JP4860252B2 - DIP MOLDING COMPOSITION AND DIP MOLDED ARTICLE - Google Patents

DIP MOLDING COMPOSITION AND DIP MOLDED ARTICLE Download PDF

Info

Publication number
JP4860252B2
JP4860252B2 JP2005347725A JP2005347725A JP4860252B2 JP 4860252 B2 JP4860252 B2 JP 4860252B2 JP 2005347725 A JP2005347725 A JP 2005347725A JP 2005347725 A JP2005347725 A JP 2005347725A JP 4860252 B2 JP4860252 B2 JP 4860252B2
Authority
JP
Japan
Prior art keywords
dip
weight
copolymer latex
parts
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005347725A
Other languages
Japanese (ja)
Other versions
JP2007153948A (en
Inventor
文敏 武田
貴志 松山
浩 実綿
渡 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon A&L Inc
Original Assignee
Nippon A&L Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon A&L Inc filed Critical Nippon A&L Inc
Priority to JP2005347725A priority Critical patent/JP4860252B2/en
Publication of JP2007153948A publication Critical patent/JP2007153948A/en
Application granted granted Critical
Publication of JP4860252B2 publication Critical patent/JP4860252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明はディップ成形用組成物およびディップ成形品に関するものである。更に詳しくは、機械的安定性が高いディップ成形用組成物および風合い、引張り強度、伸び等の物性に優れる低アレルギー性ディップ成形品に関するものである。   The present invention relates to a dip molding composition and a dip molded article. More specifically, the present invention relates to a dip-molding composition having high mechanical stability and a low allergenic dip-molded article having excellent physical properties such as texture, tensile strength, and elongation.

近年、ゴム手袋は、安全衛生に対する関心の高まりから医療(院内感染、SARS感染予防など)、食品加工分野(O−157問題)および電子部品製造分野など各方面において広く使用されている。これらゴム手袋の製造方法の1つとしてディップ成形法が挙げられる。ディップ成形法としては、木材、ガラス、陶磁、金属又はプラスチックなどから作られた型を予め凝固剤液に浸漬した後、天然ゴムラテックス組成物や合成ゴムラテックス組成物に浸漬するアノード凝着浸漬法や、型をラテックス組成物に浸漬した後、凝固液に浸漬するティーグ凝着浸漬法などが知られており、これらのディップ成形法により得られる成形物がディップ成形品である。
ディップ成形用ラテックスの代表的なものとして天然ゴムラテックスあるいはアクリロニトリル・ブタジエンゴム(NBRゴム)などの合成ゴムラテックスが知られている。最近、前者の天然ゴムラテックスは、含有する微量蛋白質が原因で使用者によってはアレルギー反応を引き起こす場合があり、後者の蛋白質を含まない合成ゴムラテックス(NBRゴム−共重合体ラテックス)が注目され、使用量も多くなってきている。このようなディップ成形品には強度特性を向上させるために、硫黄や加硫促進剤を用いるのが一般的である。しかし近年では、手袋などのディップ成形品に含まれる加硫促進剤に対する遅延型アレルギーに基づく接触皮膚炎の発症も増加傾向にあり、加硫促進剤を使用しないディップ成形品の開発が求められている。
また、使用量の増加に伴いディップ成形用共重合体ラテックスには高生産性、高品質化が推し進められている。高生産性に関しては、ディップ成形用組成物の使用時に、凝集物を作らない良好な機械的安定性が要求されている。また高品質化については、このディップ成形用組成物より得られたディップ成形品の風合い、引張り強度、伸び等の高いレベルでの物性が求められている。
このため、例えば共重合体ラテックスの分子量とゲル含有量を規定する方法(特開平5−247266号:特許文献1、特開平6−182788号:特許文献2)、また特開2003−165814号(特許文献3)には、共重合体の組成を調整することによりガラス転移温度の異なる2種の共重合体からなるラテックスを使用することが提案されている。しかし、風合いと他の特性は互いに相反する傾向にあり、すべての特性バランスを同時に満足することは非常に困難であった。例えば、風合いを向上させる目的でガラス転移温度の低いブタジエン等の共役ジエン化合物の使用量を多くした場合は、風合いの向上は見られるが耐油性、耐薬品性に乏しいものとなる。
また特開2003−165814号(特許文献3)には、含硫黄加硫剤、加硫促進剤さらには酸化亜鉛の何れも実質的に含まないこと特徴とするディップ成形用組成物が提案されている。しかしながら、本発明者らの検討によれば、強度の点で十分満足する物性が得られないという問題がある。
特開平5−247266号 特開平6−182788号 特開2003−165814号
In recent years, rubber gloves have been widely used in various fields such as medical treatment (nosocomial infection, prevention of SARS infection, etc.), food processing field (O-157 problem) and electronic component manufacturing field due to increasing interest in safety and health. One method for producing these rubber gloves is the dip molding method. As the dip molding method, an anode adhesion dipping method in which a mold made of wood, glass, ceramics, metal or plastic is previously immersed in a coagulant solution and then immersed in a natural rubber latex composition or a synthetic rubber latex composition. In addition, there is known a Tigue adhesion dipping method in which a mold is dipped in a latex composition and then dipped in a coagulating liquid.
As typical dip molding latex, natural rubber latex or synthetic rubber latex such as acrylonitrile butadiene rubber (NBR rubber) is known. Recently, the former natural rubber latex may cause an allergic reaction depending on the amount of protein contained in some users. Synthetic rubber latex (NBR rubber-copolymer latex) not containing the latter protein has attracted attention. The amount used is also increasing. In order to improve the strength characteristics of such dip-molded products, it is common to use sulfur or a vulcanization accelerator. In recent years, however, the incidence of contact dermatitis based on delayed allergies to vulcanization accelerators in dip moldings such as gloves has been increasing, and development of dip moldings that do not use vulcanization accelerators has been required. Yes.
Further, with the increase in the amount of use, high productivity and high quality are being promoted for the dip-molding copolymer latex. For high productivity, good mechanical stability that does not form agglomerates is required when the dip molding composition is used. For quality improvement, physical properties at a high level such as texture, tensile strength and elongation of the dip-molded product obtained from the dip-molding composition are required.
Therefore, for example, a method for defining the molecular weight and gel content of the copolymer latex (JP-A-5-247266: Patent Document 1, JP-A-6-182788: Patent Document 2), and JP-A-2003-165814 ( Patent Document 3) proposes to use a latex composed of two types of copolymers having different glass transition temperatures by adjusting the composition of the copolymer. However, texture and other characteristics tend to conflict with each other, and it has been very difficult to satisfy all the characteristic balances at the same time. For example, when the amount of a conjugated diene compound such as butadiene having a low glass transition temperature is increased for the purpose of improving the texture, the texture is improved but the oil resistance and chemical resistance are poor.
JP-A 2003-165814 (Patent Document 3) proposes a dip-forming composition characterized by substantially not including any sulfur-containing vulcanizing agent, vulcanization accelerator, or zinc oxide. Yes. However, according to the study by the present inventors, there is a problem that physical properties sufficiently satisfactory in terms of strength cannot be obtained.
JP-A-5-247266 JP-A-6-182788 JP 2003-165814 A

本発明の目的は、機械的安定性が高いディップ成形用組成物、かつ風合い、引張り強度、伸び等の物性に優れる低アレルギー性ディップ成形品を提供することにある。   An object of the present invention is to provide a dip-molding composition having high mechanical stability and a hypoallergenic dip-molded article having excellent physical properties such as texture, tensile strength and elongation.

