WO2022138206A1 - Wound dressing material - Google Patents

Wound dressing material Download PDF

Info

Publication number
WO2022138206A1
WO2022138206A1 PCT/JP2021/045361 JP2021045361W WO2022138206A1 WO 2022138206 A1 WO2022138206 A1 WO 2022138206A1 JP 2021045361 W JP2021045361 W JP 2021045361W WO 2022138206 A1 WO2022138206 A1 WO 2022138206A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogel
woven fabric
wound dressing
gelatin
nonwoven fabric
Prior art date
Application number
PCT/JP2021/045361
Other languages
French (fr)
Japanese (ja)
Inventor
田畑泰彦
夏原久美子
島田直樹
Original Assignee
日本毛織株式会社
田畑泰彦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本毛織株式会社, 田畑泰彦 filed Critical 日本毛織株式会社
Priority to JP2022572124A priority Critical patent/JPWO2022138206A1/ja
Publication of WO2022138206A1 publication Critical patent/WO2022138206A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/32Proteins, polypeptides; Degradation products or derivatives thereof, e.g. albumin, collagen, fibrin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents

Definitions

  • the present invention relates to a wound dressing used for repairing a wound such as a defect in a tissue such as skin or a wound.
  • Patent Document 1 proposes a wound dressing containing a hydrogel fiber layer containing an organic fiber capable of forming a hydrogel.
  • wound healing requires early cell invasion and blood vessel invasion into the wound covering material after treating the wound site with the wound covering material, such as collagen sponge and the wound covering material described in Patent Document 1.
  • wound dressings are required to improve early invasion of cells and blood vessels into the interior.
  • the present invention provides a wound dressing in which early cell invasion and blood vessel invasion into the inside of the wound dressing are improved during use in order to solve the above-mentioned conventional problems.
  • the present invention is a wound dressing containing a hydrogel nonwoven fabric containing gelatin as a main component, wherein the hydrogel nonwoven fabric has a thickness retention rate of 86% or more after 6 hours of treatment with collagenase. Regarding the covering material.
  • wound dressing of the present invention By using the wound dressing of the present invention, early cell invasion and blood vessel invasion into the inside of the wound dressing can be improved.
  • the inventors of the present invention have repeated studies in order to solve the above-mentioned problems.
  • a hydrogel non-woven fabric containing gelatin as a main component and having a thickness retention rate of 86% or more after treatment with collagenase for 6 hours, early cell invasion and blood vessel invasion into the wound dressing during use ( It was found that angiogenesis) was improved.
  • blood vessels can invade the inside of the wound dressing, that is, angiogenesis can be promoted without using a cell growth factor, and the wound site can be affected. It induces angiogenesis and can be applied to diabetic patients and malignant tumor patients.
  • the thickness retention rate after 6 hours of treatment with collagenase is 86% or more, so that when the wound dressing is used, for example, 1 to 2 weeks after transplanting the wound dressing, the wound dressing is covered.
  • the communication hole structure that allows the invasion of cells and blood vessels into the material is maintained, and early angiogenesis can be induced.
  • the wound dressing comprises a hydrogel non-woven fabric containing gelatin as a main component.
  • "having gelatin as a main component” means that gelatin is contained in an amount of 90% by mass or more.
  • the hydrogel nonwoven fabric may contain 95% by mass or more of gelatin, or may be substantially composed of 100% by mass of gelatin.
  • the hydrogel nonwoven fabric may contain 10% by mass or less of other components or 5% by mass or less, if necessary.
  • Other components may be other biocompatible polymers, cross-linking agents, agents, plasticizers, other additives and the like.
  • the type and site of the animal from which collagen, which is the raw material of the gelatin, is derived are not particularly limited.
  • Collagen may be, for example, derived from spinal animals or fish.
  • collagen derived from various organs and tissues such as dermis, ligaments, tendons, bones and cartilage can be appropriately used.
  • the method for preparing gelatin from collagen is not particularly limited, and examples thereof include acid treatment, alkali treatment, and enzyme treatment.
  • the molecular weight of the gelatin is not particularly limited, and gelatin having various molecular weights can be appropriately selected and used.
  • one type of gelatin may be used, or two or more types may be used in combination.
  • the gelatin is not particularly limited, but has appropriate flexibility and hardness, and from the viewpoint of enhancing the handleability of the hydrogel nonwoven fabric, the jelly strength is preferably 100 g or more and 400 g or less, and more preferably 150 g or more and 360 g. It is as follows. In one or more embodiments of the present invention, the jelly strength is measured according to JIS K 6503: 2001.
  • the gelatin may be a commercially available product.
  • the other biocompatible polymer is not particularly limited, but for example, a natural polymer or a synthetic polymer can be used.
  • natural polymers include proteins and polysaccharides.
  • the protein include collagen, fibronectin, fibrinogen, laminin, fibrin and the like.
  • polysaccharides include natural high polymers such as chitosan, calcium alginate, heparan sulfate, chondroitin sulfate, hyaluronic acid, heparin, starch, gellan gum, agarose, guar gum, xanthan gum, carrageenan, pectin, locust bean gum, tamarind gum, and dieutan gum.
  • a molecule may be used, or a derivative of a natural polymer such as carboxymethyl cellulose may be used.
  • the synthetic polymer include polyethylene glycol, polypropylene glycol, polyethylene terephthalate, polyvinyl alcohol, thermoplastic elastomer, polypropylene, polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, polydimethylsiloxane, cycloolefin polymer, and amorphous fluororesin.
  • non-absorbable synthetic polymers and bioabsorbable polymers such as polylactic acid, polyglucuric acid, polycaprolactone and polydioxanone.
  • one type may be used, or two or more types may be used.
  • the hydrogel non-woven fabric has a thickness retention rate (hereinafter, also referred to as an initial thickness retention rate) of 86% or more after being treated with collagenase for 6 hours.
  • the initial thickness retention rate of the hydrogel non-woven fabric is preferably 88% or more, more preferably 90% or more. This maintains a communication hole structure that allows cells and blood vessels to enter the wound dressing 1 to 2 weeks after treatment with the wound dressing, and can induce early angiogenesis. ..
  • swelling means swelling to saturation with one or more liquids selected from the group consisting of water or buffers (phosphate buffers, etc.).
  • the hydrogel nonwoven fabric can be swollen by immersing it in one or more liquids selected from the group consisting of water or a buffer solution for about 10 minutes or more.
  • the hydrogel non-woven fabric preferably has a compressive strength retention rate (hereinafter, also referred to as an initial compressive strength retention rate) after 6 hours of treatment with collagenase of 70% or more, more preferably 80% or more, and 90%. % Or more is more preferable.
  • a compressive strength retention rate hereinafter, also referred to as an initial compressive strength retention rate
  • This allows for the invasion of cells and blood vessels into the wound dressing early 1-2 weeks after transplantation, even when compressed by surrounding tissue at the wound site, i.e. the transplant site. Is easy to maintain and it is easy to induce early angiogenesis.
  • "compressive strength” means the stress at 70% strain in a swollen hydrogel nonwoven fabric.
  • the compressive strength of the hydrogel nonwoven fabric is not particularly limited, but is preferably 5000 Pa or more, more preferably 10,000 Pa or more, from the viewpoint of enhancing the invasion of cells and blood vessels into the hydrogel nonwoven fabric at an early stage. It is more preferably 15,000 Pa or more. Further, from the viewpoint of ease of handling at the time of transplantation and the decomposability of the hydrogel nonwoven fabric in the later stage, the compressive strength of the hydrogel nonwoven fabric is preferably 38000 Pa or less, more preferably 36000 Pa or less, and 31000 Pa or less. Is more preferable.
  • the fibers constituting the hydrogel nonwoven fabric are not particularly limited, but the average fiber diameter in the swollen state is preferably 10 ⁇ m or more and 200 ⁇ m or less, more preferably 20 ⁇ m or more and 150 ⁇ m or less, and further preferably 30 ⁇ m or more and 100 ⁇ m or less. It is particularly preferably 40 ⁇ m or more and 80 ⁇ m or less.
  • average fiber diameter means the average value of the diameters of 50 fibers arbitrarily selected from the swollen hydrogel nonwoven fabric.
  • the fibers constituting the hydrogel non-woven fabric are partially welded at the fiber intersections.
  • This partial welding is not particularly limited, but can be developed, for example, by depositing fibers in a completely unsolidified state blown off by a pressure fluid during the production of the hydrogel nonwoven fabric, as described later.
  • the hydrogel non-woven fabric has a bridge structure, which is easy to mold into a desired shape and has high molding stability.
  • the fiber intersections are partially welded, the hydrogel non-woven fabric does not become flat even after swelling.
  • some of the fiber intersections may be welded, or all of the fiber intersections may be welded.
  • the thickness of the hydrogel non-woven fabric is not particularly limited and can be appropriately determined depending on the site to which the hydrogel non-woven fabric is applied, etc.
  • the thickness in the swollen state is preferably 0.1 mm or more, more preferably 0.2 mm or more, further preferably 0.3 mm or more, and particularly preferably 0.4 mm or more.
  • the thickness of the hydrogel nonwoven fabric in the swollen state is preferably 5 mm or less, more preferably 3 mm or less, and more preferably 2 mm. It is more preferably 1 mm or less, and even more preferably 1 mm or less.
  • the thickness of the hydrogel nonwoven fabric is not particularly limited, but more specifically, the thickness in the swollen state is preferably 0.1 mm or more and 5 mm or less, more preferably 0.2 mm or more and 3 mm or less, and 0. It is more preferably 3 mm or more and 2 mm or less, further preferably 0.4 mm or more and 2 mm or less, and even more preferably 0.4 mm or more and 1 mm or less.
  • the basis weight of the hydrogel non-woven fabric is not particularly limited and can be appropriately determined depending on the site to which the hydrogel non-woven fabric is applied. From the viewpoint, the basis weight is preferably 40 g / m 2 or more, more preferably 50 g / m 2 or more, and even more preferably 60 g / m 2 or more. Further, from the viewpoint of handleability and decomposability of the hydrogel nonwoven fabric in the later stage, the texture of the hydrogel nonwoven fabric is preferably 500 g / m 2 or less, more preferably 400 g / m 2 or less, and 350 g. It is even more preferable that it is / m 2 or less, and it is more preferable that it is 300 g / m 2 or less.
  • the basis weight of the hydrogel nonwoven fabric is not particularly limited, but more specifically, it is preferably 40 g / m 2 or more and 500 g / m 2 or less, and more preferably 50 g / m 2 or more and 400 g / m 2 or less. It is preferably 60 g / m 2 or more and 350 g / m 2 or less. In one or more embodiments of the present invention, the basis weight of the hydrogel non-woven fabric is measured according to JIS L 1913: 2010.
  • the pore size of the hydrogel nonwoven fabric is not particularly limited and can be appropriately determined depending on the site to which the hydrogel nonwoven fabric is applied, etc.
  • the pore diameter is preferably 30 ⁇ m or more, more preferably 60 ⁇ m or more, and further preferably 100 ⁇ m or more.
  • the pore diameter in the swollen state is preferably 700 ⁇ m or less, more preferably 600 ⁇ m or less, and more preferably 500 ⁇ m or less. Is even more preferable.
  • the pore size of the hydrogel nonwoven fabric is not particularly limited, but more specifically, the pore size in the swollen state is preferably 30 ⁇ m or more and 700 ⁇ m or less, more preferably 60 ⁇ m or more and 600 ⁇ m or less, and 100 ⁇ m or more and 500 ⁇ m or less. It is more preferable to have.
  • the pore size of the gelatin nonwoven fabric can be calculated by the following formula (1) based on the assumption of Wrotnowski.
  • the hydrogel nonwoven fabric has at least an initial thickness retention rate within a predetermined range, preferably an initial thickness retention rate, and an initial compressive strength retention rate within a predetermined range, more preferably an initial thickness.
  • angiogenesis can be induced even if the cell growth factor is not contained.
  • the hydrogel non-woven fabric and wound covering material are also referred to as cell growth factors (also referred to as cell growth factors) from the viewpoint of application to diabetic patients and malignant tumor patients. It is preferable that it does not contain substances such as).
  • the cell growth factor include basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF) and the like.
  • the hydrogel non-woven fabric may be coated with a cell adhesion factor, a cell inducing factor, a cell proliferation factor, a substance that gives nutrition or energy to cells, a substance that suppresses or enhances the function of cells, or the like, if necessary. It may be immersed in a solution containing the substance and penetrated into the fiber.
  • the cell adhesion factor is not particularly limited, and examples thereof include fibronectin and the like.
  • the substance that gives nutrition and energy to the cells is not particularly limited, and examples thereof include ATP, pyruvic acid, and glutamine.
  • the hydrogel non-woven fabric is not particularly limited, but from the viewpoint of suppressing the generation of impurities and preventing product contamination, the spinning fluid containing gelatin is extruded into the air from the nozzle discharge port and is located behind the nozzle discharge port. , The pressure fluid is injected forward from the fluid injection port in a non-contact state with the nozzle discharge port, and the extruded spinning liquid is associated with the pressure fluid to form fibers, and the obtained fibers are accumulated. It is preferable to make it into a non-woven fabric. When the fibers are accumulated (deposited) after spinning, the fibers are laminated in a state of containing water, so that the fibers are welded together or entangled with each other to be integrated.
  • the collection distance is, for example, preferably 10 cm or more and 200 cm or less, more preferably 20 cm or more and 180 cm or less, and further preferably 30 cm or more and 150 cm or less.
  • FIG. 11 is a schematic explanatory view of a hydrogel nonwoven fabric manufacturing apparatus.
  • the spinning liquid 2 containing gelatin contained in the heating tank 1 is extruded into the air from the nozzle discharge port 3.
  • a predetermined pressure is applied to the heating tank 1 by the compressor 4.
  • Reference numeral 12 is a heat insulating container.
  • the pressure fluid 7 is injected forward from the fluid injection port 5 which is located behind the nozzle discharge port 3 and is in a non-contact state with the nozzle discharge port 3.
  • a pressure fluid (for example, compressed air) is supplied from the compressor 6 to the fluid injection port 5.
  • the distance between the fluid injection port 5 and the nozzle discharge port 3 is preferably 5 mm or more and 30 mm or less, and more preferably 5 mm or more and 15 mm or less.
  • the extruded spinning liquid is accompanied by the pressure fluid 7 to become gelatin fibers 8, and is deposited as gelatin nonwoven fabric 9 on the take-up roll 11. At this time, since the deposited fibers contain water and are not completely solidified, the fibers in contact with each other at at least a part of the fiber intersections are welded to each other.
  • other collecting means such as a net may be used instead of the take-up roll.
  • gelatin alone or, if necessary, gelatin and other biocompatible polymers that can be used as the above-mentioned other components are dissolved in a solvent, preferably water, to prepare a spinning solution.
  • the dissolution temperature preferably 20 ° C. or higher and 90 ° C. or lower, and more preferably 40 ° C. or higher and 90 ° C. or lower.
  • gelatin may be dissolved in a solvent such as water and then filtered to remove foreign substances and dust. Further, if necessary, the dissolved air may be subsequently removed by depressurization or vacuum defoaming.
  • the degree of vacuum at the time of defoaming under reduced pressure is preferably 5 kPa or more and 30 kPa or less.
  • gelatin is water-soluble, it can be spun in an aqueous solution as a spinning solution, and its safety to the living body is improved.
  • water for example, pure water, distilled water, ultrapure water and the like can be appropriately used.
  • a spinning solution can be prepared by dissolving it in water at the same time as gelatin.
  • the temperature of the spinning liquid is preferably 20 ° C. or higher and 90 ° C. or lower, and more preferably 40 ° C. or higher and 90 ° C. or lower.
  • gelatin can maintain a stable sol state.
  • the gelatin concentration of the gelatin aqueous solution is preferably 30% by mass or more and 55% by mass or less when the gelatin aqueous solution is 100% by mass. A more preferable concentration is 35% by mass or more and 50% by mass or less. At the above concentration, a stable sol state can be maintained.
  • the viscosity of the gelatin aqueous solution (spinning solution) is preferably 500 mPa ⁇ s or more and 3000 mPa ⁇ s or less. If the viscosity of the gelatin aqueous solution is within the above range, stable spinning can be achieved.
  • the spinning liquid is discharged from the nozzle of the spinning machine, a pressure fluid is supplied from around the nozzle, the discharged gelatin aqueous solution is associated with the pressure fluid to form fibers, and the obtained gelatin fibers are accumulated to accumulate the obtained gelatin non-woven fabric.
  • the discharge pressure of the nozzle is not particularly limited, but may be, for example, 0.1 MPa or more and 1 MPa or less.
  • the temperature of the pressure fluid is preferably 20 ° C. or higher and 120 ° C. or lower, and more preferably 80 ° C. or higher and 120 ° C. or lower. Although it depends on the flow velocity of the pressure fluid and the temperature of the ambient atmosphere, stable spinning can be achieved within the above temperature range. It is preferable to use air as the pressure fluid, and the pressure is preferably 0.1 MPa or more and 1 MPa or less. Within the above range, the spinning liquid extruded into the air from the nozzle discharge port can be blown off to form fibers.
  • the hydrogel non-woven fabric is preferably crosslinked. This makes it possible to improve morphological stability and water resistance.
  • the cross-linking may be a chemical cross-linking using a compound such as a cross-linking agent, but from the viewpoint of biosafety, the cross-linking shall be a cross-linking using a cross-linking agent having bio-safety and / or a cross-linking without using a cross-linking agent. Is preferable.
  • Examples of the cross-linking without using a cross-linking agent include thermal cross-linking, radiation cross-linking such as electron beam and ⁇ -ray, and ultraviolet cross-linking.
  • thermal crosslinking is preferable, and thermal dehydration crosslinking is more preferable.
  • the thermal cross-linking may be performed, for example, at 100 ° C. or higher and 180 ° C. or lower, or at 100 ° C. or higher and 160 ° C. or lower.
  • the cross-linking time may be, for example, 24 hours or more and 96 hours or less.
  • the thermal dehydration crosslinking may be performed, for example, at 100 ° C. or higher and 180 ° C. or lower for 24 hours or more and 96 hours or less, or at 100 ° C.
  • the thermal dehydration crosslinking may be performed under a vacuum of 1 kPa or less, for example. It may be dried before cross-linking. The drying is not particularly limited, but can be performed by, for example, air-drying at room temperature or freeze-drying.
  • a hydrogel non-woven fabric having a desired initial thickness retention rate, initial compression strength retention rate, thickness, grain size, fiber diameter, pore diameter and the like can be obtained.
  • the initial thickness retention rate and the initial compressive strength retention rate can be increased.
  • the initial thickness retention rate and the initial compressive strength retention rate can be increased by shortening the distance between the fluid injection port and the nozzle discharge port and increasing the fiber intersection points.
  • the hydrogel non-woven fabric may be cut into a predetermined shape and size, if necessary.
  • the hydrogel non-woven fabric may be sterilized by ethylene oxide gas sterilization, steam (autoclave), electron beam irradiation, irradiation with ⁇ -rays or the like, or may be sterilized by ethanol treatment or the like.
  • ethylene oxide gas sterilization steam (autoclave)
  • electron beam irradiation irradiation with ⁇ -rays or the like
  • ethanol treatment or the like may be sterilized by ethanol treatment or the like.
  • cross-linking can be performed at the same time as sterilization.
  • the wound dressing is used so that one surface of the hydrogel nonwoven fabric is in contact with the wound site. That is, in the wound dressing, one surface of the hydrogel non-woven fabric is on the wound surface side.
  • the wound dressing may contain a protective film in addition to the hydrogel non-woven fabric.
  • the protective film is preferably made of a waterproof material. This makes it possible to prevent moisture from the outside other than the wound site from invading the hydrogel non-woven fabric. Since the protective film has self-adhesiveness, it may be adhered to the hydrogel non-woven fabric, or may be adhered to the hydrogel non-woven fabric via the pressure-sensitive adhesive layer.
  • the protective film can be placed on one or both surfaces of the hydrogel non-woven fabric. When using the wound dressing, one protective film may be peeled off and transplanted so that one surface of the hydrogel non-woven fabric is in contact with the wound site of the tissue.
  • the manufacturing process of the hydrogel non-woven fabric and the wound dressing is performed aseptically in, for example, a clean bench or a clean room. It is possible to prevent the hydrogel non-woven fabric and the wound dressing from being contaminated by the propagation of various germs during the work.
  • the manufacturing equipment to be used for example, it is preferable to use an autoclave, one that has been sterilized by irradiation with an electron beam, ⁇ -ray, or the like.
  • the wound dressing may be applied to a wound site on the surface of the skin, or may be applied to a wound site of subcutaneous tissue.
  • Compressive strength retention rate (%) Fb / Fa ⁇ 100 ⁇ Treatment with collagenase>
  • Collagenase D Sigma Aldrich
  • D-PBS (+) Dalvecolinic acid buffered saline (D-PBS (-) (1x) from Nakaraitesk)
  • calcium chloride Fujifilm Wako Junyaku Co., Ltd. It was dissolved in D-PBS (+) supplemented with (100 ⁇ g / mL) and magnesium chloride (46.8 ⁇ g / mL) to obtain a collagenase D / PBS (+) solution having a concentration of 1.25 ⁇ g / mL.
  • the viscosity of the aqueous gelatin solution at 60 ° C. was 960 to 970 mPa ⁇ s.
  • This gelatin aqueous solution was used as a spinning solution, and a gelatin nonwoven fabric was produced using the manufacturing apparatus shown in FIG.
  • the temperature of the spinning liquid is 60 ° C
  • the nozzle diameter (inner diameter) is 250 ⁇ m
  • the discharge pressure is 0.2 MPa
  • the nozzle height is 5 mm
  • the air pressure is 0.375 MPa
  • the air temperature is 100 ° C
  • the distance between the fluid injection port and the nozzle discharge port is 5 mm.
  • the collection distance was 100 cm.
  • the gelatin non-woven fabric was air dried overnight at room temperature and then dehydrated and crosslinked by heating. The cross-linking conditions were a temperature of 140 ° C. and 48 hours.
  • the basis weight of the obtained gelatin non-woven fabric was about 65 g / m 2 .
  • the dried gelatin non-woven fabric was punched into a disk shape having a diameter of about 5 mm (dry mass: about 1 mg), and placed in Dulbeccoline phosphate buffered saline (D-PBS (-) (1x), Nakaraitesku Co., Ltd.) at room temperature. It was allowed to stand for 10 minutes to swell. The diameter of the swollen hydrogel nonwoven fabric was about 7 mm.
  • Example 2 A gelatin nonwoven fabric was produced in the same manner as in Example 1 except that the collection distance was set to 50 cm.
  • the gelatin non-woven fabric was air dried overnight at room temperature and then dehydrated and crosslinked by heating.
  • the cross-linking conditions were a temperature of 140 ° C. and 48 hours.
  • the basis weight of the obtained gelatin non-woven fabric was about 100 g / m 2 .
  • the dried gelatin non-woven fabric was punched into a disk shape having a diameter of about 4 mm (dry mass: about 1 mg), and placed in Dulbeccoline phosphate buffered saline (D-PBS (-) (1x), Nakaraitesk Co., Ltd.) at room temperature. It was allowed to stand for 10 minutes to swell.
  • the diameter of the swollen hydrogel nonwoven fabric was about 6 mm.
  • Example 3 A gelatin nonwoven fabric was produced in the same manner as in Example 2 except that the discharge amount of the spinning liquid was increased.
  • the gelatin non-woven fabric was air dried overnight at room temperature and then dehydrated and crosslinked by heating.
  • the cross-linking conditions were a temperature of 140 ° C. and 48 hours.
  • the basis weight of the obtained gelatin non-woven fabric was about 150 g / m 2 .
  • the dried gelatin non-woven fabric was punched into a disk shape having a diameter of about 3 mm, and 1.25 sheets (dry mass of about 1 mg), Dulbeccoline acid buffered saline (D-PBS (-) (1x), Nakaraitesk) were used.
  • the company was allowed to stand at room temperature for 10 minutes to swell.
  • the diameter of the swollen hydrogel nonwoven fabric was about 5 mm.
  • Example 4 A gelatin nonwoven fabric was produced in the same manner as in Example 2 except that the discharge pressure was 0.1 MPa and the air pressure was 0.275 MPa. The gelatin non-woven fabric was air dried overnight at room temperature and then dehydrated and crosslinked by heating. The cross-linking conditions were a temperature of 140 ° C. and 48 hours. The basis weight of the obtained gelatin non-woven fabric was about 300 g / m 2 . Next, the dried gelatin non-woven fabric was punched into a disk shape having a diameter of about 2 mm (dry mass: about 1 mg), and placed in Dulbeccoline phosphate buffered saline (D-PBS (-) (1x), Nakaraitesku Co., Ltd.) at room temperature. It was allowed to stand for 10 minutes to swell. The diameter of the swollen hydrogel nonwoven fabric was about 3 mm.
  • D-PBS (-) (1x) Dulbeccoline phosphate buffered saline
  • Example 1 A gelatin nonwoven fabric was produced in the same manner as in Example 2 except that the discharge amount of the spinning liquid was reduced.
  • the gelatin non-woven fabric was air dried overnight at room temperature and then dehydrated and crosslinked by heating.
  • the cross-linking conditions were a temperature of 140 ° C. and 48 hours.
  • the basis weight of the obtained gelatin non-woven fabric was about 50 g / m 2 .
  • the dried gelatin non-woven fabric was punched into a disk shape having a diameter of about 6 mm (dry mass: about 1 mg), and placed in Dulbeccoline phosphate buffered saline (D-PBS (-) (1x), Nakaraitesku Co., Ltd.) at room temperature. It was allowed to stand for 10 minutes to swell.
  • the diameter of the swollen hydrogel nonwoven fabric was about 9 mm.
  • Example 1 to 4 and Comparative Examples 1 to 2 the thickness of the hydrogel non-woven fabric or collagen sponge in a swollen state before and after treatment with collagenase and the stress (compressive strength) at 70% strain were measured as described above. As for Comparative Example 2, since it was dissolved before the lapse of 6 hours, the compressive strength after the treatment could not be measured. In Examples 1 to 4 and Comparative Example 1, the basis weight (mass per unit area) and pore size of the gelatin nonwoven fabric were measured as described above. Further, in the hydrogel non-woven fabric in the swollen state, the average fiber diameter was measured as described above. These results are shown in Table 1 below.
  • FIG. 1 is a photograph of a scanning electron microscope (100 times) of a hydrogel non-woven fabric in a dry state of Example 2.
  • FIG. 2 is a photograph of a collagen sponge of Comparative Example 2 in a dry state with a scanning electron microscope (100 times).
  • the intersections between the fibers are fused and have a communication hole structure.
  • Example 1 A disk-shaped hydrogel non-woven fabric of Example 1 having a swollen diameter of about 6 mm and a hydrogel of Comparative Example 1 under the skin of the back of a normal mouse (C57BL / 6J, 8 weeks old, male, obtained from Shimizu Laboratory Materials Co., Ltd.) The non-woven fabric and the collagen sponge of Comparative Example 2 were transplanted.
  • the disk-shaped hydrogel nonwoven fabric of Example 1, the hydrogel nonwoven fabric of Comparative Example 1 and the collagen sponge of Comparative Example 2 having a swollen diameter of about 6 mm were sterilized with ethylene oxide gas in a dry state before transplantation. Sterilized.
  • HE staining and CD31 immunostaining were performed using the frozen sections, and the total number of cells (HE staining) and the number of CD31-positive cells (CD31 immunostaining) were measured within a range of 250 ⁇ m to the left and right from the center of the section.
  • the ratio of cells by depth and the ratio of CD31-positive cells in all cells were calculated.
  • n was set to 3. The results are shown in Table 2 below. In Table 2 below, depth means the distance from the surface in contact with the subcutaneous tissue.
  • CD31 immunostaining was performed by a peroxidase coloring method using DAB using a CD31 antibody (“Rabbit Monoclonal Antibody CST 77699” manufactured by Cell Signaling Technology Co., Ltd.).
  • FIG. 3 is a photograph (40 times) showing the result of HE staining of the cross section (depth 200-400 ⁇ m) of the transplant material on the 10th day of transplantation using the hydrogel non-woven fabric of Example 1 as the transplant material.
  • FIG. 4 is a photograph (40 times) showing the result of CD31 immunostaining of a cross section (depth 200-400 ⁇ m) of the transplant material on the 10th day of transplantation using the hydrogel non-woven fabric of Example 1 as the transplant material.
  • FIG. 5 is a photograph (40 times) showing the result of HE staining of the cross section (depth 200-400 ⁇ m) of the transplanted material on the 10th day of transplantation using the collagen sponge of Comparative Example 2 as the transplanted material.
  • FIG. 6 is a photograph (40 times) showing the results of CD31 immunostaining of a cross section (depth 200-400 ⁇ m) of the transplant material on the 10th day of transplantation using the collagen sponge of Comparative Example 2 as the transplant material.
  • Example 1 has a tendency to have better cell invasion and vascular invasion (angiogenesis) into the transplant material at an early stage of transplantation than Comparative Example 1 and Comparative Example 2, and can be suitably used for wound healing. Guessed.
  • Example 2 Under the skin of the back of a normal mouse (C57BL / 6J, 8 weeks old, male, obtained from Shimizu Laboratory Materials Co., Ltd.), a disk-shaped hydrogel non-woven fabric having a swollen diameter of about 6 mm and collagen of Comparative Example 2 I transplanted a sponge. The transplanted material was collected on the 7th and 14th days after the transplantation, and frozen sections having a thickness of 10 ⁇ m were prepared on the maximum split plane in the thickness direction of the disc-shaped transplanted material.
  • HE staining and CD31 immunostaining were performed using the frozen sections, and the total number of cells (HE staining) and the number of CD31-positive cells (CD31 immunostaining) were measured within a range of 250 ⁇ m to the left and right from the center of the section. In addition, the ratio of cells by depth and the ratio of CD31-positive cells in all cells were calculated. n was set to 3. The results on the 7th day after transplantation are shown in Table 3 below, and the results on the 14th day after transplantation are shown in Table 4 below. In Tables 3 and 4 below, depth means the distance from the surface in contact with the subcutaneous tissue.
  • CD31 immunostaining was performed by a peroxidase coloring method using DAB using a CD31 antibody (“Rabbit Monoclonal Antibody CST 77699” manufactured by Cell Signaling Technology Co., Ltd.).
  • FIG. 7 is a photograph (40 times) showing the result of HE staining of the cross section (depth 400-600 ⁇ m) of the transplant material on the 7th day of transplantation using the hydrogel non-woven fabric of Example 2 as the transplant material.
  • FIG. 8 is a photograph (40 times) showing the result of CD31 immunostaining of a cross section (depth 400-600 ⁇ m) of the transplant material on the 7th day of transplantation using the hydrogel non-woven fabric of Example 2 as the transplant material.
  • FIG. 9 is a photograph (40 times) showing the result of HE staining of the cross section (depth 400-600 ⁇ m) of the transplanted material on the 7th day of transplantation using the collagen sponge of Comparative Example 2 as the transplanted material.
  • FIG. 10 is a photograph (40 times) showing the results of CD31 immunostaining of a cross section (depth 400-600 ⁇ m) of the transplant material on the 7th day of transplantation using the collagen sponge of Comparative Example 2 as the transplant material.
  • Example 2 has a tendency to be more excellent in blood vessel invasion (angiogenesis) into the inside of the transplant material at an early stage of transplantation than Comparative Example 2, and can be suitably used for wound healing.
  • Example 2 is more excellent in cell invasion into the inside of the transplant material and blood vessel invasion (angiogenesis) in the early stage of transplantation than in Comparative Example 2, and it is presumed that it can be suitably used for wound healing.
  • the present invention is not particularly limited, but preferably includes the following aspects.
  • the hydrogel non-woven fabric is a wound dressing having a thickness retention rate of 86% or more after being treated with collagenase for 6 hours.
  • Heating tank 2 Spinning liquid 3 Nozzle discharge port 4, 6 Compressor 5 Fluid injection port 7 Pressure fluid 8 Gelatin fiber 9 Hydrogel non-woven fabric 10 Non-woven fabric manufacturing equipment 11 Winding roll 12 Heat insulation container

