WO2022138686A1 - Cellulose nanofiber composition and production method therefor - Google Patents

Cellulose nanofiber composition and production method therefor Download PDF

Info

Publication number
WO2022138686A1
WO2022138686A1 PCT/JP2021/047465 JP2021047465W WO2022138686A1 WO 2022138686 A1 WO2022138686 A1 WO 2022138686A1 JP 2021047465 W JP2021047465 W JP 2021047465W WO 2022138686 A1 WO2022138686 A1 WO 2022138686A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
cellulose nanofiber
dispersion
cellulose nanofibers
nanofibers
Prior art date
Application number
PCT/JP2021/047465
Other languages
French (fr)
Japanese (ja)
Inventor
浩介 黒田
裕人 添田
圭樹 伊藤
洋介 後居
Original Assignee
国立大学法人金沢大学
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人金沢大学, 第一工業製薬株式会社 filed Critical 国立大学法人金沢大学
Publication of WO2022138686A1 publication Critical patent/WO2022138686A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives

Definitions

  • the present invention relates to a cellulose nanofiber composition and a method for producing the same.
  • Cellulose nanofiber is a fibrous substance obtained by chemically and mechanically processing cellulose raw materials such as pulp obtained from wood and defibrating them to nano size. While having the same strength as steel, this cellulose nanofiber is characterized by being lightweight (one-fifth the weight of steel), and has a low thermal expansion rate and a size finer than the wavelength of visible light. Taking advantage of its high recyclability, safe and secure natural products, it can be used for various purposes such as structural materials such as exteriors of cars and home appliances, optical materials, separation materials such as filters, and thickeners in cosmetics. Is expected to be applied.
  • Cellulose nanofibers are usually produced by refining pulp or the like dispersed in water.
  • the obtained cellulose nanofibers are in a water-dispersed state, and such a dispersion has a problem that the transportation cost is high.
  • cellulose nanofibers when they are dried, they are strongly aggregated due to hydrogen bonds between the cellulose nanofibers, so that when the dried product is redispersed in water, the dispersibility does not sufficiently return to the state before drying. There is an inconvenience. In addition, cellulose nanofibers have the disadvantage that their performance deteriorates when they aggregate.
  • Patent Document 3 discloses a cellulose nanofiber-containing dry body containing cellulose nanofibers, a redispersing agent such as glycerin, and a redispersion accelerator which is a salt.
  • a redispersing agent such as glycerin
  • a redispersion accelerator which is a salt.
  • the present inventors added betaine compounds having a molecular weight of 600 or less, such as trimethylglycine, to modified cellulose nanofibers having an ionic functional group, and the nanofibers were redispersed when the dried cellulose nanofibers were redispersed.
  • betaine compounds having a molecular weight of 600 or less, such as trimethylglycine
  • the invention was completed by finding that the aggregation of cellulose was suppressed. That is, the gist of the present invention is as follows.
  • a method for producing a dry cellulose nanofiber composition which comprises a step of drying a dispersion of modified cellulose nanofibers having an ionic functional group and containing a betaine compound having a molecular weight of 600 or less.
  • the hydrogen bond between the cellulose nanofibers at the time of drying is inhibited by the betaine compound having a molecular weight of 600 or less, and the redispersibility of the dried product can be enhanced. Further, since the betaine compound is an additive that is safe for living organisms, the cellulose nanofiber composition can be used for various purposes.
  • the cellulose nanofiber composition according to the present embodiment contains modified cellulose nanofibers having an ionic functional group and a betaine compound having a molecular weight of 600 or less.
  • the modified cellulose nanofiber is obtained by defibrating a cellulose raw material to a nano size by, for example, a method described later.
  • the modified cellulose nanofibers preferably have a number average fiber diameter of 2 nm or more and 500 nm or less, a fiber aspect ratio of 50 or more and 1000 or less, and have a cellulose I-type crystal structure, but are not limited thereto.
  • the number average fiber diameter is more preferably 2 nm or more and 150 nm or less, and further preferably 2 nm or more and 100 nm or less. Particularly preferably, it is 2 nm or more and 50 nm or less.
  • the maximum fiber diameter of the modified cellulose nanofibers is preferably 1000 nm or less, and particularly preferably 500 nm or less when transparency after drying is required.
  • the number average fiber diameter and the maximum fiber diameter of the modified cellulose nanofibers can be measured, for example, as follows. That is, an aqueous dispersion of fine cellulose having a solid content of 0.05 to 0.1% by weight was prepared, and the dispersion was cast on a carbon film-coated grid having been hydrophilized, and a transmission electron microscope was used. (TEM) observation sample. When a fiber having a large fiber diameter is included, a scanning electron microscope (SEM) image of the surface cast on the glass may be observed. Then, observation is performed using an electron microscope image at a magnification of 5000 times, 10000 times, or 50,000 times depending on the size of the constituent fibers.
  • SEM scanning electron microscope
  • the average aspect ratio of the modified cellulose nanofibers is more preferably 100 or more and 1000 or less, and particularly preferably 200 or more and 1000 or less. If the average aspect ratio is less than 50, the strength of the fiber itself may decrease.
  • the modified cellulose nanofiber is a fiber obtained by refining a naturally-derived cellulose raw material having an I-type crystal structure. That is, in the process of biosynthesis of natural cellulose, nanofibers called microfibrils are first formed almost without exception, and these are multi-bundle to form a high-order solid structure.
  • the modified cellulose nanofiber can be obtained from, for example, natural cellulose as a raw material.
  • the natural cellulose is not particularly limited as long as it is a cellulose derived from plants, animals or microorganisms, and is kraft pulp or dissolving pulp derived from coniferous or broadleaf trees, cotton linter, lignocellulose with low cellulose purity, wood flour, vegetation cellulose, bacterial cellulose. Etc. are applicable.
  • bacterial cellulose produced by bacteria can be used as natural cellulose.
  • examples of the above-mentioned bacteria include the genus Acetobacter, and more specifically, Acetobacter aceti, Acetobacter subsp., Acetobacter xylinum and the like. Can be mentioned.
  • Acetobacter aceti Acetobacter subsp.
  • Acetobacter xylinum a bacterium and cellulose (bacterial cellulose) produced from this bacterium and linked to the bacterium
  • this product is taken out from the medium and washed with water or treated with an alkali.
  • removing the bacteria a water-containing bacterial cellulose containing no bacteria can be obtained.
  • an ionic functional group is introduced into the cellulose nanofiber and modified.
  • the modification with an ionic functional group may be either anion modification or cationic modification.
  • the anion modification include carboxylation, carboxymethylation, phosphoric acid esterification, subphosphate esterification, and sulfate esterification
  • examples of the cationic modification include amination. Since the betaine compound described later has both positive and negative charges, it acts similarly on modified cellulose nanofibers having an ionic functional group regardless of whether it is an anion or a cation. The redispersibility of the obtained dried product can be improved.
  • the ionic functional group is an anionic functional group.
  • the anion-modified cellulose is not particularly limited, and specific examples thereof include oxidized cellulose, carboxymethyl cellulose, multivalent carboxymethyl cellulose, and long-chain carboxycellulose. Among these, oxidized cellulose is preferable because it has excellent selectivity of hydroxyl groups on the fiber surface and the reaction conditions are mild. Carboxymethyl cellulose is also preferable from the viewpoint of versatility and safety.
  • the oxidized cellulose is made from natural cellulose, an N-oxyl compound is used as an oxidation catalyst in water, and an oxidizing agent is allowed to act on the natural cellulose to oxidize the natural cellulose to obtain a reactant fiber. It can be obtained by a production method including a purification step of obtaining a reaction product fiber impregnated with water and a dispersion step of dispersing the reaction product fiber impregnated with water in a solvent.
  • the hydroxyl group at the C6 position of each glucose unit in the cellulose molecule is selectively oxidatively modified to become one of an aldehyde group, a ketone group, and a carboxyl group.
  • the content of the carboxyl group is preferably in the range of 1.2 to 2.5 mmol / g, more preferably in the range of 1.5 to 2.0 mmol / g from the viewpoint of dispersibility in water.
  • the amount of the carboxyl group can be adjusted by controlling the addition amount of the copolymer and the reaction time used in the oxidation step of the cellulose nanofibers, as described later.
  • the oxidized cellulose is reduced with a reducing agent after oxidative denaturation.
  • a part or all of the aldehyde group and the ketone group are reduced and returned to the hydroxyl group.
  • the carboxyl group is not reduced.
  • the total content of the aldehyde group and the ketone group of the cellulose nanofibers as measured by the semicarbazide method is preferably 0.3 mmol / g or less, and particularly preferably 0 to 0.1 mmol / g.
  • the oxidized cellulose is oxidized with a copolymer in the presence of an N-oxyl compound such as 2,2,6,6-tetramethylpiperidin (TEMPO), and is an aldehyde group generated by the oxidation reaction.
  • N-oxyl compound such as 2,2,6,6-tetramethylpiperidin (TEMPO)
  • TEMPO 2,2,6,6-tetramethylpiperidin
  • the ketone group is reduced by a reducing agent because the cellulose nanofibers can be easily obtained.
  • the reduction with the reducing agent is with sodium borohydride (NaBH 4 ).
  • Carbonyl group amount (mmol / g) (DB) ⁇ f ⁇ [0.125 / w] (3)
  • D Sample titration (ml)
  • B Titration of blank test
  • f Factor of 0.1N sodium thiosulfate solution
  • w Sample amount (g)
  • the hydroxyl group at the C6 position of each glucose unit in the cellulose molecule on the fiber surface is selectively oxidatively modified to become either an aldehyde group, a ketone group or a carboxyl group. Whether or not only the hydroxyl group at the C6 position of the glucose unit on the surface of the cellulose nanofibers is selectively oxidized can be confirmed by, for example, a 13 C-NMR chart.
  • the peak of 62 ppm corresponding to the C6 position of the primary hydroxyl group of the glucose unit which can be confirmed on the 13 C-NMR chart of cellulose before oxidation, disappears after the oxidation reaction, and instead the peak derived from the carboxyl group or the like (178 ppm).
  • the peak of is derived from the carboxyl group). In this way, it can be confirmed that only the C6-position hydroxyl group of the glucose unit is oxidized to the carboxyl group or the like.
  • the detection of the aldehyde group in the oxidized cellulose can also be performed by, for example, a Fehling's reagent. That is, for example, when a Fehling's reagent (a mixed solution of sodium potassium tartrate and sodium hydroxide and an aqueous solution of copper sulfate pentahydrate) is added to a dried sample and then heated at 80 ° C. for 1 hour, the supernatant becomes clear. If the blue or cellulose nanofiber part is dark blue, it can be judged that the aldehyde group was not detected, and if the supernatant is yellow and the cellulose fiber part is red, it can be judged that the aldehyde group was detected. can.
  • a Fehling's reagent a mixed solution of sodium potassium tartrate and sodium hydroxide and an aqueous solution of copper sulfate pentahydrate
  • the modified cellulose nanofibers obtained by defibrating the oxidized cellulose are preferably produced by (1) oxidation reaction step, (2) reduction step, (3) purification step, (4) dispersion step (micronization treatment step) and the like. Specifically, it is preferable to manufacture by each of the following steps.
  • Oxidation reaction step After dispersing natural cellulose and an N-oxyl compound in water (dispersion medium), a copolymer is added to start the reaction. During the reaction, a 0.5 M aqueous sodium hydroxide solution is added dropwise to keep the pH at 10 to 11, and the reaction is considered to be completed when no change in pH is observed.
  • the copolymer is not a substance that directly oxidizes the cellulose hydroxyl group, but a substance that oxidizes an N-oxyl compound used as an oxidation catalyst.
  • the natural cellulose means purified cellulose isolated from the biosynthetic system of cellulose such as plants, animals, and bacterial gels. More specifically, softwood pulp, broadleaf pulp, cotton linter, cotton lint and other cotton pulp, straw pulp, bagus pulp and other non-wood pulp, bacterial cellulose (BC), cellulose isolated from squirrel, seaweed. Examples thereof include cellulose isolated from. These may be used alone or in combination of two or more. Among these, softwood-based pulp, hardwood-based pulp, cotton-based pulp such as cotton linter and cotton lint, and non-wood-based pulp such as straw pulp and bagas pulp are preferably used.
  • the natural cellulose is subjected to a treatment for increasing the surface area such as beating because the reaction efficiency can be increased and the productivity can be increased.
  • a treatment for increasing the surface area such as beating because the reaction efficiency can be increased and the productivity can be increased.
  • the natural cellulose that has been isolated, purified, and then stored without drying (never dry) is used, the aggregates of microfibrils are in a state of being easily swollen, so that the reaction efficiency is improved and the particles are fine. It is preferable because the number average fiber diameter after the conversion treatment can be reduced.
  • the dispersion medium of natural cellulose in the reaction is water, and the concentration of natural cellulose in the reaction aqueous solution is arbitrary as long as the reagent (natural cellulose) can be sufficiently diffused. Normally, it is about 5% or less based on the weight of the reaction aqueous solution, but the reaction concentration can be increased by using a device having a strong mechanical stirring force.
  • examples of the N-oxyl compound include compounds having a nitroxy radical, which is generally used as an oxidation catalyst.
  • the N-oxyl compound is preferably a water-soluble compound, preferably a piperidine nitroxyoxy radical, particularly 2,2,6,6-tetramethylpiperidinooxy radical (TEMPO) or 4-acetamide-TEMPO. preferable.
  • the amount of the catalyst is sufficient for the addition of the N-oxyl compound, and the N-oxyl compound is preferably added to the reaction aqueous solution in the range of 0.1 to 4 mmol / l, more preferably 0.2 to 2 mmol / l.
  • the copolymer examples include hypohalogenic acid or a salt thereof, subhalogenic acid or a salt thereof, perhalogenic acid or a salt thereof, hydrogen peroxide, a perorganic acid and the like. These may be used alone or in combination of two or more.
  • alkali metal hypohalites such as sodium hypochlorite and sodium hypobromous acid are preferable.
  • an alkali bromide metal such as sodium bromide from the viewpoint of the reaction rate.
  • the amount of the alkali metal bromide added is about 1 to 40 times the molar amount, preferably about 10 to 20 times the molar amount of the N-oxyl compound.
  • the pH of the reaction aqueous solution is preferably maintained in the range of about 8 to 11.
  • the temperature of the aqueous solution can be arbitrarily set within the range of about 4 to 40 ° C., but the reaction can be carried out at room temperature (25 ° C.), and no particular temperature control is required.
  • the degree of oxidation is controlled by the amount of the copolymer added and the reaction time. Reaction times are usually about 5 to 120 minutes and are usually completed within 240 minutes at the longest.
  • the oxidized cellulose is further subjected to a reduction reaction after the oxidation reaction.
  • the fine cellulose oxide after the oxidation reaction is dispersed in purified water, the pH of the aqueous dispersion is adjusted to about 10, and the reduction reaction is carried out with various reducing agents.
  • the reducing agent used in the present invention general ones can be used, but LiBH 4 , NaBH 3 CN, NaBH 4 , and the like are preferable.
  • NaBH 4 is preferably used in terms of cost and availability.
  • the amount of the reducing agent is preferably in the range of 0.1 to 4% by weight, particularly preferably in the range of 1 to 3% by weight, based on the fine cellulose oxide.
  • the reaction is usually carried out at room temperature or a temperature slightly higher than room temperature for 10 minutes to 10 hours, preferably 30 minutes to 2 hours.
  • the pH of the reaction mixture is adjusted to about 2 with various acids, and solid-liquid separation is performed with a centrifuge while sprinkling purified water to obtain cake-shaped fine oxidized cellulose.
  • the solid-liquid separation is carried out until the electric conductivity of the filtrate becomes 5 mS / m or less.
  • the purification method in the purification step may be any device as long as it can achieve the above-mentioned object, such as a method using centrifugal dehydration (for example, a continuous decander).