本発明者らは、前述の諸事情に鑑み鋭意検討した結果、特定範囲の組成、pH調整剤として水酸化カリウムおよび/または水酸化ナトリウムとアンモニアを併用した共重合体ラテックスと特定量の酸化亜鉛をディップ成形用組成物に用いることによって、含硫黄加硫剤および加硫促進剤を使用せずとも、機械的安定性が高いディップ成形用組成物、かつ、風合い、引張り強度、伸び等の物性に優れる低アレルギー性ディップ成形品、が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the above-described circumstances, the present inventors have found that a specific range of composition, a copolymer latex using potassium hydroxide and / or sodium hydroxide and ammonia in combination as a pH adjuster, and a specific amount of zinc oxide. Can be used for dip molding compositions, so that dip molding compositions with high mechanical stability and physical properties such as texture, tensile strength and elongation can be used without using sulfur-containing vulcanizing agents and vulcanization accelerators. The present inventors have found that a hypoallergenic dip-molded article excellent in the above can be obtained and completed the present invention.

すなわち本発明は、1,3−ブタジエン50〜80重量%、アクリロニトリル15〜50重量%、エチレン性不飽和カルボン酸系単量体0〜10重量%およびこれらと共重合可能な他のエチレン性不飽和単量体0〜35重量%からなる単量体を乳化重合し、pH調整剤として水酸化カリウムおよび/または水酸化ナトリウムとアンモニアを併用して得られる共重合体ラテックスと、該共重合体ラテックス100重量部(固形分換算)に対して0.7〜5重量部の酸化亜鉛を含み、含硫黄加硫剤および加硫促進剤を実質的に含まないことを特徴とするディップ成形用組成物およびこのディップ成形用組成物をディップしてなるディップ成形品を提供するものである。   That is, the present invention relates to 50 to 80% by weight of 1,3-butadiene, 15 to 50% by weight of acrylonitrile, 0 to 10% by weight of ethylenically unsaturated carboxylic acid monomer and other ethylenically unsaturated monomers copolymerizable therewith. A copolymer latex obtained by emulsion polymerization of a monomer comprising 0 to 35% by weight of a saturated monomer and using potassium hydroxide and / or sodium hydroxide and ammonia in combination as a pH adjuster, and the copolymer A composition for dip molding characterized by containing 0.7 to 5 parts by weight of zinc oxide with respect to 100 parts by weight of latex (in terms of solid content) and substantially free of sulfur-containing vulcanizing agent and vulcanization accelerator. And a dip-molded product obtained by dipping the dip-molding composition.

本発明により、機械的安定性が高いディップ成形用組成物、かつ、風合い、引張り強度、伸び等の物性に優れる低アレルギー性ディップ成形品を得ることができるものであり、医療、食品加工分野および電子部品製造分野など各方面において広く使用されるゴム手袋等を得ることができ、極めて有用である。   According to the present invention, it is possible to obtain a dip molding composition having high mechanical stability, and a low allergic dip molding product having excellent physical properties such as texture, tensile strength, elongation, etc. Rubber gloves and the like widely used in various fields such as the electronic component manufacturing field can be obtained and are extremely useful.

以下に、本発明を詳細に説明する。
本発明における共重合体ラテックスの単量体組成は、1,3−ブタジエン50〜80重量%、アクリロニトリル15〜50重量%、エチレン性不飽和カルボン酸系単量体0〜10重量%およびこれらと共重合可能な他のエチレン性不飽和単量体0〜35重量%により構成される。
The present invention is described in detail below.
The monomer composition of the copolymer latex in the present invention is 1,3-butadiene 50 to 80% by weight, acrylonitrile 15 to 50% by weight, ethylenically unsaturated carboxylic acid monomer 0 to 10% by weight, and It is composed of 0 to 35% by weight of another copolymerizable ethylenically unsaturated monomer.

1,3−ブタジエンは全単量体中、50〜80重量%の範囲で使用されることが必要である。1,3−ブタジエンが50重量%未満では乾燥後のラテックスポリマーがNBRゴムとしての性質を呈さず、好ましくない。1,3−ブタジエンが80重量%を越えると耐油性が低下する。好ましくは55〜75重量%である。   1,3-butadiene needs to be used in the range of 50 to 80% by weight in the total monomers. If the amount of 1,3-butadiene is less than 50% by weight, the latex polymer after drying does not exhibit properties as an NBR rubber, which is not preferable. When 1,3-butadiene exceeds 80% by weight, the oil resistance decreases. Preferably it is 55 to 75% by weight.

アクリロニトリルは全単量体中、15〜50重量%の範囲で使用されることが必要である。アクリロニトリルが15重量%未満では耐油性が低下し、50重量%を越えると乾燥後のラテックスポリマーがNBRゴムとしての性質を呈さず、好ましくない。好ましくは20〜45重量%である。   Acrylonitrile needs to be used in the range of 15 to 50% by weight in all monomers. If acrylonitrile is less than 15% by weight, the oil resistance decreases, and if it exceeds 50% by weight, the latex polymer after drying does not exhibit properties as an NBR rubber, which is not preferable. Preferably it is 20 to 45 weight%.

本発明にて使用されるエチレン性不飽和カルボン酸系単量体としては、アクリル酸、メタクリル酸、クロトン酸、フマール酸、イタコン酸、マレイン酸などが挙げられ、1種または2種以上用いることができる。特にメタクリル酸が好ましい。
エチレン性不飽和カルボン酸系単量体は全単量体中、0〜10重量%の範囲で使用されることが必要である。エチレン性不飽和カルボン酸系単量体が10重量%を越えると共重合体ラテックスの粘度が高くなりすぎ、全ての用途で取り扱い上の問題を発生する可能性が高い。
Examples of the ethylenically unsaturated carboxylic acid monomer used in the present invention include acrylic acid, methacrylic acid, crotonic acid, fumaric acid, itaconic acid, maleic acid and the like. Can do. In particular, methacrylic acid is preferred.
The ethylenically unsaturated carboxylic acid-based monomer needs to be used in the range of 0 to 10% by weight in all monomers. If the ethylenically unsaturated carboxylic acid monomer exceeds 10% by weight, the viscosity of the copolymer latex becomes too high, and there is a high possibility that handling problems will occur in all applications.

