WO2022138860A1 - Method for producing dicyclopentadiene - Google Patents

Method for producing dicyclopentadiene Download PDF

Info

Publication number
WO2022138860A1
WO2022138860A1 PCT/JP2021/047998 JP2021047998W WO2022138860A1 WO 2022138860 A1 WO2022138860 A1 WO 2022138860A1 JP 2021047998 W JP2021047998 W JP 2021047998W WO 2022138860 A1 WO2022138860 A1 WO 2022138860A1
Authority
WO
WIPO (PCT)
Prior art keywords
isomerization
stream
dehydrogenation
dicyclopentadiene
cyclization
Prior art date
Application number
PCT/JP2021/047998
Other languages
French (fr)
Japanese (ja)
Inventor
匡 梅田
和也 眞弓
太 大内
Original Assignee
Eneos株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社 filed Critical Eneos株式会社
Priority to JP2022571644A priority Critical patent/JPWO2022138860A1/ja
Publication of WO2022138860A1 publication Critical patent/WO2022138860A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/605Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings with a bridged ring system
    • C07C13/61Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings with a bridged ring system with a bridged indene ring, e.g. dicyclopentadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/38Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of dienes or alkynes
    • C07C2/40Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of dienes or alkynes of conjugated dienes

Definitions

  • This disclosure relates to a method for producing dicyclopentadiene.
  • dicyclopentadiene is known as one of the useful compounds used for applications such as polymer raw materials.
  • DCPD dicyclopentadiene
  • Patent Document 1 describes dicyclopentadiene from a hydrocarbon mixture such as a C5 fraction obtained when cracking naphtha to produce ethylene, through dimerization, extraction distillation, and the like.
  • Isoprene and piperylene have been proposed.
  • an object of the present disclosure is to provide a method for producing dicyclopentadiene, which can improve the yield of dicyclopentadiene as compared with the conventional method.
  • One aspect of the present disclosure is an isomerized cyclized dehydrogenation that produces cyclopentadiene by isomerizing and cyclizing a hydrocarbon mixture containing a normal and isoform of a hydrocarbon having 5 carbon atoms.
  • the isomerization treatment comprises a step of dimerizing the cyclopentadiene produced in the isomerization cyclization dehydrocarbonation step to produce dicyclopentadiene, and in the isomerization treatment, at least a part of the isoform is normal.
  • the present invention relates to a method for producing dicyclopentadiene, which is isomerized to the body.
  • the piperylene concentration in the hydrocarbon mixture at the inlet of the isomerization cyclization dehydrogenation step may be 5% by mass or more.
  • the concentration of the iso-form of the hydrocarbon having 5 carbon atoms in the hydrocarbon mixture at the inlet of the isomerization cyclization dehydrogenation step may be 20% by mass or more.
  • the production method may include a dehydrogenation step of dehydrogenating the hydrocarbon mixture before the isomerization cyclization dehydrogenation step.
  • the isomerization cyclization dehydrogenation step is also a step of producing the cyclopentadiene by contacting the hydrocarbon mixture with a catalyst having isomerization ability, cyclization ability and dehydrogenation ability. good.
  • the isomerization cyclization dehydrogenation step involves contacting the hydrocarbon mixture with a catalyst having isomerization ability and then contacting the catalyst having cyclization ability and dehydrogenation ability to cause the cyclopentadiene. It may be a step of producing.
  • cyclopentadiene is produced by isomerization treatment and cyclization dehydrogenation treatment of a hydrocarbon mixture containing a normal body and an iso body of a hydrocarbon having 5 carbon atoms. It includes a isomerization cyclization dehydrocarbonation step and a dimerization step of dimerizing the cyclopentadiene produced in the isomerization cyclization dehydrocarbonation step to produce dicyclopentadiene.
  • the isomerization treatment at least a part of the iso isomer is isomerized to a normal isomer.
  • industrially useful dicyclopentadiene can be efficiently produced from a hydrocarbon mixture containing a normal form and an iso form of a hydrocarbon having 5 carbon atoms.
  • dicyclopentadiene when dicyclopentadiene is produced from a hydrocarbon mixture containing a normal body and an iso body of a hydrocarbon having 5 carbon atoms, a step of separating the iso body and the normal body has been performed. According to the production method according to the present embodiment, dicyclopentadiene can be efficiently produced without performing the step of separating the iso-form and the normal form.
  • isomerization cyclization dehydrogenation step cyclopentadiene is produced by isomerization treatment and cyclization dehydrogenation treatment of a hydrocarbon mixture containing a normal form and an iso form of a hydrocarbon having 5 carbon atoms.
  • Examples of the normal form of the hydrocarbon having 5 carbon atoms include n-pentane, 1-pentene, 2-pentene, 1,3-pentadiene (also known as piperylene), and 1,4-pentadiene.
  • isopentane of the hydrocarbon having 5 carbon atoms examples include isopentane, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene, and 2-methyl-1,3-butadiene (also known as: isoprene).
  • the hydrocarbon mixture may contain components other than the normal form and the iso form of the hydrocarbon having 5 carbon atoms.
  • components other than the normal form and the iso form of the hydrocarbon having 5 carbon atoms include cyclopentane, cyclopentene, cyclopentadiene, 2,2-dimethylpropane (also known as neopentane) and the like.
  • the total amount of the normal and iso-forms of the hydrocarbon having 5 carbon atoms in the hydrocarbon mixture is not particularly limited, but may be, for example, 50 to 100% by mass and 60 to 98% by mass based on the total amount of the hydrocarbon mixture. It may be 70 to 96% by mass.
  • the iso isomer can be isomerized to the normal isomer by the isomerization treatment. Therefore, the larger the content of the iso isomer in the hydrocarbon mixture, the more than the conventional production method in which the isomerization treatment is not performed. However, the effect of improving the yield of dicyclopentadiene can be remarkably obtained. Therefore, the content of the iso-is of the hydrocarbon having 5 carbon atoms in the hydrocarbon mixture is not particularly limited, but is 10% by mass or more, 20% by mass or more, 40% by mass or more, and 50% by mass based on the total amount of the hydrocarbon mixture. % Or more, or 60% by mass or more. The content of the iso-form of the hydrocarbon having 5 carbon atoms in the hydrocarbon mixture is not particularly limited, but may be 90% by mass or less or 80% by mass or less based on the total amount of the hydrocarbon mixture.
  • the hydrocarbon mixture may be a C5 fraction.
  • the C5 fraction may be, for example, a C5 fraction produced by thermal cracking of naphtha or a light hydrocarbon mixture derived from a heavy oil catalytic cracking apparatus, which is obtained in the C5 diene extraction step. It may be a C5 fraction enriched with piperylene.
  • the isomerization cyclization dehydrogenation step is a step of contacting a hydrocarbon mixture with a catalyst having isomerization ability and then contacting the catalyst having cyclization ability and dehydrogenation ability to generate cyclopentadiene.
  • it may be a step of producing a cyclopentadiene by contacting the hydrocarbon mixture with a catalyst having an isomerization ability, a cyclization ability and a dehydrogenation ability.
  • the isomerization cyclization dehydrogenation step may include an isomerization step of isomerizing the hydrocarbon mixture and a cyclization dehydrogenation step of cyclizing and dehydrogenating the hydrocarbon mixture after the isomerization treatment. good.
  • the isoform of the hydrocarbon having 5 carbon atoms contained in the hydrocarbon mixture is isomerized to the normal form of the hydrocarbon having 5 carbon atoms by the isomerization reaction.
  • cyclopentadiene is produced by the cyclization dehydrogenation reaction of the normal form.
  • the case where the isomerization cyclization dehydrogenation step has an isomerization step and a cyclization dehydrogenation step will be described below.
  • the catalyst having an isomerization ability and the conditions of the isomerization reaction are not particularly limited, and any catalyst and conditions capable of isomerizing at least a part of the iso isomer to the normal isomer can be used without particular limitation. ..
  • a zeolite catalyst for example, a zeolite catalyst can be used.
  • the zeolite used is preferably at least partially hydrogen type.
  • the selectivity of the isomerization reaction can be further improved.
  • the zeolite catalyst may further contain a molding aid as long as it does not impair the physical characteristics and catalytic performance of the catalyst and does not deviate from the gist of the present disclosure.
  • the molding aid may be, for example, at least one selected from the group consisting of thickeners, surfactants, water retention agents, plasticizers, binder raw materials and the like.
  • the molding step of molding the zeolite catalyst may be performed at an appropriate stage of the manufacturing process of the zeolite catalyst in consideration of the reactivity of the molding aid.
  • the zeolite catalyst may support platinum or palladium as an active metal. By supporting the active metal, an isomerization reaction of the paraffin component can be expected.
  • the conditions of the isomerization reaction are not particularly limited, and for example, the reaction temperature may be 150 to 500 ° C, 200 to 400 ° C, or 250 to 350 ° C.
  • the reaction temperature is 150 ° C. or higher, the isomerization from the iso-form to the normal form tends to proceed more easily.
  • the reaction temperature is 350 ° C. or lower, the amount of light hydrocarbon produced tends to be smaller.
  • the reaction pressure that is, the air pressure in the reactor may be 0.01 to 1 MPa, 0.05 to 0.8 MPa, or 0.1 to 0.5 MPa. If the reaction pressure is within the above range, the isomerization reaction tends to proceed easily, and a more excellent reaction efficiency tends to be obtained.
  • the weight space velocity (hereinafter referred to as "WHSV") may be, for example, 0.1 h -1 or more. , 0.5h -1 or more. Further, the WHSV may be 20h -1 or less, and may be 10h -1 or less.
  • WHSV is the ratio (F / W) of the supply rate (supply mass / hour) F of the hydrocarbon mixture (supply) to the mass W of the catalyst.
  • the reactor size can be made smaller.
  • the isomerization rate from the iso form to the normal form can be further increased.
  • the amount of the hydrocarbon mixture (supply) and the catalyst used may be appropriately selected in a more preferable range depending on the reaction conditions, the activity of the catalyst, and the like, and the WHSV is not limited to the above range.
  • the reaction type of the isomerization reaction may be, for example, a fixed bed type, a moving bed type or a fluidized bed type. Of these, the fixed floor type is preferable from the viewpoint of equipment cost.
  • the conditions of the catalyst having a cyclization ability and the dehydrogenation ability and the cyclization dehydrogenation reaction are not particularly limited, and the catalyst and conditions capable of converting at least a part of the normal form into cyclopentadiene. If so, it can be used without particular limitation.
  • the cyclization dehydrogenation catalyst may have, for example, a carrier and an active metal supported on the carrier.
  • an inorganic carrier is preferable, and an inorganic oxide carrier is more preferable.
  • the carrier preferably contains at least one element selected from the group consisting of Al, Mg, Si, Zr, Ti and Ce, and at least one element selected from the group consisting of Al, Mg and Si. It is more preferable to include it.
  • the cyclization dehydrogenation catalyst of this embodiment is a catalyst in which a carrier containing Al and a Group 2 metal element is supported on a supported metal containing a Group 14 metal element and Pt.
  • the Group 2 metal element means a metal element belonging to Group 2 of the Periodic Table in the periodic table of long-periodic elements based on the provisions of IUPAC (International Genuine Applied Chemistry Association), and is a Group 14 metal element.
  • IUPAC International Genuine Applied Chemistry Association
  • the Group 2 metal element may be at least one selected from the group from, for example, beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr) and barium (Ba). Among these, the Group 2 metal element is preferably Mg.
  • the Group 14 metal element may be, for example, at least one selected from the group consisting of germanium (Ge), tin (Sn) and lead (Pb). Among these, the Group 14 metal element is preferably Sn.
  • the cyclization dehydrogenation catalyst may be a cyclization dehydrogenation catalyst other than the above.
  • a catalyst using Cr as a supporting metal in the above embodiment can be mentioned.
  • the conditions of the cyclization dehydrogenation reaction are not particularly limited, and for example, the reaction temperature may be 300 to 800 ° C, 400 to 700 ° C, or 500 to 650 ° C.
  • the reaction temperature is 300 ° C. or higher, the amount of cyclopentadiene produced tends to be further increased.
  • the reaction temperature is 800 ° C. or lower, the caulking rate does not become too high, so that the high activity of the cyclized dehydrogenation catalyst tends to be maintained for a longer period of time.
  • the reaction pressure that is, the air pressure in the reactor may be 0.01 to 1 MPa, 0.03 to 0.8 MPa, or 0.05 to 0.5 MPa. If the reaction pressure is within the above range, the dehydrogenation reaction tends to proceed easily, and a more excellent reaction efficiency tends to be obtained.
  • the weight space velocity (WHSV) is, for example, 0.1 h -1 . It may be the above, and may be 0.5h -1 or more. Further, the WHSV may be 20h -1 or less, and may be 10h -1 or less. When the WHSV is 0.1 h -1 or more, the reactor size can be made smaller. When the WHSV is 20 h -1 or less, the yield of cyclopentadiene can be further increased.
  • the amount of the feed and the catalyst used may be appropriately selected in a more preferable range depending on the reaction conditions, the activity of the catalyst, and the like, and the WHSV is not limited to the above range.
  • the reaction form of the cyclization dehydrogenation reaction may be, for example, a fixed bed type, a moving bed type or a fluidized bed type.
  • the fixed floor type is preferable from the viewpoint of equipment cost.
  • the isomerization cyclization dehydrogenation step is a step of contacting the hydrocarbon mixture with a catalyst having isomerization ability, cyclization ability and dehydrogenation ability to generate cyclopentadiene will be described below. ..
  • the conditions of the catalyst having isomerization ability, cyclization ability and dehydrogenation ability and the isomerization cyclization dehydrogenation reaction are not particularly limited, and at least a part of the iso isomer is isomerized to the normal isomer. It can be used without particular limitation as long as it is a catalyst and conditions capable of converting at least a part of the normal form into cyclopentadiene.
  • Examples of the catalyst having isomerization ability, cyclization ability and dehydrogenation ability include a zeolite catalyst having a crystalline metallosilicate as a carrier and an active metal supported on the carrier.
  • the crystalline metallosilicate contains at least one metal atom selected from a transition metal or a post-transition metal in the zeolite, and has Lewis acidity and strong solid basicity.
  • the crystalline aluminosilicate has a structure similar to that of the crystalline aluminosilicate in its crystal structure, and has a crystalline aluminosilicate such as zeolite ZSM-5, ZSM-11, ZSM-12, zeolite beta, mordenite, and ferrierite. It has a similar structure.
  • the metal atom contained in the zeolite is not particularly limited as long as it is a transition metal atom or a post-transition metal atom, and is, for example, titanium (Ti), vanadium (V), iron (Fe), cobalt (Co), nickel (Ni). ), Copper (Cu), Zinc (Zn), Gallium (Ga), Zirconium (Zr), Indium (In), Tin (Sn) and the like can be used. Among these, zinc (Zn), nickel (Ni), and iron (Fe) are preferably used from the viewpoint of excellent reactivity in the dehydrogenation reaction.
  • the metal atom contained in the zeolite may be used alone or in combination of two or more.
  • the zeolite catalyst may further contain a molding aid as long as it does not impair the physical characteristics and catalytic performance of the catalyst and does not deviate from the gist of the present disclosure.
  • the molding aid may be, for example, at least one selected from the group consisting of thickeners, surfactants, water retention agents, plasticizers, binder raw materials and the like.
  • the molding step of molding the zeolite catalyst may be performed at an appropriate stage of the manufacturing process of the zeolite catalyst in consideration of the reactivity of the molding aid.
  • the zeolite catalyst may be one in which platinum is supported on a carrier using a platinum (Pt) source.
  • platinum source include tetraammine platinum (II) acid, tetraammine platinum (II) acid salt (for example, nitrate), tetraammine platinum (II) acid hydroxide solution, dinitrodiammine platinum (II) nitrate solution, and hexahydroxo.
  • the conditions of the isomerization cyclization dehydrogenation reaction are not particularly limited, and for example, the conditions of the isomerization reaction in the above-mentioned isomerization step or the conditions of the cyclization dehydrogenation reaction in the above-mentioned cyclization dehydrogenation step are the same. Can be.
  • the isomerization step, the cyclization dehydrogenation step, or the isomerization cyclization dehydrogenation step is preferably performed in an atmosphere containing hydrogen. This makes it possible to further suppress the deterioration of the catalyst and promote the production of cyclopentadiene.
  • the hydrogen concentration in the atmosphere may be 5 to 95 mol%. It is preferably 5 to 30 mol%, more preferably 5 to 30 mol%.
  • the steam concentration in the atmosphere is preferably 5 to 95 mol%, and 20 to 20 to It is more preferably 65 mol%.
  • the piperylene concentration in the hydrocarbon mixture at the inlet of the isomerization cyclization dehydrogenation step may be 0% by mass or more, 2% by mass or more, 5% by mass or more, or 10% by mass. It may be% or more.
  • the piperylene concentration can be increased by performing the dehydrogenation step described later before the isomerization cyclization dehydrogenation step.
  • the concentration of the iso-form of the hydrogen having 5 carbon atoms in the hydrocarbon mixture at the inlet of the isomerization cyclization dehydrogenation step is 10% by mass or more, 20% by mass or more, 40% by mass or more, 50% by mass or more, or. , 60% by mass or more, 90% by mass or less, or 80% by mass or less.
  • the higher the concentration of the iso-form the lower the yield of dicyclopentadiene tends to be.
  • the iso-form can be isomerized to the normal form by the isomerization treatment. Even if the concentration of the iso isomer is within the above range, the yield of dicyclopentadiene can be improved.
  • the production method of the present embodiment may include a dehydrogenation step of dehydrogenating the hydrocarbon mixture before the isomerization cyclization dehydrogenation step.
  • the dehydrogenation step is preferably performed when a hydrocarbon mixture containing a large amount of saturated hydrocarbon is used. In the dehydrogenation step, at least a portion of the saturated hydrocarbon is converted to an unsaturated hydrocarbon and at least a portion of the monoene is converted to a diene.
  • the dehydrogenation step is performed before the isomerization cyclization dehydrogenation step, the hydrocarbon mixture after the dehydrogenation treatment is provided in the isomerization cyclization dehydrogenation step.
  • the dehydrogenation step may be carried out, for example, by using a reactor filled with a dehydrogenation catalyst and circulating a hydrocarbon mixture.
  • a reactor filled with a dehydrogenation catalyst and circulating a hydrocarbon mixture.
  • various reactors used for the gas phase reaction using a solid catalyst can be used. Examples of the reactor include a fixed bed type reactor, a radial flow type reactor, a tube type reactor and the like.
  • the reaction type of the dehydrogenation reaction may be, for example, a fixed bed type, a moving bed type or a fluidized bed type. Of these, the fixed floor type is preferable from the viewpoint of equipment cost.
  • the conditions for the dehydrocarbonation catalyst and the dehydrocarbonation reaction are not particularly limited, and any catalyst and conditions capable of converting at least a part of the saturated hydrocarbon contained in the hydrocarbon mixture into unsaturated hydrocarbons can be used without particular limitation. ..
  • the same catalyst as the cyclization dehydrogenation catalyst in the cyclization dehydrogenation step described above can be used.
  • the reaction temperature of the dehydrogenation reaction that is, the temperature inside the reactor may be 300 to 800 ° C., 400 to 700 ° C., or 500 to 650 ° C. from the viewpoint of reaction efficiency.
