WO2022138135A1 - Latex blend composition for dip molding, and dip-molded article - Google Patents

Latex blend composition for dip molding, and dip-molded article Download PDF

Info

Publication number
WO2022138135A1
WO2022138135A1 PCT/JP2021/044914 JP2021044914W WO2022138135A1 WO 2022138135 A1 WO2022138135 A1 WO 2022138135A1 JP 2021044914 W JP2021044914 W JP 2021044914W WO 2022138135 A1 WO2022138135 A1 WO 2022138135A1
Authority
WO
WIPO (PCT)
Prior art keywords
latex
composition
mass
dip
dip molding
Prior art date
Application number
PCT/JP2021/044914
Other languages
French (fr)
Japanese (ja)
Inventor
久紀 太田
ニサナート コングピバン
宏宣 緒方
スパナン プラブハサバット
Original Assignee
バンコック シンセティックス カンパニー、リミテッド
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンコック シンセティックス カンパニー、リミテッド, 堺化学工業株式会社 filed Critical バンコック シンセティックス カンパニー、リミテッド
Publication of WO2022138135A1 publication Critical patent/WO2022138135A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • C08L13/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • C08L9/04Latex

Definitions

  • the present invention relates to a latex compounding composition for dip molding and a dip molded product. More specifically, the present invention relates to a latex compounding composition for dip molding and a dip molded product that can be suitably used for gloves, condoms, catheters, tubes, balloons, nipples, sack and the like.
  • Molded products such as gloves, condoms, catheters, tubes, balloons, nipples, and sack obtained by dip molding a natural rubber latex composition are known.
  • natural rubber latex contains proteins that cause allergic symptoms in the human body, it has been reported that problems occur in the case of products that come into direct contact with the human body.
  • the dip molded product is manufactured using a chemical substance that is irritating to the human body regardless of whether it is a natural rubber latex or a synthetic rubber latex, the delayed type caused by the residual chemical substance present in the dip molded product. Allergic symptoms have become a problem in recent years.
  • carboxylated acrylonitrile butadiene rubber latex with sulfur, vulcanization accelerator, polyvalent metal salt such as zinc oxide, pigments such as titanium oxide, anti-aging agent, etc. added. It is generally manufactured by dipping.
  • the sulfur and vulcanization accelerators are added to the polymer for the purpose of forming a covalent bond cross-linking structure and improving durability and elastic force, and zinc oxide and other polyvalent metal salts form an ion bond cross-linking between the polymers. It is generally known that it is added for the purpose of producing and improving physical strength. Further, it is common that titanium oxide is added to the molded product for the purpose of improving concealment and whiteness, and an antiaging agent or the like is added for the purpose of preventing deterioration.
  • inorganic compounds for example, in Patent Documents 1 and 2, zinc oxide is added as a vulcanization accelerator or an ionic cross-linking agent, and titanium oxide is added as a whitening agent or a color enhancer.
  • titanium oxide is known to be used for the purpose of imparting hiding power, coloring power, and whiteness to a water-based latex-containing paint formulation, but the dispersibility of titanium oxide in water and the latex composition.
  • Surface treatment may be performed for the purpose of improving affinity with and imparting dispersion stability (see Patent Document 3).
  • titanium oxide does not ionically crosslink the carboxyl group of the carboxylated acrylonitrile butadiene rubber (see Patent Document 4).
  • thiazole thiuram carbamate used as a vulcanization accelerator is a cause of inducing type IV delayed hypersensitivity (allergy).
  • thiazole thiuram carbamate used as a vulcanization accelerator is a cause of inducing type IV delayed hypersensitivity (allergy).
  • the amount of residual substances due to alcohol or the like will increase, and there is a concern that the hygiene standards cannot be satisfied.
  • the inorganic compound used as a compounding agent has a macromolecular dissociation between the rubber polymer, which is an organic polymer, and the inorganic compound due to the difference in the stretch ratio, resulting in physical strength. It causes the decrease. Therefore, in addition to the above safety viewpoint, it is necessary to minimize the amount of the inorganic compound used from the viewpoint of physical strength such as durability and tensile strength. Immersion-processed products such as gloves are increasingly required to have toughness and safety in the molded product, and the molded product is processed while minimizing the amount of compounding agent used in the processing of the dip molded product. It is required to maintain the performance physical characteristics. As described above, although various latex compounding compositions for dip molding have been developed, the conventional latex compounding compositions for dip molding have not been sufficient in terms of both physical strength and safety of the molded product.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a latex compounding composition for dip molding, which can achieve both physical strength and safety in a molded product.
  • a polymer latex composition containing a polymer having a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer has a high value.
  • a metal salt titanium oxide surface-treated with a metal salt, it is possible to achieve both physical strength and safety in a molded product, and we have come up with the idea that the problem can be solved brilliantly. It has arrived.
  • the present invention comprises a polymer latex composition (B) containing a polymer having a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer and titanium oxide (A) surface-treated with a polyvalent metal salt.
  • the polymer latex composition (B) contains a latex for dip molding in which the ratio of titanium oxide (A) treated with the polyvalent metal salt to 100% by mass of the solid content is 0.05 to 10.0% by mass. It is a composition.
  • the titanium oxide (A) is preferably surface-treated with a polyvalent metal salt and silica.
  • the polyvalent metal salt is selected from the group consisting of aluminum, zinc, calcium, magnesium, niobium, titanium, zirconium, cerium, strontium, barium, radium, tin, lead, nickel, iron, copper, cadmium, cobalt and manganese. It is preferably a salt of at least one metal.
  • the polyvalent metal salt is preferably an aluminum salt.
  • the surface treatment amount of the polyvalent metal salt in the titanium oxide (A) is preferably 0.1 to 10% by mass with respect to 100% by mass of the titanium oxide before the surface treatment.
  • the surface treatment amount of silica in the titanium oxide (A) is preferably 0.1 to 10% by mass with respect to 100% by mass of titanium oxide before the surface treatment.
  • the titanium oxide (A) preferably has an average particle size of 1 ⁇ m or less.
  • the polymer contained in the polymer latex composition (B) preferably has a structural unit (b2) derived from a conjugated diene monomer.
  • the polymer contained in the polymer latex composition (B) preferably has a structural unit (b3) derived from an ethylenically unsaturated nitrile monomer.
  • the polymer contained in the polymer latex composition (B) includes a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer, a structural unit (b2) derived from a conjugated diene monomer, and a simple ethylenically unsaturated nitrile.
  • the content ratio of the structural unit (b3) derived from the polymer is preferably 2 to 10/50 to 78/20 to 40 (mass%).
  • the zinc oxide content of the latex compounding composition for dip molding is preferably 5% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B).
  • the zinc oxide content of the latex compounding composition for dip molding is preferably 0.8% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B).
  • the sulfur content is preferably 2% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B).
  • the latex-blended composition for dip molding preferably has a sulfur content of 0.8% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B).
  • the content ratio of the vulcanization accelerator is preferably 2% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B).
  • the content ratio of the vulcanization accelerator is preferably 0.6% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B).
  • the present invention is also a dip molded product obtained by molding the above-mentioned latex compounding composition for dip molding.
  • the dip molded product is preferably gloves.
  • the present invention further comprises a dip molded product containing a polymer having a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer, and the dip molded product is further surface-treated with a polyvalent metal salt and oxidized. It is also a dip molded product containing titanium (A), having a mounting durability of 50 minutes or more as measured by the following method, and having an evaporation residue amount of 60 ppm or less after elution of 4% acetic acid as measured by the following method.
  • Gloves with a film thickness of 0.05 mm are prepared as a dip molded product, worn by five subjects, and evaluated by the median time until a hole is formed in the finger or portion.
  • the latex compounding composition for dip molding of the present invention and the molded product thereof have the above-mentioned configurations, and can achieve both physical strength and safety in the molded product. Therefore, gloves, condoms, catheters, tubes, balloons, and nipples. , Sack and the like can be suitably used.
  • the latex compounding composition for dip molding of the present invention is derived from titanium oxide (A) surface-treated with a polyvalent metal salt (hereinafter, also referred to as titanium oxide (A)) and an ethylenically unsaturated carboxylic acid monomer. It contains a polymer latex composition (B) having a structural unit (b1) (hereinafter, also referred to as polymer latex (B)), and is treated with a polyvalent metal salt based on 100% by mass of the solid content of the polymer latex (B).
  • the proportion of titanium oxide (A) is 0.05 to 10.0% by mass.
  • titanium (A) surface-treated with a polyvalent metal salt can contribute to the cross-linking reaction, the amount of sulfur, zinc oxide, and vulcanization accelerator, which have been conventionally used as cross-linking agents, is reduced. be able to.
  • polyvalent metal salts such as aluminum compounds themselves have been used as cross-linking agents for polymers, but in that case, only the cross-linking reaction between the polymers was promoted, and the interfacial peeling with the inorganic compound could not be improved. ..
  • the polyvalent metal salt on the surface of the titanium oxide (A) forms an ion bridge between the carboxyl groups of the polymer of the polymer latex (B), so that the titanium oxide particles and the organic polymer polymer are formed. It is considered that the divergence at the organic-inorganic interface when the molded film is stretched can be suppressed because the affinity with the polymer is improved and the interaction between the inorganic substance and the organic substance is strengthened. By enhancing the effect of suppressing dissociation at the organic-inorganic interface on the surface of titanium oxide that is in a finely dispersed state in the molded product film, the toughness of the dip molded product is strengthened and the mechanical properties (tensile strength / breaking point) are enhanced.
  • the titanium oxide (A) can also function as a white pigment unlike the conventional titanium oxide, it is not necessary to use titanium oxide as a white pigment separately from the titanium oxide (A), so that it is inorganic.
  • the amount of the compound used can be reduced.
  • the content of the compounding agent such as the cross-linking agent and the inorganic compound can be reduced, and the molded product has excellent mechanical strength.
  • the ratio of titanium oxide (A) treated with the polyvalent metal salt to 100% by mass of the solid content of the polymer latex (B) is 0.05 to 10.0% by mass. It is preferably 0.2 to 5.0% by mass, more preferably 0.4 to 3.0% by mass, and particularly preferably 0.4 to 2.0% by mass. Thereby, the action and effect of the present invention can be exhibited more effectively.
  • the latex compounding composition for dip molding of the present invention may contain a component (E) described later other than titanium oxide (A) and the polymer latex (B).
  • Tianium oxide (A) surface-treated with a polyvalent metal salt The titanium oxide (A) contained in the latex compounding composition for dip molding of the present invention is surface-treated with a polyvalent metal salt, and the polyvalent metal salt causes ions between the carboxyl groups of the polymer latex (B). A cross-linking reaction can be formed.
  • the polyvalent metal salt is not particularly limited as long as it forms an ion cross-linking reaction between carboxyl groups, and examples thereof include metal salts that generate divalent or higher metal ions.
  • Preferred polyvalent metals are aluminum, zinc, calcium, magnesium, niobium, titanium, zirconium, cerium, strontium, barium, radium, tin, lead, nickel, iron, copper, cadmium, cobalt and manganese. More preferably, it is aluminum, zinc, calcium, magnesium, niobium, titanium, zirconium, cerium, tin, and even more preferably aluminum or zinc.
  • the surface treatment amount of the polyvalent metal salt in the titanium oxide (A) is preferably 0.1 to 10% by mass with respect to 100% by mass of the titanium oxide before the surface treatment. As a result, ionic cross-linking in the polymer latex (B) is more sufficiently formed.
  • the surface treatment amount of the polyvalent metal salt is more preferably 0.5 to 8% by mass, still more preferably 1 to 5% by mass.
  • the titanium oxide (A) is preferably surface-treated with a polyvalent metal salt and silica. This further improves the dispersibility of the titanium oxide (A) in the latex compounding composition.
  • the surface treatment amount of silica in the titanium oxide (A) is preferably 0.1 to 10% by mass with respect to 100% by mass of titanium oxide before the surface treatment. As a result, the dispersibility of titanium oxide (A) is sufficiently improved.
  • the surface treatment amount of silica is more preferably 0.5 to 8% by mass, further preferably 0.5 to 7% by mass, and particularly preferably 1 to 6% by mass.
  • the titanium oxide (A) preferably has an average particle size of titanium oxide of 1 ⁇ m or less before surface treatment.
  • titanium oxide (A) is sufficiently dispersed in the latex-blended composition, so that visible light can be scattered more sufficiently and whiteness can be sufficiently imparted to the latex-blended composition.
  • the average particle size is more preferably 0.8 ⁇ m or less, still more preferably 0.5 ⁇ m or less.
  • the average particle size is preferably 0.01 ⁇ m or more.
  • the method for producing titanium oxide (A) is not particularly limited as long as it is surface-treated with a polyvalent metal salt, but it can be produced by mixing titanium oxide as a raw material and a polyvalent metal salt in a dispersion liquid. ..
  • the method for producing titanium oxide (A) preferably includes a mixing step of mixing titanium oxide as a raw material and a polyvalent metal salt in a dispersion liquid. In the polyvalent metal salt, the metal ion and its counter anion may be ionized in the dispersion liquid.
  • the titanium oxide used as a raw material for the titanium oxide (A) is not particularly limited, and examples thereof include titanium dioxide obtained by the sulfuric acid method and titanium oxide obtained by the chlorine method. Further, the crystal type of titanium oxide is not particularly limited, and rutile-type titanium oxide or anatase-type titanium oxide may be used, but the rutile-type is preferable from the viewpoint of weather resistance and light resistance.
  • the particle size of the titanium oxide is not particularly limited, and can be appropriately selected depending on the intended use.
  • titanium oxide used for the purpose of enhancing hiding power, coloring power, and whiteness in a latex-blended composition preferably has an average particle size of 0.01 to 1.0 ⁇ m, and 0.1 to 0. It is more preferably 5 ⁇ m.
  • polyvalent metal salt examples include the above-mentioned polyvalent metal oxides, double oxides, hydroxides, sulfates, nitrates, chlorides and the like. Specific examples thereof include sodium aluminate, aluminum sulfate, aluminum nitrate, aluminum chloride, zinc oxide, zinc sulfate, zinc nitrate, zinc chloride and the like.
  • examples of the silica source include silica compounds such as sodium silicate and silicon tetrachloride.
  • the order in which the polyvalent metal salt and silica are treated with titanium oxide is not particularly limited, and the surface treatment may be performed with the polyvalent metal salt first, with silica, or at the same time. Although it is good, it is preferable to perform the surface treatment with silica first. By first surface-treating with silica, silica becomes an anchor, and the surface treatment with polyvalent metal salt can proceed more sufficiently.
  • Examples of the dispersion used in the method for producing titanium oxide (A) include water, methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol, N-methylpyrrolidone and other aqueous solvents or water-soluble solvents. Of these, water is preferable.
  • the method for producing the titanium oxide (A) is a step of drying the dispersion liquid (slurry) obtained in the mixing step, a step of firing the dried product obtained in the drying step, and the firing step after the mixing step. It may include a step of crushing the obtained fired product.
  • Polymer latex composition (B) having a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer is a polymer latex having a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer.
  • the polymer latex (B) has a crosslinked structure by forming an ionic crosslink with a polyvalent metal salt between the carboxyl groups of the structural unit (b1).
  • the ethylenically unsaturated carboxylic acid monomer is not particularly limited as long as it has an ethylenically unsaturated bond and a carboxyl group or a salt group thereof, but is not particularly limited, but is acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid. , Maleic anhydride, citraconic acid anhydride and salts thereof. Of these, acrylic acid, methacrylic acid and salts thereof are preferable. These ethylenically unsaturated carboxylic acid monomers can be used alone or in combination of two or more.
  • Examples of the salt of the ethylenically unsaturated carboxylic acid monomer include monovalent metal salts such as alkali metals such as sodium and potassium; divalent metal salts such as alkaline earth metals such as magnesium and calcium; ammonium salts; organic amines. Salt etc.
  • the polymer contained in the polymer latex composition (B) of the present invention is not particularly limited as long as it has a structural unit (b1), but further has a structural unit (b2) derived from a conjugated diene monomer. Is preferable.
  • the conjugated diene monomer is not particularly limited as long as it has two double bonds and has a structure in which the double bonds are separated by one single bond, but is not particularly limited, but is limited to 1,3-butadiene and isoprene. , 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene, chloroprene and the like. These conjugated diene monomers can be used alone or in combination of two or more.
  • the polymer contained in the polymer latex composition (B) of the present invention further comprises a structural unit (b3) derived from an ethylenically unsaturated nitrile monomer and / or a vinyl aromatic single amount such as styrene, alkylstyrene, vinylnaphthalene and the like. It preferably has a body-derived structural unit (b4). More preferably, the polymer has a structural unit (b3). As a result, the oil resistance, wear resistance, and tear strength of the dip molded body are further improved.
  • the ethylenically unsaturated nitrile monomer is not particularly limited as long as it has an ethylenically unsaturated bond and a nitrile group, and examples thereof include acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ -chloroacrylonitrile, and ⁇ -cyanoethylacrylonitrile. Be done. These ethylenically unsaturated nitrile monomers can be used alone or in combination of two or more.
  • the polymer contained in the polymer latex composition (B) of the present invention has a structure derived from a monomer other than the ethylenically unsaturated carboxylic acid monomer, the conjugated diene monomer, and the ethylenically unsaturated nitrile monomer. It may have a unit (e).
  • the other monomers are not particularly limited as long as they can be copolymerized with the above-mentioned monomers, but are, for example, ethylenically unsaturated sulfonic acid monomers such as acrylamide propane sulfonic acid and styrene sulfonic acid; (meth) acrylic.
  • Acrylic acid ester monomer Ethnicity such as (meth) acrylamide, N-methylol (meth) acrylamide, N, N-dimethylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide, etc.
  • Unsaturated amide monomers fluoroalkyl vinyl ethers such as fluoroethyl vinyl ethers; vinyl pyridines; non-conjugated diene monomers such as vinylnorbonen, dicyclopentadiene, 1,4-hexadiene; and the like.
  • the polymer contained in the polymer latex composition (B) preferably has a structural unit (b1) ratio of 0.1 to 20% by mass with respect to 100% by mass of all polymerizable structural units. It is more preferably 2 to 10% by mass, still more preferably 3 to 8% by mass. Thereby, the action and effect of the present invention can be exhibited more effectively.
  • the polymer contained in the polymer latex composition (B) preferably has a structural unit (b2) in an amount of 30 to 90% by mass with respect to 100% by mass of all polymerizable structural units. It is more preferably 40 to 80% by mass, and further preferably 50 to 75% by mass. Thereby, the action and effect of the present invention can be exhibited more effectively.
  • the polymer contained in the polymer latex composition (B) preferably has a structural unit (b3) ratio of 0 to 50% by mass with respect to 100% by mass of all polymerizable structural units. It is more preferably 10 to 50% by mass, further preferably 15 to 45% by mass, and particularly preferably 20 to 40% by mass. Thereby, the action and effect of the present invention can be exhibited more effectively.
  • the polymer contained in the polymer latex composition (B) preferably has a structural unit (b4) ratio of 0 to 50% by mass with respect to 100% by mass of all polymerizable structural units. It is more preferably 10 to 50% by mass, further preferably 15 to 45% by mass, and particularly preferably 20 to 40% by mass. Thereby, the action and effect of the present invention can be exhibited more effectively.
  • the polymer contained in the polymer latex composition (B) preferably has a structural unit (e) in an amount of 0 to 10% by mass with respect to 100% by mass of all polymerizable structural units. It is more preferably 0 to 5% by mass, still more preferably 0 to 3% by mass.
  • the structural unit (b1) derived from the ethylenically unsaturated carboxylic acid monomer
  • the structural unit (b2) derived from the conjugated diene monomer
  • the ethylenically unsaturated nitrile simple substance A form in which the content ratio of the structural unit (b3) derived from the polymer is 2 to 10/40 to 80/15 to 45 (mass%) is one of the preferred embodiments of the present invention.
  • the polymer latex composition (B) can be produced by polymerizing a monomer component containing an ethylenically unsaturated carboxylic acid monomer as an essential component.
  • the method for producing the polymer latex composition (B) preferably includes a step of polymerizing a monomer component containing an ethylenically unsaturated carboxylic acid monomer (hereinafter, also referred to as a “polymerization step”).
  • a method for producing such a polymer latex composition (B) is also one of the present inventions.
  • the monomer component preferably further contains a conjugated diene monomer and an ethylenically unsaturated nitrile monomer. Specific examples and preferred examples of the monomer components, and preferred proportions of each monomer are the same as preferred proportions of each structural unit.
