WO2022137821A1 - Analog-digital converter and electronic device - Google Patents

Analog-digital converter and electronic device Download PDF

Info

Publication number
WO2022137821A1
WO2022137821A1 PCT/JP2021/040499 JP2021040499W WO2022137821A1 WO 2022137821 A1 WO2022137821 A1 WO 2022137821A1 JP 2021040499 W JP2021040499 W JP 2021040499W WO 2022137821 A1 WO2022137821 A1 WO 2022137821A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive
negative
transistors
common
analog
Prior art date
Application number
PCT/JP2021/040499
Other languages
French (fr)
Japanese (ja)
Inventor
雄貴 八木下
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2022571933A priority Critical patent/JPWO2022137821A1/ja
Publication of WO2022137821A1 publication Critical patent/WO2022137821A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter

Definitions

  • This technology relates to analog-to-digital converters. More specifically, the present invention relates to a serial comparison type analog-to-digital converter and an electronic device.
  • SARADC Successessive Approximation Register Analog to Digital Converter
  • the SARADC is a circuit in which a comparator sequentially compares a sampled analog signal and a reference signal generated by a DAC (Digital to Analog Converter), and a logic circuit controls the DAC so that they match.
  • DAC Digital to Analog Converter
  • a SARADC when the level of the reference signal is changed, a fluctuation called ripple may occur in the output signal of the DAC, and the ripple may cause an error in the comparison result of the comparator. Therefore, a SARADC has been proposed in which a capacitance portion including four capacitances and a plurality of switches is arranged bit by bit to generate a signal having a phase opposite to that of the ripple (see, for example, Patent Document 1).
  • the ripple is canceled by generating a signal having a phase opposite to that of the ripple.
  • SARADC since it is necessary to provide four capacitances for each bit, there is a problem that the circuit scale increases as the resolution of the SARADC increases. For example, when the resolution is 5 bits, a total of 20 capacities must be arranged in the five capacities.
  • This technology was created in view of such a situation, and aims to reduce the circuit scale in SARADC provided with a circuit that cancels ripple.
  • the present technology has been made to solve the above-mentioned problems, and the first aspect thereof is a digital-analog converter that generates at least one of a pair of analog signals according to a predetermined control signal, and the above-mentioned pair.
  • a comparator that compares analog signals to generate and output a comparison result, a logic circuit that generates the control signal based on the comparison result, multiple positive transistors of different sizes, and multiple negatives of different sizes.
  • a plurality of switches that open and close the path between the side transistor, one of the source and drain of each of the plurality of positive transistors and the plurality of negative transistors, and the output terminal of the comparator based on the control signal.
  • One end is connected to a node with a predetermined positive reference voltage, and the other end is commonly connected to the gate of each of the plurality of positive transistors. It is an analog-digital converter having one end connected to a node of a reference voltage and a negative side common capacitance having the other end connected in common to each gate of the plurality of negative side transistors. This has the effect of reducing the circuit scale.
  • the pair of analog signals is a differential signal
  • the digital-to-analog converter may generate the differential signal. This has the effect of reducing the circuit scale of the analog-to-digital converter with differential input.
  • the path between the other end of each of the positive side common capacitance and the negative side common capacitance and the common voltage between the positive side reference voltage and the negative side reference voltage is opened and closed.
  • a sampling switch may be further provided. This has the effect that the reference voltage is sampled on the positive side common capacitance and the negative side common capacitance.
  • the sampling switch may shift to the closed state within a predetermined sampling period. This has the effect of being sampled within the sampling period.
  • the sampling switch may shift to the closed state within the period from the end of the analog-to-digital conversion to the start of sampling. This has the effect of sampling within the period from the end of the analog-to-digital conversion to the start of sampling.
  • a latch circuit that holds the comparison result and supplies it to the logic circuit may be further provided. This has the effect of preserving the comparison results.
  • each of the plurality of positive side transistors and the plurality of negative side transistors may be nMOS transistors. This has the effect that a current flows through the differential pair of the nMOS transistor.
  • each of the plurality of positive side transistors and the plurality of negative side transistors may be pMOS transistors. This has the effect that a current flows through the differential pair of the pMOS transistor.
  • each gate of the plurality of pairs of common side transistors is between the positive side reference voltage and the negative side reference voltage. It may be connected to a node with a common voltage. This has the effect of applying a common voltage to the gate of the common-side transistor.
  • a plurality of pairs of first common side transistors having different sizes and a plurality of pairs of second common side transistors having different sizes are further provided, and the positive side common capacitance is the first positive side.
  • the negative side common capacitance includes a common capacitance and a second positive side common capacitance, the negative side common capacitance includes a first negative side common capacitance and a second negative side common capacitance, and the plurality of positive side transistors are a plurality of firsts having different sizes.