  • the reaction temperature is 300 ° C. or higher, the dehydrogenation reaction tends to be further promoted.
  • the reaction temperature is 800 ° C. or lower, the caulking rate does not become too high, so that the high activity of the dehydrogenation catalyst tends to be maintained for a longer period of time.
  • the reaction pressure that is, the air pressure in the reactor may be 0.01 to 1 MPa, 0.03 to 0.8 MPa, or 0.05 to 0.5 MPa. If the reaction pressure is within the above range, the dehydrogenation reaction tends to proceed easily, and a more excellent reaction efficiency tends to be obtained.
  • the weight space velocity may be, for example, 0.1 h -1 or more, 0.5 h. It may be -1 or more. Further, the WHSV may be 20h -1 or less, and may be 10h -1 or less. When the WHSV is 0.1 h -1 or more, the reactor size can be made smaller. When the WHSV is 20h -1 or less, the dehydrogenation reaction tends to be further promoted.
  • the amount of the feed and the catalyst used may be appropriately selected in a more preferable range depending on the reaction conditions, the activity of the catalyst, and the like, and the WHSV is not limited to the above range.
  • the dehydrogenation catalyst for example, a catalyst in which an active metal is supported on an inorganic oxide carrier can be used.
  • the active metal source at least one selected from the group consisting of platinum, tin, chromium, iron, bismuth, molybdenum, manganese, cobalt, cerium, ruthenium and iridium can be used.
  • the dehydrogenation step is preferably performed in an atmosphere containing hydrogen or steam. As a result, deterioration of the catalyst can be further suppressed, and the production of unsaturated hydrocarbons can be promoted.
  • the hydrogen concentration in the atmosphere is preferably 5 to 95 mol%, more preferably 5 to 30 mol%.
  • the steam concentration in the atmosphere is preferably 5 to 95 mol%, more preferably 20 to 65 mol%.
  • dimerization process In the dimerization step, the cyclopentadiene produced in the isomerization cyclization dehydrogenation step is dimerized to produce dicyclopentadiene.
  • the conditions for the dimerization reaction in the dimerization step are not particularly limited, and can be used without particular limitation as long as the conditions can be used to dimerize cyclopentadiene to produce dicyclopentadiene.
  • the dimerization of cyclopentadiene is preferably carried out by using the Diels-Alder reaction, and deals in a liquid phase using a non-catalytic continuous reactor. -It is more preferable to use the Alder reaction.
  • the residence time of the object to be treated when carrying out the Diels-Alder reaction using a continuous reactor is preferably 0.5 hours or more, more preferably 1 hour or more, and 6 hours or less.
  • the dimerization reaction can be sufficiently advanced, and side reactions between cyclopentadiene and isoprene, piperylene, etc. are suppressed, and dicyclopentadiene can be obtained more efficiently. can.
  • the reaction temperature of the dimerization reaction is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, preferably 250 ° C. or lower, and more preferably 150 ° C. or lower.
  • the reaction pressure of the dimerization reaction that is, the atmospheric pressure in the reactor may be 0.01 to 1 MPa, 0.05 to 0.8 MPa, or 0.1 to 0.6 MPa. If the reaction pressure is within the above range, the dimerization reaction tends to proceed easily, and a more excellent reaction efficiency tends to be obtained.
  • the production method of the present embodiment may have a first distillation step after the isomerization cyclization dehydrogenation step and before the dimerization step.
  • the gas component generated by the reaction in the isomerization cyclization dehydrogenation step and the low boiling point component of the C5 fraction are separated by distillation to obtain a fraction enriched in the cyclopentadiene ratio. be able to.
  • Distillation can be carried out, for example, by extraction distillation.
  • the cyclopentadiene-rich fraction obtained in the first distillation step can be used in the dimerization step.
  • the dimerization step is provided with a fraction enriched in the cyclopentadiene ratio through the first distillation step.
  • the production method of the present embodiment may include a second distillation step after the dimerization step.
  • the dicyclopentadiene produced by the dimerization step is separated from other components and recovered. Distillation can be carried out, for example, by extraction distillation.
  • FIG. 1 is a flow chart showing an example of a device for producing dicyclopentadiene for carrying out the method for producing dicyclopentadiene according to an embodiment.
  • the dicyclopentadiene production apparatus 100 shown in FIG. 1 includes a dehydrogenation reactor 10, an isomerization reactor 20, a cyclization dehydrogenation reactor 30, a first distiller 40, a dimerization reactor 50, and a first.
  • the distiller 60 of 2 and the flow paths L1 to L13 connected to these reactors are provided.
  • a hydrocarbon mixture (first stream) is first supplied to the dehydrogenation reactor 10 through the flow path L1 and then subjected to a dehydrogenation step.
  • a second stream enriched with the proportion of olefins (unsaturated hydrocarbons) is obtained.
  • the second stream is supplied to the isomerization reactor 20 through the flow path L2, and a third stream having an increased proportion of normal form is obtained through the isomerization step.
  • the third stream is subjected to the cyclization dehydrogenation reactor 30 through the flow path L3, and a fourth stream in which at least a part of the normal form is converted to cyclopentadiene is obtained through the cyclization dehydrogenation step.
  • the fourth stream is supplied to the first distiller 40 through the flow path L4, and the gas component (fifth stream) generated by the reaction in the cyclization dehydrogenation step and the low boiling point component of the C5 fraction (sixth stream).
  • Stream is distilled and separated by the first distillation step to obtain a seventh stream enriched with the cyclopentadiene ratio.
  • the fifth stream is collected through the flow path L5 and the sixth stream is collected through the flow path L6.
  • the seventh stream is subjected to the dimerization reactor 50 through the flow path L7, and the eighth stream in which the cyclopentadiene contained in the seventh stream is converted to dicyclopentadiene is obtained.
  • the eighth stream is subjected to a second distiller 60 through the channel L8 and is separated into a dicyclopentadiene (9th stream) and other components (10th stream) by a distillation operation.
  • the ninth stream is collected through the flow path L9 and the tenth stream is collected through the flow path L10. This gives dicyclopentadiene as the ninth stream.
  • At least a part of the low boiling point components extracted by the first distiller 40 is supplied to the flow path L1 as the eleventh stream through the flow path L11, and the first stream and the first stream. It may be mixed and subjected to the dehydrogenation reactor 10 again. Further, at least a part of the components other than dicyclopentadiene distilled and separated by the second distiller 60 is supplied to the flow path L1 as a twelfth stream through the flow path L12, mixed with the first stream, and again. It may be supplied to the dehydrogenation reactor 10, or may be supplied to the flow path L2 as a thirteenth stream through the flow path L13, mixed with the second stream, and supplied to the isomerization reactor 20 again.
  • the dicyclopentadiene production apparatus 200 shown in FIG. 2 includes an isomerization reactor 20, a cyclized dehydrogenation reactor 30, a first distiller 40, a distillation reactor 50, and a second distiller 60.
  • the flow paths L1 and L3 to L12 connected to these reactors are provided.
  • dicyclopentadiene When dicyclopentadiene is produced using the production apparatus 200 shown in FIG. 2, it is the same as the case of producing dicyclopentadiene using the production apparatus 100 except that the dehydrogenation step is not performed in the dehydrogenation reactor 10.
  • Dicyclopentadiene can be produced by the flow of. Further, in the manufacturing apparatus 200 shown in FIG. 2, at least a part of the low boiling point components extracted by the first distiller 40 is used as the eleventh stream, mixed with the first stream, and again the isomerization reactor 20. May be offered to. Further, at least a part of the components other than dicyclopentadiene distilled and separated by the second distiller 60 may be used as the twelfth stream, mixed with the first stream, and subjected to the isomerization reactor 20 again.
  • the dicyclopentadiene production apparatus 300 shown in FIG. 3 includes an isomerized cyclization dehydrogenation reactor 70, a first distiller 40, a distillation reactor 50, a second distiller 60, and these. It is provided with flow paths L1 and L4 to L12 connected to the reactor.
  • dicyclopentadiene is produced using the production apparatus 300 shown in FIG. 3, the isomerization step and the cyclization dehydrogenation in the isomerization reactor 20 are not performed in the dehydrogenation reactor 10.
  • Dicyclopentadiene is produced using the production apparatus 100 except that the isomerization cyclization dehydrogenation step is performed in the isomerization cyclization dehydrogenation reactor 70 instead of the cyclization dehydrogenation step in the reactor 30.
  • Dicyclopentadiene can be produced in the same flow as in the case. Further, in the manufacturing apparatus 300 shown in FIG.
  • At least a part of the low boiling point components extracted by the first distiller 40 is used as the eleventh stream, mixed with the first stream, and isomerized, cyclized and dehydrated again. It may be provided to the elementary reactor 70. Further, at least a part of the components other than dicyclopentadiene distilled and separated by the second distiller 60 is made into a twelfth stream, mixed with the first stream, and subjected to the isomerization cyclization dehydrogenation reactor 70 again. May be.
  • the dicyclopentadiene production apparatus 400 shown in FIG. 4 includes a dehydrogenation reactor 10, an isomerization reactor 20, a cyclization dehydrogenation reactor 30, a first distiller 40, a dimerization reactor 50, and a first.
  • the distiller 60 of 2 and the flow paths L1 to L11 and L13 connected to these reactors are provided.
  • the hydrocarbon mixture (first stream) is provided to the first distiller 40 through the flow path L1 and the flow path L4.
  • the gas component (fifth stream) and the low boiling point component (sixth stream) of the C5 fraction were distilled and separated by the first distillation step, and the cyclopentadiene ratio was enriched. 7 streams are obtained.
  • the seventh stream is supplied to the dimerization reactor 50 through the flow path L7, and thereafter, dicyclopentadiene is produced in the same flow as in the case of producing dicyclopentadiene using the production apparatus 100.
  • At least a part of the low boiling point component distilled and separated by the first distiller 40 is provided to the dehydrogenation reactor 10 as an eleventh stream, and undergoes a dehydrogenation step to obtain an olefin (unsaturated hydrocarbon).
  • a second stream enriched in proportion is obtained.
  • the second stream is supplied to the isomerization reactor 20 through the flow path L2, and a third stream having an increased proportion of normal form is obtained through the isomerization step.
  • the third stream is subjected to the cyclization dehydrogenation reactor 30 through the flow path L3, and a fourth stream in which at least a part of the normal form is converted to cyclopentadiene is obtained through the cyclization dehydrogenation step.
  • the fourth stream is mixed with the supplied first stream and is provided to the first still 40 through the flow path L4. After that, dicyclopentadiene is produced in the same flow as described above.
  • At least a part of the components other than dicyclopentadiene distilled and separated by the second distiller 60 is made into a thirteenth stream, mixed with the second stream, and isomerized again. It may be provided to the chemical reactor 20.
  • Example 1 The C5 distillate obtained by separating diene from a steam cracker made from naphtha was used as a hydrocarbon mixture (first stream), and was subjected to a dehydrogenation step, an isomerization step, and cyclization dehydration by the production apparatus shown in FIG. A dicyclopentadiene was produced by performing an elementary step, a first distillation step, a dimerization step and a second distillation step.
  • the numbers of the flow paths L1 to L10 in FIG. 1 correspond to the numbers of the streams passing through the flow path.
  • the manufacturing apparatus is not provided with flow paths L11 to L13.
  • the first stream was applied to the dehydrogenation reactor 10 through the flow path L1 and the dehydrogenation step was performed to obtain a second stream enriched in the olefin ratio.
  • the second stream was applied to the isomerization reactor 20 through the flow path L2, and an isomerization step was performed to obtain a third stream in which the proportion of the normal form was increased.
  • the third stream is subjected to a cyclization dehydrogenation reactor 30 through the flow path L3, and a cyclization dehydrogenation step is performed to obtain a fourth stream in which a part of the normal form is converted to cyclopentadiene (CPD). rice field.
  • CPD cyclopentadiene
  • the fourth stream is provided to the first distiller 40 through the flow path L4, and the gas component (fifth stream) generated by the cyclization dehydrogenation reaction and the low boiling point component of the C5 fraction (sixth stream) are collected. Distillation separation was performed by the first distillation step to obtain a seventh stream enriched with the cyclopentadiene ratio.
  • the seventh stream was subjected to the dimerization reactor 50 through the flow path L7, and the cyclopentadiene contained in the seventh stream was converted to dicyclopentadiene (DCPD) by the Diels-Alder reaction to obtain the eighth stream (the eighth stream was obtained. Dimerization process).
  • the eighth stream was subjected to a second distiller 60 through the channel L8 and separated into dicyclopentadiene (9th stream) and other components (10th stream) by a distillation operation (second distillation). Process). Through the above steps, dicyclopentadiene was produced. Table 1 shows the ratio of the components contained in each stream.
  • Comparative Example 1 Dicyclopentadiene was produced in the same manner as in Example 1 except that the isomerization step was not performed.
  • Comparative Example 1 a manufacturing apparatus in which the flow path L2 was connected to the cyclization dehydrogenation reactor 30 was used except for the isomerization reactor 20 and the flow path L3 in FIG.
  • the third stream did not exist, and the second stream was provided to the cyclized dehydrogenation reactor 30 through the flow path L2.
  • the numbers of the flow paths L1 to L2 and L4 to L10 in FIG. 1 correspond to the numbers of the streams passing through the flow path.
  • the manufacturing apparatus is not provided with flow paths L11 to L13. Table 2 shows the ratio of the components contained in each stream.
  • Example 2 Dicyclopentadiene was produced in the same manner as in Example 1 except that the C5 fraction obtained from the catalytic cracking apparatus was used as a hydrocarbon mixture (first stream). Table 3 shows the ratio of the components contained in each stream.
  • Comparative Example 2 Dicyclopentadiene was produced in the same manner as in Comparative Example 1 except that the C5 fraction obtained from the catalytic cracking apparatus was used as a hydrocarbon mixture (first stream). Table 4 shows the ratio of the components contained in each stream.
  • Example 3 The piperylene-enriched C5 distillate obtained in the C5 diene extraction step was used as a hydrocarbon mixture (first stream), and the isomerization step, cyclization dehydrogenation step, and first were carried out by the production apparatus shown in FIG. Distillation step, dimerization step and second distillation step were carried out to produce dicyclopentadiene.
  • the numbers of the flow paths L1 and L3 to L10 in FIG. 2 correspond to the numbers of the streams passing through the flow path.
  • the manufacturing apparatus is not provided with the flow paths L11 to L12.
  • the first stream was applied to the isomerization reactor 20 through the flow path L1 and the isomerization step was performed to obtain a third stream in which the ratio of the normal form was increased.
  • the third stream is subjected to a cyclization dehydrogenation reactor 30 through the flow path L3, and a cyclization dehydrogenation step is performed to obtain a fourth stream in which a part of the normal form is converted to cyclopentadiene (CPD). rice field.
  • the fourth stream is provided to the first distiller 40 through the flow path L4, and the gas component (fifth stream) generated by the cyclization dehydrogenation reaction and the low boiling point component of the C5 fraction (sixth stream) are collected.
  • Distillation separation was performed by the first distillation step to obtain a seventh stream enriched with the cyclopentadiene ratio.
  • the seventh stream was subjected to the dimerization reactor 50 through the flow path L7, and the cyclopentadiene contained in the seventh stream was converted to dicyclopentadiene (DCPD) by the Diels-Alder reaction to obtain the eighth stream (the eighth stream was obtained. Dimerization process).
  • the eighth stream was subjected to a second distiller 60 through the channel L8 and separated into dicyclopentadiene (9th stream) and other components (10th stream) by a distillation operation (second distillation). Process). Through the above steps, dicyclopentadiene was produced. Table 5 shows the ratio of the components contained in each stream.
  • Example 3 Dicyclopentadiene was produced in the same manner as in Example 3 except that the isomerization step was not performed.
  • the third stream did not exist, and the first stream was provided to the cyclized dehydrogenation reactor 30 through the flow path L1.
  • the numbers of the flow paths L1 and L4 to L10 in FIG. 2 correspond to the numbers of the streams passing through the flow path.
  • the manufacturing apparatus is not provided with the flow paths L11 to L12. Table 6 shows the ratio of the components contained in each stream.
  • Example 4 A series of steps in the manufacturing method of Example 1 was set as the first cycle, and this series of steps was repeated. When the series of steps was repeated, 80% by mass of the sixth stream was applied to the eleventh stream and 80% by mass of the tenth stream was applied to the twelfth stream to recycle the components. .. The eleventh stream and the twelfth stream were mixed with the first stream of the next cycle and subjected to the dehydrogenation reactor 10 as the first stream. A series of steps was performed for 50 cycles or more, and it was confirmed that the components of each stream were stable. Table 7 shows the ratio of the components contained in each stream after the 50th cycle in which the components are stable.
  • Example 5 A series of steps in the manufacturing method of Example 2 was set as the first cycle, and this series of steps was repeated. When the series of steps was repeated, 80% by mass of the sixth stream was applied to the eleventh stream and 80% by mass of the tenth stream was applied to the twelfth stream to recycle the components. .. The eleventh stream and the twelfth stream were mixed with the first stream of the next cycle and subjected to the dehydrogenation reactor 10 as the first stream. A series of steps was performed for 50 cycles or more, and it was confirmed that the components of each stream were stable. Table 8 shows the ratio of the components contained in each stream after the 50th cycle in which the components are stable.
  • Example 6 A series of steps in the manufacturing method of Example 3 was set as the first cycle, and this series of steps was repeated. When the series of steps was repeated, 80% by mass of the sixth stream was applied to the eleventh stream and 80% by mass of the tenth stream was applied to the twelfth stream to recycle the components. .. The eleventh stream and the twelfth stream were mixed with the first stream of the next cycle and subjected to the dehydrogenation reactor 10 as the first stream. A series of steps was performed for 50 cycles or more, and it was confirmed that the components of each stream were stable. Table 9 shows the ratio of the components contained in each stream after the 50th cycle in which the components are stable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A method for producing dicyclopentadiene according to one aspect of the present disclosure comprises: an isomerization dehydrocyclization step wherein cyclopentadiene is produced by subjecting a hydrocarbon mixture, which contains the normal form and iso form of a hydrocarbon having 5 carbon atoms, to an isomerization treatment and a dehydrocyclization treatment; and a dimerization step wherein dicyclopentadiene is produced by dimerizing the cyclopentadiene produced in the isomerization dehydrocyclization step. In the isomerization treatment, at least some of the iso form is isomerized into the normal form.

Description

ジシクロペンタジエンの製造方法Manufacturing method of dicyclopentadiene
 本開示は、ジシクロペンタジエンの製造方法に関する。 This disclosure relates to a method for producing dicyclopentadiene.
 従来、ポリマー原料等の用途に利用される有用な化合物の一つとして、ジシクロペンタジエン(DCPD)が知られている。ジシクロペンタジエンの製造方法として、例えば特許文献1には、ナフサをクラッキングしてエチレンを生産する際に得られるC5留分等の炭化水素混合物から、二量化及び抽出蒸留等を経て、ジシクロペンタジエン、イソプレン及びピペリレンを製造する方法が提案されている。 Conventionally, dicyclopentadiene (DCPD) is known as one of the useful compounds used for applications such as polymer raw materials. As a method for producing dicyclopentadiene, for example, Patent Document 1 describes dicyclopentadiene from a hydrocarbon mixture such as a C5 fraction obtained when cracking naphtha to produce ethylene, through dimerization, extraction distillation, and the like. , Isoprene and piperylene have been proposed.
国際公開第2018/163828号International Publication No. 2018/163828
 しかしながら、特許文献1に記載された方法では、製造されるジシクロペンタジエン、イソプレン及びピペリレンの比率がC5留分等の炭化水素混合物の組成に依存するため、ジシクロペンタジエンを選択的に高い収率で製造することが困難であった。 However, in the method described in Patent Document 1, since the ratio of dicyclopentadiene, isoprene and piperylene produced depends on the composition of the hydrocarbon mixture such as the C5 fraction, the yield of dicyclopentadiene is selectively high. It was difficult to manufacture in.
 そこで、本開示は、ジシクロペンタジエンの収率を従来よりも向上させることができるジシクロペンタジエンの製造方法を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a method for producing dicyclopentadiene, which can improve the yield of dicyclopentadiene as compared with the conventional method.
 本開示の一側面は、炭素数5の炭化水素のノルマル体及びイソ体を含有する炭化水素混合物を、異性化処理及び環化脱水素処理することでシクロペンタジエンを生成する異性化環化脱水素工程と、上記異性化環化脱水素工程で生成したシクロペンタジエンを二量化してジシクロペンタジエンを生成する二量化工程と、を含み、上記異性化処理において、上記イソ体の少なくとも一部をノルマル体に異性化する、ジシクロペンタジエンの製造方法に関する。 One aspect of the present disclosure is an isomerized cyclized dehydrogenation that produces cyclopentadiene by isomerizing and cyclizing a hydrocarbon mixture containing a normal and isoform of a hydrocarbon having 5 carbon atoms. The isomerization treatment comprises a step of dimerizing the cyclopentadiene produced in the isomerization cyclization dehydrocarbonation step to produce dicyclopentadiene, and in the isomerization treatment, at least a part of the isoform is normal. The present invention relates to a method for producing dicyclopentadiene, which is isomerized to the body.
 一態様において、上記異性化環化脱水素工程入口での上記炭化水素混合物中のピペリレン濃度が5質量%以上であってもよい。 In one embodiment, the piperylene concentration in the hydrocarbon mixture at the inlet of the isomerization cyclization dehydrogenation step may be 5% by mass or more.
 一態様において、上記異性化環化脱水素工程入口での上記炭化水素混合物中の上記炭素数5の炭化水素のイソ体の濃度が20質量%以上であってもよい。 In one embodiment, the concentration of the iso-form of the hydrocarbon having 5 carbon atoms in the hydrocarbon mixture at the inlet of the isomerization cyclization dehydrogenation step may be 20% by mass or more.
 一態様において、上記製造方法は、上記異性化環化脱水素工程の前に、上記炭化水素混合物を脱水素処理する脱水素工程を含んでもよい。 In one embodiment, the production method may include a dehydrogenation step of dehydrogenating the hydrocarbon mixture before the isomerization cyclization dehydrogenation step.
 一態様において、上記異性化環化脱水素工程は、上記炭化水素混合物を、異性化能、環化能及び脱水素能を有する触媒に接触させることで上記シクロペンタジエンを生成する工程であってもよい。 In one embodiment, the isomerization cyclization dehydrogenation step is also a step of producing the cyclopentadiene by contacting the hydrocarbon mixture with a catalyst having isomerization ability, cyclization ability and dehydrogenation ability. good.
 一態様において、上記異性化環化脱水素工程は、上記炭化水素混合物を、異性化能を有する触媒に接触させた後、環化能及び脱水素能を有する触媒に接触させることで上記シクロペンタジエンを生成する工程であってもよい。 In one embodiment, the isomerization cyclization dehydrogenation step involves contacting the hydrocarbon mixture with a catalyst having isomerization ability and then contacting the catalyst having cyclization ability and dehydrogenation ability to cause the cyclopentadiene. It may be a step of producing.
 本開示によれば、ジシクロペンタジエンの収率を従来よりも向上させることができるジシクロペンタジエンの製造方法を提供することができる。 According to the present disclosure, it is possible to provide a method for producing dicyclopentadiene, which can improve the yield of dicyclopentadiene as compared with the conventional case.
一実施形態に係るジシクロペンタジエンの製造方法を実施するための、ジシクロペンタジエンの製造装置の一例を示すフロー図である。It is a flow diagram which shows an example of the manufacturing apparatus of the dicyclopentadiene for carrying out the manufacturing method of the dicyclopentadiene which concerns on one Embodiment. 一実施形態に係るジシクロペンタジエンの製造方法を実施するための、ジシクロペンタジエンの製造装置の他の例を示すフロー図である。It is a flow diagram which shows the other example of the manufacturing apparatus of dicyclopentadiene for carrying out the manufacturing method of the dicyclopentadiene which concerns on one Embodiment. 一実施形態に係るジシクロペンタジエンの製造方法を実施するための、ジシクロペンタジエンの製造装置の他の例を示すフロー図である。It is a flow diagram which shows the other example of the manufacturing apparatus of dicyclopentadiene for carrying out the manufacturing method of the dicyclopentadiene which concerns on one Embodiment. 一実施形態に係るジシクロペンタジエンの製造方法を実施するための、ジシクロペンタジエンの製造装置の他の例を示すフロー図である。It is a flow diagram which shows the other example of the manufacturing apparatus of dicyclopentadiene for carrying out the manufacturing method of the dicyclopentadiene which concerns on one Embodiment.
 以下、本開示の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail.
<ジシクロペンタジエンの製造方法>
 本実施形態に係るジシクロペンタジエンの製造方法は、炭素数5の炭化水素のノルマル体及びイソ体を含有する炭化水素混合物を、異性化処理及び環化脱水素処理することでシクロペンタジエンを生成する異性化環化脱水素工程と、上記異性化環化脱水素工程で生成したシクロペンタジエンを二量化してジシクロペンタジエンを生成する二量化工程と、を含む。上記異性化処理においては、上記イソ体の少なくとも一部をノルマル体に異性化する。
<Manufacturing method of dicyclopentadiene>
In the method for producing dicyclopentadiene according to the present embodiment, cyclopentadiene is produced by isomerization treatment and cyclization dehydrogenation treatment of a hydrocarbon mixture containing a normal body and an iso body of a hydrocarbon having 5 carbon atoms. It includes a isomerization cyclization dehydrocarbonation step and a dimerization step of dimerizing the cyclopentadiene produced in the isomerization cyclization dehydrocarbonation step to produce dicyclopentadiene. In the isomerization treatment, at least a part of the iso isomer is isomerized to a normal isomer.
 本実施形態に係る製造方法によれば、炭素数5の炭化水素のノルマル体及びイソ体を含有する炭化水素混合物から、工業的に有用なジシクロペンタジエンを効率良く製造することができる。 According to the production method according to the present embodiment, industrially useful dicyclopentadiene can be efficiently produced from a hydrocarbon mixture containing a normal form and an iso form of a hydrocarbon having 5 carbon atoms.
 また、従来の方法では、炭素数5の炭化水素のノルマル体及びイソ体を含有する炭化水素混合物からジシクロペンタジエンを製造する場合、イソ体とノルマル体とを分離する工程が行われていたが、本実施形態に係る製造方法によれば、イソ体とノルマル体とを分離する工程を行わずに、ジシクロペンタジエンを効率良く製造することができる。 Further, in the conventional method, when dicyclopentadiene is produced from a hydrocarbon mixture containing a normal body and an iso body of a hydrocarbon having 5 carbon atoms, a step of separating the iso body and the normal body has been performed. According to the production method according to the present embodiment, dicyclopentadiene can be efficiently produced without performing the step of separating the iso-form and the normal form.
 以下、本実施形態に係る製造方法の各工程について詳述する。 Hereinafter, each step of the manufacturing method according to this embodiment will be described in detail.
(異性化環化脱水素工程)
 異性化環化脱水素工程では、炭素数5の炭化水素のノルマル体及びイソ体を含有する炭化水素混合物を、異性化処理及び環化脱水素処理することでシクロペンタジエンを生成する。
(Isomerization cyclization dehydrogenation step)
In the isomerization cyclization dehydrogenation step, cyclopentadiene is produced by isomerization treatment and cyclization dehydrogenation treatment of a hydrocarbon mixture containing a normal form and an iso form of a hydrocarbon having 5 carbon atoms.
 炭素数5の炭化水素のノルマル体としては、例えば、n-ペンタン、1-ペンテン、2-ペンテン、1,3-ペンタジエン(別称:ピペリレン)、1,4-ペンタジエンが挙げられる。 Examples of the normal form of the hydrocarbon having 5 carbon atoms include n-pentane, 1-pentene, 2-pentene, 1,3-pentadiene (also known as piperylene), and 1,4-pentadiene.
 炭素数5の炭化水素のイソ体としては、例えば、イソペンタン、2-メチル-1-ブテン、2-メチル-2-ブテン、3-メチル-1-ブテン、2-メチル-1,3-ブタジエン(別称:イソプレン)が挙げられる。 Examples of the isopentane of the hydrocarbon having 5 carbon atoms include isopentane, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene, and 2-methyl-1,3-butadiene ( Also known as: isoprene).
 炭化水素混合物は、炭素数5の炭化水素のノルマル体及びイソ体以外の他の成分を含んでいてよい。他の成分としては、シクロペンタン、シクロペンテン、シクロペンタジエン、2,2-ジメチルプロパン(別称:ネオペンタン)等が挙げられる。 The hydrocarbon mixture may contain components other than the normal form and the iso form of the hydrocarbon having 5 carbon atoms. Examples of other components include cyclopentane, cyclopentene, cyclopentadiene, 2,2-dimethylpropane (also known as neopentane) and the like.
 炭化水素混合物に占める炭素数5の炭化水素のノルマル体及びイソ体の総量は特に限定されないが、炭化水素混合物全量を基準として、例えば、50~100質量%であってよく、60~98質量%であってよく、70~96質量%であってよい。 The total amount of the normal and iso-forms of the hydrocarbon having 5 carbon atoms in the hydrocarbon mixture is not particularly limited, but may be, for example, 50 to 100% by mass and 60 to 98% by mass based on the total amount of the hydrocarbon mixture. It may be 70 to 96% by mass.
 本実施形態の製造方法では、異性化処理によりイソ体をノルマル体に異性化することができるため、炭化水素混合物におけるイソ体の含有量が多いほど、異性化処理を行わない従来の製造方法よりもジシクロペンタジエンの収率向上効果が顕著に得られやすい。そのため、炭化水素混合物における炭素数5の炭化水素のイソ体の含有量は、特に限定されないが、炭化水素混合物全量を基準として、10質量%以上、20質量%以上、40質量%以上、50質量%以上、又は、60質量%以上であってよい。また、炭化水素混合物における炭素数5の炭化水素のイソ体の含有量は、特に限定されないが、炭化水素混合物全量を基準として、90質量%以下、又は、80質量%以下であってよい。 In the production method of the present embodiment, the iso isomer can be isomerized to the normal isomer by the isomerization treatment. Therefore, the larger the content of the iso isomer in the hydrocarbon mixture, the more than the conventional production method in which the isomerization treatment is not performed. However, the effect of improving the yield of dicyclopentadiene can be remarkably obtained. Therefore, the content of the iso-is of the hydrocarbon having 5 carbon atoms in the hydrocarbon mixture is not particularly limited, but is 10% by mass or more, 20% by mass or more, 40% by mass or more, and 50% by mass based on the total amount of the hydrocarbon mixture. % Or more, or 60% by mass or more. The content of the iso-form of the hydrocarbon having 5 carbon atoms in the hydrocarbon mixture is not particularly limited, but may be 90% by mass or less or 80% by mass or less based on the total amount of the hydrocarbon mixture.
 炭化水素混合物は、C5留分であってよい。C5留分は、例えば、ナフサの熱分解により生成したC5留分であってもよく、重質油接触分解装置由来の軽質炭化水素混合物であってもよく、C5ジエン抽出工程で得られた、ピペリレンが富化されたC5留分であってもよい。 The hydrocarbon mixture may be a C5 fraction. The C5 fraction may be, for example, a C5 fraction produced by thermal cracking of naphtha or a light hydrocarbon mixture derived from a heavy oil catalytic cracking apparatus, which is obtained in the C5 diene extraction step. It may be a C5 fraction enriched with piperylene.
 異性化環化脱水素工程は、炭化水素混合物を、異性化能を有する触媒に接触させた後、環化能及び脱水素能を有する触媒に接触させることでシクロペンタジエンを生成する工程であってもよく、炭化水素混合物を、異性化能、環化能及び脱水素能を有する触媒に接触させることでシクロペンタジエンを生成する工程であってもよい。前者の場合、異性化環化脱水素工程は、炭化水素混合物を異性化処理する異性化工程と、異性化処理後の炭化水素混合物を環化脱水素処理する環化脱水素工程とを含んでもよい。異性化処理では、炭化水素混合物に含まれる炭素数5の炭化水素のイソ体を、異性化反応により炭素数5の炭化水素のノルマル体に異性化する。環化脱水素処理では、上記ノルマル体の環化脱水素反応により、シクロペンタジエンが生成する。 The isomerization cyclization dehydrogenation step is a step of contacting a hydrocarbon mixture with a catalyst having isomerization ability and then contacting the catalyst having cyclization ability and dehydrogenation ability to generate cyclopentadiene. Alternatively, it may be a step of producing a cyclopentadiene by contacting the hydrocarbon mixture with a catalyst having an isomerization ability, a cyclization ability and a dehydrogenation ability. In the former case, the isomerization cyclization dehydrogenation step may include an isomerization step of isomerizing the hydrocarbon mixture and a cyclization dehydrogenation step of cyclizing and dehydrogenating the hydrocarbon mixture after the isomerization treatment. good. In the isomerization treatment, the isoform of the hydrocarbon having 5 carbon atoms contained in the hydrocarbon mixture is isomerized to the normal form of the hydrocarbon having 5 carbon atoms by the isomerization reaction. In the cyclization dehydrogenation treatment, cyclopentadiene is produced by the cyclization dehydrogenation reaction of the normal form.
 異性化環化脱水素工程が、異性化工程及び環化脱水素工程を有する場合について以下に説明する。 The case where the isomerization cyclization dehydrogenation step has an isomerization step and a cyclization dehydrogenation step will be described below.
 異性化工程において、異性化能を有する触媒及び異性化反応の条件は特に限定されず、イソ体の少なくとも一部をノルマル体に異性化可能な触媒及び条件であれば特に制限なく用いることができる。 In the isomerization step, the catalyst having an isomerization ability and the conditions of the isomerization reaction are not particularly limited, and any catalyst and conditions capable of isomerizing at least a part of the iso isomer to the normal isomer can be used without particular limitation. ..
 異性化能を有する触媒としては、例えば、ゼオライト触媒を用いることができる。使用するゼオライトは、少なくとも部分的に水素型であることが好ましい。 As the catalyst having isomerization ability, for example, a zeolite catalyst can be used. The zeolite used is preferably at least partially hydrogen type.
 ゼオライト触媒としては、ゼオライトZSM-5、ZSM-11、フェリエライト等の構造を有する中間孔ゼオライトを使用することで、異性化反応の選択性をより向上することができる。 By using an intermediate pore zeolite having a structure such as zeolite ZSM-5, ZSM-11, or ferrierite as the zeolite catalyst, the selectivity of the isomerization reaction can be further improved.
 ゼオライト触媒は、成形性を向上させる観点から、触媒の物性や触媒性能を損なわず本開示の趣旨を逸脱しない範囲において、成形助剤を更に含有していてもよい。成型助剤は、例えば、増粘剤、界面活性剤、保水剤、可塑剤、バインダー原料等からなる群より選択される少なくとも一種であってよい。ゼオライト触媒を成形する成形工程は、成形助剤の反応性を考慮してゼオライト触媒の製造工程の適切な段階で行ってよい。 From the viewpoint of improving moldability, the zeolite catalyst may further contain a molding aid as long as it does not impair the physical characteristics and catalytic performance of the catalyst and does not deviate from the gist of the present disclosure. The molding aid may be, for example, at least one selected from the group consisting of thickeners, surfactants, water retention agents, plasticizers, binder raw materials and the like. The molding step of molding the zeolite catalyst may be performed at an appropriate stage of the manufacturing process of the zeolite catalyst in consideration of the reactivity of the molding aid.
 ゼオライト触媒は、白金又はパラジウムを活性金属として担持していてもよい。活性金属を担持することでパラフィン成分の異性化反応が期待できる。 The zeolite catalyst may support platinum or palladium as an active metal. By supporting the active metal, an isomerization reaction of the paraffin component can be expected.
 異性化反応の条件は特に限定されず、例えば、反応温度は150~500℃であってよく、200~400℃であってもよく、250~350℃であってもよい。反応温度が150℃以上であれば、イソ体からノルマル体への異性化がより進行しやすくなる傾向がある。反応温度が350℃以下であれば、軽質炭化水素の生成量がより少なくなる傾向がある。反応圧力、すなわち反応器内の気圧は0.01~1MPaであってよく、0.05~0.8MPaであってもよく、0.1~0.5MPaであってもよい。反応圧力が上記範囲にあれば異性化反応が進行し易くなり、一層優れた反応効率が得られる傾向がある。 The conditions of the isomerization reaction are not particularly limited, and for example, the reaction temperature may be 150 to 500 ° C, 200 to 400 ° C, or 250 to 350 ° C. When the reaction temperature is 150 ° C. or higher, the isomerization from the iso-form to the normal form tends to proceed more easily. When the reaction temperature is 350 ° C. or lower, the amount of light hydrocarbon produced tends to be smaller. The reaction pressure, that is, the air pressure in the reactor may be 0.01 to 1 MPa, 0.05 to 0.8 MPa, or 0.1 to 0.5 MPa. If the reaction pressure is within the above range, the isomerization reaction tends to proceed easily, and a more excellent reaction efficiency tends to be obtained.
 また、異性化反応を、炭化水素混合物を連続的に供給する連続式の反応形式で行う場合、重量空間速度(以下、「WHSV」という。)は、例えば0.1h-1以上であってよく、0.5h-1以上であってもよい。また、WHSVは、20h-1以下であってよく、10h-1以下であってもよい。ここで、WHSVとは、触媒の質量Wに対する炭化水素混合物(供給物)の供給速度(供給質量/時間)Fの比(F/W)である。WHSVが0.1h-1以上であると、反応器サイズをより小さくできる。WHSVが20h-1以下であると、イソ体からノルマル体への異性化率をより高くすることができる。なお、炭化水素混合物(供給物)及び触媒の使用量は、反応条件、触媒の活性等に応じて更に好ましい範囲を適宜選定してよく、WHSVは上記範囲に限定されるものではない。 Further, when the isomerization reaction is carried out in a continuous reaction format in which the hydrocarbon mixture is continuously supplied, the weight space velocity (hereinafter referred to as "WHSV") may be, for example, 0.1 h -1 or more. , 0.5h -1 or more. Further, the WHSV may be 20h -1 or less, and may be 10h -1 or less. Here, WHSV is the ratio (F / W) of the supply rate (supply mass / hour) F of the hydrocarbon mixture (supply) to the mass W of the catalyst. When the WHSV is 0.1 h -1 or more, the reactor size can be made smaller. When the WHSV is 20 h -1 or less, the isomerization rate from the iso form to the normal form can be further increased. The amount of the hydrocarbon mixture (supply) and the catalyst used may be appropriately selected in a more preferable range depending on the reaction conditions, the activity of the catalyst, and the like, and the WHSV is not limited to the above range.
 異性化反応の反応形式は、例えば、固定床式、移動床式又は流動床式であってよい。これらのうち、設備コストの観点からは固定床式が好ましい。 The reaction type of the isomerization reaction may be, for example, a fixed bed type, a moving bed type or a fluidized bed type. Of these, the fixed floor type is preferable from the viewpoint of equipment cost.
