WO2022138922A1 - 肝細胞の培養方法 - Google Patents

肝細胞の培養方法 Download PDF

Info

Publication number
WO2022138922A1
WO2022138922A1 PCT/JP2021/048217 JP2021048217W WO2022138922A1 WO 2022138922 A1 WO2022138922 A1 WO 2022138922A1 JP 2021048217 W JP2021048217 W JP 2021048217W WO 2022138922 A1 WO2022138922 A1 WO 2022138922A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
hepatocytes
phh
culturing
hep
Prior art date
Application number
PCT/JP2021/048217
Other languages
English (en)
French (fr)
Inventor
昭苑 粂
伸明 白木
輝彦 渡邊
Original Assignee
国立大学法人東京工業大学
関東化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, 関東化学株式会社 filed Critical 国立大学法人東京工業大学
Priority to JP2022571684A priority Critical patent/JPWO2022138922A1/ja
Publication of WO2022138922A1 publication Critical patent/WO2022138922A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to a method for culturing hepatocytes and a medium for culturing hepatocytes.
  • the adhesiveness of hepatocytes can be remarkably improved, and the function of hepatocytes can be maintained or improved.
  • the liver functions as an organ responsible for various functions of the human body. Its role is metabolism, biosynthesis, storage of essential nutrients, detoxification, activation of drugs in the body, etc.
  • Human primary cultured hepatocytes (PHH) have long been the leading golden standard for in vitro drug metabolism, toxicity, and induced pluripotent stem cell (iPS) -derived hepatocyte research (Godoy et al., 2013).
  • iPS induced pluripotent stem cell
  • PHHs are classified into two types, plateable and suspension, based on their adhesion to the matrix. Plateable type PHHs show more than 80% post-seed cell confluence, while suspension type PHHs show less than 75% confluence on the collagen I matrix. The exact cause of the different PHH phenotypes (plateable and suspension) remains unclear. Several studies suggest that it may be due to differences in donor lifestyle, genetic factors, and age. Other studies on PHH adhesion have found collagen as an excellent PHH matrix (Gjessing and Seglen, 1980). For long-term drug toxicity and clearance tests, plateable type PHH should be tested to produce a stable, confluent monolayer for one week of culture. This type of PHH is known to be much rarer and more expensive than the suspension type.
  • Non-Patent Documents 1 and 2 There have been some reports on the adhesiveness of hepatocytes such as PHH (Non-Patent Documents 1 and 2). For example, Non-Patent Document 1 reports that albumin inhibits non-specific adhesion of rat hepatocytes on polystyrene dishes.
  • An object of the present invention is to provide a means for improving the adhesiveness of hepatocytes.
  • the present inventor 1) cultivates hepatocytes in a medium containing no albumin or a medium containing a low concentration of albumin, and 2) 4 hours after the start of culturing. , 3) By culturing hepatocytes in a medium containing IBM X and forskolin, A) the adhesion of hepatocytes is significantly improved, and B) the function of hepatocytes. Based on these findings, the present invention has been completed.
  • the present invention provides the following (1) to (17).
  • a method for culturing hepatocytes which comprises a step of culturing hepatocytes in a medium containing cAMP, a cAMP analog, or a substance that increases the intracellular cAMP concentration.
  • the medium containing a cAMP, a cAMP analog, or a substance that increases the intracellular cAMP concentration is a medium containing a substance that increases the intracellular cAMP concentration according to (1) or (2).
  • a method for culturing hepatocytes which comprises a step of culturing hepatocytes in a medium containing no albumin or a medium containing less than 0.1 w / v% albumin.
  • a method for culturing hepatocytes which comprises a step of exchanging a medium 2 to 8 hours after the start of culturing.
  • a medium used for culturing hepatocytes which comprises a cAMP, a cAMP analog, or a substance that increases the intracellular cAMP concentration.
  • a medium used for culturing hepatocytes which does not contain albumin or contains less than 0.1 w / v% albumin.
  • the present invention provides a novel method for culturing hepatocytes and a novel medium for culturing hepatocytes.
  • the adhesiveness of hepatocytes can be remarkably improved, and the function of hepatocytes can be maintained or improved.
  • BSA-free iPS-Hep was shown to have better hepatocyte adhesion compared to other commercial media.
  • A Bright-field image of PHH (lot # H789) 24 hours after plating with different media.
  • B Relative cell number of PHH 24 hours after plating. The addition of BSA inhibited cell adhesion and promoted PHH (lot # H789) adhesion after 4 hours of medium exchange.
  • A Bright-field image of PHH 24 hours after plating (medium exchange was performed 4 hours after plating).
  • B Bright-field image of PHH 24 hours after plating (medium exchange was not performed 4 hours after plating).
  • C Relative cell numbers in (A) and (B). Seeding density is important for PHH adhesion.
  • A A bright-field image of PHH (Lot # H789) plated with iPS-Hep medium from which components have been removed.
  • B Relative cell number of PHH at 4 hours after plating in the medium shown in (A).
  • C Relative cell number of PHH at 24 hours after plating in the medium shown in (A).
  • D Brightfield image of PHH plated with forskolin, IBM X, or both depleted iPS-Hep medium.
  • the figure which shows the relative value of the number of adherent cells when each treatment medium is used. The data are expressed as mean ⁇ SD N 3. Differences are shown as * P ⁇ 0.05 and analyzed by one-way ANOVA Dunnett's multiple comparison test.
  • the method for culturing hepatocytes of the present invention is characterized by comprising a step of culturing hepatocytes in a medium containing cAMP, a cAMP analog, or a substance containing an intracellular cAMP concentration.
  • the hepatocytes are preferably human-derived hepatocytes, but may be non-human animal-derived hepatocytes. Examples of animals other than humans include mice, rats, guinea pigs, hamsters, rabbits, cats, dogs, sheep, cows, horses, goats, monkeys and the like.
  • hepatocytes As hepatocytes, hepatocytes differentiated and induced from pluripotent stem cells, hepatocytes obtained by further maturing such hepatocytes may be used, but preferably collected from a living body such as primary cultured hepatocytes. Use the hepatocytes that have been removed.
  • primary cultured hepatocyte can be interpreted as the meaning usually used by those skilled in the art, but the tissue or cell obtained from the living body of "primary cultured hepatocyte” is first seeded and cultured. It can also be defined as a cell.
  • any type of primary cultured hepatocytes may be used.
  • the culture method of the present invention can improve the adhesiveness of hepatocytes as described later, it is preferable to use suspension type primary cultured hepatocytes having poor adhesiveness.
  • the culture method of the present invention is to culture hepatocytes in a medium containing cAMP, cAMP analog, or a substance that increases the intracellular cAMP concentration.
  • a medium containing cAMP, cAMP analog, or a substance that increases the intracellular cAMP concentration By culturing in such a medium, the adhesiveness of hepatocytes can be improved.
  • the function of hepatocytes can be maintained or improved.
  • the function of hepatocytes means, for example, the activity of an enzyme such as cytochrome P450 (for example, CYP3A4).
  • the cAMP analog is not particularly limited, and a known cAMP analog can be used.
  • cAMPS-Sp, 6-Bnz-cAMP, 8-Bromo-cAMP, Dibutyryl-cAMP, 8-CPT-2Me-cAMP, 8-pCPT-2-O-Me-cAMP-AM, etc. can be used. ..
  • the substance that increases the intracellular cAMP concentration is not particularly limited.
  • Phosphodiesterase inhibitors inhibit phosphodiesterase, an enzyme that hydrolyzes cAMP, increase intracellular cAMP concentration, and adenylyl cyclase activator activates adenylyl cyclase, an enzyme that synthesizes cAMP. , Increases intracellular cAMP concentration. Therefore, phosphodiesterase inhibitors and adenylyl cyclase activators can be used as substances that increase the intracellular cAMP concentration. Only one of the phosphodiesterase inhibitor and the adenylyl cyclase activator may be contained in the medium, but it is preferable that both are contained in the medium.
  • IBMX 3-isobutyl-1-methylxanthine
  • a phosphodiesterase inhibitor other than IBMX examples include theophylline, papaverine, caffeine, rolipram, sildenafil, milrinone, cilostazol, vinpocetine, theobromine, and resveratrol.
  • adenylyl cyclase activator forskolin can be used, but an adenylyl cyclase activator other than forskolin may be used.
  • the medium used in the culture method of the present invention may be a medium containing cAMP, a cAMP analog, or a medium containing a substance that increases the intracellular cAMP concentration, but preferably, the intracellular cAMP concentration is adjusted.
  • a medium containing an elevating substance more preferably a medium containing a phosphodiesterase inhibitor and / or an adenylyl cyclase activator, and more preferably a medium containing IBM X and forskolin.
  • a medium in which a cAMP, a cAMP analog, or a substance that increases the intracellular cAMP concentration is added to the basal medium can be used.
  • a medium in which a cAMP, a cAMP analog, or a substance that increases the intracellular cAMP concentration is added to the basal medium include the iPS-Hep medium described in Examples.
  • the concentration of cAMP in the medium is usually 0.05 to 5.0 mM, preferably 0.1 to 1.0 mM.
  • the concentration of the cAMP analog is appropriately set depending on the type to be used, but can be the same as the concentration of the cAMP described above.
  • the concentration of the substance that increases the intracellular cAMP concentration in the medium is appropriately set depending on the type used, but when IBM X and forskolin are used, the concentration of IBM X is usually 0.05 to 5.0 mM, which is preferable. Is 0.1 to 1.0 mM, and the concentration of forskolin is usually 1 to 100 ⁇ M, preferably 5 to 50 ⁇ M.