  • the polymerization method of the above-mentioned monomer component is not particularly limited, but it is preferably carried out by emulsion polymerization.
  • the emulsifier used for emulsification polymerization is not particularly limited, but is not particularly limited, and is, for example, a nonionic emulsifier such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester; myristiminic acid, palmitin.
  • Acids such as isopropyl phosphate and polyoxyethylene alkyl ether phosphate, alkyldiphenyl ether disulfonate, lauryldiphenyloxysulfonic acid disodium salt, alkylnaphthalene sulfonate, naphthalene.
  • phosphate esters such as isopropyl phosphate and polyoxyethylene alkyl ether phosphate, alkyldiphenyl ether disulfonate, lauryldiphenyloxysulfonic acid disodium salt, alkylnaphthalene sulfonate, naphthalene.
  • Anionic emulsifiers such as sodium salts of sulfonic acid formarin condensates, dialkyl sulfosuccinate sodium, alkylbenzene sulfonates, alkylallyl sulfonates, higher alcohol sulfate ester salts, alkyl sulfosuccinic acid; Examples thereof include sulfo esters, sulfate esters of ⁇ , ⁇ -unsaturated carboxylic acids, copolymerizable emulsifiers containing double bonds such as sulfoalkylaryl ethers, and the like.
  • the amount of the emulsifier used is not particularly limited, but is 0.1 to 10% by mass, preferably 0.5 to 6.0% by mass, based on 100% by mass of the monomer (total monomer) used. ..
  • the emulsifier may be used alone or in combination of two or more. Further, the emulsifier may be added all at once or dividedly when the polymer latex composition (B) is produced.
  • An aqueous solvent is preferable as the solvent used in the above-mentioned polymerization step.
  • Water is preferable as the aqueous solvent.
  • the amount of the solvent used is preferably 70 to 250% by mass based on 100 parts by weight of the amount of the monomer (all monomers) used. More preferably, it is 80 to 170% by mass. By setting the amount of the solvent used to 70% by mass or more, it is possible to sufficiently suppress the deterioration of stability in the polymerization step. Further, when the content is 250% by mass or less, the energy and time required for the post-process treatment of the produced latex can be saved, and the polymer can be produced more efficiently.
  • a chain transfer agent may be used as a molecular weight adjusting agent for the polymer, if necessary.
  • the chain transfer agent include mercaptans such as t-dodecyl mercaptan, n-dodecyl mercaptan, and mercaptoethanol, halogenated hydrocarbons such as carbon tetrachloride, methylene chloride, and methylene bromide, and ⁇ -methylstyrene dimer. Can be mentioned.
  • Mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan are preferable.
  • the amount of the chain transfer agent used in the production of the polymer latex composition (B) is preferably 0.01 to 10% by mass, more preferably 0.03, based on 100% by mass of the total amount of the monomers used. It is about 5% by mass, more preferably 0.1 to 2% by mass.
  • the polymerization initiator used in the above polymerization step is not particularly limited, but for example, potassium persulfate, ammonium persulfate, sodium persulfate, perphosphate, hydrogen peroxide, t-butyl hydroperoxide, 1,1,3.
  • These polymerization initiators can be used alone or in combination of two or more.
  • the amount of the polymerization initiator used is not particularly limited, but is preferably 0.001 to 10% by mass with respect to 100% by mass of the amount of the monomer (total monomer) used.
  • the peroxide initiator can be used as a redox-based polymerization initiator in combination with a reducing agent.
  • the reducing agent is not particularly limited, and examples thereof include ferrous sulfate, ferrous naphthenate and other compounds having metal ions in a reduced state, sulfonates such as sodium methanesulfonate, and sodium formaldehyde sulfoxylate.
  • 2-Hydroxy such as formaldehyde sulfoxylate salts, 2-hydroxy-2-sulfonato acetate salts such as 2-hydroxy-2-sulfonate acetate disodium salt, 2-hydroxy-2-sulfinato acetate disodium salt and the like.
  • Examples thereof include 2-sulfinato acetate salts, amines such as form dimethylaniline, and ascorbic acid. These reducing agents can be used alone or in combination of two or more.
  • the type of the polymerization reactor used in the above-mentioned polymerization step may be any of a batch type, a semi-batch type and a continuous type polymerization reactor.
  • a batch type or semi-batch type polymerization reactor is preferable.
  • the method of adding the monomer in the above polymerization step is not particularly limited, and for example, a method of adding the monomer to the polymerization reactor all at once, a method of adding the monomer continuously or intermittently according to the progress of the polymerization reaction, and a monomer. Examples thereof include a method in which a part of the above is added and reacted to a specific conversion rate, and then the residual monomer is continuously or continuously added, and any of the addition methods may be adopted.
  • the monomer to be added may be used by mixing various monomers to be used in advance, or may be used for each monomer. When various monomers are mixed, the mixing ratio may be constant or changed.
  • the polymerization temperature in the above polymerization step is not particularly limited, but is preferably 0 to 100 ° C, more preferably 5 to 70 ° C.
  • the polymerization step it is preferable to cool the polymerization system or add a polymerization terminator to stop the polymerization reaction when a predetermined polymerization conversion rate is reached.
  • the polymerization conversion rate when the polymerization reaction is stopped is usually preferably 90% or more, more preferably 93% or more.
  • the polymerization terminator is not particularly limited, but for example, nitrites such as sodium nitrite, potassium nitrite, ammonium nitrite, ascorbic acid, citric acid, hydroxylamine, hydroxyamine sulfate, diethyl hydroxylamine, hydroxyamine sulfonic acid. And its alkali metal salt, 2,2,6,6-tetramethylpiperidinooxyl compound such as 4-benzoyloxy 2,2,6,6-tetramethylpiperidinooxyl, sodium dimethyldithiocarbamate, dimethyldithiocarbamic acid.
  • nitrites such as sodium nitrite, potassium nitrite, ammonium nitrite, ascorbic acid, citric acid, hydroxylamine, hydroxyamine sulfate, diethyl hydroxylamine, hydroxyamine sulfonic acid.
  • 2,2,6,6-tetramethylpiperidinooxyl compound such as 4-benzoyloxy 2,2,6,
  • Examples thereof include aromatic hydroxydithiocarboxylic acids such as salts, hydroquinone derivatives, catechol derivatives, resorcinol derivatives, hydroxydimethylbenzenedithiocarboxylic acids, hydroxydibutylbenzenedithiocarboxylic acids and hydroxydibutylbenzenedithiocarboxylic acids, and alkali metal salts thereof.
  • the method of adding the polymerization inhibitor is not particularly limited, but it is preferably added as an aqueous solution.
  • the amount of the polymerization inhibitor used is usually 0.01 to 5 parts by weight, preferably 0.03 to 2 parts by weight, based on 100 parts by weight of the total monomer mixture.
  • a neutralization step may be performed using an alkaline substance, if necessary.
  • the alkaline substance inorganic salts such as hydroxides and carbonates of monovalent metals or divalent metals; ammonia; organic amines are suitable. Further, after the reaction is completed, the concentration can be adjusted as needed.
  • the neutralization step may be performed during the polymerization step or after the polymerization step.
  • the polymerization terminator may be added after the addition of the alkaline substance, or the polymerization terminator may be added at the same time as the polymerization terminator.
  • auxiliary material for polymerization is not particularly limited and may be an organic compound or an inorganic compound.
  • an oxygen scavenger, a dispersant, a surfactant, a chelating agent, a molecular weight adjusting agent, and a particle size adjusting agent examples include agents, anti-aging agents, preservatives, antibacterial agents and the like.
  • the latex-blended composition for dip molding of the present invention may contain titanium oxide (A) and other components (E) described later other than the polymer latex composition (B), and the other components (E) may be used.
  • a cross-linking agent other than titanium oxide (A) a vulcanizing agent, a vulcanization accelerator, a polyvalent metal salt, a pH adjuster; a surfactant, a solvent, a pigment, an antiaging agent, an antiseptic, a wax, etc.
  • examples include inorganic fillers.
  • the total content of the other component (E) is preferably 10% by mass or less, more preferably 5% by mass or less, based on 100% by mass of the polymer (B).
  • vulcanizing agent those usually used in dip molding can be used, for example, sulfur such as powdered sulfur, sulfur flower, precipitated sulfur, colloidal sulfur, surface-treated sulfur, and insoluble sulfur; hexamethylenediamine, triethylenetetramine, and the like. Polyamines such as tetraethylenepentamine; and the like. Of these, sulfur is preferable.
  • the amount of the vulcanizing agent used is preferably 5% by mass or less, more preferably 2% by mass or less, and further preferably 0.8 with respect to 100% by mass of the solid content of the polymer latex composition (B). It is less than mass%.
  • vulcanization accelerator those usually used in dip molding can be used, for example, diethyldithiocarbamic acid, dibutyldithiocarbamic acid, di-2-ethylhexyldithiocarbamic acid, dicyclohexyldithiocarbamic acid, diphenyldithiocarbamic acid, dibenzyldithiocarbamic acid and the like.
  • Dithiocarbamic acids and their zinc salts 2-mercaptobenzothiazole, 2-mercaptobenzothiazole zinc, 2-mercaptothiazolin, dibenzothiadyl disulfide, 2- (2,4-dinitrophenylthio) benzothiazole, 2-( N, N-diethylthiocarbaylthio) benzothiazole, 2- (2,6-dimethyl-4-morpholinothio) benzothiazole, 2- (4'-morpholino-dithio) benzothiazole, 4-morphonylyl-2-benzothiadyl disulfide , 1,3-Bis (2-benzothiazole / mercaptomethyl) urea and the like.
  • vulcanization accelerators can be used alone or in combination of two or more.
  • the amount of the vulcanization accelerator used is preferably 5% by mass or less, more preferably 2% by mass or less, still more preferably 0% by mass, based on 100% by mass of the solid content of the polymer latex composition (B). It is 6% by mass or less.
  • the polyvalent metal salt is not particularly limited as long as it can ion-crosslink the polymer, and examples thereof include divalent metals other than titanium oxide (A) and oxides of trivalent metals. Specific examples thereof include zinc oxide, magnesium oxide, aluminum oxide, barium oxide, vanadium oxide, chromium oxide, lead oxide, iron oxide and the like. Of these, zinc oxide is preferable.
  • the amount of the polyvalent metal salt used is preferably 5% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B). It is more preferably 2% by mass or less, further preferably 0.8% by mass or less, still more preferably 0.7% by mass or less, and particularly preferably 0.5% by mass or less. These polyvalent metal salts may be used as a mixture of polyethylene glycol and hydroxide salts.
  • the latex compounding composition for dip molding of the present invention has technical significance in maintaining the performance physical characteristics of the molded product while minimizing the amount of the compounding agent such as an inorganic compound, and the above-mentioned vulcanization.
  • the compounding agent such as an inorganic compound
  • a vulcanization accelerator such as an inorganic compound
  • a polyvalent metal salt such as an inorganic compound
  • physical strength such as durability and tensile strength can be further improved.
  • each of these agents is used in the polymer latex composition (B). ) May contain 0.01% by mass or more with respect to 100% by mass of the solid content.
  • the method for producing the latex-blended composition for dip molding of the present invention is not particularly limited, and the composition can be produced by mixing titanium oxide (A) and the polymer latex composition (B).
  • the mixing step of the titanium oxide (A) and the polymer latex composition (B) in the production of the latex compounding composition for dip molding is not particularly limited, but the titanium oxide (A) may be added in the form of a dispersion liquid. preferable.
  • the dispersion liquid preferably contains titanium oxide (A) and a dispersant.
  • dispersant examples include sulfonic acid-based dispersants such as sodium naphthalene sulfonate-formaldehyde condensate; clays such as bentonite; and carboxylic acid-based dispersants such as sodium polyacrylate. Further, if necessary, two or more kinds of these dispersants may be mixed and used.
  • the content ratio of the dispersant in the dispersion liquid containing titanium oxide (A) is preferably 0.5 to 10% by mass with respect to 100% by mass of titanium (A) oxide. More preferably, it is 1.0 to 5% by mass.
  • the dispersion liquid containing titanium oxide (A) preferably has a solid content concentration of 30 to 85% by mass.
  • the solid content concentration can be measured by the following method. Take about 8 g of the titanium oxide dispersion in a mast, weigh it precisely, heat it in an oven at 105 ° C for 1 hour to evaporate and dry it, and divide the weight after drying by the weight before drying to make the titanium oxide dispersion. The solid content concentration of was measured.
  • the pH of the dispersion liquid containing titanium oxide (A) is preferably 7 to 11. More preferably, it is 8 to 10.5.
  • the pH can be adjusted by using, for example, a basic substance such as ammonia.
  • the present invention is also a dip molded product obtained by molding the latex compounding composition for dip molding of the present invention.
  • the dip molded product is not particularly limited, and specific examples thereof include gloves, condoms, catheters, tubes, balloons, nipples, and sack. Of these, gloves are preferable.
  • the present invention is also a dip molded product containing a polymer having a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer, and the dip molded product is further surface-treated with a polyvalent metal salt and oxidized. It is also a dip molded product containing titanium (A), having a mounting durability of 50 minutes or more as measured by the following method, and having an evaporation residue amount of 60 ppm or less after elution of 4% acetic acid as measured by the following method.
  • Gloves with a film thickness of 0.05 mm are prepared as a dip molded product, worn by five subjects, and evaluated by the median time until a hole is formed in the finger or portion.
  • the method for producing the dip molded product of the present invention is not particularly limited, but it is preferable to have a dip molding step of solidifying and forming a film on the molding mold and a cross-linking step of forming a cross-linked structure in the polymer latex composition.
  • a manufacturing method is also one of the present inventions.
  • the dip molding step and the crosslinking step may be performed at the same time, or either step may be performed before the other steps.
  • the dip molding method in the above dip molding step is not particularly limited, and examples thereof include a direct dipping method, a solidification dipping method, an electric dipping method, and a heat-sensitive dipping method.
  • the direct dipping method and the solidification dipping method are preferable in that a dip molded product having a uniform thickness can be easily obtained.
  • a dip molding mold is immersed in a coagulant solution to attach a coagulant to the surface of the mold, and then the mold is immersed in a latex compounding composition for dip molding to be placed on the surface of the mold. It is preferably carried out by a method of forming a dip molded layer.
  • the coagulant used in the coagulation and dipping method can generally be used as a mixture of a coagulant component, a solvent, a surfactant, a wetting agent, an inorganic filler, a demolding agent and the like.
  • the coagulant component include metal halides such as barium chloride, calcium chloride, magnesium chloride, aluminum chloride and zinc chloride, nitrates such as barium nitrate, calcium nitrate and zinc nitrate, barium acetate, calcium acetate and zinc acetate.
  • Examples thereof include sulfates such as acetate, calcium sulfate, magnesium sulfate and aluminum sulfate, and acids such as acetic acid, sulfuric acid, hydrochloric acid and nitrate. These compounds can be used alone or in combination, but calcium nitrate and calcium chloride are more preferable.
  • Examples of the solvent include water, alcohol, acids and the like.
  • Examples of the surfactant include nonionic surfactants, metal soaps and other compounds, which are used for the purpose of uniformly adhering the coagulating liquid to the mold surface and facilitating demolding. Be done.
  • Examples of the metal soap include calcium stearate, ammonium stearate, zinc stearate and the like.
  • Examples of the inorganic filler include metal oxides, calcium carbonate, talc and the like.
  • the above-mentioned cross-linking step is a step of forming a cross-linked structure in the dip molded product, but generally, when the polymer is present as a latex composition, a stabilizer, a reactant, a cross-linking agent or the like is added, or heat treatment is performed. There is an aging step performed by stirring, aging, filtering, etc., or a cross-linking step performed in parallel with the pre-vulcanization step and the dip molding step; and there is a cross-linking step performed after the dip molding step, which is required. These steps can be performed depending on the performance of the molded product.
  • a step of cleaning the molding mold, drying at 50-100 ° C., and preheating (2) A step of immersing the molding mold in a coagulant solution containing calcium ions or the like, taking it out and drying it, and adhering the coagulant on the surface of the molding mold and drying it.
  • Process. (6) A step of performing blocking prevention treatment on the dip molded product as necessary.
  • the blocking prevention treatment includes a chlorination treatment method in which an aqueous solution of sodium hypochlorite and hydrochloric acid is mixed or treated with a chlorine gas chamber, or a polymer coating method in which a polymer having blocking prevention performance is applied onto a molded product.
  • a chlorination treatment method in which an aqueous solution of sodium hypochlorite and hydrochloric acid is mixed or treated with a chlorine gas chamber
  • a polymer coating method in which a polymer having blocking prevention performance is applied onto a molded product.
  • part means “part by mass”
  • % means “% by mass”.
  • the dip molded product used for the evaluation was subjected to temperature control and humidity control for 1 day or more after the molded product was removed from the mold.
  • (1) Physical strength and color tone of the dip molded product The produced dip molded product film was humidity-controlled at a temperature of 25 ° C. and a humidity of 55 RH% for 24 hours, and then the physical strength was measured according to ASTMD412.
  • a punched test piece was prepared by using DieC manufactured by Dumbbell Co., Ltd. for the dip molded film.
  • the test piece was pulled at a tensile speed of 500 mm / min, and stress at 300% elongation, elongation, tensile strength, and tear strength were measured.
  • the color tone of the film was measured using a UV-VIS spectrometer manufactured by Hunter Lab.
  • a pH adjuster and a polymerization terminator were added to terminate the polymerization reaction.
  • the pH and concentration of the polymer latex were adjusted with an aqueous ammonia solution to a solid content concentration of 45% and a pH of 8.0, and then p was used as an antiaging agent.
  • -Polymer latex composition 1 by adding an aqueous dispersion of the butylation reaction product of cresol and dicyclopentadiene (manufactured by AKRON DISPERSIONS: Bostex 362) to 0.3 parts by weight in terms of solid content and 100 parts by weight of polymer latex.
  • the polymer latex composition 2 was obtained in the same manner as in Synthesis Example 1 except that the monomer used was changed to 66 parts of 1,3-butadiene, 27 parts of acrylonitrile, and 7 parts of methacrylic acid.
  • the polymer latex composition 3 was obtained in the same manner as in Synthesis Example 1 except that the monomer used was changed to 59.5 parts of 1,3-butadiene, 37 parts of acrylonitrile, and 3.5 parts of methacrylic acid.
  • the polymer latex composition 4 was obtained in the same manner as in Synthesis Example 1 except that the monomer used was changed to 58 parts of 1,3-butadiene, 37 parts of acrylonitrile, and 5 parts of methacrylic acid.
  • the polymer latex composition 5 was obtained in the same manner as in Synthesis Example 1 except that the monomers used were changed to 66 parts of 1,3-butadiene, 30 parts of styrene and 4 parts of methacrylic acid.
  • Example 1 A 3% aqueous potassium hydroxide solution and soft water were added to the polymer latex composition 1 obtained in Synthesis Example 1 under stirring so that the solid content concentration was in the range of 17-20% and the pH was in the range of 9.5-10. Adjusted to. After that, 1.0 part by weight of a dispersion of titanium oxide (solid content concentration: 61%) (manufactured by Sakai Chemical Industry Co., Ltd.) processed with an alumina surface treatment of 3.1% and a silica surface treatment of 6.0% was oxidized.
  • a dispersion of titanium oxide solid content concentration: 61%) (manufactured by Sakai Chemical Industry Co., Ltd.) processed with an alumina surface treatment of 3.1% and a silica surface treatment of 6.0% was oxidized.
  • the hand mold was immersed in the latex compounding composition for dip molding for 30-60 seconds, then taken out, and heated at 80 ° C. for 1 minute to gel the latex compounding composition for dip molding on the hand mold to prepare a thin film. After that, the hand mold was immersed in warm water at 60-70 ° C for 3 minutes for leaching treatment, then left in a test oven and heated at 70 ° C for 5 minutes, and then heated at 130 ° C for 20 minutes without being taken out of the oven. Processing was performed.
  • the hand mold After cooling the hand mold to a surface temperature of 40 ° C., the hand mold is immersed in a chlorinated immersion layer adjusted to have an active chlorine concentration of 900-1000 ppm with sodium hypochlorite and hydrochloric acid for 40 seconds. , Washed with water, washed with 0.4% aqueous sodium sulfate solution, washed again with water, and then dried at 100 ° C. for 5 minutes. After sufficiently cooling the hand mold at room temperature, the thin film was removed from the hand mold to prepare acrylonitrile butadiene rubber gloves (hereinafter referred to as nitrile gloves) as a dip molded product. The produced nitrile gloves were adjusted in humidity at a temperature of 25 ° C.
  • nitrile gloves acrylonitrile butadiene rubber gloves
  • Examples 2 to 17 and Comparative Examples 1 to 4> The latex compounding composition for dip molding and the dip are the same as in Example 1 except that the polymer latex composition, the titanium oxide in the latex compounding composition for dip molding, and other compounding agents are changed as shown in Table 1 or 2. Molds were prepared.
  • Tables 1 and 2 show various physical properties of the latex compounding composition for dip molding and the dip molded product (nitrile gloves) obtained in Examples 1 to 17 and Comparative Examples 1 to 4.
  • the blending amount of the titanium oxide dispersion liquid and other blending agents in the table is a ratio to 100% by mass of the solid content of the polymer latex composition.
  • the solid content concentration of the titanium oxide dispersion is 61%.
  • the dip molded product (nitrile gloves) obtained by using titanium oxide surface-treated with a polyvalent metal salt has excellent physical strength and remains in the 4% acetic acid elution test. I was able to reduce the physical quantity. Therefore, it was confirmed that the latex compounding composition for dip molding of the present invention can produce a dip molded product having excellent physical strength and safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Gloves (AREA)

