解する電気分解工程、及び、前記工程で得られた陰極側のアルカリ水と、ケイ素及びリンを含有するミネラル塩とを混合して混合液を得、該混合液に電子を供給する電子供給工程により得られたものである、上記項1~6の何れか一項に記載の表面処理方法。
項8.
ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水によって表面が処理されている、チタン又はチタン合金製のインプラント。
項9.
ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解してアルカリイオン水を得る工程、及び、
前記アルカリイオン水をチタン又はチタン合金の表面に処理する工程を備える、チタン又はチタン合金製のインプラントの製造方法。 That is, the present invention is as follows.
Item 1.
A method for surface treating titanium or a titanium alloy, which comprises a step of immersing titanium or a titanium alloy in alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus.
Item 2.
Item 2. The surface treatment method according to Item 1, wherein the alkaline ionized water contains 0.4 to 400 mass ppm of silicon and 400 to 800 mass ppm of phosphorus.
Item 3.
Item 2. The surface treatment method according to Item 1 or 2, wherein the alkaline ionized water further contains at least one mineral selected from the group consisting of calcium, potassium, sodium, and magnesium.
Item 4.
The surface treatment method according to any one ofItems 1 to 3, wherein chlorine is further contained in the alkaline ionized water.
Item 5.
The surface treatment method according to any one ofItems 1 to 4, wherein the pH of the alkaline ionized water is 10 to 12.5.
Item 6.
The surface treatment method according to any one ofItems 1 to 5, wherein the surface tension of the alkaline ionized water is 55 to 68 mN / m.
Item 7.
An electrolysis step in which the alkaline ionized water electrolyzes an aqueous solution containing a mineral salt containing silicon and phosphorus and water, and the alkaline water on the cathode side obtained in the step and a mineral containing silicon and phosphorus. The surface treatment method according to any one ofItems 1 to 6, which is obtained by an electron supply step of mixing with a salt to obtain a mixed solution and supplying electrons to the mixed solution.
Item 8.
An implant made of titanium or a titanium alloy whose surface is treated with alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus.
Item 9.
A step of electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus to obtain alkaline ionized water, and
A method for manufacturing an implant made of titanium or a titanium alloy, comprising a step of treating the surface of titanium or a titanium alloy with the alkaline ionized water.
項1.
チタン又はチタン合金を、ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水に浸漬する工程を含む、チタン又はチタン合金の表面処理方法。
項2.
前記アルカリイオン水中に、前記ケイ素が0.4~400mass ppm、及びリンが400~800mass ppm含まれる、上記項1に記載の表面処理方法。
項3.
前記アルカリイオン水中に、さらに、カルシウム、カリウム、ナトリウム、及びマグネシウムからなる群より選ばれる少なくとも一種のミネラルが含まれる、上記項1又は2に記載の表面処理方法。
項4.
前記アルカリイオン水中に、さらに、塩素が含まれる、上記項1~3の何れか一項に記載の表面処理方法。
項5.
前記アルカリイオン水のpHが10~12.5である、上記項1~4の何れか一項に記載の表面処理方法。
項6.
前記アルカリイオン水の表面張力が55~68mN/mである、上記項1~5の何れか一項に記載の表面処理方法。
項7.
前記アルカリイオン水が、ケイ素及びリンを含有するミネラル塩と水とを含む水溶液を電気分解する電気分解工程、及び、前記工程で得られた陰極側のアルカリ水と、ケイ素及びリンを含有するミネラル塩とを混合して混合液を得、該混合液に電子を供給する電子供給工程により得られたものである、上記項1~6の何れか一項に記載の表面処理方法。
項8.
ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水によって表面が処理されている、チタン又はチタン合金製のインプラント。
項9.
ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解してアルカリイオン水を得る工程、及び、
前記アルカリイオン水をチタン又はチタン合金の表面に処理する工程を備える、チタン又はチタン合金製のインプラントの製造方法。 That is, the present invention is as follows.
A method for surface treating titanium or a titanium alloy, which comprises a step of immersing titanium or a titanium alloy in alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus.
Item 4.
The surface treatment method according to any one of
Item 5.
The surface treatment method according to any one of
The surface treatment method according to any one of
Item 7.
An electrolysis step in which the alkaline ionized water electrolyzes an aqueous solution containing a mineral salt containing silicon and phosphorus and water, and the alkaline water on the cathode side obtained in the step and a mineral containing silicon and phosphorus. The surface treatment method according to any one of
An implant made of titanium or a titanium alloy whose surface is treated with alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus.
A step of electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus to obtain alkaline ionized water, and
A method for manufacturing an implant made of titanium or a titanium alloy, comprising a step of treating the surface of titanium or a titanium alloy with the alkaline ionized water.
なお、現時点で、上記インプラントは、物の構造を完全に特定することが不可能又はおよそ実際的ではない程度に困難であるため、プロダクトバイプロセスクレームによって、物の発明を記載している。
At present, the above implants are so difficult that it is impossible or almost impractical to completely identify the structure of the object, so the invention of the object is described by the product-by-process claim.
本発明の表面処理方法によれば、安価かつ簡便にチタン又はチタン合金の表面の性状を改質することができる。
According to the surface treatment method of the present invention, the surface properties of titanium or a titanium alloy can be easily and inexpensively modified.
本発明は、チタン又はチタン合金の表面処理方法に関する。前記チタン又はチタン合金は、生体内に埋入されるインプラント用のチタン又はチタン合金である。
本発明のチタン又はチタン合金の表面処理方法においては、ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水(以下、単に「アルカリイオン水」という場合もある。)を用い、チタン又はチタン合金のインプラントを、ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水に浸漬することを特徴とする。本発明の表面処理方法は、チタン又はチタン合金を、ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水に浸漬するだけで、チタン又はチタン合金の表面の性状を改質することができるので、高価な器材を必要とする従来の紫外線照射に比べて安価かつ簡便に表面改質を行うことができる。ここで、アルカリイオン水は、アルカリ電解水と言い換えることができる。 The present invention relates to a surface treatment method for titanium or a titanium alloy. The titanium or titanium alloy is titanium or a titanium alloy for implants to be implanted in a living body.
In the surface treatment method for titanium or a titanium alloy of the present invention, alkaline ionized water (hereinafter, simply referred to as "alkaline ionized water") obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus may be used. ) Is used to immerse a titanium or titanium alloy implant in alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus. The surface treatment method of the present invention simply immerses titanium or a titanium alloy in alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus, and the surface properties of titanium or the titanium alloy. Can be modified, so that surface modification can be performed inexpensively and easily as compared with conventional ultraviolet irradiation that requires expensive equipment. Here, alkaline ionized water can be paraphrased as alkaline electrolyzed water.
本発明のチタン又はチタン合金の表面処理方法においては、ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水(以下、単に「アルカリイオン水」という場合もある。)を用い、チタン又はチタン合金のインプラントを、ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水に浸漬することを特徴とする。本発明の表面処理方法は、チタン又はチタン合金を、ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水に浸漬するだけで、チタン又はチタン合金の表面の性状を改質することができるので、高価な器材を必要とする従来の紫外線照射に比べて安価かつ簡便に表面改質を行うことができる。ここで、アルカリイオン水は、アルカリ電解水と言い換えることができる。 The present invention relates to a surface treatment method for titanium or a titanium alloy. The titanium or titanium alloy is titanium or a titanium alloy for implants to be implanted in a living body.
In the surface treatment method for titanium or a titanium alloy of the present invention, alkaline ionized water (hereinafter, simply referred to as "alkaline ionized water") obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus may be used. ) Is used to immerse a titanium or titanium alloy implant in alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus. The surface treatment method of the present invention simply immerses titanium or a titanium alloy in alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus, and the surface properties of titanium or the titanium alloy. Can be modified, so that surface modification can be performed inexpensively and easily as compared with conventional ultraviolet irradiation that requires expensive equipment. Here, alkaline ionized water can be paraphrased as alkaline electrolyzed water.
表面処理の対象は、チタン又はチタン合金である。チタン合金として、例えば、チタン(Ti)とアルミニウム(Al)とバナジウム(V)との合金、チタン(Ti)とアルミニウム(Al)とニオブ(Nb)との合金、チタン(Ti)とニッケル(Ni)との合金(ニチノール)、チタン(Ti)と白金(Pt)との合金等が挙げられる。表面改質の対象には、Ti、Ti-6Al-4V合金、Ti-6Al-7Nb合金等を用いることが好ましい。
The target of surface treatment is titanium or titanium alloy. As titanium alloys, for example, an alloy of titanium (Ti), aluminum (Al) and vanadium (V), an alloy of titanium (Ti), aluminum (Al) and niobium (Nb), titanium (Ti) and nickel (Ni). ), An alloy of titanium (Ti) and platinum (Pt), and the like. It is preferable to use Ti, Ti-6Al-4V alloy, Ti-6Al-7Nb alloy or the like as the target of surface modification.
表面処理には、ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水が使用される。
ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水には、ケイ素及びリンが含まれる。具体的には、前記アルカリイオン水中に、ケイ素(Si)が0.4~400mass ppm(mg/L)程度、好ましくは0.8~390mass ppm程度、より好ましくは1.0~380mass ppm程度、及びリン(P)が2~800mass ppm程度、好ましくは4~780mass ppm程度、より好ましくは10~770mass ppm程度含まれる。なお、元素分析は、誘導結合プラズマ(ICP)発光分光分析法(日立ハイテクサイエンス株式会社製 SPECTRO ACROSII)により行った。 For the surface treatment, alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus is used.
The alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus contains silicon and phosphorus. Specifically, silicon (Si) is about 0.4 to 400 mass ppm (mg / L), preferably about 0.8 to 390 mass ppm, and more preferably about 1.0 to 380 mass ppm in the alkaline ionized water. And phosphorus (P) is contained in an amount of about 2 to 800 mass ppm, preferably about 4 to 780 mass ppm, and more preferably about 10 to 770 mass ppm. Elemental analysis was performed by inductively coupled plasma (ICP) emission spectroscopy (SPECTRO ACROSII manufactured by Hitachi High-Tech Science Co., Ltd.).
ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水には、ケイ素及びリンが含まれる。具体的には、前記アルカリイオン水中に、ケイ素(Si)が0.4~400mass ppm(mg/L)程度、好ましくは0.8~390mass ppm程度、より好ましくは1.0~380mass ppm程度、及びリン(P)が2~800mass ppm程度、好ましくは4~780mass ppm程度、より好ましくは10~770mass ppm程度含まれる。なお、元素分析は、誘導結合プラズマ(ICP)発光分光分析法(日立ハイテクサイエンス株式会社製 SPECTRO ACROSII)により行った。 For the surface treatment, alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus is used.
The alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus contains silicon and phosphorus. Specifically, silicon (Si) is about 0.4 to 400 mass ppm (mg / L), preferably about 0.8 to 390 mass ppm, and more preferably about 1.0 to 380 mass ppm in the alkaline ionized water. And phosphorus (P) is contained in an amount of about 2 to 800 mass ppm, preferably about 4 to 780 mass ppm, and more preferably about 10 to 770 mass ppm. Elemental analysis was performed by inductively coupled plasma (ICP) emission spectroscopy (SPECTRO ACROSII manufactured by Hitachi High-Tech Science Co., Ltd.).
ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水は、リン及びケイ素以外の他の元素を含んでもよく、例えば、カルシウム(Ca)を0.0001~900mass ppb程度、好ましくは0.001~800mass ppm程度、より好ましくは0.01~700mass ppm程度、カリウム(K)を0.0005~3000mass ppm程度、好ましくは1~2900mass ppm程度、より好ましくは5~2800mass ppm程度、マグネシウム(Mg)を0.0001~300mass ppb程度、好ましくは0.001~250mass ppm程度、より好ましくは0.01~200mass ppm程度、ナトリウム(Na)を34~8000mass ppm程度、好ましくは40~7900mass ppm程度、より好ましくは50~7800mass ppm程度等含んでいてもよい。また、ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水中には、塩素(Cl)が含まれていてもよく、例えば、塩素(Cl)を1.5~450mg/kg程度、好ましくは1.5~440mg/kg程度、より好ましくは1.5~430mg/kg程度含まれていてもよい。
The alkaline ionized water obtained by electrolyzing an aqueous solution containing silicon and a mineral salt containing phosphorus may contain phosphorus and other elements other than silicon, and for example, calcium (Ca) may be 0.0001 to 900 mass ppb. About 0.001 to 800 mass ppm, more preferably about 0.01 to 700 mass ppm, potassium (K) about 0.0005 to 3000 mass ppm, preferably about 1 to 2900 mass ppm, more preferably about 5 to 2800 mass. About ppm, magnesium (Mg) about 0.0001 to 300 mass ppb, preferably about 0.001 to 250 mass ppm, more preferably about 0.01 to 200 mass ppm, sodium (Na) about 34 to 8000 mass ppm, preferably about 34 to 8000 mass ppm. It may contain about 40 to 7900 mass ppm, more preferably about 50 to 7800 mass ppm. Further, chlorine (Cl) may be contained in the alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus, and for example, chlorine (Cl) is 1.5 to 1.5 to. It may be contained in an amount of about 450 mg / kg, preferably about 1.5 to 440 mg / kg, and more preferably about 1.5 to 430 mg / kg.
前記アルカリイオン水に含まれるケイ素は、ケイ酸イオン、例えば、H3SiO4
-、H5Si2O7
-、H5Si3O9
-等の状態で存在することができる。
The silicon contained in the alkaline ionized water can be present in a state of silicate ions such as H 3 SiO 4 − , H 5 Si 2 O 7 − , H 5 Si 3 O 9 − and the like.
前記アルカリイオン水に含まれるリンは、リン酸イオン、例えば、H2PO4
-、H3P2O7
-、H4P3O10
-等の状態で存在することができる。
Phosphorus contained in the alkaline ionized water can be present in the state of phosphate ions, for example, H 2 PO 4- , H 3 P 2 O 7- , H 4 P 3 O 10- , and the like.
ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水のpHは、通常、10~12.5程度である。表面張力は、通常、70mN/m以下であり、好ましくは50~69mN/m、より好ましくは55~68mN/m程度である。さらに、前記アルカリイオン水には、物理的に電子が過剰に含まれている。
The pH of alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus is usually about 10 to 12.5. The surface tension is usually 70 mN / m or less, preferably about 50 to 69 mN / m, and more preferably about 55 to 68 mN / m. Further, the alkaline ionized water physically contains an excessive amount of electrons.
本発明で使用するアルカリイオン水は、ケイ素及びリンを含有するミネラル塩と水とを含む水溶液を電気分解する電気分解工程、及び、前記工程で得られた陰極側のアルカリ水と、ケイ素及びリンを含有するミネラル塩とを混合して混合液を得、該混合液に電子を供給する電子供給工程により得ることができる。ケイ素及びリンを含有するミネラル塩としては、例えば、海水から得られるケイ素及びリンを含有する電解質を用いることができる。海水は、特に限定なく使用することができ、例えば、日本の海水を用いることができる。ケイ素及びリンを含有するミネラル塩は、使用する水の量の0.001~3質量%程度添加すればよい。
The alkaline ionized water used in the present invention includes an electrolysis step of electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus and water, and the alkaline water on the cathode side obtained in the above step, silicon and phosphorus. It can be obtained by an electron supply step of mixing with a mineral salt containing the above water to obtain a mixed solution and supplying electrons to the mixed solution. As the mineral salt containing silicon and phosphorus, for example, an electrolyte containing silicon and phosphorus obtained from seawater can be used. Seawater can be used without particular limitation, and for example, Japanese seawater can be used. Mineral salts containing silicon and phosphorus may be added in an amount of about 0.001 to 3% by mass of the amount of water used.
前記アルカリイオン水の製造方法は、上記の工程に加えて、ケイ素及びリンを含有するミネラル塩と水とを含む水溶液を脱酸素処理して溶存酸素濃度を1ppm以下にする脱酸素工程、及び前記陰極側のアルカリ水と、ケイ素及びリンを含有するミネラル塩との混合液に1kg/cm2~12kg/cm2の圧力をかける安定化工程を備えることが好ましい。ここで、陰極側のアルカリ水と混合されるケイ素及びリンを含有するミネラル塩は、前記電気分解工程で使用するケイ素及びリンを含有するミネラル塩と同じものを使用することができ、例えば、日本の海水から採取されたものを用いることができる。
In addition to the above steps, the method for producing alkaline ionized water includes a deoxidizing step of deoxidizing an aqueous solution containing a mineral salt containing silicon and phosphorus and water to reduce the dissolved oxygen concentration to 1 ppm or less, and the above-mentioned method. It is preferable to include a stabilizing step of applying a pressure of 1 kg / cm 2 to 12 kg / cm 2 to a mixed solution of alkaline water on the cathode side and a mineral salt containing silicon and phosphorus. Here, as the mineral salt containing silicon and phosphorus mixed with the alkaline water on the cathode side, the same mineral salt containing silicon and phosphorus used in the electrolysis step can be used, for example, Japan. It is possible to use the one collected from the seawater of.
以下、アルカリイオン水の製造方法について説明する。
第1工程は、ケイ素及びリンを含有するミネラル塩と水とを含む水溶液を電気分解する電気分解工程である。 Hereinafter, a method for producing alkaline ionized water will be described.
The first step is an electrolysis step of electrolyzing an aqueous solution containing water and a mineral salt containing silicon and phosphorus.
第1工程は、ケイ素及びリンを含有するミネラル塩と水とを含む水溶液を電気分解する電気分解工程である。 Hereinafter, a method for producing alkaline ionized water will be described.
The first step is an electrolysis step of electrolyzing an aqueous solution containing water and a mineral salt containing silicon and phosphorus.
原料となる水としては、純水、イオン交換水等を用いることができる。水には、支持電解質として海水から得られるケイ素及びリンを含有するミネラル塩等を溶解させる。水として、脱酸素処理を行って水中の溶存酸素の濃度を1ppm以下に低下させたものを使用することが好ましい。脱酸素処理として、物理的処理方法と化学的処理方法とがあり、従来、化学的処理方法単独か、あるいは物理的処理方法と化学的処理方法とを併用する方法が採られている。物理的処理方法としては、加熱脱気装置、膜脱気装置等による脱気処理が挙げられる。化学的処理方法としては、脱酸素剤として、ヒドラジン、亜硫酸ナトリウム、糖類(グリコース等)を添加する方法等が挙げられる。脱酸素処理として、例えば、水に前記酸素除去剤を添加することができる。
Pure water, ion-exchanged water, etc. can be used as the raw material water. In water, a mineral salt containing silicon and phosphorus obtained from seawater as a supporting electrolyte is dissolved. It is preferable to use water in which the concentration of dissolved oxygen in the water is reduced to 1 ppm or less by deoxidizing treatment. As the deoxidizing treatment, there are a physical treatment method and a chemical treatment method, and conventionally, a method of using the chemical treatment method alone or a method of using the physical treatment method and the chemical treatment method in combination is adopted. Examples of the physical treatment method include degassing treatment using a heating degassing device, a membrane degassing device, and the like. Examples of the chemical treatment method include a method of adding hydrazine, sodium sulfite, a saccharide (glycose, etc.) as a deoxidizing agent. As a deoxidizing treatment, for example, the oxygen removing agent can be added to water.
電気分解は、電解槽等の密閉空間で行われることが好ましい。電解槽内は、窒素、二酸化炭素等の不活性雰囲気であることが好ましい。また、水として、予め脱酸素処理を行って溶存酸素濃度を1ppm以下に低下させたものを用いる代わりに、又は、予め脱酸素処理した水を使用することに加えて、電気分解を電解槽中で行う際に、電解槽中に脱酸素剤を投入することも可能である。電気分解で印加される電気エネルギーは1000W~3000Wであることが好ましい。
It is preferable that the electrolysis is performed in a closed space such as an electrolytic cell. The inside of the electrolytic cell is preferably an inert atmosphere such as nitrogen and carbon dioxide. Further, instead of using water whose dissolved oxygen concentration has been reduced to 1 ppm or less by pre-deoxidizing treatment, or in addition to using pre-deoxidized water, electrolysis is carried out in the electrolytic tank. It is also possible to put an oxygen scavenger into the electrolytic bath when performing in. The electric energy applied by electrolysis is preferably 1000 W to 3000 W.
第2工程は、前記第1工程で得られた陰極側のアルカリ水と、ケイ素及びリンを含有するミネラル塩とを混合して混合液を得、該混合液に電子を供給する電子供給工程である。
The second step is an electron supply step of mixing the alkaline water on the cathode side obtained in the first step with a mineral salt containing silicon and phosphorus to obtain a mixed solution, and supplying electrons to the mixed solution. be.
電気分解で得られた陰極側のアルカリ水は、電解槽から取り出され、混合槽に供給されることが好ましい。混合槽には、海水から得られるケイ素及びリンを含有するミネラル塩を供給する手段と、アルカリ水に電気を供給する電子供給手段とが設けられていることが好ましい。
It is preferable that the alkaline water on the cathode side obtained by electrolysis is taken out from the electrolytic cell and supplied to the mixing tank. It is preferable that the mixing tank is provided with a means for supplying a mineral salt containing silicon and phosphorus obtained from seawater and an electron supply means for supplying electricity to alkaline water.
ケイ素を含有する原材料(又はケイ素を含有するミネラル塩)としては、ケイ酸ナトリウム、ケイ酸カリウム等のケイ酸アルカリ金属塩;ケイ酸カルシウム等のケイ酸アルカリ土類金属塩;ケイ酸マグネシウム等が挙げられる。混合液に含まれるケイ素の含有量は、混合液全量を100質量%としたときに、0.005~5質量%程度とすることが好ましく、0.01~1質量%とすることがより好ましい。
Examples of the silicon-containing raw material (or silicon-containing mineral salt) include alkali metal silicates such as sodium silicate and potassium silicate; alkaline earth metal silicates such as calcium silicate; magnesium silicate and the like. Can be mentioned. The content of silicon contained in the mixed solution is preferably about 0.005 to 5% by mass, more preferably 0.01 to 1% by mass, when the total amount of the mixed solution is 100% by mass. ..
リンを含有する原材料(又はリンを含有するミネラル塩)としては、リン酸ナトリウム、リン酸カリウム等のリン酸アルカリ金属塩;リン酸カルシウム等のリン酸アルカリ土類金属塩;リン酸マグネシウム等が挙げられる。混合液に含まれるリンの含有量は、混合液全量を100質量%としたときに、0.005~5質量%程度とすることが好ましく、0.01~1質量%とすることがより好ましい。
Examples of the phosphorus-containing raw material (or phosphorus-containing mineral salt) include alkali metal phosphates such as sodium phosphate and potassium phosphate; alkaline earth metal phosphates such as calcium phosphate; magnesium phosphate and the like. .. The content of phosphorus contained in the mixed solution is preferably about 0.005 to 5% by mass, more preferably 0.01 to 1% by mass, when the total amount of the mixed solution is 100% by mass. ..
アルカリ水に添加されるケイ素を含有するミネラル塩とリンを含有するミネラル塩との質量比は、1:0.5~1.5であることが好ましい。
The mass ratio of the silicon-containing mineral salt added to the alkaline water to the phosphorus-containing mineral salt is preferably 1: 0.5 to 1.5.
電子供給手段として、例えば、陰極端子が挙げられる。電気分解で得られた陰極側のアルカリ水に、陰極端子を接触させることにより、電子を供給することができる。陰極電子から電子が放電されて、アルカリ水に多くの電子が供給される。
As an electron supply means, for example, a cathode terminal can be mentioned. Electrons can be supplied by contacting the cathode terminal with alkaline water on the cathode side obtained by electrolysis. Electrons are discharged from the cathode electrons, and many electrons are supplied to alkaline water.
陰極端子には、直流電流が印加されることが好ましい。陰極端子に印加される直流電流の電圧は、例えば、10~1000Vであり、50~300Vであることが好ましく、100~300Vであることがさらに好ましい。混合液に電子が供給されることにより、製造されたアルカリイオン水は、チタン又はチタン合金の表面の性状を効果的に改質することができると考えられる。
It is preferable that a direct current is applied to the cathode terminal. The voltage of the direct current applied to the cathode terminal is, for example, 10 to 1000 V, preferably 50 to 300 V, and more preferably 100 to 300 V. It is considered that the produced alkaline ionized water can effectively modify the surface properties of titanium or a titanium alloy by supplying electrons to the mixed solution.
混合槽には、電圧が100~300Vの直流電流を印加し、陰極電子から放出される電気量は1000~3000Wであることが好ましい。
It is preferable that a direct current having a voltage of 100 to 300 V is applied to the mixing tank and the amount of electricity emitted from the cathode electrons is 1000 to 3000 W.
混合槽には、1kg/cm2~12kg/cm2(98~1177kPa)の圧力をかけることが好ましく、2kg/cm2~6kg/cm2(196~588kPa)がより好ましい。圧力をかけることで、アルカリイオン水の安定性が向上する。
It is preferable to apply a pressure of 1 kg / cm 2 to 12 kg / cm 2 (98 to 1177 kPa) to the mixing tank, and more preferably 2 kg / cm 2 to 6 kg / cm 2 (196 to 588 kPa). Applying pressure improves the stability of alkaline ionized water.
混合槽内は、窒素、二酸化炭素等の不活性雰囲気であることが好ましい。また、混合槽中に脱酸素剤を投入することも可能である。混合槽は、周囲の温度によって影響を受けないように、断熱手段によって周囲の温度から断熱するとともに、温度調整手段によって、混合槽の内部が-5℃~25℃の範囲に調整することが好ましい。混合液の温度は0℃~10℃とすることが好ましい。
The inside of the mixing tank is preferably an inert atmosphere such as nitrogen and carbon dioxide. It is also possible to put an oxygen scavenger into the mixing tank. It is preferable that the mixing tank is insulated from the ambient temperature by a heat insulating means so as not to be affected by the ambient temperature, and the inside of the mixing tank is adjusted to the range of -5 ° C to 25 ° C by the temperature adjusting means. .. The temperature of the mixed solution is preferably 0 ° C to 10 ° C.
混合槽は、外気雰囲気と隔離した隔離槽内に配置することが好ましく、隔離槽内には、窒素又は二酸化炭素を充填することが好ましい。これにより、アルカリイオン水の変質を防止することができるので、長期にわたり性能を維持することができる。
The mixing tank is preferably arranged in an isolation tank isolated from the outside air atmosphere, and the isolation tank is preferably filled with nitrogen or carbon dioxide. As a result, deterioration of alkaline ionized water can be prevented, so that the performance can be maintained for a long period of time.
アルカリイオン水を、上記混合槽内で24~36時間安定化させることにより、最終生成物であるアルカリイオン水が得られる。得られたアルカリイオン水は、アルカリイオン水出口から直接に取り出すことができる。あるいは、アルカリイオン水にアルコールを混合して、混合アルカリイオン水出口から取り出すこともできる。アルコールとしては、水との相溶性の大きなアルコールを用いることが好ましく、例えば、メタノール、エタノール、イソプロピルアルコール等が挙げられる。
By stabilizing the alkaline ionized water in the above mixing tank for 24 to 36 hours, the final product, alkaline ionized water, can be obtained. The obtained alkaline ionized water can be taken out directly from the alkaline ionized water outlet. Alternatively, alcohol can be mixed with alkaline ionized water and taken out from the outlet of the mixed alkaline ionized water. As the alcohol, it is preferable to use an alcohol having a high compatibility with water, and examples thereof include methanol, ethanol, and isopropyl alcohol.