Abstract

The present invention relates to a wound dressing material including a hydrogel nonwoven fabric having gelatin as a main component, wherein the hydrogel nonwoven fabric has a thickness retention rate of 86% or higher after six hours of collagenase treatment. The hydrogel nonwoven fabric preferably has a compressive strength retention rate of 70% or higher after six hours of collagenase treatment. Additionally, the hydrogel nonwoven fabric preferably does not include a cell growth factor. Provided thereby is a wound dressing material having improved early cell invasion and vascular invasion into the wound dressing material during use.

Description

創傷被覆材Wound dressing
 本発明は、皮膚等の組織の欠損や傷等の創傷を修復するのに用いる創傷被覆材に関する。 The present invention relates to a wound dressing used for repairing a wound such as a defect in a tissue such as skin or a wound.
 皮膚等の組織の欠損や傷等の創傷を修復するのに用いる創傷被覆材において、創傷部位に接する側に、湿潤環境を提供し得るハイドロゲル形成成分を用いることが行われている。このような創傷被覆材としては、コラーゲン等のハイドロゲル形成成分を用いたスポンジが広く用いられている。また、特許文献1には、ハイドロゲルを形成可能な有機繊維を含むハイドロゲル繊維層を含む創傷被覆材が提案されている。 In a wound dressing used for repairing a wound such as a defect in a tissue such as skin or a wound, a hydrogel-forming component capable of providing a moist environment is used on the side in contact with the wound site. As such a wound dressing, a sponge using a hydrogel-forming component such as collagen is widely used. Further, Patent Document 1 proposes a wound dressing containing a hydrogel fiber layer containing an organic fiber capable of forming a hydrogel.
特開2020-103502号公報Japanese Unexamined Patent Publication No. 2020-103502
 しかしながら、創傷治癒には、創傷部位を創傷被覆材で処置した後、創傷被覆材内部への早期の細胞侵入や血管侵入が必要であるところ、コラーゲンスポンジや特許文献1に記載の創傷被覆材等の従来の創傷被覆材では、内部への早期の細胞侵入や血管侵入を改善することが求められている。 However, wound healing requires early cell invasion and blood vessel invasion into the wound covering material after treating the wound site with the wound covering material, such as collagen sponge and the wound covering material described in Patent Document 1. Conventional wound dressings are required to improve early invasion of cells and blood vessels into the interior.
 本発明は、前記従来の問題を解決するため、使用時に創傷被覆材の内部への早期の細胞侵入及び血管侵入が向上した創傷被覆材を提供する。 The present invention provides a wound dressing in which early cell invasion and blood vessel invasion into the inside of the wound dressing are improved during use in order to solve the above-mentioned conventional problems.
 本発明は、ゼラチンを主成分とするハイドロゲル不織布を含む創傷被覆材であって、前記ハイドロゲル不織布は、コラゲナーゼによる6時間処理後の厚み保持率が86%以上であることを特徴とする創傷被覆材に関する。 The present invention is a wound dressing containing a hydrogel nonwoven fabric containing gelatin as a main component, wherein the hydrogel nonwoven fabric has a thickness retention rate of 86% or more after 6 hours of treatment with collagenase. Regarding the covering material.
 本発明の創傷被覆材を用いれば、創傷被覆材の内部への早期の細胞侵入及び血管侵入を向上させることができる。 By using the wound dressing of the present invention, early cell invasion and blood vessel invasion into the inside of the wound dressing can be improved.
実施例2の乾燥状態のハイドロゲル不織布の走査型電子顕微鏡(100倍)の写真である。It is a photograph of the scanning electron microscope (100 times) of the hydrogel non-woven fabric in the dry state of Example 2. 比較例2の乾燥状態のコラーゲンスポンジの走査型電子顕微鏡(100倍)の写真である。It is a photograph of the scanning electron microscope (100 times) of the collagen sponge in the dry state of Comparative Example 2. 実施例1のハイドロゲル不織布を用いた移植10日目の移植材の断面(深さ200-400μm)のヘマトキシリン・エオジン染色(HE染色)の結果を示す写真(40倍)である。スケールバーは100μmである。以下同じ。It is a photograph (40 times) showing the result of hematoxylin-eosin staining (HE staining) of the cross section (depth 200-400 μm) of the transplant material on the 10th day of transplantation using the hydrogel non-woven fabric of Example 1. The scale bar is 100 μm. same as below. 実施例1のハイドロゲル不織布を用いた移植10日目の移植材の断面(深さ200-400μm)のCD31(血小板内皮細胞接着分子-1)免疫染色の結果を示す写真(40倍)である。It is a photograph (40 times) showing the result of immunostaining of CD31 (platelet endothelial cell adhesion molecule-1) of the cross section (depth 200-400 μm) of the transplant material on the 10th day of transplantation using the hydrogel non-woven fabric of Example 1. .. 比較例2のコラーゲンスポンジを用いた移植10日目の移植材の断面(深さ200-400μm)のヘマトキシリン・エオジン染色の結果を示す写真(40倍)である。It is a photograph (40 times) showing the result of hematoxylin / eosin staining of the cross section (depth 200-400 μm) of the transplant material on the 10th day of transplantation using the collagen sponge of Comparative Example 2. 比較例2のコラーゲンスポンジを用いた移植10日目の移植材の断面(深さ200-400μm)のCD31(血小板内皮細胞接着分子-1)免疫染色の結果を示す写真(40倍)である。It is a photograph (40 times) showing the result of immunostaining of CD31 (platelet endothelial cell adhesion molecule-1) of the cross section (depth 200-400 μm) of the transplant material on the 10th day of transplantation using the collagen sponge of Comparative Example 2. 実施例2のハイドロゲル不織布を用いた移植7日目の移植材の断面(深さ400-600μm)のヘマトキシリン・エオジン染色の結果を示す写真(40倍)である。It is a photograph (40 times) showing the result of hematoxylin / eosin staining of the cross section (depth 400-600 μm) of the transplant material on the 7th day of transplantation using the hydrogel non-woven fabric of Example 2. 実施例2のハイドロゲル不織布を用いた移植7日目の移植材の断面(深さ400-600μm)のCD31(血小板内皮細胞接着分子-1)免疫染色の結果を示す写真(40倍)である。It is a photograph (40 times) showing the result of immunostaining of CD31 (platelet endothelial cell adhesion molecule-1) of the cross section (depth 400-600 μm) of the transplant material on the 7th day of transplantation using the hydrogel non-woven fabric of Example 2. .. 比較例2のコラーゲンスポンジを用いた移植7日目の移植材の断面(深さ400-600μm)のヘマトキシリン・エオジン染色の結果を示す写真(40倍)である。It is a photograph (40 times) showing the result of hematoxylin / eosin staining of the cross section (depth 400-600 μm) of the transplant material on the 7th day of transplantation using the collagen sponge of Comparative Example 2. 比較例2のコラーゲンスポンジを用いた移植7日目の移植材の断面(深さ400-600μm)のCD31(血小板内皮細胞接着分子-1)免疫染色の結果を示す写真(40倍)である。It is a photograph (40 times) showing the result of immunostaining of CD31 (platelet endothelial cell adhesion molecule-1) of the cross section (depth 400-600 μm) of the transplant material on the 7th day of transplantation using the collagen sponge of Comparative Example 2. 不織布製造装置の模式的説明図である。It is a schematic explanatory drawing of the nonwoven fabric manufacturing apparatus.
 本発明の発明者らは、上述した問題を解決するため、検討を重ねた。その結果、ゼラチンを主成分とし、コラゲナーゼによる6時間処理後の厚み保持率が86%以上であるハイドロゲル不織布を用いることで、使用時に創傷被覆材の内部への早期の細胞侵入及び血管侵入(血管新生)が向上することを見出した。
 特に、ゼラチンを主成分とするハイドロゲル不織布を用いることで、細胞増殖因子を用いなくても、血管が創傷被覆材の内部へ侵入すること、すなわち血管新生を促進することができ、創傷部位における血管新生が誘導され、糖尿病患者や悪性腫瘍患者にも適用することができる。また、コラゲナーゼによる6時間処理後の厚み保持率が86%以上であることで、該創傷被覆材を使用した際、例えば、創傷被覆材を移植した後の1~2週間の早期に、創傷被覆材の内部への細胞と血管の侵入を可能とする連通孔構造が維持され、早期の血管新生を誘導可能である。
The inventors of the present invention have repeated studies in order to solve the above-mentioned problems. As a result, by using a hydrogel non-woven fabric containing gelatin as a main component and having a thickness retention rate of 86% or more after treatment with collagenase for 6 hours, early cell invasion and blood vessel invasion into the wound dressing during use ( It was found that angiogenesis) was improved.
In particular, by using a hydrogel non-woven fabric containing gelatin as a main component, blood vessels can invade the inside of the wound dressing, that is, angiogenesis can be promoted without using a cell growth factor, and the wound site can be affected. It induces angiogenesis and can be applied to diabetic patients and malignant tumor patients. In addition, the thickness retention rate after 6 hours of treatment with collagenase is 86% or more, so that when the wound dressing is used, for example, 1 to 2 weeks after transplanting the wound dressing, the wound dressing is covered. The communication hole structure that allows the invasion of cells and blood vessels into the material is maintained, and early angiogenesis can be induced.
 本発明の1以上の実施形態において、創傷被覆材は、ゼラチンを主成分とするハイドロゲル不織布を含む。本発明の1以上の実施形態において、「ゼラチンを主成分とする」とは、ゼラチンを90質量%以上含むことを意味する。前記ハイドロゲル不織布は、ゼラチンを95質量%以上含んでもよく、実質的にゼラチン100質量%からなるものでもよい。前記ハイドロゲル不織布は、ゼラチンに加えて、必要に応じて、他の成分を10質量%以下含んでもよく、5質量%以下含んでもよい。他の成分は、他の生体適合性ポリマー、架橋剤、薬剤、可塑剤、他の添加剤等であってもよい。 In one or more embodiments of the present invention, the wound dressing comprises a hydrogel non-woven fabric containing gelatin as a main component. In one or more embodiments of the present invention, "having gelatin as a main component" means that gelatin is contained in an amount of 90% by mass or more. The hydrogel nonwoven fabric may contain 95% by mass or more of gelatin, or may be substantially composed of 100% by mass of gelatin. In addition to gelatin, the hydrogel nonwoven fabric may contain 10% by mass or less of other components or 5% by mass or less, if necessary. Other components may be other biocompatible polymers, cross-linking agents, agents, plasticizers, other additives and the like.
 前記ゼラチンの原材料となるコラーゲンが由来する動物の種類や部位は特に限定されない。コラーゲンは、例えば脊髄動物由来でもよく、魚由来でもよい。また、真皮、靭帯、腱、骨、軟骨等の様々な器官や組織由来のコラーゲンを適宜用いることができる。また、コラーゲンからゼラチンを調製する方法も特に限定されず、例えば酸処理、アルカリ処理、及び酵素処理等が挙げられる。前記ゼラチンの分子量も特に限定されず、様々な分子量のものを適宜選択して用いることができる。また、ゼラチンは、1種を用いてもよく、2種以上を併用してもよい。 The type and site of the animal from which collagen, which is the raw material of the gelatin, is derived are not particularly limited. Collagen may be, for example, derived from spinal animals or fish. In addition, collagen derived from various organs and tissues such as dermis, ligaments, tendons, bones and cartilage can be appropriately used. Further, the method for preparing gelatin from collagen is not particularly limited, and examples thereof include acid treatment, alkali treatment, and enzyme treatment. The molecular weight of the gelatin is not particularly limited, and gelatin having various molecular weights can be appropriately selected and used. In addition, one type of gelatin may be used, or two or more types may be used in combination.
 前記ゼラチンは、特に限定されないが、適度な柔軟性及び硬さを有し、ハイドロゲル不織布のハンドリング性を高める観点から、ゼリー強度が100g以上400g以下であることが好ましく、より好ましくは150g以上360g以下である。本発明の1以上の実施形態において、ゼリー強度は、JIS K 6503:2001に準じて測定する。前記ゼラチンは、市販品であってもよい。 The gelatin is not particularly limited, but has appropriate flexibility and hardness, and from the viewpoint of enhancing the handleability of the hydrogel nonwoven fabric, the jelly strength is preferably 100 g or more and 400 g or less, and more preferably 150 g or more and 360 g. It is as follows. In one or more embodiments of the present invention, the jelly strength is measured according to JIS K 6503: 2001. The gelatin may be a commercially available product.
 前記他の生体適合性ポリマーとしては、特に限定されないが、例えば、天然高分子や合成高分子を用いることができる。天然高分子としては、例えばタンパク質や多糖類が挙げられる。タンパク質としては、例えばコラーゲン、フィブロネクチン、フィブリノーゲン、ラミニン、フィブリン等が挙げられる。多糖類としては、例えばキトサン、アルギン酸カルシウム、ヘパラン硫酸、コンドロイチン硫酸、ヒアルロン酸、ヘパリン、 デンプン、ジェランガム、アガロース、グァーガム、キサンタンガム、カラギーナン、ペクチン、ローカストビーンガム、タマリンドガム、ダイユータンガム等の天然高分子を用いてもよく、カルボキシメチルセルロース等の天然高分子の誘導体を用いてもよい。合成高分子としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンテレフタレート、ポリビニルアルコール、熱可塑性エラストマー、ポリプロピレン、ポリエチレン、ポリスチレン、ポリメタクリル酸メチル、ポリカーボネート、ポリジメチルシロキサン、シクロオレフィンポリマー、アモルファスフッ素樹脂等の非吸収性の合成高分子や、ポリ乳酸、ポリグルコール酸、ポリカプロラクトン、ポリジオキサノン等の生体吸収性高分子等が挙げられる。上述した他の生体適合性ポリマーは、1種を用いてもよく、2種以上を用いてもよい。 The other biocompatible polymer is not particularly limited, but for example, a natural polymer or a synthetic polymer can be used. Examples of natural polymers include proteins and polysaccharides. Examples of the protein include collagen, fibronectin, fibrinogen, laminin, fibrin and the like. Examples of polysaccharides include natural high polymers such as chitosan, calcium alginate, heparan sulfate, chondroitin sulfate, hyaluronic acid, heparin, starch, gellan gum, agarose, guar gum, xanthan gum, carrageenan, pectin, locust bean gum, tamarind gum, and dieutan gum. A molecule may be used, or a derivative of a natural polymer such as carboxymethyl cellulose may be used. Examples of the synthetic polymer include polyethylene glycol, polypropylene glycol, polyethylene terephthalate, polyvinyl alcohol, thermoplastic elastomer, polypropylene, polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, polydimethylsiloxane, cycloolefin polymer, and amorphous fluororesin. Examples thereof include non-absorbable synthetic polymers and bioabsorbable polymers such as polylactic acid, polyglucuric acid, polycaprolactone and polydioxanone. As the other biocompatible polymers described above, one type may be used, or two or more types may be used.
 前記ハイドロゲル不織布は、コラゲナーゼによる6時間処理後の厚み保持率(以下において、初期厚み保持率とも記す)が86%以上である。前記ハイドロゲル不織布の初期厚み保持率は、88%以上であることが好ましく、90%以上であることがより好ましい。これにより、創傷被覆材で処置した後の1~2週間の早期に、創傷被覆材内部への細胞と血管の侵入を可能とする連通孔構造が維持され、早期の血管新生を誘導可能である。 The hydrogel non-woven fabric has a thickness retention rate (hereinafter, also referred to as an initial thickness retention rate) of 86% or more after being treated with collagenase for 6 hours. The initial thickness retention rate of the hydrogel non-woven fabric is preferably 88% or more, more preferably 90% or more. This maintains a communication hole structure that allows cells and blood vessels to enter the wound dressing 1 to 2 weeks after treatment with the wound dressing, and can induce early angiogenesis. ..