Abstract

The purpose of the present invention is to provide a latex blend composition which is for dip molding and which can achieve both safety and physical strength in a molded article. The latex blend composition for dip molding according to the present invention is characterized by containing a titanium oxide (A) that is surface-treated with a multivalent metal salt, and a polymer latex composition (B) that includes a polymer having a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer, and is characterized in that the proportion of the titanium oxide (A) treated with the multivalent metal salt is 0.05-10.0 mass% with respect to 100 mass% of solid contents of the polymer latex composition (B).

Description

ディップ成型用ラテックス配合組成物及びディップ成型物Latex compound composition for dip molding and dip molding
本発明は、ディップ成型用ラテックス配合組成物及びディップ成型物に関する。より詳しくは、手袋、コンドーム、カテーテル、チューブ、風船、ニップル、サック等に好適に使用することができるディップ成型用ラテックス配合組成物及びディップ成型物に関する。 The present invention relates to a latex compounding composition for dip molding and a dip molded product. More specifically, the present invention relates to a latex compounding composition for dip molding and a dip molded product that can be suitably used for gloves, condoms, catheters, tubes, balloons, nipples, sack and the like.
天然ゴムラテックス組成物をディップ成型して得られる、手袋、コンドーム、カテーテル、チューブ、風船、ニップル、サックなどの成型品が知られている。しかし天然ゴムラテックスは人体にアレルギー症状を引き起こすタンパク質を含有しているため、人体に直接接触するような製品の場合に問題が生じることが報告されている。また、ディップ成型物が天然ゴムラテックス、合成ゴムラテックスに関わらず、人体に対して刺激性のある化学物質を用いて作製される場合、ディップ成型物中に存在する残余の化学物質が引き起こす遅延型アレルギー症状が近年問題となっている。 Molded products such as gloves, condoms, catheters, tubes, balloons, nipples, and sack obtained by dip molding a natural rubber latex composition are known. However, since natural rubber latex contains proteins that cause allergic symptoms in the human body, it has been reported that problems occur in the case of products that come into direct contact with the human body. In addition, when the dip molded product is manufactured using a chemical substance that is irritating to the human body regardless of whether it is a natural rubber latex or a synthetic rubber latex, the delayed type caused by the residual chemical substance present in the dip molded product. Allergic symptoms have become a problem in recent years.
現在、市場で最も多く使用されているニトリル手袋は、カルボキシル化アクリロニトリルブタジエンゴムラテックスに硫黄、加硫促進剤、酸化亜鉛等の多価金属塩、酸化チタン等の顔料、老化防止剤等を添加して浸漬加工することで作製されるのが一般的である。
上記硫黄、加硫促進剤は、ポリマーに共有結合架橋構造を形成し、耐久性、弾性力を向上させる目的で添加され、酸化亜鉛及びその他の多価金属塩は、ポリマー間にイオン結合架橋を生成させ、物理強度を向上させる目的で添加されることが一般的に知られている。また、成型物に隠ぺい性、白色度を向上する目的で酸化チタンが添加されること、劣化防止の目的で老化防止剤等が添加されることも一般的である。
Currently, the most widely used nitrile gloves on the market are carboxylated acrylonitrile butadiene rubber latex with sulfur, vulcanization accelerator, polyvalent metal salt such as zinc oxide, pigments such as titanium oxide, anti-aging agent, etc. added. It is generally manufactured by dipping.
The sulfur and vulcanization accelerators are added to the polymer for the purpose of forming a covalent bond cross-linking structure and improving durability and elastic force, and zinc oxide and other polyvalent metal salts form an ion bond cross-linking between the polymers. It is generally known that it is added for the purpose of producing and improving physical strength. Further, it is common that titanium oxide is added to the molded product for the purpose of improving concealment and whiteness, and an antiaging agent or the like is added for the purpose of preventing deterioration.
上記配合剤の中でも無機化合物に関して、例えば特許文献1、2において、酸化亜鉛は加硫促進剤又はイオン性架橋剤として、酸化チタンは白色化剤又は色増進剤として添加されている。 Among the above-mentioned compounding agents, regarding inorganic compounds, for example, in Patent Documents 1 and 2, zinc oxide is added as a vulcanization accelerator or an ionic cross-linking agent, and titanium oxide is added as a whitening agent or a color enhancer.
上記のとおり、酸化チタンは、水性ラテックス含有塗料配合物に隠ぺい力・着色力・白色度を付与する目的で用いられることが知られているが、酸化チタンの水への分散性やラテックス組成物との親和性を向上させ、分散安定性を付与する目的で表面処理がなされることがある(特許文献3参照)。
しかし酸化チタンはカルボキシル化アクリロニトリルブタジエンゴムのカルボキシル基をイオン的に架橋しないと考えられている(特許文献4参照)。
As described above, titanium oxide is known to be used for the purpose of imparting hiding power, coloring power, and whiteness to a water-based latex-containing paint formulation, but the dispersibility of titanium oxide in water and the latex composition. Surface treatment may be performed for the purpose of improving affinity with and imparting dispersion stability (see Patent Document 3).
However, it is believed that titanium oxide does not ionically crosslink the carboxyl group of the carboxylated acrylonitrile butadiene rubber (see Patent Document 4).
特許第5575254号公報Japanese Patent No. 5575254 米国特許5014362号明細書US Pat. No. 5,14,362 特許第6715895号公報Japanese Patent No. 6715895 特許第3517246号公報Japanese Patent No. 3517246
物理強度、ゴム弾性、耐久性がある成型物を作製するためには、上記の配合剤を適量使用する必要があるが、これらの化学物質の残留が種々の問題を引き起こす原因にもなっている。特に、加硫促進剤に使用されるチアゾール・チウラム・カルバメートはIV型遅延型過敏症(アレルギー)を誘発する原因となっている。また、手袋中に残留する酸化亜鉛等が多い場合、アルコール等による残留物質量が多くなり、衛生規格を満足できない懸念がある。
更に、配合剤として使用される無機化合物は、ディップ成型物を伸張していく場合、有機高分子であるゴムポリマーと無機化合物との伸張率の相違から、両者間にマクロ乖離が生じ、物理強度を低下させる原因となる。したがって、上記安全性の観点に加えて、耐久性や引張強度等の物理強度の観点からも、使用される無機化合物の量を最小限に抑える必要があった。
このように手袋に代表される浸漬加工製品は、成型物の強靭性と安全性がますます求められており、ディップ成型物の加工において、配合剤の使用量を最小限に抑えながら成型物の性能物性を維持することが求められている。
上述の通り、種々のディップ成型用ラテックス配合組成物が開発されているものの、従来のディップ成型用ラテックス配合組成物は、成型物の物理強度と安全性との両立の点で充分ではなかった。
In order to produce a molded product with physical strength, rubber elasticity, and durability, it is necessary to use an appropriate amount of the above-mentioned compounding agent, but the residual of these chemical substances also causes various problems. .. In particular, thiazole thiuram carbamate used as a vulcanization accelerator is a cause of inducing type IV delayed hypersensitivity (allergy). In addition, if there is a large amount of zinc oxide or the like remaining in the gloves, the amount of residual substances due to alcohol or the like will increase, and there is a concern that the hygiene standards cannot be satisfied.
Furthermore, when the dip molded product is stretched, the inorganic compound used as a compounding agent has a macromolecular dissociation between the rubber polymer, which is an organic polymer, and the inorganic compound due to the difference in the stretch ratio, resulting in physical strength. It causes the decrease. Therefore, in addition to the above safety viewpoint, it is necessary to minimize the amount of the inorganic compound used from the viewpoint of physical strength such as durability and tensile strength.
Immersion-processed products such as gloves are increasingly required to have toughness and safety in the molded product, and the molded product is processed while minimizing the amount of compounding agent used in the processing of the dip molded product. It is required to maintain the performance physical characteristics.
As described above, although various latex compounding compositions for dip molding have been developed, the conventional latex compounding compositions for dip molding have not been sufficient in terms of both physical strength and safety of the molded product.
本発明は、上記現状に鑑みてなされたものであり、成型物における物理強度と安全性とを両立することができるディップ成型用ラテックス配合組成物を提供することを目的とする。 The present invention has been made in view of the above situation, and an object of the present invention is to provide a latex compounding composition for dip molding, which can achieve both physical strength and safety in a molded product.
本発明者らは、ディップ成型用ラテックス配合組成物について種々検討したところ、エチレン性不飽和カルボン酸単量体由来の構造単位(b1)を有するポリマーを含むポリマーラテックス組成物に対して、多価金属塩で表面処理された酸化チタンを所定量用いることにより、成型物における物理強度と安全性とを両立することができることを見出し、課題をみごとに解決することができることに想到し、本発明に到達したものである。 As a result of various studies on a latex compounding composition for dip molding, the present inventors have found that a polymer latex composition containing a polymer having a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer has a high value. We have found that by using a predetermined amount of titanium oxide surface-treated with a metal salt, it is possible to achieve both physical strength and safety in a molded product, and we have come up with the idea that the problem can be solved brilliantly. It has arrived.
すなわち本発明は、多価金属塩で表面処理された酸化チタン(A)と、エチレン性不飽和カルボン酸単量体由来の構造単位(b1)を有するポリマーを含むポリマーラテックス組成物(B)とを含み、該ポリマーラテックス組成物(B)の固形分100質量%に対する多価金属塩で処理された酸化チタン(A)の割合が0.05~10.0質量%であるディップ成型用ラテックス配合組成物である。 That is, the present invention comprises a polymer latex composition (B) containing a polymer having a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer and titanium oxide (A) surface-treated with a polyvalent metal salt. The polymer latex composition (B) contains a latex for dip molding in which the ratio of titanium oxide (A) treated with the polyvalent metal salt to 100% by mass of the solid content is 0.05 to 10.0% by mass. It is a composition.
上記酸化チタン(A)は、多価金属塩とシリカで表面処理されたものであることが好ましい。 The titanium oxide (A) is preferably surface-treated with a polyvalent metal salt and silica.
上記多価金属塩は、アルミニウム、亜鉛、カルシウム、マグネシウム、ニオブ、チタニウム、ジルコニウム、セリウム、ストロンチウム、バリウム、ラジウム、スズ、鉛、ニッケル、鉄、銅、カドミウム、コバルト及びマンガンからなる群より選択される少なくとも1種の金属の塩であることが好ましい。 The polyvalent metal salt is selected from the group consisting of aluminum, zinc, calcium, magnesium, niobium, titanium, zirconium, cerium, strontium, barium, radium, tin, lead, nickel, iron, copper, cadmium, cobalt and manganese. It is preferably a salt of at least one metal.
上記多価金属塩は、アルミニウム塩であることが好ましい。 The polyvalent metal salt is preferably an aluminum salt.
上記酸化チタン(A)における多価金属塩の表面処理量は、表面処理前の酸化チタン100質量%に対して0.1~10質量%であることが好ましい。 The surface treatment amount of the polyvalent metal salt in the titanium oxide (A) is preferably 0.1 to 10% by mass with respect to 100% by mass of the titanium oxide before the surface treatment.
上記酸化チタン(A)におけるシリカの表面処理量は、表面処理前の酸化チタン100質量%に対して0.1~10質量%であることが好ましい。 The surface treatment amount of silica in the titanium oxide (A) is preferably 0.1 to 10% by mass with respect to 100% by mass of titanium oxide before the surface treatment.
上記酸化チタン(A)は、平均粒子径が1μm以下であることが好ましい。 The titanium oxide (A) preferably has an average particle size of 1 μm or less.
上記ポリマーラテックス組成物(B)に含まれるポリマーは、共役ジエン単量体由来の構造単位(b2)を有することが好ましい。 The polymer contained in the polymer latex composition (B) preferably has a structural unit (b2) derived from a conjugated diene monomer.
上記ポリマーラテックス組成物(B)に含まれるポリマーは、エチレン性不飽和ニトリル単量体由来の構造単位(b3)を有することが好ましい。 The polymer contained in the polymer latex composition (B) preferably has a structural unit (b3) derived from an ethylenically unsaturated nitrile monomer.
上記ポリマーラテックス組成物(B)に含まれるポリマーは、エチレン性不飽和カルボン酸単量体由来の構造単位(b1)、共役ジエン単量体由来の構造単位(b2)及びエチレン性不飽和ニトリル単量体由来の構造単位(b3)の含有割合が2~10/50~78/20~40(質量%)であることが好ましい。 The polymer contained in the polymer latex composition (B) includes a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer, a structural unit (b2) derived from a conjugated diene monomer, and a simple ethylenically unsaturated nitrile. The content ratio of the structural unit (b3) derived from the polymer is preferably 2 to 10/50 to 78/20 to 40 (mass%).
上記ディップ成型用ラテックス配合組成物は、酸化亜鉛の含有割合がポリマーラテックス組成物(B)の固形分100質量%に対して5質量%以下であることが好ましい。 The zinc oxide content of the latex compounding composition for dip molding is preferably 5% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B).
上記ディップ成型用ラテックス配合組成物は、酸化亜鉛の含有割合がポリマーラテックス組成物(B)の固形分100質量%に対して0.8質量%以下であることが好ましい。 The zinc oxide content of the latex compounding composition for dip molding is preferably 0.8% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B).
上記ディップ成型用ラテックス配合組成物は、硫黄の含有割合がポリマーラテックス組成物(B)の固形分100質量%に対して2質量%以下であることが好ましい。 In the latex compounding composition for dip molding, the sulfur content is preferably 2% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B).
上記ディップ成型用ラテックス配合組成物は、硫黄の含有割合がポリマーラテックス組成物(B)の固形分100質量%に対して0.8質量%以下であることが好ましい。 The latex-blended composition for dip molding preferably has a sulfur content of 0.8% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B).
上記ディップ成型用ラテックス配合組成物は、加硫促進剤の含有割合がポリマーラテックス組成物(B)の固形分100質量%に対して2質量%以下であることが好ましい。 In the latex compounding composition for dip molding, the content ratio of the vulcanization accelerator is preferably 2% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B).
上記ディップ成型用ラテックス配合組成物は、加硫促進剤の含有割合がポリマーラテックス組成物(B)の固形分100質量%に対して0.6質量%以下であることが好ましい。 In the latex compounding composition for dip molding, the content ratio of the vulcanization accelerator is preferably 0.6% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B).
本発明はまた、上記ディップ成型用ラテックス配合組成物を成型させてなるディップ成型物でもある。 The present invention is also a dip molded product obtained by molding the above-mentioned latex compounding composition for dip molding.
上記ディップ成型物は手袋であることが好ましい。 The dip molded product is preferably gloves.
本発明は更に、エチレン性不飽和カルボン酸単量体由来の構造単位(b1)を有するポリマーを含むディップ成型物であって、上記ディップ成型物は、更に多価金属塩で表面処理された酸化チタン(A)を含み、以下の方法で測定する装着耐久時間が50分以上であり、以下の方法で測定する4%酢酸溶出後の蒸発残留物量が60ppm以下であるディップ成型物でもある。
<装着耐久時間の測定>
ディップ成型物として膜厚が0.05mmの手袋を作製して、被験者5名に装着してもらい、指又部分に穴が生じるまでの時間の中央値にて評価する。
<4%酢酸溶出後の蒸発残留物量の測定>
食品衛生法のゴム製の器具又は容器包装の試験方法に基づいて、ディップ成型物を4%酢酸に60℃で30分浸漬させた後、浸出液中の蒸発残留物量を測定する。
The present invention further comprises a dip molded product containing a polymer having a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer, and the dip molded product is further surface-treated with a polyvalent metal salt and oxidized. It is also a dip molded product containing titanium (A), having a mounting durability of 50 minutes or more as measured by the following method, and having an evaporation residue amount of 60 ppm or less after elution of 4% acetic acid as measured by the following method.
<Measurement of wearing durability time>
Gloves with a film thickness of 0.05 mm are prepared as a dip molded product, worn by five subjects, and evaluated by the median time until a hole is formed in the finger or portion.
<Measurement of evaporation residue after elution of 4% acetic acid>
After immersing the dip molded product in 4% acetic acid at 60 ° C. for 30 minutes based on the test method for rubber appliances or containers and packaging of the Food Sanitation Law, the amount of evaporation residue in the leachate is measured.
本発明のディップ成型用ラテックス配合組成物及びその成型物は、上述の構成よりなり、成型物における物理強度と安全性とを両立することができるため、手袋、コンドーム、カテーテル、チューブ、風船、ニップル、サック等に好適に使用することができる。 The latex compounding composition for dip molding of the present invention and the molded product thereof have the above-mentioned configurations, and can achieve both physical strength and safety in the molded product. Therefore, gloves, condoms, catheters, tubes, balloons, and nipples. , Sack and the like can be suitably used.
以下に本発明の好ましい形態について具体的に説明するが、本発明は以下の記載のみに限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下に記載される本発明の個々の好ましい形態を2又は3以上組み合わせた形態も、本発明の好ましい形態に該当する。 Hereinafter, preferred embodiments of the present invention will be specifically described, but the present invention is not limited to the following description, and can be appropriately modified and applied without changing the gist of the present invention. In addition, a form in which two or three or more of the individual preferable forms of the present invention described below are combined also corresponds to the preferred form of the present invention.
<ディップ成型用ラテックス配合組成物>
本発明のディップ成型用ラテックス配合組成物は、多価金属塩で表面処理された酸化チタン(A)(以下、酸化チタン(A)ともいう。)とエチレン性不飽和カルボン酸単量体由来の構造単位(b1)を有するポリマーラテックス組成物(B)(以下、ポリマーラテックス(B)ともいう。)とを含み、該ポリマーラテックス(B)の固形分100質量%に対する多価金属塩で処理された酸化チタン(A)の割合が0.05~10.0質量%である。
多価金属塩で表面処理された酸化チタン(A)は、架橋反応に寄与することができるため、従来、架橋剤として使用されていた硫黄、酸化亜鉛、加硫促進剤の添加量を低減することができる。
従来、アルミニウム化合物等の多価金属塩自体がポリマーの架橋剤として使用されているが、その場合ポリマー間での架橋反応のみが増進され、無機化合物との界面剥離を改善することはできなかった。これに対して本発明では、酸化チタン(A)の表面の多価金属塩により、ポリマーラテックス(B)のポリマーのカルボキシル基間にイオン架橋が形成されるため、酸化チタン粒子と有機高分子ポリマーとの間の親和性が向上し、無機物―有機物界面の相互作用が強まるため、成型物フィルムを伸張した際の有機-無機界面における乖離を抑制することができると考えられる。このように成型物フィルム中に微分散状態にある酸化チタン表面において有機-無機界面における乖離抑制効果が増進されることで、ディップ成型物の靭性が強化され、機械的特性(引張強度・破断点伸び・破壊力)が向上すると考えられる。
更に、上記酸化チタン(A)は、従来の酸化チタンのように白色顔料としての機能も発揮できるため、上記酸化チタン(A)とは別に白色顔料としての酸化チタンを用いる必要もないため、無機化合物の使用量を低減することができる。
これにより、架橋剤や無機化合物等の配合剤の含有量を低減することができ、かつ、成型物が機械的強度に優れるものとなる。
<Latex compound composition for dip molding>
The latex compounding composition for dip molding of the present invention is derived from titanium oxide (A) surface-treated with a polyvalent metal salt (hereinafter, also referred to as titanium oxide (A)) and an ethylenically unsaturated carboxylic acid monomer. It contains a polymer latex composition (B) having a structural unit (b1) (hereinafter, also referred to as polymer latex (B)), and is treated with a polyvalent metal salt based on 100% by mass of the solid content of the polymer latex (B). The proportion of titanium oxide (A) is 0.05 to 10.0% by mass.
Since titanium (A) surface-treated with a polyvalent metal salt can contribute to the cross-linking reaction, the amount of sulfur, zinc oxide, and vulcanization accelerator, which have been conventionally used as cross-linking agents, is reduced. be able to.
Conventionally, polyvalent metal salts such as aluminum compounds themselves have been used as cross-linking agents for polymers, but in that case, only the cross-linking reaction between the polymers was promoted, and the interfacial peeling with the inorganic compound could not be improved. .. On the other hand, in the present invention, the polyvalent metal salt on the surface of the titanium oxide (A) forms an ion bridge between the carboxyl groups of the polymer of the polymer latex (B), so that the titanium oxide particles and the organic polymer polymer are formed. It is considered that the divergence at the organic-inorganic interface when the molded film is stretched can be suppressed because the affinity with the polymer is improved and the interaction between the inorganic substance and the organic substance is strengthened. By enhancing the effect of suppressing dissociation at the organic-inorganic interface on the surface of titanium oxide that is in a finely dispersed state in the molded product film, the toughness of the dip molded product is strengthened and the mechanical properties (tensile strength / breaking point) are enhanced. Elongation / destructive power) is considered to improve.
Further, since the titanium oxide (A) can also function as a white pigment unlike the conventional titanium oxide, it is not necessary to use titanium oxide as a white pigment separately from the titanium oxide (A), so that it is inorganic. The amount of the compound used can be reduced.
As a result, the content of the compounding agent such as the cross-linking agent and the inorganic compound can be reduced, and the molded product has excellent mechanical strength.
本発明のディップ成型用ラテックス配合組成物において、上記ポリマーラテックス(B)の固形分100質量%に対する多価金属塩で処理された酸化チタン(A)の割合は0.05~10.0質量%であり、好ましくは0.2~5.0質量%であり、更に好ましくは0.4~3.0質量%であり、特に好ましくは0.4~2.0質量%である。
これにより本発明の作用効果をより効果的に発揮することができる。
In the latex compounding composition for dip molding of the present invention, the ratio of titanium oxide (A) treated with the polyvalent metal salt to 100% by mass of the solid content of the polymer latex (B) is 0.05 to 10.0% by mass. It is preferably 0.2 to 5.0% by mass, more preferably 0.4 to 3.0% by mass, and particularly preferably 0.4 to 2.0% by mass.
Thereby, the action and effect of the present invention can be exhibited more effectively.
本発明のディップ成型用ラテックス配合組成物は、酸化チタン(A)及びポリマーラテックス(B)以外の後述するその他の成分(E)を含んでいてもよい。 The latex compounding composition for dip molding of the present invention may contain a component (E) described later other than titanium oxide (A) and the polymer latex (B).
以下では、本発明のディップ成型用ラテックス配合組成物に含まれる必須成分及び任意成分について更に説明する。
<多価金属塩で表面処理された酸化チタン(A)>
本発明のディップ成型用ラテックス配合組成物に含まれる酸化チタン(A)は、多価金属塩で表面処理されており、該多価金属塩により、ポリマーラテックス(B)が有するカルボキシル基間にイオン架橋反応を形成することができる。
多価金属塩は、カルボキシル基間にイオン架橋反応を形成するものであれば特に制限されず、2価以上の金属イオンを発生させる金属塩が挙げられる。