以下、アルカリイオン水を製造する際に使用することができる製造装置について説明する。
アルカリイオン水を製造する装置を説明する模式図を図1に示す。アルカリイオン水製造装置101は、電解槽1と混合槽11とを備えており、電解槽1と混合槽11とはアルカリ水導出管9で連結されている。電解槽1には、導水管2が接続されており、この導水管2によって原料水(ケイ素及びリンを含有するミネラル塩と水とを含む水溶液)が供給される。電解槽1は、隔膜3によって区画された陽極室4及び陰極室5を有している。陽極室4には陽極6が設けられ、陰極室5には陰極7が設けられている。両電極に電解電流を通電して、陽極室4に接続された酸性水排出管8より酸性水を取り出し、陰極室5に接続されたアルカリ水導出管9よりアルカリ水を取り出す。アルカリ水は、アルカリ水導出管9を通る間に、冷媒を循環した冷却管を設けた冷却装置10によって冷却して混合槽11に導入する。 Hereinafter, a manufacturing apparatus that can be used for producing alkaline ionized water will be described.
FIG. 1 shows a schematic diagram illustrating an apparatus for producing alkaline ionized water. The alkaline ionizedwater producing apparatus 101 includes an electrolytic cell 1 and a mixing tank 11, and the electrolytic cell 1 and the mixing tank 11 are connected by an alkaline water outlet pipe 9. A water pipe 2 is connected to the electrolytic cell 1, and raw water (an aqueous solution containing a mineral salt containing silicon and phosphorus and water) is supplied by the water pipe 2. The electrolytic cell 1 has an anode chamber 4 and a cathode chamber 5 partitioned by a diaphragm 3. The anode chamber 4 is provided with an anode 6, and the cathode chamber 5 is provided with a cathode 7. Electrolytic current is applied to both electrodes, acidic water is taken out from the acidic water discharge pipe 8 connected to the anode chamber 4, and alkaline water is taken out from the alkaline water outlet pipe 9 connected to the cathode chamber 5. The alkaline water is cooled by a cooling device 10 provided with a cooling pipe in which a refrigerant is circulated while passing through the alkaline water outlet pipe 9, and is introduced into the mixing tank 11.
アルカリイオン水を製造する装置を説明する模式図を図1に示す。アルカリイオン水製造装置101は、電解槽1と混合槽11とを備えており、電解槽1と混合槽11とはアルカリ水導出管9で連結されている。電解槽1には、導水管2が接続されており、この導水管2によって原料水(ケイ素及びリンを含有するミネラル塩と水とを含む水溶液)が供給される。電解槽1は、隔膜3によって区画された陽極室4及び陰極室5を有している。陽極室4には陽極6が設けられ、陰極室5には陰極7が設けられている。両電極に電解電流を通電して、陽極室4に接続された酸性水排出管8より酸性水を取り出し、陰極室5に接続されたアルカリ水導出管9よりアルカリ水を取り出す。アルカリ水は、アルカリ水導出管9を通る間に、冷媒を循環した冷却管を設けた冷却装置10によって冷却して混合槽11に導入する。 Hereinafter, a manufacturing apparatus that can be used for producing alkaline ionized water will be described.
FIG. 1 shows a schematic diagram illustrating an apparatus for producing alkaline ionized water. The alkaline ionized
混合槽11は、前記アルカリ水導出管9、原料液貯槽12、及び出口管16と接続されている。混合槽11には、原料液貯槽12から流入量調整装置13を介して原料液を供給する。原料液の供給量は、通電した電気量等によって調整する。原料液としては、日本の海水から採取されたケイ素及びリンを含有するミネラル塩が用いられる。混合槽11内には、攪拌装置14を設け、アルカリイオン水と原料液とが均一に混合されるようにする。
The mixing tank 11 is connected to the alkaline water outlet pipe 9, the raw material liquid storage tank 12, and the outlet pipe 16. The raw material liquid is supplied to the mixing tank 11 from the raw material liquid storage tank 12 via the inflow amount adjusting device 13. The amount of raw material liquid supplied is adjusted by the amount of electricity that is energized. As the raw material liquid, a mineral salt containing silicon and phosphorus collected from Japanese seawater is used. A stirring device 14 is provided in the mixing tank 11 so that the alkaline ionized water and the raw material liquid are uniformly mixed.
混合槽11の中には陰極端子100を配置する。陰極端子100には、200Vの直流電流が印加されている。陰極端子100から放出される電気量は1000W~3000Wであることが好ましい。
The cathode terminal 100 is arranged in the mixing tank 11. A direct current of 200 V is applied to the cathode terminal 100. The amount of electricity emitted from the cathode terminal 100 is preferably 1000 W to 3000 W.
混合槽11は、周囲の温度によって影響を受けないように、断熱手段15によって断熱され、温度調整手段(図示せず)によって内部の温度を15℃~25℃程度に調整する。混合槽11の温度は、0℃~10℃程度にすることが好ましい。
The mixing tank 11 is insulated by the heat insulating means 15 so as not to be affected by the ambient temperature, and the internal temperature is adjusted to about 15 ° C to 25 ° C by the temperature adjusting means (not shown). The temperature of the mixing tank 11 is preferably about 0 ° C to 10 ° C.
混合槽11から導出するアルカリイオン水のpHは、出口管16に設けられたpH測定手段17によって測定する。混合槽11から取り出すアルカリイオン水のpHは、10~12.5程度であることが好ましい。
The pH of the alkaline ionized water derived from the mixing tank 11 is measured by the pH measuring means 17 provided in the outlet pipe 16. The pH of the alkaline ionized water taken out from the mixing tank 11 is preferably about 10 to 12.5.
混合槽11に接続された出口管16は、アルカリイオン水出口管18、及び混合アルカリイオン水出口管21に分枝している。アルカリイオン水出口管18からは混合槽11内のアルカリイオン水が直接取り出される。アルカリイオン水は、アルコールと混合されて混合アルカリイオン水とすることも可能である。この場合、アルコール貯槽19からアルコールが注入されるアルコール混合槽20においてアルカリイオン水とアルコールとを混合し、混合アルカリイオン水出口管21から混合アルカリイオン水として取り出してもよい。アルカリイオン水と混合するアルコールは、水との相溶性の大きなアルコール、例えば、メタノール、エタノール、イソプロピルアルコール等を用いることができる。
The outlet pipe 16 connected to the mixing tank 11 is branched into an alkaline ionized water outlet pipe 18 and a mixed alkaline ionized water outlet pipe 21. The alkaline ionized water in the mixing tank 11 is directly taken out from the alkaline ionized water outlet pipe 18. The alkaline ionized water can also be mixed with alcohol to obtain mixed alkaline ionized water. In this case, alkaline ionized water and alcohol may be mixed in the alcohol mixing tank 20 in which alcohol is injected from the alcohol storage tank 19 and taken out as mixed alkaline ionized water from the mixed alkaline ionized water outlet pipe 21. As the alcohol to be mixed with alkaline ionized water, alcohol having a high compatibility with water, for example, methanol, ethanol, isopropyl alcohol and the like can be used.
上述したアルカリイオン水製造装置101は、隔離室22に収容されることにより外気と隔離される。隔離室22は、窒素で置換されているか、又は二酸化炭素、酸素除去剤等を充填した通気装置によって外気雰囲気と結合されている。隔離室22内にアルカリイオン水製造装置101を設けることによって、アルカリイオン水の変質を防止することができ、長期にわたり性能を維持することができる。
The above-mentioned alkaline ionized water production apparatus 101 is isolated from the outside air by being housed in the isolation chamber 22. The isolation chamber 22 is replaced with nitrogen or is coupled to the outside air atmosphere by a ventilation device filled with carbon dioxide, an oxygen scavenger, or the like. By providing the alkaline ionized water production device 101 in the isolation chamber 22, it is possible to prevent the deterioration of the alkaline ionized water and maintain the performance for a long period of time.
ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水は、市販品を使用することができる。市販品として、商品名S-100及びS-100G(いずれも株式会社エー・アイ・システムプロダクト製)が挙げられる。
Commercially available products can be used as the alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus. Examples of commercially available products include trade names S-100 and S-100G (both manufactured by AI System Products Co., Ltd.).
本発明の表面処理方法は、チタン又はチタン合金を、ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水に浸漬することを特徴とする。
The surface treatment method of the present invention is characterized in that titanium or a titanium alloy is immersed in alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus.
前記アルカリイオン水の温度は、通常0~40℃程度であり、好ましくは10~30℃である。室温(常温)のアルカリイオン水中にチタン又はチタン合金を浸漬すればよい。
The temperature of the alkaline ionized water is usually about 0 to 40 ° C, preferably 10 to 30 ° C. Titanium or a titanium alloy may be immersed in alkaline ionized water at room temperature (normal temperature).
処理時間は、特に限定されない。通常1分間以上、好ましくは3分間以上10分間以下である。
The processing time is not particularly limited. It is usually 1 minute or more, preferably 3 minutes or more and 10 minutes or less.
本発明の表面処理方法は、チタン又はチタン合金を、ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水に浸漬するだけで、チタン又はチタン合金の表面の性状を改質することができるので、高価な器材を必要とする従来の紫外線照射に比べて安価かつ簡便に表面改質を行うことができる。
The surface treatment method of the present invention simply immerses titanium or a titanium alloy in alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus, and the surface properties of titanium or the titanium alloy. Can be modified, so that surface modification can be performed inexpensively and easily as compared with conventional ultraviolet irradiation that requires expensive equipment.
本発明には、上述した表面処理方法により表面処理されたチタン又はチタン合金製のインプラントも包含される。よって、本発明のインプラントは、ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水によって表面が処理されている、チタン又はチタン合金製のインプラントである。
The present invention also includes an implant made of titanium or a titanium alloy surface-treated by the above-mentioned surface treatment method. Therefore, the implant of the present invention is an implant made of titanium or a titanium alloy whose surface is treated with alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus.
本明細書において、チタン又はチタン合金製のインプラントとは、チタン又はチタン合金により形成された、生体内で使用するための成形体を意味する。チタン又はチタン合金製のインプラントは、生体内で使用するために必要な物性と安全性とを有するものであれば、形状、使用形態等は特に限定されない。例えば、人工骨金属材料としては、柱状、板状、ブロック状、シート状、繊維状、ペレット状等の任意の形状のものを使用することができる。また、人工股関節用ステム材、骨補填材、人工椎体、人工歯根、人工椎間板、骨プレート、骨スクリュー等の製品形態としてもよい。
In the present specification, the implant made of titanium or a titanium alloy means a molded body formed of titanium or a titanium alloy for use in a living body. The shape, usage form, and the like of the titanium or titanium alloy implant are not particularly limited as long as they have the physical properties and safety necessary for use in a living body. For example, as the artificial bone metal material, any shape such as a columnar shape, a plate shape, a block shape, a sheet shape, a fibrous shape, and a pellet shape can be used. Further, it may be in the form of a product such as a stem material for an artificial hip joint, a bone filling material, an artificial vertebral body, an artificial tooth root, an artificial intervertebral disc, a bone plate, and a bone screw.
以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。
Hereinafter, the present invention will be described in more detail by way of examples, but the technical scope of the present invention is not limited to these examples.
(製造例1)アルカリイオン水の製造
上述したアルカリイオン水製造装置101を用いて、以下のようにアルカリイオン水を製造した。
原料水として、イオン交換水を準備した。イオン交換水は、イオン交換樹脂(サムソン社製)を用いて、水道水から不純物を除去することにより製造した。イオン交換水に日本の海水から採取されたケイ素及びリンを含有するミネラル塩を1質量%添加した水溶液を、導水管2を通じて電解槽1に導入し、陽極6及び陰極7に電気を流した。電気分解の条件は、電圧200V、電気エネルギー2500Wとした。イオン交換水が電気分解され、陽極室4では酸性水が生成し、陰極室5ではアルカリ水が生成した。陽極室4で生成された酸性水は、酸性水排出管8から排出された。陰極室5で生成されたアルカリ水はアルカリ水導出管9に導出され、アルカリ水導出管9を通るアルカリ水は冷却装置10により冷却されて、混合槽11に導入された。 (Production Example 1) Production of alkaline ionized water Alkaline ionized water was produced as follows using the above-mentioned alkaline ionizedwater production apparatus 101.
Ion-exchanged water was prepared as the raw material water. Ion-exchanged water was produced by removing impurities from tap water using an ion-exchange resin (manufactured by Samsung). An aqueous solution prepared by adding 1% by mass of a mineral salt containing silicon and phosphorus collected from Japanese seawater to ion-exchanged water was introduced into anelectrolytic cell 1 through a water guide tube 2, and electricity was passed through the anode 6 and the cathode 7. The conditions for electrolysis were a voltage of 200 V and an electric energy of 2500 W. The ion-exchanged water was electrolyzed, acidic water was generated in the anode chamber 4, and alkaline water was generated in the cathode chamber 5. The acidic water generated in the anode chamber 4 was discharged from the acidic water discharge pipe 8. The alkaline water generated in the cathode chamber 5 was led out to the alkaline water outlet pipe 9, and the alkaline water passing through the alkaline water outlet pipe 9 was cooled by the cooling device 10 and introduced into the mixing tank 11.