  • the aqueous dispersion of the reactant fibers thus obtained has a solid content (cellulose) concentration in the range of about 10% by weight to 50% by weight in a squeezed state. Considering the subsequent dispersion step, if the solid content concentration is higher than 50% by weight, extremely high energy is required for dispersion, which is not preferable.
  • Dispersion process miniaturization process
  • the water-impregnated reactant fiber (aqueous dispersion) obtained in the purification step is dispersed in a dispersion medium and subjected to a dispersion treatment.
  • the viscosity increases with the treatment, and a dispersion of modified cellulose nanofibers having a finely divided ionic functional group can be obtained.
  • the modified cellulose nanofibers may be dried, and as a method for drying the dispersion of the modified cellulose nanofibers, for example, when the dispersion medium is water, a spray drying method or a freeze drying method may be used.
  • a vacuum drying method or the like is used, and when the dispersion medium is a mixed solution of water and an organic solvent, a drying method using a drum dryer, a spray drying method using a spray dryer, or the like is used.
  • the dispersion of the modified cellulose nanofibers having an ionic functional group may be used in the state of the dispersion without drying.
  • Dispersors used in the dispersion step include homomixers, high-pressure homogenizers, ultra-high-pressure homogenizers, ultrasonic dispersers, beaters, disc-type refiners, conical-type refiners, double-disc-type refiners, grinders, etc. under high-speed rotation. It is preferable to use a powerful and beating ability device in that more efficient and advanced downsizing is possible and the dispersion can be economically advantageous.
  • disperser examples include a screw type mixer, a paddle mixer, a disper type mixer, a turbine type mixer, a disper, a propeller mixer, a kneader, a blender, a homogenizer, an ultrasonic homogenizer, a colloid mill, a pebble mill, and a bead mill crusher. You can use it. Further, two or more types of dispersers may be used in combination.
  • carboxymethyl cellulose which is one of the anion-modified modified cellulose nanofibers, can be produced by the following method using the cellulose raw material. That is, using cellulose as a raw material, the solvent is a lower alcohol 3 to 20 times by mass, specifically, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, t-butyl alcohol, etc. alone. , Or a mixed medium of two or more mixtures and water. The mixing ratio of the lower alcohol is 60 to 95% by mass.
  • the mercerizing agent 0.5 to 20 times mol of alkali metal hydroxide per glucose residue of cellulose, specifically sodium hydroxide or potassium hydroxide is used.
  • the reaction temperature at this time is 0 to 70 ° C., preferably 10 to 60 ° C., and the reaction time is 15 minutes to 8 hours, preferably 30 minutes to 7 hours.
  • a carboxymethylating agent is added in an amount of 0.05 to 10 times per glucose residue to carry out an etherification reaction.
  • the reaction temperature at this time is 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction time is 30 minutes to 10 hours, preferably 1 hour to 4 hours.
  • Modified cellulose nanofibers can be obtained by defibrating the carboxymethyl cellulose with a high-pressure homogenizer or the like.
  • a high-pressure homogenizer is a device that pressurizes a fluid with a pump and ejects it from a very delicate gap provided in a flow path.
  • Emulsification, dispersion, defibration, crushing, and ultrafineness can be performed by total energy such as collision between particles and shearing force due to pressure difference.
  • the treatment conditions by the homogenizer of the present invention are not particularly limited, but the pressure conditions are 30 MPa or more, preferably 100 MPa or more, and more preferably 140 MPa or more. It is also possible to pre-treat carboxymethyl cellulose using a known mixing, stirring, emulsifying and dispersing device such as a high-speed shear mixer, if necessary, prior to the defibration / dispersion treatment with a high-pressure homogenizer. be.
  • the degree of carboxymethyl substitution per glucose unit of carboxymethyl cellulose is preferably 0.02 or more and 0.50 or less.
  • the ratio of carboxymethyl substituents per glucose unit is preferably in the range of 0.02 to 0.50.
  • the betaine compound contained in the cellulose nanofiber composition together with the modified cellulose nanofiber having an ionic functional group includes trimethylglycine (betaine in a narrow sense) and positive and negative charges in the same molecule. It refers to a compound that has no charge as a whole molecule because hydrogen that can be dissociated is not bonded to the atoms that are not adjacent to each other and have a positive charge.
  • the molecular weight of the betaine compound is 600 or less.
  • the cation moiety in the betaine compound can have a structure such as quaternary ammonium, sulfonium, or phosphonium.
  • Such betaine compounds electrically bond to the ionic functional groups of the modified cellulose nanofibers and uniformly coat the fiber surface of the modified cellulose nanofibers. Therefore, it is considered that hydrogen bonds between modified cellulose nanofibers during drying are inhibited and aggregation is suppressed, but the mechanism of action for improving redispersibility is not bound by this theory.
  • betaine compounds include trimethylglycine, L-carnitine, D-carnitine, proline betaine, lauryldimethylaminoacetic acid betaine, coconut oil fatty acid amide propyl betaine, etc., either alone or in combination of two. The above can be used in combination. In particular, trimethylglycine is preferably used.
  • the blending ratio of the modified cellulose nanofibers and the betaine compound in the cellulose nanofiber composition is appropriately considered in consideration of the properties of the modified cellulose nanofibers (fiber diameter, type of modification, etc.) and the use of the composition.
  • the content of the betaine compound with respect to 100 parts by mass of the modified cellulose nanofibers is preferably 5 to 1000 parts by mass
  • the content of the betaine compound with respect to 100 parts by mass of the modified cellulose nanofibers is 10 to 500 parts by mass. It is more preferably 20 to 200 parts by mass.
  • the cellulose nanofiber composition can be a dispersion in which modified cellulose nanofibers and a betaine compound are dispersed in a medium.
  • the medium (that is, a dispersion medium) is preferably an aqueous medium, specifically, an aqueous solution of a lower alcohol such as water, methyl alcohol or ethyl alcohol, an aqueous solution of glycol such as ethylene glycol or propylene glycol, or saturation of D-sorbitol.
  • a lower alcohol such as water, methyl alcohol or ethyl alcohol
  • glycol such as ethylene glycol or propylene glycol
  • saturation of D-sorbitol saturation of D-sorbitol.
  • examples thereof include a chain hydrocarbon-based polyhydric alcohol aqueous solution and other organic compound aqueous solutions, and an inorganic salt aqueous solution such as calcium chloride and sodium chloride, but the present invention is not particularly limited thereto.
  • water a lower alcohol aqueous solution such as methyl alcohol and ethyl alcohol, and a glycol aqueous solution such as ethylene glycol and propylene glycol are preferable, and water is particularly preferable.
  • the medium in which the modified cellulose nanofibers are dispersed is a mixture of water and an aqueous medium other than water, the ratio of water to the entire medium is not particularly limited, but is, for example, 10% by mass or more. Is more preferable, 40% by mass or more is more preferable, and 60% by mass or more is further preferable.
  • the cellulose nanofiber composition can be a dried product.
  • the fiber surface of the modified cellulose nanofibers is covered with the betaine compound, and aggregation is suppressed, so that the redispersibility is excellent, and the dried state has advantages such as low transportation cost.
  • the cellulose nanofiber composition which is a dried product is produced by subjecting a modified cellulose nanofiber having an ionic functional group to a medium such as water in which a predetermined amount of betaine compound is added and dried. Can be done.
  • the molecular weight of the betaine compound is 600 or less.
  • the medium such as water may be completely removed by drying, but the medium may be partially left depending on the use of the composition and the like.
  • heat drying or freeze drying can be applied as the means for drying. Conditions such as the drying temperature and time during heat drying can be appropriately set. As an example, when 10 ml of an aqueous dispersion containing 2% by mass of modified cellulose nanofibers is dried, it can be carried out at a temperature of 80 to 120 ° C. for 10 to 60 minutes.
  • the cellulose nanofiber composition which is a dried product can be suitably redispersed in a dispersion medium as described above, for example. Thereby, the cellulose nanofiber composition containing the dispersion of the modified cellulose nanofiber can be obtained again.
  • the dispersion of the modified cellulose nanofibers may be liquid or solid, specifically, for example, gel. Further, the dispersion may be in the form of a slurry, for example.
  • additives can be added to the cellulose nanofiber composition according to the present embodiment in consideration of the use of the composition and the like, as long as the effects of the present invention are not impaired.
  • additives include dispersants, preservatives, defoamers, thickeners, emulsifiers, pH regulators, antioxidants, heat stabilizers, light stabilizers, UV absorbers, pigments, colorants, Flame retardants, plasticizers, fragrances and the like can be mentioned.
  • the content of these other additives is preferably less than 10,000% by mass with respect to the total amount of the modified cellulose nanofibers and the betaine compound.
  • 0.1N hydrochloric acid was added to adjust the pH to 2.0, solid-liquid separation was performed by suction filtration, and then pure water was added to the solid content to prepare a slurry having a solid content concentration of 2.0%. Then, the pH was adjusted to 10 with a 10% aqueous sodium hydroxide solution, 0.2 mmol / g of sodium borohydride was added to the cellulose fibers, and the mixture was reacted for 2 hours for reduction treatment. After the reaction, 0.1N hydrochloric acid was added to neutralize the mixture, and filtration and washing with water were repeated for purification.
  • Pure water was added to the obtained purified product to prepare a slurry having a solid content concentration of 2.0%, and then the pH was adjusted to 7 with a 10% aqueous sodium hydroxide solution. Then, as a miniaturization treatment step, a treatment with a microfluitizer (150 MPa, 2 passes) was carried out to obtain anion-modified cellulose nanofibers in which a carboxyl group was introduced at a high density to the cellulose fibers.
  • a microfluitizer 150 MPa, 2 passes
  • the above-mentioned anion-modified cellulose nanofiber has a number average fiber diameter of 3.1 nm, an average aspect ratio of 300, and a carboxyl group is introduced by selectively oxidizing the hydroxyl group at the C6 position. It has a base weight of 2.0 mmol / g and has an I-type crystal structure.
  • cellulose nanofibers are simply referred to as “cellulose nanofibers”.
  • Example 1 Pure water was added to the above-mentioned aqueous dispersion of cellulose nanofibers and diluted to a solid content concentration of 0.4% by mass. To 100 parts by mass of cellulose nanofibers, 10 parts by mass of trimethylglycine (molecular weight 117.2, manufactured by Wako Pure Chemical Industries, Ltd.) was added to this diluted solution, and the mixture was stirred and dissolved. After allowing this to stand for 1 day, the viscosity was measured using a BM type viscometer (0.6 rpm, 25 ° C., 3 minutes). The obtained value was defined as "viscosity before drying".
  • BM type viscometer 0.6 rpm, 25 ° C., 3 minutes
  • Example 5 A dispersion was prepared in the same manner as in Example 1 except that the content of trimethylglycine with respect to the cellulose nanofibers was changed as shown in Table 1, and the redispersibility was evaluated. The results are summarized in Table 1.
  • Example 6 A dispersion was prepared in the same manner as in Example 4 except that lauryldimethylaminoacetic acid betaine (molecular weight 271.4) or coconut oil fatty acid amide propyl betaine (molecular weight 342.5) was used instead of trimethylglycine. The redispersibility was evaluated. The results are summarized in Table 1.
  • Example 1 A dispersion was prepared in the same manner as in Example 1 except that trimethylglycine was not added, and the redispersibility was evaluated. The results are shown in Table 1.
  • the redispersions of the cellulose nanofibers of Examples 1 to 7 prepared by adding the betaine compound showed a viscosity close to that of the dispersion before drying, and had high redispersability. It is considered that this is because the betaine compound suppressed the aggregation of the cellulose nanofibers during drying.
  • Comparative Example 1 to which the betaine compound was not added, the viscosity after redispersion was lower than that before drying. It is considered that this is because the cellulose nanofibers are strongly aggregated due to the hydrogen bonds between the hydroxyl groups on the surface of the cellulose nanofibers. Further, Comparative Examples 2 and 3 were inferior to Example 4 to which the same amount of betaine compound was added, although the redispersibility was improved as compared with Comparative Example 1 by adding the water-soluble cellulose derivative.
  • Example 8 Pure water was added to the aqueous dispersion of anion-modified cellulose nanofibers in the same manner as in Example 1 and diluted to a solid content concentration of 0.4% by mass. To this diluted solution, 100 parts by mass of trimethylglycine was added to 100 parts by mass of cellulose nanofibers, and the mixture was stirred and dissolved. Then, the dispersion was freeze-dried at ⁇ 22 ° C. to obtain a dried cellulose nanofiber composition.
  • Example 9 A dried cellulose nanofiber composition was obtained in the same manner as in Example 8 except that 500 parts by mass of trimethylglycine was added to 100 parts by mass of the cellulose nanofibers.
  • Example 4 A dried cellulose nanofiber composition was obtained in the same manner as in Example 8 except that trimethylglycine was not added.
  • Example 8 and 9 and Comparative Example 4 0.01 g of the dried products of Examples 8 and 9 and Comparative Example 4 were dispersed in 10 ml of water, 20 ⁇ l was taken from the dispersion, and diluted 50 times to prepare a sample for atomic force microscope (AFM) observation. 20 ⁇ l of the observation sample was dropped on the mica substrate and air-dried, and the sample was observed by AFM.
  • AFM images of Example 8, Example 9, and Comparative Example 4 are shown in FIGS. 1 to 3, respectively.
  • Example 8 As a result of AFM observation, in Example 8 (FIG. 1), although some entanglement of the modified cellulose nanofibers was observed, many of them were redispersed to a single nanosize, and there were few aggregates. Moreover, in Example 9 (FIG. 2), many of them were redispersed to a single nano size. In addition, it was observed that the betaine compound coated the modified cellulose nanofibers. Almost no aggregates of modified cellulose nanofibers were observed.
  • Comparative Example 4 (Fig. 3) to which the betaine compound was not added, there was a portion redispersed to a single nanosize, but large entanglements and agglomerates between the modified cellulose nanofibers were observed.
  • Example 10 Pure water was added to the aqueous dispersion of anion-modified cellulose nanofibers in the same manner as in Example 1 and diluted to a solid content concentration of 0.4% by mass. To this diluted solution, 100 parts by mass of trimethylglycine was added to 100 parts by mass of cellulose nanofibers, and the mixture was stirred and dissolved. Then, the dispersion was placed in a constant temperature bath at 105 ° C. and allowed to stand until the mass became constant to obtain a dry cellulose nanofiber composition.
  • Example 5 A dried cellulose nanofiber composition was obtained in the same manner as in Example 10 except that trimethylglycine was not added.
  • Example 10 and Comparative Example 5 0.01 g of the dried product of Example 10 and Comparative Example 5 was dispersed in 10 ml of water, 20 ⁇ l was taken from the dispersion, and diluted 50 times to prepare a sample for atomic force microscope (AFM) observation. 20 ⁇ l of the observation sample was dropped on the mica substrate and air-dried, and the sample was observed by AFM.
  • AFM images of Example 10 and Comparative Example 5 are shown in FIGS. 4 and 5, respectively.
  • Example 10 As a result of AFM observation, in Example 10 (FIG. 4), although some entanglement of the modified cellulose nanofibers was observed, many of them were redistributed to a single nanosize, and the modified cellulose nanofibers had a long fiber length. Was observed.
  • Comparative Example 5 (FIG. 5) to which the betaine compound was not added, there was a portion redispersed to a single nanosize, but thick aggregates and large entanglements of the modified cellulose nanofibers accounted for the majority.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A purpose of the present invention is to provide a cellulose nanofiber composition which, in a dried state, has excellent redispersibility. The cellulose nanofiber composition comprises modified cellulose nanofibers having an ionic functional group and a betaine compound having a molecular weight of 600 or less. The betaine compound is contained in an amount of preferably 5-1,000 parts by mass per 100 parts by mass of the modified cellulose nanofibers.