多価金属として好ましくは、アルミニウム、亜鉛、カルシウム、マグネシウム、ニオブ、チタニウム、ジルコニウム、セリウム、ストロンチウム、バリウム、ラジウム、スズ、鉛、ニッケル、鉄、銅、カドミウム、コバルト及びマンガンである。より好ましくはアルミニウム、亜鉛、カルシウム、マグネシウム、ニオブ、チタニウム、ジルコニウム、セリウム、スズ、であり、更に好ましくはアルミニウム、亜鉛である。
Hereinafter, the essential components and optional components contained in the latex compounding composition for dip molding of the present invention will be further described.
<Titanium oxide (A) surface-treated with a polyvalent metal salt>
The titanium oxide (A) contained in the latex compounding composition for dip molding of the present invention is surface-treated with a polyvalent metal salt, and the polyvalent metal salt causes ions between the carboxyl groups of the polymer latex (B). A cross-linking reaction can be formed.
The polyvalent metal salt is not particularly limited as long as it forms an ion cross-linking reaction between carboxyl groups, and examples thereof include metal salts that generate divalent or higher metal ions.
Preferred polyvalent metals are aluminum, zinc, calcium, magnesium, niobium, titanium, zirconium, cerium, strontium, barium, radium, tin, lead, nickel, iron, copper, cadmium, cobalt and manganese. More preferably, it is aluminum, zinc, calcium, magnesium, niobium, titanium, zirconium, cerium, tin, and even more preferably aluminum or zinc.
上記酸化チタン(A)における多価金属塩の表面処理量は、表面処理前の酸化チタン100質量%に対して0.1~10質量%であることが好ましい。これによりポリマーラテックス(B)におけるイオン架橋がより充分に形成される。多価金属塩の表面処理量としてより好ましくは0.5~8質量%であり、更に好ましくは1~5質量%である。 The surface treatment amount of the polyvalent metal salt in the titanium oxide (A) is preferably 0.1 to 10% by mass with respect to 100% by mass of the titanium oxide before the surface treatment. As a result, ionic cross-linking in the polymer latex (B) is more sufficiently formed. The surface treatment amount of the polyvalent metal salt is more preferably 0.5 to 8% by mass, still more preferably 1 to 5% by mass.
上記酸化チタン(A)は、多価金属塩とシリカで表面処理されたものであることが好ましい。これにより、酸化チタン(A)のラテックス配合組成物における分散性がより向上する。 The titanium oxide (A) is preferably surface-treated with a polyvalent metal salt and silica. This further improves the dispersibility of the titanium oxide (A) in the latex compounding composition.
上記酸化チタン(A)におけるシリカの表面処理量は、表面処理前の酸化チタン100質量%に対して0.1~10質量%であることが好ましい。これにより酸化チタン(A)の分散性がより充分に向上する。シリカの表面処理量としてより好ましくは0.5~8質量%であり、更に好ましくは0.5~7質量%であり、特に好ましくは1~6質量%である。 The surface treatment amount of silica in the titanium oxide (A) is preferably 0.1 to 10% by mass with respect to 100% by mass of titanium oxide before the surface treatment. As a result, the dispersibility of titanium oxide (A) is sufficiently improved. The surface treatment amount of silica is more preferably 0.5 to 8% by mass, further preferably 0.5 to 7% by mass, and particularly preferably 1 to 6% by mass.
上記酸化チタン(A)は、表面処理前の酸化チタンの平均粒子径が1μm以下であることが好ましい。これによりラテックス配合組成物において酸化チタン(A)が十分に分散するため、可視光をより充分に散乱させ、ラテックス配合組成物に白色度を充分に付与することができる。平均粒子径としてより好ましくは0.8μm以下であり、更に好ましくは0.5μm以下である。また、平均粒子径として好ましくは0.01μm以上である。 The titanium oxide (A) preferably has an average particle size of titanium oxide of 1 μm or less before surface treatment. As a result, titanium oxide (A) is sufficiently dispersed in the latex-blended composition, so that visible light can be scattered more sufficiently and whiteness can be sufficiently imparted to the latex-blended composition. The average particle size is more preferably 0.8 μm or less, still more preferably 0.5 μm or less. The average particle size is preferably 0.01 μm or more.
<多価金属塩で表面処理された酸化チタン(A)の製造方法>
上記酸化チタン(A)の製造方法は、多価金属塩で表面処理される限り特に制限されないが、原料となる酸化チタンと多価金属塩を分散液中で混合することにより製造することができる。
上記酸化チタン(A)の製造方法は、原料となる酸化チタンと多価金属塩とを分散液中で混合する混合工程を含むことが好ましい。
なお上記多価金属塩は、分散液中で金属イオンとそのカウンターアニオンとが電離していてもよい。
<Manufacturing method of titanium oxide (A) surface-treated with a polyvalent metal salt>
The method for producing titanium oxide (A) is not particularly limited as long as it is surface-treated with a polyvalent metal salt, but it can be produced by mixing titanium oxide as a raw material and a polyvalent metal salt in a dispersion liquid. ..
The method for producing titanium oxide (A) preferably includes a mixing step of mixing titanium oxide as a raw material and a polyvalent metal salt in a dispersion liquid.
In the polyvalent metal salt, the metal ion and its counter anion may be ionized in the dispersion liquid.
上記酸化チタン(A)の原料となる酸化チタンとしては特に制限されないが、例えば硫酸法によって得られた二酸化チタンや、塩素法によって得られた酸化チタンが挙げられる。
また、酸化チタンの結晶型も特に限定されず、ルチル型酸化チタンでもよく、アナターゼ型酸化チタンでもよいが、耐候性及び耐光性の点からは、ルチル型が好ましい。
The titanium oxide used as a raw material for the titanium oxide (A) is not particularly limited, and examples thereof include titanium dioxide obtained by the sulfuric acid method and titanium oxide obtained by the chlorine method.
Further, the crystal type of titanium oxide is not particularly limited, and rutile-type titanium oxide or anatase-type titanium oxide may be used, but the rutile-type is preferable from the viewpoint of weather resistance and light resistance.
上記酸化チタンの粒度も、特に制限されず、用途に応じて適宜選択することができる。一般的に、ラテックス配合組成物における隠ぺい力、着色力、白色度を高める目的で用いられる酸化チタンは、平均粒子径が0.01~1.0μmであることが好ましく、0.1~0.5μmであることがより好ましい。 The particle size of the titanium oxide is not particularly limited, and can be appropriately selected depending on the intended use. Generally, titanium oxide used for the purpose of enhancing hiding power, coloring power, and whiteness in a latex-blended composition preferably has an average particle size of 0.01 to 1.0 μm, and 0.1 to 0. It is more preferably 5 μm.
上記多価金属塩としては、上述の多価金属の酸化物、複酸化物、水酸化物、硫酸塩、硝酸塩、塩化物等が挙げられる。具体的には、アルミン酸ナトリウム、硫酸アルミニウム、硝酸アルミニウム、塩化アルミニウム、酸化亜鉛、硫酸亜鉛、硝酸亜鉛、塩化亜鉛等が挙げられる。 Examples of the polyvalent metal salt include the above-mentioned polyvalent metal oxides, double oxides, hydroxides, sulfates, nitrates, chlorides and the like. Specific examples thereof include sodium aluminate, aluminum sulfate, aluminum nitrate, aluminum chloride, zinc oxide, zinc sulfate, zinc nitrate, zinc chloride and the like.
上記酸化チタン(A)が多価金属塩とシリカで表面処理されたものである場合、シリカ源としては、ケイ酸ナトリウムや四塩化ケイ素等のシリカ化合物が挙げられる。
この場合、多価金属塩とシリカとを酸化チタンに処理する順序は特に制限されず、先に多価金属塩により表面処理しても、シリカにより表面処理しても、同時に表面処理してもよいが、先にシリカにより表面処理を行うことが好ましい。先にシリカにより表面処理することで、シリカがアンカーとなり、多価金属塩による表面処理をより充分に進行させることができる。
When the titanium oxide (A) is surface-treated with a polyvalent metal salt and silica, examples of the silica source include silica compounds such as sodium silicate and silicon tetrachloride.
In this case, the order in which the polyvalent metal salt and silica are treated with titanium oxide is not particularly limited, and the surface treatment may be performed with the polyvalent metal salt first, with silica, or at the same time. Although it is good, it is preferable to perform the surface treatment with silica first. By first surface-treating with silica, silica becomes an anchor, and the surface treatment with polyvalent metal salt can proceed more sufficiently.
上記酸化チタン(A)の製造方法で用いられる分散液としては、水、メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレングリコール、N-メチルピロリドン等の水性溶媒または水可溶性溶媒が挙げられる。中でも好ましくは水である。 Examples of the dispersion used in the method for producing titanium oxide (A) include water, methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol, N-methylpyrrolidone and other aqueous solvents or water-soluble solvents. Of these, water is preferable.
上記酸化チタン(A)の製造方法は、上記混合工程後に、混合工程で得られた分散液(スラリー)を乾燥する工程、該乾燥工程で得られた乾燥物を焼成する工程、該焼成工程で得られた焼成物を粉砕する工程を含んでいてもよい。 The method for producing the titanium oxide (A) is a step of drying the dispersion liquid (slurry) obtained in the mixing step, a step of firing the dried product obtained in the drying step, and the firing step after the mixing step. It may include a step of crushing the obtained fired product.
<エチレン性不飽和カルボン酸単量体由来の構造単位(b1)を有するポリマーラテックス組成物(B)>
本発明のポリマーラテックス組成物(B)に含まれるポリマーは、エチレン性不飽和カルボン酸単量体由来の構造単位(b1)を有するポリマーラテックスである。
上記構造単位(b1)が有するカルボキシル基間に多価金属塩によるイオン架橋を形成することによりポリマーラテックス(B)は架橋構造を有するものとなる。
エチレン性不飽和カルボン酸単量体は、エチレン性不飽和結合とカルボキシル基又はその塩の基とを有するものであれば特に制限されないが、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、無水マレイン酸、無水シトラコン酸及びこれらの塩などが挙げられる。なかでもアクリル酸、メタクリル酸及びこれらの塩が好ましい。
これらのエチレン性不飽和カルボン酸単量体は、1種又は2種以上を組み合わせて用いることができる。
上記エチレン性不飽和カルボン酸単量体の塩としては、ナトリウム、カリウム等のアルカリ金属等の1価金属塩;マグネシウム、カルシウム等のアルカリ土類金属等の2価金属塩;アンモニウム塩;有機アミン塩等が挙げられる
<Polymer latex composition (B) having a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer>
The polymer contained in the polymer latex composition (B) of the present invention is a polymer latex having a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer.
The polymer latex (B) has a crosslinked structure by forming an ionic crosslink with a polyvalent metal salt between the carboxyl groups of the structural unit (b1).
The ethylenically unsaturated carboxylic acid monomer is not particularly limited as long as it has an ethylenically unsaturated bond and a carboxyl group or a salt group thereof, but is not particularly limited, but is acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid. , Maleic anhydride, citraconic acid anhydride and salts thereof. Of these, acrylic acid, methacrylic acid and salts thereof are preferable.
These ethylenically unsaturated carboxylic acid monomers can be used alone or in combination of two or more.
Examples of the salt of the ethylenically unsaturated carboxylic acid monomer include monovalent metal salts such as alkali metals such as sodium and potassium; divalent metal salts such as alkaline earth metals such as magnesium and calcium; ammonium salts; organic amines. Salt etc.
本発明のポリマーラテックス組成物(B)に含まれるポリマーは構造単位(b1)を有するものであれば特に制限されないが、更に、共役ジエン単量体由来の構造単位(b2)を有するものであることが好ましい。共役ジエン単量体は、2つの二重結合を有し、かつ、1つの単結合によって二重結合が隔てられている構造を有するものであれば特に制限されないが、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ペンタジエン及びクロロプレン等が挙げられる。これらの共役ジエン単量体は、1種又は2種以上を組み合わせて用いることができる。 The polymer contained in the polymer latex composition (B) of the present invention is not particularly limited as long as it has a structural unit (b1), but further has a structural unit (b2) derived from a conjugated diene monomer. Is preferable. The conjugated diene monomer is not particularly limited as long as it has two double bonds and has a structure in which the double bonds are separated by one single bond, but is not particularly limited, but is limited to 1,3-butadiene and isoprene. , 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene, chloroprene and the like. These conjugated diene monomers can be used alone or in combination of two or more.
本発明のポリマーラテックス組成物(B)に含まれるポリマーは、更に、エチレン性不飽和ニトリル単量体由来の構造単位(b3)及び/又はスチレン、アルキルスチレン、ビニルナフタレン等のビニル芳香族単量体由来の構造単位(b4)を有するものであることが好ましい。より好ましくは上記ポリマーが構造単位(b3)を有する形態である。これにより、ディップ成型体の耐油性、耐摩耗性、引裂強度がより向上する。エチレン性不飽和ニトリル単量体は、エチレン性不飽和結合とニトリル基とを有するものであれば特に制限されないが、アクリロニトリル、メタクリロニトリル、フマロニトリル、α-クロロアクリロニトリル、α-シアノエチルアクリロニトリル等が挙げられる。これらのエチレン性不飽和ニトリル単量体は、1種又は2種以上を組み合わせて用いることができる。 The polymer contained in the polymer latex composition (B) of the present invention further comprises a structural unit (b3) derived from an ethylenically unsaturated nitrile monomer and / or a vinyl aromatic single amount such as styrene, alkylstyrene, vinylnaphthalene and the like. It preferably has a body-derived structural unit (b4). More preferably, the polymer has a structural unit (b3). As a result, the oil resistance, wear resistance, and tear strength of the dip molded body are further improved. The ethylenically unsaturated nitrile monomer is not particularly limited as long as it has an ethylenically unsaturated bond and a nitrile group, and examples thereof include acrylonitrile, methacrylonitrile, fumaronitrile, α-chloroacrylonitrile, and α-cyanoethylacrylonitrile. Be done. These ethylenically unsaturated nitrile monomers can be used alone or in combination of two or more.
本発明のポリマーラテックス組成物(B)に含まれるポリマーは、エチレン性不飽和カルボン酸単量体、共役ジエン単量体、エチレン性不飽和ニトリル単量体以外のその他の単量体由来の構造単位(e)を有していてもよい。その他の単量体としては上記単量体と共重合できるものであれば特に制限されないが、例えば、アクリルアミドプロパンスルホン酸、スチレンスルホン酸等のエチレン性不飽和スルホン酸単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸トリフルオロエチル、(メタ)アクリル酸テトラフルオロプロピル、イタコン酸モノエチル、フマル酸モノブチル、マレイン酸モノブチル、マレイン酸ジブチル、フマル酸ジブチル、マレイン酸エチル、マレイン酸モノ2-ヒドロキシプロピル、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸メトキシエトキシエチル、(メタ)アクリル酸シアノメチル、(メタ)アクリル酸2-シアノエチル、(メタ)アクリル酸1-シアノプロピル、(メタ)アクリル酸2-エチル-6-シアノヘキシル、(メタ)アクリル酸3-シアノプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、2-スルホエチルアクリレート、2-スルホプロピルメタクリレート等のエチレン性不飽和カルボン酸エステル単量体;(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N,N-ジメチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-プロポキシメチル(メタ)アクリルアミド等のエチレン性不飽和アミド単量体;フルオロエチルビニルエーテル等のフルオロアルキルビニルエーテル;ビニルピリジン;ビニルノルボーネン、ジシクロペンタジエン、1,4-ヘキサジエン等の非共役ジエン単量体;等が挙げられる。 The polymer contained in the polymer latex composition (B) of the present invention has a structure derived from a monomer other than the ethylenically unsaturated carboxylic acid monomer, the conjugated diene monomer, and the ethylenically unsaturated nitrile monomer. It may have a unit (e). The other monomers are not particularly limited as long as they can be copolymerized with the above-mentioned monomers, but are, for example, ethylenically unsaturated sulfonic acid monomers such as acrylamide propane sulfonic acid and styrene sulfonic acid; (meth) acrylic. Methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, -2-ethylhexyl (meth) acrylate, trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, monoethyl itaconate, fumal Monobutyl acid, monobutyl maleate, dibutyl maleate, dibutyl fumarate, ethyl maleate, mono2-hydroxypropyl maleate, methoxymethyl (meth) acrylate, ethoxyethyl (meth) acrylate, methoxyethoxy (meth) acrylate Ethyl, cyanomethyl (meth) acrylate, 2-cyanoethyl (meth) acrylate, 1-cyanopropyl (meth) acrylate, 2-ethyl-6-cyanohexyl (meth) acrylate, 3-cyano (meth) acrylate Ethylene unsaturated carboxylics such as propyl, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, glycidyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, 2-sulfoethyl acrylate, 2-sulfopropylmethacrylate, etc. Acrylic acid ester monomer; Ethnicity such as (meth) acrylamide, N-methylol (meth) acrylamide, N, N-dimethylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide, etc. Unsaturated amide monomers; fluoroalkyl vinyl ethers such as fluoroethyl vinyl ethers; vinyl pyridines; non-conjugated diene monomers such as vinylnorbonen, dicyclopentadiene, 1,4-hexadiene; and the like.
上記ポリマーラテックス組成物(B)に含まれるポリマーは、構造単位(b1)の割合が、重合可能な全構造単位100質量%に対して0.1~20質量%であることが好ましい。より好ましくは2~10質量%であり、更に好ましくは3~8質量%である。これにより本発明の作用効果をより効果的に発揮することができる。 The polymer contained in the polymer latex composition (B) preferably has a structural unit (b1) ratio of 0.1 to 20% by mass with respect to 100% by mass of all polymerizable structural units. It is more preferably 2 to 10% by mass, still more preferably 3 to 8% by mass. Thereby, the action and effect of the present invention can be exhibited more effectively.
上記ポリマーラテックス組成物(B)に含まれるポリマーは、構造単位(b2)の割合が、重合可能な全構造単位100質量%に対して30~90質量%であることが好ましい。より好ましくは40~80質量%であり、更に好ましくは50~75質量%である。これにより本発明の作用効果をより効果的に発揮することができる。 The polymer contained in the polymer latex composition (B) preferably has a structural unit (b2) in an amount of 30 to 90% by mass with respect to 100% by mass of all polymerizable structural units. It is more preferably 40 to 80% by mass, and further preferably 50 to 75% by mass. Thereby, the action and effect of the present invention can be exhibited more effectively.
上記ポリマーラテックス組成物(B)に含まれるポリマーは、構造単位(b3)の割合が、重合可能な全構造単位100質量%に対して0~50質量%であることが好ましい。より好ましくは10~50質量%であり、更に好ましくは15~45質量%であり、特に好ましくは20~40質量%である。これにより本発明の作用効果をより効果的に発揮することができる。 The polymer contained in the polymer latex composition (B) preferably has a structural unit (b3) ratio of 0 to 50% by mass with respect to 100% by mass of all polymerizable structural units. It is more preferably 10 to 50% by mass, further preferably 15 to 45% by mass, and particularly preferably 20 to 40% by mass. Thereby, the action and effect of the present invention can be exhibited more effectively.
上記ポリマーラテックス組成物(B)に含まれるポリマーは、構造単位(b4)の割合が、重合可能な全構造単位100質量%に対して0~50質量%であることが好ましい。より好ましくは10~50質量%であり、更に好ましくは15~45質量%であり、特に好ましくは20~40質量%である。これにより本発明の作用効果をより効果的に発揮することができる。 The polymer contained in the polymer latex composition (B) preferably has a structural unit (b4) ratio of 0 to 50% by mass with respect to 100% by mass of all polymerizable structural units. It is more preferably 10 to 50% by mass, further preferably 15 to 45% by mass, and particularly preferably 20 to 40% by mass. Thereby, the action and effect of the present invention can be exhibited more effectively.
上記ポリマーラテックス組成物(B)に含まれるポリマーは、構造単位(e)の割合が、重合可能な全構造単位100質量%に対して0~10質量%であることが好ましい。より好ましくは0~5質量%であり、更に好ましくは0~3質量%である。 The polymer contained in the polymer latex composition (B) preferably has a structural unit (e) in an amount of 0 to 10% by mass with respect to 100% by mass of all polymerizable structural units. It is more preferably 0 to 5% by mass, still more preferably 0 to 3% by mass.
上記ポリマーラテックス組成物(B)に含まれるポリマーにおいて、エチレン性不飽和カルボン酸単量体由来の構造単位(b1)、共役ジエン単量体由来の構造単位(b2)及びエチレン性不飽和ニトリル単量体由来の構造単位(b3)の含有割合が2~10/40~80/15~45(質量%)である形態は本発明の好適な実施形態の1つである。 In the polymer contained in the polymer latex composition (B), the structural unit (b1) derived from the ethylenically unsaturated carboxylic acid monomer, the structural unit (b2) derived from the conjugated diene monomer, and the ethylenically unsaturated nitrile simple substance. A form in which the content ratio of the structural unit (b3) derived from the polymer is 2 to 10/40 to 80/15 to 45 (mass%) is one of the preferred embodiments of the present invention.
上記ポリマーラテックス組成物(B)は、エチレン性不飽和カルボン酸単量体を必須成分として含む単量体成分を重合することにより製造することができる。
上記ポリマーラテックス組成物(B)の製造方法は、エチレン性不飽和カルボン酸単量体を含む単量体成分を重合する工程(以下、「重合工程」ともいう)を含むことが好ましい。
このようなポリマーラテックス組成物(B)の製造方法もまた、本発明の1つである。
上記単量体成分は、更に共役ジエン単量体、エチレン性不飽和ニトリル単量体を含むものであることが好ましい。
単量体成分の具体例及び好ましい例、並びに、各単量体の好ましい割合は、各構造単位の好ましい割合と同様である。
The polymer latex composition (B) can be produced by polymerizing a monomer component containing an ethylenically unsaturated carboxylic acid monomer as an essential component.
The method for producing the polymer latex composition (B) preferably includes a step of polymerizing a monomer component containing an ethylenically unsaturated carboxylic acid monomer (hereinafter, also referred to as a “polymerization step”).
A method for producing such a polymer latex composition (B) is also one of the present inventions.
The monomer component preferably further contains a conjugated diene monomer and an ethylenically unsaturated nitrile monomer.
Specific examples and preferred examples of the monomer components, and preferred proportions of each monomer are the same as preferred proportions of each structural unit.
上記単量体成分の重合方法は特に制限されないが、乳化重合により行うことが好ましい。
乳化重合に用いられる乳化剤としては特に制限されないが、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン系乳化剤;ミリスチミン酸、パルミチン酸、オレイン酸、リノレン酸の脂肪酸及びその塩、イソプロピルホスフェート、ポリオキシエチレンアルキルエーテルホスフェート等のリン酸エステル、アルキルジフェニルエーテルジスルホン酸塩、ラウリルジフェニルオキシスルホン酸ニナトリウム塩、アルキルナフタレンスルホン酸塩、ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩、ジアルキルスルホサクシネートナトリウム、アルキルベンゼンスルホン酸塩、アルキルアリルスルホン酸塩、高級アルコール硫酸エステル塩、アルキルスルホコハク酸等のアニオン系乳化剤;α,β-不飽和カルボン酸のスルホエステル、α,β-不飽和カルボン酸のサルフェートエステル、スルホアルキルアリールエーテル等の二重結合を含む共重合性乳化剤などを挙げることができる。乳化剤の使用量は特に制限されないが、単量体(全単量体)の使用量100質量%に対して、0.1~10質量%、好ましくは0.5~6.0質量%である。乳化剤は単独で使用しても、2種類以上を併用して使用してもよい。また、ポリマーラテックス組成物(B)の製造時に上記乳化剤を一括で投入しても分割して投入してもよい。
The polymerization method of the above-mentioned monomer component is not particularly limited, but it is preferably carried out by emulsion polymerization.