上述したアルカリイオン水製造装置101を用いて、以下のようにアルカリイオン水を製造した。
原料水として、イオン交換水を準備した。イオン交換水は、イオン交換樹脂(サムソン社製)を用いて、水道水から不純物を除去することにより製造した。イオン交換水に日本の海水から採取されたケイ素及びリンを含有するミネラル塩を1質量%添加した水溶液を、導水管2を通じて電解槽1に導入し、陽極6及び陰極7に電気を流した。電気分解の条件は、電圧200V、電気エネルギー2500Wとした。イオン交換水が電気分解され、陽極室4では酸性水が生成し、陰極室5ではアルカリ水が生成した。陽極室4で生成された酸性水は、酸性水排出管8から排出された。陰極室5で生成されたアルカリ水はアルカリ水導出管9に導出され、アルカリ水導出管9を通るアルカリ水は冷却装置10により冷却されて、混合槽11に導入された。 (Production Example 1) Production of alkaline ionized water Alkaline ionized water was produced as follows using the above-mentioned alkaline ionized
Ion-exchanged water was prepared as the raw material water. Ion-exchanged water was produced by removing impurities from tap water using an ion-exchange resin (manufactured by Samsung). An aqueous solution prepared by adding 1% by mass of a mineral salt containing silicon and phosphorus collected from Japanese seawater to ion-exchanged water was introduced into an
混合槽11において、冷却されたアルカリ水と、原料液貯槽12から供給された日本の海水から採取されたケイ素及びリンを含有するミネラル塩とが、攪拌装置14によって混合された。原料液貯槽12内の日本の海水から採取されたケイ素及びリンを含有するミネラル塩は、混合槽11内の混合液中の日本の海水から採取されたケイ素及びリンを含有するミネラル塩の含有量が、0.3質量%となるように流入量調整装置13で調整して供給した。混合液を、圧力294kPa、温度4±3℃で24時間保存した。保存中、混合液には、陰極端子100から電子が放出された。
その後、アルカリイオン水は、出口管16から導出され、pH測定手段17によりアルカリイオン水のpHを測定した後、アルカリイオン水出口管18から取り出された。 In themixing tank 11, the cooled alkaline water and the silicon and phosphorus-containing mineral salts collected from the Japanese seawater supplied from the raw material liquid storage tank 12 were mixed by the stirring device 14. The mineral salt containing silicon and phosphorus collected from Japanese seawater in the raw material liquid storage tank 12 contains the silicon and phosphorus-containing mineral salt collected from Japanese seawater in the mixed liquid in the mixing tank 11. However, it was adjusted and supplied by the inflow amount adjusting device 13 so as to be 0.3% by mass. The mixed solution was stored at a pressure of 294 kPa and a temperature of 4 ± 3 ° C. for 24 hours. During storage, electrons were emitted from the cathode terminal 100 into the mixed solution.
After that, the alkaline ionized water was taken out from theoutlet pipe 16, the pH of the alkaline ionized water was measured by the pH measuring means 17, and then the alkaline ionized water was taken out from the alkaline ionized water outlet pipe 18.
その後、アルカリイオン水は、出口管16から導出され、pH測定手段17によりアルカリイオン水のpHを測定した後、アルカリイオン水出口管18から取り出された。 In the
After that, the alkaline ionized water was taken out from the
<元素分析>
アルカリイオン水出口管から取り出された製造例1のアルカリイオン水を、ICP発光分光法(製造会社:日立ハイテクサイエンス株式会社、製品名:SPECTRO ARCOSII)を用いて、元素分析した。
その結果、ケイ素が100mass ppm、及びリンが760mass ppm含まれていることがわかった。なお、さらに、詳細には、ナトリウムが7500mass ppm、カリウムが2700mass ppm、カルシウムが0.2mass ppm、マグネシウムが0.1mass ppm以下含まれていることがわかった。 <Elemental analysis>
The alkaline ionized water of Production Example 1 taken out from the alkaline ionized water outlet tube was subjected to elemental analysis using ICP emission spectroscopy (manufacturing company: Hitachi High-Tech Science Co., Ltd., product name: SPECTRO ARCOSII).
As a result, it was found that silicon was contained in 100 mass ppm and phosphorus was contained in 760 mass ppm. Further, in detail, it was found that sodium was contained in an amount of 7500 mass ppm, potassium was contained in an amount of 2700 mass ppm, calcium was contained in an amount of 0.2 mass ppm, and magnesium was contained in an amount of 0.1 mass ppm or less.
アルカリイオン水出口管から取り出された製造例1のアルカリイオン水を、ICP発光分光法(製造会社:日立ハイテクサイエンス株式会社、製品名:SPECTRO ARCOSII)を用いて、元素分析した。
その結果、ケイ素が100mass ppm、及びリンが760mass ppm含まれていることがわかった。なお、さらに、詳細には、ナトリウムが7500mass ppm、カリウムが2700mass ppm、カルシウムが0.2mass ppm、マグネシウムが0.1mass ppm以下含まれていることがわかった。 <Elemental analysis>
The alkaline ionized water of Production Example 1 taken out from the alkaline ionized water outlet tube was subjected to elemental analysis using ICP emission spectroscopy (manufacturing company: Hitachi High-Tech Science Co., Ltd., product name: SPECTRO ARCOSII).
As a result, it was found that silicon was contained in 100 mass ppm and phosphorus was contained in 760 mass ppm. Further, in detail, it was found that sodium was contained in an amount of 7500 mass ppm, potassium was contained in an amount of 2700 mass ppm, calcium was contained in an amount of 0.2 mass ppm, and magnesium was contained in an amount of 0.1 mass ppm or less.
また、上記ICP発光分光法では、塩素等のガスを検出できないことから、別途、アルカリイオン水出口管から取り出された製造例1のアルカリイオン水(試料1)を、一般財団法人日本食品分析センターにて、下記の燃焼-電量滴定法を用いて測定した。
燃焼-電量滴定法としては、日東精工アナリテック株式会社製、塩素・硫黄分析装置TSX-10型を用いて、上記試料1約10mgを燃焼させ、電量適定により塩化物イオンの濃度を算出した。この測定により有機塩素、無機塩素を問わず試料中の塩素量が求められる。有機塩素量は、トータル塩素量から無機塩素量を差し引いた値を用いた。無機塩素量は、試料5gを熱水抽出し、抽出液中の塩素イオンをイオンクロマトグラフ法により測定して求めた。
その結果、製造例1のアルカリイオン水中に、塩素が410mg/kg含まれていることがわかった。 In addition, since gas such as chlorine cannot be detected by the above ICP emission spectroscopy, the alkaline ionized water (Sample 1) of Production Example 1 taken out from the alkaline ionized water outlet tube is separately used by the Japan Food Research Laboratories Center. Was measured using the following combustion-coulometric titration method.
As a combustion-coulometric titration method, about 10 mg of theabove sample 1 was burned using a chlorine / sulfur analyzer TSX-10 manufactured by Nittoseiko Analytech Co., Ltd., and the chloride ion concentration was calculated by optimizing the coulometric amount. .. By this measurement, the amount of chlorine in the sample can be obtained regardless of whether it is organic chlorine or inorganic chlorine. For the amount of organic chlorine, the value obtained by subtracting the amount of inorganic chlorine from the total amount of chlorine was used. The amount of inorganic chlorine was determined by extracting 5 g of a sample with hot water and measuring chlorine ions in the extract by an ion chromatograph method.
As a result, it was found that the alkaline ionized water of Production Example 1 contained 410 mg / kg of chlorine.
燃焼-電量滴定法としては、日東精工アナリテック株式会社製、塩素・硫黄分析装置TSX-10型を用いて、上記試料1約10mgを燃焼させ、電量適定により塩化物イオンの濃度を算出した。この測定により有機塩素、無機塩素を問わず試料中の塩素量が求められる。有機塩素量は、トータル塩素量から無機塩素量を差し引いた値を用いた。無機塩素量は、試料5gを熱水抽出し、抽出液中の塩素イオンをイオンクロマトグラフ法により測定して求めた。
その結果、製造例1のアルカリイオン水中に、塩素が410mg/kg含まれていることがわかった。 In addition, since gas such as chlorine cannot be detected by the above ICP emission spectroscopy, the alkaline ionized water (Sample 1) of Production Example 1 taken out from the alkaline ionized water outlet tube is separately used by the Japan Food Research Laboratories Center. Was measured using the following combustion-coulometric titration method.
As a combustion-coulometric titration method, about 10 mg of the
As a result, it was found that the alkaline ionized water of Production Example 1 contained 410 mg / kg of chlorine.
<pHの測定>
製造例1で得られたアルカリイオン水のpHを、pHメーター(株式会社堀場製作所製、HORIBA F-74SPを用いて測定したところ、pHの値は12であった。 <Measurement of pH>
When the pH of the alkaline ionized water obtained in Production Example 1 was measured using a pH meter (HORIBA F-74SP manufactured by HORIBA, Ltd.), the pH value was 12.
製造例1で得られたアルカリイオン水のpHを、pHメーター(株式会社堀場製作所製、HORIBA F-74SPを用いて測定したところ、pHの値は12であった。 <Measurement of pH>
When the pH of the alkaline ionized water obtained in Production Example 1 was measured using a pH meter (HORIBA F-74SP manufactured by HORIBA, Ltd.), the pH value was 12.
<表面張力の測定>
製造例1で得られたアルカリイオン水の表面張力を、Wilhelmy法を用いて測定した。
その結果、製造例1で得られたアルカリイオン水の表面張力は、約65.41mN/m(20℃)であった。同様の方法で、精製水の表面張力を測定したところ、約72.96mN/m(20℃)であったことから、本発明で用いるケイ素及びリンを含有するミネラル塩を含有するアルカリイオン水の表面張力は、精製水の表面張力に比べて、約7.55mN/m低かった。 <Measurement of surface tension>
The surface tension of the alkaline ionized water obtained in Production Example 1 was measured by using the Wilhelmy method.
As a result, the surface tension of the alkaline ionized water obtained in Production Example 1 was about 65.41 mN / m (20 ° C.). When the surface tension of purified water was measured by the same method, it was about 72.96 mN / m (20 ° C.). Therefore, the alkaline ionized water containing a mineral salt containing silicon and phosphorus used in the present invention. The surface tension was about 7.55 mN / m lower than the surface tension of purified water.
製造例1で得られたアルカリイオン水の表面張力を、Wilhelmy法を用いて測定した。
その結果、製造例1で得られたアルカリイオン水の表面張力は、約65.41mN/m(20℃)であった。同様の方法で、精製水の表面張力を測定したところ、約72.96mN/m(20℃)であったことから、本発明で用いるケイ素及びリンを含有するミネラル塩を含有するアルカリイオン水の表面張力は、精製水の表面張力に比べて、約7.55mN/m低かった。 <Measurement of surface tension>
The surface tension of the alkaline ionized water obtained in Production Example 1 was measured by using the Wilhelmy method.
As a result, the surface tension of the alkaline ionized water obtained in Production Example 1 was about 65.41 mN / m (20 ° C.). When the surface tension of purified water was measured by the same method, it was about 72.96 mN / m (20 ° C.). Therefore, the alkaline ionized water containing a mineral salt containing silicon and phosphorus used in the present invention. The surface tension was about 7.55 mN / m lower than the surface tension of purified water.
(製造例2)
ケイ素及びリンを含有するミネラル塩の原料を日本の海水から沖縄県の海水に代えた以外は、実施例1と同様の方法で、アルカリイオン水を製造した。
得られたアルカリイオン水について、実施例1と同様に、ICP発光分光法を用いで元素分析を行った結果、ケイ素が370mass ppm、及びリンが450mass ppm含まれていることが分かった。なお、さらに、詳細には、ナトリウムが6900mass ppm、カリウムが1mass ppm以下、カルシウムが0.9mass ppm、マグネシウムが0.3mass ppm以下含まれていることがわかった。
さらに、実施例2で得られたアルカリイオン水に含まれる塩素を、実施例1と同様に、一般財団法人日本食品分析センターにて、燃焼-電量滴定法を用いて測定した結果、実施例2のアルカリイオン水中に塩素が410mg/kg含まれることがわかった。 (Manufacturing Example 2)
Alkaline ionized water was produced in the same manner as in Example 1 except that the raw material of the mineral salt containing silicon and phosphorus was changed from seawater in Japan to seawater in Okinawa Prefecture.
As a result of elemental analysis of the obtained alkaline ionized water using ICP emission spectroscopy in the same manner as in Example 1, it was found that silicon was contained in 370 mass ppm and phosphorus was contained in 450 mass ppm. Further, in detail, it was found that sodium was contained in an amount of 6900 mass ppm, potassium was contained in an amount of 1 mass ppm or less, calcium was contained in an amount of 0.9 mass ppm or less, and magnesium was contained in an amount of 0.3 mass ppm or less.
Further, as a result of measuring chlorine contained in the alkaline ionized water obtained in Example 2 at the Japan Food Research Laboratories using the combustion-coulometric titration method in the same manner as in Example 1, Example 2 It was found that 410 mg / kg of chlorine was contained in the alkaline ionized water.
ケイ素及びリンを含有するミネラル塩の原料を日本の海水から沖縄県の海水に代えた以外は、実施例1と同様の方法で、アルカリイオン水を製造した。
得られたアルカリイオン水について、実施例1と同様に、ICP発光分光法を用いで元素分析を行った結果、ケイ素が370mass ppm、及びリンが450mass ppm含まれていることが分かった。なお、さらに、詳細には、ナトリウムが6900mass ppm、カリウムが1mass ppm以下、カルシウムが0.9mass ppm、マグネシウムが0.3mass ppm以下含まれていることがわかった。
さらに、実施例2で得られたアルカリイオン水に含まれる塩素を、実施例1と同様に、一般財団法人日本食品分析センターにて、燃焼-電量滴定法を用いて測定した結果、実施例2のアルカリイオン水中に塩素が410mg/kg含まれることがわかった。 (Manufacturing Example 2)
Alkaline ionized water was produced in the same manner as in Example 1 except that the raw material of the mineral salt containing silicon and phosphorus was changed from seawater in Japan to seawater in Okinawa Prefecture.
As a result of elemental analysis of the obtained alkaline ionized water using ICP emission spectroscopy in the same manner as in Example 1, it was found that silicon was contained in 370 mass ppm and phosphorus was contained in 450 mass ppm. Further, in detail, it was found that sodium was contained in an amount of 6900 mass ppm, potassium was contained in an amount of 1 mass ppm or less, calcium was contained in an amount of 0.9 mass ppm or less, and magnesium was contained in an amount of 0.3 mass ppm or less.