  • the plurality of negative side transistors include a plurality of positive side transistors and a plurality of second positive side transistors having different sizes, and the plurality of negative side transistors include a plurality of first negative side transistors having different sizes and a plurality of second negative side transistors having different sizes.
  • the gates of the plurality of first positive-side transistors are commonly connected to the first positive-side common capacitance, and the respective gates of the plurality of second positive-side transistors are common to the second positive-side common.
  • each gate of the plurality of first negative transistor is commonly connected to the first negative common capacitance, and each gate of the plurality of second negative transistors is connected to the first negative transistor. 2 It may be connected in common to the common capacity on the negative side. This has the effect of eliminating the need for a common voltage.
  • the second aspect of the present technology is a comparison between a digital-analog converter that generates at least one of a pair of analog signals according to a predetermined control signal and the pair of analog signals to generate and output a comparison result.
  • a device a logic circuit that generates the control signal based on the comparison result and outputs a digital signal, a plurality of positive-side transistors having different sizes, a plurality of negative-side transistors having different sizes, and a plurality of positive-side transistors.
  • a plurality of switches that open and close the path between one of the source and drain of the transistor and the plurality of negative transistors and the output terminal of the comparator based on the control signal, and a predetermined positive reference voltage.
  • One end is connected to the node, and one end is connected to the positive common capacitance in which the other end is commonly connected to the gate of each of the plurality of positive transistors and the node having a negative reference voltage lower than the positive reference voltage.
  • This is an electronic device including a negative side common capacitance in which the other end is commonly connected to each gate of the plurality of negative side transistors, and a digital signal processing circuit for processing the digital signal. This has the effect of reducing the circuit scale of electronic devices.
  • FIG. 1 is a block diagram showing a configuration example of an electronic device 100 according to a first embodiment of the present technology.
  • the electronic device 100 converts an analog signal into a digital signal and processes it, and includes an analog signal generation unit 110, a SARADC 200, and a digital signal processing unit 120.
  • an image pickup device, an audio device, a communication device, and the like are assumed.
  • the analog signal generation unit 110 generates an analog signal AIN and supplies it to the SARADC 200 via the signal line 119.
  • an analog signal AIN a pixel signal, an audio signal, or an RF (Radio Frequency) signal is assumed.
  • the SARADC200 converts the input analog signal AIN into a digital signal DOUT by a sequential comparison method.
  • the SARADC 200 supplies the digital signal DOUT to the digital signal processing unit 120 via the signal line 209.
  • the digital signal processing unit 120 performs predetermined signal processing on the digital signal DOUT.
  • signal processing image processing such as demodulation processing, audio compression processing, demodulation processing, and the like are assumed.
  • the number of SARADC200 is not limited to one, and may be two or more.
  • SARADC200 may be arranged for each row.
  • FIG. 2 is a block diagram showing a configuration example of the SARADC200 according to the first embodiment of the present technology.
  • the SARADC 200 includes sampling switches 211 and 212, a CDAC (Capacitor DAC) 300, a latch circuit 430, a comparator 400, and a SAR (Successive Approximation Register) logic circuit 220. Further, the SARADC 200 further includes a ripple canceller 500.
  • a differential analog signal from the analog signal generation unit 110 is input to the sampling switches 211 and 212.
  • This differential signal (ie, an analog signal) includes a positive signal AIN_p and a negative signal AIN_n.
  • the sampling switches 211 and 212 open and close the path between the analog signal generation unit 110 and the CDAC 300 in synchronization with the sampling clock CLK. For example, while the sampling clock CLK is at a high level, the sampling switches 211 and 212 are closed and the differential signal is sampled.
  • the CDAC300 generates an analog reference signal by DA (Digital to Analog) conversion.
  • the CDAC 300 holds a sampled differential signal (analog signal), and differentially outputs the difference between the analog signal and the internally generated reference signal (analog signal) to the comparator 400.
  • the comparator 400 compares the positive side and the negative side of the differential signal from the CDAC 300.
  • the comparator 400 supplies the comparison result to the latch circuit 430.
  • the latch circuit 430 holds the comparison result.
  • the latch circuit 430 supplies the held comparison result to the SAR logic circuit 220.
  • the SAR logic circuit 220 controls the level of the reference signal based on the comparison result of the comparator 400.
  • the SAR logic circuit 220 updates the level of the reference signal so that the positive side and the negative side of the output of the CDAC 300 are balanced by the sequential comparison method. Assuming that the resolution of the SARADC 200 is M (M is an integer) bit, the number of successive comparisons is M times. Further, the SAR logic circuit 220 holds each of the comparison results of M times, and supplies a bit string in which bits indicating the comparison results are arranged to the digital signal processing unit 120 as a digital signal DOUT.