本発明に使用される共重合可能な他のエチレン性不飽和単量体としては、例えば、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−クロル−1,3−ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類などの脂肪族共役ジエン化合物、例えば、メタクリロニトリル、α−クロルアクリロニトリル、α−エチルアクリロニトリルなどシアン化ビニル化合物、例えば、スチレン、α−メチルスチレンなどの芳香族ビニル化合物、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−ヒドロキシエチル、メタクリル酸メチル、メタクリル酸2−ヒドロキシエチル、メタクリル酸グリシジルなどの不飽和カルボン酸アルキルエステル化合物、例えば、アクリルアミド、メタクリロアミド、N,N−ジメチルアクリルアミド、N−メチロールアクリルアミドなどのエチレン系不飽和カルボン酸アミド化合物、例えば、酢酸ビニルなどのカルボン酸ビニルエステル類、例えば、メチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、2−ビニルピリジン、などのエチレン系不飽和アミン化合物などが挙げられ、1種または2種以上用いることができる。   Examples of other copolymerizable ethylenically unsaturated monomers used in the present invention include 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro- Aliphatic conjugated diene compounds such as 1,3-butadiene, substituted linear conjugated pentadienes, substituted and side chain conjugated hexadienes, for example, vinyl cyanide compounds such as methacrylonitrile, α-chloroacrylonitrile, α-ethylacrylonitrile, such as , Aromatic vinyl compounds such as styrene and α-methylstyrene, such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-hydroxyethyl acrylate, methyl methacrylate, 2-hydroxyethyl methacrylate, glycidyl methacrylate, etc. Unsaturated carboxylic acid alkyl ester compounds such as acrylic Ethylenically unsaturated carboxylic acid amide compounds such as amide, methacryloamide, N, N-dimethylacrylamide, N-methylolacrylamide, for example, carboxylic acid vinyl esters such as vinyl acetate, for example, methylaminoethyl (meth) acrylate, Examples thereof include ethylenically unsaturated amine compounds such as dimethylaminoethyl (meth) acrylate and 2-vinylpyridine, and one or more of them can be used.

本発明においては、上記共重合体ラテックスのpH調整剤として、水酸化カリウムおよび/または水酸化ナトリウムとアンモニアを併用することが必要である。本発明においては、水酸化カリウムおよび/または水酸化ナトリウムの使用により、共重合体ラテックスおよびディップ成形用組成物に機械的安定性が付与され、またアンモニアの使用により、風合い、引張り強度、伸び等の物性に優れるディップ成形品を得ることができるものと考えられる。これらのpH調整剤の添加方法、添加順序については特に制限はなく、共重合体ラテックスの重合後、水蒸気蒸留後、さらにはディップ成形用組成物の調整時等、何れにおいて添加してもよいが、添加時の凝集物発生を避けるため、0.1〜40重量%の濃度の水溶液として添加することが好ましい。   In the present invention, it is necessary to use potassium hydroxide and / or sodium hydroxide and ammonia in combination as a pH adjuster of the copolymer latex. In the present invention, mechanical stability is imparted to the copolymer latex and the dip molding composition by using potassium hydroxide and / or sodium hydroxide, and texture, tensile strength, elongation, etc. are given by using ammonia. It is considered that a dip-molded product having excellent physical properties can be obtained. There are no particular restrictions on the addition method and order of addition of these pH adjusters, which may be added after polymerization of the copolymer latex, after steam distillation, or at the time of adjusting the dip molding composition. In order to avoid the generation of aggregates at the time of addition, it is preferably added as an aqueous solution having a concentration of 0.1 to 40% by weight.

また、本発明では、pH調整剤として水酸化カリウムおよび/または水酸化ナトリウムとアンモニアを併用することを規定しているが、本発明の目的を阻害しない範囲内にて、これらに併せてさらに異なる種類の塩基性物質を使用することも可能である。   Further, in the present invention, it is specified that potassium hydroxide and / or sodium hydroxide and ammonia are used in combination as a pH adjuster. However, within the range that does not impair the object of the present invention, these are further different. It is also possible to use a kind of basic substance.

本発明における共重合体ラテックスのゲル含有量については特に制限はないが、風合い、引張り強度、伸びの物性バランスといった観点から、好ましいゲル含有量は80重量%以下である。さらに好ましくは20〜80重量%である。   Although there is no restriction | limiting in particular about the gel content of the copolymer latex in this invention, From a viewpoint of the physical property balance of a feel, tensile strength, and elongation, a preferable gel content is 80 weight% or less. More preferably, it is 20 to 80% by weight.

また、共重合体ラテックスの粒子径については特に制限はないが、好ましい共重合体ラテックスの粒子径は0.2μm以下である。さらに好ましくは、0.18μm以下であり、最も好ましい共重合体ラテックスの粒子径は、0.05〜0.15μmである。   Moreover, there is no restriction | limiting in particular about the particle diameter of copolymer latex, However, The preferable particle diameter of copolymer latex is 0.2 micrometer or less. More preferably, it is 0.18 μm or less, and the most preferable particle diameter of the copolymer latex is 0.05 to 0.15 μm.

本発明の共重合体ラテックスを乳化重合するに際しては、常用の乳化剤、重合開始剤、還元剤、連鎖移動剤、酸化還元触媒、炭化水素系溶剤、電解質、重合促進剤、キレート剤等を使用することができる。   In emulsion polymerization of the copolymer latex of the present invention, a conventional emulsifier, polymerization initiator, reducing agent, chain transfer agent, redox catalyst, hydrocarbon solvent, electrolyte, polymerization accelerator, chelating agent, etc. are used. be able to.

本発明の共重合体ラテックスの製造に使用できる乳化剤としては、高級アルコールの硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルスルホン酸塩、脂肪族スルホン酸塩、脂肪族カルボン酸塩、非イオン性界面活性剤の硫酸エステル塩等のアニオン性界面活性剤あるいはポリエチレングリコールのアルキルエステル型、アルキルフェニルエーテル型、アルキルエーテル型等のノニオン性界面活性剤が挙げられ、これらを1種又は2種以上使用することができる。特に、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルスルホン酸塩が好ましい。   Examples of emulsifiers that can be used in the production of the copolymer latex of the present invention include sulfate esters of higher alcohols, alkylbenzene sulfonates, alkyl diphenyl ether sulfonates, aliphatic sulfonates, aliphatic carboxylates, nonionic interfaces. Nonionic surfactants such as an anionic surfactant such as a sulfate ester of an activator or an alkyl ester type, an alkylphenyl ether type, and an alkyl ether type of polyethylene glycol are used, and one or more of these are used. be able to. In particular, alkylbenzene sulfonate and alkyl diphenyl ether sulfonate are preferable.

重合開始剤としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の水溶性重合開始剤、クメンハイドロパーオキサイド、過酸化ベンゾイル、t−ブチルハイドロパーオキサイド、アセチルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド等の油溶性重合開始剤を適宜用いることができる。特に過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムの水溶性重合開始剤、クメンハイドロパーオキサイドの油溶性重合開始剤の使用が好ましい。   As the polymerization initiator, water-soluble polymerization initiators such as potassium persulfate, sodium persulfate, ammonium persulfate, cumene hydroperoxide, benzoyl peroxide, t-butyl hydroperoxide, acetyl peroxide, diisopropylbenzene hydroperoxide, An oil-soluble polymerization initiator such as 1,1,3,3-tetramethylbutyl hydroperoxide can be appropriately used. In particular, water-soluble polymerization initiators such as potassium persulfate, sodium persulfate and ammonium persulfate and oil-soluble polymerization initiators of cumene hydroperoxide are preferred.

本発明において好ましく用いられる還元剤の具体例としては、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸塩、亜ニチオン酸塩、ニチオン酸塩、チオ硫酸塩、ホルムアルデヒドスルホン酸塩、ベンズアルデヒドスルホン酸塩、また、L−アスコルビン酸、酒石酸、クエン酸などのカルボン酸類、更にはデキストロース、サッカロースなどの還元糖類、更にはジメチルアニリン、トリエタノールアミンなどのアミン類が挙げられる。特にL−アスコルビン酸が好ましい。   Specific examples of the reducing agent preferably used in the present invention include sulfite, bisulfite, pyrosulfite, nitrite, nithionate, thiosulfate, formaldehyde sulfonate, benzaldehyde sulfonate, Examples thereof include carboxylic acids such as L-ascorbic acid, tartaric acid and citric acid, further reducing sugars such as dextrose and saccharose, and amines such as dimethylaniline and triethanolamine. L-ascorbic acid is particularly preferable.