Further, as a result of measuring chlorine contained in the alkaline ionized water obtained in Example 2 at the Japan Food Research Laboratories using the combustion-coulometric titration method in the same manner as in Example 1, Example 2 It was found that 410 mg / kg of chlorine was contained in the alkaline ionized water.
(製造例3)チタンディスクの処理
チタンディスクとして、鏡面研磨した直径9.5mm、厚み1.0mmのTi-6Al-4Vディスク(Osaka Yakken社製)を用いた。前処理として、前記チタンディスクをエタノール、アセトン、及び二段蒸留水(DDW)中に浸漬し、超音波処理を10分間行った。前処理したチタンディスクに対して、前処理直後、クリーンベンチ内に1週間静置後、又は4週間静置後に以下の処理を行った。
(1)製造例1で製造したアルカリイオン水に3分間浸漬した。以下、該処理を行ったものをアルカリイオン水処理群という。
(2)DDW中に3分間浸漬した。以下、該処理を行ったものをコントロール群という。
(3)クリーンベンチ内の15W殺菌灯(λ=253.7nm、パナソニック株式会社製)を48時間照射した。以下、該処理を行ったものをUV群という。
前処理直後、1週間後、又は4週間後に上記処理を行ったチタンディスク(アルカリイオン水処理群、コントロール群、又はUV群)について、以下の試験を行った。 (Manufacturing Example 3) Treatment of Titanium Disc As the titanium disc, a mirror-polished Ti-6Al-4V disc (manufactured by Osaka Yakken) having a diameter of 9.5 mm and a thickness of 1.0 mm was used. As a pretreatment, the titanium disc was immersed in ethanol, acetone, and two-stage distilled water (DDW), and ultrasonic treatment was performed for 10 minutes. The pretreated titanium disc was subjected to the following treatment immediately after the pretreatment, after standing in a clean bench for 1 week, or after standing for 4 weeks.
(1) The product was immersed in the alkaline ionized water produced in Production Example 1 for 3 minutes. Hereinafter, the treated group is referred to as an alkaline ionized water treatment group.
(2) Immersed in DDW for 3 minutes. Hereinafter, those subjected to the treatment are referred to as a control group.
(3) A 15 W germicidal lamp (λ = 253.7 nm, manufactured by Panasonic Corporation) in a clean bench was irradiated for 48 hours. Hereinafter, those subjected to the treatment are referred to as UV groups.
The following tests were performed on the titanium discs (alkaline ionized water treatment group, control group, or UV group) that had been subjected to the above treatment immediately after the pretreatment, 1 week later, or 4 weeks later.
チタンディスクとして、鏡面研磨した直径9.5mm、厚み1.0mmのTi-6Al-4Vディスク(Osaka Yakken社製)を用いた。前処理として、前記チタンディスクをエタノール、アセトン、及び二段蒸留水(DDW)中に浸漬し、超音波処理を10分間行った。前処理したチタンディスクに対して、前処理直後、クリーンベンチ内に1週間静置後、又は4週間静置後に以下の処理を行った。
(1)製造例1で製造したアルカリイオン水に3分間浸漬した。以下、該処理を行ったものをアルカリイオン水処理群という。
(2)DDW中に3分間浸漬した。以下、該処理を行ったものをコントロール群という。
(3)クリーンベンチ内の15W殺菌灯(λ=253.7nm、パナソニック株式会社製)を48時間照射した。以下、該処理を行ったものをUV群という。
前処理直後、1週間後、又は4週間後に上記処理を行ったチタンディスク(アルカリイオン水処理群、コントロール群、又はUV群)について、以下の試験を行った。 (Manufacturing Example 3) Treatment of Titanium Disc As the titanium disc, a mirror-polished Ti-6Al-4V disc (manufactured by Osaka Yakken) having a diameter of 9.5 mm and a thickness of 1.0 mm was used. As a pretreatment, the titanium disc was immersed in ethanol, acetone, and two-stage distilled water (DDW), and ultrasonic treatment was performed for 10 minutes. The pretreated titanium disc was subjected to the following treatment immediately after the pretreatment, after standing in a clean bench for 1 week, or after standing for 4 weeks.
(1) The product was immersed in the alkaline ionized water produced in Production Example 1 for 3 minutes. Hereinafter, the treated group is referred to as an alkaline ionized water treatment group.
(2) Immersed in DDW for 3 minutes. Hereinafter, those subjected to the treatment are referred to as a control group.
(3) A 15 W germicidal lamp (λ = 253.7 nm, manufactured by Panasonic Corporation) in a clean bench was irradiated for 48 hours. Hereinafter, those subjected to the treatment are referred to as UV groups.
The following tests were performed on the titanium discs (alkaline ionized water treatment group, control group, or UV group) that had been subjected to the above treatment immediately after the pretreatment, 1 week later, or 4 weeks later.
(実施例1)微量元素分析
前処理直後及び4週間後のアルカリイオン水処理群、並びに前処理直後及び4週間後のコントロール群について、X線光電子分光法(XPS)により、走査型X線光電子分光分析装置PHI X-tool(アルバック・ファイ株式会社製)を用いて、ワイドスキャン分析(1300.00-0.00 eV, 20.000 s)、及びナロースキャン分析(C1s:298.00-278.00 eV, N1s:411.00-391.00 eV, O1s:543.00-523.00 eV, Ti2p:469.00-449.00 eV, 20.000 s)で微量元素を測定した(n=4)。ワイドスキャン分析の結果を図2Aに示し、ナロースキャン分析の結果を図2Bに示す。 (Example 1) Scanning X-ray photoelectrons by X-ray photoelectron spectroscopy (XPS) for the alkaline ionized water treatment group immediately after pretreatment and 4 weeks after the trace element analysis , and the control group immediately after pretreatment and after 4 weeks. Wide scan analysis (1300.00-0.00 eV, 20.000 s) and narrow scan analysis (C1s: 298.00-278.00 eV, N1s: 411.00-391.00 eV) using the spectrophotometer PHI X-tool (manufactured by ULVAC Phi Co., Ltd.) , O1s: 543.00-523.00 eV, Ti2p: 469.00-449.00 eV, 20.000 s) to measure trace elements (n = 4). The results of the wide scan analysis are shown in FIG. 2A, and the results of the narrow scan analysis are shown in FIG. 2B.
前処理直後及び4週間後のアルカリイオン水処理群、並びに前処理直後及び4週間後のコントロール群について、X線光電子分光法(XPS)により、走査型X線光電子分光分析装置PHI X-tool(アルバック・ファイ株式会社製)を用いて、ワイドスキャン分析(1300.00-0.00 eV, 20.000 s)、及びナロースキャン分析(C1s:298.00-278.00 eV, N1s:411.00-391.00 eV, O1s:543.00-523.00 eV, Ti2p:469.00-449.00 eV, 20.000 s)で微量元素を測定した(n=4)。ワイドスキャン分析の結果を図2Aに示し、ナロースキャン分析の結果を図2Bに示す。 (Example 1) Scanning X-ray photoelectrons by X-ray photoelectron spectroscopy (XPS) for the alkaline ionized water treatment group immediately after pretreatment and 4 weeks after the trace element analysis , and the control group immediately after pretreatment and after 4 weeks. Wide scan analysis (1300.00-0.00 eV, 20.000 s) and narrow scan analysis (C1s: 298.00-278.00 eV, N1s: 411.00-391.00 eV) using the spectrophotometer PHI X-tool (manufactured by ULVAC Phi Co., Ltd.) , O1s: 543.00-523.00 eV, Ti2p: 469.00-449.00 eV, 20.000 s) to measure trace elements (n = 4). The results of the wide scan analysis are shown in FIG. 2A, and the results of the narrow scan analysis are shown in FIG. 2B.
図2Aより、ワイドスキャン分析において、コントロール群及びアルカリイオン水処理群で、炭素(C)、酸素(O)、及びチタン(Ti)の存在が認められた。アルカリイオン水処理群ではコントロール群に比べて炭素(C)が減少し、酸素(O)が増加したことが認められた。図2Bより、ナロースキャン分析においても、アルカリイオン水処理群ではコントロール群に比べて炭素(C)が減少し、酸素(O)が増加したことが認められた。
チタンのエイジングには、空気中の微量元素(炭素等)がチタン表面に経時的に付着することによる表面の極性の低下、表面エネルギーが小さくなることによる疎水性への変化等が関係していることが知られている。上記微量元素分析の結果から、コントロール群とアルカリイオン水処理群との炭素のパーセンテージの差より、アルカリイオン水処理群における親水性の獲得は炭素(C)の除去が関連していると考えられる。また、酸素(O)が増加したのは、炭素(C)が除去されたことでチタンディスク表面の酸化チタン層が顕在化したためと考えられる。 From FIG. 2A, the presence of carbon (C), oxygen (O), and titanium (Ti) was confirmed in the control group and the alkaline ionized water treatment group in the wide scan analysis. It was observed that carbon (C) decreased and oxygen (O) increased in the alkaline ionized water treatment group as compared with the control group. From FIG. 2B, it was also confirmed in the narrow scan analysis that carbon (C) decreased and oxygen (O) increased in the alkaline ionized water-treated group as compared with the control group.
Titanium aging is related to the decrease in surface polarity due to the adhesion of trace elements (carbon, etc.) in the air to the titanium surface over time, and the change to hydrophobicity due to the decrease in surface energy. It is known. From the results of the above trace element analysis, it is considered that the acquisition of hydrophilicity in the alkaline ionized water treatment group is related to the removal of carbon (C) from the difference in the percentage of carbon between the control group and the alkaline ionized water treatment group. .. Further, it is considered that the increase in oxygen (O) is due to the fact that the titanium oxide layer on the surface of the titanium disk became apparent due to the removal of carbon (C).
チタンのエイジングには、空気中の微量元素(炭素等)がチタン表面に経時的に付着することによる表面の極性の低下、表面エネルギーが小さくなることによる疎水性への変化等が関係していることが知られている。上記微量元素分析の結果から、コントロール群とアルカリイオン水処理群との炭素のパーセンテージの差より、アルカリイオン水処理群における親水性の獲得は炭素(C)の除去が関連していると考えられる。また、酸素(O)が増加したのは、炭素(C)が除去されたことでチタンディスク表面の酸化チタン層が顕在化したためと考えられる。 From FIG. 2A, the presence of carbon (C), oxygen (O), and titanium (Ti) was confirmed in the control group and the alkaline ionized water treatment group in the wide scan analysis. It was observed that carbon (C) decreased and oxygen (O) increased in the alkaline ionized water treatment group as compared with the control group. From FIG. 2B, it was also confirmed in the narrow scan analysis that carbon (C) decreased and oxygen (O) increased in the alkaline ionized water-treated group as compared with the control group.
Titanium aging is related to the decrease in surface polarity due to the adhesion of trace elements (carbon, etc.) in the air to the titanium surface over time, and the change to hydrophobicity due to the decrease in surface energy. It is known. From the results of the above trace element analysis, it is considered that the acquisition of hydrophilicity in the alkaline ionized water treatment group is related to the removal of carbon (C) from the difference in the percentage of carbon between the control group and the alkaline ionized water treatment group. .. Further, it is considered that the increase in oxygen (O) is due to the fact that the titanium oxide layer on the surface of the titanium disk became apparent due to the removal of carbon (C).
(実施例2)接触角の測定(親水性の評価)
前処理直後、1週間後、及び4週間後のチタンディスクの表面に、DDW0.5μLを滴下し、接触角計LSE-ME3(株式会社ニック製)を用いて接触角を測定し、親水性を評価した(n=5)。 (Example 2) Measurement of contact angle (evaluation of hydrophilicity)
Immediately after the pretreatment, 0.5 μL of DDW was dropped onto the surface of the titanium disk after 1 week and 4 weeks, and the contact angle was measured using a contact angle meter LSE-ME3 (manufactured by Nick Co., Ltd.) to determine the hydrophilicity. Evaluated (n = 5).
前処理直後、1週間後、及び4週間後のチタンディスクの表面に、DDW0.5μLを滴下し、接触角計LSE-ME3(株式会社ニック製)を用いて接触角を測定し、親水性を評価した(n=5)。 (Example 2) Measurement of contact angle (evaluation of hydrophilicity)
Immediately after the pretreatment, 0.5 μL of DDW was dropped onto the surface of the titanium disk after 1 week and 4 weeks, and the contact angle was measured using a contact angle meter LSE-ME3 (manufactured by Nick Co., Ltd.) to determine the hydrophilicity. Evaluated (n = 5).
接触角測定時の写真を図3に示す。図3において、A(上段)はコントロール群を示し、B(中段)はアルカリイオン水処理群を示し、C(下段)はUV群を示している。また、1(左列)は前処理直後を示し、2(中央列)は1週間後を示し、3(右列)は4週間後を示している。
Figure 3 shows a photograph when measuring the contact angle. In FIG. 3, A (upper row) shows a control group, B (middle row) shows an alkaline ionized water treatment group, and C (lower row) shows a UV group. Further, 1 (left column) indicates immediately after the pretreatment, 2 (center column) indicates 1 week later, and 3 (right column) indicates 4 weeks later.
図3より、コントロール群(A)では、チタンディスク上に滴下したDDWがドーム状を呈していたのに対し、アルカリイオン水処理群(B)及びUV群(C)ではDDWがチタンディスク表面全体に薄く広がり、良好な親水性(濡れ性)を示すことがわかった。
From FIG. 3, in the control group (A), the DDW dropped on the titanium disk had a dome shape, whereas in the alkaline ionized water treatment group (B) and the UV group (C), the DDW had the entire surface of the titanium disk. It was found that it spreads thinly and shows good hydrophilicity (wetting property).
接触角の測定結果を図4に示す。なお、測定結果は、一元配置分散分析を行った後、Tukey法で検定した。図4中、*はp<0.01を示す。
Figure 4 shows the measurement results of the contact angle. The measurement results were tested by the Tukey method after performing one-way ANOVA. In FIG. 4, * indicates p <0.01.