  • basal medium examples include BME medium, BGjB medium, CMRL1066 medium, Glassgow MEM medium, Improved MEM medium, IMDM medium, Medium 199 medium, Eagles MEM medium, ⁇ MEM medium, DMEM medium, ham medium, RPMI 1640 medium, and Fischer's.
  • Examples thereof include a medium, William's E medium, and a mixed medium thereof, but the medium is not particularly limited as long as it can be used for culturing animal cells. These media are commercially available and available.
  • the medium of the present invention may contain at least one of BIO, HGF, oncostatin M, and calcitriol, which are components contained in the iPS-Hep medium.
  • the medium of the present invention may also contain a serum substitute.
  • Serum alternatives include, for example, albumin, transferrin, fatty acids, collagen precursors, trace elements (eg zinc, selenium), B-27 supplements, E5 supplements, E6 supplements, N2 supplements, Knockout Searam Replacement (KSR), 2 -Mercaptoethanol, 3'-thiolglycerol, or equivalents thereof. These serum alternatives are commercially available.
  • the medium of the present invention contains other additives such as lipids, amino acids (eg, non-essential amino acids), vitamins, growth factors, cytokines, antioxidants, 2-mercaptoethanol, pyruvate, buffers, inorganic salts, antibiotics. It may contain a substance (eg penicillin or streptomycin) or an antibacterial agent (eg amphotericin B).
  • the medium of the present invention preferably does not contain albumin or contains less than 0.1 w / v% albumin.
  • albumin concentration in the medium may be less than 0.1 w / v%, but is preferably 0.03 w / v% or less, and more preferably 0.01 w / v% or less.
  • the medium 2 to 8 hours after the start of culture.
  • the time for changing the medium may be 2 to 8 hours after the start of the culture, preferably 3 to 5 hours after the start of the culture, and more preferably 3.5 to 4.5 hours after the start of the culture.
  • the culture method of the present invention is usually carried out in a CO 2 incubator at a culture temperature suitable for culturing hepatocytes (usually about 30 to 40 ° C, preferably about 37 ° C).
  • the culture period is not particularly limited, and the culture may be terminated when the adhesiveness of hepatocytes is sufficiently improved.
  • the specific culture period is usually 0.5 to 30 days, preferably 1 to 14 days.
  • iPS-Hep medium is composed of William's E Cica-modified 2 (BioConcept), 1% Penicillin-Streptomycin Solution (BioConcept), 0.1% bovine serum albumin free fatty acid free (BSA).
  • the PHH plate media used were as follows: Optiplate (Sekisui Xenotech), Cellartis® Hepatocyte Maintenance (MM, TakaraBio), Cellartis® Enhanced hiPS-HEP Long-Term Maintenance Medium (LTMM, TakaraBio). , Cellartis® Power TM Primary HEP Medium (HEP, TakaraBio).
  • PHH Suspended primary cultured hepatocytes
  • the antibodies used in the experiment were: goat anti-albumin (Bethyl), Alexa Fluor® 488-labeled phalloidin (Cell Signaling Technnology), Alexa Fluor® 568-labeled antibody (Biotium). Cells were analyzed using Metamorph Image Analysis Software (Molecular Devices).
  • P450-Glo Assay for P450 enzyme activity and cell viability P450-Glo (Promega) was used to quantify P450 enzyme activity according to the manufacturer's instructions. Briefly, the medium was replaced with 100 ⁇ L of pre-warmed medium + luciferin IPA (1000-fold diluted, Promega) (Plate A) and incubated for 1 hour. Then, 50 ⁇ L of the reaction solution (incubated medium) was added to 50 ⁇ L IPA in the luciferin detection reagent (LDR) prepared on the plate B, and the measurement was performed using a GloMAX plate reader (Promega). The reading result was calculated as RLU (Relative Lights Unit) and normalized by the value obtained by the cell viability assay.
  • RLU Relative Lights Unit
  • the cell viability assay was performed using CellTiterGlo (Promega) according to the manufacturer's instructions. Briefly, 50 ⁇ L of CellTiter-Glo reagent was added to the previously remaining 50 ⁇ L of incubation medium. Cells were incubated for 20 minutes at room temperature and then measured using a GloMAX plate reader.
  • BSA-free iPS-Hep showed better hepatocyte adhesion compared to the case of using other commercially available media.
  • hiPS-Hep Human primary cultured hepatocytes (PHH) were plated with hiPS-Hep (with or without 0.1% BSA) or commercially available medium (Optiplate, MM, LTMM, HEP).
  • PHH plated with iPS-Hep without BSA showed the best adhesion compared to other treatments (Fig. 1).
  • iPS-Hep without BSA was compared with Optiplate, which is a plate medium recommended by PHH provider (Sekisui Xenotech). It was confirmed that the number of cells was 1.5 times or more. This result suggests that the addition of BSA inhibits the adhesion of PHH to the culture plate.
  • PHH treated with iPS-Hep at x1 dilution showed higher relative cell numbers than those treated with Optiplate (Fig. 3C).
  • PHH lot H877 showed the optimum seeding density in x4 dilution and iPS-Hep treatment (Fig. 3B, D).
  • PHH Lot H877 showed higher cell numbers compared to Optiplate (Fig. 3D). This result suggests that the PHH of each lot has a different optimal cell seeding number.
  • the optimum seeding density obtained from this experiment was used in the following experiments.
  • HCM HCM
  • IBM X and forskolin to HCM also enhanced PHH adhesion (Fig. 5C).
  • the P450 enzyme activity was maintained in PHH plated with iPS-Hep.
  • iPS-Hep medium could be used to maintain PHH.
  • PHH was plated with iPS-Hep containing or not containing BSA, or HEP, and cultured until the 6th day. Then, the enzyme activity of PHH was measured.
  • PHH that was directly plated with uncultured PHH or HEP medium and cultured for 6 days PHH that was plated with iPS-Hep containing or not containing 0.1% BSA and cultured for 6 days had CYP3A4 activity. It was found to increase (Fig. 6B). This result suggests that iPS-Hep medium not only promotes the adhesion of PHH but also maintains the enzymatic activity of PHH.
  • PHH plated with iPS-Hep maintained its differentiated state. Furthermore, a comparison was made between the case where PHH was plated with iPS-Hep and the case where PHH was plated with HCM medium supplemented with IBM X and forskolin. Adhesion of PHH cells was assessed 24 hours after plating. There was no difference in the number of cells adhered between the two batches of iPS-Hep (w / o BSA). PHH plated with HCM supplemented with IBM X and forskolin had increased adhesiveness compared to HCM alone and showed similar cell numbers to iPS-Hep (Fig. 7B).
  • CYP3A activity was assayed by measuring 1'OH midazolam, which is a metabolite of midazolam.
  • the iPS-HEP medium had significantly higher CYP3A activity than HCM or HCM supplemented with IBM X and forskolin (Fig. 7D).
  • the results show that PHH plated with iPS-HEP medium provides better conditions for maintaining PHH function compared to HCM supplemented with IBM X and forskolin.
  • Other components of iPS-HEP may be important for maintaining the function of PHH.
  • the liver is not an organ that is particularly rich in extracellular matrix (ECM) compared to other organs, but it has been reported that the spatial distribution of ECM is clear (Godoy et al., 2013).
  • ECM extracellular matrix
  • Collagen is one of the major components of ECM in hepatocytes and has been reported to enhance the viability and differentiation characteristics of PHH in culture (Page et al., 2007).
  • Integrins are the major proteins that act as cell adhesion receptors and function to transmit information about their ligands into cells to regulate cell migration, cell survival, proliferation, and prevention of apoptosis.
  • Integrin has been reported to transmit signals in cooperation with tyrosine kinase receptors such as HGF, EGF, VEGF, and PDGF, and growth factor receptors (Kim et al., 2011). Integrins have been reported to activate downstream signaling kinases associated with integrins via focal adhesion kinase (FAK) -AKT signaling (Visavadiya et al., 2016).
  • FAK focal adhesion kinase
  • Example 2 Materials and methods (1) PHH culture Thaw commercially available cryopreservation suspension-type primary cultured human hepatocytes (PHH) (Sekisui Xenotech Lot no. H789> 4.0 ⁇ 10 6 cells / viaal) with ThawSTAR TM (Biocision). After decanting to OptiThaw medium (Sekisui Xenotech), the cells were quantified with a cell counting device (Invitrogen TM Countess II Automated Cell Countess; ThermoFisher). The cells were centrifuged at 100 xg for 5 minutes.
  • PHH culture Thaw commercially available cryopreservation suspension-type primary cultured human hepatocytes (PHH) (Sekisui Xenotech Lot no. H789> 4.0 ⁇ 10 6 cells / viaal) with ThawSTAR TM (Biocision). After decanting to OptiThaw medium (Sekisui Xenotech),
  • the cell pellet was resuspended in the treatment solution, seeded on a 96-well plate (Collagen Type I-Coated, Flat-Bottom Microplates plate, Gibco TM ) at 75 ⁇ L / well (1.5 ⁇ 10 5 cells / well), and 4 at 37 ° C. Incubated for hours.
  • Treatment medium 1 iPS-Hep (w / o BSA), 2) OptiPLATE (Sekisui Xenotech, Cat.No. K8200), 3) HCM (Lonza, Cat.No. CC3198), and 4) In vitro GRO CP medium (BioIVT, Cat.No. IVT-Z990003) was used.
  • Antibodies used were: goat anti-albumin (ALB; A80-129A, 1: 100, Bethyl Laboratories), donkey anti-goat IgG (H + L) total antibody CF 568 Dye (20106, Biotium), Phalloidin-i Fluor. TM 488 Conjugate antibody (23115, AAT Bioquest).
  • Image acquisition and quantification Image acquisition was performed using ImageXpress (Molecular Devices). Image and plate metadata was extracted with ImageXpress, analyzed using CellProfiler (McQuin et al., 2018), and cells were identified and characterized using a modified pipeline. The resulting database was then analyzed using the CellProfiler Analyst Cell Classification Module (Jones et al., 2008). The data was processed by Microsoft Excel and GraphPad Prism.
  • the present invention relates to a method for culturing hepatocytes, it can be used in the industrial field in which hepatocytes are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