The emulsifier used for emulsification polymerization is not particularly limited, but is not particularly limited, and is, for example, a nonionic emulsifier such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester; myristiminic acid, palmitin. Acids, oleic acid, fatty acids of linolenic acid and salts thereof, phosphate esters such as isopropyl phosphate and polyoxyethylene alkyl ether phosphate, alkyldiphenyl ether disulfonate, lauryldiphenyloxysulfonic acid disodium salt, alkylnaphthalene sulfonate, naphthalene. Anionic emulsifiers such as sodium salts of sulfonic acid formarin condensates, dialkyl sulfosuccinate sodium, alkylbenzene sulfonates, alkylallyl sulfonates, higher alcohol sulfate ester salts, alkyl sulfosuccinic acid; Examples thereof include sulfo esters, sulfate esters of α, β-unsaturated carboxylic acids, copolymerizable emulsifiers containing double bonds such as sulfoalkylaryl ethers, and the like. The amount of the emulsifier used is not particularly limited, but is 0.1 to 10% by mass, preferably 0.5 to 6.0% by mass, based on 100% by mass of the monomer (total monomer) used. .. The emulsifier may be used alone or in combination of two or more. Further, the emulsifier may be added all at once or dividedly when the polymer latex composition (B) is produced.
上記重合工程に用いられる溶媒としては水性溶媒が好ましい。
上記水性溶媒としては水が好ましい。
上記溶媒の使用量としては単量体(全単量体)の使用量100重量部に対して70~250質量%が好ましい。より好ましくは80~170質量%である。溶媒の使用量を70質量%以上とすることにより重合工程において安定性が低下することを充分に抑制することができる。また、250質量%以下とすることにより、生成されるラテックスの後工程処理に必要となるエネルギー、時間を節約することができ、より効率的にポリマーを製造することができる。
An aqueous solvent is preferable as the solvent used in the above-mentioned polymerization step.
Water is preferable as the aqueous solvent.
The amount of the solvent used is preferably 70 to 250% by mass based on 100 parts by weight of the amount of the monomer (all monomers) used. More preferably, it is 80 to 170% by mass. By setting the amount of the solvent used to 70% by mass or more, it is possible to sufficiently suppress the deterioration of stability in the polymerization step. Further, when the content is 250% by mass or less, the energy and time required for the post-process treatment of the produced latex can be saved, and the polymer can be produced more efficiently.
上記重合工程では、必要に応じ重合体の分子量調整剤として連鎖移動剤を用いてもよい。連鎖移動剤として具体的には、t-ドデシルメルカプタン、n-ドデシルメルカプタン、メルカプトエタノール等のメルカプタン類、四塩化炭素、塩化メチレン、臭化メチレン等のハロゲン化炭化水素、α―メチルスチレンダイマーなどが挙げられる。t-ドデシルメルカプタン、n-ドデシルメルカプタンなどのメルカプタン類が好ましい。 In the above polymerization step, a chain transfer agent may be used as a molecular weight adjusting agent for the polymer, if necessary. Specific examples of the chain transfer agent include mercaptans such as t-dodecyl mercaptan, n-dodecyl mercaptan, and mercaptoethanol, halogenated hydrocarbons such as carbon tetrachloride, methylene chloride, and methylene bromide, and α-methylstyrene dimer. Can be mentioned. Mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan are preferable.
上記ポリマーラテックス組成物(B)の製造における連鎖移動剤の使用量としては、全単量体の使用量100質量%に対して、0.01~10質量%が好ましく、より好ましくは0.03~5質量%であり、更に好ましくは0.1~2質量%である。 The amount of the chain transfer agent used in the production of the polymer latex composition (B) is preferably 0.01 to 10% by mass, more preferably 0.03, based on 100% by mass of the total amount of the monomers used. It is about 5% by mass, more preferably 0.1 to 2% by mass.
上記重合工程では、重合開始剤を用いることが好ましい。
上記重合工程で用いられる重合開始剤は特に限定されないが、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、過リン酸塩、過酸化水素、t-ブチルハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、ジーt-ブチルパーオキサイド、ジーα―クミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、ベンゾイルパーオキサイド、アゾビスイソブチロニトリル、等が挙げられる。これらの重合開始剤は、それぞれ単独でまたは2種類以上を組み合わせて使用することができる。
上記重合開始剤の使用量は、特に制限されないが、単量体(全単量体)の使用量100質量%に対して、0.001~10質量%であることが好ましい。
In the above polymerization step, it is preferable to use a polymerization initiator.
The polymerization initiator used in the above polymerization step is not particularly limited, but for example, potassium persulfate, ammonium persulfate, sodium persulfate, perphosphate, hydrogen peroxide, t-butyl hydroperoxide, 1,1,3. 3-Tetramethylbutylhydroperoxide, p-menthan hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, diisopropylbenzenehydroperoxide, cumenehydroperoxide, g-t-butyl peroxide, Examples thereof include G-α-cumyl peroxide, acetyl peroxide, isobutyryl peroxide, benzoyl peroxide, azobisisobutyronitrile, and the like. These polymerization initiators can be used alone or in combination of two or more.
The amount of the polymerization initiator used is not particularly limited, but is preferably 0.001 to 10% by mass with respect to 100% by mass of the amount of the monomer (total monomer) used.
上記過酸化物開始剤は還元剤と組み合わせてレドックス系重合開始剤として使用することができる。
上記還元剤は特に限定されないが、例えば、硫酸第一鉄、ナフテン酸第一銅等の還元状態にある金属イオンを有する化合物、メタンスルホン酸ナトリウム等のスルホン酸塩類、ホルムアルデヒドスルホキシラートナトリウム等のホルムアルデヒドスルホキシラート塩類、2-ヒドロキシー2-スルホナトアセタートのニナトリウム塩等の2-ヒドロキシー2-スルホナトアセタート塩類、2-ヒドロキシー2-スルフィナトアセタートのニナトリウム塩等の2-ヒドロキシー2-スルフィナトアセタート塩類、フォルムジメチルアニリン等のアミン類、アスコルビン酸等が挙げられる。これらの還元剤は単独で、又は2種類以上を組合せて用いることができる。還元剤の使用量は特に制限されないが、過酸化物との重量比率で(過酸化物/還元剤)=0.01~100であることが好ましく、より好ましくは0.1~50である。
The peroxide initiator can be used as a redox-based polymerization initiator in combination with a reducing agent.
The reducing agent is not particularly limited, and examples thereof include ferrous sulfate, ferrous naphthenate and other compounds having metal ions in a reduced state, sulfonates such as sodium methanesulfonate, and sodium formaldehyde sulfoxylate. 2-Hydroxy such as formaldehyde sulfoxylate salts, 2-hydroxy-2-sulfonato acetate salts such as 2-hydroxy-2-sulfonate acetate disodium salt, 2-hydroxy-2-sulfinato acetate disodium salt and the like. Examples thereof include 2-sulfinato acetate salts, amines such as form dimethylaniline, and ascorbic acid. These reducing agents can be used alone or in combination of two or more. The amount of the reducing agent used is not particularly limited, but the weight ratio with the peroxide is preferably (peroxide / reducing agent) = 0.01 to 100, and more preferably 0.1 to 50.
上記重合工程で用いられる重合反応器の形式は、回分式、半回分式又は連続式のいずれの形式の重合反応器でもよい。好ましくは回分式、半回分式の重合反応器である。 The type of the polymerization reactor used in the above-mentioned polymerization step may be any of a batch type, a semi-batch type and a continuous type polymerization reactor. A batch type or semi-batch type polymerization reactor is preferable.
上記重合工程において単量体の添加方法は、特に制限されないが、例えば重合反応器に単量体を一括で添加する方法、重合反応の進行に従って連続的または断続的に添加する方法、単量体の一部を添加して特定の転化率まで反応させ、その後、残余の単量体を連続的または継続的に添加する方法が挙げられ、いずれの添加方法を採用してもよい。また、添加する単量体は使用する各種単量体を予め混合して使用しても単量体別に使用してもよい。各種単量体を混合する場合は、混合する割合を一定にしても変化させてもよい。   The method of adding the monomer in the above polymerization step is not particularly limited, and for example, a method of adding the monomer to the polymerization reactor all at once, a method of adding the monomer continuously or intermittently according to the progress of the polymerization reaction, and a monomer. Examples thereof include a method in which a part of the above is added and reacted to a specific conversion rate, and then the residual monomer is continuously or continuously added, and any of the addition methods may be adopted. Further, the monomer to be added may be used by mixing various monomers to be used in advance, or may be used for each monomer. When various monomers are mixed, the mixing ratio may be constant or changed. The
上記重合工程における重合温度は、特に制限されないが、0~100℃であることが好ましく、より好ましくは5~70℃である。 The polymerization temperature in the above polymerization step is not particularly limited, but is preferably 0 to 100 ° C, more preferably 5 to 70 ° C.
上記重合工程において、所定の重合転化率に達した時点で、重合系を冷却したり、重合停止剤を添加したりして重合反応を停止することが好ましい。重合反応を停止する際の重合転化率は、通常90%以上であることが好ましく、より好ましくは93%以上である。 In the above polymerization step, it is preferable to cool the polymerization system or add a polymerization terminator to stop the polymerization reaction when a predetermined polymerization conversion rate is reached. The polymerization conversion rate when the polymerization reaction is stopped is usually preferably 90% or more, more preferably 93% or more.
上記重合停止剤としては、特に限定されないが、例えば、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸アンモニウム等の亜硝酸塩、アスコルビン酸、クエン酸、ヒドロキシルアミン、ヒドロキシアミン硫酸塩、ジエチルヒドロキシルアミン、ヒドロキシアミンスルホン酸およびそのアルカリ金属塩、4-ベンゾイルオキシー2,2,6,6-テトラメチルピペリジノオキシル等の2,2,6,6-テトラメチルピペリジノオキシル化合物、ジメチルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸塩、ハイドロキノン誘導体、カテコール誘導体、レゾルシノール誘導体、ヒドロキシジメチルベンゼンジチオカルボン酸、ヒドロキシジエチルベンゼンジチオカルボン酸、ヒドロキシジブチルベンゼンジチオカルボン酸等の芳香族ヒドロキシジチオカルボン酸及びこれらのアルカリ金属塩などが挙げられる。
上記重合停止剤の添加方法は特に制限されないが、水溶液として添加することが好ましい。
重合停止剤の使用量は、全単量体混合物100重量部に対して、通常0.01~5重量部、好ましくは0.03~2重量部である。
The polymerization terminator is not particularly limited, but for example, nitrites such as sodium nitrite, potassium nitrite, ammonium nitrite, ascorbic acid, citric acid, hydroxylamine, hydroxyamine sulfate, diethyl hydroxylamine, hydroxyamine sulfonic acid. And its alkali metal salt, 2,2,6,6-tetramethylpiperidinooxyl compound such as 4-benzoyloxy 2,2,6,6-tetramethylpiperidinooxyl, sodium dimethyldithiocarbamate, dimethyldithiocarbamic acid. Examples thereof include aromatic hydroxydithiocarboxylic acids such as salts, hydroquinone derivatives, catechol derivatives, resorcinol derivatives, hydroxydimethylbenzenedithiocarboxylic acids, hydroxydibutylbenzenedithiocarboxylic acids and hydroxydibutylbenzenedithiocarboxylic acids, and alkali metal salts thereof.
The method of adding the polymerization inhibitor is not particularly limited, but it is preferably added as an aqueous solution.
The amount of the polymerization inhibitor used is usually 0.01 to 5 parts by weight, preferably 0.03 to 2 parts by weight, based on 100 parts by weight of the total monomer mixture.
上記ポリマーラテックス組成物(B)の製造方法は、必要に応じて、アルカリ性物質を用いて中和工程を行ってもよい。上記アルカリ性物質としては、一価金属又は二価金属の水酸化物や炭酸塩等の無機塩;アンモニア;有機アミンが好適である。また、反応終了後、必要に応じて濃度調整を行うこともできる。
上記中和工程は、重合工程中に行っても重合工程後に行ってもよい、例えば、アルカリ性物質を添加した後に上記重合停止剤を添加しても、重合停止剤と同時に添加してもよい。
In the method for producing the polymer latex composition (B), a neutralization step may be performed using an alkaline substance, if necessary. As the alkaline substance, inorganic salts such as hydroxides and carbonates of monovalent metals or divalent metals; ammonia; organic amines are suitable. Further, after the reaction is completed, the concentration can be adjusted as needed.
The neutralization step may be performed during the polymerization step or after the polymerization step. For example, the polymerization terminator may be added after the addition of the alkaline substance, or the polymerization terminator may be added at the same time as the polymerization terminator.
上記ポリマーラテックス組成物(B)の製造方法において、重合工程後、必要に応じて、未反応の単量体を除去する工程、固形分濃度やpHの調整工程、重合用副資材等の添加工程を行ってもよい。
上記重合用副資材としては、特に制限されず、有機化合物であっても無機化合物であってもよく、例えば、脱酸素剤、分散剤、界面活性剤、キレート剤、分子量調節剤、粒子径調整剤、老化防止剤、防腐剤、抗菌剤等が挙げられる。
In the method for producing the polymer latex composition (B), after the polymerization step, if necessary, a step of removing unreacted monomers, a step of adjusting the solid content concentration and pH, a step of adding auxiliary materials for polymerization and the like. May be done.
The auxiliary material for polymerization is not particularly limited and may be an organic compound or an inorganic compound. For example, an oxygen scavenger, a dispersant, a surfactant, a chelating agent, a molecular weight adjusting agent, and a particle size adjusting agent. Examples include agents, anti-aging agents, preservatives, antibacterial agents and the like.
<その他の成分(E)>
本発明のディップ成型用ラテックス配合組成物は、酸化チタン(A)及びポリマーラテックス組成物(B)以外の後述するその他の成分(E)を含んでいてもよく、その他の成分(E)としては特に制限されないが、酸化チタン(A)以外の架橋剤や加硫剤、加硫促進剤、多価金属塩、pH調整剤;界面活性剤、溶媒、顔料、老化防止剤、防腐剤、ワックス、無機フィラー等が挙げられる。
上記その他の成分(E)の合計の含有量は、ポリマー(B)100質量%に対して、好ましくは10質量%以下であり、より好ましくは5質量%以下である。 
<Other ingredients (E)>
The latex-blended composition for dip molding of the present invention may contain titanium oxide (A) and other components (E) described later other than the polymer latex composition (B), and the other components (E) may be used. Although not particularly limited, a cross-linking agent other than titanium oxide (A), a vulcanizing agent, a vulcanization accelerator, a polyvalent metal salt, a pH adjuster; a surfactant, a solvent, a pigment, an antiaging agent, an antiseptic, a wax, etc. Examples include inorganic fillers.
The total content of the other component (E) is preferably 10% by mass or less, more preferably 5% by mass or less, based on 100% by mass of the polymer (B).
上記加硫剤としては、ディップ成形において通常用いられるものが使用でき、例えば、粉末硫黄、硫黄華、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄などの硫黄;ヘキサメチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン等のポリアミン類;等が挙げられる。中でも硫黄が好ましい。
加硫剤の使用量は、ポリマーラテックス組成物(B)の固形分100質量%に対して、好ましくは5質量%以下であり、より好ましくは2質量%以下であり、更に好ましくは0.8質量%以下である。   
As the vulcanizing agent, those usually used in dip molding can be used, for example, sulfur such as powdered sulfur, sulfur flower, precipitated sulfur, colloidal sulfur, surface-treated sulfur, and insoluble sulfur; hexamethylenediamine, triethylenetetramine, and the like. Polyamines such as tetraethylenepentamine; and the like. Of these, sulfur is preferable.
The amount of the vulcanizing agent used is preferably 5% by mass or less, more preferably 2% by mass or less, and further preferably 0.8 with respect to 100% by mass of the solid content of the polymer latex composition (B). It is less than mass%.
上記加硫促進剤としては、ディップ成形において通常用いられるものが使用でき、例えば、ジエチルジチオカルバミン酸、ジブチルジチオカルバミン酸、ジ-2-エチルヘキシルジチオカルバミン酸、ジシクロヘキシルジチオカルバミン酸、ジフェニルジチオカルバミン酸、ジベンジルジチオカルバミン酸などのジチオカルバミン酸類およびそれらの亜鉛塩;2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(2,4-ジニトロフェニルチオ)ベンゾチアゾール、2-(N,N-ジエチルチオ・カルバイルチオ)ベンゾチアゾール、2-(2,6-ジメチル-4-モルホリノチオ)ベンゾチアゾール、2-(4′-モルホリノ・ジチオ)ベンゾチアゾール、4-モルホニリル-2-ベンゾチアジル・ジスルフィド、1,3-ビス(2-ベンゾチアジル・メルカプトメチル)ユリアなどが挙げられる。なかでも、ジブチルジチオカルバミン酸亜鉛、2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛等が挙げられる。これらの加硫促進剤は、単独で又は2種以上を組合せて用いることができる。
上記加硫促進剤の使用量は、ポリマーラテックス組成物(B)の固形分100質量%に対して、好ましくは5質量%以下であり、より好ましく2質量%以下であり、更に好ましくは0.6質量%以下である。   
As the vulcanization accelerator, those usually used in dip molding can be used, for example, diethyldithiocarbamic acid, dibutyldithiocarbamic acid, di-2-ethylhexyldithiocarbamic acid, dicyclohexyldithiocarbamic acid, diphenyldithiocarbamic acid, dibenzyldithiocarbamic acid and the like. Dithiocarbamic acids and their zinc salts; 2-mercaptobenzothiazole, 2-mercaptobenzothiazole zinc, 2-mercaptothiazolin, dibenzothiadyl disulfide, 2- (2,4-dinitrophenylthio) benzothiazole, 2-( N, N-diethylthiocarbaylthio) benzothiazole, 2- (2,6-dimethyl-4-morpholinothio) benzothiazole, 2- (4'-morpholino-dithio) benzothiazole, 4-morphonylyl-2-benzothiadyl disulfide , 1,3-Bis (2-benzothiazole / mercaptomethyl) urea and the like. Among them, zinc dibutyldithiocarbamate, 2-mercaptobenzothiazole, 2-mercaptobenzothiazole zinc and the like can be mentioned. These vulcanization accelerators can be used alone or in combination of two or more.
The amount of the vulcanization accelerator used is preferably 5% by mass or less, more preferably 2% by mass or less, still more preferably 0% by mass, based on 100% by mass of the solid content of the polymer latex composition (B). It is 6% by mass or less.
上記多価金属塩としては、ポリマーをイオン架橋することができるものであれば特に制限されないが、酸化チタン(A)以外の2価金属、3価金属の酸化物等が挙げられる。具体的には、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化バリウム、酸化バナジウム、酸化クロム、酸化鉛、酸化鉄等が挙げられる。中でも好ましくは酸化亜鉛である。
上記多価金属塩の使用量は、ポリマーラテックス組成物(B)の固形分100質量%に対して、5質量%以下であることが好ましい。より好ましくは2質量%以下であり、更に好ましくは0.8質量%以下であり、一層好ましくは0.7質量%以下であり、特に好ましくは0.5質量%以下である。これらの多価金属塩はポリエチレングリコール、水酸化物塩の混合物として使用してもよい。
The polyvalent metal salt is not particularly limited as long as it can ion-crosslink the polymer, and examples thereof include divalent metals other than titanium oxide (A) and oxides of trivalent metals. Specific examples thereof include zinc oxide, magnesium oxide, aluminum oxide, barium oxide, vanadium oxide, chromium oxide, lead oxide, iron oxide and the like. Of these, zinc oxide is preferable.
The amount of the polyvalent metal salt used is preferably 5% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B). It is more preferably 2% by mass or less, further preferably 0.8% by mass or less, still more preferably 0.7% by mass or less, and particularly preferably 0.5% by mass or less. These polyvalent metal salts may be used as a mixture of polyethylene glycol and hydroxide salts.
本発明のディップ成型用ラテックス配合組成物は、無機化合物等の配合剤の使用量を最小限に抑えながら成型物の性能物性を維持することに技術的意義を有するものであるが、上記加硫剤、加硫促進剤、多価金属塩を少量含むことにより、耐久性や引張強度等の物理強度をより向上させることができる。
上記ディップ成型用ラテックス配合組成物は、上記加硫剤、加硫促進剤、多価金属塩の含有量が上記好ましい上限を満たすものであれば、これらの薬剤をそれぞれ、ポリマーラテックス組成物(B)の固形分100質量%に対して0.01質量%以上含んでいてもよい。
The latex compounding composition for dip molding of the present invention has technical significance in maintaining the performance physical characteristics of the molded product while minimizing the amount of the compounding agent such as an inorganic compound, and the above-mentioned vulcanization. By containing a small amount of an agent, a vulcanization accelerator, and a polyvalent metal salt, physical strength such as durability and tensile strength can be further improved.
In the latex compounding composition for dip molding, if the contents of the vulcanizing agent, the vulcanization accelerator, and the polyvalent metal salt satisfy the above preferable upper limit, each of these agents is used in the polymer latex composition (B). ) May contain 0.01% by mass or more with respect to 100% by mass of the solid content.
<ディップ成型用ラテックス配合組成物の製造方法>
本発明のディップ成型用ラテックス配合組成物の製造方法は特に制限されず、酸化チタン(A)とポリマーラテックス組成物(B)とを混合することにより製造することができる。
上記ディップ成型用ラテックス配合組成物の製造における、酸化チタン(A)とポリマーラテックス組成物(B)との混合工程は特に制限されないが、酸化チタン(A)を分散液の形態で添加することが好ましい。
上記分散液は、酸化チタン(A)と分散剤とを含むことが好ましい。
<Manufacturing method of latex compounding composition for dip molding>
The method for producing the latex-blended composition for dip molding of the present invention is not particularly limited, and the composition can be produced by mixing titanium oxide (A) and the polymer latex composition (B).
The mixing step of the titanium oxide (A) and the polymer latex composition (B) in the production of the latex compounding composition for dip molding is not particularly limited, but the titanium oxide (A) may be added in the form of a dispersion liquid. preferable.
The dispersion liquid preferably contains titanium oxide (A) and a dispersant.
上記分散剤としては、ナフタレンスルホン酸ナトリウム-ホルムアルデヒド縮合物等のスルホン酸系分散剤;ベントナイト等の粘土;ポリアクリル酸ナトリウム等のカルボン酸系分散剤等が挙げられる。また、必要に応じてこれら分散剤を2種以上を混合して使用しても良い。 Examples of the dispersant include sulfonic acid-based dispersants such as sodium naphthalene sulfonate-formaldehyde condensate; clays such as bentonite; and carboxylic acid-based dispersants such as sodium polyacrylate. Further, if necessary, two or more kinds of these dispersants may be mixed and used.
上記酸化チタン(A)を含む分散液における分散剤の含有割合は、酸化チタン(A)100質量%に対して、0.5~10質量%であることが好ましい。より好ましくは1.0~5質量%である。 The content ratio of the dispersant in the dispersion liquid containing titanium oxide (A) is preferably 0.5 to 10% by mass with respect to 100% by mass of titanium (A) oxide. More preferably, it is 1.0 to 5% by mass.
上記酸化チタン(A)を含む分散液は、固形分濃度が30~85質量%であることが好ましい。固形分濃度は下記の方法により測定することができる。
酸化チタン分散液をシャーレに約8gとり、精秤した後、オーブンにて105℃で1時間加熱して蒸発乾固させて、乾固後の重量を乾燥前重量で除して酸化チタン分散液の固形分濃度を測定した。
The dispersion liquid containing titanium oxide (A) preferably has a solid content concentration of 30 to 85% by mass. The solid content concentration can be measured by the following method.
Take about 8 g of the titanium oxide dispersion in a chalet, weigh it precisely, heat it in an oven at 105 ° C for 1 hour to evaporate and dry it, and divide the weight after drying by the weight before drying to make the titanium oxide dispersion. The solid content concentration of was measured.
上記酸化チタン(A)を含む分散液は、pHが7~11であることが好ましい。より好ましくは8~10.5である。上記pHは、例えば、アンモニア等の塩基性物質を用いることにより調整することができる。 The pH of the dispersion liquid containing titanium oxide (A) is preferably 7 to 11. More preferably, it is 8 to 10.5. The pH can be adjusted by using, for example, a basic substance such as ammonia.
<ディップ成型物>
本発明は、本発明のディップ成型用ラテックス配合組成物を成型させてなるディップ成型物でもある。