本発明の共重合体ラテックスの製造に使用できる連鎖移動剤としては、n−ヘキシルメルカプタン、n−オクチルメルカプタン、t−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、n−ステアリルメルカプタン等のアルキルメルカプタン、ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン化合物、ターピノレンや、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド等のチウラム系化合物、2,6−ジ−t−ブチル−4−メチルフェノール、スチレン化フェノール等のフェノール系化合物、アリルアルコール等のアリル化合物、ジクロルメタン、ジブロモメタン、四臭化炭素等のハロゲン化炭化水素化合物、α−ベンジルオキシスチレン、α−ベンジルオキシアクリロニトリル、α−ベンジルオキシアクリルアミド等のビニルエーテル、トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2−エチルヘキシルチオグリコレート等が挙げられ、これらを1種または2種以上使用することができる。特に、n−オクチルメルカプタンやt−ドデシルメルカプタンが好ましい。これらの連鎖移動剤の量は特に限定されないが、通常、単量体100重量部に対して0〜5重量部にて使用される。   Examples of the chain transfer agent that can be used for the production of the copolymer latex of the present invention include alkyls such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, and n-stearyl mercaptan. Xanthogen compounds such as mercaptan, dimethylxanthogen disulfide, diisopropylxanthogen disulfide, terpinolene, thiuram compounds such as tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram monosulfide, 2,6-di-t-butyl-4 -Halogenation of phenolic compounds such as methylphenol and styrenated phenol, allyl compounds such as allyl alcohol, dichloromethane, dibromomethane, carbon tetrabromide, etc. Hydrogenated compounds, α-benzyloxystyrene, α-benzyloxyacrylonitrile, vinyl ethers such as α-benzyloxyacrylamide, triphenylethane, pentaphenylethane, acrolein, methacrolein, thioglycolic acid, thiomalic acid, 2-ethylhexylthioglyco A rate etc. are mentioned, These can be used 1 type or 2 or more types. In particular, n-octyl mercaptan and t-dodecyl mercaptan are preferable. The amount of these chain transfer agents is not particularly limited, but is usually 0 to 5 parts by weight with respect to 100 parts by weight of the monomer.

また、本発明においては連鎖移動剤としてα−メチルスチレンダイマーも使用することが可能である。α−メチルスチレンダイマーには、異性体として2,4−ジフェニル−4−メチル−1−ペンテン、2,4−ジフェニル−4−メチル−2−ペンテンおよび1,1,3−トリメチル−3−フェニルインダンがあるが、本発明に使用されるα−メチルスチレンダイマーとしては、2,4−ジフェニル−4−メチル−1−ペンテンの含有量が60重量%以上、特に80重量%以上であることが好ましい。なお、α−メチルスチレンダイマーは沸点が高く、共重合体ラテックスの製造後もラテックス粒子中に残留するため、本発明の目的とは別の環境問題から、その使用量は単量体100重量部に対して2重量部未満とすることが好ましい。   In the present invention, α-methylstyrene dimer can also be used as a chain transfer agent. α-Methylstyrene dimer includes 2,4-diphenyl-4-methyl-1-pentene, 2,4-diphenyl-4-methyl-2-pentene and 1,1,3-trimethyl-3-phenyl as isomers. Although there is indane, the α-methylstyrene dimer used in the present invention has a content of 2,4-diphenyl-4-methyl-1-pentene of 60% by weight or more, particularly 80% by weight or more. preferable. Since α-methylstyrene dimer has a high boiling point and remains in the latex particles even after the production of the copolymer latex, the amount used is 100 parts by weight of the monomer due to environmental problems different from the object of the present invention. The amount is preferably less than 2 parts by weight.

また、重合に際してペンテン、ヘキセン、ヘプテン、シクロペンテン、シクロヘキセン、シクロヘプテン、4−メチルシクロヘキセン、1−メチルシクロヘキセン等の不飽和炭化水素を使用しても良い。特に、沸点が適度に低く、重合終了後に水蒸気蒸留などによって回収、再利用しやすいシクロヘキセンが、本発明の目的とは異なるものの、環境問題の観点から好適である。   In the polymerization, unsaturated hydrocarbons such as pentene, hexene, heptene, cyclopentene, cyclohexene, cycloheptene, 4-methylcyclohexene, and 1-methylcyclohexene may be used. In particular, cyclohexene, which has a moderately low boiling point and can be easily recovered and reused after the completion of polymerization by steam distillation or the like, is preferable from the viewpoint of environmental problems although it differs from the object of the present invention.

さらに、共重合体ラテックスには、必要に応じて、老化防止剤、防腐剤、分散剤、増粘剤などを適宜添加することができる。   Furthermore, anti-aging agents, preservatives, dispersants, thickeners and the like can be appropriately added to the copolymer latex as necessary.

本発明における重合方法は、一段重合、二段重合、多段階重合、シード重合、パワーフィード重合法等何れを採用してもよい。また、本発明の重合方法における各種成分の添加方法についても特に制限されるものではなく、一括添加方法、分割添加方法、連続添加方法の何れも採用することができる。   As the polymerization method in the present invention, any one of single-stage polymerization, two-stage polymerization, multi-stage polymerization, seed polymerization, power feed polymerization and the like may be adopted. Further, the addition method of various components in the polymerization method of the present invention is not particularly limited, and any of a batch addition method, a divided addition method, and a continuous addition method can be employed.

本発明における共重合体ラテックスは、ディップ成形用共重合体ラテックスとして使用される。ディップ成形品を得るためには、例えば直接浸漬法、アノード凝着浸漬法、ティーグ浸漬法など従来公知のディップ成形法がいずれも適応される。   The copolymer latex in the present invention is used as a copolymer latex for dip molding. In order to obtain a dip-molded product, for example, any of the conventionally known dip-molding methods such as a direct dipping method, an anode adhesion dipping method and a teag dipping method are applied.

以下、アノード凝着浸漬法について簡単に説明する。まず、型を凝固液に浸漬し、引き上げて乾燥することにより型表面に凝固剤が付着した状態にする。凝固液は、塩化カルシウム、硝酸カルシウム、酢酸カルシウムなどのカルシウム塩を水、またはアルコール、ケトンなどの親水性有機溶媒に溶解させたものである。凝固液中のカルシウム濃度は、通常5〜50重量%、好ましくは10〜30重量%である。凝固液には必要に応じてノニオン、アニオン界面活性剤などの界面活性剤、炭酸カルシウム、タルク、シリカゲルなどの充填剤を配合してもよい。ついで凝固剤が付着した型をディップ成形用共重合体ラテックス組成物中に浸漬し、引き上げる。この時、凝固剤と共重合ラテックスが反応して型上にゴム状皮膜が形成される。得られた皮膜を水洗、乾燥した後、型から剥離すればディップ成形品となる。   Hereinafter, the anode adhesion dipping method will be briefly described. First, the mold is dipped in a coagulating liquid, and then pulled up and dried to make the coagulant adhere to the mold surface. The coagulation liquid is obtained by dissolving a calcium salt such as calcium chloride, calcium nitrate, or calcium acetate in water or a hydrophilic organic solvent such as alcohol or ketone. The calcium concentration in the coagulation liquid is usually 5 to 50% by weight, preferably 10 to 30% by weight. If necessary, the coagulation liquid may contain a surfactant such as nonionic or anionic surfactant, and a filler such as calcium carbonate, talc, or silica gel. Next, the mold to which the coagulant is attached is immersed in the dip-molding copolymer latex composition and pulled up. At this time, the coagulant and the copolymer latex react to form a rubbery film on the mold. The obtained film is washed with water, dried, and then peeled off from the mold to form a dip-molded product.