肝細胞の接着性を向上させることを目的として、cAMP、cAMPアナログ、又は細胞内のcAMP濃度を上昇させる物質を含む培地で、肝細胞を培養する工程を含むことを特徴とする肝細胞の培養方法を提供する。

Description

肝細胞の培養方法
 本発明は、肝細胞の培養方法、及び肝細胞培養用培地に関する。本発明の培養方法を用いることにより、肝細胞の接着性を著しく向上させることができ、また、肝細胞の機能を維持又は向上させることができる。
 肝臓は、人体の様々な機能を担う臓器として機能している。その役割は、代謝、生合成、必須栄養素の貯蔵、解毒、薬物の体内活性化などである。ヒト初代培養肝細胞(PHH)は、長い間、体外での薬物代謝、毒性、及び人工多能性幹細胞(iPS)由来の肝細胞研究の主要なゴールデンスタンダードとなってきた(Godoy et al., 2013)。肝細胞の機能を理解し、特性を把握し、肝細胞の利用法を探る努力がなされてきた(Godoy et al., 2013)。しかし、その貴重な特性にもかかわらず、その最適利用を妨げる大きな問題がある。市販されているPHHは、そのマトリックスへの接着性に基づいて、plateableとsuspensionの2つのタイプに分類されている。plateableタイプのPHHは、80%を超える播種後の細胞コンフルエンスを示すが、suspensionタイプのPHHは、コラーゲンIマトリックス上で75%未満のコンフルエンスしか示さない。異なるPHH表現型(plateableとsuspension)の明確な原因は不明のままである。いくつかの研究は、ドナーのライフスタイル、遺伝的要因、及び年齢の違いに起因する可能性があることを提案している。PHHの接着に関する他の研究は、優れたPHHマトリックスとしてコラーゲンを発見している(Gjessing and Seglen, 1980)。長期の薬物毒性及びクリアランス試験では、培養期間の1週間、安定したコンフルエントな単層を生成するために、plateableタイプのPHHを試験する必要がある。このタイプのPHHは、suspensionタイプと比較して非常に希少で、高価であることが知られている。
 PHHなどの肝細胞の接着性に関しては、以前から幾つか報告がある(非特許文献1及び2)。例えば、非特許文献1は、アルブミンがポリスチレンディッシュ上のラット肝細胞の非特異的な接着を阻害することを報告している。
Gjessing, R., and Seglen, P.O. (1980). Adsorption, simple binding and complex binding of rat hepatocytes to various in vitro substrata. Exp. Cell Res. 129, 239-249. Blaauboer, B.J., and Paine, A.J. (1979). Attachment of rat hepatocytes to plastic substrata in the absence of serum requires protein synthesis. Biochem. Biophys. Res. Commun. 90, 368-374.
 plateableタイプのPHHの有用性を考慮すると、肝細胞の接着性の改善は重要な課題である。しかし、現時点においては接着性を大きく改善する有効な手段は見出されていない。本発明の目的は、肝細胞の接着性を向上させる手段を提供することにある。
 本発明者は、上記課題を解決するため鋭意検討を重ねた結果、1)アルブミンを含有しない培地又は低濃度のアルブミンを含有する培地で肝細胞を培養すること、2)培養開始から4時間後に、肝細胞を培養する培地を交換すること、3)IBMX及びフォルスコリンを含有する培地で肝細胞を培養することにより、A)肝細胞の接着性が著しく向上すること、B)肝細胞の機能が維持又は向上することを見出し、これらの知見に基づき、本発明を完成するに至った。
 即ち、本発明は、以下の(1)~(17)を提供するものである。
(1)cAMP、cAMPアナログ、又は細胞内のcAMP濃度を上昇させる物質を含む培地で、肝細胞を培養する工程を含むことを特徴とする肝細胞の培養方法。
(2)肝細胞が、初代培養肝細胞であることを特徴とする(1)に記載の肝細胞の培養方法。
(3)cAMP、cAMPアナログ、又は細胞内のcAMP濃度を上昇させる物質を含む培地が、細胞内のcAMP濃度を上昇させる物質を含む培地であることを特徴とする(1)又は(2)に記載の肝細胞の培養方法。
(4)細胞内のcAMP濃度を上昇させる物質が、ホスホジエステラーゼ阻害剤及び/又はアデニリルシクラーゼ活性化剤であることを特徴とする(3)に記載の肝細胞の培養方法。
(5)細胞内のcAMP濃度を上昇させる物質が、IBMX及びフォルスコリンであることを特徴とする(3)に記載の肝細胞の培養方法。
(6)培地が、アルブミンを含まない培地、又は0.1w/v%未満のアルブミンを含む培地であることを特徴とする(1)乃至(5)のいずれかに記載の肝細胞の培養方法。
(7)培養開始から2~8時間後に培地を交換することを特徴とする(1)乃至(6)のいずれかに記載の肝細胞の培養方法。
(8)アルブミンを含まない培地、又は0.1w/v%未満のアルブミンを含む培地で、肝細胞を培養する工程を含むことを特徴とする肝細胞の培養方法。
(9)肝細胞を培養する方法であって、培養開始から2~8時間後に培地を交換する工程を含むことを特徴とする肝細胞の培養方法。
(10)肝細胞の培養に用いられる培地であって、cAMP、cAMPアナログ、又は細胞内のcAMP濃度を上昇させる物質を含むことを特徴とする培地。
(11)肝細胞が、初代培養肝細胞であることを特徴とする(10)に記載の培地。
(12)細胞内のcAMP濃度を上昇させる物質を含むことを特徴とする(10)又は(11)に記載の培地。
(13)細胞内のcAMP濃度を上昇させる物質が、ホスホジエステラーゼ阻害剤及び/又はアデニリルシクラーゼ活性化剤であることを特徴とする(12)に記載の培地。
(14)細胞内のcAMP濃度を上昇させる物質が、IBMX及びフォルスコリンであることを特徴とする(12)に記載の培地。
(15)培地が、アルブミンを含まない培地、又は0.1w/v%未満のアルブミンを含む培地であることを特徴とする(10)乃至(14)のいずれかに記載の培地。
(16)肝細胞の培養に用いられる培地であって、アルブミンを含まないか、又は0.1w/v%未満のアルブミンを含むことを特徴とする培地。
(17)肝細胞が、初代培養肝細胞であることを特徴とする(16)に記載の培地。
 本明細書は、本願の優先権の基礎である日本国特許出願、特願2020-217379の明細書及び/又は図面に記載される内容を包含する。
 本発明は、肝細胞の新規な培養方法、及び肝細胞培養用の新規な培地を提供する。本発明の培養方法を用いることにより、肝細胞の接着性を著しく向上させることができ、また、肝細胞の機能を維持又は向上させることができる。
BSAを含まないiPS-Hepは、他の市販培地と比較して肝細胞の接着性が良好であることを示した。(A)異なる培地を用いてプレーティングした後24時間時点のPHH (ロット#H789)の明視野画像。(B)プレーティング後24時間時点のPHHの相対的な細胞数。 BSAの添加により細胞接着が阻害され、4時間の培地交換でPHH(ロット#H789)の接着が促進された。(A)プレーティング後24時間時点のPHHの明視野画像(プレーティング後4時間時点で培地交換を行った。)。(B)プレーティング後24時間時点のPHHの明視野画像(プレーティング後4時間時点で培地交換を行わなかった。)。(C)(A)及び(B)における相対的な細胞数。 PHHの接着には播種密度が重要。(A), (B) プレーティング後24時間時点のPHHの明視野画像。PHHロット#H789(A)及び#H877(B)を段階希釈x1、x2、x4、x8及びx16で処理し、96ウェルプレートにプレーティングした。(C), (D)プレーティング後24時間時点におけるPHHロット#H789(C)又はロット#877(D)の相対的な細胞数。Optiplate(オープンバー)又はiPS-Hep(BSAを含まない)(クローズドバー)を用いて、PHHをプレーティングした。(A-D)におけるx1希釈の細胞密度は、3.75x105細胞/ウェルである。 IBMXとフォルスコリンは初期のPHH接着を強化した。(A)成分除去したiPS-Hep培地を用いてプレーティングしたPHH(ロット#H789)の明視野画像。(B)(A)に示す培地でプレーティング後4時間時点におけるPHHの相対的な細胞数。(C)(A)に示す培地でプレーティング後24時間時点におけるPHHの相対的な細胞数。(D) フォルスコリン、IBMX、又は両方の除去されたiPS-Hep培地を用いてプレーティングされたPHHの明視野画像。(E)(D)に示す培地でプレーティングした後24時間時点におけるPHHの相対的な細胞数。データは、平均±SD N=3として表される。差は**p<0.01として示され、one-way ANOVA Dunnettの多重比較検定で分析された。 市販培地へのIBMXとフォルスコリンの添加は、PHHの接着性を強化した。(A)プレーティング後4時間(左)又は24時間(右)時点におけるPHH(ロット#H789)の明視野画像。BSAを含まないiPS-Hep培地、BSAとフォルスコリンとIBMXを含まないiPS-Hep培地、フォルスコリンとIBMXを含まないOptiplate、及びフォルスコリンとIBMXを加えたOptiplateを用いた。(B)(A)に示す培地を用いてプレーティングしたPHHの相対的な細胞数。(C)IBMX及びフォルスコリンを添加したHCM培地を用いてプレーティングしたPHHの相対的な細胞数。データは、平均±SD N=3として表される。差は**p<0.01として示され、one-way ANOVA Dunnettの多重比較検定(B)又はStudent's t-test(C)で分析された。 P450酵素活性はiPS-Hepを用いてプレーティングされたPHHで維持された。(A)実験デザイン。PHH(ロット#H789)を、BSA含有(0.1%)若しくはBSA不含iPS-Hep、又はHEP培地を用いて、プレーティングし、6日目(D6)まで培養し、P450-Glo CYP3A4アッセイ(IPA)を用いてCYP3A4活性をアッセイした。(B)(A)で示したように培養したPHHのP450 3A4活性。 iPS-Hepを用いてプレーティングされたPHHでは分化状態が維持されていた。(A), (B)BSA不含(w/o)iPS-Hep、HCM、又はIBMXとフォルスコリンを含むHCMを用いて、プレーティングした後1日目のPHH(ロット#H789)の明視野画像(A)又は細胞数(B)。(C), (D)BSA不含(w/o)iPS-Hep、HCM、又はIBMXとフォルスコリンを含むHCMを用いて、プレーティングした後7日目のALBとファロイジンの免疫染色(C)又はミダゾラムの代謝物によって測定されたCYP3A活性(D)。 各処理培地を使用した場合の接着細胞数の相対値を示す図。データは、平均±SD N=3として表される。差は*P≦0.05として示され、one-way ANOVA Dunnettの多重比較検定で分析された。