 前記ハイドロゲル不織布の初期厚み保持率は、膨潤状態のハイドロゲル不織布における、コラゲナーゼによる処理前の厚み(Ha)とコラゲナーゼによる6時間処理後の厚み(Hb)に基づいて、下記のように算出する。コラゲナーゼによる処理は、ハイドロゲル不織布1mg当たり、1.25μg/mLのコラゲナーゼDのPBS(+)溶液を2mL用いて行うことができる。
 厚み保持率(%)=Hb/Ha×100
The initial thickness retention rate of the hydrogel nonwoven fabric is calculated as follows based on the thickness (Ha) before the treatment with collagenase and the thickness (Hb) after the 6-hour treatment with collagenase in the swollen hydrogel nonwoven fabric. .. Treatment with collagenase can be performed using 2 mL of a PBS (+) solution of collagenase D at 1.25 μg / mL per 1 mg of hydrogel non-woven fabric.
Thickness retention rate (%) = Hb / Ha × 100
 本発明の1以上の実施形態において、「膨潤」とは、水、又は緩衝液(リン酸緩衝液等)からなる群から選ばれる一つ以上の液体で飽和状態まで膨潤することを意味する。例えば、ハイドロゲル不織布を水、又は緩衝液からなる群から選ばれる一つ以上の液体中に約10分以上浸漬することで膨潤させることができる。 In one or more embodiments of the present invention, "swelling" means swelling to saturation with one or more liquids selected from the group consisting of water or buffers (phosphate buffers, etc.). For example, the hydrogel nonwoven fabric can be swollen by immersing it in one or more liquids selected from the group consisting of water or a buffer solution for about 10 minutes or more.
 前記ハイドロゲル不織布は、コラゲナーゼによる6時間処理後の圧縮強度保持率(以下において、初期圧縮強度保持率とも記す)が70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。これにより、創傷部位、すなわち移植部位において、周囲組織で圧迫される場合でも、移植から1~2週間の移植早期に、創傷被覆材の内部への細胞と血管の侵入を可能とする連通孔構造が維持されやすく、早期の血管新生を誘導しやすくなる。本発明の1以上の実施形態において、「圧縮強度」は膨潤状態のハイドロゲル不織布における70%ひずみ時の応力を意味する。 The hydrogel non-woven fabric preferably has a compressive strength retention rate (hereinafter, also referred to as an initial compressive strength retention rate) after 6 hours of treatment with collagenase of 70% or more, more preferably 80% or more, and 90%. % Or more is more preferable. This allows for the invasion of cells and blood vessels into the wound dressing early 1-2 weeks after transplantation, even when compressed by surrounding tissue at the wound site, i.e. the transplant site. Is easy to maintain and it is easy to induce early angiogenesis. In one or more embodiments of the invention, "compressive strength" means the stress at 70% strain in a swollen hydrogel nonwoven fabric.
 前記ハイドロゲル不織布の初期圧縮強度保持率は、膨潤状態のハイドロゲル不織布における、コラゲナーゼによる処理前の70%ひずみ時の応力(Fa)及びコラゲナーゼによる6時間処理後の70%ひずみ時の応力(Fb)に基づいて、下記の通りに算出する。コラゲナーゼによる処理は、ハイドロゲル不織布1mg当たり、1.25μg/mLのコラゲナーゼDのPBS(+)溶液を2mL用いて行うことができる。
 圧縮強度保持率(%)=Fb/Fa×100
The initial compressive strength retention rate of the hydrogel non-woven fabric is the stress (Fa) at 70% strain before treatment with collagenase and the stress at 70% strain (Fb) after 6-hour treatment with collagenase in the swollen hydrogel non-woven fabric. ), Calculate as follows. Treatment with collagenase can be performed using 2 mL of a PBS (+) solution of collagenase D at 1.25 μg / mL per 1 mg of hydrogel non-woven fabric.
Compressive strength retention rate (%) = Fb / Fa × 100
 前記ハイドロゲル不織布の圧縮強度は、特に限定されないが、ハイドロゲル不織布内部への早期の細胞や血管の侵入性を高める観点から、5000Pa以上であることが好ましく、10000Pa以上であることがより好ましく、15000Pa以上であることがさらに好ましい。また、移植時の扱いやすさ、及び後期のハイドロゲル不織布の分解性の観点から、前記ハイドロゲル不織布の圧縮強度は、38000Pa以下であることが好ましく、36000Pa以下であることがより好ましく、31000Pa以下であることがさらに好ましい。 The compressive strength of the hydrogel nonwoven fabric is not particularly limited, but is preferably 5000 Pa or more, more preferably 10,000 Pa or more, from the viewpoint of enhancing the invasion of cells and blood vessels into the hydrogel nonwoven fabric at an early stage. It is more preferably 15,000 Pa or more. Further, from the viewpoint of ease of handling at the time of transplantation and the decomposability of the hydrogel nonwoven fabric in the later stage, the compressive strength of the hydrogel nonwoven fabric is preferably 38000 Pa or less, more preferably 36000 Pa or less, and 31000 Pa or less. Is more preferable.
 前記ハイドロゲル不織布を構成する繊維は、特に限定されないが、膨潤状態の平均繊維径が10μm以上200μm以下であることが好ましく、より好ましくは20μm以上150μm以下であり、さらに好ましくは30μm以上100μm以下であり、特に好ましくは40μm以上80μm以下である。繊維の平均繊維径が上記範囲内であると、創傷部位に移植した際、移植早期に、細胞及び血管がハイドロゲル不織布内部に侵入しやすい。本発明の1以上の実施形態において、「平均繊維径」は、膨潤状態のハイドロゲル不織布から任意に選択した50本の繊維の直径の平均値を意味する。 The fibers constituting the hydrogel nonwoven fabric are not particularly limited, but the average fiber diameter in the swollen state is preferably 10 μm or more and 200 μm or less, more preferably 20 μm or more and 150 μm or less, and further preferably 30 μm or more and 100 μm or less. It is particularly preferably 40 μm or more and 80 μm or less. When the average fiber diameter of the fibers is within the above range, cells and blood vessels tend to invade the inside of the hydrogel non-woven fabric at an early stage of transplantation when transplanted to the wound site. In one or more embodiments of the present invention, "average fiber diameter" means the average value of the diameters of 50 fibers arbitrarily selected from the swollen hydrogel nonwoven fabric.
 前記ハイドロゲル不織布を構成する繊維は、繊維交点が部分的に溶着していることが好ましい。この部分的溶着は、特に限定されないが、例えば、後述するように、ハイドロゲル不織布の製造時に圧力流体によって吹き飛ばされた完全に固化していない状態の繊維を堆積することで発現させることができる。この部分的溶着により、ハイドロゲル不織布はブリッジ構造となり、所望の形に成形しやすく、かつ成形安定性も高いものとなる。また、繊維交点が部分的に溶着していることにより、ハイドロゲル不織布は膨潤した後でもへたらない。また、ハイドロゲル不織布において、繊維交点は一部が溶着してもよく、繊維交点の全部が溶着してもよい。 It is preferable that the fibers constituting the hydrogel non-woven fabric are partially welded at the fiber intersections. This partial welding is not particularly limited, but can be developed, for example, by depositing fibers in a completely unsolidified state blown off by a pressure fluid during the production of the hydrogel nonwoven fabric, as described later. By this partial welding, the hydrogel non-woven fabric has a bridge structure, which is easy to mold into a desired shape and has high molding stability. Further, since the fiber intersections are partially welded, the hydrogel non-woven fabric does not become flat even after swelling. Further, in the hydrogel nonwoven fabric, some of the fiber intersections may be welded, or all of the fiber intersections may be welded.
 前記ハイドロゲル不織布の厚みは、特に限定されず、適用する部位等に応じて適宜決めることができるが、ハンドリング性、及びハイドロゲル不織布内部への早期の細胞や血管の侵入性をより高める観点から、膨潤状態の厚みが0.1mm以上であることが好ましく、0.2mm以上であることがより好ましく、0.3mm以上であることがさらに好ましく、0.4mm以上であることが特に好ましい。また、移植時の扱いやすさ、及び後期のハイドロゲル不織布の分解性の観点から、前記ハイドロゲル不織布の膨潤状態の厚みが5mm以下であることが好ましく、3mm以下であることがより好ましく、2mm以下であることがさらに好ましく、1mm以下であることがさらにより好ましい。前記ハイドロゲル不織布の厚みは、特に限定されないが、より具体的には、膨潤状態の厚みが0.1mm以上5mm以下であることが好ましく、0.2mm以上3mm以下であることがより好ましく、0.3mm以上2mm以下であることがさらに好ましく、0.4mm以上2mm以下であることがさらにより好ましく、0.4mm以上1mm以下であることがさらにより好ましい。 The thickness of the hydrogel non-woven fabric is not particularly limited and can be appropriately determined depending on the site to which the hydrogel non-woven fabric is applied, etc. The thickness in the swollen state is preferably 0.1 mm or more, more preferably 0.2 mm or more, further preferably 0.3 mm or more, and particularly preferably 0.4 mm or more. Further, from the viewpoint of ease of handling at the time of transplantation and the decomposability of the hydrogel nonwoven fabric in the later stage, the thickness of the hydrogel nonwoven fabric in the swollen state is preferably 5 mm or less, more preferably 3 mm or less, and more preferably 2 mm. It is more preferably 1 mm or less, and even more preferably 1 mm or less. The thickness of the hydrogel nonwoven fabric is not particularly limited, but more specifically, the thickness in the swollen state is preferably 0.1 mm or more and 5 mm or less, more preferably 0.2 mm or more and 3 mm or less, and 0. It is more preferably 3 mm or more and 2 mm or less, further preferably 0.4 mm or more and 2 mm or less, and even more preferably 0.4 mm or more and 1 mm or less.
 前記ハイドロゲル不織布の目付は、特に限定されず、適用する部位等に応じて適宜決めることができるが、例えば、ハンドリング性、及びハイドロゲル不織布内部への早期の細胞や血管の侵入性をより高める観点から、目付が40g/m2以上であることが好ましく、50g/m2以上であることがより好ましく、60g/m2以上であることがより好ましい。また、ハンドリング性、及び後期のハイドロゲル不織布の分解性の観点から、前記ハイドロゲル不織布の目付は、500g/m2以下であることが好ましく、400g/m2以下であることがより好ましく、350g/m2以下であることがさらにより好ましく、300g/m2以下であることがより好ましい。前記ハイドロゲル不織布の目付は、特に限定されないが、より具体的には、40g/m2以上500g/m2以下であることが好ましく、50g/m2以上400g/m2以下であることがより好ましく、60g/m2以上350g/m2以下であることがさらに好ましい。本発明の1以上の実施形態において、ハイドロゲル不織布の目付は、JIS L 1913:2010に準じて測定する。 The basis weight of the hydrogel non-woven fabric is not particularly limited and can be appropriately determined depending on the site to which the hydrogel non-woven fabric is applied. From the viewpoint, the basis weight is preferably 40 g / m 2 or more, more preferably 50 g / m 2 or more, and even more preferably 60 g / m 2 or more. Further, from the viewpoint of handleability and decomposability of the hydrogel nonwoven fabric in the later stage, the texture of the hydrogel nonwoven fabric is preferably 500 g / m 2 or less, more preferably 400 g / m 2 or less, and 350 g. It is even more preferable that it is / m 2 or less, and it is more preferable that it is 300 g / m 2 or less. The basis weight of the hydrogel nonwoven fabric is not particularly limited, but more specifically, it is preferably 40 g / m 2 or more and 500 g / m 2 or less, and more preferably 50 g / m 2 or more and 400 g / m 2 or less. It is preferably 60 g / m 2 or more and 350 g / m 2 or less. In one or more embodiments of the present invention, the basis weight of the hydrogel non-woven fabric is measured according to JIS L 1913: 2010.
 前記ハイドロゲル不織布の孔径は、特に限定されず、適用する部位等に応じて適宜決めることができるが、ハイドロゲル不織布内部への早期の細胞や血管の侵入性をより高める観点から、膨潤状態の孔径が30μm以上であることが好ましく、60μm以上であることがより好ましく、100μm以上であることがさらに好ましい。また、繊維交点の数を適切な範囲になり、ハイドロゲルの強度を保てやすい観点から、膨潤状態の孔径が700μm以下であることが好ましく、600μm以下であることがより好ましく、500μm以下であることがさらに好ましい。前記ハイドロゲル不織布の孔径は、特に限定されないが、より具体的には、膨潤状態の孔径が30μm以上700μm以下であることが好ましく、60μm以上600μm以下であることがより好ましく、100μm以上500μm以下であることがさらに好ましい。本発明の1以上の実施形態において、ゼラチン不織布の孔径は、Wrotnowskiの仮定に基づいて、下記計算式(1)にて算出することができる。 The pore size of the hydrogel nonwoven fabric is not particularly limited and can be appropriately determined depending on the site to which the hydrogel nonwoven fabric is applied, etc. The pore diameter is preferably 30 μm or more, more preferably 60 μm or more, and further preferably 100 μm or more. Further, from the viewpoint that the number of fiber intersections is within an appropriate range and the strength of the hydrogel can be easily maintained, the pore diameter in the swollen state is preferably 700 μm or less, more preferably 600 μm or less, and more preferably 500 μm or less. Is even more preferable. The pore size of the hydrogel nonwoven fabric is not particularly limited, but more specifically, the pore size in the swollen state is preferably 30 μm or more and 700 μm or less, more preferably 60 μm or more and 600 μm or less, and 100 μm or more and 500 μm or less. It is more preferable to have. In one or more embodiments of the present invention, the pore size of the gelatin nonwoven fabric can be calculated by the following formula (1) based on the assumption of Wrotnowski.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 前記ハイドロゲル不織布は、上述したとおり、少なくとも初期厚み保持率を所定の範囲にすること、好適には初期厚み保持率に加えて、初期圧縮強度保持率を所定の範囲、さらに好適には初期厚み保持率及び初期厚み保持率に加えて、繊維径、孔径及び目付を所定の範囲にすることで、細胞増殖因子を含まなくても、血管新生を誘導することができる。糖尿病患者や悪性腫瘍患者に細胞増殖因子の使用は禁忌であるため、糖尿病患者や悪性腫瘍患者にも適用する観点から、前記ハイドロゲル不織布及び創傷被覆材は、細胞増殖因子(細胞成長因子とも称される)等の物質を含まないことが好ましい。細胞増殖因子としては、例えば、塩基性線維芽細胞増殖因子(bFGF)、血管内皮細胞増殖因子(VEGF)、肝細胞増殖因子(HGF)等が挙げられる。 As described above, the hydrogel nonwoven fabric has at least an initial thickness retention rate within a predetermined range, preferably an initial thickness retention rate, and an initial compressive strength retention rate within a predetermined range, more preferably an initial thickness. By setting the fiber diameter, pore diameter, and texture in the predetermined ranges in addition to the retention rate and the initial thickness retention rate, angiogenesis can be induced even if the cell growth factor is not contained. Since the use of cell growth factors is contraindicated in diabetic patients and malignant tumor patients, the hydrogel non-woven fabric and wound covering material are also referred to as cell growth factors (also referred to as cell growth factors) from the viewpoint of application to diabetic patients and malignant tumor patients. It is preferable that it does not contain substances such as). Examples of the cell growth factor include basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF) and the like.