本発明のディップ成形用組成物には、該共重合体ラテックス100重量部(固形分換算)に対して0.7〜5重量部の酸化亜鉛を含み、含硫黄加硫剤および加硫促進剤を実質的に含まないことが必要である。 The dip molding composition of the present invention contains 0.7 to 5 parts by weight of zinc oxide with respect to 100 parts by weight of the copolymer latex (in terms of solid content), and contains a sulfur-containing vulcanizing agent and a vulcanization accelerator. Need to be substantially free of

該酸化亜鉛については0.7〜5重量部の範囲で使用することが必要である。酸化亜鉛の添加量が0.7重量部未満では十分なディップ成形品のフィルム強度が得られず、5重量部を超えるとディップ成形品の風合いが硬くなりすぎてしまう。好ましくは0.7〜3重量部である。   About this zinc oxide, it is necessary to use in 0.7-5 weight part. If the amount of zinc oxide added is less than 0.7 parts by weight, sufficient film strength of the dip-formed product cannot be obtained, and if it exceeds 5 parts by weight, the texture of the dip-formed product becomes too hard. Preferably it is 0.7-3 weight part.

なお、含硫黄加硫剤および加硫促進剤については実質的に含まないことが必要である。これらの物質については、ディップ成形用組成物中に全く含まれないことが特に好ましいが、具体的には、いずれの物質についても、共重合体ラテックス100重量部(固形分換算)に対して0.2重量部以下の使用が好ましい。   The sulfur-containing vulcanizing agent and the vulcanization accelerator need not be substantially contained. Although it is particularly preferable that these substances are not contained in the dip molding composition at all, specifically, any of the substances is 0 for 100 parts by weight of copolymer latex (in terms of solid content). Use of 2 parts by weight or less is preferred.

また、本発明のディップ成形用組成物には、必要に応じて、天然ゴムラテックス、イソプレンゴムラテックスなどのゴムラテックス、上記した水酸化カリウム、水酸化ナトリウム、アンモニア水などのpH調整剤に加えて、二酸化チタン、無水フタル酸、安息香酸、サリチル酸、炭酸マグネシウムなどの充填剤、スチレン化フェノール、イミダゾール類、パラフェニレンジアミンなどの老化防止剤、ファーストイエロー、フタロシアンブルー、群青などの着色剤など適宜配合してもよい。   In addition, the dip molding composition of the present invention may be added to a rubber latex such as natural rubber latex or isoprene rubber latex, a pH adjuster such as potassium hydroxide, sodium hydroxide, or aqueous ammonia as necessary. As appropriate, fillers such as titanium dioxide, phthalic anhydride, benzoic acid, salicylic acid, magnesium carbonate, anti-aging agents such as styrenated phenol, imidazoles, paraphenylenediamine, and colorants such as first yellow, phthalocyanine blue, ultramarine blue, etc. You may mix | blend.

〔実施例〕
以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、これらの実施例に限定されるものではない。なお実施例中、割合を示す部および%は特に断りのない限り重量基準によるものである。また実施例における諸物性の評価は次の方法に拠った。
〔Example〕
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to these Examples, unless the summary is exceeded. In the examples, parts and percentages indicating percentages are based on weight unless otherwise specified. In addition, various physical properties in the examples were evaluated by the following methods.

共重合体ラテックスの粒子径測定
数平均粒子径を動的光散乱法により測定した。測定に際しては、大塚電子製LPA−3000/3100を使用した。
The particle size number measured average particle size of the copolymer latex was measured by dynamic light scattering method. In the measurement, LPA-3000 / 3100 manufactured by Otsuka Electronics was used.

共重合体ラテックスのゲル含有量の測定
室温雰囲気下にて24時間乾燥させ、共重合体ラテックスのフィルムを作成する。そのフィルムを約1g秤量し、これを400ccのメチルエチルケトンに入れ48時間膨張溶解させる。その後、これを300メッシュの金網で濾過し、金網に捕捉されたメチルエチルケトン不溶部を乾燥後秤量し、この重量のはじめのフィルム重量に占める割合をゲル含有量として重量%で算出した。
Measurement of Gel Content of Copolymer Latex It is dried for 24 hours in a room temperature atmosphere to prepare a film of copolymer latex. About 1 g of the film is weighed and placed in 400 cc of methyl ethyl ketone and expanded and dissolved for 48 hours. Thereafter, this was filtered through a 300-mesh wire mesh, the methyl ethyl ketone insoluble part captured by the wire mesh was dried and weighed, and the ratio of this weight to the initial film weight was calculated as a gel content in wt%.

ディップ成形用組成物の機械的安定性の測定
共重合体ラテックス中の機械的安定性の評価を以下の方法で行った。熊谷理機工業株式会社製マロン式機械的安定性試験機を用いて、予め300メッシュで濾過したディップ成形用組成物50g(固形分濃度33%)にローター回転数1000rpm、ローター荷重30kg、回転時間15分間の条件で機械的せん断を与えた後、試料を300メッシュで濾過した。捕捉された凝固物を乾燥した後、元の固形分量に対する凝固物の割合を重量%で求めた。結果を表2に示した。
○:発生凝固物の割合が0.01重量%以下
△:発生凝固物の割合が0.01重量%を超えて、0.05%以下
×:発生凝固物の割合が0.05重量%を超える
Measurement of mechanical stability of dip molding composition The mechanical stability of the copolymer latex was evaluated by the following method. Using a Maron mechanical stability tester manufactured by Kumagai Riki Kogyo Co., Ltd., 50 g (solid content concentration: 33%) of a dip-molding composition filtered in advance with 300 mesh, a rotor rotation speed of 1000 rpm, a rotor load of 30 kg, and a rotation time After applying mechanical shear for 15 minutes, the sample was filtered through 300 mesh. After the trapped coagulum was dried, the ratio of the coagulum to the original solid content was determined by weight%. The results are shown in Table 2.
◯: The ratio of the generated coagulum is 0.01% by weight or less. Δ: The ratio of the generated coagulum exceeds 0.01% by weight and is 0.05% or less. Exceed

ディップ成形品の各物性については、下記のとおり評価を行い、結果を表2に示した。
ディップ成形品の風合い評価
風合いの評価は、手袋形状のディップ成形品を引張り速度500mm/minにて引張り300%伸びに到達した時の引張応力を測定した。この数値が小さいほど風合いは良好であることを示す。
ディップ成形品の引張り強度評価
引張り強度評価は、手袋形状のディップ成形品を引張り速度500mm/minにて引張り、破断直前の引張り強度を測定した。
ディップ成形品の伸び評価
伸び評価は、手袋形状のディップ成形品を引張り速度500mm/minにて引張り、破断直前の伸びを測定した。
Each physical property of the dip-formed product was evaluated as follows, and the results are shown in Table 2.
Evaluation of the texture of the dip-formed product The evaluation of the texture was performed by measuring the tensile stress when the glove-shaped dip-formed product reached a 300% elongation at a tensile speed of 500 mm / min. A smaller value indicates a better texture.
Evaluation of tensile strength of dip-molded product Tensile strength evaluation was performed by pulling a glove-shaped dip-molded product at a pulling speed of 500 mm / min and measuring the tensile strength immediately before breaking.
Evaluation of Elongation of Dip Molded Products For evaluation of elongation, a glove-shaped dip molded product was pulled at a pulling speed of 500 mm / min, and the elongation immediately before breaking was measured.

共重合体ラテックスAの作製
耐圧性の重合反応機に、窒素雰囲気下で純水155部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1.7部、アルキルジフェニルエーテルジスルホン酸ナトリウム0.7部、表1に示す各単量体、およびt−ドデシルメルカプタン0.65部、L−アスコルビン酸1.1部を加えて十分攪拌した後、クメンハイドロパーオキサイド0.6部を仕込み、30℃で重合を開始した。重合開始から18時間後に、重合停止剤としてジエチルヒドロキシルアミン0.05部を添加して重合を終了した。次いで、共重合体ラテックスを水酸化カリウム水溶液でpHを7.5に調整した後、90℃にて水蒸気蒸留を9時間行い、未反応単量体および他の低沸点化合物を除去した。さらに、濃度10%のアンモニア水(以下、単にアンモニア水と記す)でpHを8.3に調整して、表1に示す粒子径、ゲル含有量の共重合体ラテックスAを得た。
Production of copolymer latex A In a pressure-resistant polymerization reactor, 155 parts of pure water under nitrogen atmosphere, 1.7 parts of sodium dodecylbenzenesulfonate as an emulsifier, 0.7 parts of sodium alkyldiphenyl ether disulfonate, After adding each monomer shown in Table 1, 0.65 parts of t-dodecyl mercaptan and 1.1 parts of L-ascorbic acid and stirring sufficiently, 0.6 parts of cumene hydroperoxide was charged and polymerized at 30 ° C. Started. 18 hours after the start of the polymerization, 0.05 part of diethylhydroxylamine was added as a polymerization terminator to complete the polymerization. Next, after adjusting the pH of the copolymer latex to 7.5 with an aqueous potassium hydroxide solution, steam distillation was performed at 90 ° C. for 9 hours to remove unreacted monomers and other low-boiling compounds. Furthermore, pH was adjusted to 8.3 with ammonia water having a concentration of 10% (hereinafter simply referred to as ammonia water) to obtain a copolymer latex A having a particle size and a gel content shown in Table 1.

共重合体ラテックスBの作製
耐圧性の重合反応機に、窒素雰囲気下で純水140部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム2.3部、表1に示す各単量体、およびt−ドデシルメルカプタン0.4部、シクロヘキセン2.0部、L−アスコルビン酸1.0部を加えて十分攪拌した後、過硫酸カリウム0.5部、クメンハイドロパーオキサイド0.4部を仕込み、35℃で重合を開始した。重合開始から18時間後に、重合停止剤としてジエチルヒドロキシルアミン0.05部を添加して重合を終了した。次いで、共重合体ラテックスをアンモニア水でpHを8.5に調整した後、90℃にて水蒸気蒸留を11時間行い、未反応単量体および他の低沸点化合物を除去した。さらに、水酸化カリウム水溶液でpHを8.5に調整して、表1に示す粒子径、ゲル含有量の共重合体ラテックスBを得た。
Preparation of copolymer latex B In a pressure-resistant polymerization reactor, 140 parts of pure water under nitrogen atmosphere, 2.3 parts of sodium dodecylbenzenesulfonate as an emulsifier, each monomer shown in Table 1, and After adding 0.4 part of t-dodecyl mercaptan, 2.0 parts of cyclohexene and 1.0 part of L-ascorbic acid and stirring sufficiently, 0.5 part of potassium persulfate and 0.4 part of cumene hydroperoxide were charged. Polymerization was started at 35 ° C. 18 hours after the start of the polymerization, 0.05 part of diethylhydroxylamine was added as a polymerization terminator to complete the polymerization. Next, after adjusting the pH of the copolymer latex to 8.5 with aqueous ammonia, steam distillation was performed at 90 ° C. for 11 hours to remove unreacted monomers and other low-boiling compounds. Further, the pH was adjusted to 8.5 with an aqueous potassium hydroxide solution to obtain a copolymer latex B having the particle size and gel content shown in Table 1.

共重合体ラテックスCの作製
耐圧性の重合反応機に、窒素雰囲気下で純水150部、乳化剤としてアルキルジフェニルエーテルジスルホン酸ナトリウム1.0部、ドデシルベンゼンスルホン酸ナトリウム1.2部、表1に示す各単量体、およびα−メチルスチレンダイマー0.2部、t−ドデシルメルカプタン0.75部、L−アスコルビン酸0.7部を加えて十分攪拌した後、過硫酸カリウム0.3部、クメンハイドロパーオキサイド0.7部を仕込み、50℃で重合を開始した。重合開始から13時間後に、重合停止剤としてジエチルヒドロキシルアミン0.1部を添加して重合を終了した。次いで、共重合体ラテックスを水酸化カリウム水溶液でpHを8.3に調整した後、85℃にて水蒸気蒸留を8時間行い、未反応単量体および他の低沸点化合物を除去した。さらに、水酸化カリウム水溶液でpHを8.5に、さらにアンモニア水でpHを8.8に調整して、表1に示す粒子径、ゲル含有量の共重合体ラテックスCを得た。
Preparation of copolymer latex C In a pressure-resistant polymerization reactor, 150 parts of pure water under a nitrogen atmosphere, 1.0 part of sodium alkyldiphenyl ether disulfonate as an emulsifier, 1.2 parts of sodium dodecylbenzenesulfonate, Each monomer shown in Table 1, 0.2 part of α-methylstyrene dimer, 0.75 part of t-dodecyl mercaptan and 0.7 part of L-ascorbic acid were added and stirred sufficiently. 3 parts and 0.7 parts of cumene hydroperoxide were charged and polymerization was started at 50 ° C. 13 hours after the start of the polymerization, 0.1 part of diethylhydroxylamine was added as a polymerization terminator to complete the polymerization. Subsequently, after adjusting pH of copolymer latex to 8.3 with potassium hydroxide aqueous solution, steam distillation was performed at 85 degreeC for 8 hours, and the unreacted monomer and other low boiling-point compounds were removed. Further, the pH was adjusted to 8.5 with an aqueous potassium hydroxide solution, and further adjusted to pH 8.8 with aqueous ammonia to obtain a copolymer latex C having a particle size and a gel content shown in Table 1.

共重合体ラテックスDの作製
共重合体ラテックスAと同様の重合を行い、次いで、共重合体ラテックスを水酸化ナトリウム水溶液でpHを8.1に調整した後、90℃にて水蒸気蒸留を9時間行い、未反応単量体および他の低沸点化合物を除去した。さらにアンモニア水でpHを8.5に調整して、表1に示す粒子径、ゲル含有量の共重合体ラテックスDを得た。
Preparation of copolymer latex D Polymerization was carried out in the same manner as copolymer latex A, and then the pH of the copolymer latex was adjusted to 8.1 with an aqueous sodium hydroxide solution. Distillation was carried out for 9 hours to remove unreacted monomers and other low-boiling compounds. Furthermore, pH was adjusted to 8.5 with aqueous ammonia to obtain a copolymer latex D having a particle size and a gel content shown in Table 1.