図4より、すべての群で接触角が経時的に増加する傾向を示すことがわかった。コントロール群の前処理直後と1週間後との間、前処理直後と4週間後との間において、接触角の値に有意な差が認められた。また、すべての測定ポイントにおいて、コントロール群と比較して、アルカリイオン水処理群及びUV群は接触角の値が有意に低かった。アルカリイオン水処理群とUV群とを比較すると、前処理直後、1週間後及び4週間後のいずれにおいてもUV群の接触角の値が有意に低かった。
これらの結果より、アルカリイオン水で処理することで、チタンの表面エネルギーが大きくなり、疎水性の表面から親水性の表面に改質することができたことがわかる。今回、アルカリイオン水処理群における接触角が10°程度となり、超親水性(5°未満)にならなかったのは、使用したチタンディスクが鏡面研磨加工されたものであり、元々の表面エネルギーが非常に小さかったためと考えられる。 From FIG. 4, it was found that the contact angle tended to increase with time in all the groups. A significant difference was observed in the contact angle values between immediately after the pretreatment and 1 week after the pretreatment of the control group, and between immediately after the pretreatment and 4 weeks after the pretreatment. Moreover, at all the measurement points, the values of the contact angles of the alkaline ionized water treatment group and the UV group were significantly lower than those of the control group. Comparing the alkaline ionized water treatment group and the UV group, the value of the contact angle of the UV group was significantly lower immediately after the pretreatment and after 1 week and 4 weeks.
From these results, it can be seen that the surface energy of titanium was increased by treatment with alkaline ionized water, and it was possible to modify the surface from a hydrophobic surface to a hydrophilic surface. This time, the contact angle in the alkaline ionized water treatment group was about 10 °, and the reason why it did not become super-hydrophilic (less than 5 °) was that the titanium disc used was mirror-polished, and the original surface energy was reduced. Probably because it was very small.
これらの結果より、アルカリイオン水で処理することで、チタンの表面エネルギーが大きくなり、疎水性の表面から親水性の表面に改質することができたことがわかる。今回、アルカリイオン水処理群における接触角が10°程度となり、超親水性(5°未満)にならなかったのは、使用したチタンディスクが鏡面研磨加工されたものであり、元々の表面エネルギーが非常に小さかったためと考えられる。 From FIG. 4, it was found that the contact angle tended to increase with time in all the groups. A significant difference was observed in the contact angle values between immediately after the pretreatment and 1 week after the pretreatment of the control group, and between immediately after the pretreatment and 4 weeks after the pretreatment. Moreover, at all the measurement points, the values of the contact angles of the alkaline ionized water treatment group and the UV group were significantly lower than those of the control group. Comparing the alkaline ionized water treatment group and the UV group, the value of the contact angle of the UV group was significantly lower immediately after the pretreatment and after 1 week and 4 weeks.
From these results, it can be seen that the surface energy of titanium was increased by treatment with alkaline ionized water, and it was possible to modify the surface from a hydrophobic surface to a hydrophilic surface. This time, the contact angle in the alkaline ionized water treatment group was about 10 °, and the reason why it did not become super-hydrophilic (less than 5 °) was that the titanium disc used was mirror-polished, and the original surface energy was reduced. Probably because it was very small.
(実施例3)タンパク質吸着試験
前処理直後及び4週間後のアルカリイオン水処理群、前処理直後及び4週間後のコントロール群、並びに前処理直後及び4週間後のUV群のそれぞれのチタンディスク表面に、ウシ血清フィブロネクチン1.0mg/mLを200μL滴下し、24時間後にプロテインアッセイキット(バイオ・ラッドプロテインアッセイキット、バイオ・ラッドラボラトリーズ株式会社製)を用いてブラッドフォード法でタンパク質吸着量を測定した(n=5)。結果を図5に示す。なお、測定結果は、一元配置分散分析を行った後、Tukey法で検定した。図5中、*はp<0.05、**はp<0.01を示す。 (Example 3) Titanium disk surface of each of the alkali ionized water treatment group immediately after the protein adsorption test and 4 weeks after the pretreatment, the control group immediately after the pretreatment and 4 weeks, and the UV group immediately after the pretreatment and 4 weeks after the pretreatment. 200 μL of bovine serum fibronectin was added dropwise to the drug, and after 24 hours, the amount of protein adsorbed was measured by the Bradford method using a protein assay kit (Bio-Rad Protein Assay Kit, manufactured by Bio-Radra Volunteers Co., Ltd.). (N = 5). The results are shown in FIG. The measurement results were tested by the Tukey method after performing one-way ANOVA. In FIG. 5, * indicates p <0.05 and ** indicates p <0.01.
前処理直後及び4週間後のアルカリイオン水処理群、前処理直後及び4週間後のコントロール群、並びに前処理直後及び4週間後のUV群のそれぞれのチタンディスク表面に、ウシ血清フィブロネクチン1.0mg/mLを200μL滴下し、24時間後にプロテインアッセイキット(バイオ・ラッドプロテインアッセイキット、バイオ・ラッドラボラトリーズ株式会社製)を用いてブラッドフォード法でタンパク質吸着量を測定した(n=5)。結果を図5に示す。なお、測定結果は、一元配置分散分析を行った後、Tukey法で検定した。図5中、*はp<0.05、**はp<0.01を示す。 (Example 3) Titanium disk surface of each of the alkali ionized water treatment group immediately after the protein adsorption test and 4 weeks after the pretreatment, the control group immediately after the pretreatment and 4 weeks, and the UV group immediately after the pretreatment and 4 weeks after the pretreatment. 200 μL of bovine serum fibronectin was added dropwise to the drug, and after 24 hours, the amount of protein adsorbed was measured by the Bradford method using a protein assay kit (Bio-Rad Protein Assay Kit, manufactured by Bio-Radra Volunteers Co., Ltd.). (N = 5). The results are shown in FIG. The measurement results were tested by the Tukey method after performing one-way ANOVA. In FIG. 5, * indicates p <0.05 and ** indicates p <0.01.
図5より、前処理直後では、コントロール群と比較してUV群は有意に高い値を示したが、コントロール群とアルカリイオン水処理群との間に有意な差は認められなかった。4週間後では、コントロール群と比較してアルカリイオン水処理群及びUV群は有意に高い値を示した。
コントロール群の前処理後と4週間後との間に有意な差が認められたことから、エイジングによって4週間後には表面が疎水性に変化したことで、前処理直後と比較してタンパク質吸着量が低くなったと考えられる。さらに、前処理直後ではコントロール群とアルカリイオン水処理群との間に有意な差は認められなかったが、エイジングが進行した4週間後ではコントロール群のチタン表面が疎水性に変化し、アルカリイオン水処理群及びUV群のチタン表面が親水性になったことから、アルカリイオン水処理群及びUV群のほうが高いタンパク質吸着量を示したと考えられる。 From FIG. 5, immediately after the pretreatment, the UV group showed a significantly higher value than the control group, but no significant difference was observed between the control group and the alkaline ionized water treatment group. After 4 weeks, the values in the alkaline ionized water treatment group and the UV group were significantly higher than those in the control group.
Since a significant difference was observed between the control group after pretreatment and after 4 weeks, the surface changed to hydrophobic after 4 weeks due to aging, and the amount of protein adsorbed compared to immediately after pretreatment. Is thought to have decreased. Furthermore, no significant difference was observed between the control group and the alkaline ionized water treatment group immediately after the pretreatment, but 4 weeks after the aging progressed, the titanium surface of the control group changed to hydrophobic and alkaline ions. Since the titanium surfaces of the water-treated group and the UV group became hydrophilic, it is considered that the alkaline ionized water-treated group and the UV group showed higher protein adsorption amounts.
コントロール群の前処理後と4週間後との間に有意な差が認められたことから、エイジングによって4週間後には表面が疎水性に変化したことで、前処理直後と比較してタンパク質吸着量が低くなったと考えられる。さらに、前処理直後ではコントロール群とアルカリイオン水処理群との間に有意な差は認められなかったが、エイジングが進行した4週間後ではコントロール群のチタン表面が疎水性に変化し、アルカリイオン水処理群及びUV群のチタン表面が親水性になったことから、アルカリイオン水処理群及びUV群のほうが高いタンパク質吸着量を示したと考えられる。 From FIG. 5, immediately after the pretreatment, the UV group showed a significantly higher value than the control group, but no significant difference was observed between the control group and the alkaline ionized water treatment group. After 4 weeks, the values in the alkaline ionized water treatment group and the UV group were significantly higher than those in the control group.
Since a significant difference was observed between the control group after pretreatment and after 4 weeks, the surface changed to hydrophobic after 4 weeks due to aging, and the amount of protein adsorbed compared to immediately after pretreatment. Is thought to have decreased. Furthermore, no significant difference was observed between the control group and the alkaline ionized water treatment group immediately after the pretreatment, but 4 weeks after the aging progressed, the titanium surface of the control group changed to hydrophobic and alkaline ions. Since the titanium surfaces of the water-treated group and the UV group became hydrophilic, it is considered that the alkaline ionized water-treated group and the UV group showed higher protein adsorption amounts.
(実施例4)細胞接着試験
骨芽細胞様細胞株MC3T3E-1(理研細胞バンク)を培地α-MEM(ナカライテスク株式会社製、イーグル最小必須培地α改変型)、10%FBS(ウシ胎児血清)、1%ペニシリン-ストレプトマイシン(Gibco社製)を用いて、37℃及び5%CO2下で培養した。なお、培養液は3日毎に交換した。 (Example 4) Cell adhesion test Osteoblast-like cell line MC3T3E-1 (RIKEN cell bank) was used as a medium α-MEM (manufactured by Nakarai Tesk Co., Ltd., Eagle's minimum essential medium α modified type), 10% FBS (fetal bovine serum). ), 1% penicillin-streptomycin (manufactured by Gibco) was cultured at 37 ° C. and under 5% CO 2 . The culture solution was changed every 3 days.
骨芽細胞様細胞株MC3T3E-1(理研細胞バンク)を培地α-MEM(ナカライテスク株式会社製、イーグル最小必須培地α改変型)、10%FBS(ウシ胎児血清)、1%ペニシリン-ストレプトマイシン(Gibco社製)を用いて、37℃及び5%CO2下で培養した。なお、培養液は3日毎に交換した。 (Example 4) Cell adhesion test Osteoblast-like cell line MC3T3E-1 (RIKEN cell bank) was used as a medium α-MEM (manufactured by Nakarai Tesk Co., Ltd., Eagle's minimum essential medium α modified type), 10% FBS (fetal bovine serum). ), 1% penicillin-streptomycin (manufactured by Gibco) was cultured at 37 ° C. and under 5% CO 2 . The culture solution was changed every 3 days.
24ウェルプレート内に設置した前処理直後及び4週間後のアルカリイオン水処理群、前処理直後及び4週間後のコントロール群、並びに前処理直後及び4週間後のUV群のチタンディスク上に、MC3T3E-1細胞を500μL播種(4.0×104細胞/ウェル)し、24時間インキュベートした。その後、ローダミン・ファロイジン及び4’,6-ジアミジノ-2-フェニリンドール(DAPI)で染色したものを、共焦点レーザー顕微鏡(LSM700、カール・ツァイス社製)で観察した。染色した細胞に対し、画像解析ソフト(ImageJ,NIH,Bethesda,ML)を用いて接触面積を定量した(n=5)。その結果を図6に示す。なお、測定結果は、一元配置分散分析を行った後、Tukey法で検定した。図6中、*はp<0.01を示す。
MC3T3E was placed on the titanium discs of the alkaline ionized water treatment group immediately after the pretreatment and after 4 weeks, the control group immediately after the pretreatment and 4 weeks, and the UV group immediately after the pretreatment and after 4 weeks, which were placed in the 24-well plate. -1 cells were seeded at 500 μL (4.0 × 10 4 cells / well) and incubated for 24 hours. Then, those stained with rhodamine phalloidin and 4', 6-diamidino-2-phenylindole (DAPI) were observed with a confocal laser scanning microscope (LSM700, manufactured by Carl Zeiss). The contact area of the stained cells was quantified using image analysis software (ImageJ, NIH, Bethesda, ML) (n = 5). The results are shown in FIG. The measurement results were tested by the Tukey method after performing one-way ANOVA. In FIG. 6, * indicates p <0.01.
図6より、前処理直後の細胞接着面積は、コントロール群及びアルカリイオン水処理群と比較してUV群は有意に大きな値を示した。4週間後では、コントロール群と比較してアルカリイオン水処理群及びUV群は有意に大きな値を示した。
エイジングによって疎水性になった表面では細胞接着が低下し、それに続く細胞応答にも影響を与え、骨芽細胞の増殖及び分化にも寄与することが知られている。上記結果より、コントロール群では炭素等の付着による表面エネルギーの減少、表面電位の変化等によってチタン表面に細胞が付着しにくくなったと考えられる。一方、アルカリイオン水処理群及びUV群では、炭素が除去されたことによる表面エネルギーの増大、表面電位の変化等によって、より多くの細胞が付着したと考えられる。 From FIG. 6, the cell adhesion area immediately after the pretreatment showed a significantly larger value in the UV group than in the control group and the alkaline ionized water treatment group. After 4 weeks, the alkaline ionized water treatment group and the UV group showed significantly larger values than the control group.
It is known that cell adhesion is reduced on the surface that has become hydrophobic due to aging, which also affects the subsequent cellular response and contributes to the proliferation and differentiation of osteoblasts. From the above results, it is considered that in the control group, cells are less likely to adhere to the titanium surface due to a decrease in surface energy due to adhesion of carbon or the like, a change in surface potential, and the like. On the other hand, in the alkaline ionized water treatment group and the UV group, it is considered that more cells were attached due to an increase in surface energy due to carbon removal, a change in surface potential, and the like.