 前記ハイドロゲル不織布は、必要に応じて、細胞接着因子、細胞誘導因子、細胞増殖因子、細胞に栄養やエネルギ-を与える物質、細胞の機能を抑制又は亢進する物質等でコーティングされてもよく、該物質を含む溶液に浸漬して繊維内部まで浸透させてもよい。細胞接着因子としては、特に限定されないが、例えば、フィブロネクチン等が挙げられる。細胞に栄養やエネルギ-を与える物質としては、特に限定されないが、例えば、ATP、ピルビン酸、グルタミン等が挙げられる。 The hydrogel non-woven fabric may be coated with a cell adhesion factor, a cell inducing factor, a cell proliferation factor, a substance that gives nutrition or energy to cells, a substance that suppresses or enhances the function of cells, or the like, if necessary. It may be immersed in a solution containing the substance and penetrated into the fiber. The cell adhesion factor is not particularly limited, and examples thereof include fibronectin and the like. The substance that gives nutrition and energy to the cells is not particularly limited, and examples thereof include ATP, pyruvic acid, and glutamine.
 前記ハイドロゲル不織布は、特に限定されないが、夾雑物の発生を抑制し、製品汚染を防ぐ観点から、ゼラチンを含む紡糸液をノズル吐出口から空気中に押し出し、前記ノズル吐出口の後方に位置し、前記ノズル吐出口とは非接触状態の流体噴射口から前方に向けて圧力流体を噴射し、前記押し出された紡糸液を前記圧力流体に随伴させて繊維形成させ、得られた繊維を集積させて不織布とすることで作製することが好ましい。紡糸後に繊維を集積(堆積)させる時に繊維同士が、水分を含んだ状態で積層されるため、繊維同士が溶着することや互いに絡むことで一体化される。繊維を堆積させる際の捕集距離を変えることで、容易に不織布密度を変えることができる。捕集距離は、例えば、10cm以上200cm以下であることが好ましく、20cm以上180cm以下であることがより好ましく、30cm以上150cm以下であることがさらに好ましい。 The hydrogel non-woven fabric is not particularly limited, but from the viewpoint of suppressing the generation of impurities and preventing product contamination, the spinning fluid containing gelatin is extruded into the air from the nozzle discharge port and is located behind the nozzle discharge port. , The pressure fluid is injected forward from the fluid injection port in a non-contact state with the nozzle discharge port, and the extruded spinning liquid is associated with the pressure fluid to form fibers, and the obtained fibers are accumulated. It is preferable to make it into a non-woven fabric. When the fibers are accumulated (deposited) after spinning, the fibers are laminated in a state of containing water, so that the fibers are welded together or entangled with each other to be integrated. By changing the collection distance when depositing fibers, the density of the non-woven fabric can be easily changed. The collection distance is, for example, preferably 10 cm or more and 200 cm or less, more preferably 20 cm or more and 180 cm or less, and further preferably 30 cm or more and 150 cm or less.
 図11はハイドロゲル不織布の製造装置の模式的説明図である。不織布製造装置10において、加温槽1に入れたゼラチンを含む紡糸液2をノズル吐出口3から空気中に押し出す。加温槽1にはコンプレッサー4により、所定の圧力をかけておく。12は保温容器である。
 また、ノズル吐出口3の後方に位置し、ノズル吐出口3とは非接触状態の流体噴射口5から前方に向けて圧力流体7を噴射させる。流体噴射口5にはコンプレッサー6から圧力流体(例えば圧空)が供給される。流体噴射口5とノズル吐出口3との距離は5mm以上30mm以下であることが好ましく、5mm以上15mm以下であることがより好ましい。
 押し出された紡糸液は圧力流体7に随伴されてゼラチン繊維8となり、巻き取りロール11上でゼラチン不織布9となって堆積される。この時、堆積された繊維は水分を含み、完全には固化していないので、繊維交点の少なくとも一部において接している繊維が互いに溶着する。なお、巻き取りロールに変えてネット等の他の捕集手段を用いてもよい。
FIG. 11 is a schematic explanatory view of a hydrogel nonwoven fabric manufacturing apparatus. In the nonwoven fabric manufacturing apparatus 10, the spinning liquid 2 containing gelatin contained in the heating tank 1 is extruded into the air from the nozzle discharge port 3. A predetermined pressure is applied to the heating tank 1 by the compressor 4. Reference numeral 12 is a heat insulating container.
Further, the pressure fluid 7 is injected forward from the fluid injection port 5 which is located behind the nozzle discharge port 3 and is in a non-contact state with the nozzle discharge port 3. A pressure fluid (for example, compressed air) is supplied from the compressor 6 to the fluid injection port 5. The distance between the fluid injection port 5 and the nozzle discharge port 3 is preferably 5 mm or more and 30 mm or less, and more preferably 5 mm or more and 15 mm or less.
The extruded spinning liquid is accompanied by the pressure fluid 7 to become gelatin fibers 8, and is deposited as gelatin nonwoven fabric 9 on the take-up roll 11. At this time, since the deposited fibers contain water and are not completely solidified, the fibers in contact with each other at at least a part of the fiber intersections are welded to each other. In addition, other collecting means such as a net may be used instead of the take-up roll.
 まず、ゼラチン単独、或いは、必要に応じてゼラチンと上述した他の成分として用いることができる他の生体適合性ポリマーを溶媒、好ましくは水に溶解して紡糸液を調製する。溶解温度(水等の溶媒の温度)は20℃以上90℃以下が好ましく、40℃以上90℃以下であることがより好ましい。必要に応じて、ゼラチンを水等の溶媒に溶解した後、フィルトレーションして異物やごみ等を除去してもよい。また、必要に応じて、その後、減圧又は真空脱泡して溶解空気を除去してもよい。効率よく気体(気泡)を除去する観点から、減圧脱泡時の真空度は5kPa以上30kPa以下であることが好ましい。ゼラチンが水溶性であることで、紡糸液として水溶液の状態で紡糸でき、生体に対する安全性が高くなる。水としては、例えば、純水、蒸留水、超純水等を適宜用いることができる。なお、他の成分として、他の生体適合性水溶性高分子を用いる場合、ゼラチンと同時に水に溶解することで、紡糸液を調製することができる。 First, gelatin alone or, if necessary, gelatin and other biocompatible polymers that can be used as the above-mentioned other components are dissolved in a solvent, preferably water, to prepare a spinning solution. The dissolution temperature (temperature of a solvent such as water) is preferably 20 ° C. or higher and 90 ° C. or lower, and more preferably 40 ° C. or higher and 90 ° C. or lower. If necessary, gelatin may be dissolved in a solvent such as water and then filtered to remove foreign substances and dust. Further, if necessary, the dissolved air may be subsequently removed by depressurization or vacuum defoaming. From the viewpoint of efficiently removing gas (air bubbles), the degree of vacuum at the time of defoaming under reduced pressure is preferably 5 kPa or more and 30 kPa or less. Since gelatin is water-soluble, it can be spun in an aqueous solution as a spinning solution, and its safety to the living body is improved. As the water, for example, pure water, distilled water, ultrapure water and the like can be appropriately used. When another biocompatible water-soluble polymer is used as another component, a spinning solution can be prepared by dissolving it in water at the same time as gelatin.
 前記紡糸液の温度は20℃以上90℃以下であることが好ましく、40℃以上90℃以下であることがより好ましい。前記の範囲であればゼラチンは安定したゾル状態を維持できる。また、前記ゼラチン水溶液のゼラチン濃度は、ゼラチン水溶液を100質量%とした時、30質量%以上55質量%以下であることが好ましい。さらに好ましい濃度は35質量%以上50質量%以下である。前記の濃度であれば安定したゾル状態を維持できる。前記ゼラチン水溶液(紡糸液)の粘度は500mPa・s以上3000mPa・s以下が好ましい。ゼラチン水溶液の粘度が前記の範囲であれば安定した紡糸ができる。 The temperature of the spinning liquid is preferably 20 ° C. or higher and 90 ° C. or lower, and more preferably 40 ° C. or higher and 90 ° C. or lower. Within the above range, gelatin can maintain a stable sol state. Further, the gelatin concentration of the gelatin aqueous solution is preferably 30% by mass or more and 55% by mass or less when the gelatin aqueous solution is 100% by mass. A more preferable concentration is 35% by mass or more and 50% by mass or less. At the above concentration, a stable sol state can be maintained. The viscosity of the gelatin aqueous solution (spinning solution) is preferably 500 mPa · s or more and 3000 mPa · s or less. If the viscosity of the gelatin aqueous solution is within the above range, stable spinning can be achieved.
 前記紡糸液を紡糸機のノズルから吐出し、前記ノズル周囲から圧力流体を供給し、前記吐出したゼラチン水溶液を前記圧力流体に随伴させて繊維形成させ、得られたゼラチン繊維を集積させてゼラチン不織布(ハイドロゲル不織布)とする。ノズルの吐出圧は、特に限定されないが、例えば0.1MPa以上1MPa以下であってもよい。 The spinning liquid is discharged from the nozzle of the spinning machine, a pressure fluid is supplied from around the nozzle, the discharged gelatin aqueous solution is associated with the pressure fluid to form fibers, and the obtained gelatin fibers are accumulated to accumulate the obtained gelatin non-woven fabric. (Hydrogel non-woven fabric). The discharge pressure of the nozzle is not particularly limited, but may be, for example, 0.1 MPa or more and 1 MPa or less.
 前記圧力流体の温度は、20℃以上120℃以下であることが好ましく、80℃以上120℃以下であることがより好ましい。圧力流体の流速及び周囲雰囲気の温度にもよるが、前記の温度範囲であれば安定した紡糸ができる。圧力流体は空気を使用することが好ましく、圧力は0.1MPa以上1MPa以下であることが好ましい。前記の範囲であれば、ノズル吐出口から空気中に押し出された紡糸液を吹き飛ばして繊維化できる。 The temperature of the pressure fluid is preferably 20 ° C. or higher and 120 ° C. or lower, and more preferably 80 ° C. or higher and 120 ° C. or lower. Although it depends on the flow velocity of the pressure fluid and the temperature of the ambient atmosphere, stable spinning can be achieved within the above temperature range. It is preferable to use air as the pressure fluid, and the pressure is preferably 0.1 MPa or more and 1 MPa or less. Within the above range, the spinning liquid extruded into the air from the nozzle discharge port can be blown off to form fibers.
 前記ハイドロゲル不織布は、架橋することが好ましい。これにより形態安定性及び耐水性を高めることができる。架橋は、架橋剤等の化合物を用いた化学架橋であってもよいが、生体安全性の観点から、生体安全性を有する架橋剤を用いる架橋、及び/又は架橋剤を用いない架橋であることが好ましい。架橋剤を用いない架橋としては、例えば、熱架橋、電子線及びγ線等の放射線架橋、紫外線架橋等が挙げられる。電子線やγ線等の放射線照射の場合は、滅菌と架橋を同時にすることもできる。簡便に所望の架橋効果を得やすい観点から、熱架橋であることが好ましく、熱脱水架橋であることがより好ましい。熱架橋は、例えば、100℃以上180℃以下で行ってもよく、100℃以上160℃以下で行ってもよい。架橋時間は、例えば、24時間以上96時間以下であってもよい。熱脱水架橋は、例えば、100℃以上180℃以下で、24時間以上96時間以下行ってもよく、100℃以上160℃以下で、24時間以上96時間以下行ってもよい。また、熱脱水架橋は、例えば、1kPa以下の真空下で行ってもよい。架橋する前に、乾燥してもよい。乾燥は、特に限定されないが、例えば、室温での風乾や、凍結乾燥することで行うことができる。 The hydrogel non-woven fabric is preferably crosslinked. This makes it possible to improve morphological stability and water resistance. The cross-linking may be a chemical cross-linking using a compound such as a cross-linking agent, but from the viewpoint of biosafety, the cross-linking shall be a cross-linking using a cross-linking agent having bio-safety and / or a cross-linking without using a cross-linking agent. Is preferable. Examples of the cross-linking without using a cross-linking agent include thermal cross-linking, radiation cross-linking such as electron beam and γ-ray, and ultraviolet cross-linking. In the case of irradiation with electron beam or γ-ray, sterilization and cross-linking can be performed at the same time. From the viewpoint of easily obtaining the desired crosslinking effect, thermal crosslinking is preferable, and thermal dehydration crosslinking is more preferable. The thermal cross-linking may be performed, for example, at 100 ° C. or higher and 180 ° C. or lower, or at 100 ° C. or higher and 160 ° C. or lower. The cross-linking time may be, for example, 24 hours or more and 96 hours or less. The thermal dehydration crosslinking may be performed, for example, at 100 ° C. or higher and 180 ° C. or lower for 24 hours or more and 96 hours or less, or at 100 ° C. or higher and 160 ° C. or lower for 24 hours or longer and 96 hours or shorter. Further, the thermal dehydration crosslinking may be performed under a vacuum of 1 kPa or less, for example. It may be dried before cross-linking. The drying is not particularly limited, but can be performed by, for example, air-drying at room temperature or freeze-drying.
 前記範囲内において、紡糸液の吐出量、ノズル直径(内径)、ノズル吐出圧、圧力流体の圧力、圧力流体の温度、流体噴射口とノズル吐出口との距離、捕集距離、及び架橋条件等を調整することで、所望の初期厚み保持率、初期圧縮強度保持率、厚み、目付、繊維径、孔径等を有するハイドロゲル不織布を得ることができる。1例として、ノズル吐出圧を高くして繊維径を太くすることで、初期厚み保持率や初期圧縮強度保持率を高めることができる。1例として、流体噴射口とノズル吐出口との距離を短くして繊維交点を増やすことで、初期厚み保持率や初期圧縮強度保持率を高めることができる。 Within the above range, the discharge amount of the spinning liquid, the nozzle diameter (inner diameter), the nozzle discharge pressure, the pressure of the pressure fluid, the temperature of the pressure fluid, the distance between the fluid injection port and the nozzle discharge port, the collection distance, the bridging conditions, etc. By adjusting the above, a hydrogel non-woven fabric having a desired initial thickness retention rate, initial compression strength retention rate, thickness, grain size, fiber diameter, pore diameter and the like can be obtained. As an example, by increasing the nozzle discharge pressure and increasing the fiber diameter, the initial thickness retention rate and the initial compressive strength retention rate can be increased. As an example, the initial thickness retention rate and the initial compressive strength retention rate can be increased by shortening the distance between the fluid injection port and the nozzle discharge port and increasing the fiber intersection points.
 前記ハイドロゲル不織布は、必要に応じて、所定の形状や大きさにカットしてもよい。前記ハイドロゲル不織布は、エチレンオキサイドガス滅菌、水蒸気(オートクレーブ)、電子線照射、γ線等の放射線照射等で滅菌してもよく、エタノール処理等で殺菌することもできる。電子線やγ線等の放射線照射の場合は、滅菌とともに架橋を同時にすることもできる。 The hydrogel non-woven fabric may be cut into a predetermined shape and size, if necessary. The hydrogel non-woven fabric may be sterilized by ethylene oxide gas sterilization, steam (autoclave), electron beam irradiation, irradiation with γ-rays or the like, or may be sterilized by ethanol treatment or the like. In the case of irradiation with electron beam or γ-ray, cross-linking can be performed at the same time as sterilization.