共重合体ラテックスEの作製
耐圧性の重合反応機に、窒素雰囲気下で純水160部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム2.8部、表1に示す各単量体、およびt−ドデシルメルカプタン0.25部、L−アスコルビン酸1.5部を加えて十分攪拌した後、クメンハイドロパーオキサイド0.8部を仕込み、35℃で重合を開始した。重合開始から16時間後に、重合停止剤としてジエチルヒドロキシルアミン0.1部を添加して重合を終了した。次いで、共重合体ラテックスを水酸化カリウム水溶液でpHを7.8に調整した後、85℃にて水蒸気蒸留を11時間行い、未反応単量体および他の低沸点化合物を除去した。さらに、アンモニア水でpHを8.6に調整して、表1に示す粒子径、ゲル含有量の共重合体ラテックスEを得た。
Preparation of copolymer latex E In a pressure resistant polymerization reactor, under a nitrogen atmosphere, 160 parts of pure water, 2.8 parts of sodium dodecylbenzenesulfonate as an emulsifier, each monomer shown in Table 1, and After adding 0.25 part of t-dodecyl mercaptan and 1.5 part of L-ascorbic acid and stirring sufficiently, 0.8 part of cumene hydroperoxide was charged and polymerization was started at 35 ° C. 16 hours after the start of polymerization, 0.1 part of diethylhydroxylamine was added as a polymerization terminator to complete the polymerization. Subsequently, after adjusting pH of the copolymer latex to 7.8 with an aqueous potassium hydroxide solution, steam distillation was performed at 85 ° C. for 11 hours to remove unreacted monomers and other low-boiling compounds. Further, the pH was adjusted to 8.6 with aqueous ammonia to obtain a copolymer latex E having a particle size and a gel content shown in Table 1.

共重合体ラテックスFの作製
共重合体ラテックスAと同様の重合を行い、次いで、共重合体ラテックスを水酸化カリウム水溶液でpHを8.5に調整した後、90℃にて水蒸気蒸留を9時間行い、未反応単量体および他の低沸点化合物を除去した。pH8.5、表1に示す粒子径、ゲル含有量の共重合体ラテックスFを得た。
Preparation of copolymer latex F Polymerization similar to that of copolymer latex A was carried out, and then the copolymer latex was adjusted to pH 8.5 with an aqueous potassium hydroxide solution and then steamed at 90C. Distillation was carried out for 9 hours to remove unreacted monomers and other low-boiling compounds. A copolymer latex F having a pH of 8.5 and a particle size and a gel content shown in Table 1 was obtained.

共重合体ラテックスGの作製
共重合体ラテックスAと同様の重合を行い、次いで、共重合体ラテックスをアンモニア水でpHを9.1に調整した後、90℃にて水蒸気蒸留を9時間行い、未反応単量体および他の低沸点化合物を除去した。さらに、アンモニア水でpHを8.2に調整して、表1に示す粒子径、ゲル含有量の共重合体ラテックスGを得た。
Production of copolymer latex G Polymerization similar to that of copolymer latex A was carried out, and then the copolymer latex was adjusted to pH 9.1 with ammonia water, followed by steam distillation at 90C. It was performed for 9 hours to remove unreacted monomers and other low-boiling compounds. Furthermore, pH was adjusted to 8.2 with aqueous ammonia to obtain a copolymer latex G having a particle size and a gel content shown in Table 1.

実施例1
ディップ成形用組成物の作成
100重量部(固形分換算)の共重合体ラテックスAに3%水酸化カリウム水溶液0.7部、それぞれボールミルで分散液とした酸化亜鉛1.5部、二酸化チタン1.2部を添加した後、脱イオン水を加えて、固形分濃度33%のディップ成形用組成物とした。ディップ成形用組成物の機械的安定性の測定結果を表2に記した。
ディップ成形品の製造
別に凝固液として濃度15%の硝酸カルシウム水溶液を調製し、80℃で予備乾燥しておいた手袋用モールドを2秒間浸漬し、引き上げた後、水平にして回転下に乾燥(80℃×2分)させた。引き続き、上記ディップ成形用組成物に手袋用モールドを2秒間浸漬し、引き上げた後、水平にして回転下で乾燥(80℃×2分)させた。次にその手袋用モールドを40℃の温水に3分間浸漬して、洗浄した後、120℃で20分間加熱処理して手袋用モールドの表面に固形皮膜物を得た。最後にこの固形皮膜物を手袋用モールドから剥がし、手袋形状のディップ成形品を得た。ディップ成形品の風合い、引張り強度および伸びの測定結果を表2に記した。
Example 1
Preparation of Dip Molding Composition 100 parts by weight (converted to solid content) of copolymer latex A 0.7% of 3% aqueous potassium hydroxide solution, 1.5 parts of zinc oxide dispersed in a ball mill, and titanium dioxide 1 After adding 2 parts, deionized water was added to obtain a dip molding composition having a solid content of 33%. The measurement results of the mechanical stability of the dip molding composition are shown in Table 2.
Prepare a 15% strength aqueous solution of calcium nitrate as a coagulation solution for each dip-molded product, soak the glove mold pre-dried at 80 ° C. for 2 seconds, pull it up, and then level it and dry under rotation ( 80 ° C. × 2 minutes). Subsequently, the mold for gloves was immersed in the dip molding composition for 2 seconds, pulled up, and then dried horizontally (80 ° C. × 2 minutes) under rotation. Next, the mold for gloves was immersed in warm water at 40 ° C. for 3 minutes, washed, and then heated at 120 ° C. for 20 minutes to obtain a solid film on the surface of the mold for gloves. Finally, the solid coating was removed from the glove mold to obtain a glove-shaped dip-formed product. Table 2 shows the measurement results of the texture, tensile strength and elongation of the dip-formed product.

実施例2〜5、比較例1〜5
共重合体ラテックスの種類、および水酸化カリウム(実施例5、および比較例3のみ水酸化カリウムの代わりに濃度10%のアンモニア水を用いた)、酸化亜鉛の添加量をそれぞれ表2に記載したものへ変更したこと以外は実施例1と同様の手法でディップ成形用組成物を調整し、同様にディップ成形品を得た。ディップ成形用組成物の機械的安定性の測定結果ならびにディップ成形品の風合い、引張り強度および伸びの測定結果を表2に記した。
Examples 2-5, Comparative Examples 1-5
Table 2 shows the types of copolymer latex, potassium hydroxide (in Example 5 and Comparative Example 3 only, ammonia water having a concentration of 10% was used instead of potassium hydroxide), and the amount of zinc oxide added. A dip-molded composition was prepared in the same manner as in Example 1 except that the dip-molded product was obtained. Table 2 shows the measurement results of the mechanical stability of the dip molding composition and the measurement results of the texture, tensile strength and elongation of the dip molding product.

なお、各共重合体ラテックスの組成、粒子径およびゲル含有量を表1に、また各ディップ成形用組成物の配合処方、物性、および各ディップ成形品の物性について表2にまとめて記した。 The composition, particle size, and gel content of each copolymer latex are shown in Table 1, and the formulation of each dip molding composition, the physical properties, and the physical properties of each dip molded product are summarized in Table 2.

Figure 0004860252
Figure 0004860252

Figure 0004860252
Figure 0004860252

上記の通り、本発明のディップ成形用組成物を用いることにより機械的安定性が高く、凝集物の少ないディップ成形用組成物が得られ、また本発明のディップ成形用組成物を用いることにより、風合い、引張り強度、伸びに優れるディップ成形品を得ることができる。医療、食品加工分野および電子部品製造分野など各方面において広く使用されるゴム手袋等を得ることができるものである。
As described above, by using the dip molding composition of the present invention, a dip molding composition having high mechanical stability and less aggregates is obtained, and by using the dip molding composition of the present invention, A dip-molded product having excellent texture, tensile strength and elongation can be obtained. Rubber gloves and the like widely used in various fields such as medical treatment, food processing field and electronic component manufacturing field can be obtained.

Claims (2)

1,3−ブタジエン50〜80重量%、アクリロニトリル15〜50重量%、エチレン性不飽和カルボン酸系単量体4.3〜10重量%およびこれらと共重合可能な他のエチレン性不飽和単量体0〜35重量%からなる単量体を乳化重合し、pH調整剤として水酸化カリウムおよび/または水酸化ナトリウムとアンモニアを併用して得られる共重合体ラテックスと、該共重合体ラテックス100重量部(固形分換算)に対して0.7〜5重量部の酸化亜鉛を含み、含硫黄加硫剤および加硫促進剤の使用量が0.2重量部以下であることを特徴とするディップ成形用組成物。 1,3-butadiene 50 to 80% by weight, acrylonitrile 15 to 50% by weight, ethylenically unsaturated carboxylic acid monomer 4.3 to 10% by weight and other ethylenically unsaturated monomers copolymerizable therewith A copolymer latex obtained by emulsion polymerization of a monomer comprising 0 to 35% by weight of a body and using potassium hydroxide and / or sodium hydroxide and ammonia in combination as a pH adjuster, and 100% by weight of the copolymer latex Dip characterized in that it contains 0.7 to 5 parts by weight of zinc oxide with respect to parts (in terms of solid content), and the amount of sulfur-containing vulcanizing agent and vulcanization accelerator used is 0.2 parts by weight or less Molding composition. 請求項1のディップ成形用組成物をディップ成形してなるディップ成形品。 A dip-molded product obtained by dip-molding the dip-molding composition according to claim 1.
JP2005347725A 2005-12-01 2005-12-01 DIP MOLDING COMPOSITION AND DIP MOLDED ARTICLE Active JP4860252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005347725A JP4860252B2 (en) 2005-12-01 2005-12-01 DIP MOLDING COMPOSITION AND DIP MOLDED ARTICLE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005347725A JP4860252B2 (en) 2005-12-01 2005-12-01 DIP MOLDING COMPOSITION AND DIP MOLDED ARTICLE

Publications (2)

Publication Number Publication Date
JP2007153948A JP2007153948A (en) 2007-06-21
JP4860252B2 true JP4860252B2 (en) 2012-01-25

Family

ID=38238724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005347725A Active JP4860252B2 (en) 2005-12-01 2005-12-01 DIP MOLDING COMPOSITION AND DIP MOLDED ARTICLE

Country Status (1)

Country Link
JP (1) JP4860252B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1397345B1 (en) * 2008-09-09 2013-01-10 Polimeri Europa Spa PROCESS FOR THE ELIMINATION OF REMAINING MERCAPTANES FROM NITRILE RUBBERS
CN102725342B (en) * 2009-12-01 2015-11-25 高产有限公司 Do not use elastomer rubber and the rubber product of vulcanization accelerator and sulphur
JP5792432B2 (en) * 2010-04-28 2015-10-14 旭化成ケミカルズ株式会社 Adhesive composition for rubber and fiber
JP5275520B2 (en) * 2010-09-30 2013-08-28 コッサン エスディーエヌ.ビーエイチディー. Elastomer rubber and elastomer rubber products that do not use vulcanization accelerators and sulfur
CA2813149C (en) * 2010-09-30 2020-01-14 Kossan Sdn Bhd Elastomer rubber gloves for clean room use which does not use vulcanization accelerator and sulfur
JP5648554B2 (en) * 2011-03-28 2015-01-07 日本ゼオン株式会社 Method for adjusting pH of polymer latex
US9353243B2 (en) 2012-01-18 2016-05-31 Lg Chem, Ltd. Latex composition for dip-forming
US20180112055A1 (en) * 2015-04-16 2018-04-26 Showa Denko K.K. Composition for rubber and use thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4134577B2 (en) * 2002-02-28 2008-08-20 日本ゼオン株式会社 Dip molding latex, dip molding composition and dip molding
JP2005187544A (en) * 2003-12-24 2005-07-14 Nippon A & L Kk Copolymer latex for use in dip molding, composition for use in dip molding, and dip-molded product

Also Published As

Publication number Publication date
JP2007153948A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP4860252B2 (en) DIP MOLDING COMPOSITION AND DIP MOLDED ARTICLE
JP4809671B2 (en) Dip molding copolymer latex, dip molding composition and dip molding product
CN108431118B (en) Latex composition
JP6703615B2 (en) Latex composition for dip molding and molded article produced therefrom
JP6360970B2 (en) DIP MOLDING LATEX COMPOSITION CONTAINING CARBOXYLIC ACID MODIFIED NITRILE COPOLYMER LATEX AND DIP MOLDED PRODUCT PRODUCED THEREFROM
CN109071885B (en) Latex composition for dip molding, and molded article prepared therefrom
JP5272226B2 (en) Carboxylic acid-modified nitrile copolymer latex and latex composition for dip molding containing the same
JP3900530B2 (en) DIP MOLDED ARTICLE, DIP MOLDING COMPOSITION AND METHOD FOR PRODUCING DIP MOLDED ARTICLE
TWI701268B (en) Carboxylic acid-modified nitrile-based copolymer latex composition, preparation method thereof, latex composition for dip-molding comprising the same, and article molded by the same
WO2006057392A1 (en) Composition for dip forming and dip-formed molding
JP2009197149A (en) Copolymer latex for dip forming, composition for dip forming, and dip-formed product
WO2017146238A1 (en) Latex composition and film molded body
JP2005187544A (en) Copolymer latex for use in dip molding, composition for use in dip molding, and dip-molded product
WO2019159780A1 (en) Latex composition and film molded article
WO2005049725A1 (en) Dip forming composition and dip formed article
JP2005336273A (en) Copolymer latex for dip molding, dip molding composition and dip-molded product
JP6461337B2 (en) Latex composition for dip molding and molded article produced therefrom
JP2007031574A (en) Copolymer latex for dip molding, dip molding composition and dip-molded product
KR20180051147A (en) Latex composition for dip-forming and the product prepared thereby
JP4870972B2 (en) Dip molding copolymer latex, dip molding composition and dip molding
US20220162427A1 (en) Chloroprene polymer latex and method for producing same
JP2006321881A (en) Method for producing copolymer latex used for dip-molding
CN115103877A (en) Latex composition and dip-molded article
JP7342888B2 (en) Isoprene-based polymer latex composition
WO2022138135A1 (en) Latex blend composition for dip molding, and dip-molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

R150 Certificate of patent or registration of utility model

Ref document number: 4860252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250