エイジングによって疎水性になった表面では細胞接着が低下し、それに続く細胞応答にも影響を与え、骨芽細胞の増殖及び分化にも寄与することが知られている。上記結果より、コントロール群では炭素等の付着による表面エネルギーの減少、表面電位の変化等によってチタン表面に細胞が付着しにくくなったと考えられる。一方、アルカリイオン水処理群及びUV群では、炭素が除去されたことによる表面エネルギーの増大、表面電位の変化等によって、より多くの細胞が付着したと考えられる。 From FIG. 6, the cell adhesion area immediately after the pretreatment showed a significantly larger value in the UV group than in the control group and the alkaline ionized water treatment group. After 4 weeks, the alkaline ionized water treatment group and the UV group showed significantly larger values than the control group.
It is known that cell adhesion is reduced on the surface that has become hydrophobic due to aging, which also affects the subsequent cellular response and contributes to the proliferation and differentiation of osteoblasts. From the above results, it is considered that in the control group, cells are less likely to adhere to the titanium surface due to a decrease in surface energy due to adhesion of carbon or the like, a change in surface potential, and the like. On the other hand, in the alkaline ionized water treatment group and the UV group, it is considered that more cells were attached due to an increase in surface energy due to carbon removal, a change in surface potential, and the like.
(実施例5)細胞増殖試験
前処理直後のチタンディスク表面に前記細胞接触試験と同じ条件で細胞を播種し、24時間又は72時間インキュベートした後に細胞の増殖能を測定した、増殖能は、24ウェルプレートにセルタイター96(登録商標)(プロメガ株式会社製)を添加し、37℃で15分間インキュベートして比色呈色させ、マイクロプレートリーダー(Bio-Rad Model 680、バイオ・ラッドラボラトリーズ株式会社製)を用いて、波長490nmの吸光度を計測することで評価した(n=5)。その結果を図7に示す。なお、測定結果は、一元配置分散分析を行った後、Tukey法で検定した。図7中、*はp<0.05、**はp<0.01を示す。 (Example 5) Cell proliferation test The cell proliferation ability was measured after seeding the cells on the surface of the titanium disk immediately after the pretreatment under the same conditions as the cell contact test and incubating for 24 hours or 72 hours. The proliferation ability was 24. Celltiter 96 (registered trademark) (manufactured by Promega Co., Ltd.) is added to the well plate, and the cells are incubated at 37 ° C. for 15 minutes for colorimetric color development. Microplate reader (Bio-Rad Model 680, manufactured by Bio-Rad Laboratories Co., Ltd.) ) Was used to measure the absorbance at a wavelength of 490 nm (n = 5). The results are shown in FIG. The measurement results were tested by the Tukey method after performing one-way ANOVA. In FIG. 7, * indicates p <0.05 and ** indicates p <0.01.
前処理直後のチタンディスク表面に前記細胞接触試験と同じ条件で細胞を播種し、24時間又は72時間インキュベートした後に細胞の増殖能を測定した、増殖能は、24ウェルプレートにセルタイター96(登録商標)(プロメガ株式会社製)を添加し、37℃で15分間インキュベートして比色呈色させ、マイクロプレートリーダー(Bio-Rad Model 680、バイオ・ラッドラボラトリーズ株式会社製)を用いて、波長490nmの吸光度を計測することで評価した(n=5)。その結果を図7に示す。なお、測定結果は、一元配置分散分析を行った後、Tukey法で検定した。図7中、*はp<0.05、**はp<0.01を示す。 (Example 5) Cell proliferation test The cell proliferation ability was measured after seeding the cells on the surface of the titanium disk immediately after the pretreatment under the same conditions as the cell contact test and incubating for 24 hours or 72 hours. The proliferation ability was 24. Celltiter 96 (registered trademark) (manufactured by Promega Co., Ltd.) is added to the well plate, and the cells are incubated at 37 ° C. for 15 minutes for colorimetric color development. Microplate reader (Bio-Rad Model 680, manufactured by Bio-Rad Laboratories Co., Ltd.) ) Was used to measure the absorbance at a wavelength of 490 nm (n = 5). The results are shown in FIG. The measurement results were tested by the Tukey method after performing one-way ANOVA. In FIG. 7, * indicates p <0.05 and ** indicates p <0.01.
図7より、24時間ではコントロール群と比較して、アルカリイオン水処理群及びUV群の増殖能は有意に高い値を示した。72時間ではコントロール群及びアルカリイオン水処理群と比較して、UV群の増殖能は有意に高い値を示した。
この結果から、チタン表面の親水性は細胞の初期接着に寄与することから、親水性が付与されたアルカリイオン水処理群及びUV群は24時間において高い値を示し、より高い親水性を有するUV群が72時間において高い値を示したと考えられる。 From FIG. 7, at 24 hours, the proliferative ability of the alkaline ionized water-treated group and the UV group was significantly higher than that of the control group. At 72 hours, the proliferation ability of the UV group was significantly higher than that of the control group and the alkaline ionized water treatment group.
From this result, since the hydrophilicity of the titanium surface contributes to the initial adhesion of cells, the alkaline ionized water-treated group and the UV group to which the hydrophilicity was imparted showed high values in 24 hours, and UV having higher hydrophilicity. It is considered that the group showed a high value at 72 hours.
この結果から、チタン表面の親水性は細胞の初期接着に寄与することから、親水性が付与されたアルカリイオン水処理群及びUV群は24時間において高い値を示し、より高い親水性を有するUV群が72時間において高い値を示したと考えられる。 From FIG. 7, at 24 hours, the proliferative ability of the alkaline ionized water-treated group and the UV group was significantly higher than that of the control group. At 72 hours, the proliferation ability of the UV group was significantly higher than that of the control group and the alkaline ionized water treatment group.
From this result, since the hydrophilicity of the titanium surface contributes to the initial adhesion of cells, the alkaline ionized water-treated group and the UV group to which the hydrophilicity was imparted showed high values in 24 hours, and UV having higher hydrophilicity. It is considered that the group showed a high value at 72 hours.
(実施例6)動物実験
ニュージーランドホワイトラビット6羽に対し、三種混合麻酔薬(酒石酸ブトルファノール、塩酸メデトミジン、及びミダゾラム)を大腿部に筋肉注射し、全身麻酔を行った。左右の大腿部をポビドンヨードで消毒した後、2%キシロカインで局所麻酔を行い#15メスで皮膚を切開し、筋層を剥離し、骨膜を切開して大腿骨を剖出した。その後、大腿骨を超音波骨切削器具(PIEZOSURGERY(登録商標))を用いて、長さ10.0mm、幅1.0mm、深さ10.0mmのグルーブを形成した(図8A参照)。アルカリイオン水又は生理食塩水に3分間浸漬したチタンディスクを、グルーブ内に埋入した(図8B参照)。創部は骨膜を5-0VICRYL縫合糸で、皮膚を5-0ナイロン糸で縫合した。埋入から4週間後に、パントバルビタールナトリウムを耳介静脈より過剰投与して安楽死させ、大腿骨を採取した。採取した大腿骨について、マイクロCTを撮影した。マイクロCT画像を図9に示す。図9において、A(上段)はコントロール群を示し、B(下段)はアルカリイオン水処理群を示す。また、1(左列)はX-Y面であり、2(中央列)はY-Z面であり、3(右列)はZ-X面である。 (Example 6) Animal experiment Six New Zealand white rabbits were given a general anesthesia by intramuscularly injecting a three-kind mixed anesthetic (butorphanol tartrate, medetomidin hydrochloride, and midazolam) into the thigh. After disinfecting the left and right femurs with povidone iodine, local anesthesia was performed with 2% xylocaine, the skin was incised with a # 15 scalpel, the muscle layer was peeled off, the periosteum was incised, and the femur was excised. Then, the femur was formed into a groove having a length of 10.0 mm, a width of 1.0 mm, and a depth of 10.0 mm using an ultrasonic bone cutting tool (PIEZOSURGERY (registered trademark)) (see FIG. 8A). Titanium discs immersed in alkaline ionized water or saline for 3 minutes were embedded in the groove (see FIG. 8B). For the wound, the periosteum was sutured with 5-0 VICRYL suture and the skin was sutured with 5-0 nylon thread. Four weeks after implantation, sodium pantobarbital was overdose from the auricular vein for euthanasia, and the femur was collected. A micro CT was taken of the collected femur. The micro CT image is shown in FIG. In FIG. 9, A (upper row) shows a control group, and B (lower row) shows an alkaline ionized water treatment group. Further, 1 (left column) is the XY plane, 2 (center row) is the YY plane, and 3 (right column) is the ZZ plane.
ニュージーランドホワイトラビット6羽に対し、三種混合麻酔薬(酒石酸ブトルファノール、塩酸メデトミジン、及びミダゾラム)を大腿部に筋肉注射し、全身麻酔を行った。左右の大腿部をポビドンヨードで消毒した後、2%キシロカインで局所麻酔を行い#15メスで皮膚を切開し、筋層を剥離し、骨膜を切開して大腿骨を剖出した。その後、大腿骨を超音波骨切削器具(PIEZOSURGERY(登録商標))を用いて、長さ10.0mm、幅1.0mm、深さ10.0mmのグルーブを形成した(図8A参照)。アルカリイオン水又は生理食塩水に3分間浸漬したチタンディスクを、グルーブ内に埋入した(図8B参照)。創部は骨膜を5-0VICRYL縫合糸で、皮膚を5-0ナイロン糸で縫合した。埋入から4週間後に、パントバルビタールナトリウムを耳介静脈より過剰投与して安楽死させ、大腿骨を採取した。採取した大腿骨について、マイクロCTを撮影した。マイクロCT画像を図9に示す。図9において、A(上段)はコントロール群を示し、B(下段)はアルカリイオン水処理群を示す。また、1(左列)はX-Y面であり、2(中央列)はY-Z面であり、3(右列)はZ-X面である。 (Example 6) Animal experiment Six New Zealand white rabbits were given a general anesthesia by intramuscularly injecting a three-kind mixed anesthetic (butorphanol tartrate, medetomidin hydrochloride, and midazolam) into the thigh. After disinfecting the left and right femurs with povidone iodine, local anesthesia was performed with 2% xylocaine, the skin was incised with a # 15 scalpel, the muscle layer was peeled off, the periosteum was incised, and the femur was excised. Then, the femur was formed into a groove having a length of 10.0 mm, a width of 1.0 mm, and a depth of 10.0 mm using an ultrasonic bone cutting tool (PIEZOSURGERY (registered trademark)) (see FIG. 8A). Titanium discs immersed in alkaline ionized water or saline for 3 minutes were embedded in the groove (see FIG. 8B). For the wound, the periosteum was sutured with 5-0 VICRYL suture and the skin was sutured with 5-0 nylon thread. Four weeks after implantation, sodium pantobarbital was overdose from the auricular vein for euthanasia, and the femur was collected. A micro CT was taken of the collected femur. The micro CT image is shown in FIG. In FIG. 9, A (upper row) shows a control group, and B (lower row) shows an alkaline ionized water treatment group. Further, 1 (left column) is the XY plane, 2 (center row) is the YY plane, and 3 (right column) is the ZZ plane.
その後、非脱灰研磨標本を作製し、ビラヌエバ・ボーン染色を行った。ビラヌエバ・ボーン染色画像を図10に示す。なお、Aはコントロール群を示し、Bはアルカリイオン水処理群を示す。また、図10中のスケールバーは、100μmである。
その後、ディスク中央から骨髄側までの5mmの範囲におけるBIC(骨-インプラント接触率)を測定した(n=5)。BICは、ImageJを用いて下式1より計算した。 Then, a non-decalcified polished specimen was prepared and stained with Villanueva bone. The Villanueva bone-stained image is shown in FIG. A indicates a control group, and B indicates an alkaline ionized water treatment group. The scale bar in FIG. 10 is 100 μm.
Then, the BIC (bone-implant contact rate) in the range of 5 mm from the center of the disc to the bone marrow side was measured (n = 5). BIC was calculated from thefollowing equation 1 using ImageJ.
その後、ディスク中央から骨髄側までの5mmの範囲におけるBIC(骨-インプラント接触率)を測定した(n=5)。BICは、ImageJを用いて下式1より計算した。 Then, a non-decalcified polished specimen was prepared and stained with Villanueva bone. The Villanueva bone-stained image is shown in FIG. A indicates a control group, and B indicates an alkaline ionized water treatment group. The scale bar in FIG. 10 is 100 μm.
Then, the BIC (bone-implant contact rate) in the range of 5 mm from the center of the disc to the bone marrow side was measured (n = 5). BIC was calculated from the
BICにおけるチタンディスク表面に結合している骨の長さ、及びチタンディスク表面の長さは、図11に示すBIC測定範囲の模式図に基づいて測定した。なお、図11において、aはチタンディスク表面の長さ(点線)を示し、bはチタンディスク表面に結合した骨の長さ(矢印)を示し、cは新生骨を示す。BICの結果を図12に示す。なお、測定結果は、t-検定を行った。図12中、*はp<0.05を示す。
The length of the bone bonded to the surface of the titanium disk in BIC and the length of the surface of the titanium disk were measured based on the schematic diagram of the BIC measurement range shown in FIG. In FIG. 11, a indicates the length of the titanium disk surface (dotted line), b indicates the length of the bone bonded to the titanium disk surface (arrow), and c indicates new bone. The result of BIC is shown in FIG. The measurement results were subjected to t-test. In FIG. 12, * indicates p <0.05.
