WO2022138020A1 - 歩行支援装置および歩行支援方法 - Google Patents

歩行支援装置および歩行支援方法 Download PDF

Info

Publication number
WO2022138020A1
WO2022138020A1 PCT/JP2021/043987 JP2021043987W WO2022138020A1 WO 2022138020 A1 WO2022138020 A1 WO 2022138020A1 JP 2021043987 W JP2021043987 W JP 2021043987W WO 2022138020 A1 WO2022138020 A1 WO 2022138020A1
Authority
WO
WIPO (PCT)
Prior art keywords
wearer
unit
foot
walking
stimulus
Prior art date
Application number
PCT/JP2021/043987
Other languages
English (en)
French (fr)
Inventor
嘉之 山海
Original Assignee
Cyberdyne株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cyberdyne株式会社 filed Critical Cyberdyne株式会社
Priority to US18/259,023 priority Critical patent/US20240299743A1/en
Priority to EP21910172.2A priority patent/EP4268785A1/en
Publication of WO2022138020A1 publication Critical patent/WO2022138020A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36003Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of motor muscles, e.g. for walking assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/0266Foot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/025Digital circuitry features of electrotherapy devices, e.g. memory, clocks, processors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0476Array electrodes (including any electrode arrangement with more than one electrode for at least one of the polarities)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0484Garment electrodes worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H2003/007Appliances for aiding patients or disabled persons to walk about secured to the patient, e.g. with belts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/164Feet or leg, e.g. pedal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/165Wearable interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/165Wearable interfaces
    • A61H2201/1652Harness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5061Force sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5069Angle sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5084Acceleration sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5097Control means thereof wireless
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/08Other bio-electrical signals
    • A61H2230/085Other bio-electrical signals used as a control parameter for the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0004Applications of ultrasound therapy
    • A61N2007/0021Neural system treatment
    • A61N2007/0026Stimulation of nerve tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy

Definitions

  • the present invention relates to a walking support device and a walking support method, and is suitable for application to, for example, a patient having a foot drop symptom.
  • a part of the neuromuscular system of the patient's lower limbs is associated with the patient's walking event (heel takeoff event), walking speed, foot inclination, floor reaction force, and the like. It is designed to induce or manipulate a multi-channel stimulus current to provide a stimulus that causes dorsiflexion or plantar flexion of the patient's foot.
  • the electrical stimulation pattern is modified when the walking quality evaluated from the trajectory of the patient's foot is less than a certain threshold value.
  • Patent Documents 1 and 2 the walking state of the patient is only detected by using a sensor group such as a motion sensor or a gyroscope, and the walking motion of the patient is performed based only on the detection result of the sensor group. Since the optimization is adjusted, it may be practically insufficient for a patient suffering from foot drop to smoothly swing the leg in real time according to his / her intention when walking.
  • a sensor group such as a motion sensor or a gyroscope
  • the present invention has been made in consideration of the above points, and an object of the present invention is to propose a walking support device and a walking support method that enable the wearer to smoothly perform the plantar dorsiflexion movement of the toes according to his / her own will.
  • the load is measured by a load measuring unit and a load measuring unit, which are attached to the inner soles of a pair of left and right shoes of the wearer and measure the load applied to the back surface of the wearer's foot.
  • a foot movement that detects one or both of the acceleration and angular velocity when the foot moves, which is mounted on a predetermined position of each shoe and a center of gravity calculation unit that calculates the position of the center of gravity of each foot based on the change in each load.
  • the movement locus calculation unit that calculates the movement locus of each foot based on the detection unit and each acceleration and / or each angular velocity detected by the foot movement detection unit, and the calculated center of gravity position and movement locus of each foot.
  • the wearer's biological signal which is placed on the foot recognition unit that recognizes the wearer's foot and on the body surface of the wearer based on the joints associated with the wearer's walking motion. It is placed in the biometric signal detection unit having the electrode group of the above and in the paralyzed part centering on the dorsiflexor muscle group and the plantar flexor muscle group of the wearer's ankle joint, and gives a physical stimulus to the body surface of the paralyzed part.
  • a stimulus applying unit having a terminal group for the purpose, and a voluntary control unit that arbitrarily controls the stimulating unit so as to generate a stimulating force according to the wearer's intention based on the biological signal detected by the biological signal detecting unit.
  • the stimulus application part is autonomously controlled so that the ankle joint is dorsiflexed or plantar flexed by the contraction of the wearer's dorsiflexor muscle group or plantar flexor muscle group.
  • the hybrid rate of the voluntary control by the voluntary control unit and the autonomous control by the autonomous control unit is set so that the left-right balance of the foot of the wearer recognized by the autonomous control unit and the step recognition unit is converged within a predetermined range. It is provided with an optimum stimulus adjustment unit for adjustment.
  • the stimulus applying portion is arbitrarily controlled so that the wearer does not wear a drive mechanism such as an actuator and generates a stimulating force according to the wearer's intention, and the wearer's walking cycle.
  • the stimulation applying portion can be autonomously controlled so that the ankle joint is dorsiflexed or plantar flexed by the contraction of the dorsiflexor muscle group or the plantar flexor muscle group of the wearer.
  • the hybrid rate of voluntary control and autonomous control so that the left-right balance of the wearer's gait converges within a predetermined range, the left-right balance of one's gait is maintained and one's own intention is achieved.
  • the plantar dorsiflexion movement of the toes can be smoothly performed so as to be linked to the physical stimulating force.
  • the stimulus applying unit adjusts at least one of the intensity level, pattern and time of stimulating the paralyzed part of the wearer according to the control of the voluntary control unit and / or the autonomous control unit. I made it.
  • the walking support device can be adjusted so that the left-right balance of the wearer's gait is maintained and at the same time, the plantar dorsiflexion movement of the wearer's toes is smoothly performed.
  • a sound collecting microphone is provided on the shoe on the side where the wearer's ankle joint has a paralyzed part and collects the walking sound of the shoe, and the optimum stimulus adjusting unit collects sound by the sound collecting microphone.
  • the hybrid rate was corrected based on the walking sound.
  • the shoe is provided on the shoe on the side where the wearer's ankle joint has a paralyzed portion, and is provided with a vibration detection unit that detects vibration from the floor surface during walking.
  • the hybrid rate was corrected based on the detected vibration.
  • the walking support device can more accurately perform the sole dorsiflexion movement of the wearer's toes more accurately by grasping the state of the floor surface while detecting the vibration transmitted from the floor surface to the shoes. Can be adjusted as such.
  • the stimulus application is arbitrarily controlled so that the wearer does not wear a drive mechanism such as an actuator and generates a stimulus force according to the wearer's intention, and the wearer's walking cycle is changed.
  • the stimulation can be autonomously controlled so that the ankle joint is dorsiflexed or plantar flexed by the contraction of the dorsiflexor muscle group or the plantar flexor muscle group of the wearer.
  • the hybrid rate of voluntary control and autonomous control so that the left-right balance of the wearer's gait converges within a predetermined range, the left-right balance of one's gait is maintained and one's own intention is achieved.
  • the plantar dorsiflexion movement of the toes can be smoothly performed so as to be linked to the physical stimulating force.
  • the present invention it is possible to realize a walking support device and a walking support method in which the wearer can smoothly perform the plantar dorsiflexion movement of the toes according to his / her own intention while maintaining the left-right balance of the gait.
  • FIG. 1 shows the walking support device 1 according to the present embodiment, and is equipped with a walking state detection unit 2 composed of a pair of shoes on which various sensor groups are mounted. It has a biological signal measurement wearing tool 3 worn on the left and right lower limbs of a person.
  • the walking state detecting unit 2 is attached to the inner soles of the pair of left and right shoes of the wearer, respectively, and measures the load applied to the back surface of the wearer's foot, and the load measuring unit 10 and each shoe. It is mounted at a predetermined position and has a foot motion detecting unit 11 that detects one or both of acceleration and angular velocity when the foot moves.
  • the foot motion detection unit 11 is composed of a 6-axis motion sensor including a 3-axis acceleration sensor and a 3-axis angular velocity sensor (gyro sensor) attached to the upper center of each shoe.
  • the walking state detection unit 2 includes a control unit 12 that processes information obtained from the load measurement unit 10 and the foot motion detection unit 11, a data storage unit 13 that stores data processed by the control unit 12, and a biological signal measurement described later. It has a communication unit 14 for transmitting and receiving signals to and from the wearer 3.
  • the control unit 12 has a center of gravity position calculation unit 20 that calculates the position of the center of gravity of each foot based on the change of each load measured by the load measurement unit 10, and each acceleration and / / that is detected by the foot motion detection unit 11.
  • a foot movement locus calculation unit 21 that calculates the movement locus of each foot based on each angular velocity, and a gait recognition unit that recognizes the wearer's gait based on the calculated center of gravity position and movement locus of each foot. 22 is provided.
  • the center of gravity position calculation unit 20 receives the measurement result of the load on the back surface of each foot detected from the floor reaction force sensor, and the center of gravity position of each foot (floor reaction force center position) based on the change of each load. ) Is calculated.
  • the configuration of the center of gravity position calculation unit 20 it is desirable to use the one having the same configuration as the center of gravity position detecting device as disclosed in Japanese Patent No. 4997614, which is the same as the applicant of the present application.
  • the foot movement locus calculation unit 21 calculates the movement locus of each foot by receiving the acceleration and the angular velocity at the time of movement of each foot detected by the 3-axis acceleration sensor and the 3-axis angular velocity sensor, which are 6-axis motion sensors.
  • the step recognition unit 22 determines the change in the center of gravity of each foot based on the position of the center of gravity of each foot calculated by the center of gravity position calculation unit 20 and the movement locus of each foot calculated by the foot movement locus calculation unit 21. Calculated as the locus of (center of gravity of floor reaction force).
  • the data storage unit 13 stores data representing the locus of the center of gravity (center of the floor reaction force) of each foot during normal walking of the wearer, and stores a Lissajous figure (vibration waveform of each walking cycle on the XY plane). It can be expressed as a closed curve).
  • This normal state represents a state in which the wearer's walking state is assumed to have a constant walking cycle and the left-right balance (mainly stride length) is even.
  • the gait recognition unit 22 reads out the data representing the trajectory of the center of gravity of the wearer in the normal state stored in the data storage unit 13, compares it with the locus of the center of gravity of each foot in the current wearer, and makes the comparison. Based on the results, the wearer's gait is evaluated.
  • the data storage unit 13 has a closed curve (Lissajous figure) of a two-dimensional coordinate system in which the locus of the center of gravity (center of floor reaction force) of each foot is used as a vibration waveform for each walking cycle for the wearer's normal walking.
  • the data to be represented is stored.
  • the step recognition unit 22 calculates the waveform pattern representing the closed curve data of the above-mentioned two-dimensional coordinate system for the calculated locus of the center of gravity (center of the floor reaction force) in each foot of the wearer, and then the curve data at the normal time.
  • the waveform pattern representing the above is read from the data storage unit 13 and compared.
  • the gait recognition unit 22 determines the closest feature based on the waveform pattern (curve data) peculiar to the wearer stored in the data storage unit 13 for the difference in the waveform pattern which is the comparison result.
  • the degree of difference in the above-mentioned waveform pattern (that is, the degree of specificity of the change in the center of gravity of each foot) is determined as the recognition result of the wearer's gait (state of deviation from the normal state).
  • the walking state detection unit 2 is adapted to wirelessly communicate the recognition result of the gait recognition unit 22 with the biological signal measurement wearing device 3 via the communication unit 14.
  • Data is connected between the communication unit 14 of the walking state detection unit 2 and the communication unit (not shown) of the biological signal measurement device 3 by a short-range wireless communication method such as Bluetooth (registered trademark) or RF-ID. Is sent and received.
  • the biometric signal detecting unit 30 (FIG. 7) for detecting the biometric signal of the wearer is arranged on the leg on the healthy side, while the ankle joint of the wearer is paralyzed.
  • the stimulating section 40 (FIG. 7) that gives a physical stimulus to the paralyzed site is provided. It has a structure that is arranged together.
  • the biological signal measurement wearing tool 3 is in line with the contents described in Tokuto 5409637 and Tokuto 6145663 by the inventor of the present application, and uses the same principle.
  • the biological signal measurement wearing device is shown in FIGS. 4 (A) and 4 (B).
  • the biological signal measurement wearing tool 3 is formed so as to cover the wearer's body surface, has a wearing tool main body 3A to be worn by the wearer, and has an inner surface surface of the wearing tool main body 3A (the wearing state is worn by the wearer).
  • a biological signal detection unit 30 having a group of electrodes for detecting a biological potential signal is provided at at least one position where a biological signal can be measured from the wearer's body) on the surface in contact with the body surface of the wearer.
  • the biological signal measurement wearing device 3 of the present embodiment corresponds to a case where the right leg of the wearer's lower limbs is healthy, while the left leg has the symptom of foot drop. ing. That is, in the biological signal measurement wearing device 3 of the present embodiment, the biological signal detection unit 30 is arranged on the right leg, and in addition to the biological signal detection unit 30 on the left leg, the stimulation applying unit 40 centering on the portion below the knee. Is placed.
  • FIG. 4 (A) shows the anterior lower body of the wearer
  • FIG. 4 (B) shows the posterior lower body of the wearer.
  • a plurality of electrodes 31 in the biological signal detection unit 30 are arranged on the body surface portion of the wearer with reference to the joint accompanying the walking motion of the wearer.
  • the electrodes 31 are evenly spaced along the flow of the wearer's leg muscles.
  • the plurality of electrodes 31 are arranged along the flow of the gluteus maximus in the portion corresponding to the wearer's buttocks (electrode group 32A).
  • electrode group 32B in the part corresponding to the back side of the wearer's thigh (electrode group 32B), it is arranged along the flow of the biceps femoris muscle, the semimembranosus muscle, and the semitendinosus muscle, and corresponds to the calf.
  • the portions (electrode group 32C) are arranged along the flow of the triceps surae muscle.
  • the site corresponding to the anterior side of the hip joint is arranged along the flow of the adductor longus muscle and the iliopsoas muscle
  • the site corresponding to the anterior side of the thigh is the quadriceps muscle. It is arranged along the flow of the tibialis anterior muscle, the soleus muscle, and the extensor longus muscle at the site corresponding to the shin (electrode group 32F).
  • the part below the knee of the wearer's left leg (the part having a paralyzed part in the ankle joint) is in contact with the wearer's body surface and is given an electrical stimulus in response to the biological stimulus signal.
  • a stimulus applying portion 40 having a terminal group for the purpose is provided, and a plurality of pairs of the terminal 41 and the above-mentioned electrode 31 are arranged in a matrix.
  • FIG. 5A is a diagram showing an example of the biological signal detection unit 30 provided on the wearer body 3A.
  • the biological signal detection unit 30 is composed of electrode groups 32A to 32F composed of a plurality of biological signal electrodes 31 and a measurement module 33 connected to the electrode groups 32A to 32F.
  • each of the electrodes 31 is provided in a state of being insulated from each other, and each of them is connected to the measurement module 33 via a conductive wiring. An address is assigned to each of these electrodes 31.
  • the measurement module 33 a plurality of electrodes 31 constituting the electrode groups 32A to 32F are connected, at least two electrodes 31 are selected from these electrodes 31, and the difference between the detection signals detected by these selected electrodes 31.
  • the measurement module controller 34 that acquires the biological signal, the memory 35 that records the acquired biological signal, and the biological signal that is sequentially acquired and / or the biological signal recorded in the memory 35 are externally (FIG. 7 described later). It is provided with a communication means 36 for transmitting to the integrated control unit 50) shown in the above.
  • the measurement module 33 is provided for each of the electrode groups 32A to 32F, and each electrode 31 is connected to the measurement module 33.
  • the measurement module controller 34 sequentially selects at least two electrodes 31 from the plurality of connected electrodes 31 according to a command signal input via the communication means 36, and the living body between these two selected electrodes. It has an electronic circuit that can acquire a signal.
  • the measurement module controller 34 further has signal processing means such as a filter for removing or extracting a predetermined frequency component from the biological signal acquired in this manner, an amplifier for amplifying the acquired biological signal, and the like. ..
  • the biological signal thus acquired is output from the measurement module controller 34 to the communication means 36 and / or the memory 35.
  • the electrodes 31 may be sequentially operated in a preset order, or based on a designated signal input via the communication means 36. , The electrode 31 corresponding to the address designated by the designated signal may be selected.
  • the communication means 36 includes a thin antenna and a communication circuit connected to the antenna.
  • the communication means 36 includes a signal including a biological signal output from the measurement module controller 34 and information such as an address indicating the position information of the electrode 31 that has detected the biological signal, and / or a biological signal read from the memory 35.
  • Measurement information including a signal including information such as an address indicating the position information of the electrode 31 that has detected the biological signal is transmitted to the integrated control unit 50 (FIG. 7) via the antenna.
  • the integrated control unit 50 outputs a designated signal for designating which electrode 31 is selected from the electrode groups 32A to 32F provided on the mounting tool main body 3A, a signal for starting or ending data acquisition, and the like. It is generated and these signals are transmitted to the measurement module controller 34 via the antenna.
  • the measurement module controller 34 selects the designated electrode 31 according to the received signal and measures the biological signal.
  • the biological signal measurement wearing tool 3 by detecting the biological signal by the plurality of electrodes 31, the biological signal can be measured at each of a plurality of points in the region where the electrode groups 32A to 32F are arranged. can. Then, by mapping the measurement data at each point according to the address assigned to each electrode 31, the distribution of the biological signal in the wearer's body can be measured. Then, based on this measurement result, the stimulus applying unit 40 can be arbitrarily controlled by accurately reflecting the wearer's intention.
  • the stimulation applying portion 40 includes the dorsiflexor muscle group (mainly the tibialis anterior muscle and the extensor digitorum longus muscle) and the plantar flexor muscle group (mainly the gastrocnemius muscle, the soleus muscle, the plantar flexor muscle, etc.) of the wearer's ankle joint. ) Is arranged in each of the paralyzed parts, and has a terminal group for giving an electrical stimulus to the body surface of the paralyzed part.
  • dorsiflexor muscle group mainly the tibialis anterior muscle and the extensor digitorum longus muscle
  • the plantar flexor muscle group mainly the gastrocnemius muscle, the soleus muscle, the plantar flexor muscle, etc.
  • the stimulus applying unit 40 is composed of a device that contracts the muscle of the paralyzed part by functional electrical stimulation (FES: Functional Electrical Stimulation).
  • FES Functional Electrical Stimulation
  • the body surface portion for applying electrical stimulation to the wearer the body surface portion corresponding to the dorsiflexor muscle group centering on the ankle and the plantar flexor muscle group is optimal.
  • the stimulus applying unit 40 includes a terminal group 42A composed of a plurality of terminals 41 for electrical stimulation and the terminal group 42A. It is composed of the measurement module 33 of the above-mentioned biological signal detection unit 30 connected to the above-mentioned.
  • the terminal group 42A of the stimulus applying unit 40 corresponds to the electrode group 32C of the biological signal detecting unit 30, and the terminal group 42B of the stimulating unit 40 corresponds to the electrode group 32F of the biological signal detecting unit 30.
  • the measurement module 33 is also used by the biological signal detection unit 30 and the stimulation application unit 40, but they may be provided separately from each other.
  • the measurement module controller 34 in the measurement module 33 includes an authentication / FES condition setting unit 60, a stimulation control unit 61, a stimulation frequency adjustment unit 62, a pulse width adjustment unit 63, and a pulse waveform / modulation. It has an adjusting unit 64, a voltage adjusting unit 65, and a functional electrical stimulation signal generating unit 66.
  • the authentication / FES condition setting unit 60 is input based on the authentication data (ID / password) of the doctor or physiotherapist input by the operation of the input operation unit (not shown) and the diagnosis of the doctor or physiotherapist.
  • Set the FES conditions conditions such as stimulation frequency, pulse width, pulse waveform / modulation, voltage, etc.
  • the stimulation control unit 61 combines the signal of the functional electrical stimulation received from the integrated control unit 50 (FIG. 7) via the communication means 36 with the setting result of the authentication / FES condition setting unit 60, and the stimulation frequency adjustment unit 62. , The pulse width adjusting unit 63, the pulse waveform / modulation adjusting unit 64, and the voltage adjusting unit 65.
  • the stimulation frequency adjusting unit 62 adjusts the stimulation frequency of the functional electrical stimulation to the frequency set by the authentication / FES condition setting unit 60.
  • the pulse width adjusting unit 63 adjusts the pulse width of the functional electrical stimulation to the pulse width set by the authentication / FES condition setting unit 60.
  • the pulse waveform / modulation adjustment unit 64 adjusts the pulse waveform of the functional electrical stimulation to the pulse waveform set by the authentication / FES condition setting unit 60.
  • the voltage adjusting unit 65 adjusts the voltage of the functional electrical stimulation to an arbitrary voltage set by the authentication / FES condition setting unit 60.
  • the stimulation frequency, pulse width, pulse waveform / modulation, and voltage are adjusted by the stimulation frequency adjustment unit 62, the pulse width adjustment unit 63, the pulse waveform / modulation adjustment unit 64, and the voltage adjustment unit 65.
  • the electric signal is output to the terminal group 41 (42A, 42B) via the communication means 36.
  • a central control unit 50 for comprehensively controlling the biological signal detection unit 30 and the stimulus application unit 40 is provided, and the integrated control unit 50 is provided. It is composed of a voluntary control unit 70, an autonomous control unit 71, and an optimum stimulus adjustment unit 72.
  • the overall control unit 50 starts or ends the acquisition of a designated signal for designating which terminal 41 is selected from the terminal groups 42A and 42B provided on the fixture main body 3A, data acquisition, and the like. Signals and the like are generated, and these signals are transmitted to the measurement module controller 34 via the antenna. The measurement module controller 34 selects and operates the designated terminal 41 according to the received signal.
  • the voluntary control unit 70 of the integrated control unit 50 voluntarily controls the stimulus application unit 40 so as to generate a stimulating force according to the wearer's intention based on the biological signal detected by the biological signal detection unit 30.
  • the voluntary control unit 70 constitutes the terminal groups 42A and 42B in the stimulus application unit 40 based on the distribution measurement result of the biological signal in the wearer's body by the biological signal detection unit 30 when the stimulus application unit 40 is voluntarily controlled. It is also possible to select the optimum combination from the plurality of terminals 41.
  • the relationship between the distribution measurement result of the biological signal at that time and the terminal 41 selected from the terminal groups 42A and 42B may be set in advance according to the characteristics of the wearer, or the actual wearer's foot. It may be reset while adjusting according to the feedback result of the previous plantar dorsiflexion movement.
  • the autonomous control unit 71 has a dorsiflexor muscle of the wearer based on the wearer's walking cycle obtained from the recognition result of the gait recognition unit 22 received from the walk state detection unit 2 (FIG. 2) via the communication unit 73.
  • the stimulation applying portion 40 (42A, 42B) is autonomously controlled so that the ankle joint is dorsiflexed or plantar flexed by the contraction of the group or the plantar flexor muscle group.
  • the optimum stimulus adjusting unit 72 has the voluntary control by the voluntary control unit 70 and the autonomy by the autonomous control unit 71 so that the left-right balance of the wearer's gait recognized by the gait recognition unit 22 converges within a predetermined range. Adjust the hybrid rate with the control.
  • the stimulus applying unit 40 is arbitrarily provided so that the wearer does not wear a drive mechanism such as an actuator and generates a stimulating force according to the wearer's intention.
  • the stimulation applying portion 40 can be autonomously controlled so that the ankle joint is dorsiflexed or plantar flexed due to the contraction of the dorsiflexor muscle group or the plantar flexor muscle group of the wearer based on the walking cycle of the wearer.
  • the hybrid rate of voluntary control and autonomous control so that the left-right balance of the wearer's gait converges within a predetermined range, the left-right balance of one's gait is maintained and one's own intention is achieved.
  • the plantar dorsiflexion movement of the toes can be smoothly performed so as to be linked to the physical stimulating force.
  • the above-mentioned stimulus applying unit 40 adjusts at least one of the intensity level, pattern, and time of stimulating the paralyzed portion of the wearer according to the control of the voluntary control unit 70 and / or the autonomous control unit 71. It is done like this. As a result, the walking support device 1 can be adjusted so that the left-right balance of the wearer's gait is maintained and at the same time, the plantar dorsiflexion movement of the wearer's toes is smoothly performed.
  • the stimulating portion is composed of a device for contracting the muscle of the paralyzed part by functional electrical stimulation (FES)
  • FES functional electrical stimulation
  • the present invention is not limited to this, and if it is a device capable of applying a physical stimulus, an electrical stimulus such as therapeutic electrical stimulus (TES: Therapeutic Electrical Stimulation), an ultra-short wave stimulus, an ultrasonic stimulus, etc.
  • TES Therapeutic Electrical Stimulation
  • ultra-short wave stimulus an ultrasonic stimulus
  • ultrasonic stimulus etc.
  • Various physical stimuli may be applied.
  • the shoe is provided on the shoe on the side where the wearer's ankle joint has a paralyzed portion, and a sound collecting microphone (not shown) for collecting the walking sound of the shoe is provided, and the optimum stimulus adjusting unit 72 (FIG. In 7), the hybrid ratio may be modified based on the walking sound collected by the sound collecting microphone.
  • the bottom dorsiflexion of the wearer's toes is more accurately grasped by grasping the state of the floor while collecting the sound when the wearer's toes come into contact with the floor. It can be adjusted so that the exercise is smooth.
  • the shoe is provided on the shoe on the side where the wearer's ankle joint has a paralyzed portion, and is provided with a vibration detection unit (not shown) for detecting vibration from the floor surface during walking, and an optimum stimulation adjustment unit 72.
  • FIG. 7 may modify the hybrid ratio based on the vibration detected by the vibration detection unit.
  • the walking support device can more accurately perform the sole dorsiflexion movement of the wearer's toes more accurately by grasping the state of the floor surface while detecting the vibration transmitted from the floor surface to the shoes. Can be adjusted as such.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Rehabilitation Therapy (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Rehabilitation Tools (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

装着者の歩容の左右バランスが所定範囲内に収束されるように、随意制御と自律制御とのハイブリッド率を調整することにより、自己の歩容の左右バランスを保ちながら、自己の意思に従った物理的な刺激力に連動するように足先の底背屈運動をスムーズに行う。

Description

歩行支援装置および歩行支援方法
 本発明は、歩行支援装置および歩行支援方法に関し、例えば下垂足(フットロドップ)症状をもつ患者に適用して好適なものである。
 脳卒中や脳溢血、脳梗塞のような脳血管障害や脊髄損傷を罹患した患者には、下肢に弛緩性または痙性の麻痺が残るケースが多々ある。弛緩性の麻痺は、下肢のつま先が健常者よりも底屈する下垂足(フットドロップ)と呼ばれる症状をもたらしうる。
 下垂足の症状をもつ患者は、足関節の背屈筋群の弛緩や底屈筋群の亢進により、足関節の背屈が困難になっている。その患者が歩行動作をする際、麻痺側の下肢を蹴り出す遊脚前期においてつま先が底屈し、そのまま遊脚後期に至るため、踵よりも先につま先が着床してしまい、転倒する可能性がある。
 このように下垂足の症状をもつ患者は、歩行の遊脚期中に足を引きずりがちであり、通常、対応する臀部の引き上げまたは円運動での対応する脚の揺れでこの引きずりを補償しようとするため、円滑な体重移動が行えずに頻繁に転倒するリスクを有する。
 このような下垂足の症状をもつ患者に対して、従来から歩行調整用の機能的電気刺激(FES)装具を脚の足や足首に装着することにより、脚の神経筋系の一部分に電気刺激を選択的に与えて、患者の歩行を容易にすることができるものが提案されている(特許文献1参照)。
 また下垂足を罹患する患者の足の軌道から歩行相を検出するとともに歩行品質を評価して、これらに基づいて刺激パターンを修正する機能的電気刺激システムが提案されている(特許文献2参照)。
特表2019-505290号公報 特表2017-517370号公報
 ところで、特許文献1に示す機能的電気刺激装具では、患者の歩行イベント(踵離地イベント)、歩行速度および足の傾斜や床反力等に関連付けて、患者の下肢の神経筋系の一部に多チャネルの刺激電流を誘導または操作して、患者の足の背屈や底屈を生じさせるような刺激を付与するようになされている。
 また、特許文献2に示す機能的電気刺激システムでは、患者の足の軌道から評価した歩行品質が一定の閾値未満の場合に、電気刺激パターンを修正するようになされている。
 ところが、特許文献1および2においては、患者の歩行状態をモーションセンサやジャイロスコープ等のセンサ群を用いて検出する手法に過ぎず、当該センサ群の検出結果のみに基づいて、患者の歩行動作の最適化を調整しているため、下垂足を罹患する患者が歩行する際に、自己の意思に従ってリアルタイムで脚をスムーズに振り出すことは実用上不十分となるおそれがある。
 本発明は以上の点を考慮してなされたもので、装着者が自己の意思に従って足先の底背屈運動をスムーズに行い得る歩行支援装置および歩行支援方法を提案しようとするものである。
 かかる課題を解決するため本発明においては、装着者の左右一対の靴の内側底部にそれぞれ取り付けられ、装着者の足の裏面にかかる荷重を測定する荷重測定部と、荷重測定部により測定された各荷重の変化に基づいて、各足の重心位置を算出する重心位置算出部と、各靴の所定位置に搭載され、足の移動時における加速度および角速度のいずれか一方または両方を検出する足動作検出部と、足動作検出部により検出された各加速度および/または各角速度に基づいて、各足の移動軌跡を算出する移動軌跡算出部と、算出された各足の重心位置および移動軌跡に基づいて、装着者の歩容を認識する歩容認識部と、装着者の歩行動作に伴う関節を基準とする当該装着者の体表部位にそれぞれ配置され、当該装着者の生体信号を検出するための電極群を有する生体信号検出部と、装着者の足関節の背屈筋群および底屈筋群を中心とする麻痺箇所にそれぞれ配置され、当該麻痺箇所の体表に対して物理的な刺激を与えるための端子群を有する刺激付与部と、生体信号検出部により検出された生体信号に基づいて、装着者の意思に従った刺激力を発生させるように刺激付与部を随意制御する随意制御部と、歩容認識部の認識結果から得られる装着者の歩行周期に基づいて、装着者の背屈筋群または底屈筋群の収縮により足関節が背屈または底屈するように刺激付与部を自律制御する自律制御部と、歩容認識部により認識される装着者の歩容の左右バランスが所定範囲内に収束されるように、随意制御部による随意制御と自律制御部による自律制御とのハイブリッド率を調整する最適刺激調整部とを備えるようにした。
 この結果、歩行支援装置では、装着者がアクチュエータ等の駆動機構を装着することなく、装着者の意思に従った刺激力を発生させるように刺激付与部を随意制御するとともに、装着者の歩行周期に基づいて、装着者の背屈筋群または底屈筋群の収縮により足関節が背屈または底屈するように刺激付与部を自律制御することができる。さらに装着者の歩容の左右バランスが所定範囲内に収束されるように、随意制御と自律制御とのハイブリッド率を調整することにより、自己の歩容の左右バランスを保ちながら、自己の意思に従った物理的な刺激力に連動するように足先の底背屈運動をスムーズに行うことができる。
 また本発明においては、刺激付与部は、随意制御部および/または自律制御部の制御に応じて、装着者の麻痺箇所に対する刺激付与の強弱レベル、パターンおよび時間のうち少なくとも1以上を調整するようにした。この結果、歩行支援装置では、装着者の歩容の左右バランスを保つと同時に、当該装着者の足先の底背屈運動がスムーズに行うように調整することができる。
 さらに本発明においては、装着者の足関節に麻痺箇所を有する側の靴に設けられ、当該靴の歩行音を集音する集音マイクを備え、最適刺激調整部は、集音マイクにより集音された歩行音に基づいて、ハイブリッド率を修正するようにした。この結果、歩行支援装置では、装着者の足先が床面と接触する際の音を集音しながら当該床面の状態を把握することにより、さらに正確に装着者の足先の底背屈運動がスムーズに行うように調整することができる。
 さらに本発明においては、装着者の足関節に麻痺箇所を有する側の靴に設けられ、歩行時の床面からの振動を検出する振動検出部を備え、最適刺激調整部は、振動検出部により検出された振動に基づいて、ハイブリッド率を修正するようにした。この結果、歩行支援装置では、靴に伝達される床面からの振動を検出しながら当該床面の状態を把握することにより、さらに正確に装着者の足先の底背屈運動がスムーズに行うように調整することができる。
 さらに本発明においては、装着者の各足の裏面にかかる荷重の変化に基づいて、当該各足の重心位置を算出する第1の過程と、各足の移動時における加速度および角速度のいずれか一方または両方に基づいて、当該各足の移動軌跡を算出する第2の過程と、算出された各足の重心位置および移動軌跡に基づいて、装着者の歩容を認識する第3の過程と、装着者の歩行動作に伴う関節を基準とする当該装着者の体表部位にそれぞれ配置された電極群を用いて、当該装着者の生体信号を検出する第4の過程と、装着者の足関節の背屈筋群および底屈筋群を中心とする麻痺箇所にそれぞれ配置された端子群を用いて、当該麻痺箇所の体表に対して物理的な刺激を与える第5の過程と、第4の過程により検出された生体信号に基づいて、装着者の意思に従った刺激力を発生させるように第5の過程における刺激付与を随意制御する第6の過程と、第3の過程の認識結果から得られる装着者の歩行周期に基づいて、装着者の背屈筋群または底屈筋群の収縮により足関節が背屈または底屈するように第5の過程における刺激付与を自律制御する第7の過程と、第3の過程により認識される装着者の歩容の左右バランスが所定範囲内に収束されるように、第6の過程による随意制御と第7の過程による自律制御とのハイブリッド率を調整する第8の過程とを備えるようにした。
 この結果、歩行支援方法では、装着者がアクチュエータ等の駆動機構を装着することなく、装着者の意思に従った刺激力を発生させるように刺激付与を随意制御するとともに、装着者の歩行周期に基づいて、装着者の背屈筋群または底屈筋群の収縮により足関節が背屈または底屈するように刺激付与を自律制御することができる。さらに装着者の歩容の左右バランスが所定範囲内に収束されるように、随意制御と自律制御とのハイブリッド率を調整することにより、自己の歩容の左右バランスを保ちながら、自己の意思に従った物理的な刺激力に連動するように足先の底背屈運動をスムーズに行うことができる。
 本発明によれば、装着者が歩容の左右バランスを保ちながら、自己の意思に従って足先の底背屈運動をスムーズに行うことができる歩行支援装置および歩行支援方法を実現することができる。
本実施の形態による歩行支援装置の全体構成を示す概略図である。 図1に示す歩行状態検知部の構成を示すブロック図である。 床反力中心の軌跡が反映されたリサージュ図形を表す図である。 下半身用の生体信号計測装着具の一例を示す図である。 図4に示す生体信号計測装着具における計測モジュールの一例を示す図である。 刺激付与部を有する計測モジュール内のコントローラの構成を示すブロック図である。 生体信号計測装着具における制御系の構成を示すブロック図である。
 以下図面について、本発明の一実施の形態を詳述する。
(1)本実施の形態による歩行支援装置の構成
 図1は、本実施の形態にかかる歩行支援装置1を示し、各種センサ群が搭載された一対の靴からなる歩行状態検知部2と、装着者の左右の下肢に装着される生体信号計測装着具3とを有する。
 図2に示すように、歩行状態検知部2は、装着者の左右一対の靴の内側底部にそれぞれ取り付けられ、装着者の足の裏面にかかる荷重を測定する荷重測定部10と、各靴の所定位置に搭載され、足の移動時における加速度および角速度のいずれか一方または両方を検出する足動作検出部11とを有する。
 具体的に、荷重測定部10は、靴底に床反力センサが敷き詰められている。また足動作検出部11は、各靴の中央上部に取り付けられている3軸加速度センサおよび3軸角速度センサ(ジャイロセンサ)からなる6軸モーションセンサから構成されている。
 歩行状態検知部2は、荷重測定部10および足動作検出部11から得られる情報を処理する制御ユニット12と、当該制御ユニット12による処理データを記憶するデータ記憶部13と、後述する生体信号計測装着具3との間で信号を送受信するための通信部14とを有する。
 この制御ユニット12は、荷重測定部10により測定された各荷重の変化に基づいて、各足の重心位置を算出する重心位置算出部20と、足動作検出部11により検出された各加速度および/または各角速度に基づいて、各足の移動軌跡を算出する足移動軌跡算出部21と、当該算出した各足の重心位置および移動軌跡に基づいて、装着者の歩容を認識する歩容認識部22とが設けられている。
 具体的に、重心位置算出部20は、床反力センサから検知された各足の裏面の荷重の測定結果を受けて、当該各荷重の変化に基づく各足の重心位置(床反力中心位置)を算出する。かかる重心位置算出部20の構成としては、権利者が本願出願人と同一である特許第4997614号に開示されているような、重心位置検出装置と同一構成のものを援用することが望ましい。
 足移動軌跡算出部21は、6軸モーションセンサである3軸加速度センサおよび3軸角速度センサから検知された各足の移動時における加速度および角速度を受けて、各足の移動軌跡を算出する。
 歩容認識部22は、重心位置算出部20により算出された各足の重心位置と、足移動軌跡算出部21により算出された各足の移動軌跡とに基づいて、各足の重心変動を重心(床反力中心)の軌跡として演算する。
 データ記憶部13には、装着者の正常時における歩行中の各足の重心(床反力中心)の軌跡を表すデータが記憶されており、リサージュ図形(歩行周期単位の振動波形をXY平面上に閉鎖曲線にて表現したもの)として表現することができる。この正常時とは、装着者の歩行状態が、一定の歩行周期であり、かつ左右のバランス(主として歩幅)が均等であると仮定した状態を表す。
 図3(A)に示すように、正常時のリサージュ図形は、各足の重心の軌跡が規則的な周期を描き、ほぼ一定となる。これは歩行時の各足が同じ動きを繰り返しており、重心移動が一定となるからである。
 これに対して図3(B)に示すように、装着者が脳血管障害や脊髄損傷を罹患して下垂足の症状が発現した状況になると、各足の重心変動が生じて、重心の軌跡が不規則な周期となり、左右のバランスも崩れる状態となる。
 歩容認識部22は、データ記憶部13に記憶してある装着者の正常時の重心の軌跡を表すデータを読み出して、現在の当該装着者における各足の重心の軌跡と比較し、当該比較結果に基づいて、装着者の歩容を評価する。
 このデータ記憶部13には、装着者の正常時の歩行について、各足の重心(床反力中心)の軌跡を歩行周期単位の振動波形とした2次元座標系の閉鎖曲線(リサージュ図形)を表すデータが記憶されている。
 歩容認識部22は、算出した装着者の各足における重心(床反力中心)の軌跡について、上述の2次元座標系の閉鎖曲線データを表す波形パターンを算出した後、正常時の曲線データを表す波形パターンをデータ記憶部13から読み出して比較する。
 そして歩容認識部22は、当該比較結果である波形パターンの相違点を、データ記憶部13に記憶された装着者に特有の波形パターン(曲線データ)に基づいて、最も近い特徴を判定するとともに、上述の波形パターンの相違点の度合い(すなわち各足の重心変動の特異性の度合い)を装着者の歩容の認識結果(正常時との乖離状態)として判断する。
 歩行状態検知部2は、歩容認識部22による認識結果を通信部14を介して生体信号計測装着具3と無線通信するようになされている。歩行状態検知部2の通信部14と生体信号計測装着具3の通信部(図示せず)との間は、Bluetooth(登録商標)やRF-IDなどの近距離無線通信方式によって接続されてデータの送受信が行われる。
 本実施形態における生体信号計測装着具3では、健常側の脚には、装着者の生体信号を検出する生体信号検出部30(図7)のみが配置される一方、装着者の足関節に麻痺箇所を有する側の脚(下垂足の症状を有する側の脚)には、生体信号検出部30のみならず当該麻痺箇所に対して物理的な刺激を付与する刺激付与部40(図7)が併せて配置されている構造を有する。
 本実施形態による生体信号計測装着具3は、本願発明者による特登5409637号公報および特登6145663号公報に記載された内容と軌を一にし、かつ同一原理を用いている。この生体信号計測装着具を図4(A)および(B)に示す。
 この生体信号計測装着具3は、装着者の体表を覆うように形成され、装着者に装着される装着具本体3Aを有し、この装着具本体3Aの内側面(装着した状態で装着者の体表に接する面)には、装着者の体から生体信号を計測可能な少なくとも1つの位置に、生体電位信号を検出する電極群を有する生体信号検出部30が設けられている。
 図4(A)および(B)では、本実施形態の生体信号計測装着具3は、装着者の下肢のうち右脚は健常である一方、左脚に下垂足の症状が現れる場合に対応している。すなわち、本実施形態の生体信号計測装着具3は、右脚には生体信号検出部30が配置されるとともに、左脚には生体信号検出部30に加えて膝下部位を中心に刺激付与部40が配置されている。図4(A)は装着者の前側下半身を示し、図4(B)は装着者の後側下半身を示す。
 装着具本体3Aには、生体信号検出部30における複数の電極31が、装着者の歩行動作に伴う関節を基準とする当該装着者の体表部位にそれぞれ配置されている。各電極31は、装着者の脚の筋肉の流れに沿うように等間隔に配列されている。
 すなわち、複数の電極31は、装着者のお尻に相当する部分(電極群32A)に大殿筋の流れに沿って配列されている。また、同様に、装着者の大腿の後ろ側に相当する部分(電極群32B)には、大腿二頭筋や、半膜様筋、半腱様筋の流れに沿って配列され、ふくらはぎに相当する部分(電極群32C)には下腿三頭筋の流れに沿って配列されている。
 また、股関節の前側に相当する部位(電極群32D)には長内転筋や腸腰筋の流れに沿って配列され、大腿の前側に相当する部位(電極群32E)には大腿四頭筋の流れに沿って配列され、脛に相当する部位(電極群32F)には前脛骨筋や、ヒラメ筋、長指伸筋の流れに沿って配列されている。
 ここで生体信号計測装着具3において、装着者の左脚の膝下部位(足関節に麻痺箇所を有する部位)には、装着者の体表に接触し生体刺激信号に応じて電気な刺激を与えるための端子群を有する刺激付与部40が設けられており、当該端子41と上述した電極31との組がマトリクス状に複数配置されている。
 ここで、図5(A)は、装着具本体3Aに設けられた生体信号検出部30の一例を示す図である。生体信号検出部30は、複数の生体信号電極31からなる電極群32A~32Fと当該電極群32A~32Fに接続された計測モジュール33とから構成される。
 なお、装着具本体3Aに設けられた全ての電極群32A~32Fは同じように計測モジュール33に接続されているため、ここでは電極群32A~32Fを例に説明する。各電極31は、互いに絶縁された状態で設けられており、それぞれが導電性の配線を介して計測モジュール33に接続されている。そして、これらの電極31には各々アドレスが割り当てられている。
 計測モジュール33は、電極群32A~32Fを構成する複数の電極31が接続され、これらの電極31から少なくとも2つの電極31を選択し、これらの選択された電極31により検出される検出信号の差分をとって生体信号を取得する計測モジュールコントローラ34と、取得された生体信号を記録するメモリ35と、順次取得される生体信号および/またはメモリ35に記録された生体信号を外部(後述する図7に示す統括制御部50)に送信する通信手段36とを備えている。なお、計測モジュール33は各電極群32A~32F毎にそれぞれ設けられており、それぞれの電極31が接続されている。
 この計測モジュールコントローラ34は、接続された複数の電極31から少なくとも2つの電極31を通信手段36を介して入力される指令信号に応じて順次選択し、これらの選択された2つの電極間の生体信号を取得することができる電子回路を有している。
 また、計測モジュールコントローラ34は、更に、このようにして取得された生体信号から所定の周波数成分を除去または抜き出すフィルタや、取得された生体信号を増幅するアンプ等の信号加工手段を有している。このようにして取得された生体信号は、計測モジュールコントローラ34から通信手段36および/またはメモリ35に出力される。
 計測モジュールコントローラ34は電極31を選択する際には、各電極31を予め設定された順番で順次操作するようにしてもよいし、また、通信手段36を介して入力された指定信号に基づいて、当該指定信号により指定されたアドレスに対応する電極31を選択するようにしてもよい。
 通信手段36は、薄型のアンテナと、このアンテナに接続された通信回路からなる。通信手段36は、計測モジュールコントローラ34から出力される生体信号と当該生体信号を検出した電極31の位置情報を示すアドレス等の情報とを含む信号、および/または、メモリ35から読み出した生体信号と当該生体信号を検出した電極31の位置情報を示すアドレス等の情報を含む信号とを含む計測情報を、アンテナを介して統括制御部50(図7)に送信する。
 この統括制御部50は、装着具本体3Aに設けられた電極群32A~32Fの中からいずれの電極31を選択するかを指定する指定信号や、データの取得の開始や終了等の信号等を生成し、これらの信号をアンテナを介して計測モジュールコントローラ34に送信する。計測モジュールコントローラ34は受信した信号にしたがって、指定された電極31を選択して生体信号を計測する。
 このように生体信号計測装着具3によれば、複数の電極31により生体信号を検出することにより、電極群32A~32Fが配置された領域内における複数の各ポイントで生体信号を計測することができる。そして、各ポイントでの計測データを、各電極31に割り当てられたアドレスに応じてマッピングすることで、装着者の体における生体信号の分布を計測することができる。そしてこの計測結果に基づいて、装着者の意思を正確に反映させて刺激付与部40を随意制御することが可能となる。
 さらに生体信号計測装着具3において、刺激付与部40は、装着者の足関節の背屈筋群(主として前脛骨筋および長趾伸筋など)および底屈筋群(主として腓腹筋、ヒラメ筋および底屈筋など)を中心とする麻痺箇所にそれぞれ配置され、当該麻痺箇所の体表に対して電気刺激を与えるための端子群を有する。
 刺激付与部40は、機能的電気刺激(FES:Functional Electrical Stimulation)により麻痺箇所の筋肉を収縮させる装置からなる。この刺激付与部40において、装着者に対して電気刺激を付与する体表部位としては、足の踝を中心とする背屈筋群および底屈筋群に相当する体表部位が最適である。
 図5(A)との対応部分に同一符号を付した図5(B)に示すように、刺激付与部40は、複数の電気刺激用の端子41からなる端子群42Aと、当該端子群42Aに接続された上述した生体信号検出部30の計測モジュール33とから構成されている。この刺激付与部40の端子群42Aは生体信号検出部30の電極群32Cと対応し、刺激付与部40の端子群42Bは生体信号検出部30の電極群32Fと対応する。なお、本実施形態では計測モジュール33を生体信号検出部30および刺激付与部40が兼用するが、それぞれ別体に設けるようにしてもよい。
 図6に示すように、計測モジュール33における計測モジュールコントローラ34は、認証・FES条件設定部60と、刺激制御部61と、刺激周波数調整部62と、パルス幅調整部63と、パルス波形・変調調整部64と、電圧調整部65と、機能的電気刺激信号生成部66とを有する。
 認証・FES条件設定部60は、入力操作部(図示せず)の操作により入力された医師または理学療法士の認証データ(ID・パスワード)、および医師または理学療法士の診断に基づいて入力されたFES条件(刺激周波数、パルス幅、パルス波形・変調、電圧などの条件)を設定する。
 刺激制御部61は、通信手段36を介して統括制御部50(図7)から受信した機能的電気刺激の信号を、認証・FES条件設定部60の設定結果と併せて、刺激周波数調整部62、パルス幅調整部63、パルス波形・変調調整部64、電圧調整部65に送信する。
 刺激周波数調整部62は、機能的電気刺激の刺激周波数を認証・FES条件設定部60により設定された周波数に調整する。パルス幅調整部63は、機能的電気刺激のパルス幅を認証・FES条件設定部60により設定されたパルス幅に調整する。
 パルス波形・変調調整部64は、機能的電気刺激のパルス波形を認証・FES条件設定部60により設定されたパルス波形に調整する。電圧調整部65は、機能的電気刺激の電圧を認証・FES条件設定部60により設定された任意の電圧に調整する。
 機能的電気刺激信号生成部66は、刺激周波数調整部62、パルス幅調整部63、パルス波形・変調調整部64、電圧調整部65により刺激周波数、パルス幅、パルス波形・変調、電圧を調整された電気信号を通信手段36を介して端子群41(42A、42B)に出力する。
 ここで生体信号計測装着具3においては、図7に示すように、生体信号検出部30および刺激付与部40を統括的に制御するための統括制御部50が設けられ、当該統括制御部50は、随意制御部70と自律制御部71と最適刺激調整部72とから構成されている。
 統括制御部50は、上述したように、装着具本体3Aに設けられた端子群42A、42Bの中からいずれの端子41を選択するかを指定する指定信号や、データの取得の開始や終了等の信号等を生成し、これらの信号をアンテナを介して計測モジュールコントローラ34に送信する。計測モジュールコントローラ34は受信した信号にしたがって、指定された端子41を選択して動作させる。
 統括制御部50のうち随意制御部70は、生体信号検出部30により検出された生体信号に基づいて、装着者の意思に従った刺激力を発生させるように刺激付与部40を随意制御する。随意制御部70は、刺激付与部40を随意制御する際、生体信号検出部30による装着者の体における生体信号の分布計測結果に基づいて、刺激付与部40における端子群42A、42Bを構成する複数の端子41のうち最適な組合せを選択することも可能である。そのときの生体信号の分布計測結果と端子群42A、42Bのうち選択される端子41との関係性は、装着者の特性に合わせて事前に設定してもよく、あるいは実際の装着者の足先の底背屈運動のフィードバック結果に応じて調整しながら再設定するようにしてもよい。
 また自律制御部71は、歩行状態検出部2(図2)から通信部73を介して受信した歩容認識部22の認識結果から得られる装着者の歩行周期に基づいて、装着者の背屈筋群または底屈筋群の収縮により足関節が背屈または底屈するように刺激付与部40(42A、42B)を自律制御する。
 さらに最適刺激調整部72は、歩容認識部22により認識される装着者の歩容の左右バランスが所定範囲内に収束されるように、随意制御部70による随意制御と自律制御部71による自律制御とのハイブリッド率を調整する。
 このように本実施の形態の歩行支援装置1によれば、装着者がアクチュエータ等の駆動機構を装着することなく、装着者の意思に従った刺激力を発生させるように刺激付与部40を随意制御するとともに、装着者の歩行周期に基づいて、装着者の背屈筋群または底屈筋群の収縮により足関節が背屈または底屈するように刺激付与部40を自律制御することができる。
 さらに装着者の歩容の左右バランスが所定範囲内に収束されるように、随意制御と自律制御とのハイブリッド率を調整することにより、自己の歩容の左右バランスを保ちながら、自己の意思に従った物理的な刺激力に連動するように足先の底背屈運動をスムーズに行うことができる。
 なお、上述した刺激付与部40は、随意制御部70および/または自律制御部71の制御に応じて、装着者の麻痺箇所に対する刺激付与の強弱レベル、パターンおよび時間のうち少なくとも1以上を調整するようになされている。この結果、歩行支援装置1では、装着者の歩容の左右バランスを保つと同時に、当該装着者の足先の底背屈運動がスムーズに行うように調整することができる。
(2)他の実施の形態
 なお上述のように本実施の形態においては、刺激付与部を機能的電気刺激(FES)により麻痺箇所の筋肉を収縮させる装置から構成するようにした場合について述べたが、本発明はこれに限らず、物理的な刺激を付与することができる装置であれば、治療的電気刺激(TES:Therapeutic Electrical Stimulation)のような電気刺激や極超短波刺激、超音波刺激など種々の物理的な刺激を適用するようにしてもよい。
 さらに本発明においては、装着者の足関節に麻痺箇所を有する側の靴に設けられ、当該靴の歩行音を集音する集音マイク(図示せず)を備え、最適刺激調整部72(図7)は、集音マイクにより集音された歩行音に基づいて、ハイブリッド率を修正するようにしてもよい。この結果、歩行支援装置では、装着者の足先が床面と接触する際の音を集音しながら当該床面の状態を把握することにより、さらに正確に装着者の足先の底背屈運動がスムーズに行うように調整することができる。
 さらに本発明においては、装着者の足関節に麻痺箇所を有する側の靴に設けられ、歩行時の床面からの振動を検出する振動検出部(図示せず)を備え、最適刺激調整部72(図7)は、振動検出部により検出された振動に基づいて、ハイブリッド率を修正するようにしてもよい。この結果、歩行支援装置では、靴に伝達される床面からの振動を検出しながら当該床面の状態を把握することにより、さらに正確に装着者の足先の底背屈運動がスムーズに行うように調整することができる。
 1…歩行支援装置、2…歩行状態検知部、3…生体信号計測装着具、3A…装着具本体、10…荷重測定部、11…足動作検出部、12…制御ユニット、13…データ記憶部、14…通信部、20…重心位置算出部、21…足移動軌跡算出部、22…歩容認識部、30…生体信号検出部、31…電極、32A~32F…電極群、33…計測モジュール、34…計測モジュールコントローラ、40…刺激付与部、41…端子、42A、42B…端子群、50…統括制御部、70…随意制御部、71…自律制御部、72…最適刺激調整部。

Claims (8)

  1.  装着者の左右一対の靴の内側底部にそれぞれ取り付けられ、前記装着者の足の裏面にかかる荷重を測定する荷重測定部と、
     前記荷重測定部により測定された各荷重の変化に基づいて、前記各足の重心位置を算出する重心位置算出部と、
     前記各靴の所定位置に搭載され、前記足の移動時における加速度および角速度のいずれか一方または両方を検出する足動作検出部と、
     前記足動作検出部により検出された各加速度および/または各角速度に基づいて、前記各足の移動軌跡を算出する移動軌跡算出部と、
     算出された前記各足の重心位置および移動軌跡に基づいて、前記装着者の歩容を認識する歩容認識部と、
     前記装着者の歩行動作に伴う関節を基準とする当該装着者の体表部位にそれぞれ配置され、当該装着者の生体信号を検出するための電極群を有する生体信号検出部と、
     前記装着者の足関節の背屈筋群および底屈筋群を中心とする麻痺箇所にそれぞれ配置され、当該麻痺箇所の体表に対して物理的な刺激を与えるための端子群を有する刺激付与部と、
     前記生体信号検出部により検出された生体信号に基づいて、前記装着者の意思に従った刺激力を発生させるように前記刺激付与部を随意制御する随意制御部と、
     前記歩容認識部の認識結果から得られる前記装着者の歩行周期に基づいて、前記装着者の前記背屈筋群または底屈筋群の収縮により前記足関節が背屈または底屈するように前記刺激付与部を自律制御する自律制御部と、
     前記歩容認識部により認識される前記装着者の歩容の左右バランスが所定範囲内に収束されるように、前記随意制御部による随意制御と前記自律制御部による自律制御とのハイブリッド率を調整する最適刺激調整部と
     を備えることを特徴とする歩行支援装置。
  2.  前記刺激付与部は、前記随意制御部および/または前記自律制御部の制御に応じて、前記装着者の麻痺箇所に対する刺激付与の強弱レベル、パターンおよび時間のうち少なくとも1以上を調整する
     ことを特徴とする請求項1に記載の歩行支援装置。
  3.  前記装着者の足関節に麻痺箇所を有する側の前記靴に設けられ、当該靴の歩行音を集音する集音マイクを備え、
     前記最適刺激調整部は、前記集音マイクにより集音された歩行音に基づいて、前記ハイブリッド率を修正する
     ことを特徴とする請求項1または2に記載の歩行支援装置。
  4.  前記装着者の足関節に麻痺箇所を有する側の前記靴に設けられ、歩行時の床面からの振動を検出する振動検出部を備え、
     前記最適刺激調整部は、前記振動検出部により検出された前記振動に基づいて、前記ハイブリッド率を修正する
     ことを特徴とする請求項1から3までのいずれかに記載の歩行支援装置。
  5.  装着者の各足の裏面にかかる荷重の変化に基づいて、当該各足の重心位置を算出する第1の過程と、
     前記各足の移動時における加速度および角速度のいずれか一方または両方に基づいて、当該各足の移動軌跡を算出する第2の過程と、
     算出された前記各足の重心位置および移動軌跡に基づいて、前記装着者の歩容を認識する第3の過程と、
     前記装着者の歩行動作に伴う関節を基準とする当該装着者の体表部位にそれぞれ配置された電極群を用いて、当該装着者の生体信号を検出する第4の過程と、
     前記装着者の足関節の背屈筋群および底屈筋群を中心とする麻痺箇所にそれぞれ配置された端子群を用いて、当該麻痺箇所の体表に対して物理的な刺激を与える第5の過程と、
     前記第4の過程により検出された生体信号に基づいて、前記装着者の意思に従った刺激力を発生させるように前記第5の過程における刺激付与を随意制御する第6の過程と、
     前記第3の過程の認識結果から得られる前記装着者の歩行周期に基づいて、前記装着者の前記背屈筋群または底屈筋群の収縮により前記足関節が背屈または底屈するように前記第5の過程における刺激付与を自律制御する第7の過程と、
     前記第3の過程により認識される前記装着者の歩容の左右バランスが所定範囲内に収束されるように、前記第6の過程による随意制御と前記第7の過程による自律制御とのハイブリッド率を調整する第8の過程と
     を備えることを特徴とする歩行支援方法。
  6.  前記第5の過程では、前記第6の過程における随意制御および/または前記第7の過程における自律制御に応じて、前記装着者の麻痺箇所に対する刺激付与の強弱レベル、パターンおよび時間のうち少なくとも1以上を調整する
     ことを特徴とする請求項5に記載の歩行支援方法。
  7.  前記第8の過程では、前記装着者の足関節に麻痺箇所を有する側の前記靴にて集音した当該靴の歩行音に基づいて、前記ハイブリッド率を修正する
     ことを特徴とする請求項5または6に記載の歩行支援方法。
  8.  前記第8の過程では、前記装着者の足関節に麻痺箇所を有する側の前記靴にて検出した当該振動に基づいて、前記ハイブリッド率を修正する
     ことを特徴とする請求項5から7までのいずれかに記載の歩行支援方法。
PCT/JP2021/043987 2020-12-25 2021-11-30 歩行支援装置および歩行支援方法 WO2022138020A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/259,023 US20240299743A1 (en) 2020-12-25 2021-11-30 Walking support device and walking support method
EP21910172.2A EP4268785A1 (en) 2020-12-25 2021-11-30 Walking assistance device and walking assistance method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-216043 2020-12-25
JP2020216043A JP2022101768A (ja) 2020-12-25 2020-12-25 歩行支援装置および歩行支援方法

Publications (1)

Publication Number Publication Date
WO2022138020A1 true WO2022138020A1 (ja) 2022-06-30

Family

ID=82159061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043987 WO2022138020A1 (ja) 2020-12-25 2021-11-30 歩行支援装置および歩行支援方法

Country Status (4)

Country Link
US (1) US20240299743A1 (ja)
EP (1) EP4268785A1 (ja)
JP (1) JP2022101768A (ja)
WO (1) WO2022138020A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055518A1 (ja) * 2009-11-06 2011-05-12 財団法人ヒューマンサイエンス振興財団 電気刺激装置
JP4997614B2 (ja) 2007-12-27 2012-08-08 国立大学法人 筑波大学 重心位置検出装置及び重心位置検出装置を備えた装着式動作補助装置
WO2012118143A1 (ja) * 2011-03-02 2012-09-07 国立大学法人 筑波大学 歩行訓練装置及び歩行訓練システム
JP2013094305A (ja) * 2011-10-28 2013-05-20 Kakei Gakuen 足関節駆動による歩行支援機能的電気刺激システム
CN103212156A (zh) * 2013-04-03 2013-07-24 重庆绿色智能技术研究院 基于本体镜像原理的偏瘫患者自主康复仪
JP5409637B2 (ja) 2008-09-10 2014-02-05 国立大学法人 筑波大学 生体信号計測装着具及び装着式動作補助装置
JP6145663B2 (ja) 2012-02-29 2017-06-14 国立大学法人 筑波大学 生体信号計測システム、および生体信号計測方法
WO2017142082A1 (ja) * 2016-02-19 2017-08-24 Cyberdyne株式会社 装着式歩容検知装置、歩行能力改善システム及び装着式歩容検知システム
CN108992778A (zh) * 2018-08-01 2018-12-14 龚映清 一种基于传感器智能鞋垫的功能性肌肉电刺激系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997614B2 (ja) 2007-12-27 2012-08-08 国立大学法人 筑波大学 重心位置検出装置及び重心位置検出装置を備えた装着式動作補助装置
JP5409637B2 (ja) 2008-09-10 2014-02-05 国立大学法人 筑波大学 生体信号計測装着具及び装着式動作補助装置
WO2011055518A1 (ja) * 2009-11-06 2011-05-12 財団法人ヒューマンサイエンス振興財団 電気刺激装置
WO2012118143A1 (ja) * 2011-03-02 2012-09-07 国立大学法人 筑波大学 歩行訓練装置及び歩行訓練システム
JP2013094305A (ja) * 2011-10-28 2013-05-20 Kakei Gakuen 足関節駆動による歩行支援機能的電気刺激システム
JP6145663B2 (ja) 2012-02-29 2017-06-14 国立大学法人 筑波大学 生体信号計測システム、および生体信号計測方法
CN103212156A (zh) * 2013-04-03 2013-07-24 重庆绿色智能技术研究院 基于本体镜像原理的偏瘫患者自主康复仪
WO2017142082A1 (ja) * 2016-02-19 2017-08-24 Cyberdyne株式会社 装着式歩容検知装置、歩行能力改善システム及び装着式歩容検知システム
CN108992778A (zh) * 2018-08-01 2018-12-14 龚映清 一种基于传感器智能鞋垫的功能性肌肉电刺激系统及方法

Also Published As

Publication number Publication date
EP4268785A1 (en) 2023-11-01
US20240299743A1 (en) 2024-09-12
JP2022101768A (ja) 2022-07-07

Similar Documents

Publication Publication Date Title
US11622905B2 (en) Proportional joint-moment control for powered exoskeletons and prostheses
JP4541867B2 (ja) 外力制御方法、外力制御システム及び外力制御プログラム
Lenzi et al. Powered hip exoskeletons can reduce the user's hip and ankle muscle activations during walking
Tsukahara et al. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed
CN105796286B (zh) 使用气囊传感器的下肢外骨骼机器人控制方法
Neckel et al. Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern
JP5936233B2 (ja) 歩行訓練装置及び歩行訓練システム
CN1929805B (zh) 安装式动作辅助装置、安装式动作辅助装置的校准装置以及校准方法
US11672983B2 (en) Sensor in clothing of limbs or footwear
CN106264988A (zh) 外骨骼踝关节机器装置
Kawamoto et al. Development of an assist controller with robot suit HAL for hemiplegic patients using motion data on the unaffected side
Bulea et al. Finite state control of a variable impedance hybrid neuroprosthesis for locomotion after paralysis
US11580877B2 (en) Movement reconstruction control system
Bulea et al. Forward stair descent with hybrid neuroprosthesis after paralysis: Single case study demonstrating feasibility
JP2005013442A (ja) 歩行訓練装置及び歩行訓練装置の制御方法
WO2022138020A1 (ja) 歩行支援装置および歩行支援方法
KR20200094678A (ko) 웨어러블 보행 보조 로봇 제어 장치 및 방법
US20220233854A1 (en) Method for operating an orthopedic device and corresponding device
Endo et al. Long-term sustained effect of gait training using a hybrid assistive limb on gait stability via prevention of knee collapse in a patient with cerebral palsy: a case report
Sanz-Merodio et al. Gait parameter adaptation for lower-limb exoskeletons.
Bouri et al. Closed-loop functional electrical stimulation for gait training for patients with paraplegia
Tiwari et al. Exploring the Center of Pressure Shift Feedback at Heel Strike to Modulate the Step Length
Lora Millán The REFLEX Exoskeleton
WO2024095577A1 (ja) 動作機能向上装置および動作機能向上方法
Dizor et al. Gait Analysis for Rehabilitation using Rigid and Flexible Exoskeletons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021910172

Country of ref document: EP

Effective date: 20230725

WWE Wipo information: entry into national phase

Ref document number: 18259023

Country of ref document: US