Description

セルロースナノファイバー組成物及びその製造方法Cellulose nanofiber composition and its manufacturing method
 本発明は、セルロースナノファイバー組成物及びその製造方法に関する。 The present invention relates to a cellulose nanofiber composition and a method for producing the same.
 セルロースナノファイバー(CNF)は、木材から得られるパルプ等のセルロース原料を、化学的・機械的に処理してナノサイズまで解繊した繊維状物質である。このセルロースナノファイバーは、鋼鉄と同等の強度を有する一方で、軽量(鋼鉄の5分の1の重量)であるという特徴を有し、さらに、低熱膨張率、可視光の波長より微細なサイズ、高リサイクル性、安心・安全な天然物であるという利点を生かして、車や家電製品の外装等の構造材料、光学材料、フィルター等の分離材料、化粧品等における増粘剤等の様々な用途への応用が期待されている。 Cellulose nanofiber (CNF) is a fibrous substance obtained by chemically and mechanically processing cellulose raw materials such as pulp obtained from wood and defibrating them to nano size. While having the same strength as steel, this cellulose nanofiber is characterized by being lightweight (one-fifth the weight of steel), and has a low thermal expansion rate and a size finer than the wavelength of visible light. Taking advantage of its high recyclability, safe and secure natural products, it can be used for various purposes such as structural materials such as exteriors of cars and home appliances, optical materials, separation materials such as filters, and thickeners in cosmetics. Is expected to be applied.
 セルロースナノファイバーは通常、水に分散させたパルプ等を微細化することにより製造される。得られるセルロースナノファイバーは水分散状態であり、このような分散液は運送コストが高いという問題点がある。 Cellulose nanofibers are usually produced by refining pulp or the like dispersed in water. The obtained cellulose nanofibers are in a water-dispersed state, and such a dispersion has a problem that the transportation cost is high.
 一方、セルロースナノファイバーを乾燥させると、セルロースナノファイバー同士の水素結合により強く凝集してしまうため、乾燥体を水中に再び分散させたとき、乾燥前の状態にまで分散性が十分に戻らないという不都合がある。また、セルロースナノファイバーは凝集すると諸性能が低下するという欠点もある。 On the other hand, when the cellulose nanofibers are dried, they are strongly aggregated due to hydrogen bonds between the cellulose nanofibers, so that when the dried product is redispersed in water, the dispersibility does not sufficiently return to the state before drying. There is an inconvenience. In addition, cellulose nanofibers have the disadvantage that their performance deteriorates when they aggregate.
 そこで、乾燥体の分散性を向上させるため、(1)セルロースナノファイバーを修飾したり(特許文献1及び2)、(2)セルロースナノファイバーの分散液を乾燥させる際に凝集抑制剤を添加する(特許文献3)等の対策が試みられている。例えば、特許文献3には、セルロースナノファイバーと、グリセリン等の再分散剤と、塩類である再分散促進剤とを含むセルロースナノファイバー含有乾燥体が開示されている。しかし、いずれの従来技術も、セルロースナノファイバーの再分散性や諸用途への適用性の点で不十分であり、なお改良の余地があった。 Therefore, in order to improve the dispersibility of the dried product, (1) the cellulose nanofibers are modified (Patent Documents 1 and 2), and (2) an aggregation inhibitor is added when the dispersion liquid of the cellulose nanofibers is dried. Measures such as (Patent Document 3) have been attempted. For example, Patent Document 3 discloses a cellulose nanofiber-containing dry body containing cellulose nanofibers, a redispersing agent such as glycerin, and a redispersion accelerator which is a salt. However, all of the conventional techniques are insufficient in terms of redispersibility of cellulose nanofibers and applicability to various uses, and there is still room for improvement.
特許第5381338号公報Japanese Patent No. 5381338 特許第5500842号公報Japanese Patent No. 5500842 特開2018-9134号公報Japanese Unexamined Patent Publication No. 2018-9134
 そこで本発明は、上記従来の状況に鑑み、乾燥させたものを再び分散させた際の分散性に優れるセルロースナノファイバー組成物、及びその製造方法を提供することを目的とする。 Therefore, in view of the above-mentioned conventional situation, it is an object of the present invention to provide a cellulose nanofiber composition having excellent dispersibility when a dried product is dispersed again, and a method for producing the same.
 本発明者らは、イオン性官能基を有する変性セルロースナノファイバーに対し、トリメチルグリシン等の分子量が600以下のベタイン化合物を添加すると、乾燥させたセルロースナノファイバーを再分散させた際にナノファイバー同士の凝集が抑制されることを見出し、発明を完成した。すなわち、本発明の要旨は以下のとおりである。 The present inventors added betaine compounds having a molecular weight of 600 or less, such as trimethylglycine, to modified cellulose nanofibers having an ionic functional group, and the nanofibers were redispersed when the dried cellulose nanofibers were redispersed. The invention was completed by finding that the aggregation of cellulose was suppressed. That is, the gist of the present invention is as follows.
(1)イオン性官能基を有する変性セルロースナノファイバーと、分子量600以下のベタイン化合物とを含むセルロースナノファイバー組成物。
(2)前記変性セルロースナノファイバー100質量部に対する前記ベタイン化合物の含有量が5~1000質量部である上記(1)に記載のセルロースナノファイバー組成物。
(3)乾燥体である上記(1)又は(2)に記載のセルロースナノファイバー組成物。
(4)分散媒体を含み、前記変性セルロースナノファイバーは前記分散媒体に分散している上記(1)又は(2)に記載のセルロースナノファイバー組成物。
(5)分子量600以下のベタイン化合物を含有する、イオン性官能基を有する変性セルロースナノファイバーの分散体を乾燥させる工程を含む、乾燥体であるセルロースナノファイバー組成物の製造方法。
(6)前記乾燥させる工程が、加熱乾燥又は凍結乾燥の工程である上記(5)に記載のセルロースナノファイバー組成物の製造方法。
(1) A cellulose nanofiber composition containing a modified cellulose nanofiber having an ionic functional group and a betaine compound having a molecular weight of 600 or less.
(2) The cellulose nanofiber composition according to (1) above, wherein the content of the betaine compound is 5 to 1000 parts by mass with respect to 100 parts by mass of the modified cellulose nanofibers.
(3) The cellulose nanofiber composition according to (1) or (2) above, which is a dried product.
(4) The cellulose nanofiber composition according to (1) or (2) above, which comprises a dispersion medium and in which the modified cellulose nanofibers are dispersed in the dispersion medium.
(5) A method for producing a dry cellulose nanofiber composition, which comprises a step of drying a dispersion of modified cellulose nanofibers having an ionic functional group and containing a betaine compound having a molecular weight of 600 or less.
(6) The method for producing a cellulose nanofiber composition according to (5) above, wherein the drying step is a heat drying step or a freeze drying step.
 本発明のセルロースナノファイバー組成物によれば、分子量600以下のベタイン化合物によって乾燥時のセルロースナノファイバー同士の水素結合が阻害され、乾燥体の再分散性を高めることができる。また、ベタイン化合物は、生体に対し安全な添加剤であるため、セルロースナノファイバー組成物を様々な用途に利用することができる。 According to the cellulose nanofiber composition of the present invention, the hydrogen bond between the cellulose nanofibers at the time of drying is inhibited by the betaine compound having a molecular weight of 600 or less, and the redispersibility of the dried product can be enhanced. Further, since the betaine compound is an additive that is safe for living organisms, the cellulose nanofiber composition can be used for various purposes.
実施例8の再分散体のAFM画像を示す図である。It is a figure which shows the AFM image of the redispersion of Example 8. 実施例9の再分散体のAFM画像を示す図である。It is a figure which shows the AFM image of the redispersion of Example 9. 比較例4の再分散体のAFM画像を示す図である。It is a figure which shows the AFM image of the redispersion of the comparative example 4. 実施例10の再分散体のAFM画像を示す図である。It is a figure which shows the AFM image of the redispersion of Example 10. 比較例5の再分散体のAFM画像を示す図である。It is a figure which shows the AFM image of the redispersion of the comparative example 5.
 以下、実施の形態に基づき本発明を詳細に説明する。
 本実施形態に係るセルロースナノファイバー組成物は、イオン性官能基を有する変性セルロースナノファイバーと、分子量600以下のベタイン化合物とを含む。
Hereinafter, the present invention will be described in detail based on the embodiments.
The cellulose nanofiber composition according to the present embodiment contains modified cellulose nanofibers having an ionic functional group and a betaine compound having a molecular weight of 600 or less.
 上記変性セルロースナノファイバーは、例えば後述する方法によりセルロース原料をナノサイズまで解繊したものである。この変性セルロースナノファイバーは、数平均繊維径が2nm以上500nm以下、繊維のアスペクト比が50以上1000以下であり、セルロースI型結晶構造を有することが好ましいが、これに限定されるものではない。 The modified cellulose nanofiber is obtained by defibrating a cellulose raw material to a nano size by, for example, a method described later. The modified cellulose nanofibers preferably have a number average fiber diameter of 2 nm or more and 500 nm or less, a fiber aspect ratio of 50 or more and 1000 or less, and have a cellulose I-type crystal structure, but are not limited thereto.
 数平均繊維径はより好ましくは2nm以上150nm以下であり、さらに好ましくは2nm以上100nm以下である。特に好ましくは2nm以上50nm以下である。上記変性セルロースナノファイバーの最大繊維径は、乾燥後の透明性が要求される場合は1000nm以下であることが好ましく、特に好ましくは500nm以下である。 The number average fiber diameter is more preferably 2 nm or more and 150 nm or less, and further preferably 2 nm or more and 100 nm or less. Particularly preferably, it is 2 nm or more and 50 nm or less. The maximum fiber diameter of the modified cellulose nanofibers is preferably 1000 nm or less, and particularly preferably 500 nm or less when transparency after drying is required.
 上記変性セルロースナノファイバーの数平均繊維径及び最大繊維径は、例えば、次のようにして測定することができる。すなわち、固形分率で0.05~0.1重量%の微細セルロースの水分散体を調製し、その分散体を、親水化処理済みのカーボン膜被覆グリッド上にキャストして、透過型電子顕微鏡(TEM)の観察用試料とする。なお、大きな繊維径の繊維を含む場合には、ガラス上へキャストした表面の走査型電子顕微鏡(SEM)像を観察してもよい。そして、構成する繊維の大きさに応じて5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。その際に、得られた画像内に縦横任意の画像幅の軸を想定し、その軸に対し、20本以上の繊維が交差するよう、試料及び観察条件(倍率等)を調節する。そして、この条件を満たす観察画像を得た後、この画像に対し、1枚の画像当たり縦横2本ずつの無作為な軸を引き、軸に交錯する繊維の繊維径を目視で読み取っていく。このようにして、最低3枚の重複しない表面部分の画像を、電子顕微鏡で撮影し、各々2つの軸に交錯する繊維の繊維径の値を読み取る(したがって、最低20本×2×3=120本の繊維径の情報が得られる)。このようにして得られた繊維径のデータにより、最大繊維径及び数平均繊維径を算出する。 The number average fiber diameter and the maximum fiber diameter of the modified cellulose nanofibers can be measured, for example, as follows. That is, an aqueous dispersion of fine cellulose having a solid content of 0.05 to 0.1% by weight was prepared, and the dispersion was cast on a carbon film-coated grid having been hydrophilized, and a transmission electron microscope was used. (TEM) observation sample. When a fiber having a large fiber diameter is included, a scanning electron microscope (SEM) image of the surface cast on the glass may be observed. Then, observation is performed using an electron microscope image at a magnification of 5000 times, 10000 times, or 50,000 times depending on the size of the constituent fibers. At that time, an axis having an arbitrary vertical and horizontal image width is assumed in the obtained image, and the sample and observation conditions (magnification, etc.) are adjusted so that 20 or more fibers intersect the axis. Then, after obtaining an observation image satisfying this condition, two random axes are drawn vertically and horizontally for each image, and the fiber diameters of the fibers intersecting the axes are visually read. In this way, images of at least three non-overlapping surface portions are taken with an electron microscope and the value of the fiber diameter of the fibers intersecting each of the two axes is read (hence, at least 20 fibers × 2 × 3 = 120). Information on the fiber diameter of the book can be obtained). From the fiber diameter data obtained in this way, the maximum fiber diameter and the number average fiber diameter are calculated.
 上記変性セルロースナノファイバーの平均アスペクト比は、より好ましくは100以上
1000以下であり、特に好ましくは200以上1000以下である。平均アスペクト比
が50未満であると繊維自体の強度が低下するおそれがある。
The average aspect ratio of the modified cellulose nanofibers is more preferably 100 or more and 1000 or less, and particularly preferably 200 or more and 1000 or less. If the average aspect ratio is less than 50, the strength of the fiber itself may decrease.
 上記変性セルロースナノファイバーの平均アスペクト比は、上記のようにして測定した数平均繊維径と、同様にTEM像から測定した20本の変性セルロースナノファイバーについての数平均繊維長とから、下記の式(1)に従い算出することができる。
 平均アスペクト比=数平均繊維長(nm)/数平均繊維径(nm)  (1)
The average aspect ratio of the modified cellulose nanofibers is determined by the following formula from the number average fiber diameter measured as described above and the number average fiber lengths of the 20 modified cellulose nanofibers similarly measured from the TEM image. It can be calculated according to (1).
Average aspect ratio = number average fiber length (nm) / number average fiber diameter (nm) (1)
 上記変性セルロースナノファイバーは、I型結晶構造を有する天然由来のセルロース原料を微細化した繊維である。すなわち、天然セルロースの生合成の過程においては、ほぼ例外なくミクロフィブリルと呼ばれるナノファイバーがまず形成され、これらが多束化して高次な固体構造を構成する。 The modified cellulose nanofiber is a fiber obtained by refining a naturally-derived cellulose raw material having an I-type crystal structure. That is, in the process of biosynthesis of natural cellulose, nanofibers called microfibrils are first formed almost without exception, and these are multi-bundle to form a high-order solid structure.
 上記変性セルロースナノファイバーを構成するセルロースがI型結晶構造を有することは、例えば、広角X線回折像測定により得られる回折プロファイルにおいて、2θ=14~17°付近と、2θ=22~23°付近の2つの位置に典型的なピークを有することから同定することができる。 The fact that the cellulose constituting the modified cellulose nanofiber has an I-type crystal structure is that, for example, in the diffraction profile obtained by wide-angle X-ray diffraction image measurement, 2θ = 14 to 17 ° and 2θ = 22 to 23 °. It can be identified by having typical peaks at the two positions of.
 上記変性セルロースナノファイバーは、例えば、天然セルロースを原料として得ることができる。 The modified cellulose nanofiber can be obtained from, for example, natural cellulose as a raw material.
 天然セルロースとしては、植物又は動物、微生物由来のセルロースであれば特に限定はなく、針葉樹又は広葉樹由来のクラフトパルプや溶解パルプ、コットンリンター、セルロース純度の低いリグノセルロース、木粉、草木セルロース、バクテリアセルロース等が適用可能である。 The natural cellulose is not particularly limited as long as it is a cellulose derived from plants, animals or microorganisms, and is kraft pulp or dissolving pulp derived from coniferous or broadleaf trees, cotton linter, lignocellulose with low cellulose purity, wood flour, vegetation cellulose, bacterial cellulose. Etc. are applicable.
 また、天然セルロースとして、バクテリアによって産生されるバクテリアセルロースを使用することができる。上記バクテリアとしては、アセトバクター(Acetobacter)属等が挙げられ、より具体的には、アセトバクターアセチ(Acetobacter aceti)、アセトバクターサブスピーシーズ(Acetobacter subsp.)、アセトバクターキシリナ(Acetobacter xylinum)等が挙げられる。これらのバクテリアを培養することにより、バクテリアからセルロースが産生される。得られた産生物は、バクテリアとこのバクテリアから産生されて該バクテリアに連なっているセルロース(バクテリアセルロース)とを含むものであるため、この産生物を培地から取り出し、それを水洗、又はアルカリ処理等してバクテリアを除去することにより、バクテリアを含まない含水バクテリアセルロースを得ることができる。 In addition, bacterial cellulose produced by bacteria can be used as natural cellulose. Examples of the above-mentioned bacteria include the genus Acetobacter, and more specifically, Acetobacter aceti, Acetobacter subsp., Acetobacter xylinum and the like. Can be mentioned. By culturing these bacteria, cellulose is produced from the bacteria. Since the obtained product contains a bacterium and cellulose (bacterial cellulose) produced from this bacterium and linked to the bacterium, this product is taken out from the medium and washed with water or treated with an alkali. By removing the bacteria, a water-containing bacterial cellulose containing no bacteria can be obtained.
 本実施形態において、セルロースナノファイバーにはイオン性官能基が導入され、変性されている。イオン性官能基による変性は、アニオン変性、カチオン変性のいずれであってもよい。アニオン変性としては、カルボキシ化、カルボキシメチル化、リン酸エステル化、亜リン酸エステル化、硫酸エステル化等を挙げることができ、カチオン変性としては、アミノ化等を挙げることができる。後述するベタイン化合物は、正電荷及び負電荷の両方を有しているため、アニオン又はカチオンのいずれであってもイオン性官能基を有している変性セルロースナノファイバーに対して同様に作用し、得られる乾燥体の再分散性を向上させることができる。 In the present embodiment, an ionic functional group is introduced into the cellulose nanofiber and modified. The modification with an ionic functional group may be either anion modification or cationic modification. Examples of the anion modification include carboxylation, carboxymethylation, phosphoric acid esterification, subphosphate esterification, and sulfate esterification, and examples of the cationic modification include amination. Since the betaine compound described later has both positive and negative charges, it acts similarly on modified cellulose nanofibers having an ionic functional group regardless of whether it is an anion or a cation. The redispersibility of the obtained dried product can be improved.
 特に、イオン性官能基がアニオン性官能基であることが好ましい。アニオン変性されたセルロースとしては、特に制限されないが、具体的には、酸化セルロース、カルボキシメチルセルロース、多価カルボキシメチルセルロース、長鎖カルボキシセルロース等が挙げられる。これらの中でも、繊維表面の水酸基の選択性に優れており、反応条件も穏やかであることから、酸化セルロースが好ましい。また、汎用性、安全性の点からカルボキシメチルセルロースも好ましい。 In particular, it is preferable that the ionic functional group is an anionic functional group. The anion-modified cellulose is not particularly limited, and specific examples thereof include oxidized cellulose, carboxymethyl cellulose, multivalent carboxymethyl cellulose, and long-chain carboxycellulose. Among these, oxidized cellulose is preferable because it has excellent selectivity of hydroxyl groups on the fiber surface and the reaction conditions are mild. Carboxymethyl cellulose is also preferable from the viewpoint of versatility and safety.
 前記酸化セルロースは、天然セルロースを原料とし、水中においてN-オキシル化合物を酸化触媒とし、共酸化剤を作用させることにより該天然セルロースを酸化して反応物繊維を得る酸化反応工程、不純物を除去して水を含浸させた反応物繊維を得る精製工程、及び水を含浸させた反応物繊維を溶媒に分散させる分散工程を含む製造方法により得ることができる。 The oxidized cellulose is made from natural cellulose, an N-oxyl compound is used as an oxidation catalyst in water, and an oxidizing agent is allowed to act on the natural cellulose to oxidize the natural cellulose to obtain a reactant fiber. It can be obtained by a production method including a purification step of obtaining a reaction product fiber impregnated with water and a dispersion step of dispersing the reaction product fiber impregnated with water in a solvent.
 前記酸化セルロースは、セルロース分子中の各グルコースユニットのC6位の水酸基が選択的に酸化変性されてアルデヒド基、ケトン基、及びカルボキシル基のいずれかとなっていることが好ましい。カルボキシル基の含量(カルボキシル基量)は水への分散性の点から1.2~2.5mmol/gの範囲が好ましく、より好ましくは1.5~2.0mmol/gの範囲である。 In the oxidized cellulose, it is preferable that the hydroxyl group at the C6 position of each glucose unit in the cellulose molecule is selectively oxidatively modified to become one of an aldehyde group, a ketone group, and a carboxyl group. The content of the carboxyl group (amount of carboxyl group) is preferably in the range of 1.2 to 2.5 mmol / g, more preferably in the range of 1.5 to 2.0 mmol / g from the viewpoint of dispersibility in water.
 前記酸化セルロースのカルボキシル基量の測定は、例えば、乾燥重量を精秤したセルロース試料から0.5~1重量%スラリーを60ml調製し、0.1Mの塩酸水溶液によってpHを約2.5とした後、0.05Mの水酸化ナトリウム水溶液を滴下して、電気伝導度測定を行う。測定はpHが約11になるまで続ける。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(V)から、下記の式(2)に従いカルボキシル基量を求めることができる。
 カルボキシル基量(mmol/g)=V(ml)×[0.05/セルロース重量]  (2)
For the measurement of the amount of carboxyl groups of the oxidized cellulose, for example, 60 ml of 0.5 to 1% by weight slurry was prepared from a cellulose sample whose dry weight was precisely weighed, and the pH was adjusted to about 2.5 with a 0.1 M aqueous hydrochloric acid solution. After that, a 0.05 M aqueous solution of sodium hydroxide is added dropwise to measure the electrical conductivity. The measurement is continued until the pH reaches about 11. From the amount of sodium hydroxide (V) consumed in the neutralization step of a weak acid with a gradual change in electrical conductivity, the amount of carboxyl group can be determined according to the following formula (2).
Carboxyl group amount (mmol / g) = V (ml) x [0.05 / cellulose weight] (2)
 なお、カルボキシル基量の調整は、後述するように、セルロースナノファイバーの酸化工程で用いる共酸化剤の添加量や反応時間を制御することにより行うことができる。 The amount of the carboxyl group can be adjusted by controlling the addition amount of the copolymer and the reaction time used in the oxidation step of the cellulose nanofibers, as described later.
 前記酸化セルロースは、酸化変性後、還元剤により還元させることが好ましい。これにより、アルデヒド基及びケトン基の一部ないし全部が還元され、水酸基に戻る。なお、カルボキシル基は還元されない。そして、前記還元により、前記セルロースナノファイバーの、セミカルバジド法による測定でのアルデヒド基とケトン基の合計含量を、0.3mmol/g以下とすることが好ましく、特に好ましくは0~0.1mmol/gの範囲、最も好ましくは実質的に0mmol/gである。これにより、セルロースナノファイバーの分子量低下を抑制することができる。 It is preferable that the oxidized cellulose is reduced with a reducing agent after oxidative denaturation. As a result, a part or all of the aldehyde group and the ketone group are reduced and returned to the hydroxyl group. The carboxyl group is not reduced. Then, by the reduction, the total content of the aldehyde group and the ketone group of the cellulose nanofibers as measured by the semicarbazide method is preferably 0.3 mmol / g or less, and particularly preferably 0 to 0.1 mmol / g. The range of, most preferably substantially 0 mmol / g. This makes it possible to suppress a decrease in the molecular weight of the cellulose nanofibers.
 前記酸化セルロースが、2,2,6,6-テトラメチルピペリジン(TEMPO)等のN-オキシル化合物の存在下、共酸化剤を用いて酸化されたものであり、前記酸化反応により生じたアルデヒド基及びケトン基が、還元剤により還元されたものであると、前記セルロースナノファイバーを容易に得ることができるようになるため好ましい。また、前記還元剤による還元が、水素化ホウ素ナトリウム(NaBH)によるものであることが好ましい。 The oxidized cellulose is oxidized with a copolymer in the presence of an N-oxyl compound such as 2,2,6,6-tetramethylpiperidin (TEMPO), and is an aldehyde group generated by the oxidation reaction. And it is preferable that the ketone group is reduced by a reducing agent because the cellulose nanofibers can be easily obtained. Further, it is preferable that the reduction with the reducing agent is with sodium borohydride (NaBH 4 ).
 セミカルバジド法による、アルデヒド基とケトン基との合計含量の測定は、例えば、次のようにして行われる。すなわち、乾燥させた試料に、リン酸緩衝液によりpH=5に調整したセミカルバジド塩酸塩3g/l水溶液を正確に50ml加え、密栓し、二日間振とうする。続いて、この溶液10mlを正確に100mlビーカーに採取し、5N硫酸を25ml、0.05Nヨウ素酸カリウム水溶液5mlを加え、10分間撹拌する。その後、5%ヨウ化カリウム水溶液10mlを加えて、直ちに自動滴定装置を用いて、0.1Nチオ硫酸ナトリウム溶液にて滴定し、その滴定量等から、下記の式(3)に従い、試料中のカルボニル基量(アルデヒド基とケトン基との合計含量)を求めることができる。なお、セミカルバジドは、アルデヒド基やケトン基と反応しシッフ塩基(イミン)を形成するが、カルボキシル基とは反応しないことから、前記測定により、アルデヒド基とケトン基のみを定量できると考えられる。
 カルボニル基量(mmol/g)=(D-B)×f×[0.125/w]  (3)
  D:サンプルの滴定量(ml)
  B:空試験の滴定量(ml)
  f:0.1Nチオ硫酸ナトリウム溶液のファクター(-)
  w:試料量(g)
The measurement of the total content of the aldehyde group and the ketone group by the semicarbazide method is performed, for example, as follows. That is, exactly 50 ml of a 3 g / l aqueous solution of semicarbazide hydrochloride adjusted to pH = 5 with a phosphate buffer solution is added to the dried sample, the sample is sealed, and the mixture is shaken for 2 days. Subsequently, 10 ml of this solution is accurately collected in a 100 ml beaker, 25 ml of 5N sulfuric acid and 5 ml of a 0.05 N potassium iodate aqueous solution are added, and the mixture is stirred for 10 minutes. Then, 10 ml of a 5% potassium iodide aqueous solution is added, and the titration is immediately performed with a 0.1N sodium thiosulfate solution using an automatic titration device. The amount of carbonyl group (total content of aldehyde group and ketone group) can be determined. Semicarbazide reacts with an aldehyde group or a ketone group to form a Schiff base (imine), but does not react with a carboxyl group. Therefore, it is considered that only the aldehyde group and the ketone group can be quantified by the above measurement.
Carbonyl group amount (mmol / g) = (DB) × f × [0.125 / w] (3)
D: Sample titration (ml)
B: Titration of blank test (ml)
f: Factor of 0.1N sodium thiosulfate solution (-)
w: Sample amount (g)
 前記酸化セルロースは、繊維表面上のセルロース分子中の各グルコースユニットのC6位の水酸基が選択的に酸化変性されてアルデヒド基、ケトン基及びカルボキシル基のいずれかとなっている。このセルロースナノファイバー表面上のグルコースユニットのC6位の水酸基のみが選択的に酸化されているかどうかは、例えば、13C-NMRチャートにより確認することができる。すなわち、酸化前のセルロースの13C-NMRチャートで確認できるグルコース単位の1級水酸基のC6位に相当する62ppmのピークが、酸化反応後は消失し、代わりにカルボキシル基等に由来するピーク(178ppmのピークはカルボキシル基に由来するピーク)が現れる。このようにして、グルコース単位のC6位水酸基のみがカルボキシル基等に酸化されていることを確認することができる。 In the oxidized cellulose, the hydroxyl group at the C6 position of each glucose unit in the cellulose molecule on the fiber surface is selectively oxidatively modified to become either an aldehyde group, a ketone group or a carboxyl group. Whether or not only the hydroxyl group at the C6 position of the glucose unit on the surface of the cellulose nanofibers is selectively oxidized can be confirmed by, for example, a 13 C-NMR chart. That is, the peak of 62 ppm corresponding to the C6 position of the primary hydroxyl group of the glucose unit, which can be confirmed on the 13 C-NMR chart of cellulose before oxidation, disappears after the oxidation reaction, and instead the peak derived from the carboxyl group or the like (178 ppm). The peak of is derived from the carboxyl group). In this way, it can be confirmed that only the C6-position hydroxyl group of the glucose unit is oxidized to the carboxyl group or the like.
 また、前記酸化セルロースにおけるアルデヒド基の検出は、例えば、フェーリング試薬により行うこともできる。すなわち、例えば、乾燥させた試料に、フェーリング試薬(酒石酸ナトリウムカリウムと水酸化ナトリウムとの混合溶液と、硫酸銅五水和物水溶液)を加えた後、80℃で1時間加熱したとき、上澄みが青色、セルロースナノファイバー部分が紺色を呈するものは、アルデヒド基は検出されなかったと判断することができ、上澄みが黄色、セルロース繊維部分が赤色を呈するものは、アルデヒド基は検出されたと判断することができる。 Further, the detection of the aldehyde group in the oxidized cellulose can also be performed by, for example, a Fehling's reagent. That is, for example, when a Fehling's reagent (a mixed solution of sodium potassium tartrate and sodium hydroxide and an aqueous solution of copper sulfate pentahydrate) is added to a dried sample and then heated at 80 ° C. for 1 hour, the supernatant becomes clear. If the blue or cellulose nanofiber part is dark blue, it can be judged that the aldehyde group was not detected, and if the supernatant is yellow and the cellulose fiber part is red, it can be judged that the aldehyde group was detected. can.
 前記酸化セルロースを解繊した変性セルロースナノファイバーは、(1)酸化反応工程、(2)還元工程、(3)精製工程、(4)分散工程(微細化処理工程)等により製造することが好ましく、具体的には以下の各工程により製造することが好ましい。 The modified cellulose nanofibers obtained by defibrating the oxidized cellulose are preferably produced by (1) oxidation reaction step, (2) reduction step, (3) purification step, (4) dispersion step (micronization treatment step) and the like. Specifically, it is preferable to manufacture by each of the following steps.
(1)酸化反応工程
 天然セルロースとN-オキシル化合物とを水(分散媒体)に分散させた後、共酸化剤を添加して、反応を開始する。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10~11に保ち、pHに変化が見られなくなった時点で反応終了とみなす。ここで、共酸化剤とは、直接的にセルロース水酸基を酸化する物質ではなく、酸化触媒として用いられるN-オキシル化合物を酸化する物質のことである。
(1) Oxidation reaction step After dispersing natural cellulose and an N-oxyl compound in water (dispersion medium), a copolymer is added to start the reaction. During the reaction, a 0.5 M aqueous sodium hydroxide solution is added dropwise to keep the pH at 10 to 11, and the reaction is considered to be completed when no change in pH is observed. Here, the copolymer is not a substance that directly oxidizes the cellulose hydroxyl group, but a substance that oxidizes an N-oxyl compound used as an oxidation catalyst.
 前記天然セルロースは、植物、動物、バクテリア産生ゲル等のセルロースの生合成系から単離した精製セルロースを意味する。より具体的には、針葉樹系パルプ、広葉樹系パルプ、コットンリンター、コットンリント等の綿系パルプ、麦わらパルプ、バガスパルプ等の非木材系パルプ、バクテリアセルロース(BC)、ホヤから単離されるセルロース、海草から単離されるセルロース等を挙げることができる。これらは単独で用いてもよく、もしくは二種以上併せて用いられる。これらの中でも、針葉樹系パルプ、広葉樹系パルプ、コットンリンター、コットンリント等の綿系パルプ、麦わらパルプ、バガスパルプ等の非木材系パルプが好ましく用いられる。前記天然セルロースは、叩解等の表面積を高める処理を施すと、反応効率を高めることができ、生産性を高めることができるため好ましい。また、前記天然セルロースとして、単離、精製の後、乾燥させない(ネバードライ)で保存していたものを使用すると、ミクロフィブリルの集束体が膨潤しやすい状態であるため、反応効率を高め、微細化処理後の数平均繊維径を小さくすることができるため好ましい。 The natural cellulose means purified cellulose isolated from the biosynthetic system of cellulose such as plants, animals, and bacterial gels. More specifically, softwood pulp, broadleaf pulp, cotton linter, cotton lint and other cotton pulp, straw pulp, bagus pulp and other non-wood pulp, bacterial cellulose (BC), cellulose isolated from squirrel, seaweed. Examples thereof include cellulose isolated from. These may be used alone or in combination of two or more. Among these, softwood-based pulp, hardwood-based pulp, cotton-based pulp such as cotton linter and cotton lint, and non-wood-based pulp such as straw pulp and bagas pulp are preferably used. It is preferable that the natural cellulose is subjected to a treatment for increasing the surface area such as beating because the reaction efficiency can be increased and the productivity can be increased. In addition, if the natural cellulose that has been isolated, purified, and then stored without drying (never dry) is used, the aggregates of microfibrils are in a state of being easily swollen, so that the reaction efficiency is improved and the particles are fine. It is preferable because the number average fiber diameter after the conversion treatment can be reduced.
 前記反応における天然セルロースの分散媒体は水であり、反応水溶液中の天然セルロース濃度は、試薬(天然セルロース)の充分な拡散が可能な濃度であれば任意である。通常は、反応水溶液の重量に対して約5%以下であるが、機械的撹拌力の強い装置を使用することにより反応濃度を上げることができる。 The dispersion medium of natural cellulose in the reaction is water, and the concentration of natural cellulose in the reaction aqueous solution is arbitrary as long as the reagent (natural cellulose) can be sufficiently diffused. Normally, it is about 5% or less based on the weight of the reaction aqueous solution, but the reaction concentration can be increased by using a device having a strong mechanical stirring force.
 また、前記N-オキシル化合物としては、例えば、一般に酸化触媒として用いられるニトロキシラジカルを有する化合物が挙げられる。前記N-オキシル化合物は、水溶性の化合物が好ましく、その中でもピペリジンニトロキシオキシラジカルが好ましく、特に2,2,6,6-テトラメチルピペリジノオキシラジカル(TEMPO)又は4-アセトアミド-TEMPOが好ましい。前記N-オキシル化合物の添加は、触媒量で充分であり、好ましくは0.1~4mmol/l、さらに好ましくは0.2~2mmol/lの範囲で反応水溶液に添加する。 Further, examples of the N-oxyl compound include compounds having a nitroxy radical, which is generally used as an oxidation catalyst. The N-oxyl compound is preferably a water-soluble compound, preferably a piperidine nitroxyoxy radical, particularly 2,2,6,6-tetramethylpiperidinooxy radical (TEMPO) or 4-acetamide-TEMPO. preferable. The amount of the catalyst is sufficient for the addition of the N-oxyl compound, and the N-oxyl compound is preferably added to the reaction aqueous solution in the range of 0.1 to 4 mmol / l, more preferably 0.2 to 2 mmol / l.
 前記共酸化剤としては、例えば、次亜ハロゲン酸又はその塩、亜ハロゲン酸又はその塩、過ハロゲン酸又はその塩、過酸化水素、過有機酸等が挙げられる。これらは単独でもしくは二種以上併せて用いられる。特に、次亜塩素酸ナトリウム、次亜臭素酸ナトリウム等のアルカリ金属次亜ハロゲン酸塩が好ましい。そして、前記次亜塩素酸ナトリウムを使用する場合は、反応速度の点から、臭化ナトリウム等の臭化アルカリ金属の存在下で反応を進めることが好ましい。前記臭化アルカリ金属の添加量は、前記N-オキシル化合物に対して約1~40倍モル量、好ましくは約10~20倍モル量である。 Examples of the copolymer include hypohalogenic acid or a salt thereof, subhalogenic acid or a salt thereof, perhalogenic acid or a salt thereof, hydrogen peroxide, a perorganic acid and the like. These may be used alone or in combination of two or more. In particular, alkali metal hypohalites such as sodium hypochlorite and sodium hypobromous acid are preferable. When the sodium hypochlorite is used, it is preferable to proceed the reaction in the presence of an alkali bromide metal such as sodium bromide from the viewpoint of the reaction rate. The amount of the alkali metal bromide added is about 1 to 40 times the molar amount, preferably about 10 to 20 times the molar amount of the N-oxyl compound.
 前記反応水溶液のpHは、約8~11の範囲で維持されることが好ましい。水溶液の温度は約4~40℃の範囲内で任意に設定することができるが、反応は室温(25℃)で行うことが可能であり、特に温度の制御は必要としない。所望のカルボキシル基量等を得るためには、共酸化剤の添加量と反応時間により、酸化の程度を制御する。通常、反応時間は約5~120分、長くとも240分以内に完了する。 The pH of the reaction aqueous solution is preferably maintained in the range of about 8 to 11. The temperature of the aqueous solution can be arbitrarily set within the range of about 4 to 40 ° C., but the reaction can be carried out at room temperature (25 ° C.), and no particular temperature control is required. In order to obtain a desired amount of carboxyl groups and the like, the degree of oxidation is controlled by the amount of the copolymer added and the reaction time. Reaction times are usually about 5 to 120 minutes and are usually completed within 240 minutes at the longest.
(2)還元工程
 前記酸化セルロースは、前記酸化反応後に、さらに還元反応を行うことが好ましい。具体的には、酸化反応後の微細酸化セルロースを精製水に分散し、水分散体のpHを約10に調整し、各種還元剤により還元反応を行う。本発明に使用する還元剤としては、一般的なものを使用することが可能であるが、好ましくは、LiBH、NaBHCN、NaBH等が挙げられる。特に、コストや利用可能性の点から、NaBHが好ましく用いられる。
(2) Reduction Step It is preferable that the oxidized cellulose is further subjected to a reduction reaction after the oxidation reaction. Specifically, the fine cellulose oxide after the oxidation reaction is dispersed in purified water, the pH of the aqueous dispersion is adjusted to about 10, and the reduction reaction is carried out with various reducing agents. As the reducing agent used in the present invention, general ones can be used, but LiBH 4 , NaBH 3 CN, NaBH 4 , and the like are preferable. In particular, NaBH 4 is preferably used in terms of cost and availability.
 還元剤の量は、微細酸化セルロースを基準として、0.1~4重量%の範囲が好ましく、特に好ましくは1~3重量%の範囲である。反応は、室温又は室温より若干高い温度で、通常、10分~10時間、好ましくは30分~2時間行う。 The amount of the reducing agent is preferably in the range of 0.1 to 4% by weight, particularly preferably in the range of 1 to 3% by weight, based on the fine cellulose oxide. The reaction is usually carried out at room temperature or a temperature slightly higher than room temperature for 10 minutes to 10 hours, preferably 30 minutes to 2 hours.
 前記の反応終了後、各種の酸により反応混合物のpHを約2に調整し、精製水をふりかけながら遠心分離機で固液分離を行い、ケーキ状の微細酸化セルロースを得る。固液分離は濾液の電気伝導度が5mS/m以下となるまで行う。 After the above reaction is completed, the pH of the reaction mixture is adjusted to about 2 with various acids, and solid-liquid separation is performed with a centrifuge while sprinkling purified water to obtain cake-shaped fine oxidized cellulose. The solid-liquid separation is carried out until the electric conductivity of the filtrate becomes 5 mS / m or less.
(3)精製工程
 次に、未反応の共酸化剤(次亜塩素酸等)や、各種副生成物等を除く目的で精製を行う。反応物繊維は通常、この段階ではナノファイバー単位までばらばらに分散しているわけではないため、通常の精製法、すなわち水洗とろ過を繰り返すことで高純度(99重量%以上)の反応物繊維と水の分散体を得る。
(3) Purification step Next, purification is performed for the purpose of removing unreacted copolymers (hypochlorous acid, etc.) and various by-products. Since the reactant fibers are not usually dispersed in nanofiber units at this stage, they can be obtained with high-purity (99% by weight or more) reactant fibers by repeating the usual purification method, that is, washing with water and filtration. Obtain a dispersion of water.
 前記精製工程における精製方法は、遠心脱水を利用する方法(例えば、連続式デカンダー)のように、上述した目的を達成できる装置であればどのような装置を利用しても差し支えない。このようにして得られる反応物繊維の水分散体は、絞った状態で固形分(セルロース)濃度としておよそ10重量%~50重量%の範囲にある。この後の分散工程を考慮すると、50重量%よりも高い固形分濃度とすると、分散に極めて高いエネルギーが必要となることから好ましくない。 The purification method in the purification step may be any device as long as it can achieve the above-mentioned object, such as a method using centrifugal dehydration (for example, a continuous decander). The aqueous dispersion of the reactant fibers thus obtained has a solid content (cellulose) concentration in the range of about 10% by weight to 50% by weight in a squeezed state. Considering the subsequent dispersion step, if the solid content concentration is higher than 50% by weight, extremely high energy is required for dispersion, which is not preferable.
(4)分散工程(微細化処理工程)
 前記精製工程にて得られる水を含浸した反応物繊維(水分散体)を、分散媒体中に分散させ分散処理を行う。処理に伴って粘度が上昇し、微細化処理されたイオン性官能基を有する変性セルロースナノファイバーの分散体を得ることができる。その後、必要に応じてこの変性セルロースナノファイバーを乾燥してもよく、前記変性セルロースナノファイバーの分散体の乾燥法としては、例えば、分散媒体が水である場合は、スプレードライ、凍結乾燥法、真空乾燥法等が用いられ、分散媒体が水と有機溶媒の混合溶液である場合は、ドラムドライヤーによる乾燥法、スプレードライヤーによる噴霧乾燥法等が用いられる。なお、前記のイオン性官能基を有する変性セルロースナノファイバーの分散体を乾燥することなく、分散体の状態で用いても差し支えない。
(4) Dispersion process (miniaturization process)
The water-impregnated reactant fiber (aqueous dispersion) obtained in the purification step is dispersed in a dispersion medium and subjected to a dispersion treatment. The viscosity increases with the treatment, and a dispersion of modified cellulose nanofibers having a finely divided ionic functional group can be obtained. Then, if necessary, the modified cellulose nanofibers may be dried, and as a method for drying the dispersion of the modified cellulose nanofibers, for example, when the dispersion medium is water, a spray drying method or a freeze drying method may be used. A vacuum drying method or the like is used, and when the dispersion medium is a mixed solution of water and an organic solvent, a drying method using a drum dryer, a spray drying method using a spray dryer, or the like is used. The dispersion of the modified cellulose nanofibers having an ionic functional group may be used in the state of the dispersion without drying.
 前記分散工程で使用する分散機としては、高速回転下でのホモミキサー、高圧ホモジナイザー、超高圧ホモジナイザー、超音波分散処理機、ビーター、ディスク型レファイナー、コニカル型レファイナー、ダブルディスク型レファイナー、グラインダー等の強力で叩解能力のある装置を使用することにより、より効率的かつ高度なダウンサイジングが可能となり、経済的に有利に分散させることができる点で好ましい。なお、前記分散機としては、例えば、スクリュー型ミキサー、パドルミキサー、ディスパー型ミキサー、タービン型ミキサー、ディスパー、プロペラミキサー、ニーダー、ブレンダー、ホモジナイザー、超音波ホモジナイザー、コロイドミル、ペブルミル、ビーズミル粉砕機等を用いても差し支えない。また、2種類以上の分散機を組み合わせて用いても差し支えない。 Dispersors used in the dispersion step include homomixers, high-pressure homogenizers, ultra-high-pressure homogenizers, ultrasonic dispersers, beaters, disc-type refiners, conical-type refiners, double-disc-type refiners, grinders, etc. under high-speed rotation. It is preferable to use a powerful and beating ability device in that more efficient and advanced downsizing is possible and the dispersion can be economically advantageous. Examples of the disperser include a screw type mixer, a paddle mixer, a disper type mixer, a turbine type mixer, a disper, a propeller mixer, a kneader, a blender, a homogenizer, an ultrasonic homogenizer, a colloid mill, a pebble mill, and a bead mill crusher. You can use it. Further, two or more types of dispersers may be used in combination.
 また、前記アニオン変性した変性セルロースナノファイバーの1種であるカルボキシメチルセルロースは、前記セルロース原料を用いて以下の方法によって製造することができる。すなわち、セルロースを原料とし、溶媒に質量で3~20倍の低級アルコール、具体的にはメタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、t-ブチルアルコール等の単独、又は2種以上の混合物と水の混合媒体を使用する。なお、低級アルコールの混合割合は、60~95質量%である。マーセル化剤としては、セルロースのグルコース残基当たり0.5~20倍モルの水酸化アルカリ金属、具体的には水酸化ナトリウム、水酸化カリウムを使用する。セルロースと溶媒、マーセル化剤を混合してマーセル化処理を行う。このときの反応温度は0~70℃、好ましくは10~60℃であり、反応時間は15分~8時間、好ましくは30分~7時間である。その後、カルボキシメチル化剤をグルコース残基当たり0.05~10倍モル添加してエーテル化反応を行う。このときの反応温度は30~90℃、好ましくは40~80℃であり、反応時間は30分~10時間、好ましくは1時間~4時間である。 Further, carboxymethyl cellulose, which is one of the anion-modified modified cellulose nanofibers, can be produced by the following method using the cellulose raw material. That is, using cellulose as a raw material, the solvent is a lower alcohol 3 to 20 times by mass, specifically, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, t-butyl alcohol, etc. alone. , Or a mixed medium of two or more mixtures and water. The mixing ratio of the lower alcohol is 60 to 95% by mass. As the mercerizing agent, 0.5 to 20 times mol of alkali metal hydroxide per glucose residue of cellulose, specifically sodium hydroxide or potassium hydroxide is used. Cellulose, solvent and mercerizing agent are mixed to perform mercerization treatment. The reaction temperature at this time is 0 to 70 ° C., preferably 10 to 60 ° C., and the reaction time is 15 minutes to 8 hours, preferably 30 minutes to 7 hours. Then, a carboxymethylating agent is added in an amount of 0.05 to 10 times per glucose residue to carry out an etherification reaction. The reaction temperature at this time is 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction time is 30 minutes to 10 hours, preferably 1 hour to 4 hours.
 前記カルボキシメチルセルロースを高圧ホモジナイザー等によって解繊処理することで変性セルロースナノファイバー得ることができる。高圧ホモジナイザーとは、ポンプによって流体に加圧し、流路に設けた非常に繊細な間隙より噴出させる装置である。粒子間の衝突、圧力差による剪断力等の総合エネルギーによって乳化・分散・解繊・粉砕・超微細化を行うことができる。 Modified cellulose nanofibers can be obtained by defibrating the carboxymethyl cellulose with a high-pressure homogenizer or the like. A high-pressure homogenizer is a device that pressurizes a fluid with a pump and ejects it from a very delicate gap provided in a flow path. Emulsification, dispersion, defibration, crushing, and ultrafineness can be performed by total energy such as collision between particles and shearing force due to pressure difference.
 本発明のホモジナイザーによる処理条件としては、特に限定されるものではないが、圧力条件としては、30MPa以上、好ましくは100MPa以上、さらに好ましくは140MPa以上である。また、高圧ホモジナイザーでの解繊・分散処理に先立って、必要に応じて、高速せん断ミキサー等の公知の混合、攪拌、乳化、分散装置を用いて、カルボキシメチルセルロースに予備処理を施すことも可能である。 The treatment conditions by the homogenizer of the present invention are not particularly limited, but the pressure conditions are 30 MPa or more, preferably 100 MPa or more, and more preferably 140 MPa or more. It is also possible to pre-treat carboxymethyl cellulose using a known mixing, stirring, emulsifying and dispersing device such as a high-speed shear mixer, if necessary, prior to the defibration / dispersion treatment with a high-pressure homogenizer. be.
 カルボキシメチルセルロースのグルコース単位当たりのカルボキシメチル置換度は0.02以上0.50以下であることが好ましい。セルロースにイオン性官能基としてカルボキシメチル置換基を導入することで、セルロース同士が電気的に反発する。このため、カルボキシメチル置換基を導入したセルロースは容易にナノ解繊することができる。なお、グルコース単位当たりのカルボキシメチル置換基の割合は、0.02~0.50の範囲内であることが好ましい。 The degree of carboxymethyl substitution per glucose unit of carboxymethyl cellulose is preferably 0.02 or more and 0.50 or less. By introducing a carboxymethyl substituent into cellulose as an ionic functional group, the celluloses electrically repel each other. Therefore, cellulose having a carboxymethyl substituent introduced can be easily nano-deflated. The ratio of carboxymethyl substituents per glucose unit is preferably in the range of 0.02 to 0.50.
 本実施形態において、セルロースナノファイバー組成物中に、イオン性官能基を有する変性セルロースナノファイバーとともに含まれるベタイン化合物とは、トリメチルグリシン(狭義のベタイン)の他、正電荷と負電荷を同一分子内の隣り合わない位置に有し、正電荷を持つ原子には解離しうる水素が結合しておらず、分子全体として電荷を持たない化合物を指す。上記ベタイン化合物の分子量は600以下である。ベタイン化合物中のカチオン部分は、四級アンモニウム、スルホニウム、ホスホニウム等の構造をとることができる。このようなベタイン化合物は、変性セルロースナノファイバーのイオン性官能基に電気的に結合し、変性セルロースナノファイバーの繊維表面を均一に被覆する。そのため、乾燥時の変性セルロースナノファイバー同士の水素結合が阻害され、凝集が抑制されるものと考えられるが、再分散性が向上する作用機序はこの理論に縛られるものではない。 In the present embodiment, the betaine compound contained in the cellulose nanofiber composition together with the modified cellulose nanofiber having an ionic functional group includes trimethylglycine (betaine in a narrow sense) and positive and negative charges in the same molecule. It refers to a compound that has no charge as a whole molecule because hydrogen that can be dissociated is not bonded to the atoms that are not adjacent to each other and have a positive charge. The molecular weight of the betaine compound is 600 or less. The cation moiety in the betaine compound can have a structure such as quaternary ammonium, sulfonium, or phosphonium. Such betaine compounds electrically bond to the ionic functional groups of the modified cellulose nanofibers and uniformly coat the fiber surface of the modified cellulose nanofibers. Therefore, it is considered that hydrogen bonds between modified cellulose nanofibers during drying are inhibited and aggregation is suppressed, but the mechanism of action for improving redispersibility is not bound by this theory.
 ベタイン化合物の例としては、トリメチルグリシン、L-カルニチン、D-カルニチン、プロリンベタイン、ラウリルジメチルアミノ酢酸ベタイン、ヤシ油脂肪酸アミドプロピルベタイン、等が挙げられ、これらのいずれかを単独で、又は二種以上を組み合わせて用いることができる。特に、トリメチルグリシンが好ましく用いられる。 Examples of betaine compounds include trimethylglycine, L-carnitine, D-carnitine, proline betaine, lauryldimethylaminoacetic acid betaine, coconut oil fatty acid amide propyl betaine, etc., either alone or in combination of two. The above can be used in combination. In particular, trimethylglycine is preferably used.
 本実施形態において、セルロースナノファイバー組成物における変性セルロースナノファイバーとベタイン化合物の配合割合は、変性セルロースナノファイバーの性状(繊維径や変性の種類、等)や、組成物の用途を考慮して適宜設定することができる。具体的には、変性セルロースナノファイバー100質量部に対するベタイン化合物の含有量が5~1000質量部であることが好ましく、変性セルロースナノファイバー100質量部に対するベタイン化合物の含有量が10~500質量部であることがより好ましく、20~200質量部であることがさらに好ましい。 In the present embodiment, the blending ratio of the modified cellulose nanofibers and the betaine compound in the cellulose nanofiber composition is appropriately considered in consideration of the properties of the modified cellulose nanofibers (fiber diameter, type of modification, etc.) and the use of the composition. Can be set. Specifically, the content of the betaine compound with respect to 100 parts by mass of the modified cellulose nanofibers is preferably 5 to 1000 parts by mass, and the content of the betaine compound with respect to 100 parts by mass of the modified cellulose nanofibers is 10 to 500 parts by mass. It is more preferably 20 to 200 parts by mass.
 セルロースナノファイバー組成物は、変性セルロースナノファイバー及びベタイン化合物を媒体に分散した分散体であることができる。前記媒体(すなわち分散媒体)は、水系媒体であることが好ましく、具体的には水、メチルアルコール、エチルアルコール等の低級アルコール水溶液、エチレングリコール、プロピレングリコール等のグリコール水溶液、D-ソルビトール等の飽和鎖式炭化水素系多価アルコール水溶液その他の有機化合物水溶液、塩化カルシウム、塩化ナトリウム等の無機塩水溶液が挙げられるが、特にこれらに限定されるものではない。これらの中でも、水、メチルアルコール、エチルアルコール等の低級アルコール水溶液、エチレングリコール、プロピレングリコール等のグリコール水溶液が好ましく、特に好ましくは水である。なお、変性セルロースナノファイバーが分散している媒体が水と水以外の水系媒体との混合液である場合、媒体全体に対する水の割合は、特に限定されないが、例えば、10質量%以上であることが好ましく、40質量%以上であることがより好ましく、60質量%以上であることがさらに好ましい。 The cellulose nanofiber composition can be a dispersion in which modified cellulose nanofibers and a betaine compound are dispersed in a medium. The medium (that is, a dispersion medium) is preferably an aqueous medium, specifically, an aqueous solution of a lower alcohol such as water, methyl alcohol or ethyl alcohol, an aqueous solution of glycol such as ethylene glycol or propylene glycol, or saturation of D-sorbitol. Examples thereof include a chain hydrocarbon-based polyhydric alcohol aqueous solution and other organic compound aqueous solutions, and an inorganic salt aqueous solution such as calcium chloride and sodium chloride, but the present invention is not particularly limited thereto. Among these, water, a lower alcohol aqueous solution such as methyl alcohol and ethyl alcohol, and a glycol aqueous solution such as ethylene glycol and propylene glycol are preferable, and water is particularly preferable. When the medium in which the modified cellulose nanofibers are dispersed is a mixture of water and an aqueous medium other than water, the ratio of water to the entire medium is not particularly limited, but is, for example, 10% by mass or more. Is more preferable, 40% by mass or more is more preferable, and 60% by mass or more is further preferable.
 また、セルロースナノファイバー組成物は、乾燥体とすることができる。乾燥させたときに、変性セルロースナノファイバーの繊維表面がベタイン化合物によって被覆され、凝集が抑制されるため、再分散性に優れ、また乾燥した状態であるため輸送コストが安い等の利点がある。 Further, the cellulose nanofiber composition can be a dried product. When dried, the fiber surface of the modified cellulose nanofibers is covered with the betaine compound, and aggregation is suppressed, so that the redispersibility is excellent, and the dried state has advantages such as low transportation cost.
 乾燥体であるセルロースナノファイバー組成物は、イオン性官能基を有する変性セルロースナノファイバーを水等の媒体に分散させたものに、所定量のベタイン化合物を添加し、乾燥させる工程を経て製造することができる。上記ベタイン化合物の分子量は600以下である。水等の媒体は、乾燥によって完全に除去してもよいが、組成物の用途等に応じて媒体が一部残存した状態であってもよい。また、乾燥させる手段としては、加熱乾燥又は凍結乾燥のいずれも適用可能である。加熱乾燥時の乾燥温度、時間等の条件は適宜設定することができる。一例として、変性セルロースナノファイバーを2質量%含有する水分散体10mlを乾燥させる場合、80~120℃の温度で10~60分間の条件により行うことができる。 The cellulose nanofiber composition which is a dried product is produced by subjecting a modified cellulose nanofiber having an ionic functional group to a medium such as water in which a predetermined amount of betaine compound is added and dried. Can be done. The molecular weight of the betaine compound is 600 or less. The medium such as water may be completely removed by drying, but the medium may be partially left depending on the use of the composition and the like. Further, as the means for drying, either heat drying or freeze drying can be applied. Conditions such as the drying temperature and time during heat drying can be appropriately set. As an example, when 10 ml of an aqueous dispersion containing 2% by mass of modified cellulose nanofibers is dried, it can be carried out at a temperature of 80 to 120 ° C. for 10 to 60 minutes.
 また、乾燥体であるセルロースナノファイバー組成物は、例えば上述したような分散媒体に好適に再度分散させることができる。これにより、変性セルロースナノファイバーの分散体を含むセルロースナノファイバー組成物を再び得ることができる。 Further, the cellulose nanofiber composition which is a dried product can be suitably redispersed in a dispersion medium as described above, for example. Thereby, the cellulose nanofiber composition containing the dispersion of the modified cellulose nanofiber can be obtained again.
 なお、変性セルロースナノファイバーの分散体は、液状であってもよいし、固体状、具体的には、例えばゲル状であってもよい。また、上記分散体は、例えばスラリー状であってもよい。 The dispersion of the modified cellulose nanofibers may be liquid or solid, specifically, for example, gel. Further, the dispersion may be in the form of a slurry, for example.
 本実施形態に係るセルロースナノファイバー組成物には、組成物の用途等を考慮して、本発明の効果を妨げない範囲で他の添加剤を添加することができる。添加剤の例としては、分散剤、防腐剤、消泡剤、増粘剤、乳化剤、pH調整剤、酸化防止剤、熱安定化剤、光安定化剤、紫外線吸収剤、顔料、着色剤、難燃剤、可塑剤、香料等を挙げることができる。これらの他の添加剤の含有量は、変性セルロースナノファイバー及びベタイン化合物の合計量に対し10000質量%未満とすることが好ましい。 Other additives can be added to the cellulose nanofiber composition according to the present embodiment in consideration of the use of the composition and the like, as long as the effects of the present invention are not impaired. Examples of additives include dispersants, preservatives, defoamers, thickeners, emulsifiers, pH regulators, antioxidants, heat stabilizers, light stabilizers, UV absorbers, pigments, colorants, Flame retardants, plasticizers, fragrances and the like can be mentioned. The content of these other additives is preferably less than 10,000% by mass with respect to the total amount of the modified cellulose nanofibers and the betaine compound.
 次に、実施例及び比較例により、本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[アニオン変性セルロースナノファイバーの調製]
 針葉樹クラフトパルプ2.0gに水150mL、臭化ナトリウム0.25g、2,2,6,6-テトラメチルピペリジン-1―オキシル(TEMPO)0.025gを加え、十分撹拌した後、13%次亜塩素酸ナトリウム水溶液を、上記パルプ1.0gに対して次亜塩素酸ナトリウム量が6mmol/gとなるように加え、反応を開始した。さらに反応中のpHを10~11に保持するように0.5N水酸化ナトリウム水溶液を滴下しながら、120分間反応させた。反応後、0.1N塩酸を加えてpH=2.0とし、吸引濾過により固液分離をした後、固形分に純水を加え、固形分濃度2.0%のスラリーを調製した。その後、10%水酸化ナトリウム水溶液によりpHを10に調整し、水素化ホウ素ナトリウムをセルロース繊維に対して0.2mmol/g加え、2時間反応させることで還元処理した。反応後、0.1N塩酸を添加して中和し、ろ過と水洗を繰り返して精製した。得られた精製物に純水を加え、固形分濃度2.0%のスラリーを調製した後、10%水酸化ナトリウム水溶液でpHを7に調整した。その後、微細化処理工程としてマイクロフルイタイザーによる処理(150MPa、2パス)を行うことでセルロース繊維に対し高密度にカルボキシル基を導入したアニオン変性セルロースナノファイバーを得た。
[Preparation of anion-modified cellulose nanofibers]
To 2.0 g of coniferous kraft pulp, 150 mL of water, 0.25 g of sodium bromide, 0.025 g of 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) were added, and after sufficient stirring, 13% hypochlorite was added. An aqueous sodium chlorite solution was added to 1.0 g of the pulp so that the amount of sodium hypochlorite was 6 mmol / g, and the reaction was started. Further, the reaction was carried out for 120 minutes while dropping a 0.5 N aqueous sodium hydroxide solution so as to maintain the pH during the reaction at 10 to 11. After the reaction, 0.1N hydrochloric acid was added to adjust the pH to 2.0, solid-liquid separation was performed by suction filtration, and then pure water was added to the solid content to prepare a slurry having a solid content concentration of 2.0%. Then, the pH was adjusted to 10 with a 10% aqueous sodium hydroxide solution, 0.2 mmol / g of sodium borohydride was added to the cellulose fibers, and the mixture was reacted for 2 hours for reduction treatment. After the reaction, 0.1N hydrochloric acid was added to neutralize the mixture, and filtration and washing with water were repeated for purification. Pure water was added to the obtained purified product to prepare a slurry having a solid content concentration of 2.0%, and then the pH was adjusted to 7 with a 10% aqueous sodium hydroxide solution. Then, as a miniaturization treatment step, a treatment with a microfluitizer (150 MPa, 2 passes) was carried out to obtain anion-modified cellulose nanofibers in which a carboxyl group was introduced at a high density to the cellulose fibers.
 上記のアニオン変性セルロースナノファイバーは、数平均繊維径が3.1nmであり、平均アスペクト比が300であり、C6位の水酸基が選択的に酸化されることでカルボキシル基が導入されており、カルボキシル基量が2.0mmol/gであり、I型結晶構造を有する。以下、上記アニオン変性セルロースナノファイバーを単に「セルロースナノファイバー」という。 The above-mentioned anion-modified cellulose nanofiber has a number average fiber diameter of 3.1 nm, an average aspect ratio of 300, and a carboxyl group is introduced by selectively oxidizing the hydroxyl group at the C6 position. It has a base weight of 2.0 mmol / g and has an I-type crystal structure. Hereinafter, the above-mentioned anion-modified cellulose nanofibers are simply referred to as “cellulose nanofibers”.
(実施例1)
 上記のセルロースナノファイバーの水分散液に純水を添加し、固形分濃度0.4質量%に希釈した。この希釈液に、セルロースナノファイバー100質量部に対し10質量部のトリメチルグリシン(分子量117.2、富士フイルム和光純薬製)を添加し、撹拌して溶解した。これを1日静置した後、BM型粘度計(0.6rpm、25℃、3分)を用いて粘度を測定した。得られた値を「乾燥前粘度」とした。
(Example 1)
Pure water was added to the above-mentioned aqueous dispersion of cellulose nanofibers and diluted to a solid content concentration of 0.4% by mass. To 100 parts by mass of cellulose nanofibers, 10 parts by mass of trimethylglycine (molecular weight 117.2, manufactured by Wako Pure Chemical Industries, Ltd.) was added to this diluted solution, and the mixture was stirred and dissolved. After allowing this to stand for 1 day, the viscosity was measured using a BM type viscometer (0.6 rpm, 25 ° C., 3 minutes). The obtained value was defined as "viscosity before drying".
 上記の分散物を105℃の恒温槽に入れ、質量が一定になるまで静置して乾燥させた。得られた乾燥物は室温で1日静置した後、セルロースナノファイバーの固形分濃度が0.4質量%となるように純水を添加した。これを、ホモディスパー2.5型(プライミクス製)を用いて2,000rpm、10分間撹拌し、再分散させた。再分散液を1日静置後、BM型粘度計(0.6rpm、25℃、3分)を用いて粘度を測定した。得られた値を「再分散後粘度」とした。測定した2つの粘度値に基づき、下式により「再分散性(%)」を定義し、セルロースナノファイバーの再分散性を評価した。結果を表1に示す。 The above dispersion was placed in a constant temperature bath at 105 ° C. and allowed to stand until the mass became constant to dry. The obtained dried product was allowed to stand at room temperature for 1 day, and then pure water was added so that the solid content concentration of the cellulose nanofibers became 0.4% by mass. This was stirred at 2,000 rpm for 10 minutes using Homo Disper 2.5 type (manufactured by Primix Corporation) and redispersed. After allowing the redispersion solution to stand for 1 day, the viscosity was measured using a BM type viscometer (0.6 rpm, 25 ° C., 3 minutes). The obtained value was defined as "viscosity after redispersion". Based on the two measured viscosity values, the "redispersability (%)" was defined by the following formula, and the redispersibility of the cellulose nanofibers was evaluated. The results are shown in Table 1.
(実施例2~5)
 セルロースナノファイバーに対するトリメチルグリシンの含有量を表1のように変更した以外は、実施例1と同様の操作で分散液を調製し、再分散性について評価した。その結果を表1にまとめて示す。
(Examples 2 to 5)
A dispersion was prepared in the same manner as in Example 1 except that the content of trimethylglycine with respect to the cellulose nanofibers was changed as shown in Table 1, and the redispersibility was evaluated. The results are summarized in Table 1.
(実施例6及び7)
 トリメチルグリシンに替えてラウリルジメチルアミノ酢酸ベタイン(分子量271.4)、又はヤシ油脂肪酸アミドプロピルベタイン(分子量342.5)を用いた以外は、実施例4と同様の操作で分散液を調製し、再分散性について評価した。その結果を表1にまとめて示す。
(Examples 6 and 7)
A dispersion was prepared in the same manner as in Example 4 except that lauryldimethylaminoacetic acid betaine (molecular weight 271.4) or coconut oil fatty acid amide propyl betaine (molecular weight 342.5) was used instead of trimethylglycine. The redispersibility was evaluated. The results are summarized in Table 1.
(比較例1)
 トリメチルグリシンを添加しなかった以外は、実施例1と同様の操作で分散液を調製し、再分散性について評価した。その結果を表1に示す。
(Comparative Example 1)
A dispersion was prepared in the same manner as in Example 1 except that trimethylglycine was not added, and the redispersibility was evaluated. The results are shown in Table 1.
(比較例2及び3)
 トリメチルグリシンに替えてカルボキシメチルセルロース(CMC、商品名「セロゲン7A」、第一工業製薬製)、又はヒドロキシエチルセルロース(HEC、商品名「AL-15F」、住友精化製)を添加した以外は、実施例4と同様の操作で分散液を調製し、再分散性について評価した。その結果を表1にまとめて示す。
(Comparative Examples 2 and 3)
Carboxymethyl cellulose (CMC, trade name "Selogen 7A", manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) or hydroxyethyl cellulose (HEC, trade name "AL-15F", manufactured by Sumitomo Seika Chemical Co., Ltd.) was added in place of trimethylglycine. A dispersion was prepared by the same operation as in Example 4, and the redispersibility was evaluated. The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、ベタイン化合物を添加して調製した実施例1~7のセルロースナノファイバーの再分散液は、乾燥前の分散液に近い粘度を示し、再分散性が高かった。これは、ベタイン化合物がセルロースナノファイバーの乾燥時の凝集を抑制したためであると考えられる。 As shown in Table 1, the redispersions of the cellulose nanofibers of Examples 1 to 7 prepared by adding the betaine compound showed a viscosity close to that of the dispersion before drying, and had high redispersability. It is considered that this is because the betaine compound suppressed the aggregation of the cellulose nanofibers during drying.
 一方、ベタイン化合物を添加していない比較例1では、再分散後は乾燥前に比べて低い粘度を示した。これは、セルロースナノファイバー表面の水酸基同士の水素結合により、セルロースナノファイバーが強く凝集したためであると考えられる。また、比較例2及び3は、水溶性セルロース誘導体を添加することで比較例1に比べると再分散性は向上したものの、同量のベタイン化合物を添加した実施例4より劣っていた。 On the other hand, in Comparative Example 1 to which the betaine compound was not added, the viscosity after redispersion was lower than that before drying. It is considered that this is because the cellulose nanofibers are strongly aggregated due to the hydrogen bonds between the hydroxyl groups on the surface of the cellulose nanofibers. Further, Comparative Examples 2 and 3 were inferior to Example 4 to which the same amount of betaine compound was added, although the redispersibility was improved as compared with Comparative Example 1 by adding the water-soluble cellulose derivative.
(実施例8)
 実施例1と同様のアニオン変性セルロースナノファイバーの水分散液に純水を添加し、固形分濃度0.4質量%に希釈した。この希釈液に、セルロースナノファイバー100質量部に対し100質量部のトリメチルグリシンを添加し、撹拌して溶解した。その後、分散体を-22℃で凍結乾燥させ、乾燥体であるセルロースナノファイバー組成物を得た。
(Example 8)
Pure water was added to the aqueous dispersion of anion-modified cellulose nanofibers in the same manner as in Example 1 and diluted to a solid content concentration of 0.4% by mass. To this diluted solution, 100 parts by mass of trimethylglycine was added to 100 parts by mass of cellulose nanofibers, and the mixture was stirred and dissolved. Then, the dispersion was freeze-dried at −22 ° C. to obtain a dried cellulose nanofiber composition.
(実施例9)
 セルロースナノファイバー100質量部に対し500質量部のトリメチルグリシンを添加した以外は、実施例8と同様にして乾燥体であるセルロースナノファイバー組成物を得た。
(Example 9)
A dried cellulose nanofiber composition was obtained in the same manner as in Example 8 except that 500 parts by mass of trimethylglycine was added to 100 parts by mass of the cellulose nanofibers.
(比較例4)
 トリメチルグリシンを添加しない以外は、実施例8と同様にして乾燥体であるセルロースナノファイバー組成物を得た。
(Comparative Example 4)
A dried cellulose nanofiber composition was obtained in the same manner as in Example 8 except that trimethylglycine was not added.
 実施例8及び9、並びに比較例4の乾燥体0.01gを水10mlに分散させ、分散液から20μl分取し、50倍希釈して原子間力顕微鏡(AFM)観察用サンプルを調製した。観察用サンプルをマイカ基板上に20μl滴下し、風乾させたものをAFMにて観察した。実施例8、実施例9及び比較例4のAFM画像をそれぞれ図1~3に示す。 0.01 g of the dried products of Examples 8 and 9 and Comparative Example 4 were dispersed in 10 ml of water, 20 μl was taken from the dispersion, and diluted 50 times to prepare a sample for atomic force microscope (AFM) observation. 20 μl of the observation sample was dropped on the mica substrate and air-dried, and the sample was observed by AFM. The AFM images of Example 8, Example 9, and Comparative Example 4 are shown in FIGS. 1 to 3, respectively.
 AFM観察の結果、実施例8(図1)では、変性セルロースナノファイバーの絡み合いは多少見られたものの、シングルナノサイズまで再分散されているものが多く、凝集物は少なかった。また、実施例9(図2)では、シングルナノサイズまで再分散されているものが多く観察された。また、ベタイン化合物が変性セルロースナノファイバーを被覆しているような様子が観察された。変性セルロースナノファイバーの凝集体はほとんど観察されなかった。 As a result of AFM observation, in Example 8 (FIG. 1), although some entanglement of the modified cellulose nanofibers was observed, many of them were redispersed to a single nanosize, and there were few aggregates. Moreover, in Example 9 (FIG. 2), many of them were redispersed to a single nano size. In addition, it was observed that the betaine compound coated the modified cellulose nanofibers. Almost no aggregates of modified cellulose nanofibers were observed.
 一方、ベタイン化合物を添加しない比較例4(図3)では、シングルナノサイズまで再分散されている部分も存在したが、変性セルロースナノファイバー同士の大きな絡み合いや凝集物が多く見られた。 On the other hand, in Comparative Example 4 (Fig. 3) to which the betaine compound was not added, there was a portion redispersed to a single nanosize, but large entanglements and agglomerates between the modified cellulose nanofibers were observed.
(実施例10)
 実施例1と同様のアニオン変性セルロースナノファイバーの水分散液に純水を添加し、固形分濃度0.4質量%に希釈した。この希釈液に、セルロースナノファイバー100質量部に対し100質量部のトリメチルグリシンを添加し、撹拌して溶解した。その後、分散体を105℃の恒温槽に入れ、質量が一定になるまで静置し、乾燥体であるセルロースナノファイバー組成物を得た。
(Example 10)
Pure water was added to the aqueous dispersion of anion-modified cellulose nanofibers in the same manner as in Example 1 and diluted to a solid content concentration of 0.4% by mass. To this diluted solution, 100 parts by mass of trimethylglycine was added to 100 parts by mass of cellulose nanofibers, and the mixture was stirred and dissolved. Then, the dispersion was placed in a constant temperature bath at 105 ° C. and allowed to stand until the mass became constant to obtain a dry cellulose nanofiber composition.
(比較例5)
 トリメチルグリシンを添加しない以外は、実施例10と同様にして乾燥体であるセルロースナノファイバー組成物を得た。
(Comparative Example 5)
A dried cellulose nanofiber composition was obtained in the same manner as in Example 10 except that trimethylglycine was not added.
 実施例10、及び比較例5の乾燥体0.01gを水10mlに分散させ、分散液から20μl分取し、50倍希釈して原子間力顕微鏡(AFM)観察用サンプルを調製した。観察用サンプルをマイカ基板上に20μl滴下し、風乾させたものをAFMにて観察した。実施例10、及び比較例5のAFM画像をそれぞれ図4及び5に示す。 0.01 g of the dried product of Example 10 and Comparative Example 5 was dispersed in 10 ml of water, 20 μl was taken from the dispersion, and diluted 50 times to prepare a sample for atomic force microscope (AFM) observation. 20 μl of the observation sample was dropped on the mica substrate and air-dried, and the sample was observed by AFM. The AFM images of Example 10 and Comparative Example 5 are shown in FIGS. 4 and 5, respectively.
 AFM観察の結果、実施例10(図4)では、変性セルロースナノファイバーの絡み合いは多少見られたものの、シングルナノサイズまで再分散されているものが多く、また、繊維長が長い変性セルロースナノファイバーが観察された。 As a result of AFM observation, in Example 10 (FIG. 4), although some entanglement of the modified cellulose nanofibers was observed, many of them were redistributed to a single nanosize, and the modified cellulose nanofibers had a long fiber length. Was observed.
 一方、ベタイン化合物を添加しない比較例5(図5)では、シングルナノサイズまで再分散されている部分も存在したが、変性セルロースナノファイバーの太い凝集物や大きな絡み合いが大部分を占めていた。
 
