WO2022138133A1 - Ultrasonic observation device and ultrasonic observation method - Google Patents

Ultrasonic observation device and ultrasonic observation method Download PDF

Info

Publication number
WO2022138133A1
WO2022138133A1 PCT/JP2021/044895 JP2021044895W WO2022138133A1 WO 2022138133 A1 WO2022138133 A1 WO 2022138133A1 JP 2021044895 W JP2021044895 W JP 2021044895W WO 2022138133 A1 WO2022138133 A1 WO 2022138133A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
unit
doppler
signal
waves
Prior art date
Application number
PCT/JP2021/044895
Other languages
French (fr)
Japanese (ja)
Inventor
成史 松本
康人 竹内
Original Assignee
メロディ・インターナショナル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メロディ・インターナショナル株式会社 filed Critical メロディ・インターナショナル株式会社
Priority to JP2022572087A priority Critical patent/JPWO2022138133A1/ja
Publication of WO2022138133A1 publication Critical patent/WO2022138133A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Definitions

  • the present invention relates to an apparatus or the like for observing a living body using ultrasonic waves.
  • the present invention relates to a mechanomyogram observation device and the like, further to an ultrasonic Doppler mechanomyogram device and the like, and further to an external measurement labor pain meter and the like using the same method.
  • the external measuring labor pain meter that has been put into practical use for many years is a mechanical (compressor type) hardness meter, that is, a kind of durometer.
  • Durometers specialized for the purpose of this external measurement labor meter include a guard ring type (one-sided type), a bokki type, and a mushroom type that is a compromise between them. The outline is explained in Non-Patent Document 1 and the like.
  • Non-Patent Document 3 In addition to mechanical or acoustic observations, the generation of muscle sounds or muscle tremolo, which is a phenomenon that accompanies when muscles exert force, is also observed by the laser Doppler method, and this method has a certain position as a method for evaluating muscle activity. Is getting. This is explained in Non-Patent Document 3.
  • the ultrasonic observation device of the first aspect of the present invention receives an ultrasonic transmission unit that transmits ultrasonic waves in a direction inclined with respect to the surface of a living body and an ultrasonic reflected wave transmitted by the ultrasonic transmission unit.
  • the ultrasonic observation device can appropriately and easily acquire information that can be used for observing muscles in a living body by using ultrasonic waves.
  • the probe has a housing, the ultrasonic transmitting unit and the ultrasonic receiving unit are attached to the housing, and the transmitting surface of the ultrasonic transmitting unit is a living body.
  • the ultrasonic wave receiving unit is arranged so as to be inclined with respect to the surface of the body, and the receiving surface is transmitted from the ultrasonic wave transmitting unit, and the reflected wave of the ultrasonic wave reflected by the muscle fibers in the living body is incident. As such, it may be arranged so as to be inclined with respect to the surface of the living body.
  • the ultrasonic observation device can appropriately and easily acquire the ultrasonic wave by applying the ultrasonic wave transmitting unit and the ultrasonic wave receiving unit of the probe to the living body.
  • the transmitting surface is arranged so that the transmitting direction of the ultrasonic wave is inclined with respect to the surface of the muscle fiber to be observed, and in the ultrasonic receiving unit, the receiving surface is the said. It may be arranged so as to be perpendicular to the reflection direction of the ultrasonic wave reflected by the muscle fiber to be observed.
  • the ultrasonic observation device can irradiate ultrasonic waves so as not to be perpendicular to the traveling direction of the muscle fiber to be observed, and appropriately acquires a signal indicating minute vibration in the traveling direction of the muscle fiber. can do.
  • the transmitting surface is arranged so that the transmitting direction of the ultrasonic wave is inclined with respect to the surface of the uterine muscle to be observed, and in the ultrasonic receiving unit, the receiving surface is the said. It may be arranged so as to be perpendicular to the reflection direction of the ultrasonic wave reflected by the uterine muscle.
  • the ultrasonic observation device can acquire information indicating minute vibration of the uterine muscle, and can be used as, for example, an external measurement labor pain meter.
  • the probe has a plurality of ultrasonic wave transmitting units that transmit ultrasonic waves in different directions and a plurality of ultrasonic wave receiving units that receive reflected waves of ultrasonic waves transmitted by the plurality of ultrasonic wave transmitting units.
  • the Doppler filter unit extracts a plurality of the Doppler signals indicating the Doppler components of the reflected waves received by the plurality of ultrasonic receiving units, respectively, and the acquisition unit is the Doppler filter unit.
  • a sideband frequency band signal indicating minute vibration in the traveling direction of the muscle fiber may be acquired from the plurality of extracted Doppler signals.
  • the ultrasonic observation device can simultaneously acquire signals indicating minute vibrations of the running method of muscle fibers for different observation sites in the same living body.
  • the probe has a plurality of ultrasonic transmission units that transmit ultrasonic waves in different directions and a plurality of ultrasonic reception units that receive reflected waves of ultrasonic waves transmitted by the plurality of ultrasonic transmission units.
  • the Doppler filter unit extracts a plurality of the Doppler signals indicating the Doppler components of the reflected waves received by the plurality of ultrasonic receiver units, respectively, and the acquisition unit extracts the Doppler filter unit.
  • a sideband frequency band signal indicating minute vibration in the traveling direction of the muscle fiber is acquired from a part of the plurality of Doppler signals, and the output unit receives the sideband frequency band signal acquired by the acquisition unit.
  • a second Doppler signal other than the first Doppler signal obtained by the acquisition unit may output a signal in the sideband frequency band.
  • the ultrasonic observation device simultaneously obtains a signal indicating a minute vibration of the running method of muscle fibers of one or more observation sites in the same living body and a Doppler signal indicating the movement of one or more other observation sites. Can be obtained.
  • the ultrasonic transmitting unit transmits ultrasonic waves in a pulse shape
  • the ultrasonic receiving unit receives reflected waves while the ultrasonic transmitting unit transmits ultrasonic pulses
  • the ultrasonic transmission unit transmits ultrasonic waves.
  • the unit and the ultrasonic wave receiving unit may receive ultrasonic waves and reflected waves from the same transmitting / receiving surface arranged so as to be inclined with respect to the surface of the living body.
  • the ultrasonic observation device can appropriately and easily acquire information that can be used for observing muscles in the living body by means of pulse Doppler.
  • the Doppler filter unit acquires Doppler signals for two or more different range gates of the reflected waves received by the ultrasonic wave receiving unit while the ultrasonic wave transmitting unit transmits ultrasonic pulses.
  • the acquisition unit acquires a sideband frequency band signal indicating minute vibration in the traveling direction of the muscle fiber from the Doppler signal extracted by the Doppler filter unit, and the acquisition unit acquires the output unit.
  • the signal of the sideband frequency band may be output.
  • the ultrasonic observation device can simultaneously acquire signals indicating minute vibrations of the running method of muscle fibers for different observation sites in the same living body.
  • the Doppler filter unit acquires the Doppler signal for each of two or more different range gates of the reflected wave received by the ultrasonic receiver unit while the ultrasonic transmitter unit transmits the ultrasonic pulse.
  • the acquisition unit acquires a signal in the sideband frequency band on the low frequency side indicating minute vibration in the traveling direction of the muscle fiber from the Doppler signal extracted by the Doppler filter unit for one or more range gates, and the output unit. Is the first Doppler signal acquired by the acquisition unit among the sideband frequency band signals acquired by the acquisition unit for each of the one or more range gates and the plurality of Doppler signals extracted by the Doppler filter unit.
  • a second Doppler signal other than one or more may be output.
  • the ultrasonic observation device can simultaneously acquire a signal indicating a minute vibration of the running method of muscle fibers and a Doppler signal indicating a large movement of the observation site for different observation sites in the same living body.
  • the signal in the sideband frequency band acquired by the acquisition unit may be a signal in the frequency band from 5 Hz to 100 Hz.
  • the ultrasonic observation device can appropriately acquire a signal indicating a minute movement of muscle fibers.
  • the acquisition unit acquires a signal in the sideband frequency band for the Doppler signal acquired by the Doppler filter unit for the range gate corresponding to the uterine muscle, and the output unit obtains the signal in the sideband frequency band.
  • the sideband frequency band signal acquired by the acquisition unit and the Doppler signal extracted by the Doppler filter unit for the range gate corresponding to the fetal heart in the womb may be output.
  • the ultrasonic observation device can simultaneously observe the minute vibration of the uterine muscle and the movement of the fetal heart.
  • the ultrasonic observation method receives an ultrasonic transmission unit that transmits ultrasonic waves in a direction inclined with respect to the surface of a living body and an ultrasonic reflected wave transmitted by the ultrasonic transmission unit. It is an ultrasonic observation method performed by using a probe having an ultrasonic receiving unit and a device having a transmitting unit, a Doppler filter unit, an acquiring unit, and an output unit, wherein the transmitting unit is the probe.
  • the ultrasonic observation device or the like According to the ultrasonic observation device or the like according to the present invention, information that can be used for observing muscles in a living body can be appropriately and easily acquired by using ultrasonic waves.
  • FIG. 2 (a) A perspective view (FIG. 2 (a)) and a top view (FIG. 2 (b)) of the probe of the ultrasonic observation device.
  • FIG. 4 (a) and 4 (b) A diagram showing the transition of the frequency of the Doppler signal in the low frequency region (FIG. 5 (a)) and a diagram showing the transition of the frequency spectrum (FIG. 5 (b)) for explaining the ultrasonic observation device.
  • FIG. 6 (a) A perspective view (FIG. 6 (a)) and a top view (FIG.
  • FIG. 6 (b) of a modified example of the probe of the ultrasonic observation device.
  • Schematic diagram for explaining a modified example of the ultrasonic observation device A perspective view (FIG.
  • FIG. 12 (a) shows an example of the appearance of the computer system in each embodiment.
  • the ultrasonic observation device can be used as a muscle observation or an external measurement labor pain meter by observing a muscle sound of a muscle such as a uterine muscle or a phenomenon such as a muscle tremolo.
  • the ultrasonic observation device does not observe the phenomenon acoustically or mechanically, but observes fluctuations in the frequency of the reflected wave with respect to the irradiated ultrasonic waves due to the Doppler phenomenon.
  • each of the muscle fibers that compose it moves sharply (like pulling). It is caused by the phenomenon of (moving to). Since the movement occurs in the traveling direction of the muscle fiber, the condition to be set for observing the movement is the observation of the vibration in the longitudinal direction (that is, the tangential direction) of the local tissue of the muscle. Therefore, in order to properly observe such a muscle phenomenon, it is not necessary to observe the vibration in the direction perpendicular to the running direction of the muscle fiber (that is, the normal direction), but to the running direction of the muscle fiber. It is necessary to observe vibrations in directions other than vertical.
  • a signal in a specific sideband frequency band that can show minute vibration of a muscle from a Doppler signal that shows the Doppler component of the reflected wave of the irradiated ultrasonic wave while irradiating from the direction specifically, a signal in the low frequency band of 5 to 100 Hz. It was found that it is preferable to selectively extract the signal.
  • the Doppler signal is a component in the band of the frequency (that is, the Doppler frequency) in which the frequency of the reflected wave generated by the ultrasonic wave transmitted by the ultrasonic observation device being reflected by the vibrating muscle fiber fluctuates. It is a signal indicating a component.
  • the Doppler signal may be a signal indicating a variation in the difference between the frequency of the ultrasonic wave transmitted by the ultrasonic observation device and the frequency of the reflected wave (that is, the variation in the amount of Doppler shift) caused by the Doppler phenomenon.
  • the frequency of the ultrasonic wave of the observation system is 3 MHz and the angle of incidence of the ultrasonic wave on the muscle is 45 degrees, a signal in the frequency band of 25 Hz to 100 Hz is reflected as a specific sideband frequency band.
  • the ultrasonic observation device of the present embodiment utilizes such knowledge to acquire information that enables observation of minute vibrations in the traveling direction of muscle fibers.
  • FIG. 1 is a block diagram of the ultrasonic observation device 1 according to the present embodiment.
  • FIG. 2 is a perspective view (FIG. 2 (a)) and a top view (FIG. 2 (b)) of the probe of the ultrasonic observation device 1 according to the present embodiment as viewed from the front side for transmitting and receiving ultrasonic waves. be.
  • the ultrasonic observation device 1 includes a probe 101, a transmitter 102, an amplification unit 103, a Doppler filter unit 104, an AD conversion unit 105, an acquisition unit 106, and an output unit 107.
  • the probe 101 has an ultrasonic wave transmitting unit 1011 and an ultrasonic wave receiving unit 1012.
  • the housing 10 is represented by a dotted line for convenience of explanation.
  • the probe 101 has, for example, a housing 10, and an ultrasonic transmitting unit 1011 and an ultrasonic receiving unit 1012 are attached to the housing 10.
  • the housing 10 may be omitted.
  • the shape and material of the housing 10 are not limited.
  • the ultrasonic transmission unit 1011 transmits ultrasonic waves in response to a signal from the transmitter 102.
  • the ultrasonic wave transmitting unit 1011 has, for example, an oscillator 1011a.
  • the ultrasonic wave transmitting unit 1011 may be a vibrator 1011a, and may include another circuit, a transmitter 102, etc., which will be described later, in addition to the vibrator 1011a.
  • a case where the ultrasonic wave transmitting unit 1011 is one oscillator 1011a will be described as an example.
  • the ultrasonic transmission unit 1011 may have an oscillator array composed of two or more oscillators or two or more oscillators.
  • the ultrasonic wave transmission unit 1011 transmits ultrasonic waves in a direction inclined with respect to the surface of the living body.
  • the living body here is, for example, a subject.
  • the living body is usually a human body, but may be an animal other than the human body.
  • the observation target of the ultrasonic observation device 1 of the present embodiment is, for example, a muscle in a living body.
  • the surface of the living body here is, for example, a portion of the surface of the living body to which the probe 101 is in contact.
  • the contact of the probe 101 here may be, for example, a part of the probe 101 being brought into contact with the surface of the living body.
  • the direction in which the probe 101 is in contact is, for example, the front-back direction of the probe.
  • the ultrasonic wave transmitting unit 1011 is arranged so as to transmit ultrasonic waves in a direction inclined with respect to the surface of a living body, for example.
  • the ultrasonic wave transmitting unit 1011 is attached to the housing 10 so as to transmit ultrasonic waves in a direction inclined with respect to the surface of the living body, for example, with the probe 101 in contact with the surface of the living body. ..
  • the ultrasonic wave transmitting unit 1011 is arranged so that the transmitting direction of the ultrasonic wave transmitted from the transmitting surface 1011b is inclined with respect to the traveling direction of the muscle fiber of the muscle to be observed.
  • the ultrasonic wave transmitting unit 1011 is arranged so that the transmitting surface 1011b is inclined with respect to the surface of the living body, for example, with the probe 101 in contact with the surface of the living body.
  • the transmission surface 1011b of the ultrasonic wave transmission unit 1011 is, for example, a surface for transmitting ultrasonic waves of the vibrator 1012a included in the ultrasonic wave transmission unit 1011.
  • the transmission surface 1011b of the ultrasonic transmission unit 1011 may be, for example, the transmission surface of a plurality of oscillators included in the ultrasonic transmission unit 1011 or the transmission surface of the oscillator array.
  • the ultrasonic waves transmitted from the transmitting surface 1011b of the ultrasonic wave transmitting unit 1011 are generated in a state where the front side of the housing 10 of the probe 101 is in contact with the surface of the living body. It is attached to the front of the housing 10 so that it is transmitted in a direction inclined with respect to the surface of the living body.
  • the ultrasonic wave transmitting unit 1011 has a state in which the front side of the housing 10 of the probe 101 is in contact with the surface of the living body, and the transmitting surface 1011b is inclined with respect to the surface of the living body. It is attached to the front of the housing 10.
  • the direction inclined with respect to the surface of the living body is, for example, 0 degrees or more with respect to the surface of the portion of the surface of the living body to which the probe 101 is in contact and the normal of this surface. It is a direction that is tilted at an angle.
  • the surface of the living body here may be, for example, a virtual plane in contact with the surface of the living body, or a plane that approximates a portion of the surface of the living body to which the probe 101 is in contact. The same applies to the following.
  • a plate 20 to which the ultrasonic transmission unit 1011 is attached is provided in front of the housing 10.
  • the ultrasonic transmission unit 1011 is attached to the rear surface of the plate 20 with the transmission surface 1011b side facing forward so that the transmission surface 1011b faces forward.
  • the portion of the plate 20 to which the ultrasonic transmission unit 1011 is attached is inclined with respect to a virtual plane parallel to the front-back direction of the probe 101, whereby the transmission surface facing the rear surface of the plate 20 1011b is also inclined with respect to the front-rear direction of the probe 101.
  • an acoustic lens (not shown) or the like may be provided in which the portion to which the transmission surface 1011b side of the ultrasonic transmission unit 1011 is attached is similarly inclined.
  • the transmission direction of the ultrasonic wave transmitted by the ultrasonic wave transmission unit 1011 is not perpendicular to the traveling direction of the muscle fiber of the muscle to be observed in the living body.
  • the smaller angle between the traveling direction of the muscle fiber of the muscle to be observed and the transmitting direction of ultrasonic waves is preferably 60 degrees or less, and more preferably 45 degrees or less.
  • the running direction of the muscle fiber is, for example, the direction in which the muscle fiber extends.
  • the running direction of the muscle fiber may be considered as the tangential direction of the muscle fiber.
  • the muscle to be observed here is, for example, the uterine muscle, but the muscle is not limited to this.
  • the oscillator 1011a of the ultrasonic transmission unit 1011 is connected to the transmitter 102, for example, via a cable 30 provided in the housing 10.
  • the oscillator 1011a may be wirelessly connected to the transmitter 102.
  • the ultrasonic transmission unit 1011 may continuously transmit ultrasonic waves or may transmit ultrasonic waves in a pulse shape.
  • a case where the ultrasonic wave transmitting unit 1011 mainly continuously transmits ultrasonic waves, that is, a case where ultrasonic waves that are continuous waves (CW) are transmitted will be described as an example.
  • the ultrasonic wave receiving unit 1012 receives the reflected wave of the ultrasonic wave transmitted by the ultrasonic wave transmitting unit 1011.
  • the ultrasonic wave receiving unit 1012 has, for example, an oscillator 1012a.
  • the ultrasonic wave receiving unit 1012 may be the oscillator 1012a, and may include other circuits, an amplification unit 103, etc., which will be described later, in addition to the oscillator 1012a.
  • the ultrasonic receiving unit 1012 may have two or more oscillators or an oscillator array composed of two or more oscillators.
  • the ultrasonic wave receiving unit 1012 receives, for example, a reflected wave in which the ultrasonic wave transmitted by the ultrasonic wave transmitting unit 1011 is reflected by the observation target.
  • the ultrasonic wave receiving unit 1012 is attached to the housing 10 so as to receive, for example, a reflected wave incident from a direction inclined with respect to the surface of the living body.
  • the ultrasonic receiving unit 1012 is arranged so that the receiving surface 1012b is inclined with respect to the surface of the living body so that the reflected wave of the ultrasonic waves reflected by the muscle fibers in the living body is incident.
  • the ultrasonic wave receiving unit 1012 is arranged so that the receiving surface 1012b is perpendicular to the reflection direction of the ultrasonic wave reflected by the muscle fiber in the living body to be observed.
  • the receiving surface 1012b of the ultrasonic wave receiving unit 1012 is, for example, a surface for receiving the ultrasonic waves of the vibrator 1012a included in the ultrasonic wave receiving unit 1012.
  • the receiving surface 1012b of the ultrasonic wave receiving unit 1012 may be, for example, a surface for receiving ultrasonic waves of a plurality of vibrators included in the ultrasonic wave receiving unit 1012, or a receiving surface of a plurality of vibrator arrays.
  • the ultrasonic wave receiving unit 1012 transmits the ultrasonic wave transmitting unit 1011 reflected by the observation target in the living body in a state where the front side of the housing 10 of the probe 101 is in contact with the surface of the living body. It is attached to the front of the housing 10 so that the reflected wave of the sound wave is incident on the receiving surface 1012b.
  • the ultrasonic receiving unit 1012 has a housing in which the receiving surface 1012b is inclined with respect to the surface of the living body in a state where the front side of the housing 10 of the probe 101 is in contact with the surface of the living body. It is attached to the front of 10.
  • the portion to which the receiving surface 1012b of the ultrasonic receiving unit 1012 of the plate 20 is attached is inclined with respect to the virtual plane parallel to the front-back direction of the probe 101, and the ultrasonic receiving unit 1012 is The receiving surface 1012b is attached to the rear surface of the plate 20 so that the receiving surface 1012b faces forward.
  • the transmission surface 1011b facing the rear surface of the plate 20 is also inclined with respect to the front-rear direction of the probe 101.
  • the ultrasonic transmission unit 1011 and the ultrasonic reception unit 1012 are arranged so that the transmission surface 1011b and the reception surface 1012b are plane-symmetrical with respect to a virtual plane parallel to the front-back direction of the probe 101. It is attached to the front side of the probe 101. Further, the transmission surface 1011b and the reception surface 1012b are inclined with respect to the above virtual plane so that the portion closer to the virtual plane of the transmission surface 1011b and the reception surface 1012b is located behind the probe 101.
  • the virtual plane is preferably a virtual plane that passes through the center of the probe 101 in the width direction.
  • the virtual plane may be, for example, a virtual plane that is perpendicular to the surface of the living body when the front surface of the probe 101 is brought into contact with the surface of the living body.
  • the plate 20 has a shape in which the left and right sides are bent so that the central portion is convex toward the rear.
  • An ultrasonic transmission unit 1011 is attached to one of the left and right sides of the rear surface of the bent plate 20.
  • the ultrasonic receiving unit 1012 is attached to the left and right sides of the rear surface of the plate 20.
  • the ultrasonic wave transmitting unit 1011 and the ultrasonic wave receiving unit 1012 are attached so that the transmitting surface 1011b and the receiving surface 1012b are on the front side of the probe 101.
  • the central portion of each surface is arranged so as to be plane-symmetrical, so that the transmitting surface 1011b and the receiving surface 1012b are arranged plane-symmetrically. Equivalent to doing. The same applies to the following.
  • the portions to which the transmission surface 1011b of the ultrasonic transmission unit 1011 and the reception surface 1012b of the ultrasonic reception unit 1012 are attached are inclined in the same manner as the plate 20. (Not shown) may be provided.
  • the planar shape and size of the plate 20, the transmitting surface 1011b of the vibrator 1011a, and the receiving surface 1012b of the vibrator 1012a may be any shape and size. Further, the size of the housing 10 is not limited to the shape or the like.
  • the oscillator of the ultrasonic wave receiving unit 1012 is connected to the amplification unit 103 via, for example, a cable 30 provided in the housing 10.
  • the oscillator of the ultrasonic wave receiving unit 1012 and the amplification unit 103 may be wirelessly connected.
  • the method of attaching and arranging the ultrasonic wave transmitting unit 1011 and the ultrasonic wave receiving unit 1012 to the housing 10 described above is an example, and is not limited to the above-mentioned mounting method. Further, the shape, structure, and the like of the housing 10 described above are examples, and are not limited to the above-mentioned shape and structure.
  • the frequency of the ultrasonic wave transmitted by the ultrasonic wave transmitting unit 1011 is 2 MHz or more and 3 MHz or less, and the irradiation density in the region of interest in the target region is, for example, about 2 mW / cm 2 or more and 10 mW / cm 2 or less.
  • this ultrasonic wave is an example, and the ultrasonic wave transmitted by the ultrasonic wave transmitting unit 1011 is not limited to such an ultrasonic wave.
  • the probe 101 transmits ultrasonic waves in a direction inclined at an angle other than 90 degrees with respect to the surface of the living body, it may be considered as a bevel incident probe.
  • the transmitter 102 generates a signal for generating an ultrasonic wave and transmits it to the ultrasonic wave transmission unit 1011.
  • the transmitter 102 transmits a signal for generating ultrasonic waves to one or more oscillators included in the ultrasonic transmission unit 1011.
  • the transmitter 102 may have, for example, an oscillator or the like. Further, the transmitter 102 may have an amplifier (not shown) for amplifying the generated signal, another circuit, or the like.
  • the transmitter 102 may, for example, generate a signal for generating continuous ultrasonic waves, or may generate a signal for generating pulsed ultrasonic waves.
  • the vibrator 1011a of the ultrasonic transmission unit 1011 In response to the signal transmitted by the transmitter 102, the vibrator 1011a of the ultrasonic transmission unit 1011 generates an ultrasonic wave, and the generated ultrasonic wave is transmitted from the transmission surface 1011b. Further, when the ultrasonic transmission unit 1011 has a plurality of oscillators or oscillator arrays, the transmitter 102 may transmit a signal for generating ultrasonic waves to each oscillator, and the transmitter 102 may transmit a signal to each oscillator. On the other hand, the delay time of the signal to be transmitted may be controlled. However, the configuration of the transmitter 102 is not limited to such a configuration.
  • the probe 101 may have a transmitter 102, and the ultrasonic transmitter 1011 may have a transmitter 102.
  • the amplification unit 103 amplifies the signal output according to the reflected wave received by the ultrasonic wave reception unit 1012.
  • the amplification unit 103 amplifies the signal output by the vibrator 1012a of the ultrasonic wave reception unit 1012 according to the received reflected wave.
  • the amplification unit 103 is an amplifier that amplifies the signal output by the vibrator.
  • the amplification unit 103 is preferably a low noise amplifier.
  • the amplification unit 103 may amplify the signal continuously output by the vibrator 1012a according to the reflected wave continuously incident on the vibrator 1012a of the ultrasonic wave reception unit 1012, for example, at different times.
  • the signal output by the vibrator 1012a may be amplified according to the incident reflected wave.
  • the ultrasonic wave receiving unit 1012 When the ultrasonic wave receiving unit 1012 has a plurality of oscillators or oscillator arrays, the signals received and output by each oscillator may be individually amplified. Further, the amplification unit 103 may further control the delay time of the received signal and the like. However, the configuration of the amplification unit 103 is not limited to such a configuration.
  • the probe 101 may have the amplification unit 103, or the ultrasonic wave reception unit 1012 may have the amplification unit 103. Further, when the Doppler filter unit 104 extracts the Doppler signal from the signal itself acquired by the vibrator 1012a of the ultrasonic wave receiving unit 1012, the amplification unit 103 may not be provided. Further, the amplification unit 103 may include a circuit (not shown) or the like for performing predetermined processing on the signal before amplification and the signal after amplification.
  • the Doppler filter unit 104 extracts the Doppler component from the reflected wave received by the ultrasonic wave receiving unit 1012 of the probe 101.
  • the Doppler signal here is, for example, a Doppler shift component in the frequency range corresponding to the Doppler phenomenon generated in response to the motion of the object to be observed.
  • the Doppler filter unit 104 is, for example, a bandpass filter that passes a signal having a frequency corresponding to the Doppler component and does not pass a signal having a frequency corresponding to the Doppler component.
  • the Doppler filter unit 104 is lower than the frequency of the Doppler component due to the vibration of the muscle fiber (that is, the Doppler frequency), and is higher than the frequency of the infrasound component caused by the tissue shaking clutter and the frequency of the Doppler component due to the vibration of the muscle fiber. It is a bandpass filter that removes high frequency components.
  • the Doppler filter unit 104 may have a band removal filter that removes the band of the ultrasonic frequency transmitted by the ultrasonic wave transmission unit 1011 and the above-mentioned bandpass filter provided after the band removal filter. ..
  • a band removal filter that removes the band of the ultrasonic frequency transmitted by the ultrasonic wave transmission unit 1011 and the above-mentioned bandpass filter provided after the band removal filter. ..
  • the Doppler filter unit 104 extracts the Doppler signal from the signal amplified by the amplification unit 103 from the reflected wave received by the ultrasonic wave reception unit 1012 will be described.
  • the Doppler filter unit 104 is a signal output by each oscillator constituting the plurality of oscillators and oscillator arrays, and the amplification unit 103
  • the Doppler signal may be extracted from the amplified signal.
  • the output from the Doppler filter unit 104 may be, for example, a complex signal that forms a pair of common mode (i) and orthogonal (q) with respect to a component of a certain Doppler shift frequency of interest.
  • the configuration of the Doppler filter unit 104 is not limited to the above configuration. Since the configuration for acquiring the Doppler signal indicating the temporal change of the reflected wave is a known technique, detailed description thereof will be omitted.
  • the Doppler signal which is an analog signal output by the Doppler filter unit 104, is converted into a digital signal.
  • the AD conversion unit 105 outputs, for example, the digital signal acquired by the conversion to the acquisition unit 106 and the output unit 107.
  • the AD conversion unit 105 may, for example, store the digital signal acquired by the conversion in a storage unit (not shown) or the like. If A / D conversion of the Doppler signal is unnecessary, the AD conversion unit 105 may not be provided.
  • the acquisition unit 106 acquires a sideband frequency band signal indicating minute vibration in the traveling direction of the muscle fiber from the Doppler signal extracted by the Doppler filter unit 104.
  • the acquisition unit 106 acquires a Doppler signal acquired by the Doppler filter unit 104
  • the AD conversion unit 105 acquires a signal in the sideband frequency band as described above from the A / D converted Doppler signal.
  • the muscle fiber here is, for example, a muscle fiber of a muscle such as a uterine muscle to be observed.
  • the sideband frequency band signal indicating the minute vibration in the traveling direction of the muscle fiber acquired by the acquisition unit 106 is, for example, a signal in the sideband frequency band on the low frequency side of the Doppler signal.
  • the acquisition unit 106 acquires, for example, a signal in the frequency band from 5 Hz to 100 Hz as a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber.
  • a signal in the frequency band from 5 Hz to 100 Hz as a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber.
  • the acquisition unit 106 is the Doppler filter unit 104. It is preferable to acquire a signal in a frequency band from, for example, 5 Hz to 100 Hz as a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber from the Doppler signal extracted by.
  • the output unit 107 outputs a signal in the sideband frequency band acquired by the acquisition unit 106.
  • the output unit 107 may output the signal of the sideband frequency band acquired by the acquisition unit 106 as it is.
  • the output unit 107 may acquire information for desired output by using the signal of the sideband frequency band acquired by the acquisition unit 106, and may output the acquired information for output.
  • the information for the desired output is, for example, information such as a graph showing changes over time in the frequency distribution and output of the signal acquired by the acquisition unit 106, the frequency spectrum of the signal in the sideband frequency band, or the transition of the frequency spectrum. Information indicating, etc., but is not limited to this information.
  • the output unit 107 may perform a predetermined evaluation on the signal acquired by the acquisition unit 106 and output information or the like indicating the evaluation result. For example, when the output level of the signal acquired by the acquisition unit 106 is equal to or higher than the threshold value, the output unit 107 may output desired information.