 環化脱水素工程において、環化能及び脱水素能を有する触媒を有する触媒及び環化脱水素反応の条件は特に限定されず、ノルマル体の少なくとも一部をシクロペンタジエンに変換可能な触媒及び条件であれば特に制限なく用いることができる。 In the cyclization dehydrogenation step, the conditions of the catalyst having a cyclization ability and the dehydrogenation ability and the cyclization dehydrogenation reaction are not particularly limited, and the catalyst and conditions capable of converting at least a part of the normal form into cyclopentadiene. If so, it can be used without particular limitation.
 環化脱水素触媒は、例えば担体と当該担体に担持された活性金属とを有していてよい。 The cyclization dehydrogenation catalyst may have, for example, a carrier and an active metal supported on the carrier.
 担体としては、無機担体が好ましく、無機酸化物担体がより好ましい。また、担体は、Al、Mg、Si、Zr、Ti及びCeからなる群より選択される少なくとも一種の元素を含むことが好ましく、Al、Mg及びSiからなる群より選択される少なくとも一種の元素を含むことがより好ましい。 As the carrier, an inorganic carrier is preferable, and an inorganic oxide carrier is more preferable. Further, the carrier preferably contains at least one element selected from the group consisting of Al, Mg, Si, Zr, Ti and Ce, and at least one element selected from the group consisting of Al, Mg and Si. It is more preferable to include it.
 環化脱水素触媒の好適な一態様について、以下に示す。 A preferred embodiment of the cyclization dehydrogenation catalyst is shown below.
 本態様の環化脱水素触媒は、Al及び第2族金属元素を含む担体に、第14族金属元素及びPtを含む担持金属を担持させた触媒である。ここで、第2族金属元素とは、IUPAC(国際純正応用化学連合)の規定に基づく長周期型の元素の周期表における周期表第2族に属する金属元素を意味し、第14族金属元素とは、IUPAC(国際純正応用化学連合)の規定に基づく長周期型の元素の周期表における周期表第14族に属する金属元素を意味する。 The cyclization dehydrogenation catalyst of this embodiment is a catalyst in which a carrier containing Al and a Group 2 metal element is supported on a supported metal containing a Group 14 metal element and Pt. Here, the Group 2 metal element means a metal element belonging to Group 2 of the Periodic Table in the periodic table of long-periodic elements based on the provisions of IUPAC (International Genuine Applied Chemistry Association), and is a Group 14 metal element. Means a metal element belonging to Group 14 of the periodic table in the periodic table of long-periodic elements based on the provisions of IUPAC (International Federation of Pure Applied Chemistry).
 第2族金属元素は、例えば、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)からなら群より選択される少なくとも一種であってよい。これらの中でも、第2族金属元素は、Mgであることが好ましい。 The Group 2 metal element may be at least one selected from the group from, for example, beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr) and barium (Ba). Among these, the Group 2 metal element is preferably Mg.
 第14族金属元素は、例えば、ゲルマニウム(Ge)、スズ(Sn)及び鉛(Pb)からなる群より選択される少なくとも一種であってよい。これらの中でも、第14族金属元素は、Snであることが好ましい。 The Group 14 metal element may be, for example, at least one selected from the group consisting of germanium (Ge), tin (Sn) and lead (Pb). Among these, the Group 14 metal element is preferably Sn.
 環化脱水素触媒は、上記以外の環化脱水素触媒であってもよい。例えば、上記以外の環化脱水素触媒の好適な一例として、上記態様における担持金属としてCrを用いた触媒が挙げられる。 The cyclization dehydrogenation catalyst may be a cyclization dehydrogenation catalyst other than the above. For example, as a preferable example of a cyclization dehydrogenation catalyst other than the above, a catalyst using Cr as a supporting metal in the above embodiment can be mentioned.
 環化脱水素反応の条件は特に限定されず、例えば、反応温度は300~800℃であってよく、400~700℃であってもよく、500~650℃であってもよい。反応温度が300℃以上であれば、シクロペンタジエンの生成量が一層多くなる傾向がある。反応温度が800℃以下であれば、コーキング速度が大きくなりすぎないため、環化脱水素触媒の高い活性がより長期にわたって維持される傾向がある。反応圧力、すなわち反応器内の気圧は0.01~1MPaであってよく、0.03~0.8MPaであってもよく、0.05~0.5MPaであってもよい。反応圧力が上記範囲にあれば脱水素反応が進行し易くなり、一層優れた反応効率が得られる傾向がある。 The conditions of the cyclization dehydrogenation reaction are not particularly limited, and for example, the reaction temperature may be 300 to 800 ° C, 400 to 700 ° C, or 500 to 650 ° C. When the reaction temperature is 300 ° C. or higher, the amount of cyclopentadiene produced tends to be further increased. When the reaction temperature is 800 ° C. or lower, the caulking rate does not become too high, so that the high activity of the cyclized dehydrogenation catalyst tends to be maintained for a longer period of time. The reaction pressure, that is, the air pressure in the reactor may be 0.01 to 1 MPa, 0.03 to 0.8 MPa, or 0.05 to 0.5 MPa. If the reaction pressure is within the above range, the dehydrogenation reaction tends to proceed easily, and a more excellent reaction efficiency tends to be obtained.
 また、環化脱水素反応を、異性化処理後の炭化水素混合物(供給物)を連続的に供給する連続式の反応形式で行う場合、重量空間速度(WHSV)は、例えば0.1h-1以上であってよく、0.5h-1以上であってもよい。また、WHSVは、20h-1以下であってよく、10h-1以下であってもよい。WHSVが0.1h-1以上であると、反応器サイズをより小さくできる。WHSVが20h-1以下であると、シクロペンタジエンの収率をより高くすることができる。なお、供給物及び触媒の使用量は、反応条件、触媒の活性等に応じて更に好ましい範囲を適宜選定してよく、WHSVは上記範囲に限定されるものではない。 Further, when the cyclization dehydrogenation reaction is carried out in a continuous reaction format in which the hydrocarbon mixture (supply) after the isomerization treatment is continuously supplied, the weight space velocity (WHSV) is, for example, 0.1 h -1 . It may be the above, and may be 0.5h -1 or more. Further, the WHSV may be 20h -1 or less, and may be 10h -1 or less. When the WHSV is 0.1 h -1 or more, the reactor size can be made smaller. When the WHSV is 20 h -1 or less, the yield of cyclopentadiene can be further increased. The amount of the feed and the catalyst used may be appropriately selected in a more preferable range depending on the reaction conditions, the activity of the catalyst, and the like, and the WHSV is not limited to the above range.
 環化脱水素反応の反応形式は、例えば、固定床式、移動床式又は流動床式であってよい。これらのうち、設備コストの観点からは固定床式が好ましい。 The reaction form of the cyclization dehydrogenation reaction may be, for example, a fixed bed type, a moving bed type or a fluidized bed type. Of these, the fixed floor type is preferable from the viewpoint of equipment cost.
 次に、異性化環化脱水素工程が、炭化水素混合物を、異性化能、環化能及び脱水素能を有する触媒に接触させることでシクロペンタジエンを生成する工程である場合について以下に説明する。 Next, the case where the isomerization cyclization dehydrogenation step is a step of contacting the hydrocarbon mixture with a catalyst having isomerization ability, cyclization ability and dehydrogenation ability to generate cyclopentadiene will be described below. ..
 異性化環化脱水素工程において、異性化能、環化能及び脱水素能を有する触媒及び異性化環化脱水素反応の条件は特に限定されず、イソ体の少なくとも一部をノルマル体に異性化可能であると共に、ノルマル体の少なくとも一部をシクロペンタジエンに変換可能な触媒及び条件であれば特に制限なく用いることができる。 In the isomerization cyclization dehydrogenation step, the conditions of the catalyst having isomerization ability, cyclization ability and dehydrogenation ability and the isomerization cyclization dehydrogenation reaction are not particularly limited, and at least a part of the iso isomer is isomerized to the normal isomer. It can be used without particular limitation as long as it is a catalyst and conditions capable of converting at least a part of the normal form into cyclopentadiene.
 異性化能、環化能及び脱水素能を有する触媒としては、例えば、結晶性メタロシリケートを担体とし、当該担体に担持された活性金属を有したゼオライト触媒等が挙げられる。 Examples of the catalyst having isomerization ability, cyclization ability and dehydrogenation ability include a zeolite catalyst having a crystalline metallosilicate as a carrier and an active metal supported on the carrier.
 結晶性メタロシリケートは、ゼオライト中に、遷移金属又はポスト遷移金属から選ばれる少なくとも一種の金属原子を含み、ルイス酸性と強い固体塩基性とを有する。 The crystalline metallosilicate contains at least one metal atom selected from a transition metal or a post-transition metal in the zeolite, and has Lewis acidity and strong solid basicity.
 結晶性メタロシリケートは、その結晶構造において結晶性アルミノシリケートと類似構造を有するものであり、ゼオライトZSM-5、ZSM-11、ZSM-12、ゼオライトベータ、モルデナイト、フェリエライト等の結晶性アルミノシリケートと類似の構造を有するものである。 The crystalline aluminosilicate has a structure similar to that of the crystalline aluminosilicate in its crystal structure, and has a crystalline aluminosilicate such as zeolite ZSM-5, ZSM-11, ZSM-12, zeolite beta, mordenite, and ferrierite. It has a similar structure.
 ゼオライト中に含まれる金属原子は、遷移金属原子、ポスト遷移金属原子であれば特に限定されず、例えば、チタン(Ti)、バナジウム(V)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ジルコニウム(Zr)、インジウム(In)、スズ(Sn)等を用いることができる。これらの中でも、脱水素反応の反応性に優れる観点からは、亜鉛(Zn)、ニッケル(Ni)、鉄(Fe)を用いることが好ましい。ゼオライト中に含まれる金属原子は、1種単独でもよいし、2種以上を用いてもよい。 The metal atom contained in the zeolite is not particularly limited as long as it is a transition metal atom or a post-transition metal atom, and is, for example, titanium (Ti), vanadium (V), iron (Fe), cobalt (Co), nickel (Ni). ), Copper (Cu), Zinc (Zn), Gallium (Ga), Zirconium (Zr), Indium (In), Tin (Sn) and the like can be used. Among these, zinc (Zn), nickel (Ni), and iron (Fe) are preferably used from the viewpoint of excellent reactivity in the dehydrogenation reaction. The metal atom contained in the zeolite may be used alone or in combination of two or more.
 ゼオライト触媒は、成形性を向上させる観点から、触媒の物性や触媒性能を損なわず本開示の趣旨を逸脱しない範囲において、成形助剤を更に含有していてもよい。成型助剤は、例えば、増粘剤、界面活性剤、保水剤、可塑剤、バインダー原料等からなる群より選択される少なくとも一種であってよい。ゼオライト触媒を成形する成形工程は、成形助剤の反応性を考慮してゼオライト触媒の製造工程の適切な段階で行ってよい。 From the viewpoint of improving moldability, the zeolite catalyst may further contain a molding aid as long as it does not impair the physical characteristics and catalytic performance of the catalyst and does not deviate from the gist of the present disclosure. The molding aid may be, for example, at least one selected from the group consisting of thickeners, surfactants, water retention agents, plasticizers, binder raw materials and the like. The molding step of molding the zeolite catalyst may be performed at an appropriate stage of the manufacturing process of the zeolite catalyst in consideration of the reactivity of the molding aid.
 ゼオライト触媒は、白金(Pt)源を用いて、担体に白金を担持させたものであってよい。白金源としては、例えば、テトラアンミン白金(II)酸、テトラアンミン白金(II)酸塩(例えば、硝酸塩等)、テトラアンミン白金(II)酸水酸化物溶液、ジニトロジアンミン白金(II)硝酸溶液、ヘキサヒドロキソ白金(IV)酸硝酸溶液、ヘキサヒドロキソ白金(IV)酸エタノールアミン溶液等が挙げられる。 The zeolite catalyst may be one in which platinum is supported on a carrier using a platinum (Pt) source. Examples of the platinum source include tetraammine platinum (II) acid, tetraammine platinum (II) acid salt (for example, nitrate), tetraammine platinum (II) acid hydroxide solution, dinitrodiammine platinum (II) nitrate solution, and hexahydroxo. Examples thereof include platinum (IV) acid nitrate solution, hexahydroxoplatinum (IV) acid ethanolamine solution and the like.
 異性化環化脱水素反応の条件は特に限定されず、例えば、上述した異性化工程における異性化反応の条件、又は、上述した環化脱水素工程における環化脱水素反応の条件と同様の条件とすることができる。 The conditions of the isomerization cyclization dehydrogenation reaction are not particularly limited, and for example, the conditions of the isomerization reaction in the above-mentioned isomerization step or the conditions of the cyclization dehydrogenation reaction in the above-mentioned cyclization dehydrogenation step are the same. Can be.
 異性化工程及び環化脱水素工程、又は、異性化環化脱水素工程は、水素を含む雰囲気下で行うことが好ましい。これにより、触媒の劣化をより抑制でき、シクロペンタジエンの生成を促進することができる。 The isomerization step, the cyclization dehydrogenation step, or the isomerization cyclization dehydrogenation step is preferably performed in an atmosphere containing hydrogen. This makes it possible to further suppress the deterioration of the catalyst and promote the production of cyclopentadiene.
 異性化工程及び環化脱水素工程、又は、異性化環化脱水素工程を、水素、又は、スチームを含む雰囲気下で行う場合、雰囲気中の水素濃度は、5~95モル%であることが好ましく、5~30モル%であることがより好ましい。水素濃度を上記範囲内とすることで、触媒の劣化を抑制する効果をより向上でき、且つ、シクロペンタジエンの生成をより促進することができる。 When the isomerization step, the cyclization dehydrogenation step, or the isomerization cyclization dehydrogenation step is performed in an atmosphere containing hydrogen or steam, the hydrogen concentration in the atmosphere may be 5 to 95 mol%. It is preferably 5 to 30 mol%, more preferably 5 to 30 mol%. By setting the hydrogen concentration within the above range, the effect of suppressing the deterioration of the catalyst can be further improved, and the production of cyclopentadiene can be further promoted.
 異性化工程及び環化脱水素工程、又は、異性化環化脱水素工程を、スチームを含む雰囲気下で行う場合、雰囲気中のスチーム濃度は、5~95モル%であることが好ましく、20~65モル%であることがより好ましい。スチーム濃度を上記範囲内とすることで、触媒の劣化を抑制する効果をより向上でき、且つ、シクロペンタジエンの生成をより促進することができる。 When the isomerization step, the cyclization dehydrogenation step, or the isomerization cyclization dehydrogenation step is performed in an atmosphere containing steam, the steam concentration in the atmosphere is preferably 5 to 95 mol%, and 20 to 20 to It is more preferably 65 mol%. By setting the steam concentration within the above range, the effect of suppressing the deterioration of the catalyst can be further improved, and the production of cyclopentadiene can be further promoted.
 異性化環化脱水素工程入口での炭化水素混合物中のピペリレン濃度は、0質量%以上であってよく、2質量%以上であってもよく、5質量%以上であってもよく、10質量%以上であってもよい。このピペリレン濃度が高いほど、ジシクロペンタジエンの収率は高くなる傾向がある。ピペリレン濃度は、後述する脱水素工程を異性化環化脱水素工程前に行うことで、高めることができる。 The piperylene concentration in the hydrocarbon mixture at the inlet of the isomerization cyclization dehydrogenation step may be 0% by mass or more, 2% by mass or more, 5% by mass or more, or 10% by mass. It may be% or more. The higher the piperylene concentration, the higher the yield of dicyclopentadiene tends to be. The piperylene concentration can be increased by performing the dehydrogenation step described later before the isomerization cyclization dehydrogenation step.
 異性化環化脱水素工程入口での炭化水素混合物中の、炭素数5の炭化水素のイソ体の濃度は、10質量%以上、20質量%以上、40質量%以上、50質量%以上、又は、60質量%以上であってよく、90質量%以下、又は、80質量%以下であってよい。イソ体の濃度が高いほど、ジシクロペンタジエンの収率は低下する傾向にあるが、本実施形態の製造方法によれば、異性化処理によりイソ体をノルマル体に異性化することができるため、イソ体の濃度が上記範囲内であっても、ジシクロペンタジエンの収率を向上させることができる。 The concentration of the iso-form of the hydrogen having 5 carbon atoms in the hydrocarbon mixture at the inlet of the isomerization cyclization dehydrogenation step is 10% by mass or more, 20% by mass or more, 40% by mass or more, 50% by mass or more, or. , 60% by mass or more, 90% by mass or less, or 80% by mass or less. The higher the concentration of the iso-form, the lower the yield of dicyclopentadiene tends to be. However, according to the production method of the present embodiment, the iso-form can be isomerized to the normal form by the isomerization treatment. Even if the concentration of the iso isomer is within the above range, the yield of dicyclopentadiene can be improved.
(脱水素工程)
 本実施形態の製造方法は、上記異性化環化脱水素工程の前に、炭化水素混合物を脱水素処理する脱水素工程を有していてもよい。脱水素工程を行うことで、炭化水素混合物中の不飽和炭化水素の割合を増加させることができ、最終的に得られるジシクロペンタジエンの収率をより向上させることができる。脱水素工程は、飽和炭化水素を多く含む炭化水素混合物を用いる場合に行うことが好ましい。脱水素工程では、飽和炭化水素の少なくとも一部が不飽和炭化水素に変換されると共に、モノエンの少なくとも一部がジエンに変換される。異性化環化脱水素工程の前に脱水素工程を行った場合、異性化環化脱水素工程には、脱水素処理後の炭化水素混合物が供される。
(Dehydrogenation process)
The production method of the present embodiment may include a dehydrogenation step of dehydrogenating the hydrocarbon mixture before the isomerization cyclization dehydrogenation step. By performing the dehydrogenation step, the proportion of unsaturated hydrocarbons in the hydrocarbon mixture can be increased, and the yield of finally obtained dicyclopentadiene can be further improved. The dehydrogenation step is preferably performed when a hydrocarbon mixture containing a large amount of saturated hydrocarbon is used. In the dehydrogenation step, at least a portion of the saturated hydrocarbon is converted to an unsaturated hydrocarbon and at least a portion of the monoene is converted to a diene. When the dehydrogenation step is performed before the isomerization cyclization dehydrogenation step, the hydrocarbon mixture after the dehydrogenation treatment is provided in the isomerization cyclization dehydrogenation step.
 脱水素工程は、例えば、脱水素触媒を充填した反応器を用い、炭化水素混合物を流通させることにより実施してよい。反応器としては、固体触媒による気相反応に用いられる種々の反応器を用いることができる。反応器としては、例えば、固定床型反応器、ラジアルフロー型反応器、管型反応器等が挙げられる。 The dehydrogenation step may be carried out, for example, by using a reactor filled with a dehydrogenation catalyst and circulating a hydrocarbon mixture. As the reactor, various reactors used for the gas phase reaction using a solid catalyst can be used. Examples of the reactor include a fixed bed type reactor, a radial flow type reactor, a tube type reactor and the like.
 脱水素反応の反応形式は、例えば、固定床式、移動床式又は流動床式であってよい。これらのうち、設備コストの観点からは固定床式が好ましい。 The reaction type of the dehydrogenation reaction may be, for example, a fixed bed type, a moving bed type or a fluidized bed type. Of these, the fixed floor type is preferable from the viewpoint of equipment cost.
 脱水素触媒及び脱水素反応の条件は特に限定されず、炭化水素混合物に含まれる飽和炭化水素の少なくとも一部を不飽和炭化水素に変換可能な触媒及び条件であれば特に制限なく用いることができる。 The conditions for the dehydrocarbonation catalyst and the dehydrocarbonation reaction are not particularly limited, and any catalyst and conditions capable of converting at least a part of the saturated hydrocarbon contained in the hydrocarbon mixture into unsaturated hydrocarbons can be used without particular limitation. ..
 脱水素触媒としては、上述した環化脱水素工程における環化脱水素触媒と同様のものを用いることができる。 As the dehydrogenation catalyst, the same catalyst as the cyclization dehydrogenation catalyst in the cyclization dehydrogenation step described above can be used.
 脱水素反応の反応温度、すなわち反応器内の温度は、反応効率の観点から300~800℃であってよく、400~700℃であってよく、500~650℃であってよい。反応温度が300℃以上であれば、脱水素反応をより促進できる傾向がある。反応温度が800℃以下であれば、コーキング速度が大きくなりすぎないため、脱水素触媒の高い活性がより長期にわたって維持される傾向がある。 The reaction temperature of the dehydrogenation reaction, that is, the temperature inside the reactor may be 300 to 800 ° C., 400 to 700 ° C., or 500 to 650 ° C. from the viewpoint of reaction efficiency. When the reaction temperature is 300 ° C. or higher, the dehydrogenation reaction tends to be further promoted. When the reaction temperature is 800 ° C. or lower, the caulking rate does not become too high, so that the high activity of the dehydrogenation catalyst tends to be maintained for a longer period of time.
 反応圧力、すなわち反応器内の気圧は0.01~1MPaであってよく、0.03~0.8MPaであってもよく、0.05~0.5MPaであってもよい。反応圧力が上記範囲にあれば脱水素反応が進行し易くなり、一層優れた反応効率が得られる傾向がある。 The reaction pressure, that is, the air pressure in the reactor may be 0.01 to 1 MPa, 0.03 to 0.8 MPa, or 0.05 to 0.5 MPa. If the reaction pressure is within the above range, the dehydrogenation reaction tends to proceed easily, and a more excellent reaction efficiency tends to be obtained.
 脱水素工程を、炭化水素混合物(供給物)を連続的に供給する連続式の反応形式で行う場合、重量空間速度(WHSV)は、例えば0.1h-1以上であってよく、0.5h-1以上であってもよい。また、WHSVは、20h-1以下であってよく、10h-1以下であってもよい。WHSVが0.1h-1以上であると、反応器サイズをより小さくできる。WHSVが20h-1以下であると、脱水素反応をより促進できる傾向がある。なお、供給物及び触媒の使用量は、反応条件、触媒の活性等に応じて更に好ましい範囲を適宜選定してよく、WHSVは上記範囲に限定されるものではない。 When the dehydrogenation step is carried out in a continuous reaction format in which the hydrocarbon mixture (supply) is continuously supplied, the weight space velocity (WHSV) may be, for example, 0.1 h -1 or more, 0.5 h. It may be -1 or more. Further, the WHSV may be 20h -1 or less, and may be 10h -1 or less. When the WHSV is 0.1 h -1 or more, the reactor size can be made smaller. When the WHSV is 20h -1 or less, the dehydrogenation reaction tends to be further promoted. The amount of the feed and the catalyst used may be appropriately selected in a more preferable range depending on the reaction conditions, the activity of the catalyst, and the like, and the WHSV is not limited to the above range.
 脱水素触媒には、例えば無機酸化物担体に、活性金属を担持した触媒を用いることができる。活性金属源には、白金、スズ、クロム、鉄、ビスマス、モリブデン、マンガン、コバルト、セリウム、ルテニウム及びイリジウムからなる群より選択される少なくとも1種を用いることができる。 As the dehydrogenation catalyst, for example, a catalyst in which an active metal is supported on an inorganic oxide carrier can be used. As the active metal source, at least one selected from the group consisting of platinum, tin, chromium, iron, bismuth, molybdenum, manganese, cobalt, cerium, ruthenium and iridium can be used.
 脱水素工程は、水素、又は、スチームを含む雰囲気下で行うことが好ましい。これにより、触媒の劣化をより抑制でき、不飽和炭化水素の生成を促進することができる。 The dehydrogenation step is preferably performed in an atmosphere containing hydrogen or steam. As a result, deterioration of the catalyst can be further suppressed, and the production of unsaturated hydrocarbons can be promoted.
 脱水素工程を、水素を含む雰囲気下で行う場合、雰囲気中の水素濃度は、5~95モル%であることが好ましく、5~30モル%であることがより好ましい。水素濃度を上記範囲内とすることで、触媒の劣化を抑制する効果をより向上でき、且つ、不飽和炭化水素の生成をより促進することができる。 When the dehydrogenation step is performed in an atmosphere containing hydrogen, the hydrogen concentration in the atmosphere is preferably 5 to 95 mol%, more preferably 5 to 30 mol%. By setting the hydrogen concentration within the above range, the effect of suppressing deterioration of the catalyst can be further improved, and the production of unsaturated hydrocarbons can be further promoted.
 脱水素工程を、スチームを含む雰囲気下で行う場合、雰囲気中のスチーム濃度は、5~95モル%であることが好ましく、20~65モル%であることがより好ましい。スチーム濃度を上記範囲内とすることで、触媒の劣化を抑制する効果をより向上でき、且つ、不飽和炭化水素の生成をより促進することができる。 When the dehydrogenation step is performed in an atmosphere containing steam, the steam concentration in the atmosphere is preferably 5 to 95 mol%, more preferably 20 to 65 mol%. By setting the steam concentration within the above range, the effect of suppressing deterioration of the catalyst can be further improved, and the production of unsaturated hydrocarbons can be further promoted.
(二量化工程)
 二量化工程では、異性化環化脱水素工程で生成したシクロペンタジエンを二量化してジシクロペンタジエンを生成する。
(Dimerization process)
In the dimerization step, the cyclopentadiene produced in the isomerization cyclization dehydrogenation step is dimerized to produce dicyclopentadiene.
 二量化工程における二量化反応の条件は特に限定されず、シクロペンタジエンを二量化してジシクロペンタジエンを生成可能な条件であれば特に制限なく用いることができる。シクロペンタジエンの多量化抑制及び反応効率の観点から、シクロペンタジエンの二量化は、ディールズ・アルダー(Diels Alder)反応を用いて行うことが好ましく、無触媒の連続反応器を使用した液相でのディールズ・アルダー反応を用いて行うことがより好ましい。なお、連続反応器を用いてディールズ・アルダー反応を実施する際の被処理物の滞留時間は、0.5時間以上とすることが好ましく、1時間以上とすることがより好ましく、6時間以下とすることが好ましく、4時間以下とすることがより好ましい。このような滞留時間とすることで、二量化反応を十分に進行させることができ、且つ、シクロペンタジエンとイソプレン、ピペリレン等との副反応が抑制され、ジシクロペンタジエンをより効率的に得ることができる。 The conditions for the dimerization reaction in the dimerization step are not particularly limited, and can be used without particular limitation as long as the conditions can be used to dimerize cyclopentadiene to produce dicyclopentadiene. From the viewpoint of suppressing the increase in cyclopentadiene and the reaction efficiency, the dimerization of cyclopentadiene is preferably carried out by using the Diels-Alder reaction, and deals in a liquid phase using a non-catalytic continuous reactor. -It is more preferable to use the Alder reaction. The residence time of the object to be treated when carrying out the Diels-Alder reaction using a continuous reactor is preferably 0.5 hours or more, more preferably 1 hour or more, and 6 hours or less. It is preferably 4 hours or less, and more preferably 4 hours or less. With such a residence time, the dimerization reaction can be sufficiently advanced, and side reactions between cyclopentadiene and isoprene, piperylene, etc. are suppressed, and dicyclopentadiene can be obtained more efficiently. can.
 二量化反応の反応温度は、50℃以上であることが好ましく、60℃以上であることがより好ましく、250℃以下であることが好ましく、150℃以下であることがより好ましい。このような反応温度とすることで、二量化反応を十分に進行させることができ、且つ、上述の副反応を抑制して、ジシクロペンタジエンをより効率的に得ることができる。 The reaction temperature of the dimerization reaction is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, preferably 250 ° C. or lower, and more preferably 150 ° C. or lower. By setting such a reaction temperature, the dimerization reaction can be sufficiently proceeded, and the above-mentioned side reaction can be suppressed to obtain dicyclopentadiene more efficiently.
 二量化反応の反応圧力、すなわち反応器内の気圧は0.01~1MPaであってよく、0.05~0.8MPaであってもよく、0.1~0.6MPaであってもよい。反応圧力が上記範囲にあれば二量化反応が進行し易くなり、一層優れた反応効率が得られる傾向がある。 The reaction pressure of the dimerization reaction, that is, the atmospheric pressure in the reactor may be 0.01 to 1 MPa, 0.05 to 0.8 MPa, or 0.1 to 0.6 MPa. If the reaction pressure is within the above range, the dimerization reaction tends to proceed easily, and a more excellent reaction efficiency tends to be obtained.
(第1の蒸留工程)
 本実施形態の製造方法は、異性化環化脱水素工程の後、且つ、二量化工程の前に、第1の蒸留工程を有していてもよい。第1の蒸留工程では、異性化環化脱水素工程での反応によって生じたガス分、及び、C5留分の低沸点成分を蒸留により分離し、シクロペンタジエン割合が富化された留分を得ることができる。蒸留は、例えば抽出蒸留により行うことができる。第1の蒸留工程で得られた、シクロペンタジエン割合が富化された留分を、二量化工程に供することができる。二量化工程の前に第1の蒸留工程を行った場合、二量化工程には、第1の蒸留工程を経てシクロペンタジエン割合が富化された留分が供される。
(First distillation step)
The production method of the present embodiment may have a first distillation step after the isomerization cyclization dehydrogenation step and before the dimerization step. In the first distillation step, the gas component generated by the reaction in the isomerization cyclization dehydrogenation step and the low boiling point component of the C5 fraction are separated by distillation to obtain a fraction enriched in the cyclopentadiene ratio. be able to. Distillation can be carried out, for example, by extraction distillation. The cyclopentadiene-rich fraction obtained in the first distillation step can be used in the dimerization step. When the first distillation step is performed before the dimerization step, the dimerization step is provided with a fraction enriched in the cyclopentadiene ratio through the first distillation step.
(第2の蒸留工程)
 本実施形態の製造方法は、二量化工程の後に、第2の蒸留工程を有していてもよい。第2の蒸留工程では、二量化工程によって生成したジシクロペンタジエンを、その他の成分と分離して回収する。蒸留は、例えば抽出蒸留により行うことができる。
(Second distillation step)
The production method of the present embodiment may include a second distillation step after the dimerization step. In the second distillation step, the dicyclopentadiene produced by the dimerization step is separated from other components and recovered. Distillation can be carried out, for example, by extraction distillation.
<ジシクロペンタジエンの製造装置>
 次に、図面を参照して、本開示の一実施形態に係るジシクロペンタジエンの製造装置及びそれを用いたジシクロペンタジエンの製造方法について説明する。図1は、一実施形態に係るジシクロペンタジエンの製造方法を実施するための、ジシクロペンタジエンの製造装置の一例を示すフロー図である。
<Manufacturing equipment for dicyclopentadiene>
Next, with reference to the drawings, the apparatus for producing dicyclopentadiene according to the embodiment of the present disclosure and the method for producing dicyclopentadiene using the same will be described. FIG. 1 is a flow chart showing an example of a device for producing dicyclopentadiene for carrying out the method for producing dicyclopentadiene according to an embodiment.
 図1に示されるジシクロペンタジエンの製造装置100は、脱水素反応器10、異性化反応器20、環化脱水素反応器30、第1の蒸留器40、二量化反応器50、及び、第2の蒸留器60、並びに、これらの反応器に接続された流路L1~L13を備える。 The dicyclopentadiene production apparatus 100 shown in FIG. 1 includes a dehydrogenation reactor 10, an isomerization reactor 20, a cyclization dehydrogenation reactor 30, a first distiller 40, a dimerization reactor 50, and a first. The distiller 60 of 2 and the flow paths L1 to L13 connected to these reactors are provided.
 図1に示される製造装置100を用いてジシクロペンタジエンを製造する場合、まず、炭化水素混合物(第1のストリーム)が流路L1を通じて脱水素反応器10に供され、脱水素工程を経て、オレフィン(不飽和炭化水素)の割合が富化された第2のストリームが得られる。第2のストリームは、流路L2を通じて異性化反応器20に供され、異性化工程を経てノルマル体の割合が上昇した第3のストリームが得られる。第3のストリームは、流路L3を通じて環化脱水素反応器30に供され、環化脱水素工程を経てノルマル体の少なくとも一部がシクロペンタジエンに転換された第4のストリームが得られる。第4のストリームは、流路L4を通じて第1の蒸留器40に供され、環化脱水素工程での反応によって生じたガス分(第5のストリーム)及びC5留分の低沸点成分(第6のストリーム)が第1の蒸留工程によって蒸留分離され、シクロペンタジエン割合が富化された第7のストリームが得られる。第5のストリームは流路L5を通じて回収され、第6のストリームは流路L6を通じて回収される。第7のストリームは、流路L7を通じて二量化反応器50に供され、第7のストリームに含まれるシクロペンタジエンがジシクロペンタジエンに転換された第8のストリームが得られる。第8のストリームは、流路L8を通じて第2の蒸留器60に供され、蒸留操作によってジシクロペンタジエン(第9のストリーム)とその他の成分(第10のストリーム)とに分離される。第9のストリームは流路L9を通じて回収され、第10のストリームは流路L10を通じて回収される。これにより、第9のストリームとしてジシクロペンタジエンが得られる。 When dicyclopentadiene is produced using the production apparatus 100 shown in FIG. 1, a hydrocarbon mixture (first stream) is first supplied to the dehydrogenation reactor 10 through the flow path L1 and then subjected to a dehydrogenation step. A second stream enriched with the proportion of olefins (unsaturated hydrocarbons) is obtained. The second stream is supplied to the isomerization reactor 20 through the flow path L2, and a third stream having an increased proportion of normal form is obtained through the isomerization step. The third stream is subjected to the cyclization dehydrogenation reactor 30 through the flow path L3, and a fourth stream in which at least a part of the normal form is converted to cyclopentadiene is obtained through the cyclization dehydrogenation step. The fourth stream is supplied to the first distiller 40 through the flow path L4, and the gas component (fifth stream) generated by the reaction in the cyclization dehydrogenation step and the low boiling point component of the C5 fraction (sixth stream). Stream) is distilled and separated by the first distillation step to obtain a seventh stream enriched with the cyclopentadiene ratio. The fifth stream is collected through the flow path L5 and the sixth stream is collected through the flow path L6. The seventh stream is subjected to the dimerization reactor 50 through the flow path L7, and the eighth stream in which the cyclopentadiene contained in the seventh stream is converted to dicyclopentadiene is obtained. The eighth stream is subjected to a second distiller 60 through the channel L8 and is separated into a dicyclopentadiene (9th stream) and other components (10th stream) by a distillation operation. The ninth stream is collected through the flow path L9 and the tenth stream is collected through the flow path L10. This gives dicyclopentadiene as the ninth stream.
 図1に示される製造装置100において、第1の蒸留器40で抽出された低沸点成分の少なくとも一部は、第11のストリームとして流路L11を通じて流路L1に供給され、第1のストリームと混合されて再び脱水素反応器10に供されてもよい。また、第2の蒸留器60で蒸留分離されたジシクロペンタジエン以外の成分の少なくとも一部は、第12のストリームとして流路L12を通じて流路L1に供給され、第1のストリームと混合されて再び脱水素反応器10に供されてもよく、第13のストリームとして流路L13を通じて流路L2に供給され、第2のストリームと混合されて再び異性化反応器20に供されてもよい。 In the manufacturing apparatus 100 shown in FIG. 1, at least a part of the low boiling point components extracted by the first distiller 40 is supplied to the flow path L1 as the eleventh stream through the flow path L11, and the first stream and the first stream. It may be mixed and subjected to the dehydrogenation reactor 10 again. Further, at least a part of the components other than dicyclopentadiene distilled and separated by the second distiller 60 is supplied to the flow path L1 as a twelfth stream through the flow path L12, mixed with the first stream, and again. It may be supplied to the dehydrogenation reactor 10, or may be supplied to the flow path L2 as a thirteenth stream through the flow path L13, mixed with the second stream, and supplied to the isomerization reactor 20 again.
 図2に示されるジシクロペンタジエンの製造装置200は、異性化反応器20、環化脱水素反応器30、第1の蒸留器40、二量化反応器50、及び、第2の蒸留器60、並びに、これらの反応器に接続された流路L1及びL3~L12を備える。 The dicyclopentadiene production apparatus 200 shown in FIG. 2 includes an isomerization reactor 20, a cyclized dehydrogenation reactor 30, a first distiller 40, a distillation reactor 50, and a second distiller 60. In addition, the flow paths L1 and L3 to L12 connected to these reactors are provided.
 図2に示される製造装置200を用いてジシクロペンタジエンを製造する場合、脱水素反応器10での脱水素工程を行わない以外は、製造装置100を用いてジシクロペンタジエンを製造する場合と同様の流れでジシクロペンタジエンを製造することができる。また、図2に示される製造装置200において、第1の蒸留器40で抽出された低沸点成分の少なくとも一部を第11のストリームとし、第1のストリームと混合して再び異性化反応器20に供してもよい。また、第2の蒸留器60で蒸留分離されたジシクロペンタジエン以外の成分の少なくとも一部を第12のストリームとし、第1のストリームと混合して再び異性化反応器20に供してもよい。 When dicyclopentadiene is produced using the production apparatus 200 shown in FIG. 2, it is the same as the case of producing dicyclopentadiene using the production apparatus 100 except that the dehydrogenation step is not performed in the dehydrogenation reactor 10. Dicyclopentadiene can be produced by the flow of. Further, in the manufacturing apparatus 200 shown in FIG. 2, at least a part of the low boiling point components extracted by the first distiller 40 is used as the eleventh stream, mixed with the first stream, and again the isomerization reactor 20. May be offered to. Further, at least a part of the components other than dicyclopentadiene distilled and separated by the second distiller 60 may be used as the twelfth stream, mixed with the first stream, and subjected to the isomerization reactor 20 again.
 図3に示されるジシクロペンタジエンの製造装置300は、異性化環化脱水素反応器70、第1の蒸留器40、二量化反応器50、及び、第2の蒸留器60、並びに、これらの反応器に接続された流路L1及びL4~L12を備える。 The dicyclopentadiene production apparatus 300 shown in FIG. 3 includes an isomerized cyclization dehydrogenation reactor 70, a first distiller 40, a distillation reactor 50, a second distiller 60, and these. It is provided with flow paths L1 and L4 to L12 connected to the reactor.
 図3に示される製造装置300を用いてジシクロペンタジエンを製造する場合、脱水素反応器10での脱水素工程を行わず、且つ、異性化反応器20での異性化工程及び環化脱水素反応器30での環化脱水素工程に代えて、異性化環化脱水素反応器70での異性化環化脱水素工程を行うこと以外は、製造装置100を用いてジシクロペンタジエンを製造する場合と同様の流れでジシクロペンタジエンを製造することができる。また、図3に示される製造装置300において、第1の蒸留器40で抽出された低沸点成分の少なくとも一部を第11のストリームとし、第1のストリームと混合して再び異性化環化脱水素反応器70に供してもよい。また、第2の蒸留器60で蒸留分離されたジシクロペンタジエン以外の成分の少なくとも一部を第12のストリームとし、第1のストリームと混合して再び異性化環化脱水素反応器70に供してもよい。 When dicyclopentadiene is produced using the production apparatus 300 shown in FIG. 3, the isomerization step and the cyclization dehydrogenation in the isomerization reactor 20 are not performed in the dehydrogenation reactor 10. Dicyclopentadiene is produced using the production apparatus 100 except that the isomerization cyclization dehydrogenation step is performed in the isomerization cyclization dehydrogenation reactor 70 instead of the cyclization dehydrogenation step in the reactor 30. Dicyclopentadiene can be produced in the same flow as in the case. Further, in the manufacturing apparatus 300 shown in FIG. 3, at least a part of the low boiling point components extracted by the first distiller 40 is used as the eleventh stream, mixed with the first stream, and isomerized, cyclized and dehydrated again. It may be provided to the elementary reactor 70. Further, at least a part of the components other than dicyclopentadiene distilled and separated by the second distiller 60 is made into a twelfth stream, mixed with the first stream, and subjected to the isomerization cyclization dehydrogenation reactor 70 again. May be.
 図4に示されるジシクロペンタジエンの製造装置400は、脱水素反応器10、異性化反応器20、環化脱水素反応器30、第1の蒸留器40、二量化反応器50、及び、第2の蒸留器60、並びに、これらの反応器に接続された流路L1~L11及びL13を備える。 The dicyclopentadiene production apparatus 400 shown in FIG. 4 includes a dehydrogenation reactor 10, an isomerization reactor 20, a cyclization dehydrogenation reactor 30, a first distiller 40, a dimerization reactor 50, and a first. The distiller 60 of 2 and the flow paths L1 to L11 and L13 connected to these reactors are provided.
 図4に示される製造装置400を用いてジシクロペンタジエンを製造する場合、炭化水素混合物(第1のストリーム)は、流路L1及び流路L4を通じて第1の蒸留器40に供される。第1の蒸留器40において、ガス分(第5のストリーム)及びC5留分の低沸点成分(第6のストリーム)が第1の蒸留工程によって蒸留分離され、シクロペンタジエン割合が富化された第7のストリームが得られる。第7のストリームは、流路L7を通じて二量化反応器50に供され、それ以降は製造装置100を用いてジシクロペンタジエンを製造する場合と同様の流れでジシクロペンタジエンが製造される。一方、第1の蒸留器40で蒸留分離された低沸点成分の少なくとも一部は、第11のストリームとして脱水素反応器10に供され、脱水素工程を経て、オレフィン(不飽和炭化水素)の割合が富化された第2のストリームが得られる。第2のストリームは、流路L2を通じて異性化反応器20に供され、異性化工程を経てノルマル体の割合が上昇した第3のストリームが得られる。第3のストリームは、流路L3を通じて環化脱水素反応器30に供され、環化脱水素工程を経てノルマル体の少なくとも一部がシクロペンタジエンに転換された第4のストリームが得られる。第4のストリームは、供給される第1のストリームと混合され、流路L4を通じて第1の蒸留器40に供される。それ以降は上記と同様の流れで、ジシクロペンタジエンが製造される。 When dicyclopentadiene is produced using the production apparatus 400 shown in FIG. 4, the hydrocarbon mixture (first stream) is provided to the first distiller 40 through the flow path L1 and the flow path L4. In the first distiller 40, the gas component (fifth stream) and the low boiling point component (sixth stream) of the C5 fraction were distilled and separated by the first distillation step, and the cyclopentadiene ratio was enriched. 7 streams are obtained. The seventh stream is supplied to the dimerization reactor 50 through the flow path L7, and thereafter, dicyclopentadiene is produced in the same flow as in the case of producing dicyclopentadiene using the production apparatus 100. On the other hand, at least a part of the low boiling point component distilled and separated by the first distiller 40 is provided to the dehydrogenation reactor 10 as an eleventh stream, and undergoes a dehydrogenation step to obtain an olefin (unsaturated hydrocarbon). A second stream enriched in proportion is obtained. The second stream is supplied to the isomerization reactor 20 through the flow path L2, and a third stream having an increased proportion of normal form is obtained through the isomerization step. The third stream is subjected to the cyclization dehydrogenation reactor 30 through the flow path L3, and a fourth stream in which at least a part of the normal form is converted to cyclopentadiene is obtained through the cyclization dehydrogenation step. The fourth stream is mixed with the supplied first stream and is provided to the first still 40 through the flow path L4. After that, dicyclopentadiene is produced in the same flow as described above.
 また、図4に示される製造装置400において、第2の蒸留器60で蒸留分離されたジシクロペンタジエン以外の成分の少なくとも一部を第13のストリームとし、第2のストリームと混合して再び異性化反応器20に供してもよい。 Further, in the manufacturing apparatus 400 shown in FIG. 4, at least a part of the components other than dicyclopentadiene distilled and separated by the second distiller 60 is made into a thirteenth stream, mixed with the second stream, and isomerized again. It may be provided to the chemical reactor 20.
 以上、本開示の好適な実施形態について説明したが、本開示は上記実施形態に限定されるものではない。 Although the preferred embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments.
 以下、実施例によって本開示を更に詳細に説明するが、本開示はこれらの実施例に限定されるものではない。 Hereinafter, the present disclosure will be described in more detail by way of examples, but the present disclosure is not limited to these examples.
[製造条件]
 実施例及び比較例においてジシクロペンタジエンを製造する際の各反応器の条件を以下に示す。
<脱水素反応器>
反応温度:550℃
反応圧力:-50kPaG(51.3kPa)
反応雰囲気:炭化水素/スチーム=1/3(質量比)
WHSV:0.2h-1
<異性化反応器>
反応温度:300℃
反応圧力:100kPaG(201.3kPa)
反応雰囲気:炭化水素/水素=1/1(質量比)
WHSV:5.0h-1
<環化脱水素反応器>
反応温度:500℃
反応圧力:-50kPaG(51.3kPa)
反応雰囲気:炭化水素/水素/スチーム=1/1/3(質量比)
WHSV:1.0h-1
<二量化反応器>
反応温度:90℃
反応圧力:400kPaG(501.3kPa)
[Manufacturing conditions]
The conditions of each reactor for producing dicyclopentadiene in Examples and Comparative Examples are shown below.
<Dehydrogenation reactor>
Reaction temperature: 550 ° C
Reaction pressure: -50 kPaG (51.3 kPa)
Reaction atmosphere: Hydrocarbon / steam = 1/3 (mass ratio)
WHSV: 0.2h -1
<Isomerization reactor>
Reaction temperature: 300 ° C
Reaction pressure: 100 kPaG (2011.3 kPa)
Reaction atmosphere: Hydrocarbon / Hydrogen = 1/1 (mass ratio)
WHSV: 5.0h -1
<Cyclicating dehydrogenation reactor>
Reaction temperature: 500 ° C
Reaction pressure: -50 kPaG (51.3 kPa)
Reaction atmosphere: Hydrocarbon / Hydrogen / Steam = 1/1/3 (mass ratio)
WHSV: 1.0h -1
<Dimerization reactor>
Reaction temperature: 90 ° C
Reaction pressure: 400 kPaG (501.3 kPa)
(実施例1)
 ナフサを原料としたスチームクラッカーからジエンを分離して得られたC5留分を炭化水素混合物(第1のストリーム)とし、図1に示す製造装置により、脱水素工程、異性化工程、環化脱水素工程、第1の蒸留工程、二量化工程及び第2の蒸留工程を行って、ジシクロペンタジエンを製造した。図1中の流路L1~L10の番号は、当該流路を通るストリームの番号と対応している。上記製造装置には、流路L11~L13は設けていない。
(Example 1)
The C5 distillate obtained by separating diene from a steam cracker made from naphtha was used as a hydrocarbon mixture (first stream), and was subjected to a dehydrogenation step, an isomerization step, and cyclization dehydration by the production apparatus shown in FIG. A dicyclopentadiene was produced by performing an elementary step, a first distillation step, a dimerization step and a second distillation step. The numbers of the flow paths L1 to L10 in FIG. 1 correspond to the numbers of the streams passing through the flow path. The manufacturing apparatus is not provided with flow paths L11 to L13.
 第1のストリームを、流路L1を通じて脱水素反応器10に供し、脱水素工程を行って、オレフィン割合が富化された第2のストリームを得た。第2のストリームは、流路L2を通じて異性化反応器20に供し、異性化工程を行って、ノルマル体の割合が上昇した第3のストリームを得た。第3のストリームは、流路L3を通じて環化脱水素反応器30に供し、環化脱水素工程を行って、ノルマル体の一部がシクロペンタジエン(CPD)に転換された第4のストリームを得た。第4のストリームは、流路L4を通じて第1の蒸留器40に供し、環化脱水素反応によって生じたガス分(第5のストリーム)及びC5留分の低沸点成分(第6のストリーム)を第1の蒸留工程によって蒸留分離し、シクロペンタジエン割合が富化された第7のストリームを得た。第7のストリームは、流路L7を通じて二量化反応器50に供し、第7のストリームに含まれるシクロペンタジエンをDiels Alder反応によってジシクロペンタジエン(DCPD)に転換し、第8のストリームを得た(二量化工程)。第8のストリームは、流路L8を通じて第2の蒸留器60に供し、蒸留操作によってジシクロペンタジエン(第9のストリーム)とその他の成分(第10のストリーム)とに分離した(第2の蒸留工程)。以上の工程を経て、ジシクロペンタジエンを製造した。各ストリームに含まれる成分の割合を表1に示す。 The first stream was applied to the dehydrogenation reactor 10 through the flow path L1 and the dehydrogenation step was performed to obtain a second stream enriched in the olefin ratio. The second stream was applied to the isomerization reactor 20 through the flow path L2, and an isomerization step was performed to obtain a third stream in which the proportion of the normal form was increased. The third stream is subjected to a cyclization dehydrogenation reactor 30 through the flow path L3, and a cyclization dehydrogenation step is performed to obtain a fourth stream in which a part of the normal form is converted to cyclopentadiene (CPD). rice field. The fourth stream is provided to the first distiller 40 through the flow path L4, and the gas component (fifth stream) generated by the cyclization dehydrogenation reaction and the low boiling point component of the C5 fraction (sixth stream) are collected. Distillation separation was performed by the first distillation step to obtain a seventh stream enriched with the cyclopentadiene ratio. The seventh stream was subjected to the dimerization reactor 50 through the flow path L7, and the cyclopentadiene contained in the seventh stream was converted to dicyclopentadiene (DCPD) by the Diels-Alder reaction to obtain the eighth stream (the eighth stream was obtained. Dimerization process). The eighth stream was subjected to a second distiller 60 through the channel L8 and separated into dicyclopentadiene (9th stream) and other components (10th stream) by a distillation operation (second distillation). Process). Through the above steps, dicyclopentadiene was produced. Table 1 shows the ratio of the components contained in each stream.
(比較例1)
 異性化工程を行わなかったこと以外は実施例1と同様にして、ジシクロペンタジエンを製造した。比較例1では、図1において異性化反応器20及び流路L3を除き、流路L2を環化脱水素反応器30に接続した製造装置を用いた。比較例1では第3のストリームは存在せず、第2のストリームを、流路L2を通じて環化脱水素反応器30に供した。図1中の流路L1~L2及びL4~L10の番号は、当該流路を通るストリームの番号と対応している。上記製造装置には、流路L11~L13は設けていない。各ストリームに含まれる成分の割合を表2に示す。
(Comparative Example 1)
Dicyclopentadiene was produced in the same manner as in Example 1 except that the isomerization step was not performed. In Comparative Example 1, a manufacturing apparatus in which the flow path L2 was connected to the cyclization dehydrogenation reactor 30 was used except for the isomerization reactor 20 and the flow path L3 in FIG. In Comparative Example 1, the third stream did not exist, and the second stream was provided to the cyclized dehydrogenation reactor 30 through the flow path L2. The numbers of the flow paths L1 to L2 and L4 to L10 in FIG. 1 correspond to the numbers of the streams passing through the flow path. The manufacturing apparatus is not provided with flow paths L11 to L13. Table 2 shows the ratio of the components contained in each stream.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例2)
 接触分解装置より得られたC5留分を炭化水素混合物(第1のストリーム)としたこと以外は実施例1と同様にして、ジシクロペンタジエンを製造した。各ストリームに含まれる成分の割合を表3に示す。
(Example 2)
Dicyclopentadiene was produced in the same manner as in Example 1 except that the C5 fraction obtained from the catalytic cracking apparatus was used as a hydrocarbon mixture (first stream). Table 3 shows the ratio of the components contained in each stream.
(比較例2)
 接触分解装置より得られたC5留分を炭化水素混合物(第1のストリーム)としたこと以外は比較例1と同様にして、ジシクロペンタジエンを製造した。各ストリームに含まれる成分の割合を表4に示す。
(Comparative Example 2)
Dicyclopentadiene was produced in the same manner as in Comparative Example 1 except that the C5 fraction obtained from the catalytic cracking apparatus was used as a hydrocarbon mixture (first stream). Table 4 shows the ratio of the components contained in each stream.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例3)
 C5ジエン抽出工程で得られた、ピペリレンが富化されたC5留分を炭化水素混合物(第1のストリーム)とし、図2に示す製造装置により、異性化工程、環化脱水素工程、第1の蒸留工程、二量化工程及び第2の蒸留工程を行って、ジシクロペンタジエンを製造した。図2中の流路L1及びL3~L10の番号は、当該流路を通るストリームの番号と対応している。上記製造装置には、流路L11~L12は設けていない。
(Example 3)
The piperylene-enriched C5 distillate obtained in the C5 diene extraction step was used as a hydrocarbon mixture (first stream), and the isomerization step, cyclization dehydrogenation step, and first were carried out by the production apparatus shown in FIG. Distillation step, dimerization step and second distillation step were carried out to produce dicyclopentadiene. The numbers of the flow paths L1 and L3 to L10 in FIG. 2 correspond to the numbers of the streams passing through the flow path. The manufacturing apparatus is not provided with the flow paths L11 to L12.
 第1のストリームを、流路L1を通じて異性化反応器20に供し、異性化工程を行って、ノルマル体の割合が上昇した第3のストリームを得た。第3のストリームは、流路L3を通じて環化脱水素反応器30に供し、環化脱水素工程を行って、ノルマル体の一部がシクロペンタジエン(CPD)に転換された第4のストリームを得た。第4のストリームは、流路L4を通じて第1の蒸留器40に供し、環化脱水素反応によって生じたガス分(第5のストリーム)及びC5留分の低沸点成分(第6のストリーム)を第1の蒸留工程によって蒸留分離し、シクロペンタジエン割合が富化された第7のストリームを得た。第7のストリームは、流路L7を通じて二量化反応器50に供し、第7のストリームに含まれるシクロペンタジエンをDiels Alder反応によってジシクロペンタジエン(DCPD)に転換し、第8のストリームを得た(二量化工程)。第8のストリームは、流路L8を通じて第2の蒸留器60に供し、蒸留操作によってジシクロペンタジエン(第9のストリーム)とその他の成分(第10のストリーム)とに分離した(第2の蒸留工程)。以上の工程を経て、ジシクロペンタジエンを製造した。各ストリームに含まれる成分の割合を表5に示す。 The first stream was applied to the isomerization reactor 20 through the flow path L1 and the isomerization step was performed to obtain a third stream in which the ratio of the normal form was increased. The third stream is subjected to a cyclization dehydrogenation reactor 30 through the flow path L3, and a cyclization dehydrogenation step is performed to obtain a fourth stream in which a part of the normal form is converted to cyclopentadiene (CPD). rice field. The fourth stream is provided to the first distiller 40 through the flow path L4, and the gas component (fifth stream) generated by the cyclization dehydrogenation reaction and the low boiling point component of the C5 fraction (sixth stream) are collected. Distillation separation was performed by the first distillation step to obtain a seventh stream enriched with the cyclopentadiene ratio. The seventh stream was subjected to the dimerization reactor 50 through the flow path L7, and the cyclopentadiene contained in the seventh stream was converted to dicyclopentadiene (DCPD) by the Diels-Alder reaction to obtain the eighth stream (the eighth stream was obtained. Dimerization process). The eighth stream was subjected to a second distiller 60 through the channel L8 and separated into dicyclopentadiene (9th stream) and other components (10th stream) by a distillation operation (second distillation). Process). Through the above steps, dicyclopentadiene was produced. Table 5 shows the ratio of the components contained in each stream.
(比較例3)
 異性化工程を行わなかったこと以外は実施例3と同様にして、ジシクロペンタジエンを製造した。比較例3では、図2において異性化反応器20及び流路L3を除き、流路L1を環化脱水素反応器30に接続した製造装置を用いた。比較例3では第3のストリームは存在せず、第1のストリームを、流路L1を通じて環化脱水素反応器30に供した。図2中の流路L1及びL4~L10の番号は、当該流路を通るストリームの番号と対応している。上記製造装置には、流路L11~L12は設けていない。各ストリームに含まれる成分の割合を表6に示す。
(Comparative Example 3)
Dicyclopentadiene was produced in the same manner as in Example 3 except that the isomerization step was not performed. In Comparative Example 3, a manufacturing apparatus in which the flow path L1 was connected to the cyclization dehydrogenation reactor 30 was used except for the isomerization reactor 20 and the flow path L3 in FIG. In Comparative Example 3, the third stream did not exist, and the first stream was provided to the cyclized dehydrogenation reactor 30 through the flow path L1. The numbers of the flow paths L1 and L4 to L10 in FIG. 2 correspond to the numbers of the streams passing through the flow path. The manufacturing apparatus is not provided with the flow paths L11 to L12. Table 6 shows the ratio of the components contained in each stream.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(実施例4)
 実施例1の製造方法における一連の工程を1サイクル目とし、この一連の工程を繰り返し行った。一連の工程を繰り返し行う際に、第6のストリームのうち80質量%を第11のストリームに、第10のストリームのうち80質量%を第12のストリームに供することで、成分のリサイクルを行った。第11のストリーム及び第12のストリームは、次のサイクルの第1のストリームと混合し、第1’のストリームとして脱水素反応器10に供した。一連の工程は50サイクル以上行い、各ストリームの成分が安定することを確認した。成分が安定した50サイクル目以降の各ストリームに含まれる成分の割合を表7に示す。
(Example 4)
A series of steps in the manufacturing method of Example 1 was set as the first cycle, and this series of steps was repeated. When the series of steps was repeated, 80% by mass of the sixth stream was applied to the eleventh stream and 80% by mass of the tenth stream was applied to the twelfth stream to recycle the components. .. The eleventh stream and the twelfth stream were mixed with the first stream of the next cycle and subjected to the dehydrogenation reactor 10 as the first stream. A series of steps was performed for 50 cycles or more, and it was confirmed that the components of each stream were stable. Table 7 shows the ratio of the components contained in each stream after the 50th cycle in which the components are stable.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(実施例5)
 実施例2の製造方法における一連の工程を1サイクル目とし、この一連の工程を繰り返し行った。一連の工程を繰り返し行う際に、第6のストリームのうち80質量%を第11のストリームに、第10のストリームのうち80質量%を第12のストリームに供することで、成分のリサイクルを行った。第11のストリーム及び第12のストリームは、次のサイクルの第1のストリームと混合し、第1’のストリームとして脱水素反応器10に供した。一連の工程は50サイクル以上行い、各ストリームの成分が安定することを確認した。成分が安定した50サイクル目以降の各ストリームに含まれる成分の割合を表8に示す。
(Example 5)
A series of steps in the manufacturing method of Example 2 was set as the first cycle, and this series of steps was repeated. When the series of steps was repeated, 80% by mass of the sixth stream was applied to the eleventh stream and 80% by mass of the tenth stream was applied to the twelfth stream to recycle the components. .. The eleventh stream and the twelfth stream were mixed with the first stream of the next cycle and subjected to the dehydrogenation reactor 10 as the first stream. A series of steps was performed for 50 cycles or more, and it was confirmed that the components of each stream were stable. Table 8 shows the ratio of the components contained in each stream after the 50th cycle in which the components are stable.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(実施例6)
 実施例3の製造方法における一連の工程を1サイクル目とし、この一連の工程を繰り返し行った。一連の工程を繰り返し行う際に、第6のストリームのうち80質量%を第11のストリームに、第10のストリームのうち80質量%を第12のストリームに供することで、成分のリサイクルを行った。第11のストリーム及び第12のストリームは、次のサイクルの第1のストリームと混合し、第1’のストリームとして脱水素反応器10に供した。一連の工程は50サイクル以上行い、各ストリームの成分が安定することを確認した。成分が安定した50サイクル目以降の各ストリームに含まれる成分の割合を表9に示す。
(Example 6)
A series of steps in the manufacturing method of Example 3 was set as the first cycle, and this series of steps was repeated. When the series of steps was repeated, 80% by mass of the sixth stream was applied to the eleventh stream and 80% by mass of the tenth stream was applied to the twelfth stream to recycle the components. .. The eleventh stream and the twelfth stream were mixed with the first stream of the next cycle and subjected to the dehydrogenation reactor 10 as the first stream. A series of steps was performed for 50 cycles or more, and it was confirmed that the components of each stream were stable. Table 9 shows the ratio of the components contained in each stream after the 50th cycle in which the components are stable.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1~表6に示した結果から明らかなように、同じ炭化水素混合物を用いた実施例と比較例とを比較した場合、実施例の製造方法の方が、第9のストリームとして得られるジシクロペンタジエンの収率(相対流量)が向上していることが確認された。また、表7~表9に示した結果から明らかなように、成分をリサイクルしながら一連の工程を繰り返し行うことで、ジシクロペンタジエンを安定して高い収率(相対流量)で得ることができることが確認された。 As is clear from the results shown in Tables 1 to 6, when the examples using the same hydrocarbon mixture and the comparative examples are compared, the production method of the examples is obtained as the ninth stream. It was confirmed that the yield (relative flow rate) of cyclopentadiene was improved. Further, as is clear from the results shown in Tables 7 to 9, dicyclopentadiene can be stably obtained in a high yield (relative flow rate) by repeating a series of steps while recycling the components. Was confirmed.
 10…脱水素反応器、20…異性化反応器、30…環化脱水素反応器、40…第1の蒸留器、50…二量化反応器、60…第2の蒸留器、70…異性化環化脱水素反応器、L1,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13…流路、100,200,300,400…ジシクロペンタジエンの製造装置。 10 ... dehydrogenation reactor, 20 ... isomerization reactor, 30 ... cyclization dehydrogenation reactor, 40 ... first distiller, 50 ... distillation reactor, 60 ... second distiller, 70 ... isomerization Recycling dehydrogenator, L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13 ... Channel, 100, 200, 300, 400 ... Dicyclopentadiene manufacturing equipment ..

Claims (6)

  1.  炭素数5の炭化水素のノルマル体及びイソ体を含有する炭化水素混合物を、異性化処理及び環化脱水素処理することでシクロペンタジエンを生成する異性化環化脱水素工程と、
     前記異性化環化脱水素工程で生成したシクロペンタジエンを二量化してジシクロペンタジエンを生成する二量化工程と、
    を含み、
     前記異性化処理において、前記イソ体の少なくとも一部をノルマル体に異性化する、ジシクロペンタジエンの製造方法。
    An isomerization cyclization dehydrogenation step of producing cyclopentadiene by isomerization treatment and cyclization dehydrogenation treatment of a hydrocarbon mixture containing a normal form and an iso form of a hydrocarbon having 5 carbon atoms.
    A dimerization step of dimerizing cyclopentadiene produced in the isomerization cyclization dehydrogenation step to produce dicyclopentadiene, and a dimerization step of producing dicyclopentadiene.
    Including
    A method for producing dicyclopentadiene, which isomerizes at least a part of the isoform to a normal form in the isomerization treatment.
  2.  前記異性化環化脱水素工程入口での前記炭化水素混合物中のピペリレン濃度が5質量%以上である、請求項1に記載のジシクロペンタジエンの製造方法。 The method for producing dicyclopentadiene according to claim 1, wherein the piperylene concentration in the hydrocarbon mixture at the inlet of the isomerized cyclization dehydrogenation step is 5% by mass or more.
  3.  前記異性化環化脱水素工程入口での前記炭化水素混合物中の前記炭素数5の炭化水素のイソ体の濃度が20質量%以上である、請求項1又は2に記載のジシクロペンタジエンの製造方法。 The production of dicyclopentadiene according to claim 1 or 2, wherein the concentration of the iso-form of the hydrocarbon having 5 carbon atoms in the hydrocarbon mixture at the inlet of the isomerized cyclization dehydrogenation step is 20% by mass or more. Method.
  4.  前記異性化環化脱水素工程の前に、前記炭化水素混合物を脱水素処理する脱水素工程を含む、請求項1~3のいずれか一項に記載のジシクロペンタジエンの製造方法。 The method for producing dicyclopentadiene according to any one of claims 1 to 3, further comprising a dehydrogenation step of dehydrogenating the hydrocarbon mixture before the isomerization cyclization dehydrogenation step.
  5.  前記異性化環化脱水素工程は、前記炭化水素混合物を、異性化能、環化能及び脱水素能を有する触媒に接触させることで前記シクロペンタジエンを生成する工程である、請求項1~4のいずれか一項に記載のジシクロペンタジエンの製造方法。 The isomerization cyclization dehydrogenation step is a step of producing the cyclopentadiene by contacting the hydrocarbon mixture with a catalyst having an isomerization ability, a cyclization ability and a dehydrogenation ability. The method for producing dicyclopentadiene according to any one of the above.
  6.  前記異性化環化脱水素工程は、前記炭化水素混合物を、異性化能を有する触媒に接触させた後、環化能及び脱水素能を有する触媒に接触させることで前記シクロペンタジエンを生成する工程である、請求項1~4のいずれか一項に記載のジシクロペンタジエンの製造方法。 The isomerization cyclization dehydrogenation step is a step of producing the cyclopentadiene by contacting the hydrocarbon mixture with a catalyst having an isomerization ability and then with a catalyst having a cyclization ability and a dehydrogenation ability. The method for producing dicyclopentadiene according to any one of claims 1 to 4.
PCT/JP2021/047998 2020-12-24 2021-12-23 Method for producing dicyclopentadiene WO2022138860A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022571644A JPWO2022138860A1 (en) 2020-12-24 2021-12-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-215426 2020-12-24
JP2020215426 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022138860A1 true WO2022138860A1 (en) 2022-06-30

Family

ID=82157995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047998 WO2022138860A1 (en) 2020-12-24 2021-12-23 Method for producing dicyclopentadiene

Country Status (2)

Country Link
JP (1) JPWO2022138860A1 (en)
WO (1) WO2022138860A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123534A (en) * 1982-12-28 1984-07-17 Mitsubishi Petrochem Co Ltd Catalyst for isomerization of olefin
WO2018163828A1 (en) * 2017-03-08 2018-09-13 日本ゼオン株式会社 Hydrocarbon production method and production apparatus
JP2018537523A (en) * 2015-11-04 2018-12-20 エクソンモービル ケミカル パテンツ インコーポレイテッド Method and system for making cyclopentadiene and / or dicyclopentadiene
JP2020152666A (en) * 2019-03-19 2020-09-24 Eneos株式会社 Method for producing dicyclopentadiene and isoprene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123534A (en) * 1982-12-28 1984-07-17 Mitsubishi Petrochem Co Ltd Catalyst for isomerization of olefin
JP2018537523A (en) * 2015-11-04 2018-12-20 エクソンモービル ケミカル パテンツ インコーポレイテッド Method and system for making cyclopentadiene and / or dicyclopentadiene
WO2018163828A1 (en) * 2017-03-08 2018-09-13 日本ゼオン株式会社 Hydrocarbon production method and production apparatus
JP2020152666A (en) * 2019-03-19 2020-09-24 Eneos株式会社 Method for producing dicyclopentadiene and isoprene

Also Published As

Publication number Publication date
JPWO2022138860A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
JP4953817B2 (en) Process for producing ethylene and propylene
TWI629255B (en) Process for converting paraffin to olefin and catalyst for use therein
JP2015042677A (en) Method of producing propylene by carrying out simultaneous dehydration and bone isomerization of isobutanol on acid catalyst and then carrying out metathesis
JP2013522270A (en) Simultaneous dehydration and skeletal isomerization of isobutanol over acid catalyst
WO1996010548A1 (en) Process for producing aromatic hydrocarbon
KR101073593B1 (en) Process for production of propylene and aromatic hydrocarbon, and apparatus for the process
JP4335144B2 (en) Method for producing lower olefin
CA2650552A1 (en) Process for the preparation of propylene and industrial plant thereof
JP7208838B2 (en) Method for producing dicyclopentadiene and isoprene
JP5014138B2 (en) Process for producing ethylene and propylene
JP2018533585A (en) Formation of acyclic C5 compounds
CN1102359A (en) Catalyzer for direct synthesis of aromatic hydrocarbon from methane and its application of in building-up reaction
WO2022138860A1 (en) Method for producing dicyclopentadiene
JP6446033B2 (en) Process for producing unsaturated hydrocarbons
WO2022138841A1 (en) Method for manufacturing dicyclopentadiene and isoprene
JP4921788B2 (en) Process for producing ethylene and propylene
JP5001274B2 (en) Production method of lower olefins under negative pressure
US11505516B2 (en) Use of MTBE raffinate in the production of propylene
CN111943803B (en) Method for synthesizing exo-tetrahydrodicyclopentadiene
JP6977453B2 (en) Method for producing aromatic compounds
JP7018174B2 (en) Method for producing aromatic hydrocarbons
Asaftei et al. Investigation of Butane-butylene Technical Mixtures Transformation Over Modified Microporous Materials Prepared by Ion Exchange Method Into Liquid Fraction Rich in Aromatic Hydrocarbons
DE2123753A1 (en) Process for the production of aromatic hydrocarbons from unsaturated gasolines
CA1199647A (en) Conversion of certain hydrocarbons using calcined teasilicate catalyst
KR20230017855A (en) Method for producing 1,4-dimethylnaphthalene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910999

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571644

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910999

Country of ref document: EP

Kind code of ref document: A1