図9より、コントロール群と比較して、アルカリイオン水処理群の骨髄側のチタンディスク周囲に活発な新生骨の形成が認められた。図10より、コントロール群と比較して、アルカリイオン水処理群の骨髄側のチタンディスク周囲に赤紫色に濃染された類骨が多く見られた。図12より、コントロール群と比較して、アルカリイオン水処理群のBICは有意に高い値を示した。
チタン表面の親水性はオッセオインテグレーションに影響を与える種々のタンパク質又はサイトカインの吸着又は細胞接着に関与し、BICを低下させることが知られている。このことから、表面が疎水性のコントロール群よりも親水性のアルカリイオン水処理群のほうが、BICが高くなったと考えられる。 From FIG. 9, compared with the control group, active formation of new bone was observed around the titanium disc on the bone marrow side of the alkaline ionized water treatment group. From FIG. 10, as compared with the control group, more osteoids stained in reddish purple were observed around the titanium disk on the bone marrow side of the alkaline ionized water treatment group. From FIG. 12, the BIC of the alkaline ionized water treatment group showed a significantly higher value than that of the control group.
It is known that the hydrophilicity of the titanium surface is involved in the adsorption or cell adhesion of various proteins or cytokines that affect osseointegration and lowers BIC. From this, it is considered that the BIC was higher in the hydrophilic alkaline ionized water treatment group than in the control group having a hydrophobic surface.
チタン表面の親水性はオッセオインテグレーションに影響を与える種々のタンパク質又はサイトカインの吸着又は細胞接着に関与し、BICを低下させることが知られている。このことから、表面が疎水性のコントロール群よりも親水性のアルカリイオン水処理群のほうが、BICが高くなったと考えられる。 From FIG. 9, compared with the control group, active formation of new bone was observed around the titanium disc on the bone marrow side of the alkaline ionized water treatment group. From FIG. 10, as compared with the control group, more osteoids stained in reddish purple were observed around the titanium disk on the bone marrow side of the alkaline ionized water treatment group. From FIG. 12, the BIC of the alkaline ionized water treatment group showed a significantly higher value than that of the control group.
It is known that the hydrophilicity of the titanium surface is involved in the adsorption or cell adhesion of various proteins or cytokines that affect osseointegration and lowers BIC. From this, it is considered that the BIC was higher in the hydrophilic alkaline ionized water treatment group than in the control group having a hydrophobic surface.
以上より、チタンディスクを、ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水中に短時間浸漬処理することで、従来行われている紫外線照射とほぼ同等の表面改質効果が得られることがわかった。現在インプラントの表面処理には、特殊な器材を消毒室等に設置する必要があるが、本発明の表面処理方法を用いれば、省スペースで簡便かつ低コストにインプラントの表面改質を行うことが可能になる。
From the above, by immersing the titanium disc in alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus for a short time, the surface is almost the same as that of conventional ultraviolet irradiation. It was found that a reforming effect was obtained. Currently, for the surface treatment of implants, it is necessary to install special equipment in a disinfection room or the like, but if the surface treatment method of the present invention is used, it is possible to modify the surface of the implant easily and at low cost in a space-saving manner. It will be possible.
1 電解槽
2 導水管
3 隔膜
4 陽極室
5 陰極室
6 陽極
7 陰極
8 酸性水排出管
9 アルカリ水導出管
10 冷却装置
11 混合槽
12 原料液貯槽
13 流入量調整装置
14 攪拌装置
15 断熱手段
16 出口管
17 pH測定手段
18 アルカリイオン水出口管
19 アルコール貯槽
20 アルコール混合槽
21 混合アルカリイオン水出口管
22 隔離室
100 陰極電子
101 アルカリイオン水製造装置 1Electrolyzer 2 Water guide tube 3 Diaphragm 4 Anodium 5 Cathode room 6 Cathode 7 Cathode 8 Acidic water discharge tube 9 Alkaline water outlet tube 10 Cooling device 11 Mixing tank 12 Raw material liquid storage tank 13 Inflow amount adjusting device 14 Stirring device 15 Insulation means 16 Outlet pipe 17 pH measuring means 18 Alkaline ionized water outlet pipe 19 Alcohol storage tank 20 Alcohol mixing tank 21 Mixed alkaline ionized water outlet pipe 22 Isolation chamber 100 Cathode electron 101 Alkaline ionized water production equipment
2 導水管
3 隔膜
4 陽極室
5 陰極室
6 陽極
7 陰極
8 酸性水排出管
9 アルカリ水導出管
10 冷却装置
11 混合槽
12 原料液貯槽
13 流入量調整装置
14 攪拌装置
15 断熱手段
16 出口管
17 pH測定手段
18 アルカリイオン水出口管
19 アルコール貯槽
20 アルコール混合槽
21 混合アルカリイオン水出口管
22 隔離室
100 陰極電子
101 アルカリイオン水製造装置 1
Claims (9)
- チタン又はチタン合金を、ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水に浸漬する工程を含む、チタン又はチタン合金の表面処理方法。 A method for surface treating titanium or a titanium alloy, which comprises a step of immersing titanium or a titanium alloy in alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus.
- 前記アルカリイオン水中に、前記ケイ素が0.4~400mass ppm、及びリンが400~800mass ppm含まれる、請求項1に記載の表面処理方法。 The surface treatment method according to claim 1, wherein the alkaline ionized water contains 0.4 to 400 mass ppm of silicon and 400 to 800 mass ppm of phosphorus.
- 前記アルカリイオン水中に、さらに、カルシウム、カリウム、ナトリウム、及びマグネシウムからなる群より選ばれる少なくとも一種のミネラルが含まれる、請求項1又は2に記載の表面処理方法。 The surface treatment method according to claim 1 or 2, wherein the alkaline ionized water further contains at least one mineral selected from the group consisting of calcium, potassium, sodium, and magnesium.
- 前記アルカリイオン水中に、さらに、塩素が含まれる、請求項1~3の何れか一項に記載の表面処理方法。 The surface treatment method according to any one of claims 1 to 3, wherein chlorine is further contained in the alkaline ionized water.
- 前記アルカリイオン水のpHが10~12.5である、請求項1~4の何れか一項に記載の表面処理方法。 The surface treatment method according to any one of claims 1 to 4, wherein the pH of the alkaline ionized water is 10 to 12.5.
- 前記アルカリイオン水の表面張力が55~68mN/mである、請求項1~5の何れか一項に記載の表面処理方法。 The surface treatment method according to any one of claims 1 to 5, wherein the surface tension of the alkaline ionized water is 55 to 68 mN / m.
- 前記アルカリイオン水が、ケイ素及びリンを含有するミネラル塩と水とを含む水溶液を電気分解する電気分解工程、及び、前記工程で得られた陰極側のアルカリ水と、ケイ素及びリンを含有するミネラル塩とを混合して混合液を得、該混合液に電子を供給する電子供給工程により得られたものである、請求項1~6の何れか一項に記載の表面処理方法。 An electrolysis step in which the alkaline ionized water electrolyzes an aqueous solution containing a mineral salt containing silicon and phosphorus and water, and the alkaline water on the cathode side obtained in the step and a mineral containing silicon and phosphorus. The surface treatment method according to any one of claims 1 to 6, which is obtained by an electron supply step of mixing with a salt to obtain a mixed solution and supplying electrons to the mixed solution.
- ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解して得られたアルカリイオン水によって表面が処理されている、チタン又はチタン合金製のインプラント。 An implant made of titanium or a titanium alloy whose surface is treated with alkaline ionized water obtained by electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus.
- ケイ素及びリンを含有するミネラル塩を含む水溶液を電気分解してアルカリイオン水を得る工程、及び、
前記アルカリイオン水をチタン又はチタン合金の表面に処理する工程を備える、チタン又はチタン合金製のインプラントの製造方法。
A step of electrolyzing an aqueous solution containing a mineral salt containing silicon and phosphorus to obtain alkaline ionized water, and
A method for manufacturing an implant made of titanium or a titanium alloy, comprising a step of treating the surface of titanium or a titanium alloy with the alkaline ionized water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022519066A JP7083557B1 (en) | 2020-12-25 | 2021-12-24 | Surface treatment method for titanium or titanium alloy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-217531 | 2020-12-25 | ||
JP2020217531 | 2020-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022138924A1 true WO2022138924A1 (en) | 2022-06-30 |
Family
ID=82158204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/048219 WO2022138924A1 (en) | 2020-12-25 | 2021-12-24 | Surface treatment method for titanium or titanium alloy |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022138924A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1199199A (en) * | 1997-09-29 | 1999-04-13 | Shigeo Maruno | Manufacture of calcium phosphate film |
JP2003235954A (en) * | 2002-02-20 | 2003-08-26 | Toshihiro Kasuga | Bone conductive biomaterial and manufacturing method therefor |
JP2011032223A (en) * | 2009-08-03 | 2011-02-17 | Kanagawa Dental College | Treating liquid of implant for living body, and method of treatment |
JP2014036716A (en) * | 2012-08-13 | 2014-02-27 | Aichi Gakuin | Method and apparatus for treating implant material with excellent biocompatibility |
JP2016522026A (en) * | 2013-05-02 | 2016-07-28 | オステムインプラント カンパニー リミテッド | Implant surface treatment method |
JP2016146967A (en) * | 2015-02-12 | 2016-08-18 | 京セラメディカル株式会社 | Method for producing living body implant, and method for regenerating living body implant |
KR101835684B1 (en) * | 2017-03-21 | 2018-03-07 | 조선대학교산학협력단 | An electrolyte composition containing zinc and silicon in a plasma electrolytic oxidation process and a method for manufacturing dental implants coated by hydroxyapatite containing zinc and silicon ions using the composition |
-
2021
- 2021-12-24 WO PCT/JP2021/048219 patent/WO2022138924A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1199199A (en) * | 1997-09-29 | 1999-04-13 | Shigeo Maruno | Manufacture of calcium phosphate film |
JP2003235954A (en) * | 2002-02-20 | 2003-08-26 | Toshihiro Kasuga | Bone conductive biomaterial and manufacturing method therefor |
JP2011032223A (en) * | 2009-08-03 | 2011-02-17 | Kanagawa Dental College | Treating liquid of implant for living body, and method of treatment |
JP2014036716A (en) * | 2012-08-13 | 2014-02-27 | Aichi Gakuin | Method and apparatus for treating implant material with excellent biocompatibility |
JP2016522026A (en) * | 2013-05-02 | 2016-07-28 | オステムインプラント カンパニー リミテッド | Implant surface treatment method |
JP2016146967A (en) * | 2015-02-12 | 2016-08-18 | 京セラメディカル株式会社 | Method for producing living body implant, and method for regenerating living body implant |
KR101835684B1 (en) * | 2017-03-21 | 2018-03-07 | 조선대학교산학협력단 | An electrolyte composition containing zinc and silicon in a plasma electrolytic oxidation process and a method for manufacturing dental implants coated by hydroxyapatite containing zinc and silicon ions using the composition |
Non-Patent Citations (1)
Title |
---|
KONDO, TAKAFUMI: "Prevention of Marine Biofouling on Fishing Nets by using Titanium Wire - Producing Bactericidal Agent by Electrolysis of Seawater -", TITANIUM JAPAN, vol. 60, no. 3, 1 January 2012 (2012-01-01), pages 224 - 227, XP009537684, ISSN: 1341-1713 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lamolle et al. | Titanium implant surface modification by cathodic reduction in hydrofluoric acid: surface characterization and in vivo performance | |
US7087085B2 (en) | Surface-modified implants | |
US8920869B2 (en) | Osseoinductive metal implants for a living body and producing method thereof | |
Keim et al. | Control of magnesium corrosion and biocompatibility with biomimetic coatings | |
Gnedenkov et al. | Hydroxyapatite-containing PEO-coating design for biodegradable Mg-0.8 Ca alloy: Formation and corrosion behaviour | |
CN100584289C (en) | Osseoinductive magnesium-titanate implant and method of manufacturing the same | |
US20040210309A1 (en) | Osteophilic implants | |
JP2005526541A (en) | Surface modified implant | |
KR101835684B1 (en) | An electrolyte composition containing zinc and silicon in a plasma electrolytic oxidation process and a method for manufacturing dental implants coated by hydroxyapatite containing zinc and silicon ions using the composition | |
KR20110082658A (en) | Titanium implant surface treatment method and implant manufactured by the same | |
CN110494098B (en) | Electrolyte composition containing metal and silicon in plasma electrolytic oxidation step and method for producing dental implant | |
US20130319869A1 (en) | Metal Treatment | |
Kim et al. | Functional elements coatings on the plasma electrolytic oxidation-treated Ti–6Al–4V alloy by electrochemical precipitation method | |
RU2445409C1 (en) | Method of obtaining anticorrosion calcium-containing coatings on magnesium alloys | |
JP7083557B1 (en) | Surface treatment method for titanium or titanium alloy | |
KR101835694B1 (en) | An electrolyte composition containing strontium and silicon in a plasma electrolytic oxidation process and a method for manufacturing dental implants coated by hydroxyapatite containing strontium and silicon ions using the composition | |
WO2022138924A1 (en) | Surface treatment method for titanium or titanium alloy | |
Zhao et al. | Dual‐Protection Inorganic‐Protein Coating on Mg‐Based Biomaterials through Tooth‐Enamel‐Inspired Biomineralization | |
KR101835623B1 (en) | An electrolyte composition containing magnesium and silicon in a plasma electrolytic oxidation process and a method for manufacturing dental implants coated by hydroxyapatite containing magnesium and silicon ions using the composition | |
ES2385438T3 (en) | Biomimetic treatment based on silicon for osseointegration of metal substrates | |
KR20120101748A (en) | An implant treatment solution and a method using thereof and an implant manufactured thereby | |
KR20190121993A (en) | An electrolyte composition containing 5 ions and a method for manufacturing an implant including a plasma electrolytic oxidation process using the composition | |
KR20100078672A (en) | Method of fabricating bio-material and a bio-material for human body using the method | |
RU2693468C1 (en) | Method of producing modified biocoating on titanium implant (versions) | |
KR20220017743A (en) | Atmospheric pressure cold plasma coating device for functional surface treatment of dental implants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022519066 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21911061 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21911061 Country of ref document: EP Kind code of ref document: A1 |