  • the output unit 107 may have a processing unit (not shown) or the like for acquiring such information. Since the process of acquiring desired information such as a frequency spectrum using a signal is a known technique, detailed description thereof will be omitted here.
  • Output here means display on a monitor (not shown), projection using a projector, printing using a printer, sound output, transmission to an external device, storage on a recording medium, and other processing. It is a concept that includes delivery of processing results to devices and other programs.
  • the output unit 107 may or may not include an output device such as a monitor, a speaker, or a printer.
  • the output unit 107 is realized by the driver software of the output device, the driver software of the output device, the output device, and the like.
  • Step S101 The transmitter 102 starts generating a signal for generating an ultrasonic wave and transmitting the generated signal to the ultrasonic wave transmitting unit 1011.
  • the transmitter 102 starts the above generation and transmission in response to an operation from a user received by a reception unit or the like (not shown).
  • Step S102 The ultrasonic transmission unit 1011 of the probe 101 starts transmission of ultrasonic waves in response to the signal transmitted from the transmitter 102.
  • ultrasonic waves are transmitted from the vibrator 1011a of the ultrasonic transmission unit 1011 at an inclined angle with respect to the surface of a living body having a muscle to be observed, and the ultrasonic wave is transmitted at an inclined angle with respect to the muscle to be observed. Sound waves are transmitted.
  • Step S103 The ultrasonic wave receiving unit 1012 of the probe 101 starts receiving the reflected wave of the ultrasonic wave transmitted in step S102 by the muscle to be observed.
  • Step S104 The amplification unit 103 amplifies the signal output according to the reflected wave received by the ultrasonic wave reception unit 1012 in step S103.
  • the amplification unit 103 amplifies the output of the vibrator 1012a included in the ultrasonic wave reception unit 1012.
  • Step S105 The Doppler filter unit 104 extracts the Doppler signal from the signal amplified by the amplification unit 103 in step S104.
  • Step S106 The AD conversion unit 105 performs A / D conversion on the Doppler signal acquired in step S105.
  • Step S107 The acquisition unit 106 acquires a sideband frequency band signal indicating minute vibration in the traveling direction of the muscle fiber from the Doppler signal acquired in step S105 and A / D converted in step S106.
  • Step S108 The output unit 107 outputs the signal acquired in step S107.
  • Step S109 The ultrasonic observation device 1 determines whether the reception unit or the like (not shown) has received an instruction to end the transmission of ultrasonic waves. If it is accepted, each of the above processes is terminated, and if it is not accepted, the process returns to step S107.
  • step S104 to step S106 may be continuously performed according to the signal that the ultrasonic wave receiving unit 1012 sequentially receives and outputs the reflected wave.
  • the muscle to be observed is the gastrocnemius muscle of the lower limbs of the human body.
  • FIGS. 4 (a) and 4 (b) are diagrams for explaining a state in which the probe 101 is brought into contact with the surface of the human body and ultrasonic waves are transmitted.
  • the gastrocnemius muscle 41 which is behind the lower limbs of the human body 40, is located on both sides of the bent plate 20 in front of the probe 101, which protrudes forward. It hits the body surface 40a of the part.
  • the user of the probe 101 operates a switch or the like (not shown) to give an instruction to transmit a signal for generating ultrasonic waves to the transmitter 102
  • the transmitter 102 emits ultrasonic waves.
  • the generation of the signal for generating the above signal and the continuous transmission of the generated signal to the ultrasonic transmission unit 1011 are started.
  • the oscillator 1011a of the ultrasonic transmission unit 1011 continuously transmits ultrasonic waves.
  • the mounting positions of the ultrasonic transmitting unit 1011 and the ultrasonic receiving unit 1012, and the mounting angles of the transmitting surface 1011b and the receiving surface 1012b are adjusted so that the ultrasonic waves are received by the receiving surface 1012b of the 1012.
  • the adjustment of the mounting angles of the transmitting surface 1011b and the receiving surface 1012b may be considered as, for example, adjusting the bending angle of the plate 20 and the like.
  • the ultrasonic wave 45 transmitted from the ultrasonic wave transmitting unit 1011 runs the muscle fiber of the gastrocnemius muscle 41 located at a depth of 2 to 3 cm from the body surface 40a of the human body 40. It is incident at an angle inclined at an angle other than 90 degrees with respect to the direction, a part thereof is reflected by the gastrocnemius muscle 41, and the reflected wave 46 is incident on the receiving surface 1012b of the ultrasonic transmission unit 1011.
  • the oscillator 1012a of the ultrasonic wave receiving unit 1012 outputs a signal according to the reflected wave 46 incident on the receiving surface 1012b.
  • the amplification unit 103 amplifies the signal output by the vibrator 1012a.
  • the Doppler filter unit 104 extracts a Doppler signal from the signal amplified by the amplification unit 103.
  • the acquisition unit 106 acquires a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber from the A / D converted Doppler signal.
  • the acquisition unit 106 acquires a signal in a frequency band in the range of 5 Hz to 50 Hz as a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber.
  • the output unit 107 outputs the data of the acquired signal.
  • the output unit 107 acquires information indicating a transition of the frequency spectrum (for example, information of a graph showing the transition) using the acquired signal, and stores the acquired data in a storage unit (not shown). do.
  • the acquired signal data is displayed on a monitor (not shown) or the like.
  • FIG. 5 shows the low frequency of the Doppler signals A / D converted by the AD conversion unit 105 for explaining the sideband frequency band signal indicating the minute vibration in the traveling direction of the muscle fiber acquired by the acquisition unit 106. It is a figure which shows the transition of the frequency spectrum of the Doppler signal of a region (FIG. 5 (a)), and the figure which shows the transition of the signal amplitude of a Doppler signal of a low frequency region (FIG. 5 (b)).
  • the horizontal axis indicates the elapsed time, and here, the transition of the frequency spectrum and the transition of the signal amplitude of the Doppler signal within the same 6-second interval are arranged one above the other so that the time axes match. Shows.
  • the vertical axis indicates frequency (Hz)
  • FIG. 5B the vertical axis indicates signal voltage.
  • section 51 in FIG. 5B shows a section in which the force is started to be applied to the gastrocnemius muscle 41
  • the section 52 indicates a section in which the force is released from the gastrocnemius muscle 41
  • the section 53 from the beginning of the section 51 to the end of the section 52 indicates a section in which the gastrocnemius muscle 41 is being emphasized.
  • the output in section 53 of FIG. 5 shows the Doppler component of the microvibration of the muscle that is seen only while exerting force on the gastrocnemius muscle, and section 51 and section 52 are translational movements caused by the movement of the muscle. It is a Doppler component of. From the transition of the frequency spectrum in FIG.
  • the component of the minute movement of the muscle fiber in the traveling direction is about 5 Hz to 50 Hz. Therefore, as shown by the above-mentioned findings, it can be seen that by acquiring a signal in the sideband frequency band from 5 Hz to 100 Hz, a signal indicating minute vibration in the traveling direction of the muscle fiber can be acquired. Therefore, it can be seen that by acquiring and outputting the information of such a frequency band, it is possible to observe minute vibrations in the traveling direction of the muscle fibers.
  • the ultrasonic wave receiving unit 1012 can receive the reflected wave of the ultrasonic wave irradiated to a depth of 2 to 3 cm from the body surface 40a of the human body 40 so that the gastrocnemius muscle 41 can be observed.
  • the angles of the transmitting surface 1011b and the receiving surface 1012b of the probe 101 are set, the present invention is not limited to such a configuration.
  • the angles of the transmitting surface 1011b and the receiving surface 1012b of the probe 101 are such that the ultrasonic waves are irradiated in a direction inclined at an angle other than 90 degrees with respect to the traveling direction of the muscle fiber to be observed, and the muscle to be observed is observed.
  • the ultrasonic wave receiving unit 1012 may be set so that the reflected wave of the ultrasonic wave reflected by the fiber can be received.
  • the ultrasonic wave transmitted from the transmission surface 1011b of the probe 101 abutting on the abdominal wall of the human body 40 is other than 90 degrees with respect to the traveling direction of the muscle fiber of the uterine muscle.
  • the angles of the transmitting surface 1011b and the receiving surface 1012b of the probe 101 are set so that the ultrasonic waves are irradiated at the angle of 1 and the reflected waves of the ultrasonic waves reflected by the uterine muscle are incident on the receiving surface 1012b. You just have to.
  • the ultrasonic observation device 1 that makes such a uterine muscle an observation target can observe labor pains. It can be used as a device or as an outer labor meter.
  • an ultrasonic Doppler mechanomyogram device configured to observe mechanical minute vibrations in the traveling direction of muscle fibers in a muscle in an observation target region by an ultrasonic Doppler method. Can be done.
  • a labor pain observation device configured to observe minute vibrations in the tangential direction of the uterine muscle by the ultrasonic Doppler method.
  • the ultrasonic waves transmitted from the transmission surface 1011b in a state where the probe 101 is in contact with the surface 61a of the living body 61 is the living body 61.
  • a cylinder 80 may be provided so that the wave transmitted in a desired direction inclined with respect to the surface 61a and reflected by the muscle to be observed is received on the receiving surface 1012b.
  • the cylinder 80 is in a state where the probe 101 is in contact with the surface 61a of the living body 61 in front of the probe 101 where at least the ultrasonic transmitting section 1011 and the ultrasonic receiving section 1012 are arranged.
  • the cylinder 80 is provided, for example, so as to surround the periphery of the plate 20.
  • the shape of the cylinder 80 may be any shape as long as it does not interfere with the transmission and reception of ultrasonic waves and reflected waves, but the end portion of the cylinder 80 on the side that comes into contact with the surface of the living body is It is preferably located on a virtual coplanar surface.
  • the cylinder 80 may be integrally molded with the housing 10. Note that FIG. 6A is a perspective view of such a probe 101, and FIG. 6B is an upper surface when such a probe 101 is brought into contact with the surface 61a of the living body 61. The figure is shown.
  • the plate 20 may be omitted. good.
  • the housing 10 has unevenness formed by the transmission surface 1011b and the reception surface 1012b in place of the above-mentioned backing plate 20 or in addition to the backing plate 20.
  • a substantially V-shaped groove may be filled and a delay member 70 arranged so as to eliminate the unevenness of the contact surface of the probe 101 may be attached.
  • the material of the delay material 70 is preferably a material having a low acoustic impedance and a small amount of ultrasonic attenuation, such as resin.
  • 7 (a) is a perspective view of such a probe 101
  • FIG. 7 (b) is an upper surface when such a probe 101 is brought into contact with the surface 61a of the living body 61. The figure is shown.
  • FIG. 8 is a block diagram of the ultrasonic observation device 2 of the second embodiment. Further, FIG. 9 is a perspective view (FIG. 9 (a)) and a top view (FIG. 9 (b)) of the probe 201 of the ultrasonic observation device 2 of the second embodiment.
  • the ultrasonic transmission unit 1011 in the ultrasonic observation device 1 of the above embodiment transmits ultrasonic waves in a pulse shape, and the ultrasonic reception unit 1012 transmits ultrasonic waves. While the unit 1011 transmits the ultrasonic pulse, the reflected wave of the ultrasonic wave transmitted immediately before is received.
  • the ultrasonic wave transmitting unit 1011 and the ultrasonic wave receiving unit 1012 transmit ultrasonic waves and receive reflected waves from the same transmitting / receiving surface arranged so as to be inclined with respect to the surface of the living body.
  • the ultrasonic transmitting unit 1011 and the ultrasonic receiving unit 1012 are used. Also used as a common oscillator. That is, the probe 201 according to the second embodiment is not provided with one or more vibrators 1012a included in the ultrasonic receiving unit 1012 in the first embodiment, and the ultrasonic transmitting unit 1011 is pulsed.
  • the vibrator 1011a transmits the ultrasonic wave in a pulse shape, and the vibrator 1011a receives the reflected wave between the transmission of the ultrasonic pulse.
  • the transmission surface 1011b of one or more oscillators 1011a also functions as a reception surface for the reflected wave.
  • the oscillator 1011a is also used as the oscillator 1012a of the first embodiment, the oscillator 1011a is super-inclined with respect to the surface of the living body. It suffices to be attached to the probe 201 so as to transmit sound waves. Therefore, unlike the plate 20 of the first embodiment, the plate 21 is inclined in the front-rear direction, and the reflection of the ultrasonic transmission unit 1011 is reflected on the rear surface of the plate 21. A transmission surface 1011b that also functions as a wave reception surface is attached.
  • the oscillator 1011a is the ultrasonic transmitting unit 1011 and the oscillator 1011a also functions as the ultrasonic receiving unit 1012 will be described.
  • the transmitting surface 1011b is tilted at a desired angle with respect to the surface of the living body, and the ultrasonic waves transmitted from the transmitting surface 1011b are emitted.
  • the cylinder 81 is provided so that ultrasonic waves are transmitted in a direction inclined at a desired angle with respect to the surface of the living body. Similar to the cylinder 80 described in the first embodiment, the cylinder 81 is provided so as to surround the periphery of the plate 21 at least in front of the probe 201. However, the cylinder 81 may not be provided.
  • the transmitter 102 generates, for example, a signal for outputting ultrasonic waves in a pulse shape, and the ultrasonic transmission unit 1011 which is the vibrator 1011a uses this signal.
  • the point where the pulsed ultrasonic wave is transmitted accordingly the point where the ultrasonic wave receiving unit 1012 which is the oscillator 1011a acquires a signal from the reflected wave received in the interval of transmitting the pulsed ultrasonic wave, and the point where the Doppler filter unit 104 acquires a signal.
  • the Doppler signal is extracted from one or two or more different desired range gates of the signal acquired and amplified between the pulses. Therefore, a detailed description will be omitted here.
  • the transmitter 102 When the transmitter 102 generates a signal for outputting ultrasonic waves in a pulse shape and transmits the generated signal to the ultrasonic transmission unit 1011, the vibrator 1011a of the ultrasonic transmission unit 1011 transmits the pulsed ultrasonic waves. It transmits in a direction inclined with respect to the surface of the living body. The transmitted ultrasonic wave is reflected by one or more streaks or the like which are observation targets in the living body, and the reflected reflected wave is transmitted between the vibrator 1011a of the ultrasonic receiving unit 1012 and the ultrasonic pulse. Receive sequentially.
  • the amplification unit 103 amplifies the signal that the oscillator 1011a receives and outputs the reflected wave between pulses, and the Doppler filter unit 104 uses the amplified signal to doppler for each of one or more range gates. Extract the signal.
  • One or more range gates may be predetermined, for example.
  • the acquisition unit 106 uses the Doppler signal acquired for each A / D-converted range gate to generate a sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber, similar to the frequency band described in the above specific example.
  • the signal is acquired for each range gate.
  • the output unit 107 outputs a signal in the sideband frequency band acquired by the acquisition unit 106.
  • an ultrasonic pulse Doppler observation device capable of appropriately and easily acquiring information that can be used for observing muscles in a living body by using ultrasonic waves. Can be provided.
  • the ultrasonic observation device 2 acquires Doppler signals from two or more different range gates of the signals received between pulses, and each acquired Doppler signal is a side band indicating minute vibration in the traveling direction of the muscle fiber.
  • a signal in the frequency band is acquired and output, it can be used as a pulse Doppler system having two range gate regions.
  • the ultrasonic observation device 2 can acquire information that can be used for observation of different muscles to be observed in the same living body.
  • the ultrasonic transmission unit 1011 on the front side of the probe 201 has an angle other than 90 degrees with respect to the contact surface of the probe 201.
  • a delay material 71 similar to the delay material 70 of the ultrasonic observation device 1 of the first embodiment may be attached to a portion that is attached so as to be inclined.
  • the front surface of the probe 201 may be a contact surface perpendicular to the front-rear direction of the probe 201.
  • the cylinder 81 may not be provided.
  • FIG. 10A is a perspective view of such a probe 201
  • FIG. 10B is an upper surface when such a probe 201 is brought into contact with the surface 61a of the living body 61. The figure is shown.
  • the Doppler filter unit 104 extracts Doppler signals indicating temporal changes at two or more different range gates of the reflected waves received between pulses. ..
  • the acquisition unit 106 acquires a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber from one or more Doppler signals extracted by the Doppler filter unit 104.
  • the output unit 107 has a sideband frequency band signal acquired by the acquisition unit 106 for each of the range gates of 1 or more, and a sideband frequency band signal obtained by the acquisition unit 106 among the Doppler signals extracted by the Doppler filter unit 104.
  • One or more Doppler signals other than the acquired Doppler signal may be output.
  • the output of the Doppler signal here may be the output of the information acquired by using the Doppler signal, which is the same as the information acquired by using the signal of the sideband frequency band described above.
  • the signal of the sideband frequency band acquired by the acquisition unit 106 causes a minute muscle of the observation position corresponding to the range gate corresponding to this signal in the living body. You can observe the movement.
  • the ultrasonic observation device 2 is a living body at a position different from the range gate corresponding to the signal in the sideband frequency band due to the Doppler signal other than the Doppler signal obtained by the acquisition unit 106 in the sideband frequency band. You can observe the movement.
  • the ultrasonic observation device 2 has a pulse from the ultrasonic transmission unit 1011 of the probe 201 in an oblique direction other than the front direction due to oblique angle incident from the abdominal wall 90 of the pregnant woman.
  • the ultrasonic beam 91 for observation is obliquely incident on the uterine muscle 92, which is the primary object, and a part of the incident ultrasonic beam 91 is reflected by the uterine muscle 92, and the reflected wave is reflected by the ultrasonic receiving unit 1012.
  • Receives Receives.
  • the ultrasonic beam 91 for observation which was not reflected by the uterine muscle 92, is incident on the fetal heart 93 in the uterus, which is the second purpose, and a part thereof is reflected, and the reflected wave is ultrasonically transmitted.
  • the ultrasonic wave receiving unit 1012 which is also used as the unit 1011, receives.
  • the Doppler filter unit 104 extracts the Doppler signal of the observation range gate 94 corresponding to the uterine muscle 92 of the signal received by the ultrasonic wave receiving unit 1012.
  • the ultrasonic observation device 2 moves the uterine muscle. For example, it is possible to observe labor pains.
  • the observation range gate 95 corresponding to the fetal heart in the womb which is extracted by the Doppler filter unit 104 from the signal received by the ultrasonic reception unit 1012 and output by the output unit 107.
  • the Doppler signal makes it possible to simultaneously monitor the movement of the fetal heart (eg, heartbeat, etc.).
  • a signal corresponding to a minute vibration of the uterine muscle is transmitted from the echo from the short distance, and the fetus is transmitted from the echo from the inside or the long distance.
  • a fetal heartbeat labor pain observation device can be provided by configuring each signal corresponding to the heartbeat so as to detect each of them. Since the technique of observing the fetal heart with a Doppler signal is a known technique, detailed description thereof will be omitted here.
  • FIG. 12 is a perspective view (FIG. 12 (a)) and a top view (FIG. 12 (b)) of the probe 301 of the ultrasonic observation device 3 of the third embodiment.
  • the ultrasonic observation device 3 of the present embodiment replaces the probe 101 in the ultrasonic observation device 1 shown in the first embodiment with a plurality of ultrasonic transmission units 1011 that transmit ultrasonic waves in different directions.
  • the probe 301 has a plurality of ultrasonic wave receiving units 1012 and a plurality of ultrasonic wave receiving units 1012, each of which receives the reflected waves of the ultrasonic waves transmitted by each of the plurality of ultrasonic wave transmitting units 1011.
  • the Doppler filter unit 104 extracts a Doppler signal indicating a temporal change in the reflected wave received by each of the plurality of ultrasonic wave receiving units 1012, and the acquisition unit 106 extracts the Doppler signal from the Doppler signal extracted by the Doppler filter unit 104.
  • a signal in the sideband frequency band indicating a minute vibration in the traveling direction of the muscle fiber is acquired.
  • the ultrasonic observation device 3 has two ultrasonic transmission units 1011 and two ultrasonic reception units 1012 will be described as an example.
  • the probe 301 of the ultrasonic observation device 3 receives two ultrasonic transmission units 1011 that transmit ultrasonic waves in different directions and reflected waves of ultrasonic waves transmitted by these two ultrasonic transmission units, respectively. It has a plurality of ultrasonic receiving units 1012.
  • the two ultrasonic transmission units 1011 will be referred to as a first ultrasonic transmission unit 10111 and a second ultrasonic transmission unit 10112.
  • the ultrasonic receiving unit 1012 that receives the reflected wave of the ultrasonic wave transmitted by the first ultrasonic transmitting unit 10111 is set as the first ultrasonic receiving unit 10121, and the ultrasonic wave transmitted by the second ultrasonic transmitting unit 10112 is used.
  • the ultrasonic receiving unit 1012 that receives the reflected wave is referred to as a second ultrasonic receiving unit 10122.
  • the first ultrasonic transmission unit 10111 and the second ultrasonic transmission unit 10112 are 90 in the front-rear direction of the probe 301. They are arranged at an angle so that they form different angles other than degrees. Further, the first ultrasonic wave receiving unit 10121 is located on the front side of the probe 301 at a position where the reflected wave of the ultrasonic wave transmitted by the first ultrasonic wave transmitting unit 10111 is input by the observation target in the living body. Have been placed.
  • the second ultrasonic wave receiving unit 10122 is arranged at a position on the front side of the probe 301 where the reflected wave of the ultrasonic wave transmitted by the second ultrasonic wave transmitting unit 10112 is input by the observation target in the living body. ing.
  • the transmission surface 1011b and the reception surface 1012b are formed in a virtual plane parallel to the front-rear direction of the probe 301. It is attached to the front side of the probe 301 so as to be plane-symmetrical. Further, the transmission surface 1011b and the reception surface 1012b are inclined with respect to the above virtual plane so that the transmission surface 1011b and the reception surface 1012b are located behind the probe 301 toward the portion closer to the virtual plane.
  • the transmission surface 1011b and the reception surface 1012b are plane-symmetrical with respect to a virtual plane parallel to the front-back direction of the probe 301. It is attached to the front side of the probe 301 so as to be. Further, in the second ultrasonic transmission unit 10112 and the second ultrasonic reception unit 10122, the transmission surface 1011b and the reception surface 1012b are located behind the probe 301 so that the portion closer to the virtual plane is closer to the transmission surface 1011b and the reception surface 1012b. The receiving surface 1012b is attached so as to be inclined with respect to the above virtual plane.
  • the angle formed by the transmission surface 1011b of the first ultrasonic wave transmission unit 10111 and the transmission surface 1011b of the second ultrasonic wave transmission unit 10112 with respect to the above virtual plane is different.
  • the reflected wave transmitted and reflected from the first ultrasonic wave transmitting unit 10111 and the reflected wave transmitted and reflected from the second ultrasonic wave transmitting unit 10112 are different observation sites in the same living body ( For example, it is designed to be a reflected wave at observation sites with different depths.
  • a plate 22 having a shape in which the left and right sides are bent forward at different angles so that the central portion is convex toward the rear is provided on the front side of the probe 301.
  • the transmission surface 1011b of the first ultrasonic wave transmission unit 10111 and the reception surface 1012b of the first ultrasonic wave reception unit 10121 are attached to the left and right behind one of the portions of the plate 22 that are bent at different angles. There is. Further, on the inside of the other side of the portion of the plate 20 that is bent at different angles, the transmission surface 1011b of the second ultrasonic transmission unit 10112 and the reception surface 1012b of the first ultrasonic reception unit are attached to the left and right. ing.
  • the ultrasonic waves and their reflected waves transmitted and received by each of the pair with the second ultrasonic wave receiving unit 10122 are irradiated to different observation target muscles in the living body (for example, muscles located at different depths from the body surface). It is a pair of ultrasonic waves and their reflected waves. Therefore, in the present embodiment, the information used for observing two different observation target muscles can be acquired by using one probe 301.
  • the transmitter 102 transmits a signal for generating an ultrasonic wave to each of a plurality of ultrasonic transmission units 1011, and the amplification unit 103 and Doppler
  • the filter unit 104 in order of the filter unit 104, the AD conversion unit 105, the acquisition unit 106, and the output unit 107 for the signals received and output by the plurality of ultrasonic wave receiving units 1012, respectively.
  • the configuration is the same as that of the ultrasonic observation device 1 of the first embodiment, and detailed description thereof will be omitted here.
  • the ultrasonic observation device 3 has two configurations similar to those of the ultrasonic observation device 1 as shown in FIG. 1, and the ultrasonic transmission unit 1011 and the ultrasonic wave transmission unit 1011 possessed by the respective probes 301.
  • the sound wave receiving unit 1012 may be attached as one probe 301 to the same housing 10 so that the transmission / reception directions of ultrasonic waves are different.
  • the information used for observing two different observation target muscles can be acquired by using one probe 301.
  • a CW Doppler system having two cross-section sensitive regions (for example, a region where the transmission transmission direction and the reception direction of ultrasonic waves intersect) by two receiving beams.
  • the probe 301 has two sets of the ultrasonic transmitting unit 1011 and the ultrasonic receiving unit 1012 has been described, but the probe 301 has ultrasonic waves in different directions. There may be a pair of three or more ultrasonic wave transmitting units 1011 for transmitting the above and three or more ultrasonic wave receiving units 1012 for receiving these reflected waves, respectively.
  • the Doppler filter unit 104 extracts a Doppler signal indicating a temporal change in the reflected wave received by each of the plurality of ultrasonic wave receiving units 1012. good.
  • the acquisition unit 106 may extract a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber from a part of the plurality of Doppler signals extracted by the Doppler filter unit 104.
  • the output unit 107 is the first Doppler from which the acquisition unit 106 has acquired the sideband frequency band signal among the signal in the sideband frequency band acquired by the acquisition unit 106 and the plurality of Doppler signals extracted by the Doppler filter unit 104.
  • a second Doppler signal other than the signal may be output.
  • the ultrasonic observation device 3 having the probe 301 of the present embodiment may be used.
  • the cross-section sensitive region of the CW transmission beam of the first ultrasonic transmission unit 10111 and the reception beam of the first ultrasonic reception unit 10121 corresponds to the above-mentioned observation range gate 94 of the uterine muscle 92.
  • the cross-section sensitive region of the CW transmission beam of the second ultrasonic transmission unit 10112 and the reception beam of the second ultrasonic reception unit 10122 corresponds to the above-mentioned observation range gate 95 of the fetal heart. It may be an area to be used.
  • the output section outputs a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber acquired by the acquisition section 106.
  • the output unit 107 may output the signal as it is.
  • the same delay material as the delay material 70 may be provided.
  • the probe 301 in the ultrasonic observation device 1 shown in the first embodiment has a plurality of ultrasonic transmission units that transmit ultrasonic waves in different directions.
  • the configuration is not limited to this.
  • the ultrasonic observation device 3 replaces the probe 201 in the ultrasonic observation device 2 shown in the second embodiment, and is used as a plurality of ultrasonic waves that are also used as an ultrasonic wave receiving unit 1012 for transmitting and receiving ultrasonic waves in different directions.
  • a probe having a transmitter 1011 may be used.
  • the transmitter 102 transmits a signal for transmitting pulsed ultrasonic waves to the plurality of ultrasonic transmission units 1011 respectively, the Doppler filter unit 104, and the plurality of ultrasonic transmission units 1011 described above.
  • a Doppler signal is acquired for one or more range gates of the signal extracted from the reflected wave received in the interval of transmitting a pulse, and the acquisition unit 106 obtains a minute amount in the traveling direction of the muscle fiber from the Doppler signal extracted by the Doppler filter unit 104.
  • a signal in the sideband frequency band indicating vibration may be acquired.
  • the ultrasonic observation device 3 is attached to the contact surface of the probe at a different angle other than 90 degrees, for example, instead of the probe 201.
  • the probe 401 may have a plurality of ultrasonic transmission units 1011 that are also used as the unit 1012.
  • FIG. 13 is a perspective view (FIG. 13 (a)) and a top view (FIG. 13 (b)) showing an example of the probe 401 of the ultrasonic observation device 3 of such a modified example.
  • FIG. 13 is a perspective view (FIG. 13 (a)) and a top view (FIG. 13 (b)) showing an example of the probe 401 of the ultrasonic observation device 3 of such a modified example.
  • an example is shown in which there are two ultrasonic wave transmitting units 1011 that are also used as the ultrasonic wave receiving unit 1012.
  • each ultrasonic transmission unit 1011 shows an example in which the plate 23 having slopes having different slopes is attached to different slopes.
  • each process (each function) performed by the transmitter 102, the amplification unit 103, the Doppler filter unit 104, the AD conversion unit 105, the acquisition unit 106, the output unit 107, and the like is a single device. It may be realized by centralized processing by (system), or may be realized by distributed processing by a plurality of devices.
  • each component may be configured by dedicated hardware, or a component that can be realized by software (for example, AD conversion unit 105, acquisition unit 106, output unit 107, etc.). ) May be realized by executing a program.
  • each component can be realized by reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory by a program execution unit such as a CPU.
  • the program execution unit may execute the program while accessing the storage unit (for example, a recording medium such as a hard disk or a memory).
  • FIG. 14 is a schematic diagram showing an example of the appearance of a computer that executes a program as described above.
  • the above embodiment can be realized by computer hardware and a computer program executed on the computer hardware.
  • the computer system 900 includes a computer 901 including a CD-ROM (Compact Disk Read Only Memory) drive 905, a keyboard 902, a mouse 903, and a monitor 904.
  • a computer 901 including a CD-ROM (Compact Disk Read Only Memory) drive 905, a keyboard 902, a mouse 903, and a monitor 904.
  • CD-ROM Compact Disk Read Only Memory
  • FIG. 15 is a diagram showing the internal configuration of the computer system 900.
  • the computer 901 in addition to the CD-ROM drive 905, the computer 901 is connected to an MPU, (MicroProcessingUnit) 911, a ROM 912 for storing a program such as a bootup program, and an application program instruction.
  • MPU MicroProcessingUnit
  • ROM 912 for storing a program such as a bootup program
  • a hard disk 914 that stores application programs, system programs, and data
  • a bus 915 that interconnects the MPU 911, ROM 912, etc.
  • the computer 901 may include a network card (not shown) that provides a connection to the LAN.
  • the program for causing the computer system 900 to execute the functions of the ultrasonic observation device and the like according to each embodiment may be stored in the CD-ROM 921, inserted into the CD-ROM drive 905, and transferred to the hard disk 914.
  • the program may be transmitted to the computer 901 over a network (not shown) and stored on the hard disk 914.
  • the program is loaded into RAM 913 at run time.
  • the program may be loaded directly from the CD-ROM921 or the network.
  • the program does not necessarily have to include an operating system (OS), a third-party program, or the like that causes the computer 901 to execute the function of the ultrasonic observation device according to each embodiment.
  • the program may contain only a portion of instructions that call the appropriate function (module) in a controlled manner to obtain the desired result. It is well known how the computer system 900 works, and detailed description thereof will be omitted.
  • the ultrasonic observation device or the like according to the present invention is suitable as a device or the like used for observing a living body, and is particularly useful as a device or the like used for observing a living body by using ultrasonic waves. Is.