上記ディップ成型物としては特に制限されないが、具体的には手袋、コンドーム、カテーテル、チューブ、風船、ニップル、サック等が挙げられる。中でも好ましくは手袋である。
<Dip molding>
The present invention is also a dip molded product obtained by molding the latex compounding composition for dip molding of the present invention.
The dip molded product is not particularly limited, and specific examples thereof include gloves, condoms, catheters, tubes, balloons, nipples, and sack. Of these, gloves are preferable.
本発明はまた、エチレン性不飽和カルボン酸単量体由来の構造単位(b1)を有するポリマーを含むディップ成型物であって、上記ディップ成型物は、更に多価金属塩で表面処理された酸化チタン(A)を含み、以下の方法で測定する装着耐久時間が50分以上であり、以下の方法で測定する4%酢酸溶出後の蒸発残留物量が60ppm以下であるディップ成型物でもある。
<装着耐久時間の測定>
ディップ成型物として膜厚が0.05mmの手袋を作製して、被験者5名に装着してもらい、指又部分に穴が生じるまでの時間の中央値にて評価する。
<4%酢酸溶出後の蒸発残留物量の測定>
食品衛生法のゴム製の器具又は容器包装の試験方法に基づいて、ディップ成型物を4%酢酸に60℃で30分浸漬させた後、浸出液中の蒸発残留物量を測定する。
The present invention is also a dip molded product containing a polymer having a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer, and the dip molded product is further surface-treated with a polyvalent metal salt and oxidized. It is also a dip molded product containing titanium (A), having a mounting durability of 50 minutes or more as measured by the following method, and having an evaporation residue amount of 60 ppm or less after elution of 4% acetic acid as measured by the following method.
<Measurement of wearing durability time>
Gloves with a film thickness of 0.05 mm are prepared as a dip molded product, worn by five subjects, and evaluated by the median time until a hole is formed in the finger or portion.
<Measurement of evaporation residue after elution of 4% acetic acid>
After immersing the dip molded product in 4% acetic acid at 60 ° C. for 30 minutes based on the test method for rubber appliances or containers and packaging of the Food Sanitation Law, the amount of evaporation residue in the leachate is measured.
本発明のディップ成型物の製造方法は特に制限されないが、成型用モールド上に凝固成膜させるディップ成型工程およびポリマーラテックス組成物に架橋構造を生成させる架橋工程を有することが好ましい。このような製造方法もまた、本発明の1つである。
ディップ成型工程と架橋工程は同時に行っても、どちらかの工程を他の工程より先に行ってもよい。
The method for producing the dip molded product of the present invention is not particularly limited, but it is preferable to have a dip molding step of solidifying and forming a film on the molding mold and a cross-linking step of forming a cross-linked structure in the polymer latex composition. Such a manufacturing method is also one of the present inventions.
The dip molding step and the crosslinking step may be performed at the same time, or either step may be performed before the other steps.
上記ディップ成型工程におけるディップ成型方法は特に制限されず、例えば、直接浸漬法、凝固浸漬法、電気浸漬法、感熱浸漬法等が挙げられる。これらの中でも均一な厚みを有するディップ成形物が得られやすい点で直接浸漬法及び凝固浸漬法が好ましい。
上記凝固浸漬法の場合、ディップ成形用型を凝固剤溶液に浸漬して、該型表面に凝固剤を付着させた後、それをディップ成型用ラテックス配合組成物に浸漬して、該型表面にディップ成形層を形成する手法で実施されることが好ましい。
The dip molding method in the above dip molding step is not particularly limited, and examples thereof include a direct dipping method, a solidification dipping method, an electric dipping method, and a heat-sensitive dipping method. Among these, the direct dipping method and the solidification dipping method are preferable in that a dip molded product having a uniform thickness can be easily obtained.
In the case of the above-mentioned solidification dipping method, a dip molding mold is immersed in a coagulant solution to attach a coagulant to the surface of the mold, and then the mold is immersed in a latex compounding composition for dip molding to be placed on the surface of the mold. It is preferably carried out by a method of forming a dip molded layer.
上記凝固浸漬法で使用する凝固剤は、一般的には凝固剤成分、溶媒、界面活性剤、湿潤剤、無機フィラー、脱型剤等の混合物として使用することができる。
上記凝固剤成分としては例えば、塩化バリウム、塩化カルシウム、塩化マグネシウム、塩化アルミニウム、塩化亜鉛等のハロゲン化金属、硝酸バリウム、硝酸カルシウム、硝酸亜鉛等の硝酸塩、酢酸バリウム、酢酸カルシウム、酢酸亜鉛等の酢酸塩、硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウム等の硫酸塩、酢酸、硫酸、塩酸、硝酸等の酸などが挙げられる。これらの化合物を単独で使用したり、組み合わせて使用することができるが、中でも硝酸カルシム、塩化カルシムがより好ましい。
The coagulant used in the coagulation and dipping method can generally be used as a mixture of a coagulant component, a solvent, a surfactant, a wetting agent, an inorganic filler, a demolding agent and the like.
Examples of the coagulant component include metal halides such as barium chloride, calcium chloride, magnesium chloride, aluminum chloride and zinc chloride, nitrates such as barium nitrate, calcium nitrate and zinc nitrate, barium acetate, calcium acetate and zinc acetate. Examples thereof include sulfates such as acetate, calcium sulfate, magnesium sulfate and aluminum sulfate, and acids such as acetic acid, sulfuric acid, hydrochloric acid and nitrate. These compounds can be used alone or in combination, but calcium nitrate and calcium chloride are more preferable.
上記溶媒としては水、アルコール、酸類等が挙げられる。
上記界面活性剤としては、凝固液をモールド表面に均一に付着させたり、脱型を容易にすることを目的として用いられるものであり、非イオン性界面活性剤、金属石鹸やその他の化合物が挙げられる。
上記金属石鹸としては、ステアリン酸カルシウム、ステアリン酸アンモニウム、ステアリン酸亜鉛等が挙げられる。
上記無機フィラーとしては、金属酸化物、炭酸カルシウム、タルク等が挙げられる。
Examples of the solvent include water, alcohol, acids and the like.
Examples of the surfactant include nonionic surfactants, metal soaps and other compounds, which are used for the purpose of uniformly adhering the coagulating liquid to the mold surface and facilitating demolding. Be done.
Examples of the metal soap include calcium stearate, ammonium stearate, zinc stearate and the like.
Examples of the inorganic filler include metal oxides, calcium carbonate, talc and the like.
上記架橋工程は、ディップ成型物に架橋構造を生成させる工程であるが、一般的にポリマーがラテックス組成物として存在している際に安定剤、反応剤、架橋剤等を添加したり、熱処理、撹拌、熟成、ろ過、等を行うことにより実施する熟成工程、あるいは前加硫工程とディップ成型工程と並行して行う架橋工程;またディップ成型工程の後に行う架橋工程があり、必要とされるディップ成型物の性能に応じてこれらの工程を行うことができる。 The above-mentioned cross-linking step is a step of forming a cross-linked structure in the dip molded product, but generally, when the polymer is present as a latex composition, a stabilizer, a reactant, a cross-linking agent or the like is added, or heat treatment is performed. There is an aging step performed by stirring, aging, filtering, etc., or a cross-linking step performed in parallel with the pre-vulcanization step and the dip molding step; and there is a cross-linking step performed after the dip molding step, which is required. These steps can be performed depending on the performance of the molded product.
ディップ成型用ラテックス配合組成物からディップ成型物を作製する工程の例を以下に示す。
(1)成型用モールドを洗浄し、50-100℃で乾燥、予備加熱を行う工程。
(2)成型用モールドをカルシウムイオン等を含む凝固剤液中に浸漬させた後、取り出して乾燥させ、成型用モールド表面上に凝固剤を付着、乾燥させる工程。
(3)(2)で凝固剤を付着させた成型用モールドをディップ成型用ラテックス配合組成物に浸漬させた後、取り出してディップ成型用ラテックス配合組成物をゲル化させる工程。
(4)(3)でゲル化したディップ成型物を水、または30―80℃の温水にてリーチング処理し、不純物、不要物を除去する工程。
(5)成型物を60-150℃の温度で1-120分程度の加熱処理を行い、ディップ成型物の乾燥を促進させるプリキュアリング工程とディップ成型物の成膜、架橋反応を促進させるキュアリング工程。
(6)必要に応じて、ディップ成型物にブロッキング防止処理を行う工程。
(7)ディップ成型物を成型用モールドから脱着させる工程。
上記(4)-(7)の工程は、必要に応じて実施する工程を入れ替えてもよい。
An example of a process for producing a dip molded product from a latex compounding composition for dip molding is shown below.
(1) A step of cleaning the molding mold, drying at 50-100 ° C., and preheating.
(2) A step of immersing the molding mold in a coagulant solution containing calcium ions or the like, taking it out and drying it, and adhering the coagulant on the surface of the molding mold and drying it.
(3) A step of immersing the molding mold to which the coagulant is attached in (2) in the latex compounding composition for dip molding, and then taking it out to gel the latex compounding composition for dip molding.
(4) A step of leaching the gelled dip molded product in (3) with water or warm water at 30-80 ° C. to remove impurities and unnecessary substances.
(5) A pre-curing step in which the molded product is heat-treated at a temperature of 60-150 ° C. for about 1-120 minutes to accelerate the drying of the dip molded product, a film formation of the dip molded product, and a curing to promote the crosslinking reaction. Process.
(6) A step of performing blocking prevention treatment on the dip molded product as necessary.
(7) A step of removing the dip molded product from the molding mold.
In the above steps (4)-(7), the steps to be carried out may be replaced as necessary.
上記ブロッキング防止処理としては、次亜塩素酸ナトリウムと塩酸を混合した水溶液に浸漬したり、塩素ガスチェンバーで処理する塩素化処理法、ブロッキング防止性能を有するポリマーを成型物上に塗布するポリマーコート法、滑剤成分を含む水溶液に浸漬するスラリー法などがあるが、どのような方法を実施してもよい。またディップ成型物をモールドから脱型した後に実施してもよい。 The blocking prevention treatment includes a chlorination treatment method in which an aqueous solution of sodium hypochlorite and hydrochloric acid is mixed or treated with a chlorine gas chamber, or a polymer coating method in which a polymer having blocking prevention performance is applied onto a molded product. , There is a slurry method of immersing in an aqueous solution containing a lubricant component, but any method may be carried out. Further, it may be carried out after the dip molded product is removed from the mold.
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味するものとする。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified, "part" means "part by mass" and "%" means "% by mass".
1、得られたディップ成型物の各種特性評価は、以下のとおり行った。なお、評価に用いるディップ成型物は、成型物をモールドから脱型した後、1日以上の調温、調湿を行った。
(1)ディップ成型物の物理強度及び色調
作製したディップ成型物フィルムを温度25℃、湿度55RH%で24時間調湿した後、物理強度をASTMD412に準じて測定した。ディップ成型物フィルムをダンベル社製DieCを用いて打ち抜き試験片を作製した。試験片は引っ張り速度500mm/分で引っ張り、300%伸張時応力、伸び、引張強度、引裂強度を測定した。また、フィルムの色調をハンターラボ社製UV-VISスぺクトロメーターを用いて測定した。
1. Various characteristics of the obtained dip molded product were evaluated as follows. The dip molded product used for the evaluation was subjected to temperature control and humidity control for 1 day or more after the molded product was removed from the mold.
(1) Physical strength and color tone of the dip molded product The produced dip molded product film was humidity-controlled at a temperature of 25 ° C. and a humidity of 55 RH% for 24 hours, and then the physical strength was measured according to ASTMD412. A punched test piece was prepared by using DieC manufactured by Dumbbell Co., Ltd. for the dip molded film. The test piece was pulled at a tensile speed of 500 mm / min, and stress at 300% elongation, elongation, tensile strength, and tear strength were measured. In addition, the color tone of the film was measured using a UV-VIS spectrometer manufactured by Hunter Lab.
(2)装着耐久性
ディップ成型物として薄膜の手袋を作成した。膜厚は表1記載のとおりである。被験者5名に装着してもらい、指又部分に穴が生じるまでの時間の中央値にて評価した。手袋の装着時間は最大で240分までとした。
(2) Wearing durability A thin-film glove was created as a dip molded product. The film thickness is as shown in Table 1. Five subjects were asked to wear it, and the median time until a hole was formed in the finger or part was evaluated. The maximum wearing time of gloves was 240 minutes.
(3)4%酢酸溶出試験(蒸発残留物量)
食品衛生法のゴム製の器具又は容器包装の試験方法に基づいて、ディップ成型物を4%酢酸に60℃で30分浸漬させた後、浸出液中の蒸発残留物量を測定した。
(3) 4% acetic acid elution test (amount of evaporation residue)
The dip molded product was immersed in 4% acetic acid at 60 ° C. for 30 minutes based on the test method for rubber appliances or containers and packaging of the Food Sanitation Law, and then the amount of evaporation residue in the leachate was measured.
2、ディップ成型用ラテックス配合組成物及びディップ成型物の製造
<合成例1>
撹拌装置を有する耐圧オートクレーブ内部を窒素置換したのち、1,3-ブタジエン68部、アクリロニトリル27部、メタクリル酸5部、重合調整剤(TDM:t-ドデシルメルカプタン)0.6部、軟水150部、アニオン性乳化剤(SDBS:ドデシルベンゼンスルホン酸ナトリウム)2.5部、重合開始剤として過硫酸カリウム(KPS)0.3部を仕込み、撹拌下で重合温度を50℃に保持して15時間反応させた。重合転化率が98%を確認した後、pH調整剤および重合停止剤を添加して重合反応を終了させた。得られたラテックスから減圧下で未反応単量体を除去した後、ポリマーラテックスのpH及び濃度をアンモニア水溶液で調整して、固形分濃度45%、pH8.0にした後、老化防止剤としてp-クレゾールとジシクロペンタジエンのブチル化反応生成物の水分散体(AKRON DISPERSIONS社製:Bostex362)を固形分換算で0.3重量部、ポリマーラテックス100重量部に添加して、ポリマーラテックス組成物1を得た。
2. Manufacture of latex compounding composition for dip molding and dip molded product <Synthesis Example 1>
After replacing the inside of the pressure resistant autoclave with a stirrer with nitrogen, 68 parts of 1,3-butadiene, 27 parts of acrylonitrile, 5 parts of methacrylic acid, 0.6 part of polymerization initiator (TDM: t-dodecyl mercaptan), 150 parts of soft water, Add 2.5 parts of anionic emulsifier (SDBS: sodium dodecylbenzene sulfonate) and 0.3 part of potassium persulfate (KPS) as a polymerization initiator, and keep the polymerization temperature at 50 ° C. for 15 hours under stirring. rice field. After confirming that the polymerization conversion rate was 98%, a pH adjuster and a polymerization terminator were added to terminate the polymerization reaction. After removing the unreacted monomer from the obtained latex under reduced pressure, the pH and concentration of the polymer latex were adjusted with an aqueous ammonia solution to a solid content concentration of 45% and a pH of 8.0, and then p was used as an antiaging agent. -Polymer latex composition 1 by adding an aqueous dispersion of the butylation reaction product of cresol and dicyclopentadiene (manufactured by AKRON DISPERSIONS: Bostex 362) to 0.3 parts by weight in terms of solid content and 100 parts by weight of polymer latex. Got
<合成例2>
使用するモノマーを1,3-ブタジエン66部、アクリロニトリル27部、メタクリル酸7部に変更した以外は合成例1と同様にしてポリマーラテックス組成物2を得た。
<Synthesis example 2>
The polymer latex composition 2 was obtained in the same manner as in Synthesis Example 1 except that the monomer used was changed to 66 parts of 1,3-butadiene, 27 parts of acrylonitrile, and 7 parts of methacrylic acid.
<合成例3>
使用するモノマーを1,3-ブタジエン59.5部、アクリロニトリル37部、メタクリル酸3.5部に変更した以外は合成例1と同様にしてポリマーラテックス組成物3を得た。
<Synthesis example 3>
The polymer latex composition 3 was obtained in the same manner as in Synthesis Example 1 except that the monomer used was changed to 59.5 parts of 1,3-butadiene, 37 parts of acrylonitrile, and 3.5 parts of methacrylic acid.
<合成例4>
使用するモノマーを1,3-ブタジエン58部、アクリロニトリル37部、メタクリル酸5部に変更した以外は合成例1と同様にしてポリマーラテックス組成物4を得た。
<Synthesis example 4>
The polymer latex composition 4 was obtained in the same manner as in Synthesis Example 1 except that the monomer used was changed to 58 parts of 1,3-butadiene, 37 parts of acrylonitrile, and 5 parts of methacrylic acid.
<合成例5>
使用するモノマーを1,3-ブタジエン66部、スチレン30部、メタクリル酸4部に変更した以外は合成例1と同様にしてポリマーラテックス組成物5を得た。
<Synthesis Example 5>
The polymer latex composition 5 was obtained in the same manner as in Synthesis Example 1 except that the monomers used were changed to 66 parts of 1,3-butadiene, 30 parts of styrene and 4 parts of methacrylic acid.
<実施例1>
合成例1で得られたポリマーラテックス組成物1に撹拌下で3%の水酸化カリウム水溶液及び軟水を加えて、固形分濃度が17-20%、pHが9.5-10の範囲になるように調整した。その後、アルミナ表面処理3.1%、シリカ表面処理6.0%の加工がされた酸化チタンの分散液(固形分濃度:61%)(堺化学工業社製)を1.0重量部、酸化亜鉛分散液(アクアスパーション社製)を0.3重量部、硫黄分散液0.7部、加硫促進剤ZDEC分散液0.5部となるように加えて室温下で12時間撹拌した後、凝集物、気泡を除去して組成物の温度が20-40℃になるように調整し、ディップ成型用ラテックス配合組成物を得た。得られたディップ成型用ラテックス配合組成物100mLをメスシリンダーにとり静置保管して沈降度を測定した。
次に、洗浄加熱済みのセラミック製浸漬手型を14重量%の硝酸カルシウム、1.5%ステアリン酸カルシウムの混合水溶液からなる凝固剤に浸漬した後、70℃で3分乾燥させて凝固剤を付着させた。手型をディップ成型用ラテックス配合組成物中に30-60秒間浸漬した後に取り出し、80℃で1分加熱して手型上にディップ成型用ラテックス配合組成物をゲル化させ薄膜フィルムを作製した。その後、手型を60-70℃の温水中に3分間浸漬してリーチング処理を行った後、試験オーブン内に放置し70℃で5分加熱し、オーブンから取り出さずそのまま130℃で20分加熱処理を行った。
手型の表面温度が40℃になるまで冷却した後、次亜塩素酸ナトリウムと塩酸で活性塩素濃度が900-1000ppmとなるように調整された塩素化浸漬層に手型を40秒間浸漬した後、水洗し、0.4%硫酸ナトリウム水溶液で洗浄し再度水洗した後、100℃で5分間乾燥した。室温で手型を十分に冷却した後、薄膜フィルムを手型から脱型し、ディップ成型物としてアクリロニトリルブタジエンゴム手袋(以後、ニトリル手袋と記載)を作製した。作製したニトリル手袋は24時間温度25℃、湿度55RH%で調湿した後、物理強度をASTMD412に準じて測定した。また、フィルムの色調をハンターラボ社製UV-VISスぺクトロメーターを用いて測定した。室温に5日間保管したニトリル手袋を用いて装着耐久性及び、4%酢酸溶出後の蒸発残留量の評価を行った。
<Example 1>
A 3% aqueous potassium hydroxide solution and soft water were added to the polymer latex composition 1 obtained in Synthesis Example 1 under stirring so that the solid content concentration was in the range of 17-20% and the pH was in the range of 9.5-10. Adjusted to. After that, 1.0 part by weight of a dispersion of titanium oxide (solid content concentration: 61%) (manufactured by Sakai Chemical Industry Co., Ltd.) processed with an alumina surface treatment of 3.1% and a silica surface treatment of 6.0% was oxidized. After adding zinc dispersion (manufactured by Aquaspartion) to 0.3 parts by weight, sulfur dispersion 0.7 part, and vulture accelerator ZDEC dispersion 0.5 part, and stirring at room temperature for 12 hours, Aggregates and bubbles were removed and the temperature of the composition was adjusted to 20-40 ° C. to obtain a latex-blended composition for dip molding. 100 mL of the obtained latex compounding composition for dip molding was placed in a measuring cylinder and stored statically to measure the degree of sedimentation.
Next, the washed and heated ceramic immersion hand mold is immersed in a coagulant consisting of a mixed aqueous solution of 14% by weight calcium nitrate and 1.5% calcium stearate, and then dried at 70 ° C. for 3 minutes to adhere the coagulant. I let you. The hand mold was immersed in the latex compounding composition for dip molding for 30-60 seconds, then taken out, and heated at 80 ° C. for 1 minute to gel the latex compounding composition for dip molding on the hand mold to prepare a thin film. After that, the hand mold was immersed in warm water at 60-70 ° C for 3 minutes for leaching treatment, then left in a test oven and heated at 70 ° C for 5 minutes, and then heated at 130 ° C for 20 minutes without being taken out of the oven. Processing was performed.
After cooling the hand mold to a surface temperature of 40 ° C., the hand mold is immersed in a chlorinated immersion layer adjusted to have an active chlorine concentration of 900-1000 ppm with sodium hypochlorite and hydrochloric acid for 40 seconds. , Washed with water, washed with 0.4% aqueous sodium sulfate solution, washed again with water, and then dried at 100 ° C. for 5 minutes. After sufficiently cooling the hand mold at room temperature, the thin film was removed from the hand mold to prepare acrylonitrile butadiene rubber gloves (hereinafter referred to as nitrile gloves) as a dip molded product. The produced nitrile gloves were adjusted in humidity at a temperature of 25 ° C. and a humidity of 55 RH% for 24 hours, and then the physical strength was measured according to ASTMD412. In addition, the color tone of the film was measured using a UV-VIS spectrometer manufactured by Hunter Lab. Wearing durability and the amount of residual evaporation after elution of 4% acetic acid were evaluated using nitrile gloves stored at room temperature for 5 days.
<実施例2~17及び比較例1~4>
ポリマーラテックス組成物、ディップ成型用ラテックス配合組成物における酸化チタン、その他の配合剤を表1又は2に記載のとおり変更した以外は、実施例1と同様にしてディップ成型用ラテックス配合組成物及びディップ成型物を調製した。
<Examples 2 to 17 and Comparative Examples 1 to 4>
The latex compounding composition for dip molding and the dip are the same as in Example 1 except that the polymer latex composition, the titanium oxide in the latex compounding composition for dip molding, and other compounding agents are changed as shown in Table 1 or 2. Molds were prepared.
実施例1~17及び比較例1~4で得られたディップ成型用ラテックス配合組成物及びディップ成型物(ニトリル手袋)の各種物性を表1又は2に示す。表中の酸化チタン分散液、その他の配合剤の配合量は、ポリマーラテックス組成物の固形分100質量%に対する割合である。なお、酸化チタン分散液の固形分濃度はすべて61%である。 Tables 1 and 2 show various physical properties of the latex compounding composition for dip molding and the dip molded product (nitrile gloves) obtained in Examples 1 to 17 and Comparative Examples 1 to 4. The blending amount of the titanium oxide dispersion liquid and other blending agents in the table is a ratio to 100% by mass of the solid content of the polymer latex composition. The solid content concentration of the titanium oxide dispersion is 61%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
以上の実施例及び比較例より、多価金属塩で表面処理をした酸化チタンを用いることにより、得られたディップ成型物(ニトリル手袋)は物理強度に優れ、かつ、4%酢酸溶出試験による残留物量を低減することができた。したがって、本発明のディップ成型用ラテックス配合組成物は、物理強度に優れ、かつ、安全性にも優れるディップ成型物を作製できることが確認できた。 From the above Examples and Comparative Examples, the dip molded product (nitrile gloves) obtained by using titanium oxide surface-treated with a polyvalent metal salt has excellent physical strength and remains in the 4% acetic acid elution test. I was able to reduce the physical quantity. Therefore, it was confirmed that the latex compounding composition for dip molding of the present invention can produce a dip molded product having excellent physical strength and safety.