 本発明の1以上の実施形態において、創傷被覆材は、ハイドロゲル不織布の一方の表面が創傷部位に接するようにして使用する。すなわち、創傷被覆材において、ハイドロゲル不織布の一方の表面は創面側となる。前記創傷被覆材は、ハイドロゲル不織布に加えて保護フィルムを含んでもよい。保護フィルムは防水性材料で構成することが好ましい。これにより、創傷部位以外の外部からの水分がハイドロゲル不織布に侵入することを防止することができる。前記保護フィルムは、自己接着性を有することで、ハイドロゲル不織布に接着してもよく、粘着剤層を介してハイドロゲル不織布に接着してもよい。保護フィルムは、ハイドロゲル不織布の一方又は両方の表面に配置することができる。創傷被覆材の使用時に、一方の保護フィルムを剥離し、ハイドロゲル不織布の一方の表面が組織の創傷部位に接するようにして移植して使用してもよい。 In one or more embodiments of the present invention, the wound dressing is used so that one surface of the hydrogel nonwoven fabric is in contact with the wound site. That is, in the wound dressing, one surface of the hydrogel non-woven fabric is on the wound surface side. The wound dressing may contain a protective film in addition to the hydrogel non-woven fabric. The protective film is preferably made of a waterproof material. This makes it possible to prevent moisture from the outside other than the wound site from invading the hydrogel non-woven fabric. Since the protective film has self-adhesiveness, it may be adhered to the hydrogel non-woven fabric, or may be adhered to the hydrogel non-woven fabric via the pressure-sensitive adhesive layer. The protective film can be placed on one or both surfaces of the hydrogel non-woven fabric. When using the wound dressing, one protective film may be peeled off and transplanted so that one surface of the hydrogel non-woven fabric is in contact with the wound site of the tissue.
 前記ハイドロゲル不織布や創傷被覆材の製造工程は、例えば、クリーンベンチ、クリーンルーム内で無菌的に行うことが好ましい。作業中における雑菌の繁殖によって、ハイドロゲル不織布や創傷被覆材が汚染することを防止することができる。使用する製造器具は、例えば、オートクレーブ、電子線やγ線等の放射線照射等で滅菌処理されたものを使用することが好ましい。 It is preferable that the manufacturing process of the hydrogel non-woven fabric and the wound dressing is performed aseptically in, for example, a clean bench or a clean room. It is possible to prevent the hydrogel non-woven fabric and the wound dressing from being contaminated by the propagation of various germs during the work. As the manufacturing equipment to be used, for example, it is preferable to use an autoclave, one that has been sterilized by irradiation with an electron beam, γ-ray, or the like.
 前記創傷被覆材は、皮膚表面の創傷部位に適用してもよく、皮下組織の創傷部位に適用してもよい。 The wound dressing may be applied to a wound site on the surface of the skin, or may be applied to a wound site of subcutaneous tissue.
 以下、実施例を用いて本発明の1以上の実施形態をさらに具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。本明細書において、特に指摘がない場合は、操作は室温(20±5℃)で行う。 Hereinafter, one or more embodiments of the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples. Unless otherwise specified in the present specification, the operation is performed at room temperature (20 ± 5 ° C.).
 測定・評価方法は下記のとおりである。
 <厚み及び厚み保持率>
 膨潤状態のハイドロゲル不織布において、コラゲナーゼによる処理前の厚み(Ha)とコラゲナーゼによる処理後の厚み(Hb)を山電社製のクリープメータで測定した。また、厚み保持率を下記の通りに算出した。
 厚み保持率(%)=Hb/Ha×100
 <圧縮強度>
 膨潤状態のハイドロゲル不織布において、コラゲナーゼによる処理前の70%ひずみ時の応力(Fa)及びコラゲナーゼによる処理後の70%ひずみ時の応力(Fb)を山電社製のクリープメータで測定し、圧縮強度とした。また、圧縮強度保持率を下記の通りに算出した。
 圧縮強度保持率(%)=Fb/Fa×100
 <コラゲナーゼによる処理>
(1)コラゲナーゼD(シグマアルドリッチ社)をD-PBS(+)(ナカライテスク社のダルベッコリン酸緩衝生理食塩水(D-PBS(-)(1x)に、富士フイルム和光純薬社の塩化カルシウム(100μg/mL)及び塩化マグネシウム(46.8μg/mL)を加えたD-PBS(+))に溶解し、濃度が1.25μg/mLのコラゲナーゼD/PBS(+)溶液を得た。
(2)膨潤状態のハイドロゲル不織布(乾燥質量約1mg)を2mLのコラゲナーゼDの溶液に浸漬し、37℃で6時間インキュベートした。
 <平均繊維径>
 膨潤状態のハイドロゲル不織布をマイクロスコープ(キーエンス社、BZ-X700)で観察し、任意に選択した50本の繊維の繊維径をそれぞれ測定し、それらを平均して、膨潤状態の平均繊維径を算出した。
 <目付(単位面積あたりの質量)>
 ゼラチン不織布の目付は、JIS L 1913:2010に準じて測定した。
 <孔径>
 ゼラチン不織布の孔径は、Wrotnowskiの仮定に基づいて、下記計算式1にて算出した。
Figure JPOXMLDOC01-appb-M000002
The measurement / evaluation method is as follows.
<Thickness and thickness retention rate>
In the swollen hydrogel nonwoven fabric, the thickness before treatment with collagenase (Ha) and the thickness after treatment with collagenase (Hb) were measured with a creep meter manufactured by Sanyo Electric Railway Co., Ltd. In addition, the thickness retention rate was calculated as follows.
Thickness retention rate (%) = Hb / Ha × 100
<Compressive strength>
In the swollen hydrogel non-woven fabric, the stress at 70% strain (Fa) before treatment with collagenase and the stress (Fb) at 70% strain after treatment with collagenase are measured with a creep meter manufactured by Yamaden Co., Ltd. and compressed. The strength was set. In addition, the compressive strength retention rate was calculated as follows.
Compressive strength retention rate (%) = Fb / Fa × 100
<Treatment with collagenase>
(1) Collagenase D (Sigma Aldrich) was added to D-PBS (+) (Dalvecolinic acid buffered saline (D-PBS (-) (1x) from Nakaraitesk), and calcium chloride from Fujifilm Wako Junyaku Co., Ltd. It was dissolved in D-PBS (+) supplemented with (100 μg / mL) and magnesium chloride (46.8 μg / mL) to obtain a collagenase D / PBS (+) solution having a concentration of 1.25 μg / mL.
(2) A swollen hydrogel non-woven fabric (dry mass of about 1 mg) was immersed in 2 mL of a solution of collagenase D and incubated at 37 ° C. for 6 hours.
<Average fiber diameter>
The hydrogel non-woven fabric in the swollen state was observed with a microscope (Keyence, BZ-X700), the fiber diameters of 50 arbitrarily selected fibers were measured, and the average fiber diameters in the swollen state were obtained. Calculated.
<Metsuke (mass per unit area)>
The basis weight of the gelatin non-woven fabric was measured according to JIS L 1913: 2010.
<Hole diameter>
The pore size of the gelatin nonwoven fabric was calculated by the following formula 1 based on the assumption of Wrotnowski.
Figure JPOXMLDOC01-appb-M000002
 (実施例1)
 ゼラチンとして新田ゼラチン社製(ゼリー強度262g、原料:アルカリ処理牛骨)を使用し、ゼラチン:水=3:5の質量比(ゼラチン濃度37.5質量%)とし、温度60℃で溶解した。60℃におけるゼラチン水溶液の粘度は960~970mPa・sであった。このゼラチン水溶液を紡糸液とし、図11に示す製造装置を使用して、ゼラチン不織布を作製した。紡糸液の温度は60℃、ノズル直径(内径)250μm、吐出圧0.2MPa、ノズル高さ5mm、エアー圧力0.375MPa、エアー温度100℃、流体噴射口とノズル吐出口との距離は5mm、捕集距離100cmとした。ゼラチン不織布は室温で一晩風乾し、次いで加熱脱水架橋させた。架橋条件は温度140℃、48時間とした。得られたゼラチン不織布の目付は約65g/m2であった。
 次に、乾燥状態のゼラチン不織布を直径約5mmの円盤状に打ち抜き(乾燥質量約1mg)、ダルベッコリン酸緩衝生理食塩水(D-PBS(-)(1x)、ナカライテスク社)中に室温で10分間静置して膨潤させた。膨潤状態のハイドロゲル不織布の直径は約7mmであった。
(Example 1)
Nitta Gelatin Co., Ltd. (jelly strength 262 g, raw material: alkaline-treated beef bone) was used as gelatin, and the mass ratio was gelatin: water = 3: 5 (gelatin concentration 37.5 mass%) and dissolved at a temperature of 60 ° C. .. The viscosity of the aqueous gelatin solution at 60 ° C. was 960 to 970 mPa · s. This gelatin aqueous solution was used as a spinning solution, and a gelatin nonwoven fabric was produced using the manufacturing apparatus shown in FIG. The temperature of the spinning liquid is 60 ° C, the nozzle diameter (inner diameter) is 250 μm, the discharge pressure is 0.2 MPa, the nozzle height is 5 mm, the air pressure is 0.375 MPa, the air temperature is 100 ° C, and the distance between the fluid injection port and the nozzle discharge port is 5 mm. The collection distance was 100 cm. The gelatin non-woven fabric was air dried overnight at room temperature and then dehydrated and crosslinked by heating. The cross-linking conditions were a temperature of 140 ° C. and 48 hours. The basis weight of the obtained gelatin non-woven fabric was about 65 g / m 2 .
Next, the dried gelatin non-woven fabric was punched into a disk shape having a diameter of about 5 mm (dry mass: about 1 mg), and placed in Dulbeccoline phosphate buffered saline (D-PBS (-) (1x), Nakaraitesku Co., Ltd.) at room temperature. It was allowed to stand for 10 minutes to swell. The diameter of the swollen hydrogel nonwoven fabric was about 7 mm.
 (実施例2)
 捕集距離を50cmにした以外は、実施例1の場合と同様にして、ゼラチン不織布を作製した。ゼラチン不織布は室温で一晩風乾し、次いで加熱脱水架橋させた。架橋条件は温度140℃、48時間とした。得られたゼラチン不織布の目付は約100g/m2であった。
 次に、乾燥状態のゼラチン不織布を直径約4mmの円盤状に打ち抜き(乾燥質量約1mg)、ダルベッコリン酸緩衝生理食塩水(D-PBS(-)(1x)、ナカライテスク社)中に室温で10分間静置して膨潤させた。膨潤状態のハイドロゲル不織布の直径は約6mmであった。
(Example 2)
A gelatin nonwoven fabric was produced in the same manner as in Example 1 except that the collection distance was set to 50 cm. The gelatin non-woven fabric was air dried overnight at room temperature and then dehydrated and crosslinked by heating. The cross-linking conditions were a temperature of 140 ° C. and 48 hours. The basis weight of the obtained gelatin non-woven fabric was about 100 g / m 2 .
Next, the dried gelatin non-woven fabric was punched into a disk shape having a diameter of about 4 mm (dry mass: about 1 mg), and placed in Dulbeccoline phosphate buffered saline (D-PBS (-) (1x), Nakaraitesk Co., Ltd.) at room temperature. It was allowed to stand for 10 minutes to swell. The diameter of the swollen hydrogel nonwoven fabric was about 6 mm.
 (実施例3)
 <ハイドロゲル不織布の作製>
 紡糸液の吐出量を増加させた以外は、実施例2の場合と同様にして、ゼラチン不織布を作製した。ゼラチン不織布は室温で一晩風乾し、次いで加熱脱水架橋させた。架橋条件は温度140℃、48時間とした。得られたゼラチン不織布の目付は約150g/m2であった。
 次に、乾燥状態のゼラチン不織布を直径約3mmの円盤状に打ち抜き、1.25枚を(乾燥質量約1mg)、ダルベッコリン酸緩衝生理食塩水(D-PBS(-)(1x)、ナカライテスク社)中に室温で10分間静置して膨潤させた。膨潤状態のハイドロゲル不織布の直径は約5mmであった。
(Example 3)
<Making hydrogel non-woven fabric>
A gelatin nonwoven fabric was produced in the same manner as in Example 2 except that the discharge amount of the spinning liquid was increased. The gelatin non-woven fabric was air dried overnight at room temperature and then dehydrated and crosslinked by heating. The cross-linking conditions were a temperature of 140 ° C. and 48 hours. The basis weight of the obtained gelatin non-woven fabric was about 150 g / m 2 .
Next, the dried gelatin non-woven fabric was punched into a disk shape having a diameter of about 3 mm, and 1.25 sheets (dry mass of about 1 mg), Dulbeccoline acid buffered saline (D-PBS (-) (1x), Nakaraitesk) were used. The company) was allowed to stand at room temperature for 10 minutes to swell. The diameter of the swollen hydrogel nonwoven fabric was about 5 mm.
 (実施例4)
 吐出圧を0.1MPa、エアー圧力を0.275MPaにした以外は、実施例2の場合と同様にして、ゼラチン不織布を作製した。ゼラチン不織布は室温で一晩風乾し、次いで加熱脱水架橋させた。架橋条件は温度140℃、48時間とした。得られたゼラチン不織布の目付は約300g/m2であった。
 次に、乾燥状態のゼラチン不織布を直径約2mmの円盤状に打ち抜き(乾燥質量約1mg)、ダルベッコリン酸緩衝生理食塩水(D-PBS(-)(1x)、ナカライテスク社)中に室温で10分間静置して膨潤させた。膨潤状態のハイドロゲル不織布の直径は約3mmであった。
(Example 4)
A gelatin nonwoven fabric was produced in the same manner as in Example 2 except that the discharge pressure was 0.1 MPa and the air pressure was 0.275 MPa. The gelatin non-woven fabric was air dried overnight at room temperature and then dehydrated and crosslinked by heating. The cross-linking conditions were a temperature of 140 ° C. and 48 hours. The basis weight of the obtained gelatin non-woven fabric was about 300 g / m 2 .
Next, the dried gelatin non-woven fabric was punched into a disk shape having a diameter of about 2 mm (dry mass: about 1 mg), and placed in Dulbeccoline phosphate buffered saline (D-PBS (-) (1x), Nakaraitesku Co., Ltd.) at room temperature. It was allowed to stand for 10 minutes to swell. The diameter of the swollen hydrogel nonwoven fabric was about 3 mm.
 (比較例1)
 紡糸液の吐出量を減少させた以外は、実施例2の場合と同様にして、ゼラチン不織布を作製した。ゼラチン不織布は室温で一晩風乾し、次いで加熱脱水架橋させた。架橋条件は温度140℃、48時間とした。得られたゼラチン不織布の目付は約50g/m2であった。
 次に、乾燥状態のゼラチン不織布を直径約6mmの円盤状に打ち抜き(乾燥質量約1mg)、ダルベッコリン酸緩衝生理食塩水(D-PBS(-)(1x)、ナカライテスク社)中に室温で10分間静置して膨潤させた。膨潤状態のハイドロゲル不織布の直径は約9mmであった。
(Comparative Example 1)
A gelatin nonwoven fabric was produced in the same manner as in Example 2 except that the discharge amount of the spinning liquid was reduced. The gelatin non-woven fabric was air dried overnight at room temperature and then dehydrated and crosslinked by heating. The cross-linking conditions were a temperature of 140 ° C. and 48 hours. The basis weight of the obtained gelatin non-woven fabric was about 50 g / m 2 .
Next, the dried gelatin non-woven fabric was punched into a disk shape having a diameter of about 6 mm (dry mass: about 1 mg), and placed in Dulbeccoline phosphate buffered saline (D-PBS (-) (1x), Nakaraitesku Co., Ltd.) at room temperature. It was allowed to stand for 10 minutes to swell. The diameter of the swollen hydrogel nonwoven fabric was about 9 mm.
 (比較例2)
 コラーゲンスポンジを、直径約8mmの円盤状に打ち抜き(乾燥質量約1mg)、ダルベッコリン酸緩衝生理食塩水(D-PBS(-)(1x)、ナカライテスク社)中に室温で10分間静置して膨潤させた。膨潤状態のコラーゲンスポンジの直径は約8mmであった。
(Comparative Example 2)
The collagen sponge was punched into a disk shape with a diameter of about 8 mm (dry mass: about 1 mg), and allowed to stand in Dulbeccoline phosphate buffered saline (D-PBS (-) (1x), Nakaraitesku) at room temperature for 10 minutes. And swollen. The diameter of the swollen collagen sponge was about 8 mm.
 実施例1~4、及び比較例1~2において、コラゲナーゼによる処理前後の膨潤状態のハイドロゲル不織布又はコラーゲンスポンジの厚み及び70%ひずみ時の応力(圧縮強度)を上述したとおりに測定した。比較例2については、6時間経過前に溶解したため、処理後の圧縮強度は測定できなかった。実施例1~4、及び比較例1において、ゼラチン不織布の目付(単位面積あたりの質量)及び孔径は上述したとおりに測定した。また、膨潤状態のハイドロゲル不織布において、平均繊維径を上述したとおりに測定した。これらの結果を下記表1に示した。 In Examples 1 to 4 and Comparative Examples 1 to 2, the thickness of the hydrogel non-woven fabric or collagen sponge in a swollen state before and after treatment with collagenase and the stress (compressive strength) at 70% strain were measured as described above. As for Comparative Example 2, since it was dissolved before the lapse of 6 hours, the compressive strength after the treatment could not be measured. In Examples 1 to 4 and Comparative Example 1, the basis weight (mass per unit area) and pore size of the gelatin nonwoven fabric were measured as described above. Further, in the hydrogel non-woven fabric in the swollen state, the average fiber diameter was measured as described above. These results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図1は実施例2の乾燥状態のハイドロゲル不織布の走査型電子顕微鏡(100倍)の写真である。図2は乾燥状態の比較例2のコラーゲンスポンジの走査型電子顕微鏡(100倍)の写真である。図1から分かるように、実施例2のハイドロゲル不織布において、繊維間の交点は融着されており、連通孔構造を有する。 FIG. 1 is a photograph of a scanning electron microscope (100 times) of a hydrogel non-woven fabric in a dry state of Example 2. FIG. 2 is a photograph of a collagen sponge of Comparative Example 2 in a dry state with a scanning electron microscope (100 times). As can be seen from FIG. 1, in the hydrogel nonwoven fabric of Example 2, the intersections between the fibers are fused and have a communication hole structure.
 (実験例1)
 正常マウス(C57BL/6J、8週齢、オス、清水実験材料社から入手)の背部皮下に、膨潤状態の直径が約6mmの円盤状の実施例1のハイドロゲル不織布、比較例1のハイドロゲル不織布及び比較例2のコラーゲンスポンジを移植した。なお、膨潤状態の直径が約6mmの円盤状の実施例1のハイドロゲル不織布、比較例1のハイドロゲル不織布及び比較例2のコラーゲンスポンジは、移植する前に乾燥状態にてエチレンオキサイドガスにて滅菌した。
 移植後10日目に移植材を回収し、円盤状移植材の厚み方向の最大割面にて10μm厚みの凍結切片を作製した。
 該凍結切片を用いて、HE染色及びCD31免疫染色を行い、切片の中心から左右250μmの範囲において、全細胞数(HE染色)及びCD31陽性細胞数(CD31免疫染色)を計測した。また、深さ別の細胞の割合及び全細胞中のCD31陽性細胞の割合を算出した。nは3とした。その結果を下記表2に示した。下記表2において、深さは皮下組織に接した面からの距離を意味する。
 CD31免疫染色は、CD31抗体(セルシグナリングテクノロジー社製、「ウサギモノクローナル抗体CST 77699」)を用い、DABを用いたペルオキシダーゼ発色法で行った。
(Experimental Example 1)
A disk-shaped hydrogel non-woven fabric of Example 1 having a swollen diameter of about 6 mm and a hydrogel of Comparative Example 1 under the skin of the back of a normal mouse (C57BL / 6J, 8 weeks old, male, obtained from Shimizu Laboratory Materials Co., Ltd.) The non-woven fabric and the collagen sponge of Comparative Example 2 were transplanted. The disk-shaped hydrogel nonwoven fabric of Example 1, the hydrogel nonwoven fabric of Comparative Example 1 and the collagen sponge of Comparative Example 2 having a swollen diameter of about 6 mm were sterilized with ethylene oxide gas in a dry state before transplantation. Sterilized.
On the 10th day after transplantation, the transplanted material was collected, and a frozen section having a thickness of 10 μm was prepared on the maximum split plane in the thickness direction of the disc-shaped transplanted material.
HE staining and CD31 immunostaining were performed using the frozen sections, and the total number of cells (HE staining) and the number of CD31-positive cells (CD31 immunostaining) were measured within a range of 250 μm to the left and right from the center of the section. In addition, the ratio of cells by depth and the ratio of CD31-positive cells in all cells were calculated. n was set to 3. The results are shown in Table 2 below. In Table 2 below, depth means the distance from the surface in contact with the subcutaneous tissue.
CD31 immunostaining was performed by a peroxidase coloring method using DAB using a CD31 antibody (“Rabbit Monoclonal Antibody CST 77699” manufactured by Cell Signaling Technology Co., Ltd.).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図3は、実施例1のハイドロゲル不織布を移植材として用いた移植10日目の移植材の断面(深さ200-400μm)のHE染色の結果を示す写真(40倍)である。
 図4は、実施例1のハイドロゲル不織布を移植材として用いた移植10日目の移植材の断面(深さ200-400μm)のCD31免疫染色の結果を示す写真(40倍)である。
 図5は、比較例2のコラーゲンスポンジを移植材として用いた移植10日目の移植材の断面(深さ200-400μm)のHE染色の結果を示す写真(40倍)である。
 図6は、比較例2のコラーゲンスポンジを移植材として用いた移植10日目の移植材の断面(深さ200-400μm)のCD31免疫染色の結果を示す写真(40倍)である。
FIG. 3 is a photograph (40 times) showing the result of HE staining of the cross section (depth 200-400 μm) of the transplant material on the 10th day of transplantation using the hydrogel non-woven fabric of Example 1 as the transplant material.
FIG. 4 is a photograph (40 times) showing the result of CD31 immunostaining of a cross section (depth 200-400 μm) of the transplant material on the 10th day of transplantation using the hydrogel non-woven fabric of Example 1 as the transplant material.
FIG. 5 is a photograph (40 times) showing the result of HE staining of the cross section (depth 200-400 μm) of the transplanted material on the 10th day of transplantation using the collagen sponge of Comparative Example 2 as the transplanted material.
FIG. 6 is a photograph (40 times) showing the results of CD31 immunostaining of a cross section (depth 200-400 μm) of the transplant material on the 10th day of transplantation using the collagen sponge of Comparative Example 2 as the transplant material.
 上記表2、図3~6から分かるように、所定の初期厚み保持率を有する実施例1のハイドロゲル不織布を用いた場合、比較例2のコラーゲンスポンジを用いた場合及び初期厚み保持率が低い比較例1のハイドロゲル不織布を用いた場合に比べて、移植材の表面(0~200μmの深さ)より内部(深さ200μm~)における細胞の割合が大きく、全細胞中のCD31陽性細胞の割合も多かった。実施例1の方が、比較例1や比較例2より、移植早期の移植材内部への細胞侵入及び血管侵入(血管新生)が優れる傾向が確認され、創傷治癒に好適に用いることができると推測される。 As can be seen from Table 2 and FIGS. 3 to 6, when the hydrogel non-woven fabric of Example 1 having a predetermined initial thickness retention rate is used, when the collagen sponge of Comparative Example 2 is used, and the initial thickness retention rate is low. Compared with the case of using the hydrogel non-woven fabric of Comparative Example 1, the proportion of cells inside (depth 200 μm ~) is larger than that on the surface (depth 0 to 200 μm) of the transplant material, and the proportion of CD31 positive cells in all cells is large. The ratio was also high. It was confirmed that Example 1 has a tendency to have better cell invasion and vascular invasion (angiogenesis) into the transplant material at an early stage of transplantation than Comparative Example 1 and Comparative Example 2, and can be suitably used for wound healing. Guessed.
 (実験例2)
 正常マウス(C57BL/6J、8週齢、オス、清水実験材料社から入手)の背部皮下に、膨潤状態の直径が約6mmの円盤状の実施例2のハイドロゲル不織布、及び比較例2のコラーゲンスポンジを移植した。
 移植後7日目及び14日目に移植材を回収し、円盤状移植材の厚み方向の最大割面にて10μm厚みの凍結切片を作製した。
 該凍結切片を用いて、HE染色及びCD31免疫染色を行い、切片の中心から左右250μmの範囲において、全細胞数(HE染色)及びCD31陽性細胞数(CD31免疫染色)を計測した。また、深さ別の細胞の割合及び全細胞中のCD31陽性細胞の割合を算出した。nは3とした。移植後7日目の結果を下記表3に示し、移植後14日目の結果を下記表4に示した。下記表3及び4において、深さは皮下組織に接した面からの距離を意味する。
 CD31免疫染色は、CD31抗体(セルシグナリングテクノロジー社製、「ウサギモノクローナル抗体CST 77699」)を用い、DABを用いたペルオキシダーゼ発色法で行った。
(Experimental Example 2)
Under the skin of the back of a normal mouse (C57BL / 6J, 8 weeks old, male, obtained from Shimizu Laboratory Materials Co., Ltd.), a disk-shaped hydrogel non-woven fabric having a swollen diameter of about 6 mm and collagen of Comparative Example 2 I transplanted a sponge.
The transplanted material was collected on the 7th and 14th days after the transplantation, and frozen sections having a thickness of 10 μm were prepared on the maximum split plane in the thickness direction of the disc-shaped transplanted material.
HE staining and CD31 immunostaining were performed using the frozen sections, and the total number of cells (HE staining) and the number of CD31-positive cells (CD31 immunostaining) were measured within a range of 250 μm to the left and right from the center of the section. In addition, the ratio of cells by depth and the ratio of CD31-positive cells in all cells were calculated. n was set to 3. The results on the 7th day after transplantation are shown in Table 3 below, and the results on the 14th day after transplantation are shown in Table 4 below. In Tables 3 and 4 below, depth means the distance from the surface in contact with the subcutaneous tissue.
CD31 immunostaining was performed by a peroxidase coloring method using DAB using a CD31 antibody (“Rabbit Monoclonal Antibody CST 77699” manufactured by Cell Signaling Technology Co., Ltd.).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図7は、実施例2のハイドロゲル不織布を移植材として用いた移植7日目の移植材の断面(深さ400-600μm)のHE染色の結果を示す写真(40倍)である。
 図8は、実施例2のハイドロゲル不織布を移植材として用いた移植7日目の移植材の断面(深さ400-600μm)のCD31免疫染色の結果を示す写真(40倍)である。
 図9は、比較例2のコラーゲンスポンジを移植材として用いた移植7日目の移植材の断面(深さ400-600μm)のHE染色の結果を示す写真(40倍)である。
 図10は、比較例2のコラーゲンスポンジを移植材として用いた移植7日目の移植材の断面(深さ400-600μm)のCD31免疫染色の結果を示す写真(40倍)である。
FIG. 7 is a photograph (40 times) showing the result of HE staining of the cross section (depth 400-600 μm) of the transplant material on the 7th day of transplantation using the hydrogel non-woven fabric of Example 2 as the transplant material.
FIG. 8 is a photograph (40 times) showing the result of CD31 immunostaining of a cross section (depth 400-600 μm) of the transplant material on the 7th day of transplantation using the hydrogel non-woven fabric of Example 2 as the transplant material.
FIG. 9 is a photograph (40 times) showing the result of HE staining of the cross section (depth 400-600 μm) of the transplanted material on the 7th day of transplantation using the collagen sponge of Comparative Example 2 as the transplanted material.
FIG. 10 is a photograph (40 times) showing the results of CD31 immunostaining of a cross section (depth 400-600 μm) of the transplant material on the 7th day of transplantation using the collagen sponge of Comparative Example 2 as the transplant material.
 上記表3、図7~10から分かるように、所定の厚み保持率を有する実施例2のハイドロゲル不織布を用いた場合、比較例2のコラーゲンスポンジを用いた場合に比べて、移植7日目に、全細胞中のCD31陽性細胞の割合が多かった。実施例2の方が、比較例2より、移植早期の移植材内部への血管侵入(血管新生)に優れる傾向が確認され、創傷治癒に好適に用いることができると推測される。 As can be seen from Tables 3 and 7 to 10 above, when the hydrogel non-woven fabric of Example 2 having a predetermined thickness retention rate was used, compared with the case of using the collagen sponge of Comparative Example 2, on the 7th day of transplantation. In addition, the proportion of CD31-positive cells in all cells was high. It is presumed that Example 2 has a tendency to be more excellent in blood vessel invasion (angiogenesis) into the inside of the transplant material at an early stage of transplantation than Comparative Example 2, and can be suitably used for wound healing.
 上記表4から分かるように、所定の厚み保持率を有する実施例2のハイドロゲル不織布を用いた場合、比較例2のコラーゲンスポンジを用いた場合に比べて、移植14日目に、移植材の表面(0~200μmの深さ)より内部(深さ200μm~)における細胞の割合が大きく、全細胞中のCD31陽性細胞の割合も多かった。実施例2の方が、比較例2より、移植早期の移植材内部への細胞侵入及び血管侵入(血管新生)に優れる傾向が確認され、創傷治癒に好適に用いることができると推測される。 As can be seen from Table 4 above, when the hydrogel non-woven fabric of Example 2 having a predetermined thickness retention rate was used, as compared with the case of using the collagen sponge of Comparative Example 2, the transplant material was transferred on the 14th day of transplantation. The proportion of cells inside (depth from 200 μm) was larger than that on the surface (depth of 0 to 200 μm), and the proportion of CD31-positive cells in all cells was also high. It is confirmed that Example 2 is more excellent in cell invasion into the inside of the transplant material and blood vessel invasion (angiogenesis) in the early stage of transplantation than in Comparative Example 2, and it is presumed that it can be suitably used for wound healing.
 本発明は、特に限定されないが、好ましくは以下の態様を含む。
 [1] ゼラチンを主成分とするハイドロゲル不織布を含む創傷被覆材であって、
 前記ハイドロゲル不織布は、コラゲナーゼによる6時間処理後の厚み保持率が86%以上であることを特徴とする創傷被覆材。
 [2] 前記ハイドロゲル不織布は、コラゲナーゼによる6時間処理後の圧縮強度保持率が70%以上である、[1]に記載の創傷被覆材。
 [3] 前記ハイドロゲル不織布は、膨潤状態の厚みが0.1mm以上5mm以下であり、目付が40g/m2以上500g/m2以下である、[1]又は[2]に記載の創傷被覆材。
 [4] 前記ハイドロゲル不織布は、膨潤状態の孔径が30μm以上700μm以下である、[1]~[3]のいずれかに記載の創傷被覆材。
 [5] 前記ハイドロゲル不織布を構成する繊維は、膨潤状態の平均繊維径が10μm以上200μm以下である、[1]~[4]のいずれかに記載の創傷被覆材。
 [6] 前記ハイドロゲル不織布は、熱脱水架橋されている、[1]~[5]のいずれかに記載の創傷被覆材。
 [7] 前記ハイドロゲル不織布は、細胞増殖因子を含まない、[1]~[6]のいずれかに記載の創傷被覆材。
 [8] 前記ハイドロゲル不織布の一方又は両方の表面には保護フィルムが配置されている、[1]~[7]のいずれかに記載の創傷被覆材。
The present invention is not particularly limited, but preferably includes the following aspects.
[1] A wound dressing containing a hydrogel non-woven fabric containing gelatin as a main component.
The hydrogel non-woven fabric is a wound dressing having a thickness retention rate of 86% or more after being treated with collagenase for 6 hours.
[2] The wound dressing according to [1], wherein the hydrogel nonwoven fabric has a compressive strength retention rate of 70% or more after being treated with collagenase for 6 hours.
[3] The wound dressing according to [1] or [2], wherein the hydrogel nonwoven fabric has a thickness of 0.1 mm or more and 5 mm or less in a swollen state and a basis weight of 40 g / m 2 or more and 500 g / m 2 or less. Material.
[4] The wound dressing according to any one of [1] to [3], wherein the hydrogel nonwoven fabric has a swollen pore diameter of 30 μm or more and 700 μm or less.
[5] The wound dressing according to any one of [1] to [4], wherein the fibers constituting the hydrogel nonwoven fabric have an average fiber diameter of 10 μm or more and 200 μm or less in a swollen state.
[6] The wound dressing according to any one of [1] to [5], wherein the hydrogel nonwoven fabric is thermally dehydrated and crosslinked.
[7] The wound dressing according to any one of [1] to [6], wherein the hydrogel nonwoven fabric does not contain a cell growth factor.
[8] The wound dressing according to any one of [1] to [7], wherein a protective film is arranged on one or both surfaces of the hydrogel nonwoven fabric.
1 加温槽
2 紡糸液
3 ノズル吐出口
4、6 コンプレッサー
5 流体噴射口
7 圧力流体
8 ゼラチン繊維
9 ハイドロゲル不織布
10 不織布製造装置
11 巻き取りロール
12 保温容器
1 Heating tank 2 Spinning liquid 3 Nozzle discharge port 4, 6 Compressor 5 Fluid injection port 7 Pressure fluid 8 Gelatin fiber 9 Hydrogel non-woven fabric 10 Non-woven fabric manufacturing equipment 11 Winding roll 12 Heat insulation container

Claims (8)

  1.  ゼラチンを主成分とするハイドロゲル不織布を含む創傷被覆材であって、
     前記ハイドロゲル不織布は、コラゲナーゼによる6時間処理後の厚み保持率が86%以上であることを特徴とする創傷被覆材。
    A wound dressing containing a hydrogel non-woven fabric containing gelatin as a main component.
    The hydrogel non-woven fabric is a wound dressing having a thickness retention rate of 86% or more after being treated with collagenase for 6 hours.
  2.  前記ハイドロゲル不織布は、コラゲナーゼによる6時間処理後の圧縮強度保持率が70%以上である、請求項1に記載の創傷被覆材。 The wound dressing according to claim 1, wherein the hydrogel non-woven fabric has a compressive strength retention rate of 70% or more after being treated with collagenase for 6 hours.
  3.  前記ハイドロゲル不織布は、膨潤状態の厚みが0.1mm以上5mm以下であり、目付が40g/m2以上500g/m2以下である、請求項1又は2に記載の創傷被覆材。 The wound dressing according to claim 1 or 2, wherein the hydrogel nonwoven fabric has a thickness of 0.1 mm or more and 5 mm or less in a swollen state and a basis weight of 40 g / m 2 or more and 500 g / m 2 or less.
  4.  前記ハイドロゲル不織布は、膨潤状態の孔径が30μm以上700μm以下である、請求項1~3のいずれかに記載の創傷被覆材。 The wound dressing according to any one of claims 1 to 3, wherein the hydrogel non-woven fabric has a swollen pore diameter of 30 μm or more and 700 μm or less.
  5.  前記ハイドロゲル不織布を構成する繊維は、膨潤状態の平均繊維径が10μm以上200μm以下である、請求項1~4のいずれかに記載の創傷被覆材。 The wound dressing according to any one of claims 1 to 4, wherein the fibers constituting the hydrogel non-woven fabric have an average fiber diameter of 10 μm or more and 200 μm or less in a swollen state.
  6.  前記ハイドロゲル不織布は、熱脱水架橋されている、請求項1~5のいずれかに記載の創傷被覆材。 The wound dressing according to any one of claims 1 to 5, wherein the hydrogel non-woven fabric is thermally dehydrated and crosslinked.
  7.  前記ハイドロゲル不織布は、細胞増殖因子を含まない、請求項1~6のいずれかに記載の創傷被覆材。 The wound dressing according to any one of claims 1 to 6, wherein the hydrogel non-woven fabric does not contain a cell growth factor.
  8.  前記ハイドロゲル不織布の一方又は両方の表面には保護フィルムが配置されている、請求項1~7のいずれかに記載の創傷被覆材。 The wound dressing according to any one of claims 1 to 7, wherein a protective film is arranged on one or both surfaces of the hydrogel non-woven fabric.
PCT/JP2021/045361 2020-12-22 2021-12-09 Wound dressing material WO2022138206A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022572124A JPWO2022138206A1 (en) 2020-12-22 2021-12-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020212792 2020-12-22
JP2020-212792 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022138206A1 true WO2022138206A1 (en) 2022-06-30

Family

ID=82157746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045361 WO2022138206A1 (en) 2020-12-22 2021-12-09 Wound dressing material

Country Status (2)

Country Link
JP (1) JPWO2022138206A1 (en)
WO (1) WO2022138206A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835193A (en) * 1994-07-19 1996-02-06 Mitsubishi Rayon Co Ltd Production of collagen fiber nonwoven fabric sheet
JP2004321484A (en) * 2003-04-24 2004-11-18 Sangaku Renkei Kiko Kyushu:Kk Medical high molecular nano-micro fiber
JP2010520377A (en) * 2007-03-02 2010-06-10 ゲリタ アクチェンゲゼルシャフト Nonwoven fiber fabric
JP2011523425A (en) * 2008-04-15 2011-08-11 ゲリタ アクチェンゲゼルシャフト Hydrocolloid-containing material that quickly wets, its production method and its use
JP2014522918A (en) * 2011-06-22 2014-09-08 ビオファーム ゲゼルシャフト ツァ ビオテクノロギシェン エントヴィックルンク フォン ファーマカ エムベーハー Bioabsorbable wound dressing
WO2016204280A1 (en) * 2015-06-19 2016-12-22 株式会社カネカ Sheet for beauty care face masks
JP2022002604A (en) * 2020-06-23 2022-01-11 日本バイリーン株式会社 Biological tissue prosthesis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835193A (en) * 1994-07-19 1996-02-06 Mitsubishi Rayon Co Ltd Production of collagen fiber nonwoven fabric sheet
JP2004321484A (en) * 2003-04-24 2004-11-18 Sangaku Renkei Kiko Kyushu:Kk Medical high molecular nano-micro fiber
JP2010520377A (en) * 2007-03-02 2010-06-10 ゲリタ アクチェンゲゼルシャフト Nonwoven fiber fabric
JP2011523425A (en) * 2008-04-15 2011-08-11 ゲリタ アクチェンゲゼルシャフト Hydrocolloid-containing material that quickly wets, its production method and its use
JP2014522918A (en) * 2011-06-22 2014-09-08 ビオファーム ゲゼルシャフト ツァ ビオテクノロギシェン エントヴィックルンク フォン ファーマカ エムベーハー Bioabsorbable wound dressing
WO2016204280A1 (en) * 2015-06-19 2016-12-22 株式会社カネカ Sheet for beauty care face masks
JP2022002604A (en) * 2020-06-23 2022-01-11 日本バイリーン株式会社 Biological tissue prosthesis

Also Published As

Publication number Publication date
JPWO2022138206A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
US10117967B2 (en) Scaffold for skin tissue engineering and a method of synthesizing thereof
US8784499B2 (en) Preparation of regenerative tissue scaffolds
Yuan et al. Novel wound dressing based on nanofibrous PHBV–keratin mats
CA2861027C (en) Collagen structure, and method for producing collagen structure
CN110917386B (en) Stem cell sponge scaffold, preparation method and application
Liu et al. Regulation of ERK1/2 and SMAD2/3 pathways by using multi-layered electrospun PCL–amnion nanofibrous membranes for the prevention of post-surgical tendon adhesion
JP2010273847A (en) High-density porous composite
JP5633880B2 (en) Collagen molded body and method for producing the same
KR20070089490A (en) Porous collagen-hyaluronic acid complex material and method for the preparation thereof
Ayala et al. Evaluation of a bioengineered construct for tissue engineering applications
CN109481737A (en) Bionical double-deck dressing of one kind and preparation method thereof
CA2692144C (en) Composite device for the repair or regeneration of tissue
EP3223749A1 (en) Process for preparing tissue regeneration matrix
US20230293450A1 (en) Fibrous composite material
CN106474548B (en) Biological induction type artificial dura mater and preparation method thereof
WO2022138206A1 (en) Wound dressing material
Kirubanandan et al. Regeneration of soft tissue using porous bovine collagen scaffold
JP2023131487A (en) Sustained-release base material, method for producing the same, and sustained-release material
CA3175791A1 (en) Method for preparing a three-dimensional scaffold for medical use
JP7267172B2 (en) Three-dimensional scaffold for cell culture, method for producing the same, method for seeding cells using the same, and method for cell culture
Zhu et al. Biocompatible and antibacterial Flammulina velutipes-based natural hybrid cryogel to treat noncompressible hemorrhages and skin defects
CN105561400B (en) Artificial dermis stent and preparation method thereof
JP6920691B2 (en) Meniscus recycled base material
JP2021132881A (en) Cartilage regeneration substrate
JP2023153617A (en) Diaphragm repair material and production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910355

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572124

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910355

Country of ref document: EP

Kind code of ref document: A1