Abstract

This ultrasonic observation device is for observing the degree of tension of the muscles of a target site by using an ultrasonic Doppler method. To acheive the foregoing, the ultrasonic observation device comprises: a probe 101 that includes an ultrasonic wave transmission unit 1011 for transmitting ultrasonic waves in a direction inclined with respect to the surface of a living body, and an ultrasonic wave reception unit 1012 that receives reflected waves of ultrasonic waves transmitted by an ultrasonic wave irradiation unit; a Doppler filter unit 104 that extracts a Doppler signal of a frequency based on Doppler shift with respect to ultrasonic waves of reflected waves received by the ultrasonic wave reception unit 1012; and an acquisition unit 106 that acquires, from the Doppler signal acquired by the Doppler filter unit 104, a signal of a sideband frequency indicating micro-vibrations in the traveling direction of muscle fibers.

Description

超音波観測装置及び超音波観測方法Ultrasonic observation device and ultrasonic observation method
 本発明は、超音波を用いて生体に関する観測を行う装置等に関するものである。例えば、この発明はメカノミオグラム観測装置等に関し、さらには超音波ドプラメカノミオグラム装置等に関し、さらには同方法を援用した外測陣痛計等に関するものである。 The present invention relates to an apparatus or the like for observing a living body using ultrasonic waves. For example, the present invention relates to a mechanomyogram observation device and the like, further to an ultrasonic Doppler mechanomyogram device and the like, and further to an external measurement labor pain meter and the like using the same method.
 従来、長年にわたり実用に供されている外測陣痛計は機械式(圧迫子式)の硬さ計すなわち一種のデュロメーターである。この外測陣痛計の用途に特化されたデュロメーターとして、ガードリング式(面一式)、ぼっくい式、それらの折衷であるきのこ式などがある。その概要は非特許文献1などにおいて解説されている。 Conventionally, the external measuring labor pain meter that has been put into practical use for many years is a mechanical (compressor type) hardness meter, that is, a kind of durometer. Durometers specialized for the purpose of this external measurement labor meter include a guard ring type (one-sided type), a bokki type, and a mushroom type that is a compromise between them. The outline is explained in Non-Patent Document 1 and the like.
 一方で子宮筋の出す筋電信号を観測し、そのレベル又はパワーにより子宮筋の緊張度を評価せんとする試みもなされ、この方式の外測陣痛計も提案され、その概要は特許文献1や、非特許文献2において解説されている。しかし、これは臨床での用途に広く普及するには至っていない。 On the other hand, an attempt was made to observe the myoelectric signal emitted by the uterine muscle and evaluate the tension of the uterine muscle based on its level or power, and an external measurement labor pain meter of this type was also proposed. , Explained in Non-Patent Document 2. However, this has not been widely used in clinical applications.
 さらに一方で子宮筋の筋音、筋トレモロ(筋肉の小刻みな振動)、もしくはメカノミオグラム(筋音図)を音響的又は機械的な信号として観測し、そのレベル又はパワーにより子宮筋の緊張度を評価せんとする試みもなされ、この方式の外測陣痛計も提案されている。その概要は特許文献2などにおいて解説されている。しかし、これもまた臨床での用途に広く普及するには至っていない。 On the other hand, the muscle sound of the uterine muscle, muscle tremolo (small vibration of the muscle), or mechanomyogram (mechanomyogram) is observed as an acoustic or mechanical signal, and the tension of the uterine muscle is determined by its level or power. Attempts have been made to evaluate the uterus, and this type of external measurement labor pain meter has also been proposed. The outline is explained in Patent Document 2 and the like. However, this too has not been widely used in clinical applications.
 筋が力を出す時に附随する現象である筋音の発生又は筋トレモロは機械的あるいは音響的な観測のほかにレーザードプラ法でも観測され、この手法は筋の活動の評価の手法として一定の地位を得ている。これに関しては非特許文献3に解説がある。 In addition to mechanical or acoustic observations, the generation of muscle sounds or muscle tremolo, which is a phenomenon that accompanies when muscles exert force, is also observed by the laser Doppler method, and this method has a certain position as a method for evaluating muscle activity. Is getting. This is explained in Non-Patent Document 3.
特許第5892609号公報Japanese Patent No. 5892609 特許第6487172号公報Japanese Patent No. 6487172
 従来の技術においては、生体内の筋についての観測に利用可能な情報を、超音波を利用して適切かつ容易に取得することができない、という課題があった。 In the conventional technique, there is a problem that information that can be used for observing muscles in a living body cannot be appropriately and easily acquired by using ultrasonic waves.
 本発明の第1の態様の超音波観測装置は、生体の表面に対して傾斜した方向に超音波を送信する超音波送信部および前記超音波送信部が送信する超音波の反射波を受信する超音波受信部を有する探触子と、前記超音波受信部が受信する反射波のドプラ成分を示すドプラ信号を抽出するドプラフィルタ部と、前記ドプラフィルタ部が抽出した前記ドプラ信号から、前記生体内の筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を取得する取得部と、前記取得部が取得したサイドバンド周波数帯域の信号を出力する出力部と、を備える。 The ultrasonic observation device of the first aspect of the present invention receives an ultrasonic transmission unit that transmits ultrasonic waves in a direction inclined with respect to the surface of a living body and an ultrasonic reflected wave transmitted by the ultrasonic transmission unit. The raw from the probe having the ultrasonic receiver, the Doppler filter unit that extracts the Doppler signal indicating the Doppler component of the reflected wave received by the ultrasonic receiver, and the Doppler signal extracted by the Doppler filter unit. It includes an acquisition unit that acquires a signal in the sideband frequency band indicating minute vibration in the traveling direction of muscle fibers in the body, and an output unit that outputs a signal in the sideband frequency band acquired by the acquisition unit.
 かかる構成により、超音波観測装置は、生体内の筋についての観測に利用可能な情報を、超音波を利用して適切かつ容易に取得することができる。 With such a configuration, the ultrasonic observation device can appropriately and easily acquire information that can be used for observing muscles in a living body by using ultrasonic waves.
 また、前記探触子は、筐体を有しており、前記超音波送信部および前記超音波受信部は、前記筐体に取り付けられており、前記超音波送信部は、送信面が、生体の表面に対して傾斜するよう配置されており、前記超音波受信部は、受信面が、前記超音波送信部から送信されて、生体内の筋繊維で反射された超音波の反射波が入射されるように、生体の表面に対して傾斜するよう配置されていてもよい。 Further, the probe has a housing, the ultrasonic transmitting unit and the ultrasonic receiving unit are attached to the housing, and the transmitting surface of the ultrasonic transmitting unit is a living body. The ultrasonic wave receiving unit is arranged so as to be inclined with respect to the surface of the body, and the receiving surface is transmitted from the ultrasonic wave transmitting unit, and the reflected wave of the ultrasonic wave reflected by the muscle fibers in the living body is incident. As such, it may be arranged so as to be inclined with respect to the surface of the living body.
 かかる構成により、超音波観測装置は、探触子の、超音波送信部および超音波受信部を、生体に当てることにより、超音波を利用して適切かつ容易に取得することができる。 With such a configuration, the ultrasonic observation device can appropriately and easily acquire the ultrasonic wave by applying the ultrasonic wave transmitting unit and the ultrasonic wave receiving unit of the probe to the living body.
 また、前記超音波送信部は、送信面が、超音波の送信方向が観測対象となる筋繊維の表面に対して傾斜するよう配置されており、前記超音波受信部は、受信面が、前記観測対象となる筋繊維で反射される超音波の反射方向に対して垂直となるよう配置されていてもよい。 Further, in the ultrasonic transmitting unit, the transmitting surface is arranged so that the transmitting direction of the ultrasonic wave is inclined with respect to the surface of the muscle fiber to be observed, and in the ultrasonic receiving unit, the receiving surface is the said. It may be arranged so as to be perpendicular to the reflection direction of the ultrasonic wave reflected by the muscle fiber to be observed.
 かかる構成により、超音波観測装置は、観測対象の筋繊維の走行方向に対して、垂直とならないよう超音波を照射することができ、筋繊維の走行方向の微小振動を示す信号を適切に取得することができる。 With such a configuration, the ultrasonic observation device can irradiate ultrasonic waves so as not to be perpendicular to the traveling direction of the muscle fiber to be observed, and appropriately acquires a signal indicating minute vibration in the traveling direction of the muscle fiber. can do.
 また、前記超音波送信部は、送信面が、超音波の送信方向が観測対象となる子宮筋の表面に対して傾斜するよう配置されており、前記超音波受信部は、受信面が、前記子宮筋で反射される超音波の反射方向に対して垂直となるよう配置されていてもよい。 Further, in the ultrasonic transmitting unit, the transmitting surface is arranged so that the transmitting direction of the ultrasonic wave is inclined with respect to the surface of the uterine muscle to be observed, and in the ultrasonic receiving unit, the receiving surface is the said. It may be arranged so as to be perpendicular to the reflection direction of the ultrasonic wave reflected by the uterine muscle.
 かかる構成により、超音波観測装置は、子宮筋の微小振動を示す情報を取得することができ、例えば、外測陣痛計として利用することができる。 With such a configuration, the ultrasonic observation device can acquire information indicating minute vibration of the uterine muscle, and can be used as, for example, an external measurement labor pain meter.
 また、前記探触子は、異なる方向に超音波を送信する複数の超音波送信部と、当該複数の超音波送信部がそれぞれ送信する超音波の反射波をそれぞれ受信する複数の超音波受信部と、を有しており、前記ドプラフィルタ部は、複数の超音波受信部がそれぞれ受信する反射波のドプラ成分を示す複数の前記ドプラ信号を抽出し、前記取得部は、前記ドプラフィルタ部が抽出した複数の前記ドプラ信号から、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を取得してもよい。 Further, the probe has a plurality of ultrasonic wave transmitting units that transmit ultrasonic waves in different directions and a plurality of ultrasonic wave receiving units that receive reflected waves of ultrasonic waves transmitted by the plurality of ultrasonic wave transmitting units. The Doppler filter unit extracts a plurality of the Doppler signals indicating the Doppler components of the reflected waves received by the plurality of ultrasonic receiving units, respectively, and the acquisition unit is the Doppler filter unit. A sideband frequency band signal indicating minute vibration in the traveling direction of the muscle fiber may be acquired from the plurality of extracted Doppler signals.
 かかる構成により、超音波観測装置は、同じ生体内の異なる観測部位についての筋繊維の走行方法の微小振動を示す信号を同時に取得することができる。 With this configuration, the ultrasonic observation device can simultaneously acquire signals indicating minute vibrations of the running method of muscle fibers for different observation sites in the same living body.
 また、前記探触子は、異なる方向に超音波を送信する複数の超音波送信部と、当該複数の超音波送信部がそれぞれ送信する超音波の反射波をそれぞれ受信する複数の超音波受信部と、を有しており、前記ドプラフィルタ部は、複数の超音波受信部がそれぞれ受信する反射波のドプラ成分を示す複数の前記ドプラ信号を抽出し、前記取得部は、ドプラフィルタ部が抽出した複数の前記ドプラ信号の一部から、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を取得し、前記出力部は、前記取得部が取得したサイドバンド周波数帯域の信号と、複数の前記ドプラ信号のうち、前記取得部がサイドバンド周波数帯域の信号を取得した第1ドプラ信号以外の第2ドプラ信号とを出力してもよい。 Further, the probe has a plurality of ultrasonic transmission units that transmit ultrasonic waves in different directions and a plurality of ultrasonic reception units that receive reflected waves of ultrasonic waves transmitted by the plurality of ultrasonic transmission units. The Doppler filter unit extracts a plurality of the Doppler signals indicating the Doppler components of the reflected waves received by the plurality of ultrasonic receiver units, respectively, and the acquisition unit extracts the Doppler filter unit. A sideband frequency band signal indicating minute vibration in the traveling direction of the muscle fiber is acquired from a part of the plurality of Doppler signals, and the output unit receives the sideband frequency band signal acquired by the acquisition unit. Of the plurality of Doppler signals, a second Doppler signal other than the first Doppler signal obtained by the acquisition unit may output a signal in the sideband frequency band.
 かかる構成により、超音波観測装置は、同じ生体内の1以上の観測部位の筋繊維の走行方法の微小振動を示す信号と、他の異なる1以上の観測部位の動きを示すドプラ信号とを同時に取得することができる。 With this configuration, the ultrasonic observation device simultaneously obtains a signal indicating a minute vibration of the running method of muscle fibers of one or more observation sites in the same living body and a Doppler signal indicating the movement of one or more other observation sites. Can be obtained.
 また、前記超音波送信部は、パルス状に超音波を送信し、前記超音波受信部は、前記超音波送信部が超音波のパルスを送信する合間に反射波を受信し、前記超音波送信部と、前記超音波受信部とは、生体の表面に対して傾斜するよう配置される同一の送受信面から、超音波の送信および反射波を受信してもよい。 Further, the ultrasonic transmitting unit transmits ultrasonic waves in a pulse shape, and the ultrasonic receiving unit receives reflected waves while the ultrasonic transmitting unit transmits ultrasonic pulses, and the ultrasonic transmission unit transmits ultrasonic waves. The unit and the ultrasonic wave receiving unit may receive ultrasonic waves and reflected waves from the same transmitting / receiving surface arranged so as to be inclined with respect to the surface of the living body.
 かかる構成により、超音波観測装置は、生体内の筋についての観測に利用可能な情報を、パルスドプラにより適切かつ容易に取得することができる。 With such a configuration, the ultrasonic observation device can appropriately and easily acquire information that can be used for observing muscles in the living body by means of pulse Doppler.
 また、前記ドプラフィルタ部は、前記超音波送信部が超音波のパルスを送信する合間に前記超音波受信部が受信した反射波のうちの2以上の異なるレンジゲートについて、それぞれドプラ信号を取得し、前記取得部は、前記ドプラフィルタ部がそれぞれ抽出した前記ドプラ信号から、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を取得し、前記出力部は、前記取得部がそれぞれ取得したサイドバンド周波数帯域の信号を出力してもよい。 Further, the Doppler filter unit acquires Doppler signals for two or more different range gates of the reflected waves received by the ultrasonic wave receiving unit while the ultrasonic wave transmitting unit transmits ultrasonic pulses. The acquisition unit acquires a sideband frequency band signal indicating minute vibration in the traveling direction of the muscle fiber from the Doppler signal extracted by the Doppler filter unit, and the acquisition unit acquires the output unit. The signal of the sideband frequency band may be output.
 かかる構成により、超音波観測装置は、同じ生体内の異なる観測部位についての筋繊維の走行方法の微小振動を示す信号を同時に取得することができる。 With this configuration, the ultrasonic observation device can simultaneously acquire signals indicating minute vibrations of the running method of muscle fibers for different observation sites in the same living body.
 また、前記ドプラフィルタ部は、前記超音波送信部が超音波のパルスを送信する合間に前記超音波受信部が受信した反射波の2以上の異なるレンジゲートについて、それぞれ前記ドプラ信号を取得し、前記取得部は、前記ドプラフィルタ部が1以上のレンジゲートについて抽出した前記ドプラ信号から、筋繊維の走行方向の微小振動を示す低周波側のサイドバンド周波数帯域の信号を取得し、前記出力部は、前記取得部が前記1以上のレンジゲートについてそれぞれ取得したサイドバンド周波数帯域の信号と、前記ドプラフィルタ部が抽出した複数の前記ドプラ信号のうちの、前記取得部が取得した第1ドプラ信号以外の1以上の第2ドプラ信号とを出力してもよい。 Further, the Doppler filter unit acquires the Doppler signal for each of two or more different range gates of the reflected wave received by the ultrasonic receiver unit while the ultrasonic transmitter unit transmits the ultrasonic pulse. The acquisition unit acquires a signal in the sideband frequency band on the low frequency side indicating minute vibration in the traveling direction of the muscle fiber from the Doppler signal extracted by the Doppler filter unit for one or more range gates, and the output unit. Is the first Doppler signal acquired by the acquisition unit among the sideband frequency band signals acquired by the acquisition unit for each of the one or more range gates and the plurality of Doppler signals extracted by the Doppler filter unit. A second Doppler signal other than one or more may be output.
 かかる構成により、超音波観測装置は、同じ生体内の異なる観測部位について筋繊維の走行方法の微小振動を示す信号と、観測部位の大きな動きを示すドプラ信号とを同時に取得することができる。 With this configuration, the ultrasonic observation device can simultaneously acquire a signal indicating a minute vibration of the running method of muscle fibers and a Doppler signal indicating a large movement of the observation site for different observation sites in the same living body.
 また、前記取得部が取得するサイドバンド周波数帯域の信号は、5Hzから100Hzまでの周波数帯域の信号であってもよい。 Further, the signal in the sideband frequency band acquired by the acquisition unit may be a signal in the frequency band from 5 Hz to 100 Hz.
 かかる構成により、超音波観測装置は、筋繊維の微小運動を示す信号を適切に取得することができる。 With such a configuration, the ultrasonic observation device can appropriately acquire a signal indicating a minute movement of muscle fibers.
 また、前記超音波観測装置において、前記取得部は、前記ドプラフィルタ部が、子宮筋に対応するレンジゲートについて取得したドプラ信号について、サイドバンド周波数帯域の信号を取得し、前記出力部は、前記取得部が取得したサイドバンド周波数帯域の信号と、前記ドプラフィルタ部が、子宮内の胎児の心臓に対応するレンジゲートについて抽出した前記ドプラ信号とを出力してもよい。 Further, in the ultrasonic observation device, the acquisition unit acquires a signal in the sideband frequency band for the Doppler signal acquired by the Doppler filter unit for the range gate corresponding to the uterine muscle, and the output unit obtains the signal in the sideband frequency band. The sideband frequency band signal acquired by the acquisition unit and the Doppler signal extracted by the Doppler filter unit for the range gate corresponding to the fetal heart in the womb may be output.
 かかる構成により、超音波観測装置は、子宮筋の微小振動と、胎児の心臓の動きとを、同時に観測することができる。 With this configuration, the ultrasonic observation device can simultaneously observe the minute vibration of the uterine muscle and the movement of the fetal heart.
 本発明の第2の態様の超音波観測方法は、生体の表面に対して傾斜した方向に超音波を送信する超音波送信部および前記超音波送信部が送信する超音波の反射波を受信する超音波受信部を有する探触子と、送信部、ドプラフィルタ部、取得部、及び出力部を有する装置と、を用いて行われる超音波観測方法であって、前記送信部が前記探触子に生体の表面に対して傾斜した方向に超音波を送信させるステップと、前記超音波の前記表面における反射波のドプラ成分を示すドプラ信号を前記ドプラフィルタ部が抽出するステップと、前記取得部が、前記ドプラ信号から、前記生体内の筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を取得するステップと、前記出力部が、前記サイドバンド周波数帯域の信号を出力するステップと、を有する。 The ultrasonic observation method according to the second aspect of the present invention receives an ultrasonic transmission unit that transmits ultrasonic waves in a direction inclined with respect to the surface of a living body and an ultrasonic reflected wave transmitted by the ultrasonic transmission unit. It is an ultrasonic observation method performed by using a probe having an ultrasonic receiving unit and a device having a transmitting unit, a Doppler filter unit, an acquiring unit, and an output unit, wherein the transmitting unit is the probe. The step of transmitting ultrasonic waves in a direction inclined with respect to the surface of the living body, the step of extracting the Doppler signal indicating the Doppler component of the reflected wave on the surface of the ultrasonic waves by the Doppler filter unit, and the acquisition unit. A step of acquiring a sideband frequency band signal indicating minute vibration in the traveling direction of the muscle fiber in the living body from the Doppler signal, and a step of the output unit outputting a signal of the sideband frequency band. Have.
 本発明による超音波観測装置等によれば、生体内の筋についての観測に利用可能な情報を、超音波を利用して適切かつ容易に取得することができる。 According to the ultrasonic observation device or the like according to the present invention, information that can be used for observing muscles in a living body can be appropriately and easily acquired by using ultrasonic waves.
本発明の実施の形態1にかかる超音波観測装置のブロック図Block diagram of the ultrasonic observation apparatus according to the first embodiment of the present invention. 同超音波観測装置の探触子の斜視図(図2(a))、および上面図(図2(b))A perspective view (FIG. 2 (a)) and a top view (FIG. 2 (b)) of the probe of the ultrasonic observation device. 同超音波観測装置の動作について説明するフローチャートFlow chart explaining the operation of the ultrasonic observation device 同超音波観測装置の動作を説明するための図(図4(a)、図4(b))Figures for explaining the operation of the ultrasonic observation device (FIGS. 4 (a) and 4 (b)). 同超音波観測装置を説明するための、低周波域のドプラ信号の周波数の推移を示す図(図5(a))、および周波数スペクトラムの推移を示す図(図5(b))A diagram showing the transition of the frequency of the Doppler signal in the low frequency region (FIG. 5 (a)) and a diagram showing the transition of the frequency spectrum (FIG. 5 (b)) for explaining the ultrasonic observation device. 同超音波観測装置の探触子の変形例の斜視図(図6(a))および上面図(図6(b))A perspective view (FIG. 6 (a)) and a top view (FIG. 6 (b)) of a modified example of the probe of the ultrasonic observation device. 同超音波観測装置の探触子の変形例の斜視図(図7(b))および上面図(図7(b))A perspective view (FIG. 7 (b)) and a top view (FIG. 7 (b)) of a modified example of the probe of the ultrasonic observation device. 本発明の実施の形態2にかかる超音波観測装置のブロック図Block diagram of the ultrasonic observation apparatus according to the second embodiment of the present invention. 同超音波観測装置の斜視図(図9(a))、および上面図(図9(b))A perspective view (FIG. 9 (a)) and a top view (FIG. 9 (b)) of the ultrasonic observation device. 同超音波観測装置の探触子の変形例の斜視図(図10(b))および上面図(図10(b))A perspective view (FIG. 10 (b)) and a top view (FIG. 10 (b)) of a modified example of the probe of the ultrasonic observation device. 同超音波観測装置の変形例を説明するための模式図Schematic diagram for explaining a modified example of the ultrasonic observation device 本発明の実施の形態3にかかる超音波観測装置の探触子の斜視図(図12(a))、および上面図((図12(b))A perspective view (FIG. 12 (a)) and a top view ((FIG. 12 (b)) of the probe of the ultrasonic observation device according to the third embodiment of the present invention. 同超音波観測装置の変形例の探触子の斜視図(図13(a))、および上面図((図13(b))A perspective view (FIG. 13 (a)) and a top view ((FIG. 13 (b)) of a probe of a modified example of the ultrasonic observation device. 各実施の形態におけるコンピュータシステムの外観の一例を示す図The figure which shows an example of the appearance of the computer system in each embodiment. 同コンピュータシステムの構成の一例を示す図Diagram showing an example of the configuration of the computer system
 以下、超音波観測装置等の実施形態について図面を参照して説明する。なお、実施の形態において同じ符号を付した構成要素は同様の動作を行うので、再度の説明を省略する場合がある。 Hereinafter, embodiments of the ultrasonic observation device and the like will be described with reference to the drawings. In addition, since the components with the same reference numerals perform the same operation in the embodiment, the description may be omitted again.
 (実施の形態1)
 本実施の形態にかかる超音波観測装置は、子宮筋等の筋の筋音又は筋トレモロ等の現象を観測することにより、筋の観測や外測陣痛計等として利用可能なものである。当該超音波観測装置は、該現象を音響的や機械的に観測するのではなく、照射された超音波に対する反射波の周波数のドプラ現象に伴う変動を観測するものである。
(Embodiment 1)
The ultrasonic observation device according to the present embodiment can be used as a muscle observation or an external measurement labor pain meter by observing a muscle sound of a muscle such as a uterine muscle or a phenomenon such as a muscle tremolo. The ultrasonic observation device does not observe the phenomenon acoustically or mechanically, but observes fluctuations in the frequency of the reflected wave with respect to the irradiated ultrasonic waves due to the Doppler phenomenon.
 筋音又は筋トレモロという現象は、力を出している筋が全体としてはある一定の、あるいは略一定の力を出していても、それを構成する筋繊維の各々がぴくりぴくりと動く(ひきつるように動く)という現象に起因する。その動きは筋繊維の走行方向に発生するので、その動きの観測のために設定されるべき条件は、筋の局所組織の長手方向(すなわち接線方向)の振動の観測である。したがって、このような筋の現象を適切に観測するためには、筋繊維の走行方向に対して垂直の方向(すなわち法線方向)の振動を観測するのではなく、筋繊維の走行方向に対して垂直以外の方向の振動を観測する必要がある。 In the phenomenon of mechanomyogram or muscle tremolo, even if the muscles that are exerting force exert a certain or substantially constant force as a whole, each of the muscle fibers that compose it moves sharply (like pulling). It is caused by the phenomenon of (moving to). Since the movement occurs in the traveling direction of the muscle fiber, the condition to be set for observing the movement is the observation of the vibration in the longitudinal direction (that is, the tangential direction) of the local tissue of the muscle. Therefore, in order to properly observe such a muscle phenomenon, it is not necessary to observe the vibration in the direction perpendicular to the running direction of the muscle fiber (that is, the normal direction), but to the running direction of the muscle fiber. It is necessary to observe vibrations in directions other than vertical.
 本願発明者らが鋭意研究した結果、超音波を用いて、このような筋線維の走行方向に対して垂直な方向以外の振動を検出する場合、超音波を、筋線維に対して垂直以外の方向から照射するとともに、照射した超音波の反射波のドプラ成分を示すドプラ信号から筋の微細振動を示し得る特定のサイドバンド周波帯域の信号、具体的には、5~100Hzの低周波帯域の信号、を選択的に抽出することが好ましいという知見を得た。ここで、ドプラ信号は、超音波観測装置が送信する超音波が、振動する筋線維で反射することにより生じた反射波の周波数が変動する周波数(すなわちドプラ周波数)の帯域内の成分であるドプラ成分を示す信号である。ドプラ信号は、ドプラ現象により生じる、超音波観測装置が送信する超音波の周波数と反射波の周波数との差の変動(すなわちドプラシフト量の変動)を示す信号であってもよい。 As a result of diligent research by the inventors of the present application, when ultrasonic waves are used to detect vibrations other than those perpendicular to the traveling direction of the muscle fibers, the ultrasonic waves are not perpendicular to the muscle fibers. A signal in a specific sideband frequency band that can show minute vibration of a muscle from a Doppler signal that shows the Doppler component of the reflected wave of the irradiated ultrasonic wave while irradiating from the direction, specifically, a signal in the low frequency band of 5 to 100 Hz. It was found that it is preferable to selectively extract the signal. Here, the Doppler signal is a component in the band of the frequency (that is, the Doppler frequency) in which the frequency of the reflected wave generated by the ultrasonic wave transmitted by the ultrasonic observation device being reflected by the vibrating muscle fiber fluctuates. It is a signal indicating a component. The Doppler signal may be a signal indicating a variation in the difference between the frequency of the ultrasonic wave transmitted by the ultrasonic observation device and the frequency of the reflected wave (that is, the variation in the amount of Doppler shift) caused by the Doppler phenomenon.