Claims (19)

  1. 多価金属塩で表面処理された酸化チタン(A)と、エチレン性不飽和カルボン酸単量体由来の構造単位(b1)を有するポリマーを含むポリマーラテックス組成物(B)とを含み、
    該ポリマーラテックス組成物(B)の固形分100質量%に対する多価金属塩で処理された酸化チタン(A)の割合が0.05~10.0質量%であることを特徴とするディップ成型用ラテックス配合組成物。
    A polymer latex composition (B) containing a polymer having a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer and titanium oxide (A) surface-treated with a polyvalent metal salt.
    For dip molding, wherein the ratio of titanium oxide (A) treated with the polyvalent metal salt to 100% by mass of the solid content of the polymer latex composition (B) is 0.05 to 10.0% by mass. Latex compound composition.
  2. 前記酸化チタン(A)は、多価金属塩とシリカで表面処理されたものであることを特徴とする請求項1に記載のディップ成型用ラテックス配合組成物。 The latex compounding composition for dip molding according to claim 1, wherein the titanium oxide (A) is surface-treated with a polyvalent metal salt and silica.
  3. 前記多価金属塩は、アルミニウム、亜鉛、カルシウム、マグネシウム、ニオブ、チタニウム、ジルコニウム、セリウム、ストロンチウム、バリウム、ラジウム、スズ、鉛、ニッケル、鉄、銅、カドミウム、コバルト及びマンガンからなる群より選択される少なくとも1種の金属の塩であることを特徴とする請求項1又は2に記載のディップ成型用ラテックス配合組成物。 The polyvalent metal salt is selected from the group consisting of aluminum, zinc, calcium, magnesium, niobium, titanium, zirconium, cerium, strontium, barium, radium, tin, lead, nickel, iron, copper, cadmium, cobalt and manganese. The latex compounding composition for dip molding according to claim 1 or 2, which is a salt of at least one metal.
  4. 前記多価金属塩は、アルミニウム塩であることを特徴とする請求項1~3いずれかに記載のディップ成型用ラテックス配合組成物。 The latex compounding composition for dip molding according to any one of claims 1 to 3, wherein the polyvalent metal salt is an aluminum salt.
  5. 前記酸化チタン(A)における多価金属塩の表面処理量は、表面処理前の酸化チタン100質量%に対して0.1~10質量%であることを特徴とする請求項1~4のいずれかに記載のディップ成型用ラテックス配合組成物。 Any of claims 1 to 4, wherein the surface treatment amount of the polyvalent metal salt in the titanium oxide (A) is 0.1 to 10% by mass with respect to 100% by mass of the titanium oxide before the surface treatment. The latex compounding composition for dip molding described in Crab.
  6. 前記酸化チタン(A)におけるシリカの表面処理量は、表面処理前の酸化チタン100質量%に対して0.1~10質量%であることを特徴とする請求項2~5のいずれかに記載のディップ成型用ラテックス配合組成物。 The aspect according to any one of claims 2 to 5, wherein the surface treatment amount of silica in the titanium oxide (A) is 0.1 to 10% by mass with respect to 100% by mass of titanium oxide before the surface treatment. Latex compound composition for dip molding.
  7. 前記酸化チタン(A)は、平均粒子径が1μm以下であることを特徴とする請求項1~6のいずれかに記載のディップ成型用ラテックス配合組成物。 The latex compounding composition for dip molding according to any one of claims 1 to 6, wherein the titanium oxide (A) has an average particle size of 1 μm or less.
  8. 前記ポリマーラテックス組成物(B)に含まれるポリマーは、共役ジエン単量体由来の構造単位(b2)を有することを特徴とする請求項1~7のいずれかに記載のディップ成型用ラテックス配合組成物。 The latex compounding composition for dip molding according to any one of claims 1 to 7, wherein the polymer contained in the polymer latex composition (B) has a structural unit (b2) derived from a conjugated diene monomer. thing.
  9. 前記ポリマーラテックス組成物(B)に含まれるポリマーは、エチレン性不飽和ニトリル単量体由来の構造単位(b3)を有することを特徴とする請求項1~8のいずれかに記載のディップ成型用ラテックス配合組成物。 The dip molding according to any one of claims 1 to 8, wherein the polymer contained in the polymer latex composition (B) has a structural unit (b3) derived from an ethylenically unsaturated nitrile monomer. Latex compound composition.
  10. 前記ポリマーラテックス組成物(B)に含まれるポリマーは、エチレン性不飽和カルボン酸単量体由来の構造単位(b1)、共役ジエン単量体由来の構造単位(b2)及びエチレン性不飽和ニトリル単量体由来の構造単位(b3)の含有割合が2~10/50~78/20~40(質量%)であることを有することを特徴とする請求項1~9のいずれかに記載のディップ成型用ラテックス配合組成物。 The polymer contained in the polymer latex composition (B) includes a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer, a structural unit (b2) derived from a conjugated diene monomer, and a single ethylenically unsaturated nitrile. The dip according to any one of claims 1 to 9, wherein the content ratio of the structural unit (b3) derived from the polymer is 2 to 10/50 to 78/20 to 40 (mass%). Latex compound composition for molding.
  11. 前記ディップ成型用ラテックス配合組成物は、酸化亜鉛の含有割合がポリマーラテックス組成物(B)の固形分100質量%に対して5質量%以下であることを特徴とする請求項1~10のいずれかに記載のディップ成型用ラテックス配合組成物。 Any of claims 1 to 10, wherein the latex-blended composition for dip molding has a zinc oxide content of 5% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B). Latex compound composition for dip molding described in Crab.
  12. 前記ディップ成型用ラテックス配合組成物は、酸化亜鉛の含有割合がポリマーラテックス組成物(B)の固形分100質量%に対して0.8質量%以下であることを特徴とする請求項1~11のいずれかに記載のディップ成型用ラテックス配合組成物。 The latex compounding composition for dip molding is characterized in that the content ratio of zinc oxide is 0.8% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B). The latex compounding composition for dip molding according to any one of.
  13. 前記ディップ成型用ラテックス配合組成物は、硫黄の含有割合がポリマーラテックス組成物(B)の固形分100質量%に対して2質量%以下であることを特徴とする請求項1~12のいずれかに記載のディップ成型用ラテックス配合組成物。 Any of claims 1 to 12, wherein the latex-blended composition for dip molding has a sulfur content of 2% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B). The latex compounding composition for dip molding described in.
  14. 前記ディップ成型用ラテックス配合組成物は、硫黄の含有割合がポリマーラテックス組成物(B)の固形分100質量%に対して0.8質量%以下であることを特徴とする請求項1~13のいずれかに記載のディップ成型用ラテックス配合組成物。 The latex compounding composition for dip molding has a sulfur content of 0.8% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B), according to claims 1 to 13. The latex compounding composition for dip molding according to any one.
  15. 前記ディップ成型用ラテックス配合組成物は、加硫促進剤の含有割合がポリマーラテックス組成物(B)の固形分100質量%に対して2質量%以下であることを特徴とする請求項1~14のいずれかに記載のディップ成型用ラテックス配合組成物。 The latex compounding composition for dip molding is characterized in that the content ratio of the vulcanization accelerator is 2% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B). The latex compounding composition for dip molding according to any one of.
  16. 前記ディップ成型用ラテックス配合組成物は、加硫促進剤の含有割合がポリマーラテックス組成物(B)の固形分100質量%に対して0.6質量%以下であることを特徴とする請求項1~15のいずれかに記載のディップ成型用ラテックス配合組成物。 The latex compounding composition for dip molding is characterized in that the content ratio of the vulcanization accelerator is 0.6% by mass or less with respect to 100% by mass of the solid content of the polymer latex composition (B). The latex compounding composition for dip molding according to any one of 15 to 15.
  17. 請求項1~16のいずれかに記載のディップ成型用ラテックス配合組成物を成型させてなるディップ成型物。 A dip molded product obtained by molding the latex compounding composition for dip molding according to any one of claims 1 to 16.
  18. 前記ディップ成型物が手袋であることを特徴とする請求項17に記載のディップ成型物。 The dip molded product according to claim 17, wherein the dip molded product is a glove.
  19. エチレン性不飽和カルボン酸単量体由来の構造単位(b1)を有するポリマーを含むディップ成型物であって、
    該ディップ成型物は、更に多価金属塩で表面処理された酸化チタン(A)を含み、
    以下の方法で測定する装着耐久時間が50分以上であり、
    以下の方法で測定する4%酢酸溶出後の蒸発残留物量が60ppm以下であることを特徴とするディップ成型物。
    <装着耐久時間の測定>
    ディップ成型物として膜厚が0.05mmの手袋を作製して、被験者5名に装着してもらい、指又部分に穴が生じるまでの時間の中央値にて評価する。
    <4%酢酸溶出後の蒸発残留物量の測定>
    食品衛生法のゴム製の器具又は容器包装の試験方法に基づいて、ディップ成型物を4%酢酸に60℃で30分浸漬させた後、浸出液中の蒸発残留物量を測定する。
     