 以下、本発明を詳細に説明する。
 本発明の肝細胞の培養方法は、cAMP、cAMPアナログ、又は細胞内のcAMP濃度を上昇させる物質を含む培地で、肝細胞を培養する工程を含むことを特徴とするものである。
 肝細胞は、ヒト由来の肝細胞が好ましいが、ヒト以外の動物由来の肝細胞であってもよい。ヒト以外の動物としては、例えば、マウス、ラット、モルモット、ハムスター、ウサギ、ネコ、イヌ、ヒツジ、ウシ、ウマ、ヤギ、サルなどを挙げることができる。
 肝細胞は、多能性幹細胞から分化、誘導された肝細胞、そのような肝細胞を更に成熟させた肝細胞を使用してもよいが、好ましくは、初代培養肝細胞のような生体から採取された肝細胞を使用する。ここで、「初代培養肝細胞」の意味は、当業者が通常用いる意味に解釈することができるが、「初代培養肝細胞」を生体から採取した組織や細胞を最初に播種して培養した肝細胞と定義することもできる。
 初代培養肝細胞には、plateableタイプとsuspensionタイプとがあるが、本発明においてはいずれのタイプの初代培養肝細胞を使用してもよい。但し、本発明の培養方法は、後述するように肝細胞の接着性を改善できるので、接着性の乏しいsuspensionタイプの初代培養肝細胞を使用することが好ましい。
 本発明の培養方法は、cAMP、cAMPアナログ、又は細胞内のcAMP濃度を上昇させる物質を含む培地で、肝細胞を培養する。このような培地で培養することにより、肝細胞の接着性を向上させることができる。また、肝細胞の機能の維持又は向上も図ることができる。ここで、肝細胞の機能とは、例えば、シトクロムP450(例えば、CYP3A4)などの酵素活性を意味する。
 cAMPアナログは特に限定されず、公知のcAMPアナログを使用することができる。例えば、cAMPS-Sp、6-Bnz-cAMP、8-Bromo-cAMP、Dibutyryl-cAMP、8-CPT-2Me-cAMP、8-pCPT-2-O-Me-cAMP-AMなどを使用することができる。
 細胞内のcAMP濃度を上昇させる物質は特に限定されない。ホスホジエステラーゼ阻害剤は、cAMPを加水分解する酵素であるホスホジエステラーゼを阻害し、細胞内のcAMP濃度を上昇させ、アデニリルシクラーゼ活性化剤は、cAMPを合成する酵素であるアデニリルシクラーゼを活性化し、細胞内のcAMP濃度を上昇させる。従って、ホスホジエステラーゼ阻害剤やアデニリルシクラーゼ活性化剤は、細胞内のcAMP濃度を上昇させる物質として使用できる。ホスホジエステラーゼ阻害剤とアデニリルシクラーゼ活性化剤は、いずれか一方のみが培地中に含まれていてもよいが、両方が培地中に含まれていることが好ましい。
 ホスホジエステラーゼ阻害剤としては、IBMX(3-イソブチル-1-メチルキサンチン)を使用できるが、IBMX以外のホスホジエステラーゼ阻害剤を使用してもよい。IBMX以外のホスホジエステラーゼ阻害剤としては、テオフィリン、パパベリン、カフェイン、ロリプラム、シルデナフィル、ミルリノン、シロスタゾール、ビンポセチン、テオブロミン、レスベラトロールなどを挙げることができる。アデニリルシクラーゼ活性化剤としては、フォルスコリンを使用できるが、フォルスコリン以外のアデニリルシクラーゼ活性化剤を使用してもよい。
 本発明の培養方法で使用する培地は、上述したように、cAMP、cAMPアナログ、又は細胞内のcAMP濃度を上昇させる物質を含む培地であればよいが、好適には、細胞内のcAMP濃度を上昇させる物質を含む培地であり、より好適には、ホスホジエステラーゼ阻害剤及び/又はアデニリルシクラーゼ活性化剤を含む培地であり、更に好適には、IBMX及びフォルスコリンを含む培地である。
 本発明の培地としては、基礎培地に、cAMP、cAMPアナログ、又は細胞内のcAMP濃度を上昇させる物質が添加されている培地を使用することができる。このような培地の具体例としては、実施例に記載したiPS-Hep培地を挙げることができる。cAMPの培地中の濃度は、通常、0.05~5.0mMであり、好ましくは、0.1~1.0 mMである。cAMPアナログの濃度は、用いる種類によって適宜設定されるが、前述したcAMPの濃度と同様の濃度とすることができる。細胞内のcAMP濃度を上昇させる物質の培地中の濃度は、用いる種類によって適宜設定されるが、IBMXとフォルスコリンを使用する場合は、IBMXの濃度は、通常、0.05~5.0mMであり、好ましくは、0.1~1.0 mMであり、フォルスコリンの濃度は、通常、1~100μMであり、好ましくは、5~50μMである。
 基礎培地としては、例えば、BME培地、BGjB培地、CMRL 1066培地、Glasgow MEM培地、Improved MEM培地、IMDM培地、Medium  199培地、Eagles MEM培地、αMEM培地、DMEM培地、ハム培地、RPMI 1640培地、Fischer’s培地、William’s E培地、及びこれらの混合培地等を挙げることができるが、動物細胞の培養に用いることのできる培地であれば特に限定されない。これらの培地は市販されており、入手可能である。
 本発明の培地は、iPS-Hep培地に含まれる成分であるBIO、HGF、オンコスタチンM、及びカルシトリオールの少なくとも一つを含んでいてもよい。また、本発明の培地は、血清代替物を含んでいてもよい。血清代替物としては、例えば、アルブミン、トランスフェリン、脂肪酸、コラーゲン前駆体、微量元素(例えば亜鉛、セレン)、B-27サプリメント、E5サプリメン、E6サプリメン、N2サプリメント、ノックアウトシーラムリプレースメント(KSR)、2-メルカプトエタノール、3'-チオールグリセロール、又はこれらの均等物が挙げられる。これらの血清代替物は、市販されている。本発明の培地は、他の添加物、例えば、脂質、アミノ酸(例えば、非必須アミノ酸)、ビタミン、増殖因子、サイトカイン、抗酸化剤、2-メルカプトエタノール、ピルビン酸、緩衝剤、無機塩類、抗生物質(例えばペニシリンやストレプトマイシン)又は抗菌剤(例えばアンホテリシンB)等を含有してもよい。
 本発明の培地は、アルブミンを含まないか、又は0.1w/v%未満のアルブミンを含む培地であることが好ましい。このように培地中のアルブミンの量を制限することによっても、肝細胞の接着性の向上や肝細胞の機能の維持又は向上を図ることができる。培地中のアルブミン濃度は0.1w/v%未満であればよいが、0.03w/v%以下であることが好ましく、0.01w/v%以下であることがより好ましい。
 本発明の培養方法では、培養開始から2~8時間後に培地を交換することが好ましい。このような培地交換によっても、肝細胞の接着性の向上や肝細胞の機能の維持又は向上を図ることができる。培地交換の時期は、培養開始から2~8時間後であればよいが、培養開始から3~5時間後であることが好ましく、培養開始から3.5~4.5時間後であることがより好ましい。
 本発明の培養方法は、肝細胞の培養に適した培養温度(通常30~40℃、好ましくは37℃程度)で、通常、CO2インキュベーター内で行われる。培養期間は特に限定されず、肝細胞の接着性が十分に向上した時点で、培養を終了してよい。具体的な培養期間は、通常、0.5~30日であり、好ましくは、1~14日である。
 以下に、実施例により本発明を更に詳細に説明するが、本発明はこの実施例に限定されるものではない。
〔実施例1〕
(A)材料と方法
(1)材料
 iPS-Hep培地はWilliam's E Cica-modified 2(BioConcept)で構成されており、1% Penicillin-Streptomycin Solution (BioConcept)、0.1% ウシ血清アルブミン遊離脂肪酸フリー(BSA-FAF;Proliant)、5μg/mL インスリン(BioConcept)、5μg/mL トランスフェリン(BioConcept)、10ng/mL オンコスタチンM(Peprotech)、10ng/mL HGF(Peprotech)、10μM デキサメタゾン(Biogems)、1.5μM BIO(Biogems)、0.5mM IBMX(Biogems)、10μM フォルスコリン(Biogems)、1μM カルシトリオール(Biogems)が補充されている。
 使用したPHHプレート培地は以下の通りである:Optiplate(Sekisui Xenotech)、Cellartis(登録商標) Hepatocyte Maintenance(MM、TakaraBio)、Cellartis(登録商標) Enhanced hiPS-HEP Long-Term Maintenance Medium(LTMM、TakaraBio)、Cellartis(登録商標) PowerTM Primary HEP Medium(HEP、TakaraBio)。
(2)懸濁初代培養肝細胞(PHH)
 市販のsuspensionタイプのPHHをSekisui Xenotechから購入した(H1500.H15B、女性シングルドナーsuspensionタイプ、ロット:H789、H877)。使用するまで-150℃で保存した。
(3)凍結保存されたPHHの解凍
 凍結保存されたPHHを、PHH解凍培地(OptiThaw、Sekisui Xenotech)を用いて、ThawSTAR(Medcistion)上、37℃で解凍した。細胞数生存率は、自動細胞カウンターであるCell Countess IITM(Thermo fisher Scientific)を用いて、トリパンブルー排除法(Sekisui Xenotech)で計算した。次いで、細胞懸濁液を室温(rt)、100 x gで、5分間遠心分離した。上清を除去した後、細胞を2.0-2.5x106細胞/mlの密度で新鮮な培地に再懸濁した。
(4)凍結保存されたPHHのプレーティング及び培地交換
 細胞懸濁液を96ウェル、コラーゲンタイプIコート(Gibco)にプレーティングした。37℃で4時間インキュベートした後、培地交換を行った。次の培地交換は24時間ごとに行った。
(5)免疫細胞化学
 細胞を、インキュベートし、4%パラホルムアルデヒド(Nacalai Tesque)中で各時点において固定し、その後、0.1%トリトンX-100(Nacalai Tesque)で透過処理した。透過処理した細胞を、PBST(0.1% Tween-20 in PBS)中の20% Blocking One溶液(Nacalai Tesque、Japan)でブロッキングした。抗体をPBST(0.1% Tween-20 in PBS)中の20% Blocking One溶液(Nacalai Tesque、Japan)で希釈した。細胞を6-ジアミノ-2-フェニルインドール(DAPI)(Roche Diagnostics、Switzerland)でカウンター染色した。実験に使用した抗体は以下の通りである:ヤギ抗アルブミン(Bethyl)、Alexa Fluor(登録商標) 488標識ファロイジン(Cell Signalling Technnology)、Alexa Fluor(登録商標) 568標識抗体(Biotium)。細胞は、Metamorph Image Analysis Software(Molecular Devices)を用いて解析した。
(6)P450酵素活性と細胞生存率のアッセイ
 P450酵素活性の定量には、製造者の指示書に従ってP450-Glo(Promega)を用いた。簡単に言えば、予め温めておいた培地100μL+ルシフェリンIPA(1000倍希釈、Promega)(プレートA)で培地を交換し、1時間インキュベートした。その後、プレートBで調製したルシフェリン検出試薬(LDR)中の50μL IPAに反応液(インキュベートした培地)50μLを添加し、GloMAXプレートリーダー(Promega)を用いて測定を行った。読み取り結果をRLU(Relative Lights Unit)として算出し、細胞生存率アッセイで得られた値で正規化した。
 細胞生存率アッセイは、製造業者の指示書に従って、Cell Titer Glo(Promega)を用いて実施した。簡単に言えば、Cell Titer-Glo試薬50μLを、以前に残っていた50μLのインキュベーション培地に添加した。細胞を室温で20分間インキュベートした後、GloMAXプレートリーダーを用いて測定した。
(7)細胞接着性評価
 細胞接着性評価は、位相差顕微鏡画像を用いた。接着した細胞は伸長した形態を示すが、手作業でカウントした。
(8)CYP代謝物の測定 
 培地を除去し、37℃で基質(ミダゾラム5μM)を含むWilliam’s E(Gibco)+Primary Hepatocyte Maintenance Supplements(Gibco)(以下、トランスポートバッファー(TB))に交換し、10分間プレインキュベートした。ミダゾラムを含むTBを添加してアッセイを開始した。120 分間のインキュベーション後、全てのインキュベーション培地をサンプルとして回収し、ミダゾラムの代謝物である1'-OH ミダゾラムの LC-MS/MS(島津製作所、LCMS-8050)分析を行うまで-80℃で保存した。ウェルあたりのタンパク質量は、製造者の指示書に従い、Bio-Radタンパク質アッセイキット(Bio-Rad)を用いて定量した。主要代謝物である1'-OHミダゾラムの産生は、細胞タンパク質量で補正した。
(B)結果
(1)BSAを含まないiPS-Hepは、他の市販培地を使用した場合と比較して、より優れた肝細胞接着性を示した。
 まず、いくつかの市販培地を用いたプレート培地と、本発明者が開発したiPS-肝成熟培地(hiPS-Hep)を用いたプレート培地の比較を行った。ヒト初代培養肝細胞(PHH)は、hiPS-Hep(0.1%BSA含有又は不含)又は市販の培地(Optiplate, MM, LTMM, HEP)を用いてプレーティングした。プレーティング後24時間時点で、BSAを添加せずにiPS-Hepを用いてプレーティングしたPHHは、他の処理と比較して最も優れた接着性を示した(図1)。手作業による明視野位相差顕微鏡にて細胞数測定の結果(図1b)、BSAを添加していないiPS-Hepは、PHH プロバイダー(Sekisui Xenotech)が推奨するプレート培地である Optiplate と比較して、1.5 倍以上の細胞数を示すことが確認された。この結果は、BSA添加が培養プレートへのPHHの接着を阻害することを示唆している。
(2)BSAの添加により細胞接着が阻害され、4時間の培地交換でPHHの接着が促進された。
 BSAがPHHの接着に及ぼす影響をさらに確認するために、PHHを異なるBSA濃度のiPS-hep培地にプレーティングし、プレーティング後24時間時点の形態と細胞数の定量化によって検討した。また、4時間後の培地交換の必要性も試験した。BSA濃度0%のiPS-Hep培地を用いて4時間後に培地交換を行ったPHHは、他の処理法と比較して最も高い相対的な細胞数を示した(図2)。BSA濃度以外にも、4時間後に培地交換を行ったPHHは、4時間後に培地交換を行わないPHHと比較して、低いBSA濃度でも全体的に高い細胞接着性を示した(図2b)。
(3)PHHの接着には播種密度が重要
 次に、PHHの接着のための最適な播種密度を検討した。2つの異なるロットのPHH(H877及びH789)をx1、x2、x4、x8及びx16の段階希釈を行い、BSAを含まないiPS-Hep又はOptiplateを用いて、96ウェルコラーゲンプレート上にプレーティングした。x1希釈では、3.75×105個の細胞をコラーゲンウエルに播種した。x2希釈では、細胞数はx1希釈の半分になるようにした。H789は、x1希釈、即ち、BSAを含まないiPS-Hepにおける3.75x105細胞/ウェルで最高の細胞接着を示した(図3A、C)。x1希釈でiPS-Hep処理したPHHは、Optiplate処理に比べて高い相対的な細胞数を示した(図3C)。一方、PHHロットH877は、x4希釈及びiPS-Hep処理において最適な播種密度を示した(図3B、D)。細胞数に関しては、PHHロットH877は、Optiplateと比較して高い細胞数を示した(図3D)。この結果は、各ロットのPHHが異なる最適細胞播種数を有していることを示唆している。この実験から得られた最適播種密度を、以下の実験に使用した。
(4)IBMXとフォルスコリンは、初期のPHHの接着を強化した。
 PHHの接着に関与する成分を探索するために、さらなる検討を行った。PHHをiPS-Hep培地で単一又は複数の成分を除去して処理した。その結果、IBMX及びフォルスコリンの除去は、プレーティング後4時間及び24時間の両方において、コントロール(完全なiPS-Hep)と比較して、初期のPHHの接着細胞数を有意に減少させたことを示した(図4)。
 次いで、IBMX及びフォルスコリンの効果を、IBMX又はフォルスコリン含有又は不含のOptiplateを用いてPHHをプレーティングし、BSA不含又はBSA、IBMX及びフォルスコリン不含のiPS-Hepと比較することによって試験した。その結果、IBMXとフォルスコリンを添加したOptiplateに、PHHをプレーティングした場合、接着している細胞数が有意に増加することが明らかになった。この結果から、IBMXとフォルスコリンのPHHへの接着に対する増強効果がさらに確認された(図5A、B)。
 同様の検討は、別の市販の培地であるHCMでも確認された。HCMにIBMXとフォルスコリンを添加しても、PHHの接着を増強した(図5C)。 
 IBMX及びフォルスコリンの両方の主な作用は、細胞内の環状アデノシン一リン酸(cAMP)を増加させることである。本発明者の結果は、細胞内cAMPの増加がPHHの早期接着に重要であることを示唆した。しかし、cAMPがPHHの接着を制御する詳細なメカニズムはまだ解明されていない。
(5)iPS-Hepを用いてプレーティングされたPHHにおいて、P450酵素活性は維持されていた。
 次に、6日間培養後のPHHにP450の酵素活性が保持されているかどうかを調べることで、iPS-Hep 培地がPHHの維持に使用できるかどうかを確認した。PHHは、BSA含有若しくは不含のiPS-Hep、又はHEPを用いてプレーティングし、6日目まで培養した。その後、PHHの酵素活性を測定した。無培養のPHHやHEP培地で直接プレーティングされ、6日間培養されたPHHに比べて、0.1%BSA含有又は不含のiPS-Hepでプレーティングされ、6日間培養されたPHHは、CYP3A4活性が増加することが見出された(図6B)。この結果からiPS-Hep培地はPHHの接着を促進するだけでなく、PHHの酵素活性を維持していることが示唆された。
(6)iPS-Hepを用いてプレーティングされたPHHでは分化状態が維持されていた。
 さらに、PHHをiPS-Hepを用いてプレーティングした場合と、IBMXとフォルスコリンを添加したHCM培地を用いてプレーティングした場合の比較を行った。PHH細胞の接着性は、プレーティング後24時間の時点において評価した。iPS-Hep (w/o BSA)の2バッチ間では、細胞の接着数に差はなかった。IBMX及びフォルスコリンを添加したHCMを用いてプレーティングされたPHHは、HCMのみの場合と比較して接着性が増加し、iPS-Hepと同程度の細胞数を示した(図7B)。しかし、iPS-Hepで培養したPHHはプレーティング後7日目において、周方向のファロイジン染色が良好に形成され、細胞との接触部位に強い染色が認められた(図7C)。しかしながら、HCM又はIBMXとフォルスコリンを添加したHCMでは、強いファロイジン陽性ストレスファイバーが観察された(図7C)。これは脱分化肝細胞で観察されたものと同様であった(Sun et al., 2019)。この結果から、IBMXとフォルスコリンを添加したHCMで培養したPHHは接着性の増加を示したが、PHHは脱分化を受ける可能性があることが示唆された。しかし、このような脱分化を受ける現象は、iPS-Hepで培養したPHHでは観察されなかった。
 次に、ミダゾラムの代謝物である1'OHミダゾラムを測定することでCYP3A活性をアッセイした。その結果、iPS-HEP培地では、HCM又はIBMX及びフォルスコリンを添加したHCMと比較して、CYP3A活性が有意に高かった(図7D)。この結果は、iPS-HEP培地を用いてプレーティングされたPHHは、IBMX及びフォルスコリンを添加したHCMと比較してPHHの機能を維持するためのより良い条件を提供することを示す。iPS-HEPの他の成分は、PHHの機能を維持するために重要である可能性がある。
(C)考察
 ここでは、BSAを含まないiPS-Hep培地を用いてプレーティングすることで、suspensionタイプの接着性を高めることができることを見出した。培地中のIBMXとフォルスコリンの存在は、プレートへのPHHの接着を促進する役割を持っている。市販のPHH用培地にIBMXとフォルスコリンを添加することで、プレートへの接着性が向上した。この結果から、cAMPを介したシグナル伝達がPHHの接着を促進することが示唆された。BSAは抑制効果を示し、ECMとインテグリンとの相互作用を非特異的に阻害する可能性があり、また、未知の受容体との相互作用によりcAMPシグナル伝達を活性化するリガンドを阻害する可能性が示唆された。
 肝臓は他の臓器に比べて細胞外マトリックス(ECM)が特に豊富な臓器ではないが、ECMの空間的分布が明瞭であることが報告されている(Godoy et al., 2013)。コラーゲンは、肝細胞のECMの主要な構成要素の一つであり、培養中のPHHの生存性と分化特性を高めることが報告されている(Page et al., 2007)。
 肝細胞は、インテグリンとの結合を介してECMに接着する(Pinkse et al., 2004)。インテグリンを介した細胞の接着の喪失は、初代培養肝細胞のアポトーシスを誘発する(Smets et al., 2002)。凍結保存したPHHでは、接着分子タンパク質であるβ1-インテグリンが新鮮なPHHに比べて減少していることが報告されている(Terry et al., 2007)。インテグリンは、細胞の接着受容体として働く主要なタンパク質であり、細胞の移動、細胞の生存、増殖、アポトーシスの防止を調節するために、そのリガンドの情報を細胞内に伝達することに機能し、シグナル伝達経路の複雑なネットワークによって精巧に制御されている(Barczyk et al., 2010; Moreno-Layseca et al., 2019)。インテグリンは、HGF、EGF、VEGF、PDGFなどのチロシンキナーゼ受容体、成長因子受容体と協力してシグナルを伝達することが報告された(Kim et al., 2011)。 インテグリンは、フォーカルアドヒージョンキナーゼ(FAK)-AKTシグナル伝達を介して、インテグリンに関連する下流のシグナル伝達キナーゼを活性化することが報告されていた(Visavadiya et al., 2016)。
 ここでは、IBMXとフォルスコリンの両方がPHHの接着を促進するために必要であることを明らかにした。iPS-HEP培地中の他の成分は、IBMXとフォルスコリンを添加したHCMと比較して、iPS-HEPで培養したPHHがより高いCYP3A活性を示したことから、PHHの機能を維持するために機能する。正確な分子機構はまだ明らかにされていない。
〔参考文献〕
Barczyk, M., Carracedo, S., and Gullberg, D. (2010). Integrins. Cell Tissue Res. 339, 269-280.
Blaauboer, B.J., and Paine, A.J. (1979). Attachment of rat hepatocytes to plastic substrata in the absence of serum requires protein synthesis. Biochem. Biophys. Res. Commun. 90, 368-374.
Gjessing, R., and Seglen, P.O. (1980). Adsorption, simple binding and complex binding of rat hepatocytes to various in vitro substrata. Exp. Cell Res. 129, 239-249. Godoy, P., Hewitt, N.J., Albrecht, U., Andersen, M.E., Ansari, N., Bhattacharya, S., Bode, J.G., Bolleyn, J., Borner, C., Bottger, J., et al. (2013). Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME.
Kim, S.H., Turnbull, J., and Guimond, S. (2011). Extracellular matrix and cell signalling: The dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol. 209, 139-151.
Moreno-Layseca, P., Icha, J., Hamidi, H., and Ivaska, J. (2019). Integrin trafficking in cells and tissues. Nat. Cell Biol. 21, 122-132.
Nakai, S., Shibata, I., Shitamichi, T., Yamaguchi, H., Takagi, N., Inoue, T., Nakagawa, T., Kiyokawa, J., Wakabayashi, S., Miyoshi, T., et al. (2019). Collagen vitrigel promotes hepatocytic differentiation of induced pluripotent stem cells into functional hepatocyte-like cells. Biol. Open bio.042192.
Page, J.L., Johnson, M.C., Olsavsky, K.M., Strom, S.C., Zarbl, H., and Omiecinski, C.I. (2007). Gene expression profiling of extracellular matrix as an effector of human hepatocyte phenotype in primary cell culture. Toxicol. Sci. 97, 384-397.
Pinkse, G.G.M., Voorhoeve, M.P., Noteborn, M., Terpstra, O.T., Bruijn, J.A., and de Heer, E. (2004). Hepatocyte survival depends on β1-integrin-mediated attachment of hepatocytes to hepatic extracellular matrix. Liver Int. 24, 218-226.
Smets, F.N., Chen, Y., Wang, L.J., and Soriano, H.E. (2002). Loss of cell anchorage triggers apoptosis (anoikis) in primary mouse hepatocytes. Mol. Genet. Metab. 75, 344-352.
Sun, P., Zhang, G., Su, X., Jin, C., Yu, B., Yu, X., Lv, Z., Ma, H., Zhang, M., Wei, W., et al. (2019). Maintenance of Primary Hepatocyte Functions In Vitro by Inhibiting Mechanical Tension-Induced YAP Activation. Cell Rep. 29, 3212-3222.e4.
Terry, C., Hughes, R.D., Mitry, R.R., Lehec, S.C., and Dhawan, A. (2007). Cryopreservation-induced nonattachment of human hepatocytes: Role of adhesion molecules. Cell Transplant. 16, 639-647.
Visavadiya, N.P., Keasey, M.P., Razskazovskiy, V., Banerjee, K., Jia, C., Lovins, C., Wright, G.L., and Hagg, T. (2016). Integrin-FAK signaling rapidly and potently promotes mitochondrial function through STAT3. Cell Commun. Signal. 14, 1-15.
〔実施例2〕
(A)材料と方法
(1)PHH培養
 市販の凍結保存suspensionタイプの初代培養ヒト肝細胞(PHH)(Sekisui Xenotech Lot no. H789 >4.0×106 cells/vial)を ThawSTARTM(Biocision)で解凍し、OptiThaw medium(Sekisui Xenotech)にデカンテーション後、細胞計数装置(InvitrogenTM Countess II Automated Cell Countess; ThermoFisher)で定量化した。細胞を100×g、5分間遠心分離した。細胞ペレットを処理液で再懸濁し、96ウェルプレート(Collagen Type I-Coated, Flat-Bottom Microplates plate, GibcoTM)に75μL/well(1.5×105 cells/well)で播種し、37℃で4時間インキュベートした。
(2)処理培地
 1)iPS-Hep(w/o BSA)、2)OptiPLATE(Sekisui Xenotech, Cat.No. K8200)、3)HCM (Lonza, Cat.No. CC3198)、及び4)In vitro GRO CP medium (BioIVT, Cat.No. IVT-Z990003)を使用した。
(3)免疫細胞化学
 細胞を4%パラホルムアルデヒド(4%PFA, Nacalai Tesque)のPBS溶液で固定し、0.1%トリトンX-100(Nacalai Tesque)で透過処理し、20%Blocking One(ナカライテスク)のPBST(PBS中0.1%Tween-20)溶液でブロッキングした。抗体を20%Blocking OneのPBST(PBS中の0.1%Tween-20)溶液で希釈した。細胞を6-ジアミノ-2-フェニルインドール(DAPI;Roche Diagnostics)で対比染色した。抗体は以下のものを使用した:ヤギ抗アルブミン(ALB;A80-129A、1:100, Bethyl Laboratories)、ロバ抗ヤギIgG(H+L)全抗体CF 568 Dye(20106, Biotium)、Phalloidin-iFluorTM488 Conjugate抗体(23115、AAT Bioquest)。
(4)画像の取得と定量化
 画像の取得は、ImageXpress(Molecular Devices)を用いて行った。画像とプレートのメタデータをImageXpressで抽出し、CellProfiler(McQuin et al., 2018)を使用して分析し、修正したパイプラインを使用して細胞の識別と特徴付けを行った。次いで、作成されたデータベースを、CellProfiler Analyst細胞分類モジュール(Jones et al., 2008)を使用して分析した。データは、Microsoft ExcelおよびGraphPad Prismで処理した。
(B)結果
 各処理培地を使用した場合の接着細胞数の相対値を図8に示す。図8に示すように、IBMXとフォルスコリンを含む培地であるiPS-Hepを使用した場合、他の市販培地(OptiPLATE、HCM、及びIn vitro GRO CP medium)を使用した場合に比べ、接着細胞数が多かった。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
 本発明は、肝細胞の培養方法に関するものなので、肝細胞を使用する産業分野において利用可能である。

Claims (17)

  1.  cAMP、cAMPアナログ、又は細胞内のcAMP濃度を上昇させる物質を含む培地で、肝細胞を培養する工程を含むことを特徴とする肝細胞の培養方法。
  2.  肝細胞が、初代培養肝細胞であることを特徴とする請求項1に記載の肝細胞の培養方法。
  3.  cAMP、cAMPアナログ、又は細胞内のcAMP濃度を上昇させる物質を含む培地が、細胞内のcAMP濃度を上昇させる物質を含む培地であることを特徴とする請求項1又は2に記載の肝細胞の培養方法。
  4.  細胞内のcAMP濃度を上昇させる物質が、ホスホジエステラーゼ阻害剤及び/又はアデニリルシクラーゼ活性化剤であることを特徴とする請求項3に記載の肝細胞の培養方法。
  5.  細胞内のcAMP濃度を上昇させる物質が、IBMX及びフォルスコリンであることを特徴とする請求項3に記載の肝細胞の培養方法。
  6.  培地が、アルブミンを含まない培地、又は0.1w/v%未満のアルブミンを含む培地であることを特徴とする請求項1乃至5のいずれか一項に記載の肝細胞の培養方法。
  7.  培養開始から2~8時間後に培地を交換することを特徴とする請求項1乃至6のいずれか一項に記載の肝細胞の培養方法。
  8.  アルブミンを含まない培地、又は0.1w/v%未満のアルブミンを含む培地で、肝細胞を培養する工程を含むことを特徴とする肝細胞の培養方法。
  9.  肝細胞を培養する方法であって、培養開始から2~8時間後に培地を交換する工程を含むことを特徴とする肝細胞の培養方法。
  10.  肝細胞の培養に用いられる培地であって、cAMP、cAMPアナログ、又は細胞内のcAMP濃度を上昇させる物質を含むことを特徴とする培地。
  11.  肝細胞が、初代培養肝細胞であることを特徴とする請求項10に記載の培地。
  12.  細胞内のcAMP濃度を上昇させる物質を含むことを特徴とする請求項10又は11に記載の培地。
  13.  細胞内のcAMP濃度を上昇させる物質が、ホスホジエステラーゼ阻害剤及び/又はアデニリルシクラーゼ活性化剤であることを特徴とする請求項12に記載の培地。
  14.  細胞内のcAMP濃度を上昇させる物質が、IBMX及びフォルスコリンであることを特徴とする請求項12に記載の培地。
  15.  培地が、アルブミンを含まない培地、又は0.1w/v%未満のアルブミンを含む培地であることを特徴とする請求項10乃至14のいずれか一項に記載の培地。
  16.  肝細胞の培養に用いられる培地であって、アルブミンを含まないか、又は0.1w/v%未満のアルブミンを含むことを特徴とする培地。
  17.  肝細胞が、初代培養肝細胞であることを特徴とする請求項16に記載の培地。
PCT/JP2021/048217 2020-12-25 2021-12-24 肝細胞の培養方法 WO2022138922A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022571684A JPWO2022138922A1 (ja) 2020-12-25 2021-12-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020217379 2020-12-25
JP2020-217379 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138922A1 true WO2022138922A1 (ja) 2022-06-30

Family

ID=82158203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048217 WO2022138922A1 (ja) 2020-12-25 2021-12-24 肝細胞の培養方法

Country Status (2)

Country Link
JP (1) JPWO2022138922A1 (ja)
WO (1) WO2022138922A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266789A (ja) * 1996-03-29 1997-10-14 Kagaku Gijutsu Shinko Jigyodan 初代培養肝細胞の細胞凝集塊とその形成方法
CN111321109A (zh) * 2020-03-18 2020-06-23 上海科技大学 一种肝细胞培养基、培养方法及其用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266789A (ja) * 1996-03-29 1997-10-14 Kagaku Gijutsu Shinko Jigyodan 初代培養肝細胞の細胞凝集塊とその形成方法
CN111321109A (zh) * 2020-03-18 2020-06-23 上海科技大学 一种肝细胞培养基、培养方法及其用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BJÖRNSSON O.G., ET AL.: "Regulation of VLDL secretion in primary culture of rat hepatocytes: involvement of cAMP and cAMP-dependent protein kinases", EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, vol. 24, no. 2, 28 February 1994 (1994-02-28), pages 137 - 148, XP055944520, DOI: 10.1111/j.1365-2362.1994.tb00979.x *
LI JIANRONG, YANG S, BILLIAR T R: "Cyclic nucleotides suppress tumor necrosis factor alpha-mediated apoptosis by inhibiting caspase activation and cytochrome c release in primary hepatocytes via a mechanism independent of Akt activation", JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, US, vol. 275, no. 17, 28 April 2000 (2000-04-28), US , pages 13026 - 13034, XP055944524, ISSN: 0021-9258, DOI: 10.1074/jbc.275.17.13026 *

Also Published As

Publication number Publication date
JPWO2022138922A1 (ja) 2022-06-30

Similar Documents

Publication Publication Date Title
Kim et al. Select nutrients in the ovine uterine lumen. VIII. Arginine stimulates proliferation of ovine trophectoderm cells through MTOR-RPS6K-RPS6 signaling cascade and synthesis of nitric oxide and polyamines
Kim et al. Arginine, leucine, and glutamine stimulate proliferation of porcine trophectoderm cells through the MTOR-RPS6K-RPS6-EIF4EBP1 signal transduction pathway
Phelps et al. Advances in pancreatic islet monolayer culture on glass surfaces enable super-resolution microscopy and insights into beta cell ciliogenesis and proliferation
Tan et al. The amino acid transporter SNAT2 mediates L-proline-induced differentiation of ES cells
US11760974B2 (en) Personalized 3D neural culture system for generating human oligodendrocytes and studying myelination in vitro
Miyazaki et al. Insulin like growth factor‐1‐induced phosphorylation and altered distribution of tuberous sclerosis complex (TSC) 1/TSC2 in C2C12 myotubes
Chen et al. A bioenergetic shift is required for spermatogonial differentiation
WO2017170849A1 (ja) ナイーブ型多能性幹細胞培養用培地および多能性幹細胞の培養方法
WO2020080550A1 (ja) 低分子化合物による内胚葉組織又は器官由来細胞からの幹/前駆細胞の作製方法
Wooldridge et al. Interleukin-6 promotes primitive endoderm development in bovine blastocysts
WO2018229179A1 (en) Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells
Xia et al. Endosialin defines human stem Leydig cells with regenerative potential
Toba et al. Comparison of commercially available media for hepatic differentiation and hepatocyte maintenance
CA2943035A1 (en) Method for differentiation of pluripotent stem cells into cardiomyocytes
WO2022138922A1 (ja) 肝細胞の培養方法
US20160168537A1 (en) Differentiated cellular compositions and methods for their preparation and use
Zhao et al. Dynamic metabolism during early mammalian embryogenesis
Rafnsdóttir et al. A new animal product free defined medium for 2D and 3D culturing of normal and cancer cells to study cell proliferation and migration as well as dose response to chemical treatment
WO2019109666A1 (zh) 一种尿液来源细胞的培养方法
Hong‐Brown et al. Alcohol and indinavir adversely affect protein synthesis and phosphorylation of MAPK and mTOR signaling pathways in C2C12 myocytes
Ranade et al. High content imaging and analysis enable quantitative in situ assessment of CYP3A4 using cryopreserved differentiated HepaRG cells
Herrick et al. A carnivore embryo's perspective on essential amino acids and ammonium in culture medium: effects on the development of feline embryos
WO2018019780A1 (en) Non-human primate induced pluripotent stem cell derived hepatocytes and uses thereof
Reers et al. Down-regulation of proliferation does not affect the secretory function of transformed β-cell lines regardless of their anatomical configuration
Sahare et al. The role of signaling pathways on proliferation and self-renewal of cultured bovine primitive germ cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571684

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21911059

Country of ref document: EP

Kind code of ref document: A1