 さらに、好ましい例として、観測システムの超音波の周波数が3MHzであり、超音波の筋への入射角が45度の場合、特定のサイドバンド周波帯域として25Hz~100Hzの周波数帯の信号を、反射波のドプラ信号から取得して観察することで、筋繊維の走行方向の微小振動がより適切に観察できるということがわかった。 Further, as a preferred example, when the frequency of the ultrasonic wave of the observation system is 3 MHz and the angle of incidence of the ultrasonic wave on the muscle is 45 degrees, a signal in the frequency band of 25 Hz to 100 Hz is reflected as a specific sideband frequency band. By acquiring and observing from the Doppler signal of the wave, it was found that the minute vibration in the traveling direction of the muscle fiber can be observed more appropriately.
 本実施の形態の超音波観測装置は、このような知見を利用して、筋繊維の走行方向の微小振動を観察可能とする情報を取得するものである。 The ultrasonic observation device of the present embodiment utilizes such knowledge to acquire information that enables observation of minute vibrations in the traveling direction of muscle fibers.
 図1は、本実施の形態における超音波観測装置1のブロック図である。 FIG. 1 is a block diagram of the ultrasonic observation device 1 according to the present embodiment.
 図2は、本実施の形態における超音波観測装置1の探触子を、超音波を送受信する前方側からみた斜視図(図2(a))、および上面図(図2(b))である。 FIG. 2 is a perspective view (FIG. 2 (a)) and a top view (FIG. 2 (b)) of the probe of the ultrasonic observation device 1 according to the present embodiment as viewed from the front side for transmitting and receiving ultrasonic waves. be.
 超音波観測装置1は、探触子101、送信器102、増幅部103、ドプラフィルタ部104、AD変換部105、取得部106、および出力部107を備えている。探触子101は、超音波送信部1011、および超音波受信部1012を有している。なお、図2(b)においては、説明の便宜上、筐体10を点線で表している。 The ultrasonic observation device 1 includes a probe 101, a transmitter 102, an amplification unit 103, a Doppler filter unit 104, an AD conversion unit 105, an acquisition unit 106, and an output unit 107. The probe 101 has an ultrasonic wave transmitting unit 1011 and an ultrasonic wave receiving unit 1012. In FIG. 2B, the housing 10 is represented by a dotted line for convenience of explanation.
 探触子101は、例えば、筐体10を有しており、この筐体10に超音波送信部1011および超音波受信部1012が取り付けられている。ただし、筐体10が不要である場合は、筐体10を省略してもよい。また、筐体10の形状や材質等は問わない。 The probe 101 has, for example, a housing 10, and an ultrasonic transmitting unit 1011 and an ultrasonic receiving unit 1012 are attached to the housing 10. However, if the housing 10 is unnecessary, the housing 10 may be omitted. Further, the shape and material of the housing 10 are not limited.
 超音波送信部1011は、送信器102からの信号に応じて、超音波を送信する。超音波送信部1011は、例えば、振動子1011aを有している。超音波送信部1011は、振動子1011aであってもよく、振動子1011aに加えて、他の回路や、後述する送信器102等を備えていてもよい。ここでは、超音波送信部1011が、1つの振動子1011aである場合を例に挙げて説明する。超音波送信部1011は、2以上の振動子や2以上の振動子で構成される振動子アレイを有していてもよい。 The ultrasonic transmission unit 1011 transmits ultrasonic waves in response to a signal from the transmitter 102. The ultrasonic wave transmitting unit 1011 has, for example, an oscillator 1011a. The ultrasonic wave transmitting unit 1011 may be a vibrator 1011a, and may include another circuit, a transmitter 102, etc., which will be described later, in addition to the vibrator 1011a. Here, a case where the ultrasonic wave transmitting unit 1011 is one oscillator 1011a will be described as an example. The ultrasonic transmission unit 1011 may have an oscillator array composed of two or more oscillators or two or more oscillators.
 超音波送信部1011は、生体の表面に対して傾斜した方向に超音波を送信する。ここでの生体は、例えば、被検体である。生体は、通常、人体であるが、人体以外の動物等であってもよい。本実施の形態の超音波観測装置1の観測対象は、例えば、生体内の筋である。ここでの生体の表面は、例えば、生体の表面の、探触子101が当接される部分である。ここでの探触子101の当接は、例えば、探触子101の一部を生体の表面に当てて接触させることであってもよい。探触子101を当接する方向は、例えば、探触子の前後方向である。 The ultrasonic wave transmission unit 1011 transmits ultrasonic waves in a direction inclined with respect to the surface of the living body. The living body here is, for example, a subject. The living body is usually a human body, but may be an animal other than the human body. The observation target of the ultrasonic observation device 1 of the present embodiment is, for example, a muscle in a living body. The surface of the living body here is, for example, a portion of the surface of the living body to which the probe 101 is in contact. The contact of the probe 101 here may be, for example, a part of the probe 101 being brought into contact with the surface of the living body. The direction in which the probe 101 is in contact is, for example, the front-back direction of the probe.
 超音波送信部1011は、例えば、生体の表面に対して傾斜した方向に超音波を送信するよう配置される。超音波送信部1011は、例えば、探触子101を生体の表面に当接させた状態で、生体の表面に対して傾斜した方向に超音波を送信するよう、筐体10に取り付けられている。例えば、超音波送信部1011は、送信面1011bから送信される超音波の送信方向が観測対象となる筋の筋繊維の走行方向に対して傾斜するよう配置される。超音波送信部1011は、例えば、探触子101を生体の表面に当接させた状態で、送信面1011bが生体の表面に対して傾斜するよう配置されている。超音波送信部1011の送信面1011bは、例えば、超音波送信部1011が有する振動子1012aの超音波を送信する面である。超音波送信部1011の送信面1011bは、例えば、超音波送信部1011が有する複数の振動子の送信面や、振動子アレイの送信面であってもよい。 The ultrasonic wave transmitting unit 1011 is arranged so as to transmit ultrasonic waves in a direction inclined with respect to the surface of a living body, for example. The ultrasonic wave transmitting unit 1011 is attached to the housing 10 so as to transmit ultrasonic waves in a direction inclined with respect to the surface of the living body, for example, with the probe 101 in contact with the surface of the living body. .. For example, the ultrasonic wave transmitting unit 1011 is arranged so that the transmitting direction of the ultrasonic wave transmitted from the transmitting surface 1011b is inclined with respect to the traveling direction of the muscle fiber of the muscle to be observed. The ultrasonic wave transmitting unit 1011 is arranged so that the transmitting surface 1011b is inclined with respect to the surface of the living body, for example, with the probe 101 in contact with the surface of the living body. The transmission surface 1011b of the ultrasonic wave transmission unit 1011 is, for example, a surface for transmitting ultrasonic waves of the vibrator 1012a included in the ultrasonic wave transmission unit 1011. The transmission surface 1011b of the ultrasonic transmission unit 1011 may be, for example, the transmission surface of a plurality of oscillators included in the ultrasonic transmission unit 1011 or the transmission surface of the oscillator array.
 超音波送信部1011は、例えば、探触子101の筐体10の前方側を、生体の表面に当接させた状態において、超音波送信部1011の送信面1011bから送信される超音波が、生体の表面に対して傾斜した方向に送信されるよう、筐体10の前方に取り付けられている。例えば、超音波送信部1011は、探触子101の筐体10の前方側を生体の表面に当接させた状態で、送信面1011bが生体の表面に対して傾斜した状態になるように、筐体10の前方に取り付けられている。 In the ultrasonic wave transmitting unit 1011 for example, the ultrasonic waves transmitted from the transmitting surface 1011b of the ultrasonic wave transmitting unit 1011 are generated in a state where the front side of the housing 10 of the probe 101 is in contact with the surface of the living body. It is attached to the front of the housing 10 so that it is transmitted in a direction inclined with respect to the surface of the living body. For example, the ultrasonic wave transmitting unit 1011 has a state in which the front side of the housing 10 of the probe 101 is in contact with the surface of the living body, and the transmitting surface 1011b is inclined with respect to the surface of the living body. It is attached to the front of the housing 10.
 なお、ここでの生体の表面に対して傾斜した方向とは、例えば、生体の表面の探触子101が当接される部分の面、およびこの面の法線に対して、0度以上の角度で傾斜している方向である。また、ここでの生体の表面は、例えば、生体の表面に接する仮想平面、又は生体の表面において探触子101が当接される部分を近似する平面であってもよい。かかることは、以下においても同様である。 The direction inclined with respect to the surface of the living body here is, for example, 0 degrees or more with respect to the surface of the portion of the surface of the living body to which the probe 101 is in contact and the normal of this surface. It is a direction that is tilted at an angle. Further, the surface of the living body here may be, for example, a virtual plane in contact with the surface of the living body, or a plane that approximates a portion of the surface of the living body to which the probe 101 is in contact. The same applies to the following.
 この実施の形態においては、筐体10の前方には、超音波送信部1011が取り付けられる当板20が設けられている。超音波送信部1011は、送信面1011bが前方を向くよう、送信面1011b側が当板20の後面に取り付けられている。この当板20の超音波送信部1011が取り付けられる部分は、探触子101の前後方向に平行な仮想平面に対して傾斜しており、これにより、この当板20の後面に対向する送信面1011bも探触子101の前後方向に対して傾斜している。なお、当板20の代わりに、超音波送信部1011の送信面1011b側が取り付けられる部分が同様に傾斜している音響レンズ(図示せず)等が設けられていてもよい。 In this embodiment, a plate 20 to which the ultrasonic transmission unit 1011 is attached is provided in front of the housing 10. The ultrasonic transmission unit 1011 is attached to the rear surface of the plate 20 with the transmission surface 1011b side facing forward so that the transmission surface 1011b faces forward. The portion of the plate 20 to which the ultrasonic transmission unit 1011 is attached is inclined with respect to a virtual plane parallel to the front-back direction of the probe 101, whereby the transmission surface facing the rear surface of the plate 20 1011b is also inclined with respect to the front-rear direction of the probe 101. In addition, instead of the plate 20, an acoustic lens (not shown) or the like may be provided in which the portion to which the transmission surface 1011b side of the ultrasonic transmission unit 1011 is attached is similarly inclined.
 超音波送信部1011が送信する超音波の送信方向は、生体内の観測対象となる筋の筋繊維の走行方向に対して、垂直とならない方向であることが好ましい。例えば、観測対象となる筋の筋繊維の走行方向と、超音波の送信方向とがなす角度のうちの小さいほうの角度が、60度以下であることが好ましく、45度以下であることがより好ましい。筋繊維の走行方向とは、例えば、筋繊維の伸びる方向である。筋繊維の走行方向は、筋繊維の接線方向と考えてもよい。 It is preferable that the transmission direction of the ultrasonic wave transmitted by the ultrasonic wave transmission unit 1011 is not perpendicular to the traveling direction of the muscle fiber of the muscle to be observed in the living body. For example, the smaller angle between the traveling direction of the muscle fiber of the muscle to be observed and the transmitting direction of ultrasonic waves is preferably 60 degrees or less, and more preferably 45 degrees or less. preferable. The running direction of the muscle fiber is, for example, the direction in which the muscle fiber extends. The running direction of the muscle fiber may be considered as the tangential direction of the muscle fiber.
 ここでの観測対象となる筋は、例えば、子宮筋であるが、これに限定されるものではない。 The muscle to be observed here is, for example, the uterine muscle, but the muscle is not limited to this.
 超音波送信部1011の振動子1011aは、例えば、筐体10に設けられたケーブル30を介して、送信器102と接続される。なお、振動子1011aは送信器102と無線で接続されてもよい。 The oscillator 1011a of the ultrasonic transmission unit 1011 is connected to the transmitter 102, for example, via a cable 30 provided in the housing 10. The oscillator 1011a may be wirelessly connected to the transmitter 102.
 超音波送信部1011は、連続的に超音波を送信してもよく、パルス状に超音波を送信してもよい。この実施の形態においては、主として超音波送信部1011が連続的に超音波を送信する場合、すなわち連続波(CW)である超音波を送信する場合を例に挙げて説明する。 The ultrasonic transmission unit 1011 may continuously transmit ultrasonic waves or may transmit ultrasonic waves in a pulse shape. In this embodiment, a case where the ultrasonic wave transmitting unit 1011 mainly continuously transmits ultrasonic waves, that is, a case where ultrasonic waves that are continuous waves (CW) are transmitted will be described as an example.
 超音波受信部1012は、超音波送信部1011が送信する超音波の反射波を受信する。超音波受信部1012は、例えば、振動子1012aを有している。超音波受信部1012は、振動子1012aであってもよく、振動子1012aに加えて、他の回路や、後述する増幅部103等を備えていてもよい。ここでは、超音波受信部1012が、1つの振動子1012aである場合について説明する。超音波受信部1012は、2以上の振動子や、2以上の振動子で構成される振動子アレイを有していてもよい。 The ultrasonic wave receiving unit 1012 receives the reflected wave of the ultrasonic wave transmitted by the ultrasonic wave transmitting unit 1011. The ultrasonic wave receiving unit 1012 has, for example, an oscillator 1012a. The ultrasonic wave receiving unit 1012 may be the oscillator 1012a, and may include other circuits, an amplification unit 103, etc., which will be described later, in addition to the oscillator 1012a. Here, a case where the ultrasonic wave receiving unit 1012 is one oscillator 1012a will be described. The ultrasonic receiving unit 1012 may have two or more oscillators or an oscillator array composed of two or more oscillators.
 超音波受信部1012は、例えば、超音波送信部1011が送信する超音波が観測対象によって反射された反射波を受信する。超音波受信部1012は、例えば、生体の表面に対して傾斜した方向から入射される反射波を受信するように、筐体10に取り付けられている。超音波受信部1012は、生体内の筋繊維で反射された超音波の反射波が入射されるように、受信面1012bが生体の表面に対して傾斜するよう配置されている。超音波受信部1012は、受信面1012bが、観測対象である生体内の筋繊維で反射された超音波の反射方向に対して垂直となるよう配置されている。超音波受信部1012の受信面1012bは、例えば、超音波受信部1012が有する振動子1012aの超音波を受信する面である。超音波受信部1012の受信面1012bは、例えば、超音波受信部1012が有する複数の振動子の超音波を受信する面や、複数の振動子アレイの受信面であってもよい。 The ultrasonic wave receiving unit 1012 receives, for example, a reflected wave in which the ultrasonic wave transmitted by the ultrasonic wave transmitting unit 1011 is reflected by the observation target. The ultrasonic wave receiving unit 1012 is attached to the housing 10 so as to receive, for example, a reflected wave incident from a direction inclined with respect to the surface of the living body. The ultrasonic receiving unit 1012 is arranged so that the receiving surface 1012b is inclined with respect to the surface of the living body so that the reflected wave of the ultrasonic waves reflected by the muscle fibers in the living body is incident. The ultrasonic wave receiving unit 1012 is arranged so that the receiving surface 1012b is perpendicular to the reflection direction of the ultrasonic wave reflected by the muscle fiber in the living body to be observed. The receiving surface 1012b of the ultrasonic wave receiving unit 1012 is, for example, a surface for receiving the ultrasonic waves of the vibrator 1012a included in the ultrasonic wave receiving unit 1012. The receiving surface 1012b of the ultrasonic wave receiving unit 1012 may be, for example, a surface for receiving ultrasonic waves of a plurality of vibrators included in the ultrasonic wave receiving unit 1012, or a receiving surface of a plurality of vibrator arrays.
 例えば、超音波受信部1012は、探触子101の筐体10の前方側を生体の表面に当接させた状態において、生体内の観測対象で反射された超音波送信部1011が送信する超音波の反射波が受信面1012bに入射されるように、筐体10の前方に取り付けられている。例えば、超音波受信部1012は、探触子101の筐体10の前方側を生体の表面に当接させた状態で、受信面1012bが生体の表面に対して、傾斜しているよう筐体10の前方に取り付けられている。 For example, the ultrasonic wave receiving unit 1012 transmits the ultrasonic wave transmitting unit 1011 reflected by the observation target in the living body in a state where the front side of the housing 10 of the probe 101 is in contact with the surface of the living body. It is attached to the front of the housing 10 so that the reflected wave of the sound wave is incident on the receiving surface 1012b. For example, the ultrasonic receiving unit 1012 has a housing in which the receiving surface 1012b is inclined with respect to the surface of the living body in a state where the front side of the housing 10 of the probe 101 is in contact with the surface of the living body. It is attached to the front of 10.
 ここでは、上述した当板20の超音波受信部1012の受信面1012bが取り付けられる部分が、探触子101の前後方向に平行な仮想平面に対して傾斜しており、超音波受信部1012は、受信面1012bが前方を向くよう、受信面1012b側が当板20の後面に取り付けられている。これにより、当板20の後面に対向する送信面1011bも探触子101の前後方向に対して傾斜している。 Here, the portion to which the receiving surface 1012b of the ultrasonic receiving unit 1012 of the plate 20 is attached is inclined with respect to the virtual plane parallel to the front-back direction of the probe 101, and the ultrasonic receiving unit 1012 is The receiving surface 1012b is attached to the rear surface of the plate 20 so that the receiving surface 1012b faces forward. As a result, the transmission surface 1011b facing the rear surface of the plate 20 is also inclined with respect to the front-rear direction of the probe 101.
 この実施の形態においては、送信面1011bおよび受信面1012bが、探触子101の前後方向に対して平行な仮想平面に対して面対称となるよう超音波送信部1011および超音波受信部1012が探触子101の前方側に取り付けられている。また、送信面1011bおよび受信面1012bの仮想平面に近い部分ほど探触子101の後方に位置するよう、送信面1011bおよび受信面1012bが上記の仮想平面に対して傾斜している。仮想平面は、探触子101の幅方向の中心をとおる仮想平面であることが好ましい。仮想平面は、例えば、探触子101の前方を生体の表面に当接させた場合に、この生体表面に対して垂直となる仮想平面であってもよい。 In this embodiment, the ultrasonic transmission unit 1011 and the ultrasonic reception unit 1012 are arranged so that the transmission surface 1011b and the reception surface 1012b are plane-symmetrical with respect to a virtual plane parallel to the front-back direction of the probe 101. It is attached to the front side of the probe 101. Further, the transmission surface 1011b and the reception surface 1012b are inclined with respect to the above virtual plane so that the portion closer to the virtual plane of the transmission surface 1011b and the reception surface 1012b is located behind the probe 101. The virtual plane is preferably a virtual plane that passes through the center of the probe 101 in the width direction. The virtual plane may be, for example, a virtual plane that is perpendicular to the surface of the living body when the front surface of the probe 101 is brought into contact with the surface of the living body.
 具体的には、当板20は、中心部分が、後方に向かって凸となるよう左右が折れ曲がった形状を有している。折れ曲がった当板20の後面の左右の一方に超音波送信部1011が取り付けられている。また、当板20の後面の左右の他方に超音波受信部1012が取り付けられている。超音波送信部1011および超音波受信部1012は、送信面1011bと受信面1012bとが探触子101の前方側となるよう取り付けられている。 Specifically, the plate 20 has a shape in which the left and right sides are bent so that the central portion is convex toward the rear. An ultrasonic transmission unit 1011 is attached to one of the left and right sides of the rear surface of the bent plate 20. Further, the ultrasonic receiving unit 1012 is attached to the left and right sides of the rear surface of the plate 20. The ultrasonic wave transmitting unit 1011 and the ultrasonic wave receiving unit 1012 are attached so that the transmitting surface 1011b and the receiving surface 1012b are on the front side of the probe 101.
 なお、送信面1011bと受信面1012bとのサイズが異なる場合には、例えば、それぞれの面の中心部分が面対称となるよう配置することが、送信面1011bと受信面1012bとを面対称に配置することとに相当する。かかることは、以下においても同様である。なお、当板20の代わりに、超音波送信部1011の送信面1011bおよび超音波受信部1012の受信面1012bがそれぞれ取り付けられる部分が、上記の当板20と同様に傾斜している音響レンズ(図示せず)が設けられていてもよい。 When the sizes of the transmitting surface 1011b and the receiving surface 1012b are different, for example, the central portion of each surface is arranged so as to be plane-symmetrical, so that the transmitting surface 1011b and the receiving surface 1012b are arranged plane-symmetrically. Equivalent to doing. The same applies to the following. In addition, instead of the plate 20, the portions to which the transmission surface 1011b of the ultrasonic transmission unit 1011 and the reception surface 1012b of the ultrasonic reception unit 1012 are attached are inclined in the same manner as the plate 20. (Not shown) may be provided.
 なお、当板20、振動子1011aの送信面1011b、および振動子1012aの受信面1012bの平面形状やサイズ等はどのような形状やサイズであってもよい。また、筐体10のサイズは形状等も問わない。 The planar shape and size of the plate 20, the transmitting surface 1011b of the vibrator 1011a, and the receiving surface 1012b of the vibrator 1012a may be any shape and size. Further, the size of the housing 10 is not limited to the shape or the like.
 超音波受信部1012の振動子は、例えば、筐体10に設けられたケーブル30を介して、増幅部103と接続される。なお、超音波受信部1012の振動子と増幅部103とは無線で接続されてもよい。 The oscillator of the ultrasonic wave receiving unit 1012 is connected to the amplification unit 103 via, for example, a cable 30 provided in the housing 10. The oscillator of the ultrasonic wave receiving unit 1012 and the amplification unit 103 may be wirelessly connected.
 なお、上記で説明した超音波送信部1011と超音波受信部1012との筐体10への取り付け方や配置等は一例であり、上記のような取り付け方等に限定されるものではない。また、上記で説明した筐体10の形状や構造等は一例であり、上記のような形状や構造に限定されるものではない。 The method of attaching and arranging the ultrasonic wave transmitting unit 1011 and the ultrasonic wave receiving unit 1012 to the housing 10 described above is an example, and is not limited to the above-mentioned mounting method. Further, the shape, structure, and the like of the housing 10 described above are examples, and are not limited to the above-mentioned shape and structure.
 例えば、超音波送信部1011が送信する超音波の周波数は2MHz以上3MHz以下であり、目的領域の関心部位における照射密度は、例えば、2mW/cm以上10mW/cm以下程度である。ただし、この超音波は、一例であり、超音波送信部1011が送信する超音波は、このような超音波に限定されるものではない。 For example, the frequency of the ultrasonic wave transmitted by the ultrasonic wave transmitting unit 1011 is 2 MHz or more and 3 MHz or less, and the irradiation density in the region of interest in the target region is, for example, about 2 mW / cm 2 or more and 10 mW / cm 2 or less. However, this ultrasonic wave is an example, and the ultrasonic wave transmitted by the ultrasonic wave transmitting unit 1011 is not limited to such an ultrasonic wave.
 なお、探触子101は、生体の表面に対して90度以外の角度に傾斜した方向に超音波を送信することから、斜角入射探触子と考えてもよい。 Since the probe 101 transmits ultrasonic waves in a direction inclined at an angle other than 90 degrees with respect to the surface of the living body, it may be considered as a bevel incident probe.
 送信器102は、超音波を発生させるための信号を生成し、超音波送信部1011に送信する。例えば、送信器102は、超音波を発生させるための信号を、超音波送信部1011が有する1または2以上の振動子に送信する。送信器102は、例えば、発振器等を有していてもよい。また、送信器102は、発生した信号を増幅するアンプ(図示せず)や、他の回路等を有していてもよい。送信器102は、例えば、連続した超音波を発生させるための信号を生成してもよく、パルス状の超音波を発生させるための信号を生成してもよい。 The transmitter 102 generates a signal for generating an ultrasonic wave and transmits it to the ultrasonic wave transmission unit 1011. For example, the transmitter 102 transmits a signal for generating ultrasonic waves to one or more oscillators included in the ultrasonic transmission unit 1011. The transmitter 102 may have, for example, an oscillator or the like. Further, the transmitter 102 may have an amplifier (not shown) for amplifying the generated signal, another circuit, or the like. The transmitter 102 may, for example, generate a signal for generating continuous ultrasonic waves, or may generate a signal for generating pulsed ultrasonic waves.
 送信器102が送信する信号に応じて、超音波送信部1011の振動子1011aが超音波を発生し、発生した超音波が送信面1011bから送信される。また、超音波送信部1011が複数の振動子や振動子アレイを有する場合、送信器102は、各振動子に対して超音波を発生させるための信号を送信してもよく、各振動子に対して送信する信号の遅延時間等を制御してもよい。ただし、送信器102の構成は、このような構成に限定されるものではない。なお、探触子101が送信器102を有していてもよく、超音波送信部1011が、送信器102を有しているようにしてもよい。 In response to the signal transmitted by the transmitter 102, the vibrator 1011a of the ultrasonic transmission unit 1011 generates an ultrasonic wave, and the generated ultrasonic wave is transmitted from the transmission surface 1011b. Further, when the ultrasonic transmission unit 1011 has a plurality of oscillators or oscillator arrays, the transmitter 102 may transmit a signal for generating ultrasonic waves to each oscillator, and the transmitter 102 may transmit a signal to each oscillator. On the other hand, the delay time of the signal to be transmitted may be controlled. However, the configuration of the transmitter 102 is not limited to such a configuration. The probe 101 may have a transmitter 102, and the ultrasonic transmitter 1011 may have a transmitter 102.
 増幅部103は、超音波受信部1012が受信した反射波に応じて出力する信号を増幅する。例えば、増幅部103は、超音波受信部1012の振動子1012aが、受信した反射波に応じて出力する信号を増幅する。例えば、増幅部103は、振動子が出力する信号を増幅するアンプである。増幅部103は、ローノイズアンプであることが好ましい。増幅部103は、例えば、超音波受信部1012の振動子1012aに連続的に入射された反射波に応じて、振動子1012aが連続的に出力する信号を増幅してもよく、異なる時期ごとに入射された反射波に応じて、振動子1012aが出力する信号を増幅してもよい。 The amplification unit 103 amplifies the signal output according to the reflected wave received by the ultrasonic wave reception unit 1012. For example, the amplification unit 103 amplifies the signal output by the vibrator 1012a of the ultrasonic wave reception unit 1012 according to the received reflected wave. For example, the amplification unit 103 is an amplifier that amplifies the signal output by the vibrator. The amplification unit 103 is preferably a low noise amplifier. The amplification unit 103 may amplify the signal continuously output by the vibrator 1012a according to the reflected wave continuously incident on the vibrator 1012a of the ultrasonic wave reception unit 1012, for example, at different times. The signal output by the vibrator 1012a may be amplified according to the incident reflected wave.
 超音波受信部1012が複数の振動子や振動子アレイを有する場合、各振動子が反射波を受信して出力する信号をそれぞれ個別に増幅してもよい。また、増幅部103は、さらに、受信した信号の遅延時間等を制御してもよい。ただし、増幅部103の構成は、このような構成に限定されるものではない。 When the ultrasonic wave receiving unit 1012 has a plurality of oscillators or oscillator arrays, the signals received and output by each oscillator may be individually amplified. Further, the amplification unit 103 may further control the delay time of the received signal and the like. However, the configuration of the amplification unit 103 is not limited to such a configuration.
 なお、探触子101が、増幅部103を有しているようにしてもよく、超音波受信部1012が、増幅部103を有しているようにしてもよい。また、ドプラフィルタ部104が、超音波受信部1012の振動子1012aにより取得された信号自体からドプラ信号を抽出する場合、増幅部103が設けられていなくてもよい。また、増幅部103は、増幅前の信号や増幅後の信号に対して、予め決められた処理を行うための回路(図示せず)等を備えていてもよい。 The probe 101 may have the amplification unit 103, or the ultrasonic wave reception unit 1012 may have the amplification unit 103. Further, when the Doppler filter unit 104 extracts the Doppler signal from the signal itself acquired by the vibrator 1012a of the ultrasonic wave receiving unit 1012, the amplification unit 103 may not be provided. Further, the amplification unit 103 may include a circuit (not shown) or the like for performing predetermined processing on the signal before amplification and the signal after amplification.
 ドプラフィルタ部104は、探触子101の超音波受信部1012が受信した反射波の中から、そのドプラ成分を抽出する。ここでのドプラ信号は、例えば、観測したい対象物の運動に呼応して発生するドプラ現象に対応する周波数範囲のドプラシフト成分である。 The Doppler filter unit 104 extracts the Doppler component from the reflected wave received by the ultrasonic wave receiving unit 1012 of the probe 101. The Doppler signal here is, for example, a Doppler shift component in the frequency range corresponding to the Doppler phenomenon generated in response to the motion of the object to be observed.
 ドプラフィルタ部104は、例えば、ドプラ成分に対応する周波数の信号を通過させ、ドプラ成分に対応する周波数の信号以外を通過させないバンドパスフィルタである。ドプラフィルタ部104は、筋繊維の振動に伴うドプラ成分の周波数(すなわちドプラ周波数)よりも低い、組織動揺クラッタに起因する超低周波成分と、筋繊維の振動に伴うドプラ成分の周波数よりも高い高周波成分とを除去するバンドパスフィルタである。ドプラフィルタ部104は、超音波送信部1011が送信した超音波の周波数の帯域を除去する帯域除去フィルタと、帯域除去フィルタの後段に設けられた、上記のバンドパスフィルタとを有してもよい。ここでは、例えば、ドプラフィルタ部104が、超音波受信部1012が受信した反射波を増幅部103が増幅した信号からドプラ信号を抽出する場合について説明する。 The Doppler filter unit 104 is, for example, a bandpass filter that passes a signal having a frequency corresponding to the Doppler component and does not pass a signal having a frequency corresponding to the Doppler component. The Doppler filter unit 104 is lower than the frequency of the Doppler component due to the vibration of the muscle fiber (that is, the Doppler frequency), and is higher than the frequency of the infrasound component caused by the tissue shaking clutter and the frequency of the Doppler component due to the vibration of the muscle fiber. It is a bandpass filter that removes high frequency components. The Doppler filter unit 104 may have a band removal filter that removes the band of the ultrasonic frequency transmitted by the ultrasonic wave transmission unit 1011 and the above-mentioned bandpass filter provided after the band removal filter. .. Here, for example, a case where the Doppler filter unit 104 extracts the Doppler signal from the signal amplified by the amplification unit 103 from the reflected wave received by the ultrasonic wave reception unit 1012 will be described.
 超音波受信部1012が複数の振動子や振動子アレイを有する場合、ドプラフィルタ部104は、複数の振動子や振動子アレイを構成する各振動子が出力した信号であって、増幅部103が増幅した信号について、ドプラ信号を抽出してもよい。ドプラフィルタ部104からの出力は、例えば、ある注目するドプラシフト周波数の成分に対して同相(i)および直交(q)の1対をなす複素信号であってもよい。なお、ドプラフィルタ部104の構成等は上記のような構成に限定されるものではない。反射波の時間的な変化分を示すドプラ信号を取得する構成については、公知技術であるため、詳細な説明は省略する。 When the ultrasonic receiving unit 1012 has a plurality of oscillators and oscillator arrays, the Doppler filter unit 104 is a signal output by each oscillator constituting the plurality of oscillators and oscillator arrays, and the amplification unit 103 The Doppler signal may be extracted from the amplified signal. The output from the Doppler filter unit 104 may be, for example, a complex signal that forms a pair of common mode (i) and orthogonal (q) with respect to a component of a certain Doppler shift frequency of interest. The configuration of the Doppler filter unit 104 is not limited to the above configuration. Since the configuration for acquiring the Doppler signal indicating the temporal change of the reflected wave is a known technique, detailed description thereof will be omitted.
 AD変換部105は、ドプラフィルタ部104の出力をA/D変換する。例えば、ドプラフィルタ部104が出力するアナログ信号であるドプラ信号をデジタル信号に変換する。AD変換部105は、例えば、変換により取得したデジタル信号を、取得部106及び出力部107に出力する。AD変換部105は、例えば、変換により取得したデジタル信号を、格納部(図示せず)等に蓄積してもよい。なお、ドプラ信号のA/D変換が不要である場合、AD変換部105が設けられていなくてもよい。 The AD conversion unit 105 A / D-converts the output of the Doppler filter unit 104. For example, the Doppler signal, which is an analog signal output by the Doppler filter unit 104, is converted into a digital signal. The AD conversion unit 105 outputs, for example, the digital signal acquired by the conversion to the acquisition unit 106 and the output unit 107. The AD conversion unit 105 may, for example, store the digital signal acquired by the conversion in a storage unit (not shown) or the like. If A / D conversion of the Doppler signal is unnecessary, the AD conversion unit 105 may not be provided.
 取得部106は、ドプラフィルタ部104が抽出したドプラ信号から、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を取得する。例えば、取得部106は、ドプラフィルタ部104が取得したドプラ信号であって、AD変換部105がA/D変換したドプラ信号から上記のようなサイドバンド周波数帯域の信号を取得する。ここでの筋繊維は、例えば、観測対象となる子宮筋等の筋の筋繊維である。取得部106が取得する筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号は、例えば、ドプラ信号の低周波側のサイドバンド周波数帯域の信号である。 The acquisition unit 106 acquires a sideband frequency band signal indicating minute vibration in the traveling direction of the muscle fiber from the Doppler signal extracted by the Doppler filter unit 104. For example, the acquisition unit 106 acquires a Doppler signal acquired by the Doppler filter unit 104, and the AD conversion unit 105 acquires a signal in the sideband frequency band as described above from the A / D converted Doppler signal. The muscle fiber here is, for example, a muscle fiber of a muscle such as a uterine muscle to be observed. The sideband frequency band signal indicating the minute vibration in the traveling direction of the muscle fiber acquired by the acquisition unit 106 is, for example, a signal in the sideband frequency band on the low frequency side of the Doppler signal.
 取得部106は、例えば、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号として、5Hzから100Hzまでの周波数帯域の信号を取得する。例えば、観測に用いる超音波周波数が、3MHzであり、観測対象となる筋への入射角(例えば、筋繊維の接線に対する入射角)を45度とした場合、取得部106は、ドプラフィルタ部104が抽出したドプラ信号から、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号として、たとえば5Hzから100Hzまでの周波数帯の信号を取得することが好ましい。 The acquisition unit 106 acquires, for example, a signal in the frequency band from 5 Hz to 100 Hz as a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber. For example, when the ultrasonic frequency used for observation is 3 MHz and the angle of incidence on the muscle to be observed (for example, the angle of incidence on the tangent of the muscle fiber) is 45 degrees, the acquisition unit 106 is the Doppler filter unit 104. It is preferable to acquire a signal in a frequency band from, for example, 5 Hz to 100 Hz as a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber from the Doppler signal extracted by.
 なお、ドプラ信号等から、所望の周波数帯の信号を選択的に取得する処理および構成については、公知技術であるため、詳細な説明を省略する。 Since the process and configuration for selectively acquiring a signal in a desired frequency band from a Doppler signal or the like is a known technique, detailed description thereof will be omitted.
 出力部107は、取得部106が取得したサイドバンド周波数帯域の信号を出力する。例えば、出力部107は、取得部106が取得したサイドバンド周波数帯域の信号をそのまま出力してもよい。また、出力部107は、取得部106が取得したサイドバンド周波数帯域の信号を用いて、所望の出力用の情報を取得し、取得した出力用の情報を出力してもよい。所望の出力用の情報は、例えば、取得部106が取得した信号の周波数分布や出力等の経時的な変化を示すグラフ等の情報、サイドバンド周波数帯域の信号の周波数スペクトラム、又は周波数スペクトラムの推移等を示す情報等であるが、これらの情報に限定されるものではない。 The output unit 107 outputs a signal in the sideband frequency band acquired by the acquisition unit 106. For example, the output unit 107 may output the signal of the sideband frequency band acquired by the acquisition unit 106 as it is. Further, the output unit 107 may acquire information for desired output by using the signal of the sideband frequency band acquired by the acquisition unit 106, and may output the acquired information for output. The information for the desired output is, for example, information such as a graph showing changes over time in the frequency distribution and output of the signal acquired by the acquisition unit 106, the frequency spectrum of the signal in the sideband frequency band, or the transition of the frequency spectrum. Information indicating, etc., but is not limited to this information.
 出力部107は、取得部106が取得した信号に対して、予め決められた評価を行い、この評価結果を示す情報等を出力してもよい。例えば、取得部106が取得した信号の出力レベルが、閾値以上である場合に、出力部107が、所望の情報を出力してもよい。出力部107は、このような情報を取得するための処理部(図示せず)等を有していてもよい。信号を用いて周波数スペクトラム等の所望の情報を取得する処理は、公知技術であるため、ここでは詳細な説明を省略する。 The output unit 107 may perform a predetermined evaluation on the signal acquired by the acquisition unit 106 and output information or the like indicating the evaluation result. For example, when the output level of the signal acquired by the acquisition unit 106 is equal to or higher than the threshold value, the output unit 107 may output desired information. The output unit 107 may have a processing unit (not shown) or the like for acquiring such information. Since the process of acquiring desired information such as a frequency spectrum using a signal is a known technique, detailed description thereof will be omitted here.
 ここでの「出力」は、モニタ(図示せず)等への表示、プロジェクタを用いた投影、プリンタを用いて印刷、音出力、外部の装置への送信、記録媒体への蓄積、他の処理装置や他のプログラムなどへの処理結果の引渡しなどを含む概念である。出力部107は、モニタやスピーカー、プリンタ等の出力デバイスを含むと考えても含まないと考えても良い。出力部107は、出力デバイスのドライバーソフトまたは、出力デバイスのドライバーソフトと出力デバイス等で実現される。 "Output" here means display on a monitor (not shown), projection using a projector, printing using a printer, sound output, transmission to an external device, storage on a recording medium, and other processing. It is a concept that includes delivery of processing results to devices and other programs. The output unit 107 may or may not include an output device such as a monitor, a speaker, or a printer. The output unit 107 is realized by the driver software of the output device, the driver software of the output device, the output device, and the like.
 次に、超音波観測装置1の動作の一例について図3のフローチャートを用いて説明する。 Next, an example of the operation of the ultrasonic observation device 1 will be described using the flowchart of FIG.
 (ステップS101)送信器102が、超音波を発生させるための信号の生成、および生成した信号の超音波送信部1011への送信を開始する。例えば、送信器102は、図示しない受付部等が受け付けたユーザからの操作に応じて、上記の生成および送信を開始する。 (Step S101) The transmitter 102 starts generating a signal for generating an ultrasonic wave and transmitting the generated signal to the ultrasonic wave transmitting unit 1011. For example, the transmitter 102 starts the above generation and transmission in response to an operation from a user received by a reception unit or the like (not shown).
 (ステップS102)探触子101の超音波送信部1011が、送信器102から送信される信号に応じて、超音波の送信を開始する。例えば、超音波送信部1011が有する振動子1011aから、観測対象となる筋を有する生体の表面に対して傾斜した角度で超音波が送信され、観測対象となる筋に対して傾斜した角度で超音波が送信される。 (Step S102) The ultrasonic transmission unit 1011 of the probe 101 starts transmission of ultrasonic waves in response to the signal transmitted from the transmitter 102. For example, ultrasonic waves are transmitted from the vibrator 1011a of the ultrasonic transmission unit 1011 at an inclined angle with respect to the surface of a living body having a muscle to be observed, and the ultrasonic wave is transmitted at an inclined angle with respect to the muscle to be observed. Sound waves are transmitted.
 (ステップS103)探触子101の超音波受信部1012は、ステップS102で送信される超音波の、観測対象となる筋による反射波の受信を開始する。 (Step S103) The ultrasonic wave receiving unit 1012 of the probe 101 starts receiving the reflected wave of the ultrasonic wave transmitted in step S102 by the muscle to be observed.
 (ステップS104)増幅部103は、ステップS103で超音波受信部1012が受信した反射波に応じて出力する信号を増幅する。例えば、増幅部103は、超音波受信部1012が有する振動子1012aの出力を増幅する。 (Step S104) The amplification unit 103 amplifies the signal output according to the reflected wave received by the ultrasonic wave reception unit 1012 in step S103. For example, the amplification unit 103 amplifies the output of the vibrator 1012a included in the ultrasonic wave reception unit 1012.
 (ステップS105)ドプラフィルタ部104は、ステップS104で増幅部103が増幅した信号から、ドプラ信号を抽出する。 (Step S105) The Doppler filter unit 104 extracts the Doppler signal from the signal amplified by the amplification unit 103 in step S104.
 (ステップS106)AD変換部105は、ステップS105で取得するドプラ信号に対してA/D変換を行う。 (Step S106) The AD conversion unit 105 performs A / D conversion on the Doppler signal acquired in step S105.
 (ステップS107)取得部106は、ステップS105で取得され、ステップS106でA/D変換されたドプラ信号から、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を取得する。 (Step S107) The acquisition unit 106 acquires a sideband frequency band signal indicating minute vibration in the traveling direction of the muscle fiber from the Doppler signal acquired in step S105 and A / D converted in step S106.
 (ステップS108)出力部107は、ステップS107で取得した信号を出力する。 (Step S108) The output unit 107 outputs the signal acquired in step S107.
 (ステップS109)超音波観測装置1は、図示しない受付部等が、超音波の送信を終了する指示を受け付けたか判断する。受け付けた場合、上記の各処理を終了し、受け付けていない場合、ステップS107に戻る。 (Step S109) The ultrasonic observation device 1 determines whether the reception unit or the like (not shown) has received an instruction to end the transmission of ultrasonic waves. If it is accepted, each of the above processes is terminated, and if it is not accepted, the process returns to step S107.
 なお、ステップS104からステップS106までの処理は、超音波受信部1012が順次反射波を受信して出力する信号に応じて、連続して行われるようにしてもよい。 The processing from step S104 to step S106 may be continuously performed according to the signal that the ultrasonic wave receiving unit 1012 sequentially receives and outputs the reflected wave.
 以下、本実施の形態における超音波観測装置1を用いて行われる観測の具体的な動作について、一例をあげて説明する。ここでは、観測対象となる筋が、人体の下肢の腓腹筋である場合を例に挙げて説明する。 Hereinafter, a specific operation of the observation performed by using the ultrasonic observation device 1 in the present embodiment will be described with an example. Here, the case where the muscle to be observed is the gastrocnemius muscle of the lower limbs of the human body will be described as an example.
 図4(a)および図4(b)は探触子101を、人体の表面に当接させ、超音波を送信している状態を説明するための図である。 FIGS. 4 (a) and 4 (b) are diagrams for explaining a state in which the probe 101 is brought into contact with the surface of the human body and ultrasonic waves are transmitted.
 まず、図4(a)に示すように、探触子101の前方の折れ曲がった当板20の、前方に突き出ている両側の部分を、人体40の下肢の後ろ側の、腓腹筋41が位置する部分の体表40aに当てる。そして、この状態で、探触子101のユーザが図示しないスイッチ等を操作して、送信器102に、超音波を発生させるための信号を送信する指示を与えると、送信器102が、超音波を発生させるための信号の生成と、生成した信号の超音波送信部1011への連続的な送信を開始する。この信号に応じて、超音波送信部1011の振動子1011aが超音波を連続的に送信する。 First, as shown in FIG. 4A, the gastrocnemius muscle 41, which is behind the lower limbs of the human body 40, is located on both sides of the bent plate 20 in front of the probe 101, which protrudes forward. It hits the body surface 40a of the part. Then, in this state, when the user of the probe 101 operates a switch or the like (not shown) to give an instruction to transmit a signal for generating ultrasonic waves to the transmitter 102, the transmitter 102 emits ultrasonic waves. The generation of the signal for generating the above signal and the continuous transmission of the generated signal to the ultrasonic transmission unit 1011 are started. In response to this signal, the oscillator 1011a of the ultrasonic transmission unit 1011 continuously transmits ultrasonic waves.
 ここでは、超音波送信部1011の送信面1011bから連続的に送信される超音波45が、体表40aに対して傾斜して送信されるよう、超音波送信部1011が探触子101に取り付けられているとする。また、超音波送信部1011から送信された超音波45のうちの、人体40の表面から約2~3cmの深さの腓腹筋41で反射された超音波が、反射波46として、超音波受信部1012の受信面1012bに受信されるよう、超音波送信部1011および超音波受信部1012の取り付け位置、並びに送信面1011bおよび受信面1012bの取り付け角度が、調整されているものとする。送信面1011bおよび受信面1012bの取り付け角度の調整は、例えば、当板20の折り曲げられる角度等の調整と考えてもよい。 Here, the ultrasonic transmission unit 1011 is attached to the probe 101 so that the ultrasonic waves 45 continuously transmitted from the transmission surface 1011b of the ultrasonic transmission unit 1011 are transmitted at an angle with respect to the body surface 40a. It is assumed that it has been done. Further, among the ultrasonic waves 45 transmitted from the ultrasonic transmission unit 1011 and the ultrasonic waves reflected by the abdominal muscle 41 at a depth of about 2 to 3 cm from the surface of the human body 40, the ultrasonic waves are reflected as the reflected wave 46 and are the ultrasonic reception unit. It is assumed that the mounting positions of the ultrasonic transmitting unit 1011 and the ultrasonic receiving unit 1012, and the mounting angles of the transmitting surface 1011b and the receiving surface 1012b are adjusted so that the ultrasonic waves are received by the receiving surface 1012b of the 1012. The adjustment of the mounting angles of the transmitting surface 1011b and the receiving surface 1012b may be considered as, for example, adjusting the bending angle of the plate 20 and the like.
 このため、図4(b)に示すように、超音波送信部1011から送信された超音波45が、人体40の体表40aから2~3cmの深さに位置する腓腹筋41の筋繊維の走行方向に対して90度以外の角度で傾斜した角度で入射され、その一部が、腓腹筋41で反射され、反射波46が超音波送信部1011の受信面1012bに入射される。 Therefore, as shown in FIG. 4B, the ultrasonic wave 45 transmitted from the ultrasonic wave transmitting unit 1011 runs the muscle fiber of the gastrocnemius muscle 41 located at a depth of 2 to 3 cm from the body surface 40a of the human body 40. It is incident at an angle inclined at an angle other than 90 degrees with respect to the direction, a part thereof is reflected by the gastrocnemius muscle 41, and the reflected wave 46 is incident on the receiving surface 1012b of the ultrasonic transmission unit 1011.
 超音波受信部1012の振動子1012aは、受信面1012bに入射された反射波46に応じて、信号を出力する。増幅部103は、振動子1012aが出力する信号を増幅する。ドプラフィルタ部104は、増幅部103が増幅した信号から、ドプラ信号を抽出する。AD変換部105は、ドプラフィルタ部104が抽出したドプラ信号をA/D変換する。 The oscillator 1012a of the ultrasonic wave receiving unit 1012 outputs a signal according to the reflected wave 46 incident on the receiving surface 1012b. The amplification unit 103 amplifies the signal output by the vibrator 1012a. The Doppler filter unit 104 extracts a Doppler signal from the signal amplified by the amplification unit 103. The AD conversion unit 105 A / D-converts the Doppler signal extracted by the Doppler filter unit 104.
 取得部106は、A/D変換されたドプラ信号から、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を取得する。ここでは、取得部106は、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号として、5Hzから50Hzまでの範囲の周波数帯の信号を取得する。そして、出力部107は、取得した信号のデータを出力する。例えば、出力部107は、取得した信号を用いて、周波数スペクトラムの推移を示す情報(例えば、推移を示すグラフの情報等)を取得し、取得したデータを、格納部(図示せず)に蓄積する。また、取得した信号のデータを、モニタ(図示せず)等に表示する。 The acquisition unit 106 acquires a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber from the A / D converted Doppler signal. Here, the acquisition unit 106 acquires a signal in a frequency band in the range of 5 Hz to 50 Hz as a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber. Then, the output unit 107 outputs the data of the acquired signal. For example, the output unit 107 acquires information indicating a transition of the frequency spectrum (for example, information of a graph showing the transition) using the acquired signal, and stores the acquired data in a storage unit (not shown). do. In addition, the acquired signal data is displayed on a monitor (not shown) or the like.
 図5は、取得部106が取得する筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を説明するための、AD変換部105がA/D変換したドプラ信号のうちの、低周波域のドプラ信号の周波数スペクトラムの推移を示す図(図5(a))、および、低周波域のドプラ信号の信号振幅の推移を示す図(図5(b))である。図5においては、横軸は経過時間を示しており、ここでは、同じ6秒間の区間内におけるドプラ信号の周波数スペクトラムの推移および信号振幅の推移を、時間軸が一致するよう、上下に並べてそれぞれ示している。図5(a)においては、縦軸は周波数(Hz)を示し、図5(b)においては、縦軸は信号電圧を示している。 FIG. 5 shows the low frequency of the Doppler signals A / D converted by the AD conversion unit 105 for explaining the sideband frequency band signal indicating the minute vibration in the traveling direction of the muscle fiber acquired by the acquisition unit 106. It is a figure which shows the transition of the frequency spectrum of the Doppler signal of a region (FIG. 5 (a)), and the figure which shows the transition of the signal amplitude of a Doppler signal of a low frequency region (FIG. 5 (b)). In FIG. 5, the horizontal axis indicates the elapsed time, and here, the transition of the frequency spectrum and the transition of the signal amplitude of the Doppler signal within the same 6-second interval are arranged one above the other so that the time axes match. Shows. In FIG. 5A, the vertical axis indicates frequency (Hz), and in FIG. 5B, the vertical axis indicates signal voltage.
 例えば、図5(b)の区間51は、腓腹筋41に力を入れ始めた区間を示し、区間52は、腓腹筋41から力を抜く区間を示しているものとする。区間51の始まりから、区間52の終了までの区間53は、腓腹筋41に力を入れている区間を示しているものとする。図5の区間53内の出力が、腓腹筋に力を入れている間だけにみられる筋肉の微小振動のドプラ成分を示しており、区間51および区間52は、筋肉が移動するために生ずる並進運動のドプラ成分である。この図5(b)の周波数スペクトラムの推移から、筋繊維の走行方向の微小運動の成分は、およそ5Hz~50Hz程度であることがわかる。従って、上述した知見が示すように、5Hz~100Hzまでのサイドバンド周波数帯域の信号を取得することにより、筋繊維の走行方向の微小振動を示す信号を取得できることがわかる。従って、このような周波数帯の情報を取得し、出力することで、筋繊維の走行方向の微小振動を観測することができることがわかる。 For example, it is assumed that the section 51 in FIG. 5B shows a section in which the force is started to be applied to the gastrocnemius muscle 41, and the section 52 indicates a section in which the force is released from the gastrocnemius muscle 41. It is assumed that the section 53 from the beginning of the section 51 to the end of the section 52 indicates a section in which the gastrocnemius muscle 41 is being emphasized. The output in section 53 of FIG. 5 shows the Doppler component of the microvibration of the muscle that is seen only while exerting force on the gastrocnemius muscle, and section 51 and section 52 are translational movements caused by the movement of the muscle. It is a Doppler component of. From the transition of the frequency spectrum in FIG. 5B, it can be seen that the component of the minute movement of the muscle fiber in the traveling direction is about 5 Hz to 50 Hz. Therefore, as shown by the above-mentioned findings, it can be seen that by acquiring a signal in the sideband frequency band from 5 Hz to 100 Hz, a signal indicating minute vibration in the traveling direction of the muscle fiber can be acquired. Therefore, it can be seen that by acquiring and outputting the information of such a frequency band, it is possible to observe minute vibrations in the traveling direction of the muscle fibers.
 なお、この具体例においては、腓腹筋41を観測できるよう、人体40の体表40aから深さ2~3cmの深さに照射した超音波の反射波を、超音波受信部1012が受信できるよう、探触子101の送信面1011bおよび受信面1012bの角度等を設定したが、本発明は、このような構成に限定されない。探触子101の送信面1011bおよび受信面1012bの角度は、観測対象の筋繊維の走行方向に対して、90度以外の角度で傾斜した方向に超音波が照射されるとともに、観測対象の筋繊維で反射された超音波の反射波を超音波受信部1012が受信できるように設定されていればよい。 In this specific example, the ultrasonic wave receiving unit 1012 can receive the reflected wave of the ultrasonic wave irradiated to a depth of 2 to 3 cm from the body surface 40a of the human body 40 so that the gastrocnemius muscle 41 can be observed. Although the angles of the transmitting surface 1011b and the receiving surface 1012b of the probe 101 are set, the present invention is not limited to such a configuration. The angles of the transmitting surface 1011b and the receiving surface 1012b of the probe 101 are such that the ultrasonic waves are irradiated in a direction inclined at an angle other than 90 degrees with respect to the traveling direction of the muscle fiber to be observed, and the muscle to be observed is observed. The ultrasonic wave receiving unit 1012 may be set so that the reflected wave of the ultrasonic wave reflected by the fiber can be received.
 例えば、観測対象が子宮筋である場合、人体40の腹壁上に当接させた探触子101の送信面1011bから送信した超音波が、子宮筋の筋繊維の走行方向に対して90度以外の角度で超音波が照射されるとともに、この子宮筋により反射した超音波の反射波が受信面1012bに入射されるよう、探触子101の送信面1011bおよび受信面1012bの角度等が設定されていればよい。なお、このように子宮筋を観測対象とすることで、子宮筋の微小振動を観測することが可能となり、このような子宮筋が観測対象となるようにした超音波観測装置1は、陣痛観測装置や、外側陣痛計として利用することが可能である。 For example, when the observation target is the uterine muscle, the ultrasonic wave transmitted from the transmission surface 1011b of the probe 101 abutting on the abdominal wall of the human body 40 is other than 90 degrees with respect to the traveling direction of the muscle fiber of the uterine muscle. The angles of the transmitting surface 1011b and the receiving surface 1012b of the probe 101 are set so that the ultrasonic waves are irradiated at the angle of 1 and the reflected waves of the ultrasonic waves reflected by the uterine muscle are incident on the receiving surface 1012b. You just have to. By targeting the uterine muscle in this way, it is possible to observe minute vibrations of the uterine muscle, and the ultrasonic observation device 1 that makes such a uterine muscle an observation target can observe labor pains. It can be used as a device or as an outer labor meter.
 以上、本実施の形態によれば、生体内の筋についての観測に利用可能な情報を、超音波を利用して適切かつ容易に取得することができる。例えば、本実施の形態によれば、超音波ドプラ法により観測対象領域内の筋における筋繊維の走行方向の機械的微小振動を観測するごとく構成された超音波ドプラメカノミオグラム装置を提供することができる。また、超音波ドプラ法により子宮筋の接線方向の微小振動を観測するごとく構成された陣痛観測装置を提供することができる。 As described above, according to the present embodiment, information that can be used for observing muscles in a living body can be appropriately and easily obtained by using ultrasonic waves. For example, according to the present embodiment, an ultrasonic Doppler mechanomyogram device configured to observe mechanical minute vibrations in the traveling direction of muscle fibers in a muscle in an observation target region by an ultrasonic Doppler method is provided. Can be done. In addition, it is possible to provide a labor pain observation device configured to observe minute vibrations in the tangential direction of the uterine muscle by the ultrasonic Doppler method.
 なお、図6(a)および図6(b)に示すように、探触子101を生体61の表面61aに当接させた状態で、送信面1011bから送信される超音波が、生体61の表面61aに対して傾斜した所望の方向に送信され、観測対象となる筋による反射波が受信面1012bにおいて受信されるようにするために、筒80が設けられていてもよい。筒80は、探触子101の、少なくとも超音波送信部1011および超音波受信部1012が配置されている前方に、探触子101を生体61の表面61aに当接させた状態で、超音波送信部1011の送信面1011b、および超音波受信部1012の受信面1012bを生体61の表面61aに対して所望の角度で傾斜するように配置するための部材である。 As shown in FIGS. 6A and 6B, the ultrasonic waves transmitted from the transmission surface 1011b in a state where the probe 101 is in contact with the surface 61a of the living body 61 is the living body 61. A cylinder 80 may be provided so that the wave transmitted in a desired direction inclined with respect to the surface 61a and reflected by the muscle to be observed is received on the receiving surface 1012b. The cylinder 80 is in a state where the probe 101 is in contact with the surface 61a of the living body 61 in front of the probe 101 where at least the ultrasonic transmitting section 1011 and the ultrasonic receiving section 1012 are arranged. It is a member for arranging the transmitting surface 1011b of the transmitting unit 1011 and the receiving surface 1012b of the ultrasonic wave receiving unit 1012 so as to be inclined at a desired angle with respect to the surface 61a of the living body 61.
 この筒80は、例えば、当板20の周囲を囲むように設けられる。この筒80の形状は、超音波や反射波の送受信を妨げるものでなければ、どのような形状であってもよいが、この筒80の生体の表面に当接される側の端部は、仮想の同一平面上に位置していることが好ましい。この筒80は、筐体10と一体成型するようにしてもよい。なお、図6(a)は、このような探触子101の斜視図であり、図6(b)は、このような探触子101を生体61の表面61aに当接させた場合の上面図を示している。なお、このような場合において、超音波送信部1011の送信面1011b、および超音波受信部1012の受信面1012bが、生体61の表面61aと接触しない場合、当板20を省略するようにしてもよい。 The cylinder 80 is provided, for example, so as to surround the periphery of the plate 20. The shape of the cylinder 80 may be any shape as long as it does not interfere with the transmission and reception of ultrasonic waves and reflected waves, but the end portion of the cylinder 80 on the side that comes into contact with the surface of the living body is It is preferably located on a virtual coplanar surface. The cylinder 80 may be integrally molded with the housing 10. Note that FIG. 6A is a perspective view of such a probe 101, and FIG. 6B is an upper surface when such a probe 101 is brought into contact with the surface 61a of the living body 61. The figure is shown. In such a case, if the transmitting surface 1011b of the ultrasonic transmitting unit 1011 and the receiving surface 1012b of the ultrasonic receiving unit 1012 do not come into contact with the surface 61a of the living body 61, the plate 20 may be omitted. good.
 また、図7(a)および図7(b)に示すように、筐体10に、上記の当板20の代わり、または当板20に加えて、送信面1011bと受信面1012bとがなす凹凸(例えば、略V字形状の溝)を埋めて、探触子101の当接面の凹凸をなくすよう配置される遅延材70を取り付けるようにしてもよい。遅延材70の材質は、例えば、樹脂等のように音響インピーダンスが低く、超音波の減衰も少ない材質であることが好ましい。なお、図7(a)は、このような探触子101の斜視図であり、図7(b)は、このような探触子101を生体61の表面61aに当接させた場合の上面図を示している。 Further, as shown in FIGS. 7 (a) and 7 (b), the housing 10 has unevenness formed by the transmission surface 1011b and the reception surface 1012b in place of the above-mentioned backing plate 20 or in addition to the backing plate 20. (For example, a substantially V-shaped groove) may be filled and a delay member 70 arranged so as to eliminate the unevenness of the contact surface of the probe 101 may be attached. The material of the delay material 70 is preferably a material having a low acoustic impedance and a small amount of ultrasonic attenuation, such as resin. 7 (a) is a perspective view of such a probe 101, and FIG. 7 (b) is an upper surface when such a probe 101 is brought into contact with the surface 61a of the living body 61. The figure is shown.
 (実施の形態2)
 図8は、本実施の形態2の超音波観測装置2のブロック図である。
 また、図9は、本実施の形態2の超音波観測装置2の、探触子201の斜視図(図9(a))、および上面図(図9(b))である。
(Embodiment 2)
FIG. 8 is a block diagram of the ultrasonic observation device 2 of the second embodiment.
Further, FIG. 9 is a perspective view (FIG. 9 (a)) and a top view (FIG. 9 (b)) of the probe 201 of the ultrasonic observation device 2 of the second embodiment.
 本実施の形態2の超音波観測装置2は、上記実施の形態の超音波観測装置1における超音波送信部1011が、パルス状に超音波を送信し、超音波受信部1012が、超音波送信部1011が超音波のパルスを送信する合間に、直前に送信された超音波の反射波を受信する。超音波送信部1011と超音波受信部1012とは、生体の表面に対して傾斜するよう配置される同一の送受信面から、超音波の送信および反射波の受信を行う。 In the ultrasonic observation device 2 of the second embodiment, the ultrasonic transmission unit 1011 in the ultrasonic observation device 1 of the above embodiment transmits ultrasonic waves in a pulse shape, and the ultrasonic reception unit 1012 transmits ultrasonic waves. While the unit 1011 transmits the ultrasonic pulse, the reflected wave of the ultrasonic wave transmitted immediately before is received. The ultrasonic wave transmitting unit 1011 and the ultrasonic wave receiving unit 1012 transmit ultrasonic waves and receive reflected waves from the same transmitting / receiving surface arranged so as to be inclined with respect to the surface of the living body.
 具体的には、超音波送信部1011が有する1以上の振動子1011aを、超音波受信部1012が有する1以上の振動子1012aとして使用することによって、超音波送信部1011と超音波受信部1012とで共通の振動子を兼用する。すなわち、実施の形態2に係る探触子201は、実施の形態1における超音波受信部1012が有する1以上の振動子1012aが設けられておらず、超音波送信部1011が、パルス状に超音波を送信する際には、振動子1011aがパルス状に超音波を送信し、超音波のパルスを送信する合間に、振動子1011aが反射波を受信する。この場合、1以上の振動子1011aの送信面1011bが、反射波の受信面としても機能する。 Specifically, by using one or more oscillators 1011a possessed by the ultrasonic transmitting unit 1011 as one or more oscillators 1012a possessed by the ultrasonic receiving unit 1012, the ultrasonic transmitting unit 1011 and the ultrasonic receiving unit 1012 are used. Also used as a common oscillator. That is, the probe 201 according to the second embodiment is not provided with one or more vibrators 1012a included in the ultrasonic receiving unit 1012 in the first embodiment, and the ultrasonic transmitting unit 1011 is pulsed. When transmitting the ultrasonic wave, the vibrator 1011a transmits the ultrasonic wave in a pulse shape, and the vibrator 1011a receives the reflected wave between the transmission of the ultrasonic pulse. In this case, the transmission surface 1011b of one or more oscillators 1011a also functions as a reception surface for the reflected wave.
 本実施の形態2の超音波観測装置2においては、振動子1011aを、実施の形態1における振動子1012aとしても利用することから、振動子1011aが、生体の表面に対して傾斜した方向に超音波を送信するよう、探触子201に取り付けられていればよい。したがって、上記実施の形態1の当板20とは異なり、前後方向において、傾斜している当板21が用いられており、この当板21の後面に対して、超音波送信部1011の、反射波の受信面としても機能する送信面1011bが取り付けられている。なお、ここでは、振動子1011aが超音波送信部1011であり、この振動子1011aが超音波受信部1012としても機能する例について説明する。 In the ultrasonic observation device 2 of the second embodiment, since the oscillator 1011a is also used as the oscillator 1012a of the first embodiment, the oscillator 1011a is super-inclined with respect to the surface of the living body. It suffices to be attached to the probe 201 so as to transmit sound waves. Therefore, unlike the plate 20 of the first embodiment, the plate 21 is inclined in the front-rear direction, and the reflection of the ultrasonic transmission unit 1011 is reflected on the rear surface of the plate 21. A transmission surface 1011b that also functions as a wave reception surface is attached. Here, an example in which the oscillator 1011a is the ultrasonic transmitting unit 1011 and the oscillator 1011a also functions as the ultrasonic receiving unit 1012 will be described.
 また、ここでは、探触子201を、生体の表面に当接させた場合に、送信面1011bが生体の表面に対して所望の角度で傾斜して、送信面1011bから送信される超音波が、生体の表面に対して所望の角度で傾斜した方向に超音波が送信されるよう筒81が設けられている。筒81は、上記実施の形態1において説明した筒80と同様に、探触子201の少なくとも前方において、当板21の周囲を囲むように設けられている。ただし、筒81が設けられていなくてもよい。 Further, here, when the probe 201 is brought into contact with the surface of the living body, the transmitting surface 1011b is tilted at a desired angle with respect to the surface of the living body, and the ultrasonic waves transmitted from the transmitting surface 1011b are emitted. The cylinder 81 is provided so that ultrasonic waves are transmitted in a direction inclined at a desired angle with respect to the surface of the living body. Similar to the cylinder 80 described in the first embodiment, the cylinder 81 is provided so as to surround the periphery of the plate 21 at least in front of the probe 201. However, the cylinder 81 may not be provided.
 この実施の形態2の超音波観測装置2は、送信器102が、例えば、パルス状に超音波を出力するための信号を生成して、振動子1011aである超音波送信部1011がこの信号に応じてパルス状の超音波を送信する点、振動子1011aである超音波受信部1012が、パルス状の超音波を送信する合間に受信した反射波から信号を取得する点、ドプラフィルタ部104が、パルスの合間に取得されて増幅された信号の1または2以上の異なる所望のレンジゲートから、それぞれドプラ信号を抽出する点を除けば、上記実施の形態1の超音波観測装置1と同様であるため、ここでは詳細な説明を省略する。 In the ultrasonic observation device 2 of the second embodiment, the transmitter 102 generates, for example, a signal for outputting ultrasonic waves in a pulse shape, and the ultrasonic transmission unit 1011 which is the vibrator 1011a uses this signal. The point where the pulsed ultrasonic wave is transmitted accordingly, the point where the ultrasonic wave receiving unit 1012 which is the oscillator 1011a acquires a signal from the reflected wave received in the interval of transmitting the pulsed ultrasonic wave, and the point where the Doppler filter unit 104 acquires a signal. Similar to the ultrasonic observation device 1 of the first embodiment, except that the Doppler signal is extracted from one or two or more different desired range gates of the signal acquired and amplified between the pulses. Therefore, a detailed description will be omitted here.
 なお、パルスの合間ごとに取得される信号のうちの、1または2以上の異なる所望のレンジゲートの信号について、それぞれドプラ信号を取得する処理については、超音波パルスドプラ装置等において公知技術であるため、ここでは、詳細な説明を省略する。 It should be noted that the process of acquiring a Doppler signal for each of one or two or more different desired range gate signals among the signals acquired every interval between pulses is a known technique in an ultrasonic pulse Doppler device or the like. , Here, a detailed description will be omitted.
 次に、本実施の形態2の超音波観測装置2の動作について説明する。送信器102が、パルス状に超音波を出力するための信号を生成し、生成した信号を超音波送信部1011に送信すると、超音波送信部1011の振動子1011aはパルス状の超音波を、生体の表面に対して傾斜した方向に送信する。送信された超音波は、生体内の観測対象である1以上の筋等で反射され、反射された反射波を、超音波受信部1012の振動子1011aが、超音波のパルスを送信する合間に順次受信する。 Next, the operation of the ultrasonic observation device 2 of the second embodiment will be described. When the transmitter 102 generates a signal for outputting ultrasonic waves in a pulse shape and transmits the generated signal to the ultrasonic transmission unit 1011, the vibrator 1011a of the ultrasonic transmission unit 1011 transmits the pulsed ultrasonic waves. It transmits in a direction inclined with respect to the surface of the living body. The transmitted ultrasonic wave is reflected by one or more streaks or the like which are observation targets in the living body, and the reflected reflected wave is transmitted between the vibrator 1011a of the ultrasonic receiving unit 1012 and the ultrasonic pulse. Receive sequentially.
 増幅部103は、振動子1011aがパルスの合間に反射波を受信して出力する信号を増幅し、ドプラフィルタ部104は、増幅された信号を用いて、1以上のレンジゲートごとに、それぞれドプラ信号を抽出する。1以上のレンジゲートは、例えば、予め決められていてもよい。そして、AD変換部105が、ドプラフィルタ部104がレンジゲートごとに抽出したドプラ信号をA/D変換する。取得部106は、A/D変換されたレンジゲートごとに取得したドプラ信号を用いて、上記具体例で説明した周波数帯域と同様の、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号をレンジゲートごとに取得する。出力部107は、取得部106が取得したサイドバンド周波数帯域の信号を出力する。 The amplification unit 103 amplifies the signal that the oscillator 1011a receives and outputs the reflected wave between pulses, and the Doppler filter unit 104 uses the amplified signal to doppler for each of one or more range gates. Extract the signal. One or more range gates may be predetermined, for example. Then, the AD conversion unit 105 A / D-converts the Doppler signal extracted by the Doppler filter unit 104 for each range gate. The acquisition unit 106 uses the Doppler signal acquired for each A / D-converted range gate to generate a sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber, similar to the frequency band described in the above specific example. The signal is acquired for each range gate. The output unit 107 outputs a signal in the sideband frequency band acquired by the acquisition unit 106.
 このような実施の形態の超音波観測装置2によれば、生体内の筋についての観測に利用可能な情報を、超音波を利用して適切かつ容易に取得することができる超音波パルスドプラ観測装置を提供することができる。 According to the ultrasonic observation device 2 of such an embodiment, an ultrasonic pulse Doppler observation device capable of appropriately and easily acquiring information that can be used for observing muscles in a living body by using ultrasonic waves. Can be provided.
 また、超音波観測装置2が、パルスの合間に受信した信号の、2以上の異なるレンジゲートからドプラ信号を取得し、取得したドプラ信号ごとに、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を取得し、出力するようにした場合には、2つのレンジゲート領域を持つパルスドプラシステムとして利用できる。この場合、超音波観測装置2は、同じ生体内の異なる観測対象となる筋についての観測に利用可能な情報をそれぞれ取得することができる。 Further, the ultrasonic observation device 2 acquires Doppler signals from two or more different range gates of the signals received between pulses, and each acquired Doppler signal is a side band indicating minute vibration in the traveling direction of the muscle fiber. When a signal in the frequency band is acquired and output, it can be used as a pulse Doppler system having two range gate regions. In this case, the ultrasonic observation device 2 can acquire information that can be used for observation of different muscles to be observed in the same living body.
 なお、図10に示すように、この実施の形態2においても、探触子201の前方側の、超音波送信部1011が探触子201の当接面に対して90度以外の角度となるよう傾斜して取り付けられている部分に、上記実施の形態1の超音波観測装置1の遅延材70と同様の遅延材71を取り付けられていてもよい。例えば、遅延材71が取り付けられていることで、探触子201の前方が、探触子201の前後方向に対して垂直な当接面となるようにしてもよい。この場合、上記の筒81が設けられていなくてよい。なお、図10(a)は、このような探触子201の斜視図であり、図10(b)は、このような探触子201を生体61の表面61aに当接させた場合の上面図を示している。 As shown in FIG. 10, also in the second embodiment, the ultrasonic transmission unit 1011 on the front side of the probe 201 has an angle other than 90 degrees with respect to the contact surface of the probe 201. A delay material 71 similar to the delay material 70 of the ultrasonic observation device 1 of the first embodiment may be attached to a portion that is attached so as to be inclined. For example, by attaching the delay member 71, the front surface of the probe 201 may be a contact surface perpendicular to the front-rear direction of the probe 201. In this case, the cylinder 81 may not be provided. Note that FIG. 10A is a perspective view of such a probe 201, and FIG. 10B is an upper surface when such a probe 201 is brought into contact with the surface 61a of the living body 61. The figure is shown.
 なお、本実施の形態2の超音波観測装置2において、ドプラフィルタ部104がパルスの合間に受信した反射波の2以上の異なるレンジゲートにおいて、時間的な変化分を示すドプラ信号をそれぞれ抽出する。取得部106は、ドプラフィルタ部104が抽出した1以上のドプラ信号から、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を取得する。出力部107は、取得部106が1以上のレンジゲートについてそれぞれ取得したサイドバンド周波数帯域の信号と、ドプラフィルタ部104が抽出したドプラ信号のうちの、取得部106によりサイドバンド周波数帯域の信号が取得されたドプラ信号以外の1以上のドプラ信号と、を出力するようにしてもよい。ここでのドプラ信号の出力は、上述したサイドバンド周波数帯域の信号を用いて取得した情報と同様の、ドプラ信号を用いて取得した情報を出力であってもよい。 In the ultrasonic observation device 2 of the second embodiment, the Doppler filter unit 104 extracts Doppler signals indicating temporal changes at two or more different range gates of the reflected waves received between pulses. .. The acquisition unit 106 acquires a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber from one or more Doppler signals extracted by the Doppler filter unit 104. The output unit 107 has a sideband frequency band signal acquired by the acquisition unit 106 for each of the range gates of 1 or more, and a sideband frequency band signal obtained by the acquisition unit 106 among the Doppler signals extracted by the Doppler filter unit 104. One or more Doppler signals other than the acquired Doppler signal may be output. The output of the Doppler signal here may be the output of the information acquired by using the Doppler signal, which is the same as the information acquired by using the signal of the sideband frequency band described above.
 このような変形例によれば、超音波観測装置2は、取得部106が取得したサイドバンド周波数帯域の信号により、生体内の、この信号に対応するレンジゲートに対応する観測位置の筋の微小運動を観測することができる。また、超音波観測装置2は、取得部106がサイドバンド周波数帯域の信号を取得したドプラ信号以外のドプラ信号により、上記のサイドバンド周波数帯域の信号に対応するレンジゲートとは異なる位置における生体の動きを観測することができる。 According to such a modification, in the ultrasonic observation device 2, the signal of the sideband frequency band acquired by the acquisition unit 106 causes a minute muscle of the observation position corresponding to the range gate corresponding to this signal in the living body. You can observe the movement. Further, the ultrasonic observation device 2 is a living body at a position different from the range gate corresponding to the signal in the sideband frequency band due to the Doppler signal other than the Doppler signal obtained by the acquisition unit 106 in the sideband frequency band. You can observe the movement.
 例えば、図11の模式図に示すように、超音波観測装置2は、妊婦の腹壁90上から斜角入射により正面方向ではない斜の方向に、探触子201の超音波送信部1011からパルス状の超音波を送信する。観測用の超音波ビーム91は第一の目的となる子宮筋92に斜めに入射し、入射した超音波ビーム91の一部が子宮筋92で反射されて、その反射波を超音波受信部1012が受信する。また、子宮筋92で反射されなかった観測用の超音波ビーム91は、第二の目的となる子宮内の胎児心93に入射し、その一部が反射されて、その反射波を超音波送信部1011と兼用される超音波受信部1012が受信する。 For example, as shown in the schematic diagram of FIG. 11, the ultrasonic observation device 2 has a pulse from the ultrasonic transmission unit 1011 of the probe 201 in an oblique direction other than the front direction due to oblique angle incident from the abdominal wall 90 of the pregnant woman. Sends ultrasonic waves. The ultrasonic beam 91 for observation is obliquely incident on the uterine muscle 92, which is the primary object, and a part of the incident ultrasonic beam 91 is reflected by the uterine muscle 92, and the reflected wave is reflected by the ultrasonic receiving unit 1012. Receives. Further, the ultrasonic beam 91 for observation, which was not reflected by the uterine muscle 92, is incident on the fetal heart 93 in the uterus, which is the second purpose, and a part thereof is reflected, and the reflected wave is ultrasonically transmitted. The ultrasonic wave receiving unit 1012, which is also used as the unit 1011, receives.
 そして、ドプラフィルタ部104が、超音波受信部1012が受信した信号の、子宮筋92に相当する観測レンジゲート94のドプラ信号を抽出する。この子宮筋92に相当する観測レンジゲート94のドプラ信号から取得部106が取得し、出力部107が出力したサイドバンド周波数帯域の信号を用いることで、超音波観測装置2は、子宮筋の動き、例えば、陣痛の観測を行うことが可能となる。 Then, the Doppler filter unit 104 extracts the Doppler signal of the observation range gate 94 corresponding to the uterine muscle 92 of the signal received by the ultrasonic wave receiving unit 1012. By using the sideband frequency band signal acquired by the acquisition unit 106 from the Doppler signal of the observation range gate 94 corresponding to the uterine muscle 92 and output by the output unit 107, the ultrasonic observation device 2 moves the uterine muscle. For example, it is possible to observe labor pains.
 また、超音波観測装置2を用いることで、超音波受信部1012が受信した信号から、ドプラフィルタ部104が抽出し、出力部107が出力した、子宮内の胎児心に相当する観測レンジゲート95のドプラ信号により、胎児の心臓の動き(例えば、心拍等)を同時にモニタすることが可能となる。このような変形例のように、1つの送波超音波ビームの照射下において、その近距離からのエコーから子宮筋の微小振動に呼応する信号を、またその中又は遠距離からのエコーから胎児心拍に呼応する信号を、各々検出するごとく構成することで、胎児心拍陣痛観測装置を提供することができる。なお、胎児心をドプラ信号で観測する技術は公知技術であるため、ここでは詳細な説明を省略する。 Further, by using the ultrasonic observation device 2, the observation range gate 95 corresponding to the fetal heart in the womb, which is extracted by the Doppler filter unit 104 from the signal received by the ultrasonic reception unit 1012 and output by the output unit 107. The Doppler signal makes it possible to simultaneously monitor the movement of the fetal heart (eg, heartbeat, etc.). As in such a modification, under the irradiation of one transmitting ultrasonic beam, a signal corresponding to a minute vibration of the uterine muscle is transmitted from the echo from the short distance, and the fetus is transmitted from the echo from the inside or the long distance. A fetal heartbeat labor pain observation device can be provided by configuring each signal corresponding to the heartbeat so as to detect each of them. Since the technique of observing the fetal heart with a Doppler signal is a known technique, detailed description thereof will be omitted here.
 (実施の形態3)
 図12は、本実施の形態3の超音波観測装置3の、探触子301の斜視図(図12(a))、および上面図(図12(b))である。
(Embodiment 3)
FIG. 12 is a perspective view (FIG. 12 (a)) and a top view (FIG. 12 (b)) of the probe 301 of the ultrasonic observation device 3 of the third embodiment.
 本実施の形態の超音波観測装置3は、上記実施の形態1に示した超音波観測装置1における探触子101に代えて、異なる方向に超音波を送信する複数の超音波送信部1011と、これらの複数の超音波送信部1011がそれぞれ送信する超音波の反射波をそれぞれ受信する複数の超音波受信部1012とを有する探触子301を有する。ドプラフィルタ部104は、複数の超音波受信部1012がそれぞれ受信する反射波について、時間的な変化分を示すドプラ信号を抽出し、取得部106が、ドプラフィルタ部104が抽出したドプラ信号から、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を取得する。以下、超音波観測装置3が、2つの超音波送信部1011と、2つの超音波受信部1012とを有している場合を例に挙げて説明する。 The ultrasonic observation device 3 of the present embodiment replaces the probe 101 in the ultrasonic observation device 1 shown in the first embodiment with a plurality of ultrasonic transmission units 1011 that transmit ultrasonic waves in different directions. The probe 301 has a plurality of ultrasonic wave receiving units 1012 and a plurality of ultrasonic wave receiving units 1012, each of which receives the reflected waves of the ultrasonic waves transmitted by each of the plurality of ultrasonic wave transmitting units 1011. The Doppler filter unit 104 extracts a Doppler signal indicating a temporal change in the reflected wave received by each of the plurality of ultrasonic wave receiving units 1012, and the acquisition unit 106 extracts the Doppler signal from the Doppler signal extracted by the Doppler filter unit 104. A signal in the sideband frequency band indicating a minute vibration in the traveling direction of the muscle fiber is acquired. Hereinafter, a case where the ultrasonic observation device 3 has two ultrasonic transmission units 1011 and two ultrasonic reception units 1012 will be described as an example.
 超音波観測装置3の探触子301は、異なる方向に超音波を送信する2つの超音波送信部1011と、これらの2つの超音波送信部がそれぞれ送信する超音波の反射波をそれぞれ受信する複数の超音波受信部1012とを有している。以下、2つの超音波送信部1011を、第一の超音波送信部10111および第二の超音波送信部10112とする。第一の超音波送信部10111が送信する超音波の反射波を受信する超音波受信部1012を、第一の超音波受信部10121とし、第二の超音波送信部10112が送信する超音波の反射波を受信する超音波受信部1012を、第二の超音波受信部10122とする。 The probe 301 of the ultrasonic observation device 3 receives two ultrasonic transmission units 1011 that transmit ultrasonic waves in different directions and reflected waves of ultrasonic waves transmitted by these two ultrasonic transmission units, respectively. It has a plurality of ultrasonic receiving units 1012. Hereinafter, the two ultrasonic transmission units 1011 will be referred to as a first ultrasonic transmission unit 10111 and a second ultrasonic transmission unit 10112. The ultrasonic receiving unit 1012 that receives the reflected wave of the ultrasonic wave transmitted by the first ultrasonic transmitting unit 10111 is set as the first ultrasonic receiving unit 10121, and the ultrasonic wave transmitted by the second ultrasonic transmitting unit 10112 is used. The ultrasonic receiving unit 1012 that receives the reflected wave is referred to as a second ultrasonic receiving unit 10122.
 この探触子301においては、例えば、探触子301の前方側に、第一の超音波送信部10111および第二の超音波送信部10112が、探触子301の前後方向に対して、90度以外の異なる角度をなすように傾斜して配置されている。また、探触子301の前方側の、第一の超音波送信部10111が送信する超音波の、生体内の観測対象による反射波が入力される位置に、第一の超音波受信部10121が配置されている。探触子301の前方側の、第二の超音波送信部10112が送信する超音波の、生体内の観測対象による反射波が入力される位置に、第二の超音波受信部10122が配置されている。 In the probe 301, for example, on the front side of the probe 301, the first ultrasonic transmission unit 10111 and the second ultrasonic transmission unit 10112 are 90 in the front-rear direction of the probe 301. They are arranged at an angle so that they form different angles other than degrees. Further, the first ultrasonic wave receiving unit 10121 is located on the front side of the probe 301 at a position where the reflected wave of the ultrasonic wave transmitted by the first ultrasonic wave transmitting unit 10111 is input by the observation target in the living body. Have been placed. The second ultrasonic wave receiving unit 10122 is arranged at a position on the front side of the probe 301 where the reflected wave of the ultrasonic wave transmitted by the second ultrasonic wave transmitting unit 10112 is input by the observation target in the living body. ing.
 具体的には、第一の超音波送信部10111および第一の超音波受信部10121は、それぞれの送信面1011bおよび受信面1012bが、探触子301の前後方向に対して平行な仮想平面に対して面対称となるよう探触子301の前方側に取り付けられている。また、送信面1011bおよび受信面1012bが仮想平面に近い部分ほど探触子301の後方に位置するよう、送信面1011bおよび受信面1012bが上記の仮想平面に対して傾斜している。 Specifically, in the first ultrasonic transmission unit 10111 and the first ultrasonic wave reception unit 10121, the transmission surface 1011b and the reception surface 1012b are formed in a virtual plane parallel to the front-rear direction of the probe 301. It is attached to the front side of the probe 301 so as to be plane-symmetrical. Further, the transmission surface 1011b and the reception surface 1012b are inclined with respect to the above virtual plane so that the transmission surface 1011b and the reception surface 1012b are located behind the probe 301 toward the portion closer to the virtual plane.
 第二の超音波送信部10112および第二の超音波受信部10122は、それぞれの送信面1011bおよび受信面1012bが、探触子301の前後方向に対して平行な仮想平面に対して面対称となるよう探触子301の前方側に取り付けられている。また、第二の超音波送信部10112および第二の超音波受信部10122は、送信面1011bおよび受信面1012bが仮想平面に近い部分ほど探触子301の後方に位置するよう、送信面1011bおよび受信面1012bが上記の仮想平面に対して傾斜しているよう取り付けられている。 In the second ultrasonic transmission unit 10112 and the second ultrasonic reception unit 10122, the transmission surface 1011b and the reception surface 1012b are plane-symmetrical with respect to a virtual plane parallel to the front-back direction of the probe 301. It is attached to the front side of the probe 301 so as to be. Further, in the second ultrasonic transmission unit 10112 and the second ultrasonic reception unit 10122, the transmission surface 1011b and the reception surface 1012b are located behind the probe 301 so that the portion closer to the virtual plane is closer to the transmission surface 1011b and the reception surface 1012b. The receiving surface 1012b is attached so as to be inclined with respect to the above virtual plane.
 さらに、第一の超音波送信部10111の送信面1011bと、第二の超音波送信部10112の送信面1011bとが、上記の仮想平面に対してなす角度は、異なる角度となっている。これにより、第一の超音波送信部10111から送信されて反射される反射波と、第二の超音波送信部10112から送信されて反射される反射波とは、同じ生体内の異なる観測部位(例えば、深さの異なる観測部位)における反射波となるようになっている。 Further, the angle formed by the transmission surface 1011b of the first ultrasonic wave transmission unit 10111 and the transmission surface 1011b of the second ultrasonic wave transmission unit 10112 with respect to the above virtual plane is different. As a result, the reflected wave transmitted and reflected from the first ultrasonic wave transmitting unit 10111 and the reflected wave transmitted and reflected from the second ultrasonic wave transmitting unit 10112 are different observation sites in the same living body ( For example, it is designed to be a reflected wave at observation sites with different depths.
 より具体的に説明すると、探触子301の前方側には、中心部分が後方に向かって凸となるよう異なる角度で左右が前方方向に折れ曲がった形状を有している当板22が設けられている。当板22の異なる角度で折れ曲がった部分の一方の後方には、第一の超音波送信部10111の送信面1011bと第一の超音波受信部10121の受信面1012bとが、左右に取り付けられている。また、当板20の異なる角度で折れ曲がった部分の他方の内側には、第二の超音波送信部10112の送信面1011bと、第一の超音波受信部の受信面1012bとが左右に取り付けられている。 More specifically, on the front side of the probe 301, a plate 22 having a shape in which the left and right sides are bent forward at different angles so that the central portion is convex toward the rear is provided. ing. The transmission surface 1011b of the first ultrasonic wave transmission unit 10111 and the reception surface 1012b of the first ultrasonic wave reception unit 10121 are attached to the left and right behind one of the portions of the plate 22 that are bent at different angles. There is. Further, on the inside of the other side of the portion of the plate 20 that is bent at different angles, the transmission surface 1011b of the second ultrasonic transmission unit 10112 and the reception surface 1012b of the first ultrasonic reception unit are attached to the left and right. ing.
 これにより、当板22の異なる角度で折れ曲がった部分にそれぞれ取り付けられた第一の超音波送信部10111と第一の超音波受信部10121との組、および第二の超音波送信部10112と第二の超音波受信部10122との組のそれぞれが送受信する超音波およびその反射波は、生体内の異なる観測対象となる筋(例えば、体表から異なる深さに位置する筋)にそれぞれ照射された超音波とその反射波との組になる。このため、本実施の形態においては、異なる2つの観測対象となる筋を観測するために用いられる情報を、一つの探触子301を用いて取得することができる。 As a result, the pair of the first ultrasonic transmitting unit 10111 and the first ultrasonic receiving unit 10121 attached to the bent portions of the plate 22 at different angles, and the second ultrasonic transmitting unit 10112 and the second. The ultrasonic waves and their reflected waves transmitted and received by each of the pair with the second ultrasonic wave receiving unit 10122 are irradiated to different observation target muscles in the living body (for example, muscles located at different depths from the body surface). It is a pair of ultrasonic waves and their reflected waves. Therefore, in the present embodiment, the information used for observing two different observation target muscles can be acquired by using one probe 301.
 なお、超音波観測装置3の探触子301以外の構成については、送信器102が、複数の超音波送信部1011に、それぞれ超音波を発生させるための信号を送信し、増幅部103、ドプラフィルタ部104、AD変換部105、取得部106、および出力部107が、複数の超音波受信部1012がそれぞれ反射波を受信して出力する信号に対して、それぞれ、順番に、上記実施の形態1において説明したような処理を行う点を除けば、上記実施の形態1の超音波観測装置1の構成と同様であり、ここでは詳細な説明を省略する。なお、超音波観測装置3は、図1に示したような超音波観測装置1と同様の構成を2つ有しているようにし、それぞれの探触子301が有する超音波送信部1011および超音波受信部1012を、一つの探触子301として、同じ筐体10に、超音波の送受信方向が異なるよう取り付けたものであってもよい。 Regarding the configuration other than the probe 301 of the ultrasonic observation device 3, the transmitter 102 transmits a signal for generating an ultrasonic wave to each of a plurality of ultrasonic transmission units 1011, and the amplification unit 103 and Doppler The above-described embodiment, respectively, in order of the filter unit 104, the AD conversion unit 105, the acquisition unit 106, and the output unit 107 for the signals received and output by the plurality of ultrasonic wave receiving units 1012, respectively. Except for the fact that the processing as described in 1 is performed, the configuration is the same as that of the ultrasonic observation device 1 of the first embodiment, and detailed description thereof will be omitted here. The ultrasonic observation device 3 has two configurations similar to those of the ultrasonic observation device 1 as shown in FIG. 1, and the ultrasonic transmission unit 1011 and the ultrasonic wave transmission unit 1011 possessed by the respective probes 301. The sound wave receiving unit 1012 may be attached as one probe 301 to the same housing 10 so that the transmission / reception directions of ultrasonic waves are different.
 以上、本実施の形態によれば、異なる2つの観測対象となる筋を観測するために用いられる情報を、一つの探触子301を用いて取得することができる。これにより、例えば、2つの受波ビームにより2つのクロスセクション有感領域(例えば、超音波の送信送信方向と受信方向とが交わる領域)を持つCWドプラシステムを提供することができる。 As described above, according to the present embodiment, the information used for observing two different observation target muscles can be acquired by using one probe 301. Thereby, for example, it is possible to provide a CW Doppler system having two cross-section sensitive regions (for example, a region where the transmission transmission direction and the reception direction of ultrasonic waves intersect) by two receiving beams.
 なお、上記においては、探触子301が、超音波送信部1011と超音波受信部1012との2つの組を有している場合について説明したが、探触子301は、異なる方向に超音波を送信する3以上の超音波送信部1011と、これらの反射波をそれぞれ受信する3以上の超音波受信部1012との組を有していてもよい。 In the above description, the case where the probe 301 has two sets of the ultrasonic transmitting unit 1011 and the ultrasonic receiving unit 1012 has been described, but the probe 301 has ultrasonic waves in different directions. There may be a pair of three or more ultrasonic wave transmitting units 1011 for transmitting the above and three or more ultrasonic wave receiving units 1012 for receiving these reflected waves, respectively.
 また、上記実施の形態3の超音波観測装置3において、ドプラフィルタ部104が、複数の超音波受信部1012がそれぞれ受信する反射波について、時間的な変化分を示すドプラ信号を抽出してもよい。取得部106は、ドプラフィルタ部104が抽出した複数のドプラ信号の一部から、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を抽出してもよい。出力部107は、取得部106が取得したサイドバンド周波数帯域の信号と、ドプラフィルタ部104が抽出した複数のドプラ信号のうちの、取得部106がサイドバンド周波数帯域の信号を取得した第1ドプラ信号以外の第2ドプラ信号と、を出力してもよい。 Further, in the ultrasonic observation device 3 of the third embodiment, even if the Doppler filter unit 104 extracts a Doppler signal indicating a temporal change in the reflected wave received by each of the plurality of ultrasonic wave receiving units 1012. good. The acquisition unit 106 may extract a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber from a part of the plurality of Doppler signals extracted by the Doppler filter unit 104. The output unit 107 is the first Doppler from which the acquisition unit 106 has acquired the sideband frequency band signal among the signal in the sideband frequency band acquired by the acquisition unit 106 and the plurality of Doppler signals extracted by the Doppler filter unit 104. A second Doppler signal other than the signal may be output.
 例えば、図11の模式図において、本実施の形態の探触子301を有する超音波観測装置3が用いられてもよい。この場合、第一の超音波送信部10111のCW送波ビームと第一の超音波受信部10121の受波ビームのクロスセクション有感領域が、子宮筋92の、上述した観測レンジゲート94に相当する領域となり、第二の超音波送信部10112のCW送波ビームと第二の超音波受信部10122の受波ビームのクロスセクション有感領域が、胎児心の、上述した観測レンジゲート95に相当する領域となるようにしてもよい。 For example, in the schematic diagram of FIG. 11, the ultrasonic observation device 3 having the probe 301 of the present embodiment may be used. In this case, the cross-section sensitive region of the CW transmission beam of the first ultrasonic transmission unit 10111 and the reception beam of the first ultrasonic reception unit 10121 corresponds to the above-mentioned observation range gate 94 of the uterine muscle 92. The cross-section sensitive region of the CW transmission beam of the second ultrasonic transmission unit 10112 and the reception beam of the second ultrasonic reception unit 10122 corresponds to the above-mentioned observation range gate 95 of the fetal heart. It may be an area to be used.
 第一の超音波受信部10121が出力する信号からドプラフィルタ部104が抽出したドプラ信号については、取得部106が取得した筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を出力部107が出力し、第二の超音波受信部10122が出力する信号からドプラフィルタ部104が抽出したドプラ信号については、そのままの信号を出力部107が出力するようにしてもよい。このような構成とすることで、第一の超音波受信部10121が受信した信号から得られたサイドバンド周波数帯域の信号により、陣痛に関連する子宮筋の筋繊維の微小振動を観測できるとともに、第二の超音波受信部10122が受信した信号から得られたドプラ信号から、胎児心の心拍等を観測することが可能となる。これにより、一つの探触子301を用いて、陣痛の観測と胎児心の観測とを同時に行うことが可能な胎児心拍陣痛観測装置を提供することができる。 Regarding the Doppler signal extracted by the Doppler filter section 104 from the signal output by the first ultrasonic receiving section 10121, the output section outputs a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber acquired by the acquisition section 106. As for the Doppler signal extracted by the Doppler filter unit 104 from the signal output by the 107 and output by the second ultrasonic receiving unit 10122, the output unit 107 may output the signal as it is. With such a configuration, it is possible to observe minute vibrations of the muscle fibers of the uterine muscle related to labor by the signal of the sideband frequency band obtained from the signal received by the first ultrasonic receiving unit 10121. From the Doppler signal obtained from the signal received by the second ultrasonic receiving unit 10122, it becomes possible to observe the heartbeat of the fetus and the like. This makes it possible to provide a fetal heartbeat labor pain observing device capable of simultaneously observing labor pain and fetal heart using one probe 301.
 なお、本実施の形態において、上記実施の形態1において説明したような筒80と同様の筒や、上記実施の形態1において説明したような探触子101の当接面の凹凸を埋めるための遅延材70と同様の遅延材を設けてもよいことは言うまでもない。 In addition, in this embodiment, in order to fill the unevenness of the contact surface of the same cylinder as the cylinder 80 as described in the first embodiment and the contact surface of the probe 101 as described in the first embodiment. Needless to say, the same delay material as the delay material 70 may be provided.
 また、上記実施の形態3の超音波観測装置3においては、上記実施の形態1に示した超音波観測装置1における探触子301が、異なる方向に超音波を送信する複数の超音波送信部1011と、これらの複数の超音波送信部1011がそれぞれ送信する超音波の反射波をそれぞれ受信する複数の超音波受信部1012とを有していたが、このような構成に限らない。超音波観測装置3は、上記実施の形態2に示した超音波観測装置2における探触子201に代えて、異なる方向において超音波を送受信する超音波受信部1012と兼用される複数の超音波送信部1011を有する探触子をゆうしてもよい。 Further, in the ultrasonic observation device 3 of the third embodiment, the probe 301 in the ultrasonic observation device 1 shown in the first embodiment has a plurality of ultrasonic transmission units that transmit ultrasonic waves in different directions. Although it has a 1011 and a plurality of ultrasonic receiving units 1012 that receive the reflected waves of the ultrasonic waves transmitted by each of the plurality of ultrasonic transmitting units 1011, the configuration is not limited to this. The ultrasonic observation device 3 replaces the probe 201 in the ultrasonic observation device 2 shown in the second embodiment, and is used as a plurality of ultrasonic waves that are also used as an ultrasonic wave receiving unit 1012 for transmitting and receiving ultrasonic waves in different directions. A probe having a transmitter 1011 may be used.
 この場合、送信器102が、複数の超音波送信部1011に、それぞれパルス状の超音波を送信させるための信号を送信し、ドプラフィルタ部104が、複数の超音波送信部1011が、上記のパルスを送信する合間に受信した反射波から抽出した信号の1以上のレンジゲートについてドプラ信号を取得し、取得部106が、ドプラフィルタ部104が抽出したドプラ信号から、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を取得するようにしてもよい。 In this case, the transmitter 102 transmits a signal for transmitting pulsed ultrasonic waves to the plurality of ultrasonic transmission units 1011 respectively, the Doppler filter unit 104, and the plurality of ultrasonic transmission units 1011 described above. A Doppler signal is acquired for one or more range gates of the signal extracted from the reflected wave received in the interval of transmitting a pulse, and the acquisition unit 106 obtains a minute amount in the traveling direction of the muscle fiber from the Doppler signal extracted by the Doppler filter unit 104. A signal in the sideband frequency band indicating vibration may be acquired.
 この場合、図13に示すように、超音波観測装置3は、例えば、探触子201に代えて、探触子の当接面に対して90度以外の異なる角度で取り付けられた超音波受信部1012と兼用される複数の超音波送信部1011を有する探触子401を有してもよい。なお、図13は、このような変形例の超音波観測装置3の探触子401の一例を示す斜視図(図13(a))、および上面図(図13(b))であり、ここでは、超音波受信部1012と兼用される超音波送信部1011が、2つである場合の例を示している。また、ここでは、各超音波送信部1011は、傾斜が異なる斜面を有する当板23の、異なる斜面に取り付けられている例を示している。 In this case, as shown in FIG. 13, the ultrasonic observation device 3 is attached to the contact surface of the probe at a different angle other than 90 degrees, for example, instead of the probe 201. The probe 401 may have a plurality of ultrasonic transmission units 1011 that are also used as the unit 1012. Note that FIG. 13 is a perspective view (FIG. 13 (a)) and a top view (FIG. 13 (b)) showing an example of the probe 401 of the ultrasonic observation device 3 of such a modified example. Here, an example is shown in which there are two ultrasonic wave transmitting units 1011 that are also used as the ultrasonic wave receiving unit 1012. Further, here, each ultrasonic transmission unit 1011 shows an example in which the plate 23 having slopes having different slopes is attached to different slopes.
 なお、上記各実施の形態において、送信器102、増幅部103、ドプラフィルタ部104、AD変換部105、取得部106、および出力部107等が行う各処理(各機能)は、単一の装置(システム)によって集中処理されることによって実現されてもよく、あるいは、複数の装置によって分散処理されることによって実現されてもよい。 In each of the above embodiments, each process (each function) performed by the transmitter 102, the amplification unit 103, the Doppler filter unit 104, the AD conversion unit 105, the acquisition unit 106, the output unit 107, and the like is a single device. It may be realized by centralized processing by (system), or may be realized by distributed processing by a plurality of devices.
 また、上記各実施の形態において、各構成要素は専用のハードウェアにより構成されてもよく、あるいは、ソフトウェアにより実現可能な構成要素(例えば、AD変換部105、取得部106、および出力部107等)については、プログラムを実行することによって実現されてもよい。例えば、ハードディスクや半導体メモリ等の記録媒体に記録されたソフトウェア・プログラムをCPU等のプログラム実行部が読み出して実行することによって、各構成要素が実現され得る。その実行時に、プログラム実行部は、格納部(例えば、ハードディスクやメモリ等の記録媒体)にアクセスしながらプログラムを実行してもよい。 Further, in each of the above embodiments, each component may be configured by dedicated hardware, or a component that can be realized by software (for example, AD conversion unit 105, acquisition unit 106, output unit 107, etc.). ) May be realized by executing a program. For example, each component can be realized by reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory by a program execution unit such as a CPU. At the time of execution, the program execution unit may execute the program while accessing the storage unit (for example, a recording medium such as a hard disk or a memory).
 図14は、上記のようなプログラムを実行するコンピュータの外観の一例を示す模式図である。上記実施の形態は、コンピュータハードウェア及びその上で実行されるコンピュータプログラムによって実現されうる。 FIG. 14 is a schematic diagram showing an example of the appearance of a computer that executes a program as described above. The above embodiment can be realized by computer hardware and a computer program executed on the computer hardware.
 図14において、コンピュータシステム900は、CD-ROM(Compact Disk Read Only Memory)ドライブ905を含むコンピュータ901と、キーボード902と、マウス903と、モニタ904とを備える。 In FIG. 14, the computer system 900 includes a computer 901 including a CD-ROM (Compact Disk Read Only Memory) drive 905, a keyboard 902, a mouse 903, and a monitor 904.
 図15は、コンピュータシステム900の内部構成を示す図である。図15において、コンピュータ901は、CD-ROMドライブ905に加えて、MPU、(Micro Processing Unit)911と、ブートアッププログラム等のプログラムを記憶するためのROM912と、MPU911に接続され、アプリケーションプログラムの命令を一時的に記憶すると共に、一時記憶空間を提供するRAM(Random Access Memory))913と、アプリケーションプログラム、システムプログラム、及びデータを記憶するハードディスク914と、MPU911、ROM912等を相互に接続するバス915と、を備える。なお、コンピュータ901は、LANへの接続を提供する図示しないネットワークカードを含んでいてもよい。 FIG. 15 is a diagram showing the internal configuration of the computer system 900. In FIG. 15, in addition to the CD-ROM drive 905, the computer 901 is connected to an MPU, (MicroProcessingUnit) 911, a ROM 912 for storing a program such as a bootup program, and an application program instruction. A RAM (RandomAccessMemory) 913 that temporarily stores data and provides a temporary storage space, a hard disk 914 that stores application programs, system programs, and data, and a bus 915 that interconnects the MPU 911, ROM 912, etc. And. Note that the computer 901 may include a network card (not shown) that provides a connection to the LAN.
 コンピュータシステム900に、各実施の形態による超音波観測装置等の機能を実行させるプログラムは、CD-ROM921に記憶されて、CD-ROMドライブ905に挿入され、ハードディスク914に転送されてもよい。これに代えて、そのプログラムは、図示しないネットワークを介してコンピュータ901に送信され、ハードディスク914に記憶されてもよい。プログラムは実行の際にRAM913にロードされる。なお、プログラムは、CD-ROM921、またはネットワークから直接、ロードされてもよい。 The program for causing the computer system 900 to execute the functions of the ultrasonic observation device and the like according to each embodiment may be stored in the CD-ROM 921, inserted into the CD-ROM drive 905, and transferred to the hard disk 914. Alternatively, the program may be transmitted to the computer 901 over a network (not shown) and stored on the hard disk 914. The program is loaded into RAM 913 at run time. The program may be loaded directly from the CD-ROM921 or the network.
 プログラムは、コンピュータ901に、各実施の形態による超音波観測装置の機能を実行させるオペレーティングシステム(OS)、またはサードパーティプログラム等を必ずしも含んでいなくてもよい。プログラムは、制御された態様で適切な機能(モジュール)を呼び出し、所望の結果が得られるようにする命令の部分のみを含んでいてもよい。コンピュータシステム900がどのように動作するのかについては周知であり、詳細な説明は省略する。 The program does not necessarily have to include an operating system (OS), a third-party program, or the like that causes the computer 901 to execute the function of the ultrasonic observation device according to each embodiment. The program may contain only a portion of instructions that call the appropriate function (module) in a controlled manner to obtain the desired result. It is well known how the computer system 900 works, and detailed description thereof will be omitted.
 以上、実施の形態を用いて本発明を説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の全部又は一部は、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本発明の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を併せ持つ。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments, and various modifications and changes can be made within the scope of the gist thereof. be. For example, all or part of the device can be functionally or physically distributed / integrated in any unit. Also included in the embodiments of the present invention are new embodiments resulting from any combination of the plurality of embodiments. The effect of the new embodiment produced by the combination has the effect of the original embodiment together.
 以上のように、本発明にかかる超音波観測装置等は、生体の観測を行うために用いる装置等として適しており、特に、超音波を用いて生体の観測を行うために用いる装置等として有用である。 As described above, the ultrasonic observation device or the like according to the present invention is suitable as a device or the like used for observing a living body, and is particularly useful as a device or the like used for observing a living body by using ultrasonic waves. Is.
1、2、3・・・超音波観測装置、10・・・筐体、2、3・・・超音波観測装置101、201、3、01、401・・・探触子20、21、22、23・・・当板、80、81・・・筒、70、71・・・遅延材、1011・・・超音波送信部、102・・・送信器、1012・・・超音波受信部、102・・・送信器、103・・・増幅部、104・・・ドプラフィルタ部、105・・・AD変換部、106・・・取得部、107・・・出力部1011a、1012a・・・振動子、1011b・・・送信面、1012b・・・受信面、10111・・・第一の超音波送信部、10112・・・第二の超音波送信部、10121・・・第一の超音波受信部、10122・・・第二の超音波受信部
 

 
1, 2, 3 ... Ultrasonic observation device, 10 ... Housing, 2, 3 ... Ultrasonic observation device 101, 201, 3, 01, 401 ... Detectors 20, 21, 22 , 23 ... This plate, 80, 81 ... Cylinder, 70, 71 ... Delay material, 1011 ... Ultrasonic transmitter, 102 ... Transmitter, 1012 ... Ultrasonic receiver, 102 ... Transmitter, 103 ... Amplification section, 104 ... Doppler filter section, 105 ... AD conversion section, 106 ... Acquisition section, 107 ... Output section 1011a, 1012a ... Vibration Child, 1011b ... Transmitting surface, 1012b ... Receiving surface, 10111 ... First ultrasonic transmitting unit, 10112 ... Second ultrasonic transmitting unit, 10121 ... First ultrasonic receiving unit Unit, 10122 ... Second ultrasonic receiver

Claims (12)

  1.  生体の表面に対して傾斜した方向に超音波を送信する超音波送信部および前記超音波送信部が送信する超音波の反射波を受信する超音波受信部を有する探触子と、
     前記超音波受信部が受信する反射波のドプラ成分を示すドプラ信号を抽出するドプラフィルタ部と、
     前記ドプラフィルタ部が抽出した前記ドプラ信号から、前記生体内の筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を取得する取得部と、
     前記取得部が取得したサイドバンド周波数帯域の信号を出力する出力部と、
     を備える超音波観測装置。
    A probe having an ultrasonic transmitter that transmits ultrasonic waves in a direction inclined with respect to the surface of a living body and an ultrasonic receiver that receives reflected waves of ultrasonic waves transmitted by the ultrasonic transmitter.
    A Doppler filter section that extracts a Doppler signal indicating the Doppler component of the reflected wave received by the ultrasonic receiving section, and a Doppler filter section.
    An acquisition unit that acquires a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber in the living body from the Doppler signal extracted by the Doppler filter unit.
    An output unit that outputs a signal in the sideband frequency band acquired by the acquisition unit, and an output unit.
    Ultrasonic observation device equipped with.
  2.  前記探触子は、筐体を有しており、
     前記超音波送信部および前記超音波受信部は、前記筐体に取り付けられており、
     前記超音波送信部は、送信面が、生体の表面に対して傾斜するよう配置されており、
     前記超音波受信部は、受信面が、前記超音波送信部から送信されて、生体内の筋繊維で反射された超音波の反射波が入射されるように、生体の表面に対して傾斜するよう配置されている、
     請求項1に記載の超音波観測装置。
    The probe has a housing and
    The ultrasonic transmitting unit and the ultrasonic receiving unit are attached to the housing.
    The ultrasonic transmission unit is arranged so that the transmission surface is inclined with respect to the surface of the living body.
    In the ultrasonic receiving unit, the receiving surface is inclined with respect to the surface of the living body so that the reflected wave of the ultrasonic wave transmitted from the ultrasonic transmitting unit and reflected by the muscle fibers in the living body is incident. Arranged as
    The ultrasonic observation device according to claim 1.
  3.  前記超音波送信部は、送信面が、超音波の送信方向が観測対象となる筋繊維の表面に対して傾斜するよう配置されており、
     前記超音波受信部は、受信面が、前記観測対象となる筋繊維で反射される超音波の反射方向に対して垂直となるよう配置されている、
     請求項2に記載の超音波観測装置。
    The ultrasonic transmission unit is arranged so that the transmission surface is inclined with respect to the surface of the muscle fiber to be observed in the transmission direction of the ultrasonic wave.
    The ultrasonic wave receiving unit is arranged so that the receiving surface is perpendicular to the reflection direction of the ultrasonic wave reflected by the muscle fiber to be observed.
    The ultrasonic observation device according to claim 2.
  4.  前記超音波送信部は、送信面が、超音波の送信方向が観測対象となる子宮筋の表面に対して傾斜するよう配置されており、
     前記超音波受信部は、受信面が、前記子宮筋で反射される超音波の反射方向に対して垂直となるよう配置されている、
     請求項3に記載の超音波観測装置。
    The ultrasonic wave transmitting unit is arranged so that the transmitting surface is inclined with respect to the surface of the uterine muscle to be observed in the ultrasonic wave transmitting direction.
    The ultrasonic receiving unit is arranged so that the receiving surface is perpendicular to the reflection direction of the ultrasonic waves reflected by the uterine muscle.
    The ultrasonic observation device according to claim 3.
  5.  前記探触子は、
     異なる方向に超音波を送信する複数の超音波送信部と、
     当該複数の超音波送信部がそれぞれ送信する超音波の反射波をそれぞれ受信する複数の超音波受信部と、
     を有しており、
     前記ドプラフィルタ部は、複数の超音波受信部がそれぞれ受信する反射波のドプラ成分を示す複数の前記ドプラ信号を抽出し、
     前記取得部は、前記ドプラフィルタ部が抽出した複数の前記ドプラ信号から、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を取得する、
     請求項2から4のいずれか一項に記載の超音波観測装置。
    The probe is
    Multiple ultrasonic transmitters that transmit ultrasonic waves in different directions,
    A plurality of ultrasonic receivers that receive the reflected waves of ultrasonic waves transmitted by the plurality of ultrasonic transmitters, respectively.
    Have and
    The Doppler filter unit extracts a plurality of Doppler signals indicating Doppler components of reflected waves received by the plurality of ultrasonic receivers, respectively.
    The acquisition unit acquires a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber from the plurality of Doppler signals extracted by the Doppler filter unit.
    The ultrasonic observation device according to any one of claims 2 to 4.
  6.  前記探触子は、
     異なる方向に超音波を送信する複数の超音波送信部と、
     当該複数の超音波送信部がそれぞれ送信する超音波の反射波をそれぞれ受信する複数の超音波受信部と、
     を有しており、
     前記ドプラフィルタ部は、複数の超音波受信部がそれぞれ受信する反射波のドプラ成分を示す複数の前記ドプラ信号を抽出し、
     前記取得部は、ドプラフィルタ部が抽出した複数の前記ドプラ信号の一部から、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を取得し、
     前記出力部は、前記取得部が取得したサイドバンド周波数帯域の信号と、複数の前記ドプラ信号のうち、前記取得部がサイドバンド周波数帯域の信号を取得した第1ドプラ信号以外の第2ドプラ信号とを出力する、
     請求項2から4のいずれか一項に記載の超音波観測装置。
    The probe is
    Multiple ultrasonic transmitters that transmit ultrasonic waves in different directions,
    A plurality of ultrasonic receivers that receive the reflected waves of ultrasonic waves transmitted by the plurality of ultrasonic transmitters, respectively.
    Have and
    The Doppler filter unit extracts a plurality of Doppler signals indicating Doppler components of reflected waves received by the plurality of ultrasonic receivers, respectively.
    The acquisition unit acquires a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber from a part of the plurality of Doppler signals extracted by the Doppler filter unit.
    The output unit is a second Doppler signal other than the sideband frequency band signal acquired by the acquisition unit and the first Doppler signal obtained by the acquisition unit among the plurality of Doppler signals. And output,
    The ultrasonic observation device according to any one of claims 2 to 4.
  7.  前記超音波送信部は、パルス状に超音波を送信し、
     前記超音波受信部は、前記超音波送信部が超音波のパルスを送信する合間に反射波を受信し、
     前記超音波送信部と、前記超音波受信部とは、生体の表面に対して傾斜するよう配置される同一の送受信面から、超音波の送信および反射波を受信する、
     請求項1から6のいずれか一項に記載の超音波観測装置。
    The ultrasonic transmission unit transmits ultrasonic waves in a pulse shape and transmits ultrasonic waves in a pulsed manner.
    The ultrasonic receiving unit receives the reflected wave while the ultrasonic transmitting unit transmits an ultrasonic pulse, and the ultrasonic receiving unit receives the reflected wave.
    The ultrasonic transmitting unit and the ultrasonic receiving unit receive ultrasonic waves and reflected waves from the same transmitting / receiving surface arranged so as to be inclined with respect to the surface of a living body.
    The ultrasonic observation device according to any one of claims 1 to 6.
  8.  前記ドプラフィルタ部は、前記超音波送信部が超音波のパルスを送信する合間に前記超音波受信部が受信した反射波のうちの2以上の異なるレンジゲートについて、それぞれドプラ信号を取得し、
     前記取得部は、前記ドプラフィルタ部がそれぞれ抽出した前記ドプラ信号から、筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を取得し、
     前記出力部は、前記取得部がそれぞれ取得したサイドバンド周波数帯域の信号を出力する、
     請求項7に記載の超音波観測装置。
    The Doppler filter unit acquires Doppler signals for two or more different range gates of the reflected waves received by the ultrasonic wave receiving unit while the ultrasonic wave transmitting unit transmits an ultrasonic pulse.
    The acquisition unit acquires a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber from the Doppler signal extracted by the Doppler filter unit.
    The output unit outputs a signal in the sideband frequency band acquired by each acquisition unit.
    The ultrasonic observation device according to claim 7.
  9.  前記ドプラフィルタ部は、
     前記超音波送信部が超音波のパルスを送信する合間に前記超音波受信部が受信した反射波の2以上の異なるレンジゲートについて、それぞれ前記ドプラ信号を取得し、
     前記取得部は、前記ドプラフィルタ部が1以上のレンジゲートについて抽出した前記ドプラ信号から、筋繊維の走行方向の微小振動を示す低周波側のサイドバンド周波数帯域の信号を取得し、
     前記出力部は、前記取得部が前記1以上のレンジゲートについてそれぞれ取得したサイドバンド周波数帯域の信号と、前記ドプラフィルタ部が抽出した複数の前記ドプラ信号のうちの、前記取得部が取得した第1ドプラ信号以外の1以上の第2ドプラ信号とを出力する、
     請求項7に記載の超音波観測装置。
    The Doppler filter unit
    The Doppler signal is acquired for each of two or more different range gates of the reflected wave received by the ultrasonic receiver while the ultrasonic transmitter transmits the ultrasonic pulse.
    The acquisition unit acquires a signal in the sideband frequency band on the low frequency side indicating minute vibration in the traveling direction of the muscle fiber from the Doppler signal extracted by the Doppler filter unit for one or more range gates.
    The output unit is the first of the sideband frequency band signals acquired by the acquisition unit for each of the one or more range gates and the plurality of Doppler signals extracted by the Doppler filter unit. Outputs one or more second Doppler signals other than one Doppler signal,
    The ultrasonic observation device according to claim 7.
  10.  前記取得部が取得するサイドバンド周波数帯域の信号は、5Hzから100Hzまでの周波数帯域の信号である、
     請求項1から9のいずれか一項に記載の超音波観測装置。
    The sideband frequency band signal acquired by the acquisition unit is a signal in the frequency band from 5 Hz to 100 Hz.
    The ultrasonic observation device according to any one of claims 1 to 9.
  11.  前記取得部は、前記ドプラフィルタ部が、子宮筋に対応するレンジゲートについて取得したドプラ信号について、サイドバンド周波数帯域の信号を取得し、
     前記出力部は、前記取得部が取得したサイドバンド周波数帯域の信号と、前記ドプラフィルタ部が、子宮内の胎児の心臓に対応するレンジゲートについて抽出した前記ドプラ信号とを出力する、
     請求項9に記載の超音波観測装置。
    The acquisition unit acquires a signal in the sideband frequency band for the Doppler signal acquired by the Doppler filter unit for the range gate corresponding to the uterine muscle.
    The output unit outputs a signal in the sideband frequency band acquired by the acquisition unit and the Doppler signal extracted by the Doppler filter unit for a range gate corresponding to the fetal heart in the womb.
    The ultrasonic observation device according to claim 9.
  12.  生体の表面に対して傾斜した方向に超音波を送信する超音波送信部および前記超音波送信部が送信する超音波の反射波を受信する超音波受信部を有する探触子と、送信部、ドプラフィルタ部、取得部、及び出力部を有する装置と、を用いて行われる超音波観測方法であって、
     前記送信部が前記探触子に生体の表面に対して傾斜した方向に超音波を送信させるステップと、
     前記超音波の前記表面における反射波のドプラ成分を示すドプラ信号を前記ドプラフィルタ部が抽出するステップと、
     前記取得部が、前記ドプラ信号から、前記生体内の筋繊維の走行方向の微小振動を示すサイドバンド周波数帯域の信号を取得するステップと、
     前記出力部が、前記サイドバンド周波数帯域の信号を出力するステップと、
     を有する超音波観測方法。
     

     
    A probe having an ultrasonic transmitter that transmits ultrasonic waves in a direction inclined with respect to the surface of a living body and an ultrasonic receiver that receives reflected waves of ultrasonic waves transmitted by the ultrasonic transmitter, and a transmitter. It is an ultrasonic observation method performed by using a device having a Doppler filter unit, an acquisition unit, and an output unit.
    A step in which the transmitter causes the probe to transmit ultrasonic waves in a direction inclined with respect to the surface of the living body.
    A step in which the Doppler filter unit extracts a Doppler signal indicating a Doppler component of a reflected wave on the surface of the ultrasonic wave.
    A step in which the acquisition unit acquires a signal in the sideband frequency band indicating minute vibration in the traveling direction of the muscle fiber in the living body from the Doppler signal.
    A step in which the output unit outputs a signal in the sideband frequency band,
    Ultrasonic observation method with.


PCT/JP2021/044895 2020-12-25 2021-12-07 Ultrasonic observation device and ultrasonic observation method WO2022138133A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022572087A JPWO2022138133A1 (en) 2020-12-25 2021-12-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-216397 2020-12-25
JP2020216397 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138133A1 true WO2022138133A1 (en) 2022-06-30

Family

ID=82159642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044895 WO2022138133A1 (en) 2020-12-25 2021-12-07 Ultrasonic observation device and ultrasonic observation method

Country Status (2)

Country Link
JP (1) JPWO2022138133A1 (en)
WO (1) WO2022138133A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145375A (en) * 1975-06-10 1976-12-14 Yokogawa Hewlett Packard Ltd Velocity difference detecting device
JP2010534100A (en) * 2007-07-24 2010-11-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ How to monitor fetal heart rate
JP2019058573A (en) * 2017-09-28 2019-04-18 国立大学法人旭川医科大学 Biological signal acquisition device, and mounting fixture for biological signal acquisition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145375A (en) * 1975-06-10 1976-12-14 Yokogawa Hewlett Packard Ltd Velocity difference detecting device
JP2010534100A (en) * 2007-07-24 2010-11-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ How to monitor fetal heart rate
JP2019058573A (en) * 2017-09-28 2019-04-18 国立大学法人旭川医科大学 Biological signal acquisition device, and mounting fixture for biological signal acquisition

Also Published As

Publication number Publication date
JPWO2022138133A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
US7753847B2 (en) Ultrasound vibrometry
US6984209B2 (en) Harmonic motion imaging
US6949074B2 (en) Method and apparatus for fetal audio stimulation
US7175599B2 (en) Shear mode diagnostic ultrasound
JP5530685B2 (en) System and method for detecting areas of varying stiffness
CN102293665B (en) Ultrasonic diagnosis apparatus
JP3868724B2 (en) Ultrasound angioscope system
US6511429B1 (en) Ultrasonic methods and systems for reducing fetal stimulation
US10136876B2 (en) System and method for local estimation of nonlinear tissue elasticity with acoustic radiation force
Jensen Ultrasound imaging and its modeling
KR20080093281A (en) Ultrasound diagnostic probe
CA2685886A1 (en) Method and device for measuring a mean value of visco-elasticity of a region of interest
JP2005534455A (en) Apparatus and method for measuring elasticity of human or animal organs
JP2003299654A (en) Puncture needle guide tool, ultrasonic probe and ultrasonic imaging device
KR20140132811A (en) Ultrasound imaging apparatus and control method for the same
JP7363636B2 (en) Ultrasonic diagnostic device and method of controlling the ultrasonic diagnostic device
JP2002253548A (en) Ultrasonic examination device
JP6808362B2 (en) Devices and methods for hybrid optical acoustic tomography and ultrasonography
US20100222679A1 (en) Method and apparatus for assessing risk of preterm delivery
JP4688262B2 (en) Ultrasonic diagnostic equipment
JP2003230560A (en) Ultrasonograph
WO2020042020A1 (en) Ultrasonic elasticity detection device and shear wave elasticity imaging method and apparatus
WO2022138133A1 (en) Ultrasonic observation device and ultrasonic observation method
CN205849470U (en) Ultrasonic probe and there is the ultrasonic detection equipment of this ultrasonic probe
JPWO2019208767A1 (en) Ultrasonic system and control method of ultrasonic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572087

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910282

Country of ref document: EP

Kind code of ref document: A1