     
    A dip molded product containing a polymer having a structural unit (b1) derived from an ethylenically unsaturated carboxylic acid monomer.
    The dip molded product further contains titanium oxide (A) surface-treated with a polyvalent metal salt.
    The wearing durability time measured by the following method is 50 minutes or more,
    A dip molded product characterized in that the amount of evaporation residue after elution of 4% acetic acid measured by the following method is 60 ppm or less.
    <Measurement of wearing durability time>
    Gloves with a film thickness of 0.05 mm are prepared as a dip molded product, worn by five subjects, and evaluated by the median time until a hole is formed in the finger or portion.
    <Measurement of evaporation residue after elution of 4% acetic acid>
    After immersing the dip molded product in 4% acetic acid at 60 ° C. for 30 minutes based on the test method for rubber appliances or containers and packaging of the Food Sanitation Law, the amount of evaporation residue in the leachate is measured.


PCT/JP2021/044914 2020-12-21 2021-12-07 Latex blend composition for dip molding, and dip-molded article WO2022138135A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-211483 2020-12-21
JP2020211483A JP2024045786A (en) 2020-12-21 2020-12-21 Latex blend composition for dip molding, and dip-molded article

Publications (1)

Publication Number Publication Date
WO2022138135A1 true WO2022138135A1 (en) 2022-06-30

Family

ID=82159655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044914 WO2022138135A1 (en) 2020-12-21 2021-12-07 Latex blend composition for dip molding, and dip-molded article

Country Status (2)

Country Link
JP (1) JP2024045786A (en)
WO (1) WO2022138135A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504924A (en) * 2016-01-29 2019-02-21 スキンプロテクト コーポレイション スンディリアン ブルハド ELASTOMER ARTICLE, COMPOSITION, AND METHOD FOR PRODUCING THEM
WO2019159780A1 (en) * 2018-02-16 2019-08-22 日本ゼオン株式会社 Latex composition and film molded article
JP2020505492A (en) * 2017-12-07 2020-02-20 エルジー・ケム・リミテッド Carboxylic acid-modified nitrile copolymer latex, method for producing the same, latex composition for dip molding containing the same, and molded article molded therefrom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504924A (en) * 2016-01-29 2019-02-21 スキンプロテクト コーポレイション スンディリアン ブルハド ELASTOMER ARTICLE, COMPOSITION, AND METHOD FOR PRODUCING THEM
JP2020505492A (en) * 2017-12-07 2020-02-20 エルジー・ケム・リミテッド Carboxylic acid-modified nitrile copolymer latex, method for producing the same, latex composition for dip molding containing the same, and molded article molded therefrom
WO2019159780A1 (en) * 2018-02-16 2019-08-22 日本ゼオン株式会社 Latex composition and film molded article

Also Published As

Publication number Publication date
JP2024045786A (en) 2024-04-03

Similar Documents

Publication Publication Date Title
EP1361247B1 (en) Dip moldings, composition for dip molding and method for producing dip moldings
JP6360970B2 (en) DIP MOLDING LATEX COMPOSITION CONTAINING CARBOXYLIC ACID MODIFIED NITRILE COPOLYMER LATEX AND DIP MOLDED PRODUCT PRODUCED THEREFROM
JP3852356B2 (en) DIP MOLDING COMPOSITION, DIP MOLDED ARTICLE AND METHOD FOR PRODUCING THE SAME
JP6893217B2 (en) Latex composition for dip molding and molded products manufactured from it
TWI701268B (en) Carboxylic acid-modified nitrile-based copolymer latex composition, preparation method thereof, latex composition for dip-molding comprising the same, and article molded by the same
JP3915489B2 (en) DIP MOLDING LATEX, PROCESS FOR PRODUCING THE SAME, DIP MOLDING COMPOSITION AND DIP MOLDED PRODUCT
JP6006326B2 (en) Latex composition for dip molding
EP1209192B1 (en) Latex for dip forming and molded object obtained by dip forming
WO2015146974A1 (en) Dip molded article and method for manufacturing dip molded article
JP7161054B2 (en) Method for producing carboxylic acid-modified nitrile copolymer latex
WO2005095508A1 (en) Composition for dip forming and molding obtained by dip forming
WO2005049725A1 (en) Dip forming composition and dip formed article
JP4134577B2 (en) Dip molding latex, dip molding composition and dip molding
JP2005336273A (en) Copolymer latex for dip molding, dip molding composition and dip-molded product
WO2022138135A1 (en) Latex blend composition for dip molding, and dip-molded article
WO2023017738A1 (en) Latex composition for dip molding, and method for producing dip-molded article
JP4860252B2 (en) DIP MOLDING COMPOSITION AND DIP MOLDED ARTICLE
JP4809671B2 (en) Dip molding copolymer latex, dip molding composition and dip molding product
JP6991314B2 (en) Dip molded products, latex compositions for dip molding and methods for producing these
JP4078762B2 (en) Latex for dip molding and dip molding
JP2021515069A (en) Carboxylic acid-modified nitrile copolymer latex composition, latex composition for dip molding containing the same, and molded products formed thereby.
JP6891717B2 (en) Latex composition
JP7249435B2 (en) Method for producing carboxylic acid-modified nitrile copolymer latex
JP2003246891A (en) Composition for dip forming, and dip-formed article
JP2022129739A (en) Latex composition, dip molding and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP