WO2022138518A1 - Cover glass equipped with outer frame - Google Patents

Cover glass equipped with outer frame Download PDF

Info

Publication number
WO2022138518A1
WO2022138518A1 PCT/JP2021/046890 JP2021046890W WO2022138518A1 WO 2022138518 A1 WO2022138518 A1 WO 2022138518A1 JP 2021046890 W JP2021046890 W JP 2021046890W WO 2022138518 A1 WO2022138518 A1 WO 2022138518A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
outer frame
flat
flat glass
film
Prior art date
Application number
PCT/JP2021/046890
Other languages
French (fr)
Japanese (ja)
Inventor
まりな 熊谷
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202180087136.9A priority Critical patent/CN116670082A/en
Priority to JP2022571420A priority patent/JPWO2022138518A1/ja
Publication of WO2022138518A1 publication Critical patent/WO2022138518A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/207Uniting glass rods, glass tubes, or hollow glassware
    • C03B23/213Joining projections or feet
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Definitions

  • the present invention relates to a cover glass with an outer frame.
  • LEDs Light Mission Diodes
  • LEDs Light Mission Diodes
  • LEDs Light Mission Diodes
  • a light emitting device using a light emitting diode visible light LED
  • an LED chip is placed on a flat plate-shaped substrate such as aluminum nitride, and a resin-based member is used.
  • a sealing configuration is often used.
  • a light emitting device using a light emitting diode (UV-LED), a laser diode (LD), a vertical cavity type surface light emitting laser (VCSEL) or the like that emits ultraviolet light requires airtight sealing.
  • VCSELs require a diffuser. Therefore, these light emitting devices are required to have a shape in which an outer frame is attached to the cover glass.
  • the outer frame can be provided on a substrate such as aluminum nitride, it is realistic to provide the outer frame on the cover glass from the viewpoint of cost.
  • a cover glass with an outer frame In manufacturing a cover glass with an outer frame, the simplest method is to prepare a cover glass and a glass for the outer frame, respectively, and bond them with a resin-based member. However, it cannot be hermetically sealed by adhesion using a resin-based member that is an organic substance. In order to obtain the airtight sealability, a method of forming the outer frame portion by directly wet-etching the glass can be mentioned. However, the verticality between the flat plate-shaped portion and the outer frame portion cannot be obtained. Therefore, in order to obtain the airtight sealing property while maintaining the verticality, direct bonding such as diffusion bonding or room temperature bonding between the flat glass and the glass serving as the outer frame can be mentioned. On the other hand, direct joining is very costly.
  • Patent Document 1 discloses antireflection glass with a frame using borosilicate glass as a flat plate-shaped member and a silicon substrate as a frame-shaped member.
  • a framed antireflection glass can be obtained by subjecting a silicon substrate to reactive ion etching to form through holes, superimposing a frame-shaped member on a flat plate-shaped member, and joining the two by anode bonding.
  • Patent Document 3 discloses a glass encapsulant in which a glass plate and a glass piece are sandwiched between a base mold and a facing mold and heat-pressed to join the glass plate and the glass piece by welding.
  • Patent Document 4 discloses an airtight container using a bonding material formed by screen-printing a paste such as glass frit having a softening point lower than that of the glass substrate on the glass substrate as a frame member.
  • the mold is filled with a paste made of a heat-extinguishing curable resin composition containing glass powder, or a sheet made of a heat-extinguishing curable composition containing glass powder is pressure-bonded to the mold.
  • a method of obtaining a glass substrate having a partition wall by heating the glass substrate is disclosed.
  • Japanese Patent Application Laid-Open No. 2020-21937 Japanese Patent No. 5646981 Gazette Japanese Patent Application Laid-Open No. 2013-2225222 Japanese Patent Application Laid-Open No. 2011-233479 Japanese Patent Application Laid-Open No. 2005-243454
  • an object of the present invention is to provide a cover glass with an outer frame which can realize a height of an outer frame of a certain level or higher while maintaining airtight sealing property and reduces damage and cracks on the surface of the cover glass. do.
  • the glass softening point of the glass matrix contained in the ceramics is lower than the glass transition point of the flat glass, and the thermal expansion coefficient of the flat glass is equal to or higher than the thermal expansion coefficient of the glass ceramics.
  • the flat glass has a conductive film in at least a part of the main surface on the side to which the outer frame is joined, and a metal conductor penetrating the outer frame is provided inside the outer frame.
  • the invention according to any one of [1] to [6], wherein the metal conductor is formed and is provided perpendicular to the flat glass, and the conductive film and the metal conductor are conductive.
  • Cover glass with outer frame [8] The cover glass with an outer frame according to any one of [1] to [7], wherein the flat glass has an antireflection film on at least one main surface.
  • the height of the outer frame can be realized to be above a certain level while maintaining the airtight sealing property. Therefore, it is possible to prevent damage to the cover glass due to energy such as UV-LED and LD (laser diode) which are light sources. Moreover, since the surface of the cover glass is not damaged or cracked by heat, the reliability as a cover glass with an outer frame is very high. Such reliability is based on the viewpoints of high temperature and high humidity, resistance to heat shock, chemical resistance, and verticality, in addition to airtight sealing property.
  • FIG. 1 is a schematic cross-sectional view showing an example of a cover glass with an outer frame according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view showing an example of a cover glass with an outer frame according to the present embodiment.
  • FIG. 3 is a schematic cross-sectional view showing an example of a cover glass with an outer frame according to the present embodiment.
  • the cover glass 10 with an outer frame has an outer frame 2 provided on one main surface of the flat glass 1.
  • the outer frame 2 is formed along the outer edge of the flat glass 1.
  • the outer frame 2 is made of glass ceramics in which a filler component is dispersed in a glass matrix, and the flat glass 1 and the glass ceramics which are the outer frame 2 are directly bonded.
  • the glass softening point Ts of the glass matrix contained in the glass ceramics is lower than the glass transition point Tg of the flat glass 1.
  • the coefficient of thermal expansion of the flat glass 1 is a value equal to or higher than the coefficient of thermal expansion of the glass ceramics, and the difference between them is 0 to 20 ⁇ 10 -7 / ° C.
  • the direct bonding means a state in which the flat glass and the outer frame are joined without interposing the adhesive layer of the organic material such as the resin layer other than the flat glass and the outer frame.
  • a conductive film which is an inorganic material described later, is formed on the main surface of the flat glass, the flat glass and the outer frame are joined via the conductive film.
  • the conductive film is treated as a structure made of an inorganic material integrated with the flat glass, and the flat glass and the outer frame are directly bonded to each other.
  • the flat glass and the outer frame when directly joining the flat glass and the outer frame, it is not necessary to apply a voltage as in the case of anode joining, and the flat glass and the outer frame can be joined only by overlapping and heating. Whether or not the glass is directly bonded can be determined by the absence of the adhesive layer between the flat glass and the outer frame.
  • the glass softening point Ts of the glass matrix constituting the glass ceramic is lower than the glass transition point Tg of the flat glass.
  • the difference between the glass transition point Tg of the flat glass and the glass softening point Ts of the glass matrix is preferably 50 ° C. or higher, more preferably 65 ° C. or higher, and more preferably 85 ° C. from the viewpoint of preventing damage to the surface of the flat glass.
  • the above is more preferable.
  • the above difference is preferably 180 ° C. or lower, more preferably 130 ° C. or lower, still more preferably 100 ° C. or lower, from the viewpoint of suppressing the increase of carbon residue during firing of the glass ceramics serving as the outer frame and impairing the insulating property. ..
  • the difference between the glass transition point Tg of the flat glass and the glass softening point Ts of the glass matrix is preferably in the above range, but specifically, it is preferably 550 ° C or higher, more preferably 600 ° C or higher, and more preferably 650 ° C. The above is more preferable, and the higher the value, the more preferable.
  • the glass transition point Tg of the flat glass is preferably 1000 ° C. or lower, more preferably 900 ° C. or lower, still more preferably 800 ° C. or lower from the viewpoint of ease of processing.
  • the glass transition point Tg of the flat glass is the temperature at the first inflection of the DTA chart obtained by differential thermal analysis (DTA).
  • the glass softening point Ts of the flat glass is preferably 700 ° C. or higher, more preferably 750 ° C. or higher, further preferably 800 ° C. or higher, and more preferably higher.
  • the glass softening point Ts of the flat glass is preferably 1500 ° C. or lower, more preferably 1000 ° C. or lower, still more preferably 950 ° C. or lower, from the viewpoint of ease of processing.
  • the glass softening point Ts of the flat glass is the temperature at the fourth inflection point of the DTA chart.
  • the glass softening point Ts of the glass matrix preferably has a difference from the glass transition point Tg of the flat glass in the above range, but specifically, it is preferably 800 ° C. or lower, more preferably 700 ° C. or lower, and more preferably 600 ° C. The following is more preferable. Further, the glass softening point Ts of the glass ceramics is preferably 450 ° C. or higher, more preferably 460 ° C. or higher, still more preferably 470 ° C. or higher, from the viewpoint of suppressing the increase of carbon residue during firing and impairing the insulating property.
  • the glass softening point Ts of the glass matrix is the temperature at the fourth inflection point of the DTA chart of the glass alone.
  • the glass transition point Tg of the glass matrix is preferably 740 ° C or lower, more preferably 500 ° C or lower, and even more preferably 450 ° C or lower. Further, the glass transition point Tg of the glass ceramic is preferably 380 ° C. or higher, more preferably 390 ° C. or higher, still more preferably 400 ° C. or higher, from the viewpoint of suppressing the increase of carbon residue during firing and impairing the insulating property.
  • the glass transition point Tg of the glass matrix is the temperature at the first inflection point of the DTA chart of the glass alone.
  • the coefficient of thermal expansion of flat glass is a value equal to or higher than the coefficient of thermal expansion of glass ceramics. That is, the difference expressed by (coefficient of thermal expansion of flat glass-coefficient of thermal expansion of glass ceramics) is 0 / ° C. or higher. Further, the above difference is 20 ⁇ 10 -7 / ° C. or less. This makes it possible to prevent cracks from occurring in the flat glass when the flat glass and the outer frame are directly joined.
  • the above difference may be 0 / ° C. or higher, but 0.5 ⁇ 10-7 / ° C. or higher is more preferable, and 1 ⁇ 10-7 / ° C. or higher is even more preferable.
  • the difference may be 20 ⁇ 10 -7 / ° C or less, but more preferably 15 ⁇ 10 -7 / ° C or less, and even more preferably 10 ⁇ 10 -7 / ° C or less.
  • the coefficient of thermal expansion of flat glass is not particularly limited as long as the difference from the coefficient of thermal expansion of glass ceramics is within the above range, but 5 ⁇ 10 -7 / ° C or higher is used because the selectivity of glass ceramics is limited. Preferably, 30 ⁇ 10 -7 / ° C. or higher is more preferable, and 70 ⁇ 10 -7 / ° C. or higher is even more preferable.
  • the coefficient of thermal expansion of flat glass and the coefficient of thermal expansion of glass ceramics in the present specification are average values of the ratio of elongation per 1 ° C. when glass and glass ceramics are heated in the range of 50 ° C to 350 ° C. It is a value measured by.
  • the coefficient of thermal expansion of glass ceramics is not particularly limited as long as the difference from the coefficient of thermal expansion of flat glass is within the above range, but since it is necessary to approach the expansion of the substrate on which the cover glass with an outer frame is mounted, 80 ⁇ It is preferably 10-7 / ° C. or lower, more preferably 50 ⁇ 10-7 / ° C. or lower, and even more preferably 30 ⁇ 10-7 / ° C. or lower.
  • the glass ceramics preferably contain at least one of bismuth oxide and boron oxide in the glass composition of the glass matrix.
  • the content of bismuth oxide is preferably 50% by mass or more, more preferably 60% by mass or more, from the viewpoint of lowering the glass softening point Ts of the glass matrix as compared with the glass transition point Tg of the flat glass.
  • the content of bismuth oxide is preferably 90% by mass or less, more preferably 80% by mass or less.
  • the content of the glass composition in the glass matrix is the content with respect to the component excluding the filler component from the glass ceramics, and is a value expressed in mass% based on the oxide.
  • the content of boron oxide is preferably 3% by mass or more, more preferably 10% by mass or more, and more preferably 30% by mass or more, from the viewpoint of lowering the glass softening point Ts of the glass matrix as compared with the glass transition point Tg of the flat glass. Is even more preferable.
  • the content of boron oxide is preferably 60% by mass or less, more preferably 55% by mass or less, still more preferably 50% by mass or less.
  • the content of bismuth oxide is preferably higher than the content of boron oxide, and the content of boron oxide is high, from the viewpoint of suppressing the deterioration of the weather resistance of the flat glass.
  • the content of bismuth oxide is more preferably 1/5 or less, and the total content of bismuth oxide and boron oxide is preferably 90% by mass or less.
  • the total content of bismuth oxide and boron oxide is preferably 3% by mass or more, more preferably 4% by mass or more, from the viewpoint of lowering the glass softening point Ts of the glass matrix as compared with the glass transition point Tg of the flat glass. 5% by mass or more is more preferable.
  • the total content is preferably 16% by mass or less, more preferably 12% by mass or less, still more preferably 10% by mass or less, from the viewpoint of suppressing deterioration of the weather resistance of the flat glass.
  • examples of the glass matrix containing at least one of bismuth oxide and boron oxide include those generally referred to as bismuth oxide-based glass and borosilicate-based glass.
  • the bismuth oxide-based glass in addition to Bi 2 O 3 , B 2 O 3 , CeO 2 , SiO 2 , RO, R'2 O, R''2 O 3 , R''O 2 and the like are contained. May be.
  • R is at least one selected from the group consisting of Zn, Ba, Sr, Mg, Ca, Fe, Mn, Cr, and Cu.
  • R' is at least one selected from the group consisting of Li, Na, K, Cs, and Cu.
  • R'' is at least one selected from the group consisting of Al, Fe, and La.
  • R''' is at least one selected from the group consisting of Zr, Ti, and Sn.
  • Al 2 O 3 when R'' is Al is clearly distinguished from aluminum oxide as a filler component constituting the glass ceramics. That is, the Al 2 O 3 content as a glass composition is excluded from the content of the crystal powder containing aluminum oxide as a filler component.
  • glass containing 27 to 85% by mass of Bi 2 O 3 and 5 to 30% by mass of B 2 O 3 is preferably used.
  • This glass further contains 0 to 10% by mass of CeO 2 , 0 to 20% by mass of SiO 2 , 0 to 55% by mass of RO, 0 to 10% by mass of R'2O , and R''2 O3. It may contain 0 to 20% by mass and R'''O 2 in an amount of 0 to 30% by mass.
  • borosilicate glass in addition to SiO 2 and B 2 O 3 , CeO 2 , RO, R'2 O, R''2 O3, R''O 2 and the like may be contained. It preferably contains ZnO, K2O , and Na2O . More specifically, for example, SiO 2 is 23 to 35% by mass, B 2 O 3 is 40 to 55% by mass, Zn O is 10 to 20% by mass, and K 2 O and Na 2 O are 3 to 15 mass% in total. A glass containing% is preferably used.
  • SiO 2 is a component constituting glass.
  • the glass softening point Ts may become too high.
  • CeO 2 is a component that stabilizes the color tone of the glass powder after the glass raw material is melted and vitrified, and when bismuth oxide is contained, it is preferably contained together.
  • the component represented by RO, including CaO is a component that is effective in stabilizing glass and suppresses crystallization.
  • the component represented by R'2 O containing K 2 O and Na 2 O is a component that lowers the glass softening point Ts.
  • the smaller the atomic number the greater the effect.
  • the component represented by R''2 O3 containing Al 2 O 3 is a component that has an effect on stabilizing the glass, suppresses crystallization, and improves the chemical durability of the glass.
  • the glass softening point Ts may become too high.
  • the component represented by R''''O 2 is a component that supplies oxygen at the time of joining. On the other hand, if it is added in excess, it may foam at the time of joining.
  • the filler component in the glass ceramics at least one selected from the group consisting of aluminum oxide, zirconium oxide, titanium oxide, magnesium oxide, silicon dioxide, zirconium phosphate, ⁇ -eucriptite (LiAlSiO 4 ) and a mixture thereof is used.
  • a crystal powder containing aluminum oxide is preferable, and a crystal powder containing aluminum oxide is more preferable. It is more preferable that the crystalline powder contains silicon dioxide in addition to aluminum oxide.
  • Examples of aluminum oxide include ⁇ -alumina type, ⁇ -alumina type, ⁇ -alumina type, and ⁇ -alumina type depending on the type of crystal phase, but ⁇ -alumina type in which the crystal phase has a corundum type structure is preferable.
  • the content of the crystal powder as a filler component in the glass ceramics is preferably 5% by mass or more, more preferably 10% by mass or more, from the viewpoint of preventing cracks in the flat glass. preferable. Further, from the viewpoint of obtaining good adhesion to the flat glass, the content of the crystal powder is preferably 40% by mass or less, more preferably 35% by mass or less, more preferably 30% by mass or less, and 25% by mass or less. Is even more preferable.
  • the above content also varies depending on the specific gravity of the filler component. For example, when the specific gravity of the filler is 2.6 or less, the content of the crystal powder containing aluminum oxide is preferably 25% by mass or less from the viewpoint of obtaining good sinterability.
  • the content of the crystalline powder containing aluminum oxide as a filler component in the glass ceramics is synonymous with the content with respect to the total amount of the inorganic components in the glass ceramics.
  • the shape of the crystalline powder is not particularly limited, such as spherical, flat, scaly, and fibrous.
  • the size of the crystal powder is also not particularly limited, but for example, the 50% particle size (D 50 ) is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 4 ⁇ m or less, and more preferably 3 ⁇ m or less. ..
  • the 50% particle size is a value measured using a laser diffraction / scattering type particle size distribution measuring device.
  • the flat glass is not particularly limited as long as the coefficient of thermal expansion and the glass transition point Tg satisfy the above relationship with the coefficient of thermal expansion of glass ceramics and the glass softening point Ts of the glass matrix.
  • the flat glass preferably has a transmittance of 90% or more at a wavelength of 250 to 1500 nm.
  • soda lime glass soda lime glass
  • borosilicate glass aluminosilicate glass
  • silica glass etc.
  • Borosilicate glass is preferable because it can be easily processed.
  • silica glass is preferable from the viewpoint of durability and permeability.
  • the metal film 3, the conductive film 4, and the metal conductor 5 represented by the metal films 3a and 3b are shown. May be provided. Hereinafter, each configuration will be described in order.
  • the thickness of the flat glass 1 is not particularly limited, but from the viewpoint of durability, 200 ⁇ m or more is preferable, 300 ⁇ m or more is more preferable, and 500 ⁇ m or more is further preferable. On the other hand, from the viewpoint of transparency and weight, the thickness of the flat glass is preferably 1.5 mm or less, more preferably 1 mm or less, still more preferably 0.75 mm or less.
  • the height of the outer frame 2 made of glass ceramics is preferably 350 ⁇ m or more, more preferably 400 ⁇ m or more, still more preferably 500 ⁇ m or more, from the viewpoint of preventing the cover glass from being damaged by the energy of light from the light source.
  • the height of the outer frame is preferably 1.5 mm or less, more preferably 1.35 mm or less, still more preferably 1 mm or less, due to the demand for lower device height.
  • the outer frame 2 may have a metal film 3 formed on the surface of the surface facing the surface to which the flat glass 1 is bonded, and has an airtight sealing property when the cover glass with an outer frame is adhered to the substrate. It is preferable to form from the above points. Due to the presence of the metal film, the substrate and the cover glass with an outer frame can be hermetically sealed by adhesion using metal solder.
  • the metal film 3 may have a metal film 3b containing at least one selected from the group consisting of Au, Ag, Cu and Au—Sn alloys on the outermost surface thereof from the viewpoint of adhesiveness when using metal solder. It is preferable to have an Au film, and it is more preferable to have an Au film. As a base of such a film, a film (not shown) such as a Ni film or a Ti film may be provided.
  • the metal film 3 has a metal film 3a using the same metal as the metal conductor and the metal film 3b formed on the surface thereof. ..
  • the outer frame is provided perpendicular to the flat glass.
  • the fact that the flat glass and the outer frame are vertical means that the angle between the flat glass and the outer surface of the outer frame is vertical. It should be noted that the vertical does not have to be exactly 90 °, but a substantially vertical of 90 ° ⁇ 5 ° is sufficient.
  • the cover glass with an outer frame is equipped with a system that can detect a crack in the cover glass depending on its use.
  • the flat glass 1 is provided with the conductive film 4 in at least a part of the main surface on the side to which the outer frame 2 is joined.
  • the metal conductor 5 penetrating the glass ceramics is formed inside the outer frame 2, and the conductive film 4 and the metal conductor 5 are conductive.
  • the conductive films can be applied, but transparent conductive films are preferable from the viewpoint of light transmission, and examples thereof include ITO (Indium Tin Oxide) films, SnO 2 films, and ZnO films. Above all, the ITO film is preferable from the viewpoint of durability and resistance.
  • the film thickness of the conductive film is not particularly limited, but is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, still more preferably 0.2 ⁇ m or more in order to secure stable conductivity. Further, in order to maintain the permeability, the film thickness of the conductive film is preferably 1 ⁇ m or less, more preferably 0.8 ⁇ m or less, still more preferably 0.7 ⁇ m or less.
  • the conductive film may be formed in at least a part of the main surface of the flat glass, but for the purpose of detecting cracks in the cover glass, it is irradiated with at least an effective region, that is, light from a light source. It is preferably formed in the region to be formed, and more preferably formed on the entire one main surface of the flat glass. When a film or layer other than the conductive film is formed on the main surface of the flat glass, it is further outside from the other films or layers, that is, the side where the substrate provided with the light source is located. It is preferable that a conductive film is formed on the outermost surface of the above.
  • the metal conductor 5 is sometimes referred to as a via, and means a conductor that electrically connects the upper layer wiring and the lower layer wiring.
  • the metal conductor 5 is conductive with the conductive film 4 in order to connect the conductive film 4 and the detector for detecting the cracking of the cover glass.
  • Conventionally known metal conductors can be applied by conventionally known methods. For example, before or after firing the glass ceramics constituting the outer frame, a hole penetrating the inside of the outer frame is provided, and a metal conductor is laid there.
  • the metal conductor may be any metal having conductivity, but from the viewpoint of ease of manufacture, one or more metals selected from the group consisting of Ag, Au and Cu are preferable, and Ag is more preferable.
  • Ease of manufacture means that when the glass ceramics used as the outer frame are fired and sintered, they can be sintered together.
  • the shape of the metal conductor is not particularly limited, but a metal wire is preferable from the viewpoint of facilitating penetration into the inside of the outer frame.
  • the via diameter which is the diameter of the metal wire, is more preferably 0.2 mm or less, and further preferably 0.1 mm or less, from the viewpoint of preventing the metal conductor from becoming uneven and cracking in the glass ceramics which is the outer frame during firing.
  • the lower limit of the via diameter is not particularly limited, but is preferably 0.05 mm or more from the viewpoint of preventing breakage of the metal conductor.
  • the cover glass 10 with an outer frame may further include a light diffusion layer 6, an antireflection film 7, and the like.
  • the light diffusion layer 6 is preferably formed on at least one main surface of the flat glass 1, and preferably at least on the main surface on the side where the substrate provided with the light source is located.
  • the light diffusion layer conventionally known ones can be applied, but from the viewpoint of preventing the outer frame from disappearing when firing, those made of an inorganic material are preferable, and flat glass is directly processed. However, it is more preferable in terms of preventing loss due to interfacial reflection. It is even more preferred that, for example, a plurality of concave aspherical lenses be provided by direct processing, and the aspherical lenses are even more preferably disposed without gaps in at least an effective region on the main surface of the flat glass.
  • the maximum size of the aspherical lens is not particularly limited, but is usually 250 ⁇ m or less, and the lower limit is usually 20 ⁇ m or more.
  • the spreading angle that is, the spreading angle of the emitted light of the aspherical lens when the parallel light is incident on the effective region from the lens-processed surface is preferably 30 ° or more in full angle.
  • the upper limit of the diffusion angle is usually 85 ° or less in full width.
  • the antireflection film 7 is preferably formed on at least one main surface of the flat glass 1, and more preferably at least on the main surface on the side where the substrate provided with the light source is located. It is also more preferable that it is formed on both main surfaces.
  • an antireflection film is formed on the outer side of the light diffusing layer.
  • the antireflection film is not particularly limited as long as it has an antireflection function that reduces the reflectance of light of at least the design wavelength.
  • the antireflection film is preferably a film formed of an inorganic material from the viewpoint of preventing it from disappearing when the outer frame is fired, for example, a thin film having a single layer structure, SiO 2 and Ta 2 O 5 and the like.
  • a multilayer film such as a dielectric multilayer film in which two or more kinds of dielectric layers having different refractive indexes are laminated can be mentioned.
  • the flat glass may be provided with a layer, a film or the like having some function in addition to the above, as long as the effect of the present invention is not impaired.
  • the layer or film extends to the bonding region with the outer frame.
  • the flat glass and the outer frame are joined via such a layer or film.
  • it is determined that the layer or film is integrated with the flat glass and that the flat glass and the outer frame are directly bonded to each other.
  • a part of the outer frame 2 can be cut so that the metal conductor 5 can be taken out.
  • the corners can be chamfered so as to form a straight line passing through the flat glass 1 and the outer frame 2, and the metal conductor 5 can be taken out from the position indicated by the arrow.
  • the chamfering method is not limited and a conventionally known method can be used, and examples thereof include a processing method called bevel cut for diagonally grinding and polishing. It is advantageous that the cover glass 10 with an outer frame has a shape as shown in FIG. 3 in that the space is not restricted when the metal conductor 5 is taken out.
  • the method for producing the glass ceramics to be the outer frame 2 in the cover glass with an outer frame is not particularly limited, and for example, it is obtained by forming and firing a mixture of the glass powder and the ceramic powder to obtain the sintered glass. Specific examples thereof include a method of forming the above mixture into a sheet called a green sheet and firing the mixture.
  • each raw material is blended so as to have a desired glass composition, and the mixed raw material mixture is melted, cooled, and pulverized to obtain a glass powder.
  • the glass powder obtained by pulverization is fired to form a glass matrix, which determines the glass composition of the glass ceramics.
  • the melting temperature of the raw material mixture is preferably 1200 to 1600 ° C. or higher, and the melting time is preferably 30 to 60 minutes, for example.
  • the pulverization may be a dry pulverization method or a wet pulverization method. In the case of the wet pulverization method, water, ethanol or the like can be used as the solvent. For crushing, for example, a crusher such as a roll mill, a ball mill, or a jet mill can be used.
  • the size of the glass powder is 0.5 ⁇ m with a 50% particle size (D 50 ) from the viewpoint of preventing the glass powder from aggregating and becoming difficult to handle, and also preventing the time required for powdering from becoming long.
  • D 50 50% particle size
  • the 50% particle size (D 50 ) is preferably 4 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • the maximum particle size of the glass powder is preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less, from the viewpoint of obtaining good sinterability and preventing a decrease in reflectance due to residual undissolved components in the sintered body.
  • the particle size can be adjusted by classifying as necessary after pulverization.
  • the glass powder and the filler component are mixed to obtain a glass ceramic composition.
  • Conventionally known filler components can be applied, but crystal powder containing alumina oxide is preferable. More specifically, alumina oxide powder, cordierite powder, and zirconium phosphate powder are preferable.
  • an organic solvent, a plasticizer, a binder, a dispersant and the like are added to the glass-ceramic composition to prepare a slurry or a paste.
  • Conventionally known materials can be applied to each material to be blended.
  • the organic solvent include alcohols, ketones, aromatic hydrocarbons and the like. More specifically, toluene, methyl ethyl ketone, methanol, 2-butanol, xylene and the like can be used, and one type of these may be used or two or more types may be mixed.
  • the plasticizer include adipic acid-based and phthalic acid-based.
  • bis (2-ethylhexyl) adipate, dibutyl phthalate, dioctyl phthalate, butyl benzyl phthalate and the like can be used.
  • the binder include a pyrolytic resin and the like. More specifically, acrylic resin, polyvinyl butyral and the like can be used.
  • the dispersant include surfactant-type dispersants. More specifically, DISPERBYK180 (trade name, manufactured by Big Chemie) or the like can be used.
  • a green sheet can be obtained by applying the obtained slurry or paste on a film and drying it.
  • the thickness of the green sheet is not particularly limited and can be adjusted by the thickness at the time of application, the slurry concentration and the like.
  • the obtained green sheets are appropriately laminated according to the desired height of the outer frame.
  • the outer frame shape is formed by punching the inside with a drilling machine.
  • a through hole for passing the metal conductor may also be formed.
  • the glass ceramic may be formed by using a mold or the like instead of the green sheet, but the green sheet is preferable because it is easy to pass the wiring through each layer.
  • the green sheets may be produced one by one according to the desired outer frame shape, but by producing a large green sheet and punching at multiple points with a drilling machine, a large number of connected green sheets can be taken.
  • It may be an outer frame that is a connecting board.
  • the cover glass with a large number of connected outer frames in which the green sheet is made of glass ceramics can be obtained.
  • the laminated body of the green sheet may be fired independently to obtain glass ceramics in advance, and then the laminated body may be directly bonded by superimposing the laminated body on the flat glass and re-firing.
  • the shape of the outer frame is determined by the shape of the green sheet. That is, the shape when punching out the green sheet is the origin of the shape inside the outer frame. In addition, the outer shape of the green sheet is the origin of the outer shape of the outer frame. When dividing from a multi-layered connecting substrate, the shape at the time of dividing after firing is the outer shape of the outer frame.
  • a metal film is formed on one surface of the green sheet having an outer frame shape, if necessary.
  • the metal film can be formed, for example, by applying a metal paste by a screen printing method. Further, when the metal conductor is provided, it can be formed by filling the through hole formed in advance with, for example, a metal paste by a screen printing method.
  • the metal film and the metal conductor can be formed by a sputtering method, a vapor deposition method, or the like, in addition to the screen printing method.
  • a flat glass is laminated on the surface of the green sheet opposite to the surface on which the metal film is formed, and integrated by thermocompression bonding to obtain a cover glass with an unsintered outer frame.
  • a layer or film such as a light diffusion layer, an antireflection film, or a conductive film is formed on the main surface of the flat glass, it may be formed before overlaying the flat glass on the green sheet, or the outer frame. It may be formed after obtaining the attached cover glass. However, in the case of forming a conductive film and conducting it with a metal conductor, it is preferable to form the conductive film before overlaying the flat glass on the green sheet.
  • the direct bonding by thermocompression bonding after the green sheet and the flat glass 1 are overlapped is not particularly limited as long as the green sheet and the flat glass are integrated.
  • the temperature at the time of crimping is preferably, for example, 60 to 65 ° C.
  • the pressure at the time of crimping is preferably, for example, 12400 to 14000 Pa.
  • the time for crimping is preferably, for example, 5 to 10 minutes.
  • the green sheet becomes glass ceramics in which the filler component is dispersed in the glass matrix, and the glass ceramics and the flat glass as the outer frame 2 are obtained.
  • a cover glass 10 with an outer frame is obtained, which is directly joined to 1.
  • a metal film 3 is provided on the main surface of the outer frame on the side opposite to the side to which the flat glass is bonded, in consideration of the adhesiveness when using metal solder when adhering to the substrate. It may be formed. In that case, in addition to the metal film 3b located on the outermost surface to be adhered to the substrate, a film serving as a base for the metal film 3b, a film serving as a base, or a metal conductor 5 between the metal film 3b and the outer frame. A metal film 3a using the same metal as above may also be formed. The metal film 3 may be formed before firing or after firing, but it is preferably formed before firing from the viewpoint of workability.
  • a single cover glass with an outer frame can be obtained by cutting between adjacent holes with a dicing saw after firing.
  • Degreasing may be performed as needed, for example, 400 to 500 ° C. is preferable.
  • the degreasing time is preferably 1 to 10 hours, for example.
  • the temperature at the time of firing is preferably a temperature equal to or higher than the glass softening point Ts of the glass matrix in the glass ceramics and less than a temperature lower than the glass transition point Tg of the flat glass. This prevents heat damage to the surface of the flat glass.
  • the specific firing temperature varies depending on the glass composition of the glass ceramics, but from the viewpoint of obtaining sufficient sinterability, for example, 500 ° C. or higher is preferable, 520 ° C. or higher is more preferable, and 550 ° C. or higher is further preferable.
  • the firing temperature is preferably 900 ° C. or lower, more preferably 750 ° C. or lower, and even more preferably 600 ° C. or lower.
  • the firing time is preferably 10 minutes or longer, more preferably 15 minutes or longer, still more preferably 25 minutes or longer, from the viewpoint of obtaining sufficient sinterability. From the viewpoint of productivity, the firing time is preferably 60 minutes or less, more preferably 55 minutes or less, and even more preferably 50 minutes or less.
  • the flat glass 1 can be produced by a conventionally known method, or a commercially available one may be used. For example, a glass raw material is prepared and heated and melted so that a glass having a desired composition can be obtained. Then, the molten glass is homogenized by bubbling, stirring, addition of a clarifying agent, etc., molded into a glass plate having a predetermined thickness by a known molding method, and slowly cooled. After homogenizing the molten glass, it may be formed into a block shape, slowly cooled, and then cut into a flat plate shape.
  • Examples of the method for forming flat glass include a float method, a press method, a fusion method and a down draw method.
  • the down draw method is preferable from the viewpoint of controlling the glass thickness.
  • the metal film 3 is formed on the surface of the surface facing the surface to which the flat glass of the outer frame is joined.
  • the metal film 3a using the same metal as the metal conductor can be formed by a conventionally known method. For example, it can be formed by applying a conductive paste made into a paste by adding a vehicle such as ethyl cellulose to a metal powder and, if necessary, a solvent or the like by a screen printing method.
  • the metal film 3b located on the outermost surface and the film underlying the metal film 3b can also be formed by a conventionally known method, for example, by electrolytic plating. Further, it may be formed by electroless plating. From the viewpoint of cost, electrolytic plating is preferable. Due to the presence of the metal film 3b, the substrate and the cover glass with an outer frame can be hermetically sealed by adhesion using metal solder.
  • the conductive film 4 can be formed on the main surface of the flat glass by a conventionally known method.
  • the conductive film is an ITO film, it is preferably formed by a sputtering method.
  • the conductive film is formed on the outermost surface thereof, that is, on the side closest to the substrate.
  • the antireflection film 7 can be formed on at least one main surface of the flat glass by using a known film forming method such as a sputtering method or a thin film deposition method. That is, the high-refractive index layer and the low-refractive index layer constituting the antireflection film are formed on the main surface of the flat glass according to the stacking order.
  • a known film forming method such as a sputtering method or a thin film deposition method. That is, the high-refractive index layer and the low-refractive index layer constituting the antireflection film are formed on the main surface of the flat glass according to the stacking order.
  • the sputtering method include magnetron sputtering, pulse sputtering, AC sputtering, digital sputtering and the like.
  • the vapor deposition method include a vacuum vapor deposition method, an ion beam assist method, and an ion plating method.
  • the antireflection film may be formed on at least one main surface of the flat glass, and is preferably formed on at least the main surface on the side where the substrate is located.
  • the light diffusing layer 6 is formed on the main surface of the flat glass, it is preferable that an antireflection film is formed on the surface of the light diffusing layer.
  • the cover glass with an outer frame according to the present embodiment is excellent in airtight sealing property and also excellent in cost, so that it is excellent in productivity. Further, as a means for joining to the substrate, it is also possible to use a metal frit in addition to joining via a metal film. Because of these characteristics, for example, backlights such as liquid crystal displays, light emitting parts in operation buttons of small information terminals, lighting for automobiles or decorations, deep ultraviolet light LEDs for sterilization applications, and 3D ranging sensors. It is suitable as a laser unit and other light sources.
  • Examples 1 to 4 are examples, and examples 5 to 8 are comparative examples.
  • a 50 mm ⁇ 50 mm ⁇ 1.1 mm borosilicate glass plate (D263 (registered trademark) Teco manufactured by SCHOTT) was used.
  • the light diffusion layer 6 was formed by directly processing a plurality of concave aspherical lenses in the entire region on one main surface of the flat glass 1.
  • the maximum size of the aspherical lens was 200 ⁇ m, and the diffusion angle was 50 ° in full angle.
  • the antireflection film 7 was formed on both main surfaces of the flat glass 1 by a sputtering method.
  • the antireflection film was a film having a thickness of 0.4 ⁇ m in which a layer of Ta 2 O 5 was formed as a high refractive index layer and a layer of SiO 2 was formed in order as a low refractive index layer on both sides.
  • An ITO film having a thickness of 0.3 ⁇ m was formed as a conductive film 4 by a sputtering method in the entire region of the outermost surface of the flat glass 1 on the side where the light diffusion layer 6 was formed. As described above, a flat glass having a light diffusion layer, an antireflection film and a conductive film was obtained.
  • Example 1 Glass raw materials are blended and mixed so as to have Bi 2 O 3 : 73% by mass, ZnO: 18% by mass, B 2 O 3 : 5% by mass, and SiO 2 : 4% by mass in an oxide-based percentage display.
  • the raw material mixture was prepared. This raw material mixture was placed in a platinum crucible and melted at 1600 ° C. for 60 minutes, and then the molten glass was poured out and cooled. This glass was placed in a container together with ethyl alcohol as a solvent and pulverized with an alumina ball mill for 40 hours to obtain glass powder (glass A). The 50% particle size of the obtained glass powder was 0.6 ⁇ m.
  • a glass ceramic composition was prepared by blending and mixing the obtained glass powder in an amount of 80% by mass and the cordierite powder (manufactured by Marusu Glazed Co., Ltd., trade name: SS-600) in an amount of 20% by mass.
  • -Ethylhexyl was 0.060 kg, acrylic resin was 0.447 kg as a binder, and 0.015 kg of a dispersant (manufactured by Big Chemie, trade name: DISPERBYK180) was mixed and mixed to prepare a slurry.
  • a green sheet was produced by applying the slurry on a polyethylene terephthalate (PET) film by the doctor blade method and drying it. The thickness per green sheet was 200 ⁇ m.
  • a flat glass having a light diffusion layer, an antireflection film and a conductive film was superposed on the surface of the green sheet opposite to the side on which the metal film 3a was formed.
  • the flat glass was laminated so that the main surface on the conductive film side was joined to the green sheet. This was integrated by thermocompression bonding at 65 ° C. and 14000 Pa to obtain a cover glass with an unsintered outer frame. Then, it was held at 450 ° C. for 2 hours for degreasing, and further held at 520 ° C. for 30 minutes for firing. By firing, the outer frame became sintered glass ceramics, and the outer frame and the flat glass were directly bonded.
  • a nickel film was formed as a base on the surface of the metal film 3a of the outer frame by a plating treatment, and a gold film was further formed by a plating treatment as the metal film 3b.
  • a cover glass with an outer frame was obtained.
  • the height of the outer frame was 870 ⁇ m.
  • Example 2 The glass raw material in the green sheet is expressed as an oxide-based percentage, Bi 2 O 3 : 72% by mass, B 2 O 3 : 10% by mass, ZnO: 9% by mass, BaO: 6% by mass, and SiO 2 : 3
  • a cover glass with an outer frame was obtained in the same manner as in Example 1 except that the glass powder (glass B) was obtained by blending and mixing so as to have a mass%.
  • Example 3 Example 5, Example 7
  • the cordierite powder manufactured by Marusu Glazed Co., Ltd., trade name: SS-600
  • SS-600 glass-ceramic composition
  • Example 4 Example 6, Example 8
  • the cordierite powder manufactured by Marusu Glazed Co., Ltd., trade name: SS-600
  • SS-600 glass-ceramic composition
  • the glass transition point Tg and glass softening point Ts of the glass matrix in flat glass and glass ceramics are the first and fourth eccentric points of the chart measured under the condition of 5 ° C./min by differential thermal analysis (DTA). It was decided from. The results are shown in Table 1.
  • the coefficient of thermal expansion of flat glass and glass ceramics is based on the average value of the rate of elongation per 1 ° C when measured at 5 ° C / min in the range of 50 ° C to 350 ° C by thermomechanical analysis (TMA). Decided. The results are shown in Table 1. In addition, "-" in the table means that it has not been measured.
  • the coefficient of thermal expansion of the flat glass is higher than the coefficient of thermal expansion of the glass ceramics, and by reducing the difference between them, the two can be directly bonded without causing cracks in the flat glass. rice field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

The present invention relates to cover glass equipped with an outer frame, wherein: the outer frame is composed of a glass ceramic in which a filler component is dispersed in a glass matrix; the glass softening point of the glass matrix contained in the glass ceramic is lower than the glass transition point of flat glass; the thermal expansion coefficient of the flat glass is equal to or greater than the thermal expansion coefficient of the glass ceramic, and the difference therebetween is 0-20 × 10-7/°C; and the flat glass and the glass ceramic are directly joined to each other.

Description

外枠付きカバーガラスCover glass with outer frame
 本発明は外枠付きカバーガラスに関する。 The present invention relates to a cover glass with an outer frame.
 発光ダイオード(LED:Light Emission Diode)を使用したデバイスは、携帯電話や大型液晶テレビのバックライト、照明用途等、幅広い用途に用いられている。
 例えば、可視光を発する発光ダイオード(可視光LED)を利用した発光装置の場合、窒化アルミニウムに代表されるような平板状の基板の上にLEDチップを載せて、樹脂ベースの部材を使用して封止する構成がよく用いられている。
Devices using light emitting diodes (LEDs: Light Mission Diodes) are used in a wide range of applications such as backlights for mobile phones and large LCD televisions, and lighting applications.
For example, in the case of a light emitting device using a light emitting diode (visible light LED) that emits visible light, an LED chip is placed on a flat plate-shaped substrate such as aluminum nitride, and a resin-based member is used. A sealing configuration is often used.
 これに対し、紫外光を発する発光ダイオード(UV-LED)、レーザダイオード(LD)、垂直共振器型面発光レーザ(VCSEL)等を利用した発光装置では、気密封止性が必要とされる。また、VCSELでは拡散板も必要とされる。
 そのため、これら発光装置には、カバーガラスに外枠が付いた形状が求められる。外枠は窒化アルミニウム等の基板に設けることも可能ではあるものの、コストの面から、カバーガラスに外枠を設けることが現実的である。
On the other hand, a light emitting device using a light emitting diode (UV-LED), a laser diode (LD), a vertical cavity type surface light emitting laser (VCSEL) or the like that emits ultraviolet light requires airtight sealing. Also, VCSELs require a diffuser.
Therefore, these light emitting devices are required to have a shape in which an outer frame is attached to the cover glass. Although the outer frame can be provided on a substrate such as aluminum nitride, it is realistic to provide the outer frame on the cover glass from the viewpoint of cost.
 外枠付きカバーガラスを製造するにあたって、最も簡単な方法は、カバーガラスと外枠用のガラスを各々作製し、樹脂ベースの部材でそれらを接着する方法である。しかしながら、有機物である樹脂ベースの部材を用いた接着では、気密封止できない。
 気密封止性を得るために、ガラスを直接ウェットエッチングすることで外枠の部分を形成する方法が挙げられる。しかしながら、平板状の部分と外枠となる部分との垂直性が得られない。そこで、当該垂直性を保ちつつ、気密封止性も得るためには、平板状のガラスと外枠となるガラスとを、拡散接合や常温接合等の直接接合が挙げられる。一方で、直接接合は非常にコストがかかる。
In manufacturing a cover glass with an outer frame, the simplest method is to prepare a cover glass and a glass for the outer frame, respectively, and bond them with a resin-based member. However, it cannot be hermetically sealed by adhesion using a resin-based member that is an organic substance.
In order to obtain the airtight sealability, a method of forming the outer frame portion by directly wet-etching the glass can be mentioned. However, the verticality between the flat plate-shaped portion and the outer frame portion cannot be obtained. Therefore, in order to obtain the airtight sealing property while maintaining the verticality, direct bonding such as diffusion bonding or room temperature bonding between the flat glass and the glass serving as the outer frame can be mentioned. On the other hand, direct joining is very costly.
 これに対し、ガラス基板に外枠を設ける技術が、様々な角度から検討、提案されている。
 例えば特許文献1で開示されている合成石英ガラスキャビティは、原料合成石英ガラス基板にサンドブラスト加工により複数の貫通穴を形成する。この原料合成石英ガラス基板と、別の原料合成石英ガラス基板とを貼り合わせ、1000~1200℃で接着させることで、かかる合成石英ガラスキャビティが得られる。
 特許文献2では、平板状部材としてホウケイ酸ガラスを、枠状部材としてシリコン基板を用いた枠付反射防止ガラスが開示されている。シリコン基板に対し反応性イオンエッチングを施して貫通孔を形成し、平板状部材に枠状部材を重ね合わせ、陽極接合によって両者を接合することで、かかる枠付反射防止ガラスが得られる。
On the other hand, techniques for providing an outer frame on a glass substrate have been studied and proposed from various angles.
For example, in the synthetic quartz glass cavity disclosed in Patent Document 1, a plurality of through holes are formed in the raw material synthetic quartz glass substrate by sandblasting. Such a synthetic quartz glass cavity can be obtained by laminating this raw material synthetic quartz glass substrate and another raw material synthetic quartz glass substrate and adhering them at 1000 to 1200 ° C.
Patent Document 2 discloses antireflection glass with a frame using borosilicate glass as a flat plate-shaped member and a silicon substrate as a frame-shaped member. Such a framed antireflection glass can be obtained by subjecting a silicon substrate to reactive ion etching to form through holes, superimposing a frame-shaped member on a flat plate-shaped member, and joining the two by anode bonding.
 特許文献3では、ガラス板とガラス片とをベース型枠と対向型枠とで挟みこんで加熱プレスすることでガラス板とガラス片とを溶着により接合したガラス封止材が開示されている。
 特許文献4では、ガラス基材に対して、ガラス基材よりも軟化点が低いガラスフリット等のペーストをスクリーン印刷して形成した接合材を枠部材とした気密容器が開示されている。
 特許文献5では、型枠にガラス粉末を含有する加熱消滅性硬化性樹脂組成物からなるペーストを充填するか、あるいはガラス粉末を含有する加熱消滅性硬化性組成物からなるシートを型枠と圧着して加熱することで隔壁を備えたガラス基板を得る方法が開示されている。
Patent Document 3 discloses a glass encapsulant in which a glass plate and a glass piece are sandwiched between a base mold and a facing mold and heat-pressed to join the glass plate and the glass piece by welding.
Patent Document 4 discloses an airtight container using a bonding material formed by screen-printing a paste such as glass frit having a softening point lower than that of the glass substrate on the glass substrate as a frame member.
In Patent Document 5, the mold is filled with a paste made of a heat-extinguishing curable resin composition containing glass powder, or a sheet made of a heat-extinguishing curable composition containing glass powder is pressure-bonded to the mold. A method of obtaining a glass substrate having a partition wall by heating the glass substrate is disclosed.
日本国特開2020-21937号公報Japanese Patent Application Laid-Open No. 2020-21937 日本国特許第5646981号公報Japanese Patent No. 5646981 Gazette 日本国特開2013-222522号公報Japanese Patent Application Laid-Open No. 2013-2225222 日本国特開2011-233479号公報Japanese Patent Application Laid-Open No. 2011-233479 日本国特開2005-243454号公報Japanese Patent Application Laid-Open No. 2005-243454
 しかしながら、特許文献1や3に記載された方法のように、用いるガラス材料のガラス軟化点を超えた温度で熱をかけると、ガラスの表面にダメージを与えてしまい、信頼性が懸念される。特許文献2に記載された方法のように、平板状部材と枠状部材との熱膨張係数が異なると、平板状部材であるガラスにクラックが入るおそれがある。また、陽極接合はコストも高い。特許文献4に記載された方法のように、ペーストの塗布を行うと、塗布ムラや膜厚ムラによる封止性の低下が懸念される。特許文献5に記載された方法では、外枠である隔壁の高さは150μm程度が上限となり、高さに制限がある。 However, if heat is applied at a temperature exceeding the glass softening point of the glass material used as in the methods described in Patent Documents 1 and 3, the surface of the glass will be damaged and reliability is a concern. If the coefficient of thermal expansion of the flat plate-shaped member and the frame-shaped member are different as in the method described in Patent Document 2, the glass of the flat plate-shaped member may be cracked. In addition, the cost of anodic bonding is high. When the paste is applied as in the method described in Patent Document 4, there is a concern that the sealing property may be deteriorated due to uneven coating or uneven film thickness. In the method described in Patent Document 5, the height of the partition wall, which is the outer frame, is limited to about 150 μm, and the height is limited.
 そこで本発明は、気密封止性を維持しつつ、一定以上の外枠の高さを実現可能で、カバーガラス表面のダメージやクラックが軽減された外枠付きカバーガラスを提供することを目的とする。 Therefore, an object of the present invention is to provide a cover glass with an outer frame which can realize a height of an outer frame of a certain level or higher while maintaining airtight sealing property and reduces damage and cracks on the surface of the cover glass. do.
 本発明者が鋭意検討を行った結果、外枠に特定のガラスセラミックスを用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of diligent studies by the present inventor, it was found that the above problems can be solved by using specific glass ceramics for the outer frame, and the present invention has been completed.
 すなわち、本発明及びその一態様は下記[1]~[9]に関するものである。
[1] 平板状ガラスの一方の主面上に外枠が設けられた外枠付きカバーガラスであって、前記外枠は、ガラスマトリックス中にフィラー成分が分散されたガラスセラミックスからなり、前記ガラスセラミックスに含まれる前記ガラスマトリックスのガラス軟化点が、前記平板状ガラスのガラス転移点より低く、前記平板状ガラスの熱膨張係数が、前記ガラスセラミックスの熱膨張係数以上の値で、それらの差が0~20×10-7/℃であり、前記平板状ガラスと前記ガラスセラミックスとが直接接合されている、外枠付きカバーガラス。
[2] 前記ガラスマトリックスが、酸化ビスマス及び酸化ホウ素の少なくとも一方を含む、前記[1]に記載の外枠付きカバーガラス。
[3] 前記ガラスセラミックスが、前記フィラー成分として酸化アルミニウムを含む結晶体粉末を5~40質量%含有する、前記[1]又は[2]に記載の外枠付きカバーガラス。
[4] 前記外枠の、前記平板状ガラスが接合している面と対向する面の表面に、金属膜が形成されている、前記[1]~[3]のいずれか1に記載の外枠付きカバーガラス。
[5] 前記外枠が、前記平板状ガラスに対して垂直に設けられた、前記[1]~[4]のいずれか1に記載の外枠付きカバーガラス。
[6] 前記外枠の高さは、350μm以上1.5mm以下である、前記[1]~[5]のいずれか1に記載の外枠付きカバーガラス。
[7] 前記平板状ガラスが、前記外枠が接合している側の主面の少なくとも一部の領域に導電性膜を備え、前記外枠の内部に、前記外枠を貫通する金属導体が形成され、前記金属導体は、前記平板状ガラスに対して垂直に設けられ、前記導電性膜と前記金属導体とが導通している、前記[1]~[6]のいずれか1に記載の外枠付きカバーガラス。
[8] 前記平板状ガラスが、少なくとも一方の主面上に反射防止膜を備える、前記[1]~[7]のいずれか1に記載の外枠付きカバーガラス。
[9] 前記平板状ガラスが、少なくとも一方の主面上に光拡散層を備える、前記[1]~[8]のいずれか1に記載の外枠付きカバーガラス。
That is, the present invention and one aspect thereof relate to the following [1] to [9].
[1] A cover glass with an outer frame having an outer frame provided on one main surface of flat glass, and the outer frame is made of glass ceramics in which a filler component is dispersed in a glass matrix, and the glass. The glass softening point of the glass matrix contained in the ceramics is lower than the glass transition point of the flat glass, and the thermal expansion coefficient of the flat glass is equal to or higher than the thermal expansion coefficient of the glass ceramics. A cover glass with an outer frame having a temperature of 0 to 20 × 10 -7 / ° C., in which the flat glass and the glass ceramics are directly bonded.
[2] The cover glass with an outer frame according to the above [1], wherein the glass matrix contains at least one of bismuth oxide and boron oxide.
[3] The cover glass with an outer frame according to the above [1] or [2], wherein the glass ceramic contains 5 to 40% by mass of a crystal powder containing aluminum oxide as the filler component.
[4] The outside according to any one of [1] to [3] above, wherein a metal film is formed on the surface of the outer frame facing the surface to which the flat glass is joined. Cover glass with frame.
[5] The cover glass with an outer frame according to any one of [1] to [4], wherein the outer frame is provided perpendicular to the flat glass.
[6] The cover glass with an outer frame according to any one of [1] to [5], wherein the height of the outer frame is 350 μm or more and 1.5 mm or less.
[7] The flat glass has a conductive film in at least a part of the main surface on the side to which the outer frame is joined, and a metal conductor penetrating the outer frame is provided inside the outer frame. The invention according to any one of [1] to [6], wherein the metal conductor is formed and is provided perpendicular to the flat glass, and the conductive film and the metal conductor are conductive. Cover glass with outer frame.
[8] The cover glass with an outer frame according to any one of [1] to [7], wherein the flat glass has an antireflection film on at least one main surface.
[9] The cover glass with an outer frame according to any one of [1] to [8], wherein the flat glass has a light diffusion layer on at least one main surface.
 本発明によれば、外枠付きカバーガラスにおいて、気密封止性を維持しつつ、一定以上の外枠の高さを実現できる。そのため、光源であるUV-LEDやLD(レーザダイオード)等のエネルギーによるカバーガラスの損傷を防げる。また、カバーガラスの表面に熱によるダメージやクラックがないため、外枠付きカバーガラスとしての信頼性は非常に高い。かかる信頼性とは、気密封止性に加え、高温高湿下やヒートショックによる耐性、耐薬品性、垂直性といった観点によるものである。 According to the present invention, in the cover glass with an outer frame, the height of the outer frame can be realized to be above a certain level while maintaining the airtight sealing property. Therefore, it is possible to prevent damage to the cover glass due to energy such as UV-LED and LD (laser diode) which are light sources. Moreover, since the surface of the cover glass is not damaged or cracked by heat, the reliability as a cover glass with an outer frame is very high. Such reliability is based on the viewpoints of high temperature and high humidity, resistance to heat shock, chemical resistance, and verticality, in addition to airtight sealing property.
図1は、本実施形態に係る外枠付きカバーガラスの一例を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a cover glass with an outer frame according to the present embodiment. 図2は、本実施形態に係る外枠付きカバーガラスの一例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing an example of a cover glass with an outer frame according to the present embodiment. 図3は、本実施形態に係る外枠付きカバーガラスの一例を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing an example of a cover glass with an outer frame according to the present embodiment.
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施できる。また、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。また、「質量%」とは「重量%」と同義である。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be arbitrarily modified and carried out without departing from the gist of the present invention. Further, "-" indicating a numerical range is used in the sense that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value. Further, "mass%" is synonymous with "weight%".
<外枠付きカバーガラス>
 本実施形態に係る外枠付きカバーガラス10は、図1に示すように、平板状ガラス1の一方の主面上に外枠2が設けられている。外枠2とは、平板状ガラス1の外縁に沿って形成されている。
 外枠2は、ガラスマトリックス中にフィラー成分が分散されたガラスセラミックスからなり、平板状ガラス1と外枠2であるガラスセラミックスとが直接接合されている。
 ガラスセラミックスに含まれるガラスマトリックスのガラス軟化点Tsは、平板状ガラス1のガラス転移点Tgより低い。また、平板状ガラス1の熱膨張係数は、ガラスセラミックスの熱膨張係数以上の値であり、それらの差は0~20×10-7/℃である。
<Cover glass with outer frame>
As shown in FIG. 1, the cover glass 10 with an outer frame according to the present embodiment has an outer frame 2 provided on one main surface of the flat glass 1. The outer frame 2 is formed along the outer edge of the flat glass 1.
The outer frame 2 is made of glass ceramics in which a filler component is dispersed in a glass matrix, and the flat glass 1 and the glass ceramics which are the outer frame 2 are directly bonded.
The glass softening point Ts of the glass matrix contained in the glass ceramics is lower than the glass transition point Tg of the flat glass 1. Further, the coefficient of thermal expansion of the flat glass 1 is a value equal to or higher than the coefficient of thermal expansion of the glass ceramics, and the difference between them is 0 to 20 × 10 -7 / ° C.
 平板状ガラスと外枠とを直接接合することで、良好な気密封止性が得られる。直接接合とは、平板状ガラスと外枠とを、平板状ガラスと外枠以外の樹脂層等の有機材料の接着層を介することなく接合された状態を意味する。なお、平板状ガラスの主面上に、後述する無機材料である導電性膜が形成される場合には、導電性膜を介して平板状ガラスと外枠が接合されることになる。この場合、導電性膜は平板状ガラスと一体の無機材料から成る構造体として扱い、平板状ガラスと外枠とが直接接合された一態様とする。また、平板状ガラスと外枠との直接接合にあたり陽極接合のような電圧印可も不要であり、平板状ガラスと外枠とを重ね合わせて加熱するのみで接合できる。
 直接接合されたものであるか否かは、平板状ガラスと外枠との間に上記接着層が存在しないことにより判断できる。
Good airtight sealing can be obtained by directly joining the flat glass and the outer frame. The direct bonding means a state in which the flat glass and the outer frame are joined without interposing the adhesive layer of the organic material such as the resin layer other than the flat glass and the outer frame. When a conductive film, which is an inorganic material described later, is formed on the main surface of the flat glass, the flat glass and the outer frame are joined via the conductive film. In this case, the conductive film is treated as a structure made of an inorganic material integrated with the flat glass, and the flat glass and the outer frame are directly bonded to each other. Further, when directly joining the flat glass and the outer frame, it is not necessary to apply a voltage as in the case of anode joining, and the flat glass and the outer frame can be joined only by overlapping and heating.
Whether or not the glass is directly bonded can be determined by the absence of the adhesive layer between the flat glass and the outer frame.
 外枠として用いるガラスセラミックスは、ガラスセラミックスを構成するガラスマトリックスのガラス軟化点Tsが平板状ガラスのガラス転移点Tgより低い。これにより、平板状ガラスの表面へダメージを与えるような高温を必要とすることなく直接接合できる。
 平板状ガラスのガラス転移点Tgとガラスマトリックスのガラス軟化点Tsとの差は、平板状ガラスの表面へのダメージを防止する観点から、50℃以上が好ましく、65℃以上がより好ましく、85℃以上がさらに好ましい。一方、外枠となるガラスセラミックスの焼成時にカーボン残渣が増えて絶縁性を阻害するのを抑制する観点から、上記差は180℃以下が好ましく、130℃以下がより好ましく、100℃以下がさらに好ましい。
In the glass ceramic used as the outer frame, the glass softening point Ts of the glass matrix constituting the glass ceramic is lower than the glass transition point Tg of the flat glass. As a result, direct bonding can be performed without requiring a high temperature that damages the surface of the flat glass.
The difference between the glass transition point Tg of the flat glass and the glass softening point Ts of the glass matrix is preferably 50 ° C. or higher, more preferably 65 ° C. or higher, and more preferably 85 ° C. from the viewpoint of preventing damage to the surface of the flat glass. The above is more preferable. On the other hand, the above difference is preferably 180 ° C. or lower, more preferably 130 ° C. or lower, still more preferably 100 ° C. or lower, from the viewpoint of suppressing the increase of carbon residue during firing of the glass ceramics serving as the outer frame and impairing the insulating property. ..
 平板状ガラスのガラス転移点Tgは、ガラスマトリックスのガラス軟化点Tsとの差が上記範囲となることが好ましいが、具体的には、550℃以上が好ましく、600℃以上がより好ましく、650℃以上がさらに好ましく、高いほど好ましい。一方、平板状ガラスのガラス転移点Tgは、加工しやすさの点からは、1000℃以下が好ましく、900℃以下がより好ましく、800℃以下がさらに好ましい。なお、平板状ガラスのガラス転移点Tgは、示差熱分析(DTA)により得られたDTAチャートの第一変曲点における温度である。 The difference between the glass transition point Tg of the flat glass and the glass softening point Ts of the glass matrix is preferably in the above range, but specifically, it is preferably 550 ° C or higher, more preferably 600 ° C or higher, and more preferably 650 ° C. The above is more preferable, and the higher the value, the more preferable. On the other hand, the glass transition point Tg of the flat glass is preferably 1000 ° C. or lower, more preferably 900 ° C. or lower, still more preferably 800 ° C. or lower from the viewpoint of ease of processing. The glass transition point Tg of the flat glass is the temperature at the first inflection of the DTA chart obtained by differential thermal analysis (DTA).
 平板状ガラスのガラス軟化点Tsは、700℃以上が好ましく、750℃以上がより好ましく、800℃以上がさらに好ましく、高いほど好ましい。一方、平板状ガラスのガラス軟化点Tsは、加工しやすさの点からは、1500℃以下が好ましく、1000℃以下がより好ましく、950℃以下がさらに好ましい。なお、平板状ガラスのガラス軟化点Tsは、DTAチャートの第四変曲点における温度である。 The glass softening point Ts of the flat glass is preferably 700 ° C. or higher, more preferably 750 ° C. or higher, further preferably 800 ° C. or higher, and more preferably higher. On the other hand, the glass softening point Ts of the flat glass is preferably 1500 ° C. or lower, more preferably 1000 ° C. or lower, still more preferably 950 ° C. or lower, from the viewpoint of ease of processing. The glass softening point Ts of the flat glass is the temperature at the fourth inflection point of the DTA chart.
 ガラスマトリックスのガラス軟化点Tsは、平板状ガラスのガラス転移点Tgとの差が上記範囲となることが好ましいが、具体的には、800℃以下が好ましく、700℃以下がより好ましく、600℃以下がさらに好ましい。また、ガラスセラミックスのガラス軟化点Tsは、焼成時にカーボン残渣が増えて絶縁性を阻害するのを抑制する観点から、450℃以上が好ましく、460℃以上がより好ましく、470℃以上がさらに好ましい。なお、ガラスマトリックスのガラス軟化点Tsは、ガラス単体のDTAチャートの第四変曲点における温度である。 The glass softening point Ts of the glass matrix preferably has a difference from the glass transition point Tg of the flat glass in the above range, but specifically, it is preferably 800 ° C. or lower, more preferably 700 ° C. or lower, and more preferably 600 ° C. The following is more preferable. Further, the glass softening point Ts of the glass ceramics is preferably 450 ° C. or higher, more preferably 460 ° C. or higher, still more preferably 470 ° C. or higher, from the viewpoint of suppressing the increase of carbon residue during firing and impairing the insulating property. The glass softening point Ts of the glass matrix is the temperature at the fourth inflection point of the DTA chart of the glass alone.
 ガラスマトリックスのガラス転移点Tgは、740℃以下が好ましく、500℃以下がより好ましく、450℃以下がさらに好ましい。また、ガラスセラミックスのガラス転移点Tgは、焼成時にカーボン残渣が増えて絶縁性を阻害するのを抑制する観点から、380℃以上が好ましく、390℃以上がより好ましく、400℃以上がさらに好ましい。なお、ガラスマトリックスのガラス転移点Tgは、ガラス単体のDTAチャートの第一変曲点ににおける温度である。 The glass transition point Tg of the glass matrix is preferably 740 ° C or lower, more preferably 500 ° C or lower, and even more preferably 450 ° C or lower. Further, the glass transition point Tg of the glass ceramic is preferably 380 ° C. or higher, more preferably 390 ° C. or higher, still more preferably 400 ° C. or higher, from the viewpoint of suppressing the increase of carbon residue during firing and impairing the insulating property. The glass transition point Tg of the glass matrix is the temperature at the first inflection point of the DTA chart of the glass alone.
 平板状ガラスの熱膨張係数は、ガラスセラミックスの熱膨張係数以上の値である。すなわち、(平板状ガラスの熱膨張係数-ガラスセラミックスの熱膨張係数)で表される差は、0/℃以上である。また、上記差は20×10-7/℃以下である。これにより、平板状ガラスと外枠との直接接合を行った際に、平板状ガラスにクラックが発生するのを防止できる。
 上記差は0/℃以上であればよいが、0.5×10-7/℃以上がより好ましく、1×10-7/℃以上がさらに好ましい。また、上記差は、20×10-7/℃以下であればよいが、15×10-7/℃以下がより好ましく、10×10-7/℃以下がさらに好ましい。
The coefficient of thermal expansion of flat glass is a value equal to or higher than the coefficient of thermal expansion of glass ceramics. That is, the difference expressed by (coefficient of thermal expansion of flat glass-coefficient of thermal expansion of glass ceramics) is 0 / ° C. or higher. Further, the above difference is 20 × 10 -7 / ° C. or less. This makes it possible to prevent cracks from occurring in the flat glass when the flat glass and the outer frame are directly joined.
The above difference may be 0 / ° C. or higher, but 0.5 × 10-7 / ° C. or higher is more preferable, and 1 × 10-7 / ° C. or higher is even more preferable. The difference may be 20 × 10 -7 / ° C or less, but more preferably 15 × 10 -7 / ° C or less, and even more preferably 10 × 10 -7 / ° C or less.
 平板状ガラスの熱膨張係数は、ガラスセラミックスの熱膨張係数との差が上記範囲となれば特に限定されないが、ガラスセラミックスの選択性が制限される点から、5×10-7/℃以上が好ましく、30×10-7/℃以上がより好ましく、70×10-7/℃以上がさらに好ましい。なお、本明細書における平板状ガラスの熱膨張係数及びガラスセラミックスの熱膨張係数とは、50℃から350℃の範囲でガラス及びガラスセラミックスを加熱した時の1℃当たりの伸びの割合の平均値により測定される値である。 The coefficient of thermal expansion of flat glass is not particularly limited as long as the difference from the coefficient of thermal expansion of glass ceramics is within the above range, but 5 × 10 -7 / ° C or higher is used because the selectivity of glass ceramics is limited. Preferably, 30 × 10 -7 / ° C. or higher is more preferable, and 70 × 10 -7 / ° C. or higher is even more preferable. The coefficient of thermal expansion of flat glass and the coefficient of thermal expansion of glass ceramics in the present specification are average values of the ratio of elongation per 1 ° C. when glass and glass ceramics are heated in the range of 50 ° C to 350 ° C. It is a value measured by.
 ガラスセラミックスの熱膨張係数は、平板状ガラスの熱膨張係数との差が上記範囲となれば特に限定されないが、外枠付きカバーガラスを実装する基板の膨張に近づける必要があることから、80×10-7/℃以下が好ましく、50×10-7/℃以下がより好ましく、30×10-7/℃以下がさらに好ましい。 The coefficient of thermal expansion of glass ceramics is not particularly limited as long as the difference from the coefficient of thermal expansion of flat glass is within the above range, but since it is necessary to approach the expansion of the substrate on which the cover glass with an outer frame is mounted, 80 × It is preferably 10-7 / ° C. or lower, more preferably 50 × 10-7 / ° C. or lower, and even more preferably 30 × 10-7 / ° C. or lower.
 ガラスセラミックスは、ガラス軟化点Tsを下げる観点から、ガラスマトリックスのガラス組成に酸化ビスマス及び酸化ホウ素の少なくとも一方を含有することが好ましい。
 酸化ビスマスの含有量は、平板状ガラスのガラス転移点Tgに比べてガラスマトリックスのガラス軟化点Tsを低下させる観点から、50質量%以上が好ましく、60質量%以上がより好ましい。一方、平板状ガラスの耐候性の低下を抑制する観点から、酸化ビスマスの含有量は90質量%以下が好ましく、80質量%以下がより好ましい。
 なお、本明細書において、ガラスマトリックスにおけるガラス組成の含有量は、ガラスセラミックスからフィラー成分を除いた成分に対する含有量であり、酸化物基準の質量%表示で表される値である。
From the viewpoint of lowering the glass softening point Ts, the glass ceramics preferably contain at least one of bismuth oxide and boron oxide in the glass composition of the glass matrix.
The content of bismuth oxide is preferably 50% by mass or more, more preferably 60% by mass or more, from the viewpoint of lowering the glass softening point Ts of the glass matrix as compared with the glass transition point Tg of the flat glass. On the other hand, from the viewpoint of suppressing the deterioration of the weather resistance of the flat glass, the content of bismuth oxide is preferably 90% by mass or less, more preferably 80% by mass or less.
In the present specification, the content of the glass composition in the glass matrix is the content with respect to the component excluding the filler component from the glass ceramics, and is a value expressed in mass% based on the oxide.
 酸化ホウ素の含有量は、平板状ガラスのガラス転移点Tgに比べてガラスマトリックスのガラス軟化点Tsを低下させる観点から、3質量%以上が好ましく、10質量%以上がより好ましく、30質量%以上がさらに好ましい。一方、平板状ガラスの耐候性の低下を抑制する観点から、酸化ホウ素の含有量は60質量%以下が好ましく、55質量%以下がより好ましく、50質量%以下がさらに好ましい。 The content of boron oxide is preferably 3% by mass or more, more preferably 10% by mass or more, and more preferably 30% by mass or more, from the viewpoint of lowering the glass softening point Ts of the glass matrix as compared with the glass transition point Tg of the flat glass. Is even more preferable. On the other hand, from the viewpoint of suppressing the deterioration of the weather resistance of the flat glass, the content of boron oxide is preferably 60% by mass or less, more preferably 55% by mass or less, still more preferably 50% by mass or less.
 酸化ビスマスと酸化ホウ素を共に含有する場合には、平板状ガラスの耐候性の低下を抑制する観点から、酸化ビスマスの含有量が酸化ホウ素の含有量より多いことが好ましく、酸化ホウ素の含有量が酸化ビスマスの含有量の1/5以下であることがより好ましく、酸化ビスマスと酸化ホウ素の合計の含有量が90質量%以下であることが好ましい。
 酸化ビスマスと酸化ホウ素の合計の含有量は、平板状ガラスのガラス転移点Tgに比べてガラスマトリックスのガラス軟化点Tsを低下させる観点から、3質量%以上が好ましく、4質量%以上がより好ましく、5質量%以上がさらに好ましい。また、合計の含有量は、平板状ガラスの耐候性の低下を抑制する観点から、16質量%以下が好ましく、12質量%以下がより好ましく、10質量%以下がさらに好ましい。
When both bismuth oxide and boron oxide are contained, the content of bismuth oxide is preferably higher than the content of boron oxide, and the content of boron oxide is high, from the viewpoint of suppressing the deterioration of the weather resistance of the flat glass. The content of bismuth oxide is more preferably 1/5 or less, and the total content of bismuth oxide and boron oxide is preferably 90% by mass or less.
The total content of bismuth oxide and boron oxide is preferably 3% by mass or more, more preferably 4% by mass or more, from the viewpoint of lowering the glass softening point Ts of the glass matrix as compared with the glass transition point Tg of the flat glass. 5% by mass or more is more preferable. The total content is preferably 16% by mass or less, more preferably 12% by mass or less, still more preferably 10% by mass or less, from the viewpoint of suppressing deterioration of the weather resistance of the flat glass.
 上記のように、酸化ビスマス及び酸化ホウ素の少なくとも一方を含むガラスマトリックスとして、一般的に酸化ビスマス系ガラスやホウケイ酸系ガラスと称されるものが挙げられる。
 酸化ビスマス系ガラスとしては、Biの他に、B、CeO、SiO、RO、R’O、R’’、R’’’O等を含有していてもよい。
 なお、RとはZn、Ba、Sr、Mg、Ca、Fe、Mn、Cr、及びCuからなる群より選ばれる少なくとも一種である。R’とはLi、Na、K、Cs、及びCuからなる群より選ばれる少なくとも一種である。R’’とはAl、Fe、及びLaからなる群より選ばれる少なくとも一種である。R’’’とは、Zr、Ti、及びSnからなる群より選ばれる少なくとも一種である。
 また、R’’がAlである時のAlは、ガラスセラミックスを構成するフィラー成分としての酸化アルミニウムとは明確に区別される。すなわち、ガラス組成としてのAl含有量は、フィラー成分としての酸化アルミニウムを含む結晶体粉末の含有量からは除かれる。
As described above, examples of the glass matrix containing at least one of bismuth oxide and boron oxide include those generally referred to as bismuth oxide-based glass and borosilicate-based glass.
As the bismuth oxide-based glass, in addition to Bi 2 O 3 , B 2 O 3 , CeO 2 , SiO 2 , RO, R'2 O, R''2 O 3 , R'''O 2 and the like are contained. May be.
In addition, R is at least one selected from the group consisting of Zn, Ba, Sr, Mg, Ca, Fe, Mn, Cr, and Cu. R'is at least one selected from the group consisting of Li, Na, K, Cs, and Cu. R'' is at least one selected from the group consisting of Al, Fe, and La. R'''is at least one selected from the group consisting of Zr, Ti, and Sn.
Further, Al 2 O 3 when R'' is Al is clearly distinguished from aluminum oxide as a filler component constituting the glass ceramics. That is, the Al 2 O 3 content as a glass composition is excluded from the content of the crystal powder containing aluminum oxide as a filler component.
 より具体的には、例えば、Biを27~85質量%及びBを5~30質量%を含有するガラスが好適に用いられる。このガラスは、さらに、CeOを0~10質量%、SiOを0~20質量%、ROを0~55質量%、R’Oを0~10質量%、R’’を0~20質量%、R’’’Oを0~30質量%含有していてもよい。 More specifically, for example, glass containing 27 to 85% by mass of Bi 2 O 3 and 5 to 30% by mass of B 2 O 3 is preferably used. This glass further contains 0 to 10% by mass of CeO 2 , 0 to 20% by mass of SiO 2 , 0 to 55% by mass of RO, 0 to 10% by mass of R'2O , and R''2 O3. It may contain 0 to 20% by mass and R'''O 2 in an amount of 0 to 30% by mass.
 ホウケイ酸系ガラスとしては、SiO及びBの他に、CeO、RO、R’O、R’’、R’’’O等を含有していてもよく、ZnO、KO、NaOを含有することが好ましい。
 より具体的には、例えば、SiOを23~35質量%、Bを40~55質量%、ZnOを10~20質量%、KO及びNaOを合計で3~15質量%含有するガラスが好適に用いられる。
As the borosilicate glass, in addition to SiO 2 and B 2 O 3 , CeO 2 , RO, R'2 O, R''2 O3, R'''O 2 and the like may be contained. It preferably contains ZnO, K2O , and Na2O .
More specifically, for example, SiO 2 is 23 to 35% by mass, B 2 O 3 is 40 to 55% by mass, Zn O is 10 to 20% by mass, and K 2 O and Na 2 O are 3 to 15 mass% in total. A glass containing% is preferably used.
 以下に、酸化ビスマス(Bi)及び酸化ホウ素(B)以外の各成分について記載する。
 SiOはガラスを構成する成分である。一方で、過剰に添加すると、ガラス軟化点Tsが高くなり過ぎるおそれがある。
 CeOはガラス原料が熔解しガラス化したあとのガラス粉末の色調を安定させる成分であり、酸化ビスマスを含有する場合には、共に含有することが好ましい。一方で、過剰に添加すると、結晶化しやすくなり安定したガラス粉末が得られにくいおそれがある。
 CaOを含む、ROで表される成分は、ガラスの安定化に効果があり結晶化を抑制する成分である。一方で、過剰に添加すると、ガラス軟化点Tsが高くなり過ぎるおそれがある。
 KO及びNaOを含むR’Oで表される成分は、ガラス軟化点Tsを低下させる成分である。原子番号が小さい元素ほど、その効果が大きい。ただし、原子番号が小さい元素ほど、含有量が多くなるとガラスの絶縁性が低くなり信頼性を損なうおそれがある。
 Alを含むR’’で表される成分は、ガラスの安定化に効果があり結晶化を抑制する作用及びガラスの化学耐久性を向上させる成分である。一方で、過剰に添加すると、ガラス軟化点Tsが高くなり過ぎるおそれがある。
 R’’’Oで表される成分は、接合時に酸素を供給する成分である。一方で、過剰に添加すると、接合時に発泡するおそれがある。
Hereinafter, each component other than bismuth oxide (Bi 2 O 3 ) and boron oxide (B 2 O 3 ) will be described.
SiO 2 is a component constituting glass. On the other hand, if it is added in an excessive amount, the glass softening point Ts may become too high.
CeO 2 is a component that stabilizes the color tone of the glass powder after the glass raw material is melted and vitrified, and when bismuth oxide is contained, it is preferably contained together. On the other hand, if it is added in an excessive amount, it tends to crystallize and it may be difficult to obtain a stable glass powder.
The component represented by RO, including CaO, is a component that is effective in stabilizing glass and suppresses crystallization. On the other hand, if it is added in an excessive amount, the glass softening point Ts may become too high.
The component represented by R'2 O containing K 2 O and Na 2 O is a component that lowers the glass softening point Ts. The smaller the atomic number, the greater the effect. However, the smaller the atomic number of the element, the lower the insulating property of the glass when the content is increased, which may impair the reliability.
The component represented by R''2 O3 containing Al 2 O 3 is a component that has an effect on stabilizing the glass, suppresses crystallization, and improves the chemical durability of the glass. On the other hand, if it is added in an excessive amount, the glass softening point Ts may become too high.
The component represented by R''''O 2 is a component that supplies oxygen at the time of joining. On the other hand, if it is added in excess, it may foam at the time of joining.
 ガラスセラミックスにおけるフィラー成分としては、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化マグネシウム、二酸化ケイ素、リン酸ジルコニウム、β-ユークリプタイト(LiAlSiO)及びこれらの混合物からなる群より選ばれる少なくとも1種を含む結晶体粉末が好ましく、酸化アルミニウムを含む結晶体粉末を含有することがより好ましい。結晶体粉末は、酸化アルミニウムの他に、二酸化ケイ素を含むこともより好ましい。 As the filler component in the glass ceramics, at least one selected from the group consisting of aluminum oxide, zirconium oxide, titanium oxide, magnesium oxide, silicon dioxide, zirconium phosphate, β-eucriptite (LiAlSiO 4 ) and a mixture thereof is used. A crystal powder containing aluminum oxide is preferable, and a crystal powder containing aluminum oxide is more preferable. It is more preferable that the crystalline powder contains silicon dioxide in addition to aluminum oxide.
 酸化アルミニウムは、結晶相の種類によって、α-アルミナ型、γ-アルミナ型、δ-アルミナ型、θ-アルミナ型等が挙げられるが、結晶相がコランダム型構造を有するα-アルミナ型が好ましい。 Examples of aluminum oxide include α-alumina type, γ-alumina type, δ-alumina type, and θ-alumina type depending on the type of crystal phase, but α-alumina type in which the crystal phase has a corundum type structure is preferable.
 ガラスセラミックスにおけるフィラー成分である結晶体粉末、特に酸化アルミニウムを含む結晶体粉末の含有量は、平板状ガラスにクラックが入るのを防ぐ観点から、5質量%以上が好ましく、10質量%以上がより好ましい。また、平板状ガラスとの良好な接着性を得る観点から、結晶体粉末の含有量は40質量%以下が好ましく、35質量%以下がより好ましく、30質量%以下がより好ましく、25質量%以下がさらに好ましい。上記含有量は、フィラー成分の比重によっても異なる。例えば、フィラーの比重が2.6以下である場合には、良好な焼結性を得る観点から、酸化アルミニウムを含む結晶体粉末の含有量は、25質量%以下が好ましい。なお、フィラー成分としての酸化アルミニウムを含む結晶体粉末のガラスセラミックスにおける含有量は、ガラスセラミックス中の無機成分全量に対する含有量と同義である。 The content of the crystal powder as a filler component in the glass ceramics, particularly the crystal powder containing aluminum oxide, is preferably 5% by mass or more, more preferably 10% by mass or more, from the viewpoint of preventing cracks in the flat glass. preferable. Further, from the viewpoint of obtaining good adhesion to the flat glass, the content of the crystal powder is preferably 40% by mass or less, more preferably 35% by mass or less, more preferably 30% by mass or less, and 25% by mass or less. Is even more preferable. The above content also varies depending on the specific gravity of the filler component. For example, when the specific gravity of the filler is 2.6 or less, the content of the crystal powder containing aluminum oxide is preferably 25% by mass or less from the viewpoint of obtaining good sinterability. The content of the crystalline powder containing aluminum oxide as a filler component in the glass ceramics is synonymous with the content with respect to the total amount of the inorganic components in the glass ceramics.
 かかる結晶体粉末は、球状、扁平状、鱗片状、繊維状等、形状は特に限定されない。
 結晶体粉末の大きさも特に限定されるものではないが、例えば50%粒径(D50)が0.5μm以上が好ましく、1μm以上がより好ましく、また、4μm以下が好ましく、3μm以下がより好ましい。50%粒径は、レーザー回折/散乱式粒度分布測定装置を用いて測定される値である。
The shape of the crystalline powder is not particularly limited, such as spherical, flat, scaly, and fibrous.
The size of the crystal powder is also not particularly limited, but for example, the 50% particle size (D 50 ) is preferably 0.5 μm or more, more preferably 1 μm or more, preferably 4 μm or less, and more preferably 3 μm or less. .. The 50% particle size is a value measured using a laser diffraction / scattering type particle size distribution measuring device.
 平板状ガラスは、熱膨張係数及びガラス転移点Tgが、ガラスセラミックスの熱膨張係数及びガラスマトリックスのガラス軟化点Tsと上記の関係を満たせば特に限定されない。
 例えば、平板状ガラスは波長250~1500nmにおける透過率が90%以上であることが好ましい。
The flat glass is not particularly limited as long as the coefficient of thermal expansion and the glass transition point Tg satisfy the above relationship with the coefficient of thermal expansion of glass ceramics and the glass softening point Ts of the glass matrix.
For example, the flat glass preferably has a transmittance of 90% or more at a wavelength of 250 to 1500 nm.
 具体的には、平板状ガラスは、ソーダライムガラス、ホウケイ酸塩ガラス、アルミノケイ酸塩ガラス、シリカガラス等を使用できる。容易に加工可能な点からは、ホウケイ酸塩ガラスが好ましい。また、耐久性や透過性の点からは、シリカガラスが好ましい。 Specifically, as the flat glass, soda lime glass, borosilicate glass, aluminosilicate glass, silica glass, etc. can be used. Borosilicate glass is preferable because it can be easily processed. Further, silica glass is preferable from the viewpoint of durability and permeability.
 本実施形態に係る外枠付きカバーガラス10は、平板状ガラス1及び外枠2に加え、図1に示すように、金属皮膜3aや3bで表す金属膜3や導電性膜4、金属導体5が設けられていてもよい。以下各構成について、順に説明する。 In the cover glass 10 with an outer frame according to the present embodiment, in addition to the flat glass 1 and the outer frame 2, as shown in FIG. 1, the metal film 3, the conductive film 4, and the metal conductor 5 represented by the metal films 3a and 3b are shown. May be provided. Hereinafter, each configuration will be described in order.
 平板状ガラス1の厚みは特に限定されないが、耐久性の観点から、200μm以上が好ましく、300μm以上がより好ましく、500μm以上がさらに好ましい。一方、透過性や重量の観点から、平板状ガラスの厚みは1.5mm以下が好ましく、1mm以下がより好ましく、0.75mm以下がさらに好ましい。 The thickness of the flat glass 1 is not particularly limited, but from the viewpoint of durability, 200 μm or more is preferable, 300 μm or more is more preferable, and 500 μm or more is further preferable. On the other hand, from the viewpoint of transparency and weight, the thickness of the flat glass is preferably 1.5 mm or less, more preferably 1 mm or less, still more preferably 0.75 mm or less.
 ガラスセラミックスから構成される外枠2の高さは、光源からの光のエネルギーによりカバーガラスがダメージを受けるのを防ぐ観点から、350μm以上が好ましく、400μm以上がより好ましく、500μm以上がさらに好ましい。一方、デバイス低背化の要求から、外枠の高さは1.5mm以下が好ましく、1.35mm以下がより好ましく、1mm以下がさらに好ましい。 The height of the outer frame 2 made of glass ceramics is preferably 350 μm or more, more preferably 400 μm or more, still more preferably 500 μm or more, from the viewpoint of preventing the cover glass from being damaged by the energy of light from the light source. On the other hand, the height of the outer frame is preferably 1.5 mm or less, more preferably 1.35 mm or less, still more preferably 1 mm or less, due to the demand for lower device height.
 外枠2は、平板状ガラス1が接合している面と対向する面の表面に、金属膜3が形成されていてもよく、外枠付きカバーガラスを基板と接着する際の気密封止性の点から形成することが好ましい。金属膜の存在により、金属ハンダを用いた接着により基板と外枠付きカバーガラスとを気密封止できる。 The outer frame 2 may have a metal film 3 formed on the surface of the surface facing the surface to which the flat glass 1 is bonded, and has an airtight sealing property when the cover glass with an outer frame is adhered to the substrate. It is preferable to form from the above points. Due to the presence of the metal film, the substrate and the cover glass with an outer frame can be hermetically sealed by adhesion using metal solder.
 金属膜3は、金属ハンダを用いた際の接着性の観点から、その最表面にAu、Ag、Cu及びAu-Sn合金からなる群より選ばれる1種以上を含む金属皮膜3bを有することが好ましく、Au皮膜を有することがより好ましい。かかる皮膜の下地として、Ni皮膜やTi皮膜等の皮膜(図示せず)を有していてもよい。 The metal film 3 may have a metal film 3b containing at least one selected from the group consisting of Au, Ag, Cu and Au—Sn alloys on the outermost surface thereof from the viewpoint of adhesiveness when using metal solder. It is preferable to have an Au film, and it is more preferable to have an Au film. As a base of such a film, a film (not shown) such as a Ni film or a Ti film may be provided.
 なお、外枠2が後述する金属導体を備える場合、金属膜3は、金属導体と同様の金属を用いた金属皮膜3aと、その表面上に形成された上記金属皮膜3bとを有することが好ましい。 When the outer frame 2 includes a metal conductor described later, it is preferable that the metal film 3 has a metal film 3a using the same metal as the metal conductor and the metal film 3b formed on the surface thereof. ..
 外枠付きカバーガラスの用途を鑑みると、外枠は平板状ガラスに対して垂直に設けられていることが好ましい。平板状ガラスと外枠とが垂直とは、平板状ガラスと、外枠の外側の面とのなす角が垂直であることを意味する。なお、垂直とは厳密に90°であることを要するものではなく、90°±5°の略垂直であれば足りる。 Considering the use of the cover glass with an outer frame, it is preferable that the outer frame is provided perpendicular to the flat glass. The fact that the flat glass and the outer frame are vertical means that the angle between the flat glass and the outer surface of the outer frame is vertical. It should be noted that the vertical does not have to be exactly 90 °, but a substantially vertical of 90 ° ± 5 ° is sufficient.
 また、外枠付きカバーガラスは、その用途から、カバーガラスの割れが検知できるようなシステムを備えていることが好ましい。システムの一例として、平板状ガラス1が、外枠2が接合している側の主面の少なくとも一部の領域に導電性膜4を備えることが好ましい。また、外枠2の内部に、ガラスセラミックスを貫通する金属導体5が形成され、導電性膜4と金属導体5とが導通していることが好ましい。 Further, it is preferable that the cover glass with an outer frame is equipped with a system that can detect a crack in the cover glass depending on its use. As an example of the system, it is preferable that the flat glass 1 is provided with the conductive film 4 in at least a part of the main surface on the side to which the outer frame 2 is joined. Further, it is preferable that the metal conductor 5 penetrating the glass ceramics is formed inside the outer frame 2, and the conductive film 4 and the metal conductor 5 are conductive.
 導電性膜4には従来公知のものを適用できるが、光透過性の観点から透明導電膜が好ましく、例えばITO(Indium Tin Oxide)膜、SnO膜、ZnO膜等が挙げられる。中でも、ITO膜が耐久性や抵抗の点から好ましい。
 導電性膜の膜厚は特に限定されないが、安定した導電性確保のため0.05μm以上が好ましく、0.1μm以上がより好ましく、0.2μm以上がさらに好ましい。また、透過性を保つため、導電性膜の膜厚は1μm以下が好ましく、0.8μm以下がより好ましく、0.7μm以下がさらに好ましい。
Conventionally known conductive films can be applied, but transparent conductive films are preferable from the viewpoint of light transmission, and examples thereof include ITO (Indium Tin Oxide) films, SnO 2 films, and ZnO films. Above all, the ITO film is preferable from the viewpoint of durability and resistance.
The film thickness of the conductive film is not particularly limited, but is preferably 0.05 μm or more, more preferably 0.1 μm or more, still more preferably 0.2 μm or more in order to secure stable conductivity. Further, in order to maintain the permeability, the film thickness of the conductive film is preferably 1 μm or less, more preferably 0.8 μm or less, still more preferably 0.7 μm or less.
 導電性膜は、平板状ガラスの主面の少なくとも一部の領域に形成されていればよいが、カバーガラスの割れの検知という目的を鑑みると、少なくとも有効領域、すなわち、光源からの光が照射される領域に形成されていることが好ましく、平板状ガラスの一方の主面全体に形成されていることがより好ましい。
 また、平板状ガラスの主面上に、導電性膜以外の膜や層が形成されている場合には、それらの他の膜や層よりもさらに外側、すなわち、光源を備える基板が位置する側の最表面に導電性膜が形成されていることが好ましい。
The conductive film may be formed in at least a part of the main surface of the flat glass, but for the purpose of detecting cracks in the cover glass, it is irradiated with at least an effective region, that is, light from a light source. It is preferably formed in the region to be formed, and more preferably formed on the entire one main surface of the flat glass.
When a film or layer other than the conductive film is formed on the main surface of the flat glass, it is further outside from the other films or layers, that is, the side where the substrate provided with the light source is located. It is preferable that a conductive film is formed on the outermost surface of the above.
 金属導体5は、ビアと称されることもあり、上層の配線と下層の配線とを電気的に接続する導体を意味する。本実施形態においては、導電性膜4とカバーガラスの割れを検知する検出器とを接続するために、金属導体5は導電性膜4と導通している。 The metal conductor 5 is sometimes referred to as a via, and means a conductor that electrically connects the upper layer wiring and the lower layer wiring. In the present embodiment, the metal conductor 5 is conductive with the conductive film 4 in order to connect the conductive film 4 and the detector for detecting the cracking of the cover glass.
 金属導体には従来公知のものを、従来公知の方法で適用できる。例えば、外枠を構成するガラスセラミックスを焼成する前又は後に、当該外枠の内部を貫通する穴を設け、そこに金属導体を敷設する。 Conventionally known metal conductors can be applied by conventionally known methods. For example, before or after firing the glass ceramics constituting the outer frame, a hole penetrating the inside of the outer frame is provided, and a metal conductor is laid there.
 金属導体は、導電性を有する金属であればよいが、製造上の容易さの点から、Ag、Au及びCuからなる群より選ばれる1種以上の金属が好ましく、Agがより好ましい。製造上の容易さとは、外枠となるガラスセラミックスを焼成して焼結する際に共に焼結できることを意味する。 The metal conductor may be any metal having conductivity, but from the viewpoint of ease of manufacture, one or more metals selected from the group consisting of Ag, Au and Cu are preferable, and Ag is more preferable. Ease of manufacture means that when the glass ceramics used as the outer frame are fired and sintered, they can be sintered together.
 金属導体の形状は特に限定されないが、外枠の内部に貫通させやすくする観点から、金属線が好ましい。金属線の直径であるビア径は、金属導体の凹凸が大きくなり、焼成時に外枠であるガラスセラミックスにクラックが生じるのを防ぐ観点から、0.2mm以下がより好ましく、0.1mm以下がさらに好ましい。ビア径の下限は特に限定されないが、金属導体の破断を防ぐ観点から、0.05mm以上が好ましい。 The shape of the metal conductor is not particularly limited, but a metal wire is preferable from the viewpoint of facilitating penetration into the inside of the outer frame. The via diameter, which is the diameter of the metal wire, is more preferably 0.2 mm or less, and further preferably 0.1 mm or less, from the viewpoint of preventing the metal conductor from becoming uneven and cracking in the glass ceramics which is the outer frame during firing. preferable. The lower limit of the via diameter is not particularly limited, but is preferably 0.05 mm or more from the viewpoint of preventing breakage of the metal conductor.
 また、本実施形態に係る外枠付きカバーガラス10は、図2に示すように、さらに光拡散層6や反射防止膜7等を備えていてもよい。 Further, as shown in FIG. 2, the cover glass 10 with an outer frame according to the present embodiment may further include a light diffusion layer 6, an antireflection film 7, and the like.
 光拡散層6は、平板状ガラス1の少なくとも一方の主面上に形成されていることが好ましく、少なくとも、光源を備える基板が位置する側の主面上に形成されていることが好ましい。 The light diffusion layer 6 is preferably formed on at least one main surface of the flat glass 1, and preferably at least on the main surface on the side where the substrate provided with the light source is located.
 光拡散層は、従来公知のものを適用できるが、外枠を焼成する際に消失するのを防ぐ観点からは、無機材料で構成されているものが好ましく、さらに平板状ガラスを直接加工するものが、界面反射による損失を防ぐ点でより好ましい。直接加工により、例えば、複数の凹型の非球面レンズを備えることがさらに好ましく、非球面レンズは、平板状ガラスの主面上の少なくとも有効領域に隙間なく配置されていることがよりさらに好ましい。 As the light diffusion layer, conventionally known ones can be applied, but from the viewpoint of preventing the outer frame from disappearing when firing, those made of an inorganic material are preferable, and flat glass is directly processed. However, it is more preferable in terms of preventing loss due to interfacial reflection. It is even more preferred that, for example, a plurality of concave aspherical lenses be provided by direct processing, and the aspherical lenses are even more preferably disposed without gaps in at least an effective region on the main surface of the flat glass.
 非球面レンズの最大サイズは特に限定されないが、通常250μm以下であり、下限は通常20μm以上である。
 また、非球面レンズの、平行光をレンズ加工された面から有効領域に対して入射した時の出射光の広がり角、すなわち拡散角は、全角で30°以上が好ましい。拡散角の上限は通常全角で85°以下である。
The maximum size of the aspherical lens is not particularly limited, but is usually 250 μm or less, and the lower limit is usually 20 μm or more.
Further, the spreading angle, that is, the spreading angle of the emitted light of the aspherical lens when the parallel light is incident on the effective region from the lens-processed surface is preferably 30 ° or more in full angle. The upper limit of the diffusion angle is usually 85 ° or less in full width.
 反射防止膜7は、平板状ガラス1の少なくとも一方の主面上に形成されていることが好ましく、少なくとも、光源を備える基板が位置する側の主面上に形成されていることがより好ましく、両主面上に形成されていることもより好ましい。
 外枠付きカバーガラスが直接加工による光拡散層を備える場合には、光拡散層よりも外側に反射防止膜が形成されていることが好ましい。
The antireflection film 7 is preferably formed on at least one main surface of the flat glass 1, and more preferably at least on the main surface on the side where the substrate provided with the light source is located. It is also more preferable that it is formed on both main surfaces.
When the cover glass with an outer frame includes a light diffusing layer by direct processing, it is preferable that an antireflection film is formed on the outer side of the light diffusing layer.
 反射防止膜は、少なくとも設計波長の光の反射率を低減する反射防止機能を有するものであれば、特に限定はされない。反射防止膜は、外枠を焼成する際に消失するのを防ぐ観点からは、無機材料により形成された膜が好ましく、例えば、単層構造の薄膜や、SiO及びTa等のように、屈折率の異なる2種以上の誘電体層が積層された誘電多層膜等の多層膜が挙げられる。 The antireflection film is not particularly limited as long as it has an antireflection function that reduces the reflectance of light of at least the design wavelength. The antireflection film is preferably a film formed of an inorganic material from the viewpoint of preventing it from disappearing when the outer frame is fired, for example, a thin film having a single layer structure, SiO 2 and Ta 2 O 5 and the like. In addition, a multilayer film such as a dielectric multilayer film in which two or more kinds of dielectric layers having different refractive indexes are laminated can be mentioned.
 平板状ガラスは、本発明の効果を損なわない範囲において、上記の他に、何等かの機能を備える層や膜等を備えていてもよい。
 なお、平板状ガラスが光拡散層や反射防止膜、導電性膜等の無機材料により形成された層や膜を備えている場合であって、それら層や膜が、外枠との接合領域まで形成されている場合は、平板状ガラスと外枠とはかかる層や膜を介して接合されることとなる。この場合も、当該層や膜は平板状ガラスと一体のものとして、平板状ガラスと外枠とが直接接合していると判断する。
The flat glass may be provided with a layer, a film or the like having some function in addition to the above, as long as the effect of the present invention is not impaired.
In the case where the flat glass is provided with a layer or film formed of an inorganic material such as a light diffusion layer, an antireflection film, or a conductive film, the layer or film extends to the bonding region with the outer frame. When formed, the flat glass and the outer frame are joined via such a layer or film. In this case as well, it is determined that the layer or film is integrated with the flat glass and that the flat glass and the outer frame are directly bonded to each other.
 外枠付きカバーガラス10は、外枠2の一部をカットして金属導体5を取出し可能にすることもできる。例えば、図3に示すように、平板状ガラス1と外枠2を通る直線となるように、隅部を面取りし、矢印で示す位置から金属導体5を取出し可能とできる。面取りの方法は限定されず従来公知の方法を使用できるが、例えばベベルカットと呼ばれる斜めに研削する加工法や研磨等が挙げられる。
 外枠付きカバーガラス10を図3のような形状とすることは、金属導体5を取り出す際に空間の制約を受けない点で有利である。
In the cover glass 10 with an outer frame, a part of the outer frame 2 can be cut so that the metal conductor 5 can be taken out. For example, as shown in FIG. 3, the corners can be chamfered so as to form a straight line passing through the flat glass 1 and the outer frame 2, and the metal conductor 5 can be taken out from the position indicated by the arrow. The chamfering method is not limited and a conventionally known method can be used, and examples thereof include a processing method called bevel cut for diagonally grinding and polishing.
It is advantageous that the cover glass 10 with an outer frame has a shape as shown in FIG. 3 in that the space is not restricted when the metal conductor 5 is taken out.
<外枠付きカバーガラスの製造方法>
 外枠付きカバーガラス10の製造方法の一実施形態を説明する。
 外枠付きカバーガラスにおける外枠2となるガラスセラミックスの製造方法は特に限定されないが、例えば、ガラス粉末とセラミックス粉末との混合物を成形、焼成することで焼結されて得られる。具体的には、上記混合物をグリーンシートと呼ばれるシート状に成形し、焼成する方法が挙げられる。
<Manufacturing method of cover glass with outer frame>
An embodiment of a method for manufacturing the cover glass 10 with an outer frame will be described.
The method for producing the glass ceramics to be the outer frame 2 in the cover glass with an outer frame is not particularly limited, and for example, it is obtained by forming and firing a mixture of the glass powder and the ceramic powder to obtain the sintered glass. Specific examples thereof include a method of forming the above mixture into a sheet called a green sheet and firing the mixture.
 グリーンシートの製造方法の一例を下記に示す。
 まず、所望するガラス組成となるように各原料を配合、混合した原料混合物を溶融させた後に冷却し、粉砕することでガラス粉末を得る。粉砕により得られたガラス粉末が焼成されることでガラスマトリックスとなり、ガラスセラミックスのガラス組成を決定する。
An example of a method for manufacturing a green sheet is shown below.
First, each raw material is blended so as to have a desired glass composition, and the mixed raw material mixture is melted, cooled, and pulverized to obtain a glass powder. The glass powder obtained by pulverization is fired to form a glass matrix, which determines the glass composition of the glass ceramics.
 原料混合物の溶融温度は例えば1200~1600℃以上が好ましく、溶融時間は例えば30~60分が好ましい。
 粉砕は乾式粉砕法でも湿式粉砕法でもよい。湿式粉砕法の場合には、溶媒として水やエタノール等が使用できる。
 粉砕は、例えば、ロールミル、ボールミル、ジェットミル等の粉砕機を使用できる。
The melting temperature of the raw material mixture is preferably 1200 to 1600 ° C. or higher, and the melting time is preferably 30 to 60 minutes, for example.
The pulverization may be a dry pulverization method or a wet pulverization method. In the case of the wet pulverization method, water, ethanol or the like can be used as the solvent.
For crushing, for example, a crusher such as a roll mill, a ball mill, or a jet mill can be used.
 ガラス粉末の大きさは、ガラス粉末が凝集して取扱いが困難となるのを防ぎ、また、粉末化に要する時間の長時間化を防ぐ観点から、50%粒径(D50)は0.5μm以上が好ましく、1μm以上がより好ましい。また、ガラス軟化点Tsの上昇や焼結不足を防ぐ観点から、50%粒径(D50)は4μm以下が好ましく、3μm以下がより好ましい。
 ガラス粉末の最大粒径は、良好な焼結性を得る観点、及び焼結体中への未溶解成分残留に伴う反射率低下を防ぐ観点から、20μm以下が好ましく、10μm以下がより好ましい。
 粒径の調整は、粉砕後に必要に応じて分級する等により可能である。
The size of the glass powder is 0.5 μm with a 50% particle size (D 50 ) from the viewpoint of preventing the glass powder from aggregating and becoming difficult to handle, and also preventing the time required for powdering from becoming long. The above is preferable, and 1 μm or more is more preferable. Further, from the viewpoint of preventing an increase in the glass softening point Ts and insufficient sintering, the 50% particle size (D 50 ) is preferably 4 μm or less, and more preferably 3 μm or less.
The maximum particle size of the glass powder is preferably 20 μm or less, and more preferably 10 μm or less, from the viewpoint of obtaining good sinterability and preventing a decrease in reflectance due to residual undissolved components in the sintered body.
The particle size can be adjusted by classifying as necessary after pulverization.
 次いで、ガラス粉末とフィラー成分とを混合して、ガラスセラミックス組成物を得る。
 フィラー成分は従来公知のものを適用できるが、酸化アルミナを含む結晶体粉末が好ましい。より具体的には、酸化アルミナ粉末やコージェライト粉末、リン酸ジルコニウム粉末が好ましい。
Then, the glass powder and the filler component are mixed to obtain a glass ceramic composition.
Conventionally known filler components can be applied, but crystal powder containing alumina oxide is preferable. More specifically, alumina oxide powder, cordierite powder, and zirconium phosphate powder are preferable.
 ガラスセラミックス組成物に、必要に応じて有機溶剤、可塑剤、バインダー、分散剤等を配合してスラリー又はペーストを調製する。配合する各材料は従来公知のものを適用できる。
 有機溶剤は、例えば、アルコール、ケトン、芳香族炭化水素等が挙げられる。より具体的には、トルエン、メチルエチルケトン、メタノール、2-ブタノール、キシレン等を使用でき、これらを1種用いても2種以上を混合してもよい。
 可塑剤は、アジピン酸系、フタル酸系等が挙げられる。より具体的には、アジピン酸ビス(2-エチルへキシル)、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ブチルベンジル等を使用できる。
 バインダーは、熱分解性樹脂等が挙げられる。より具体的には、アクリル樹脂、ポリビニルブチラール等を使用できる。
 分散剤は、界面活性剤型分散剤等が挙げられる。より具体的には、DISPERBYK180(商品名、ビックケミー社製)等を使用できる。
If necessary, an organic solvent, a plasticizer, a binder, a dispersant and the like are added to the glass-ceramic composition to prepare a slurry or a paste. Conventionally known materials can be applied to each material to be blended.
Examples of the organic solvent include alcohols, ketones, aromatic hydrocarbons and the like. More specifically, toluene, methyl ethyl ketone, methanol, 2-butanol, xylene and the like can be used, and one type of these may be used or two or more types may be mixed.
Examples of the plasticizer include adipic acid-based and phthalic acid-based. More specifically, bis (2-ethylhexyl) adipate, dibutyl phthalate, dioctyl phthalate, butyl benzyl phthalate and the like can be used.
Examples of the binder include a pyrolytic resin and the like. More specifically, acrylic resin, polyvinyl butyral and the like can be used.
Examples of the dispersant include surfactant-type dispersants. More specifically, DISPERBYK180 (trade name, manufactured by Big Chemie) or the like can be used.
 得られたスラリー又はペーストをフィルムの上に塗布し、乾燥させることで、グリーンシートが得られる。グリーンシートの厚みは特に限定されず、塗布する際の厚みや、スラリー濃度等により調整できる。 A green sheet can be obtained by applying the obtained slurry or paste on a film and drying it. The thickness of the green sheet is not particularly limited and can be adjusted by the thickness at the time of application, the slurry concentration and the like.
 得られたグリーンシートを、所望する外枠の高さに応じて適宜積層する。その後、孔あけ機で内部を打ち抜くことで、外枠形状を形成する。この際、金属導体を貫通させるための貫通穴も併せて形成してもよい。
 なお、ガラスセラミックスはグリーンシートではなく、金型等を用いて成形したものを用いてもよいが、各層に配線を通しやすい点からグリーンシートが好ましい。
The obtained green sheets are appropriately laminated according to the desired height of the outer frame. After that, the outer frame shape is formed by punching the inside with a drilling machine. At this time, a through hole for passing the metal conductor may also be formed.
The glass ceramic may be formed by using a mold or the like instead of the green sheet, but the green sheet is preferable because it is easy to pass the wiring through each layer.
 また、グリーンシートは、所望する外枠形状に合わせてひとつずつ作製してもよいが、大きなグリーンシートを作製し、孔あけ機で複数箇所打ち抜きを行うことで、複数連結された多数個取りの連結基板となっている外枠としてもよい。この場合には、グリーンシートを平板状ガラスと重ね合わせて熱圧着したものを焼成することで、グリーンシートがガラスセラミックスとなった連結された多数個取りの外枠付きカバーガラスが得られる。この連結された多数個取りの外枠付きカバーガラスを分割することで、単独の外枠付きカバーガラスが得られる。また、グリーンシートの積層体を単独で焼成して予めガラスセラミックスとしたのち、平板状ガラスと重ね合わせて再焼成することで直接接合してもよい。 Further, the green sheets may be produced one by one according to the desired outer frame shape, but by producing a large green sheet and punching at multiple points with a drilling machine, a large number of connected green sheets can be taken. It may be an outer frame that is a connecting board. In this case, by superimposing the green sheet on the flat plate glass and thermocompression-bonding the green sheet, the cover glass with a large number of connected outer frames in which the green sheet is made of glass ceramics can be obtained. By dividing the connected cover glass with a large number of pieces with an outer frame, a single cover glass with an outer frame can be obtained. Further, the laminated body of the green sheet may be fired independently to obtain glass ceramics in advance, and then the laminated body may be directly bonded by superimposing the laminated body on the flat glass and re-firing.
 外枠の形状は、グリーンシートの形状によって決定される。すなわち、グリーンシートを打ち抜く際の形状が外枠の内側の形状の由来となる。また、グリーンシートの外形が外枠の外側の形状の由来となる。多数個取りの連結基板から分割する場合には、焼成後に分割する際の形状が、外枠の外側の形状となる。 The shape of the outer frame is determined by the shape of the green sheet. That is, the shape when punching out the green sheet is the origin of the shape inside the outer frame. In addition, the outer shape of the green sheet is the origin of the outer shape of the outer frame. When dividing from a multi-layered connecting substrate, the shape at the time of dividing after firing is the outer shape of the outer frame.
 外枠形状となったグリーンシートの一方の表面に、必要に応じて、金属膜を形成する。金属膜は、例えば金属ペーストをスクリーン印刷法によって塗布することで形成できる。
 また、金属導体を設ける際には、予め形成した貫通穴に、例えば金属ペーストをスクリーン印刷法によって充填することで形成できる。
 金属膜や金属導体は、スクリーン印刷法の他、スパッタリング法、蒸着法等によっても形成できる。
A metal film is formed on one surface of the green sheet having an outer frame shape, if necessary. The metal film can be formed, for example, by applying a metal paste by a screen printing method.
Further, when the metal conductor is provided, it can be formed by filling the through hole formed in advance with, for example, a metal paste by a screen printing method.
The metal film and the metal conductor can be formed by a sputtering method, a vapor deposition method, or the like, in addition to the screen printing method.
 次いで、グリーンシートの、金属膜を形成した表面とは反対側の表面に、平板状ガラスを重ね合わせて、熱圧着により一体化を行うことで未焼結外枠付きカバーガラスを得る。
 平板状ガラスの主面上に光拡散層や反射防止膜、導電性膜といった層や膜が形成される場合には、グリーンシートに平板状ガラスを重ね合わせる前に形成してもよく、外枠付きカバーガラスを得た後に形成してもよい。ただし、導電性膜を形成し、金属導体と導通させる場合には、グリーンシートに平板状ガラスを重ね合わせる前に導電性膜を形成しておくことが好ましい。
Next, a flat glass is laminated on the surface of the green sheet opposite to the surface on which the metal film is formed, and integrated by thermocompression bonding to obtain a cover glass with an unsintered outer frame.
When a layer or film such as a light diffusion layer, an antireflection film, or a conductive film is formed on the main surface of the flat glass, it may be formed before overlaying the flat glass on the green sheet, or the outer frame. It may be formed after obtaining the attached cover glass. However, in the case of forming a conductive film and conducting it with a metal conductor, it is preferable to form the conductive film before overlaying the flat glass on the green sheet.
 グリーンシートと平板状ガラス1とを重ね合わせた後の熱圧着による直接接合は、グリーンシートと平板状ガラスとが一体化すれば特に条件は限定されない。
 圧着時の温度は、例えば60~65℃が好ましい。圧着時の圧力は、例えば12400~14000Paが好ましい。圧着時の時間は、例えば5~10分が好ましい。
The direct bonding by thermocompression bonding after the green sheet and the flat glass 1 are overlapped is not particularly limited as long as the green sheet and the flat glass are integrated.
The temperature at the time of crimping is preferably, for example, 60 to 65 ° C. The pressure at the time of crimping is preferably, for example, 12400 to 14000 Pa. The time for crimping is preferably, for example, 5 to 10 minutes.
 未焼結外枠付きカバーガラスを、所望により脱脂し、さらに焼成することで、グリーンシートが、ガラスマトリックス中にフィラー成分が分散されたガラスセラミックスとなり、外枠2であるガラスセラミックスと平板状ガラス1とが直接接合された外枠付きカバーガラス10が得られる。 By degreasing the cover glass with an unsintered outer frame as desired and further firing it, the green sheet becomes glass ceramics in which the filler component is dispersed in the glass matrix, and the glass ceramics and the flat glass as the outer frame 2 are obtained. A cover glass 10 with an outer frame is obtained, which is directly joined to 1.
 なお、外枠の、平板状ガラスが接合している側とは反対側の主面上には、基板との接着に際し、金属ハンダを用いた際の接着性を考慮して、金属膜3を形成してもよい。その際には、基板と接着する最表面に位置する金属皮膜3bの他に、金属皮膜3bの下地となる皮膜や、下地となる皮膜又は金属皮膜3bと外枠との間に、金属導体5と同様の金属を用いた金属皮膜3aも形成してもよい。
 金属膜3は、焼成の前に形成しても焼成の後に形成してもよいが、作業性の点から焼成の前に形成することが好ましい。
A metal film 3 is provided on the main surface of the outer frame on the side opposite to the side to which the flat glass is bonded, in consideration of the adhesiveness when using metal solder when adhering to the substrate. It may be formed. In that case, in addition to the metal film 3b located on the outermost surface to be adhered to the substrate, a film serving as a base for the metal film 3b, a film serving as a base, or a metal conductor 5 between the metal film 3b and the outer frame. A metal film 3a using the same metal as above may also be formed.
The metal film 3 may be formed before firing or after firing, but it is preferably formed before firing from the viewpoint of workability.
 未焼結外枠付きカバーガラスが、多数個取りの連結基板である場合には、焼成後にダイシングソーにより隣接する穴間で切断することで、単独の外枠付きカバーガラスが得られる。 When the cover glass with an unsintered outer frame is a connecting substrate with a large number of pieces, a single cover glass with an outer frame can be obtained by cutting between adjacent holes with a dicing saw after firing.
 脱脂は必要に応じて行えばよく、例えば400~500℃が好ましい。脱脂時間は、例えば1~10時間が好ましい。 Degreasing may be performed as needed, for example, 400 to 500 ° C. is preferable. The degreasing time is preferably 1 to 10 hours, for example.
 焼成時の温度は、ガラスセラミックス中のガラスマトリックスのガラス軟化点Ts以上の温度であり、平板状ガラスのガラス転移点Tg未満の温度とすることが好ましい。これにより、平板状ガラスの表面への、熱によるダメージを防げる。 The temperature at the time of firing is preferably a temperature equal to or higher than the glass softening point Ts of the glass matrix in the glass ceramics and less than a temperature lower than the glass transition point Tg of the flat glass. This prevents heat damage to the surface of the flat glass.
 具体的な焼成温度はガラスセラミックスにおけるガラス組成によっても異なるが、十分な焼結性を得る観点から、例えば500℃以上が好ましく、520℃以上がより好ましく、550℃以上がさらに好ましい。また、金属膜や金属導体等の金属の溶融を防ぐ観点から、焼成温度は900℃以下が好ましく、750℃以下がより好ましく、600℃以下がさらに好ましい。
 焼成時間は、十分な焼結性を得る観点から、10分以上が好ましく、15分以上がより好ましく、25分以上がさらに好ましい。また、生産性の観点から、焼成時間は60分以下が好ましく、55分以下がより好ましく、50分以下がさらに好ましい。
The specific firing temperature varies depending on the glass composition of the glass ceramics, but from the viewpoint of obtaining sufficient sinterability, for example, 500 ° C. or higher is preferable, 520 ° C. or higher is more preferable, and 550 ° C. or higher is further preferable. Further, from the viewpoint of preventing the melting of metals such as metal films and metal conductors, the firing temperature is preferably 900 ° C. or lower, more preferably 750 ° C. or lower, and even more preferably 600 ° C. or lower.
The firing time is preferably 10 minutes or longer, more preferably 15 minutes or longer, still more preferably 25 minutes or longer, from the viewpoint of obtaining sufficient sinterability. From the viewpoint of productivity, the firing time is preferably 60 minutes or less, more preferably 55 minutes or less, and even more preferably 50 minutes or less.
 平板状ガラス1は、従来公知の方法で作製でき、また市販のものを用いてもよい。
 例えば、所望の組成のガラスが得られるようにガラス原料を調合し、加熱溶融する。その後、バブリング、攪拌、清澄剤の添加等により溶融ガラスを均質化し、公知の成形法により所定の厚さのガラス板に成形し、徐冷する。溶融ガラスを均質化した後、ブロック状に成形して、徐冷した後に切断する方法により平板状に成形してもよい。
The flat glass 1 can be produced by a conventionally known method, or a commercially available one may be used.
For example, a glass raw material is prepared and heated and melted so that a glass having a desired composition can be obtained. Then, the molten glass is homogenized by bubbling, stirring, addition of a clarifying agent, etc., molded into a glass plate having a predetermined thickness by a known molding method, and slowly cooled. After homogenizing the molten glass, it may be formed into a block shape, slowly cooled, and then cut into a flat plate shape.
 平板状ガラスの成形法としては、例えば、フロート法、プレス法、フュージョン法及びダウンドロー法が挙げられる。特に、ガラス厚み制御の観点から、ダウンドロー法が好ましい。 Examples of the method for forming flat glass include a float method, a press method, a fusion method and a down draw method. In particular, the down draw method is preferable from the viewpoint of controlling the glass thickness.
 金属膜3は、外枠の平板状ガラスが接合している面と対向する面の表面に形成する。金属導体と同様の金属を用いた金属皮膜3aは、従来公知の方法で形成できる。例えば、金属粉末にエチルセルロース等のビヒクル、必要に応じて溶剤等を添加してペースト状にした導電ペーストを、スクリーン印刷法により塗布することで形成できる。 The metal film 3 is formed on the surface of the surface facing the surface to which the flat glass of the outer frame is joined. The metal film 3a using the same metal as the metal conductor can be formed by a conventionally known method. For example, it can be formed by applying a conductive paste made into a paste by adding a vehicle such as ethyl cellulose to a metal powder and, if necessary, a solvent or the like by a screen printing method.
 最表面に位置する金属皮膜3bとその下地となる皮膜も従来公知の方法で形成できるが、例えば電解めっき処理により形成できる。また、無電解めっきにより形成してもよい。コストの点からは、電解めっきが好ましい。
 金属皮膜3bの存在により、金属ハンダを用いた接着で、基板と外枠付きカバーガラスとを気密封止できる。
The metal film 3b located on the outermost surface and the film underlying the metal film 3b can also be formed by a conventionally known method, for example, by electrolytic plating. Further, it may be formed by electroless plating. From the viewpoint of cost, electrolytic plating is preferable.
Due to the presence of the metal film 3b, the substrate and the cover glass with an outer frame can be hermetically sealed by adhesion using metal solder.
 導電性膜4は、平板状ガラスの主面上に、従来公知の方法で形成できる。例えば、導電性膜がITO膜である場合には、スパッタリング法により形成することが好ましい。
 平板状ガラスの主面上に、光拡散層6や反射防止膜7が形成される場合には、導電性膜はそれらの最表面、すなわち基板に最も近い側に形成することが好ましい。
The conductive film 4 can be formed on the main surface of the flat glass by a conventionally known method. For example, when the conductive film is an ITO film, it is preferably formed by a sputtering method.
When the light diffusion layer 6 and the antireflection film 7 are formed on the main surface of the flat glass, it is preferable that the conductive film is formed on the outermost surface thereof, that is, on the side closest to the substrate.
 反射防止膜7は、スパッタリング法や蒸着法などの公知の成膜方法を用いて、平板状ガラスの少なくとも一方の主面に形成できる。すなわち、反射防止膜を構成する高屈折率層及び低屈折率層を、その積層順に応じて、平板状ガラスの主面に形成していく。
 スパッタリング法としては、マグネトロンスパッタ、パルススパッタ、ACスパッタ、デジタルスパッタ等が挙げられる。蒸着法としては、真空蒸着法、イオンビームアシスト法、イオンプレーティング法などが挙げられる。
The antireflection film 7 can be formed on at least one main surface of the flat glass by using a known film forming method such as a sputtering method or a thin film deposition method. That is, the high-refractive index layer and the low-refractive index layer constituting the antireflection film are formed on the main surface of the flat glass according to the stacking order.
Examples of the sputtering method include magnetron sputtering, pulse sputtering, AC sputtering, digital sputtering and the like. Examples of the vapor deposition method include a vacuum vapor deposition method, an ion beam assist method, and an ion plating method.
 反射防止膜は、平板状ガラスの少なくとも一方の主面上に形成されていればよく、少なくとも基板が位置する側の主面上に形成されていることが好ましい。平板状ガラスの主面上に光拡散層6が形成される場合には、光拡散層の表面に、反射防止膜が形成されることが好ましい。 The antireflection film may be formed on at least one main surface of the flat glass, and is preferably formed on at least the main surface on the side where the substrate is located. When the light diffusing layer 6 is formed on the main surface of the flat glass, it is preferable that an antireflection film is formed on the surface of the light diffusing layer.
 本実施形態に係る外枠付きカバーガラスは、気密封止性に優れ、かつコスト的にも優位であるために生産性に優れる。さらに、基板への接合手段として、金属膜を介した接合以外に、金属フリットを用いることも可能である。
 このような特徴を有することから、例えば、液晶ディスプレイ等のバックライト、小型情報端末の操作ボタンにおける発光部、自動車用又は装飾用の照明、殺菌用途等の深紫外光LED、3D測距センサーのレーザー部、その他の光源として好適である。
The cover glass with an outer frame according to the present embodiment is excellent in airtight sealing property and also excellent in cost, so that it is excellent in productivity. Further, as a means for joining to the substrate, it is also possible to use a metal frit in addition to joining via a metal film.
Because of these characteristics, for example, backlights such as liquid crystal displays, light emitting parts in operation buttons of small information terminals, lighting for automobiles or decorations, deep ultraviolet light LEDs for sterilization applications, and 3D ranging sensors. It is suitable as a laser unit and other light sources.
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。なお、例1~例4は実施例であり、例5~例8は比較例である。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Examples 1 to 4 are examples, and examples 5 to 8 are comparative examples.
[平板状ガラス]
 平板状ガラス1として、50mm×50mm×1.1mmのホウケイ酸ガラス板(SCHOTT社製D263(登録商標)Teco)を用いた。
 平板状ガラス1の一方の主面上の全領域に、複数の凹型の非球面レンズを直接加工することで、光拡散層6を形成した。非球面レンズの最大サイズは200μmであり、拡散角は、全角で50°であった。
 次いで、平板状ガラス1の両主面上の全領域に、スパッタリング法により反射防止膜7を形成した。反射防止膜は両面共に、高屈折率層としてTaの層が、低屈折率層としてSiOの層が順に形成された、厚み0.4μmの膜とした。
 平板状ガラス1の光拡散層6が形成されている側の最表面の全領域に、導電性膜4として、厚さ0.3μmのITO膜をスパッタリング法により形成した。
 以上のようにして、光拡散層、反射防止膜及び導電性膜を備える平板状ガラスを得た。
[Flat glass]
As the flat glass 1, a 50 mm × 50 mm × 1.1 mm borosilicate glass plate (D263 (registered trademark) Teco manufactured by SCHOTT) was used.
The light diffusion layer 6 was formed by directly processing a plurality of concave aspherical lenses in the entire region on one main surface of the flat glass 1. The maximum size of the aspherical lens was 200 μm, and the diffusion angle was 50 ° in full angle.
Next, the antireflection film 7 was formed on both main surfaces of the flat glass 1 by a sputtering method. The antireflection film was a film having a thickness of 0.4 μm in which a layer of Ta 2 O 5 was formed as a high refractive index layer and a layer of SiO 2 was formed in order as a low refractive index layer on both sides.
An ITO film having a thickness of 0.3 μm was formed as a conductive film 4 by a sputtering method in the entire region of the outermost surface of the flat glass 1 on the side where the light diffusion layer 6 was formed.
As described above, a flat glass having a light diffusion layer, an antireflection film and a conductive film was obtained.
[例1]
 酸化物基準の百分率表示で、Bi:73質量%、ZnO:18質量%、B:5質量%、及びSiO:4質量%となるようにガラス原料を配合、混合して原料混合物とした。この原料混合物を白金ルツボに入れて1600℃で60分溶融させた後、溶融状態のガラスを流し出し冷却した。このガラスを溶媒であるエチルアルコールと共に容器に入れ、アルミナ製ボールミルにより40時間粉砕してガラス粉末(ガラスA)を得た。得られたガラス粉末の50%粒径は0.6μmであった。
 得られたガラス粉末が80質量%、コージェライト粉末(丸ス釉薬社製、商品名:SS-600)が20質量%となるように配合し、混合することによりガラスセラミックス組成物を調製した。ガラスセラミックス組成物1kgに、有機溶剤として、トルエン:メチルエチルケトン:メタノール:2-ブタノール=3:3:1:1(質量比)で混合したものを0.35kg、可塑剤として、アジピン酸ビス(2-エチルヘキシル)を0.060kg、バインダーとして、アクリル樹脂を0.447kg、及び分散剤(ビックケミー社製、商品名:DISPERBYK180)を0.015kg配合し、混合してスラリーを調製した。
 スラリーをポリエチレンテレフタレート(PET)フィルム上にドクターブレード法により塗布し、乾燥させることで、グリーンシートを製造した。グリーンシートの一枚あたりの厚さは200μmであった。
[Example 1]
Glass raw materials are blended and mixed so as to have Bi 2 O 3 : 73% by mass, ZnO: 18% by mass, B 2 O 3 : 5% by mass, and SiO 2 : 4% by mass in an oxide-based percentage display. The raw material mixture was prepared. This raw material mixture was placed in a platinum crucible and melted at 1600 ° C. for 60 minutes, and then the molten glass was poured out and cooled. This glass was placed in a container together with ethyl alcohol as a solvent and pulverized with an alumina ball mill for 40 hours to obtain glass powder (glass A). The 50% particle size of the obtained glass powder was 0.6 μm.
A glass ceramic composition was prepared by blending and mixing the obtained glass powder in an amount of 80% by mass and the cordierite powder (manufactured by Marusu Glazed Co., Ltd., trade name: SS-600) in an amount of 20% by mass. A mixture of 1 kg of glass ceramic composition with toluene: methyl ethyl ketone: methanol: 2-butanol = 3: 3: 1: 1 (mass ratio) as an organic solvent was 0.35 kg, and bis adipate (2) as a plasticizer. -Ethylhexyl) was 0.060 kg, acrylic resin was 0.447 kg as a binder, and 0.015 kg of a dispersant (manufactured by Big Chemie, trade name: DISPERBYK180) was mixed and mixed to prepare a slurry.
A green sheet was produced by applying the slurry on a polyethylene terephthalate (PET) film by the doctor blade method and drying it. The thickness per green sheet was 200 μm.
 グリーンシートを6枚積層し、孔あけ機を用いて、2.57mm×1.75mmの略矩形状の孔と、及び金属導体を形成するための直径170μmの貫通孔を開けた。
 グリーンシートの一方の面上に銀ペースト(大研化学工業社製、商品名:US-202A)をスクリーン印刷法により塗布し、貫通孔には同じ銀ペーストを充填して、未焼成の金属皮膜3a及び金属導体5を形成した。
Six green sheets were laminated, and a substantially rectangular hole of 2.57 mm × 1.75 mm and a through hole having a diameter of 170 μm for forming a metal conductor were made by using a drilling machine.
Silver paste (manufactured by Daiken Kagaku Kogyo Co., Ltd., trade name: US-202A) is applied on one surface of the green sheet by the screen printing method, and the same silver paste is filled in the through holes to form an unfired metal film. 3a and the metal conductor 5 were formed.
 次に、グリーンシートの金属皮膜3aが形成されている側とは反対側の面上に、光拡散層、反射防止膜及び導電性膜を備える平板状ガラスを重ね合わせた。この際、平板状ガラスは、導電性膜側の主面がグリーンシートと接合されるような向きとして重ね合わせた。
 これを65℃、14000Paの熱圧着により一体化して、未焼結外枠付きカバーガラスを得た。次いで450℃で2時間保持して脱脂し、さらに520℃で30分間保持することで焼成した。焼成により、外枠は焼結されたガラスセラミックスとなると共に、外枠と平板状ガラスとが直接接合された。その後、外枠の金属皮膜3aの表面上に下地としてニッケル皮膜をめっき処理により形成し、さらに、金属皮膜3bとして金の皮膜をめっき処理により形成した。これにより、外枠付きカバーガラスを得た。外枠の高さは870μmであった。
Next, a flat glass having a light diffusion layer, an antireflection film and a conductive film was superposed on the surface of the green sheet opposite to the side on which the metal film 3a was formed. At this time, the flat glass was laminated so that the main surface on the conductive film side was joined to the green sheet.
This was integrated by thermocompression bonding at 65 ° C. and 14000 Pa to obtain a cover glass with an unsintered outer frame. Then, it was held at 450 ° C. for 2 hours for degreasing, and further held at 520 ° C. for 30 minutes for firing. By firing, the outer frame became sintered glass ceramics, and the outer frame and the flat glass were directly bonded. Then, a nickel film was formed as a base on the surface of the metal film 3a of the outer frame by a plating treatment, and a gold film was further formed by a plating treatment as the metal film 3b. As a result, a cover glass with an outer frame was obtained. The height of the outer frame was 870 μm.
[例2]
 グリーンシートにおけるガラス原料を、酸化物基準の百分率表示で、Bi:72質量%、B:10質量%、ZnO:9質量%、BaO:6質量%、及びSiO:3質量%となるように配合、混合してガラス粉末(ガラスB)を得た以外は、例1と同様にして外枠付きカバーガラスを得た。
[Example 2]
The glass raw material in the green sheet is expressed as an oxide-based percentage, Bi 2 O 3 : 72% by mass, B 2 O 3 : 10% by mass, ZnO: 9% by mass, BaO: 6% by mass, and SiO 2 : 3 A cover glass with an outer frame was obtained in the same manner as in Example 1 except that the glass powder (glass B) was obtained by blending and mixing so as to have a mass%.
[例3、例5、例7]
 ガラスセラミックス組成物におけるコージェライト粉末(丸ス釉薬社製、商品名:SS-600)を表1の「結晶体粉末」の欄に記載の含有量に変更した以外は、例1と同様にして外枠付きカバーガラスを得た。
[Example 3, Example 5, Example 7]
The same as in Example 1 except that the cordierite powder (manufactured by Marusu Glazed Co., Ltd., trade name: SS-600) in the glass-ceramic composition was changed to the content described in the “Crystal powder” column of Table 1. Obtained a cover glass with an outer frame.
[例4、例6、例8]
 ガラスセラミックス組成物におけるコージェライト粉末(丸ス釉薬社製、商品名:SS-600)を表1の「結晶体粉末」の欄に記載の含有量に変更した以外は、例2と同様にして外枠付きカバーガラスを得た。
[Example 4, Example 6, Example 8]
The same as in Example 2 except that the cordierite powder (manufactured by Marusu Glazed Co., Ltd., trade name: SS-600) in the glass-ceramic composition was changed to the content described in the “Crystal powder” column of Table 1. Obtained a cover glass with an outer frame.
[評価]
 平板状ガラス及びガラスセラミックスにおけるガラスマトリックスのガラス転移点Tg及びガラス軟化点Tsは、示差熱分析(DTA)により5℃/minの条件で測定したチャートの第一変曲点及び第四変曲点から決定した。結果を表1に示す。
[evaluation]
The glass transition point Tg and glass softening point Ts of the glass matrix in flat glass and glass ceramics are the first and fourth eccentric points of the chart measured under the condition of 5 ° C./min by differential thermal analysis (DTA). It was decided from. The results are shown in Table 1.
 平板状ガラス及びガラスセラミックスの熱膨張係数は、熱機械分析(TMA)により、50℃から350℃の範囲で5℃/minの条件で測定した時の1℃当たりの伸びの割合の平均値により決定した。結果を表1に示す。なお、表中の「-」は未測定であることを意味する。 The coefficient of thermal expansion of flat glass and glass ceramics is based on the average value of the rate of elongation per 1 ° C when measured at 5 ° C / min in the range of 50 ° C to 350 ° C by thermomechanical analysis (TMA). Decided. The results are shown in Table 1. In addition, "-" in the table means that it has not been measured.
 未焼結外枠付きカバーガラスから脱脂及び焼成により、平板状ガラスと外枠とが直接接合された外付きカバーガラスを得るにあたって、平板状ガラスへのクラックの発生の有無を顕微鏡観察により確認した。結果を表1に示す。なお、未焼結外枠付きカバーガラスを焼成しても、外枠が焼結してガラスセラミックスにならなかった場合には、表1に「(焼結せず)」と記した。 When obtaining an external cover glass in which the flat glass and the outer frame were directly bonded by degreasing and firing from the unsintered cover glass with an outer frame, the presence or absence of cracks in the flat glass was confirmed by microscopic observation. .. The results are shown in Table 1. In addition, when the cover glass with an unsintered outer frame was fired but the outer frame was not sintered to become glass ceramics, it was described as "(not sintered)" in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上の結果より、平板状ガラスの熱膨張係数がガラスセラミックスの熱膨張係数以上の値であり、それらの差を小さくすることで、平板状ガラスにクラックを生じさせることなく、両者を直接接合できた。これにより、気密封止性を維持しつつ、カバーガラスのダメージやクラックが軽減された外枠付きカバーガラスを提供できることが確認された。また、外枠の材料として用いたグリーンシートの積層数を変更することで、外枠の高さも所望する値を実現可能である。 From the above results, the coefficient of thermal expansion of the flat glass is higher than the coefficient of thermal expansion of the glass ceramics, and by reducing the difference between them, the two can be directly bonded without causing cracks in the flat glass. rice field. As a result, it was confirmed that it is possible to provide a cover glass with an outer frame in which damage and cracks of the cover glass are reduced while maintaining the airtight sealing property. Further, by changing the number of laminated green sheets used as the material of the outer frame, it is possible to realize a desired value for the height of the outer frame.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2020年12月23日出願の日本特許出願(特願2020-213972)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on December 23, 2020 (Japanese Patent Application No. 2020-213972), the contents of which are incorporated herein by reference.
 1 平板状ガラス
 2 外枠
 3 金属膜
  3a 金属皮膜
  3b 金属皮膜
 4 導電性膜
 5 金属導体
 6 光拡散層
 7 反射防止膜
10 外枠付きカバーガラス
1 Flat glass 2 Outer frame 3 Metal film 3a Metal film 3b Metal film 4 Conductive film 5 Metal conductor 6 Light diffusion layer 7 Antireflection film 10 Cover glass with outer frame

Claims (9)

  1.  平板状ガラスの一方の主面上に外枠が設けられた外枠付きカバーガラスであって、
     前記外枠は、ガラスマトリックス中にフィラー成分が分散されたガラスセラミックスからなり、
     前記ガラスセラミックスに含まれる前記ガラスマトリックスのガラス軟化点が、前記平板状ガラスのガラス転移点より低く、
     前記平板状ガラスの熱膨張係数が、前記ガラスセラミックスの熱膨張係数以上の値で、それらの差が0~20×10-7/℃であり、
     前記平板状ガラスと前記ガラスセラミックスとが直接接合されている、外枠付きカバーガラス。
    A cover glass with an outer frame having an outer frame provided on one main surface of flat glass.
    The outer frame is made of glass ceramics in which a filler component is dispersed in a glass matrix.
    The glass softening point of the glass matrix contained in the glass ceramics is lower than the glass transition point of the flat glass.
    The coefficient of thermal expansion of the flat glass is equal to or greater than the coefficient of thermal expansion of the glass ceramics, and the difference between them is 0 to 20 × 10 -7 / ° C.
    A cover glass with an outer frame in which the flat glass and the glass ceramics are directly bonded.
  2.  前記ガラスマトリックスが、酸化ビスマス及び酸化ホウ素の少なくとも一方を含む、請求項1に記載の外枠付きカバーガラス。 The cover glass with an outer frame according to claim 1, wherein the glass matrix contains at least one of bismuth oxide and boron oxide.
  3.  前記ガラスセラミックスが、前記フィラー成分として酸化アルミニウムを含む結晶体粉末を5~40質量%含有する、請求項1又は2に記載の外枠付きカバーガラス。 The cover glass with an outer frame according to claim 1 or 2, wherein the glass ceramic contains 5 to 40% by mass of a crystal powder containing aluminum oxide as the filler component.
  4.  前記外枠の、前記平板状ガラスが接合している面と対向する面の表面に、金属膜が形成されている、請求項1~3のいずれか1項に記載の外枠付きカバーガラス。 The cover glass with an outer frame according to any one of claims 1 to 3, wherein a metal film is formed on the surface of the outer frame facing the surface to which the flat glass is joined.
  5.  前記外枠が、前記平板状ガラスに対して垂直に設けられた、請求項1~4のいずれか1項に記載の外枠付きカバーガラス。 The cover glass with an outer frame according to any one of claims 1 to 4, wherein the outer frame is provided perpendicular to the flat glass.
  6.  前記外枠の高さは、350μm以上1.5mm以下である、請求項1~5のいずれか1項に記載の外枠付きカバーガラス。 The cover glass with an outer frame according to any one of claims 1 to 5, wherein the height of the outer frame is 350 μm or more and 1.5 mm or less.
  7.  前記平板状ガラスが、前記外枠が接合している側の主面の少なくとも一部の領域に導電性膜を備え、
     前記外枠の内部に、前記外枠を貫通する金属導体が形成され、
     前記金属導体は、前記平板状ガラスに対して垂直に設けられ、
     前記導電性膜と前記金属導体とが導通している、請求項1~6のいずれか1項に記載の外枠付きカバーガラス。
    The flat glass has a conductive film in at least a part of the main surface on the side to which the outer frame is joined.
    A metal conductor penetrating the outer frame is formed inside the outer frame.
    The metal conductor is provided perpendicular to the flat glass.
    The cover glass with an outer frame according to any one of claims 1 to 6, wherein the conductive film and the metal conductor are conductive.
  8.  前記平板状ガラスが、少なくとも一方の主面上に反射防止膜を備える、請求項1~7のいずれか1項に記載の外枠付きカバーガラス。 The cover glass with an outer frame according to any one of claims 1 to 7, wherein the flat glass has an antireflection film on at least one main surface.
  9.  前記平板状ガラスが、少なくとも一方の主面上に光拡散層を備える、請求項1~8のいずれか1項に記載の外枠付きカバーガラス。 The cover glass with an outer frame according to any one of claims 1 to 8, wherein the flat glass has a light diffusion layer on at least one main surface.
PCT/JP2021/046890 2020-12-23 2021-12-17 Cover glass equipped with outer frame WO2022138518A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180087136.9A CN116670082A (en) 2020-12-23 2021-12-17 Cover glass with outer frame
JP2022571420A JPWO2022138518A1 (en) 2020-12-23 2021-12-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-213972 2020-12-23
JP2020213972 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022138518A1 true WO2022138518A1 (en) 2022-06-30

Family

ID=82157854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046890 WO2022138518A1 (en) 2020-12-23 2021-12-17 Cover glass equipped with outer frame

Country Status (4)

Country Link
JP (1) JPWO2022138518A1 (en)
CN (1) CN116670082A (en)
TW (1) TW202226465A (en)
WO (1) WO2022138518A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024530A1 (en) * 2022-07-29 2024-02-01 Agc株式会社 Cover glass with outer frame, semiconductor light emitting device, and semiconductor light receiving device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177375A (en) * 2009-01-28 2010-08-12 Citizen Electronics Co Ltd Light-emitting device and manufacturing method of the same
WO2020071047A1 (en) * 2018-10-04 2020-04-09 日本電気硝子株式会社 Airtight package

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177375A (en) * 2009-01-28 2010-08-12 Citizen Electronics Co Ltd Light-emitting device and manufacturing method of the same
WO2020071047A1 (en) * 2018-10-04 2020-04-09 日本電気硝子株式会社 Airtight package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024530A1 (en) * 2022-07-29 2024-02-01 Agc株式会社 Cover glass with outer frame, semiconductor light emitting device, and semiconductor light receiving device

Also Published As

Publication number Publication date
CN116670082A (en) 2023-08-29
JPWO2022138518A1 (en) 2022-06-30
TW202226465A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
TWI641574B (en) Cover glass for light-emitting diode package, sealing structure and light-emitting device
JP5915527B2 (en) Glass ceramic composition, substrate for light emitting element, and light emitting device
WO2010084923A1 (en) Substrate for electronic device and electronic device using same
KR20150016372A (en) Optical filter member and imaging device provided with same
TW201138029A (en) Light-reflecting substrate, substrate which can be mounted in light-emitting element, light-emitting device, and process for production of substrate which can be mounted in light-emitting element
JP6819613B2 (en) Manufacturing methods for glass substrates, laminated substrates, laminates, and semiconductor packages
US9188713B2 (en) Light reflective substrate and light emitting device using the same
WO2022138518A1 (en) Cover glass equipped with outer frame
EP2732969A1 (en) Composite substrate
US8618724B2 (en) Reflective frame for light-emitting element, substrate for light-emitting element and light-emitting device
JP5705881B2 (en) Reflective member, light emitting element mounting substrate, and light emitting device
TWI754633B (en) Glass powder and sealing material using the same
TW201212295A (en) Substrate for light-emitting element, light-emitting device, and method for producing substrate for light-emitting element
WO2022138519A1 (en) Cover glass with outer frame, semiconductor light-emitting device, and semiconductor light-receiving device
WO2023243472A1 (en) Cover glass with outer frame, semiconductor light emitting device, and semiconductor light receiving device
WO2024024530A1 (en) Cover glass with outer frame, semiconductor light emitting device, and semiconductor light receiving device
TW201901866A (en) Method for manufacturing hermetic package and hermetic package
EP2557438A1 (en) Material for light-reflecting substrate, light-reflecting substrate and light emitting device using the same
JP5516026B2 (en) Glass ceramic composition, light emitting diode element substrate, and light emitting device
TW202414696A (en) Cover glass with frame, semiconductor light emitting device and semiconductor light receiving device
JP5655375B2 (en) Glass ceramic composition, light emitting diode element substrate and light emitting device.
EP3620440B1 (en) Laminate for preparing a wavelength converting member and process for preparing a wavelength converting member
CN116635341A (en) Cover glass with outer frame, semiconductor light emitting device and semiconductor light receiving device
WO2023106269A1 (en) Glass ceramic composition
US20230055612A1 (en) Connected substrate and method for manufacturing element substrate using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571420

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180087136.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910663

Country of ref document: EP

Kind code of ref document: A1