On the other hand, in Comparative Example 5 (FIG. 5) to which the betaine compound was not added, there was a portion redispersed to a single nanosize, but thick aggregates and large entanglements of the modified cellulose nanofibers accounted for the majority.

Claims (6)

  1.  イオン性官能基を有する変性セルロースナノファイバーと、分子量600以下のベタイン化合物とを含むセルロースナノファイバー組成物。 A cellulose nanofiber composition containing a modified cellulose nanofiber having an ionic functional group and a betaine compound having a molecular weight of 600 or less.
  2.  前記変性セルロースナノファイバー100質量部に対する前記ベタイン化合物の含有量が5~1000質量部である請求項1に記載のセルロースナノファイバー組成物。 The cellulose nanofiber composition according to claim 1, wherein the content of the betaine compound with respect to 100 parts by mass of the modified cellulose nanofiber is 5 to 1000 parts by mass.
  3.  乾燥体である請求項1又は2に記載のセルロースナノファイバー組成物。 The cellulose nanofiber composition according to claim 1 or 2, which is a dried product.
  4.  分散媒体を含み、前記変性セルロースナノファイバーは前記分散媒体に分散している請求項1又は2に記載のセルロースナノファイバー組成物。 The cellulose nanofiber composition according to claim 1 or 2, which comprises a dispersion medium and in which the modified cellulose nanofibers are dispersed in the dispersion medium.
  5.  分子量600以下のベタイン化合物を含有する、イオン性官能基を有する変性セルロースナノファイバーの分散体を乾燥させる工程を含む、乾燥体であるセルロースナノファイバー組成物の製造方法。 A method for producing a dry cellulose nanofiber composition, which comprises a step of drying a dispersion of modified cellulose nanofibers having an ionic functional group and containing a betaine compound having a molecular weight of 600 or less.
  6.  前記乾燥させる工程が、加熱乾燥又は凍結乾燥の工程である請求項5に記載のセルロースナノファイバー組成物の製造方法。
     
     
    The method for producing a cellulose nanofiber composition according to claim 5, wherein the drying step is a heat-drying or freeze-drying step.

PCT/JP2021/047465 2020-12-25 2021-12-22 Cellulose nanofiber composition and production method therefor WO2022138686A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-216461 2020-12-25
JP2020216461A JP2022102007A (en) 2020-12-25 2020-12-25 Cellulose nanofiber composition and production method therefor

Publications (1)

Publication Number Publication Date
WO2022138686A1 true WO2022138686A1 (en) 2022-06-30

Family

ID=82159400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047465 WO2022138686A1 (en) 2020-12-25 2021-12-22 Cellulose nanofiber composition and production method therefor

Country Status (2)

Country Link
JP (1) JP2022102007A (en)
WO (1) WO2022138686A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024138861A (en) * 2023-03-27 2024-10-09 日本製紙株式会社 Method for producing oxidized cellulose nanofiber dispersion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017114768A (en) * 2015-12-21 2017-06-29 株式会社ファンケル Gelatinous cosmetics
JP2017218436A (en) * 2016-06-10 2017-12-14 株式会社マンダム Skin cosmetics
WO2018056937A2 (en) * 2016-07-29 2018-03-29 Karaca Esra Nanofibrous adhesion barrier
CN110067128A (en) * 2019-04-25 2019-07-30 天津科技大学 A kind of preparation method of cellulose nanometer fibril of the surface containing carboxyl and quaternary ammonium group
JP2019206521A (en) * 2018-05-29 2019-12-05 日本製紙株式会社 Additive containing carboxymethylated cellulose nanofiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017114768A (en) * 2015-12-21 2017-06-29 株式会社ファンケル Gelatinous cosmetics
JP2017218436A (en) * 2016-06-10 2017-12-14 株式会社マンダム Skin cosmetics
WO2018056937A2 (en) * 2016-07-29 2018-03-29 Karaca Esra Nanofibrous adhesion barrier
JP2019206521A (en) * 2018-05-29 2019-12-05 日本製紙株式会社 Additive containing carboxymethylated cellulose nanofiber
CN110067128A (en) * 2019-04-25 2019-07-30 天津科技大学 A kind of preparation method of cellulose nanometer fibril of the surface containing carboxyl and quaternary ammonium group

Also Published As

Publication number Publication date
JP2022102007A (en) 2022-07-07

Similar Documents

Publication Publication Date Title
JP5875833B2 (en) Manufacturing method of thickening cellulose fiber
JP5872097B1 (en) Cellulose ester aqueous dispersion
JP6308531B2 (en) Topical skin preparation
JP6452161B2 (en) Crude oil recovery additive
JP6862173B2 (en) Method for producing esterified cellulose nanofiber dispersion
JP2009263652A (en) Method of producing cellulose nanofibers
JP5701570B2 (en) Viscous aqueous composition and process for producing the same
JP7162422B2 (en) H-type carboxylated cellulose nanofiber
JP6452160B2 (en) Additive for drilling mud
WO2011074301A1 (en) Method for oxidation of cellulose and process for production of cellulose nanofibers
JP6559489B2 (en) Easy-release adhesive composition
JP2017025235A (en) Piping friction resistance reduction agent and transport medium
JPWO2018216474A1 (en) Oxidized cellulose nanofiber, oxidized cellulose nanofiber dispersion, and method for producing oxidized cellulose nanofiber dispersion
WO2022138686A1 (en) Cellulose nanofiber composition and production method therefor
US20210179738A1 (en) Oxidized cellulose nanofibers and dispersion of oxidized cellulose nanofibers
JP6525778B2 (en) Metal surface treatment agent and metal surface treatment method
WO2017057710A1 (en) Cellulose nanofiber dispersion liquid and method for producing same
JP2023013443A (en) Method for producing chemically modified microfibril cellulose fiber
JP5744775B2 (en) Abrasive composition
WO2017082395A1 (en) Method for dehydrating dispersion of chemically modified pulp
JP2017025283A (en) Cellulose ester aqueous dispersed body
JP5766636B2 (en) Glaze composition
JP2019199518A (en) Metal ion-containing cellulose fiber
JP7426810B2 (en) Adhesive composition, its manufacturing method and use
JP7239294B2 (en) Method for producing anion-modified cellulose nanofiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910826

Country of ref document: EP

Kind code of ref document: A1