  • the ripple canceller 500 cancels the ripple of the output signal of the CDAC 300.
  • the circuit configuration of the ripple canceller 500 will be described later.
  • FIG. 3 is a circuit diagram showing a configuration example of the CDAC 300 according to the first embodiment of the present technology.
  • the figure illustrates a circuit when the resolution is 5 bits.
  • the CDAC 300 includes a positive capacity 311 to 316, a negative capacity 317 to 322, a positive switching unit 330, and a negative switching unit 340.
  • the positive side switching circuits 331 to 336 are arranged in the positive side switching unit 330, and the negative side switching circuits 341 to 346 are arranged in the negative side switching unit 340.
  • the positive side capacities 314 and 315, the negative side capacities 320 and 321, the positive side switching circuits 334 and 335, and the negative side switching circuits 344 and 345 are omitted.
  • a positive signal line 308 and a negative signal line 309 are wired in the CDAC 300.
  • the positive signal line 308 is wired between the positive input terminal and the positive output terminal of the CDAC 300.
  • the negative signal line 309 is wired between the negative input terminal and the negative output terminal of the CDAC 300.
  • the voltage of the positive signal line 308 is output to the comparator 400 as the positive voltage V cdac_p .
  • the voltage of the negative signal line 309 is output to the comparator 400 as the negative voltage V cdac_n .
  • One end of the positive capacitances 311 to 316 is commonly connected to the positive signal line 308.
  • the other ends of these positive capacitances 311 to 316 are connected to the positive switching circuits 331 to 336.
  • the capacities of the positive capacities 311 to 315 are different from each other. For example, assuming that the predetermined unit capacity value is C, the capacity values of the positive side capacities 311, 312, 313, 314, 315 and 316 are set to 16C, 8C, 4C, 2C, C and C.
  • One end of the negative capacitance 317 to 322 is commonly connected to the negative signal line 309.
  • the other ends of these negative capacitances 317 to 322 are connected to the negative switching circuits 341 to 346.
  • the capacities of the negative capacities 317 to 321 are different from each other.
  • the capacity values of the negative capacities 317, 318, 319, 320, 321 and 322 are set to 16C, 8C, 4C, 2C, C and C.
  • the capacity of 16C and the corresponding switching circuit correspond to MSB (Most Significant Bit) out of 5 bits.
  • the 8C capacitance and the corresponding switching circuit correspond to the second bit, and the 4C capacitance and the corresponding switching circuit correspond to the third bit.
  • the 2C capacitance and the corresponding switching circuit correspond to the 4th bit, and one of the C capacitances and the corresponding switching circuit correspond to the LSB (Least Significant Bit).
  • the other of the capacitances of C is used as a dummy capacitance.
  • the positive switching circuits 331 to 335 have one of the positive reference voltage VREFP, the common voltage VCOM and the negative reference voltage VREFN at the other end of the corresponding positive capacitance according to the control signals Dac_p and Dac_n from the SAR logic circuit 220. It connects to.
  • the size of each of the control signals Dac_p and Dac_n is 5 bits.
  • the positive side switching circuit 336 sets the other end of the dummy positive side capacitance 316 to either the positive side reference voltage VREFP, the common voltage VCOM, or the negative side reference voltage VREFN according to a control signal (not shown) from the SAR logic circuit 220. It connects to.
  • the positive side reference voltage VREFP is a constant voltage higher than the common voltage VCOM
  • the negative side reference voltage VREFN is a constant voltage lower than the common voltage VCOM.
  • the value of the positive reference voltage VREFF can be expressed as + VREF
  • the value of the negative reference voltage VREFN can be expressed as ⁇ VREF.
  • Negative side switching circuits 341 to 345 according to the control signals Dac_p and Dac_n from the SAR logic circuit 220, set the other end of the corresponding negative capacitance to either the positive reference voltage VREFP, the common voltage VCOM, or the negative reference voltage VREFN. It connects to.
  • the negative side switching circuit 346 has one of the positive side reference voltage VREFP, the common voltage VCOM, and the negative side reference voltage VREFN at the other end of the dummy positive side capacitance 316 according to the control signal (not shown) from the SAR logic circuit 220. It connects to.
  • the negative side switching circuit 341 is composed of, for example, switches 351 to 353. The same applies to the positive side switching circuits 331 to 336 and other negative side switching circuits.
  • the SAR logic circuit 220 connects all of the positive capacitances 311 to 316 and the negative capacitances 317 to 322 to the common voltage VCOM by a control signal during the period when the sampling switches 211 and 212 are closed (that is, the sampling period). .. This keeps the sampled differential signal.
  • the SAR logic circuit 220 refers to the comparison result of the comparator 400, and controls the connection destination of the capacitance in the CDAC 300 by the control signal based on the comparison result.
  • the SAR logic circuit 220 connects the negative side reference voltage VREFN to the positive side capacitance 311 and connects the positive side reference voltage VREFN to the negative side capacitance 317. do.
  • the SAR logic circuit 220 connects the positive side reference voltage VREFP to the positive side capacitance 311 and the negative side reference voltage VREFN to the negative side capacitance 317. do.
  • -1 / 2VREF or + 1 / 2VREF is added to the positive side
  • + 1 / 2VREF or -1 / 2VREF is added to the negative side.
  • the SAR logic circuit 220 connects the negative side reference voltage VREFN to the positive side capacitance 312 and connects the positive side reference voltage VREFN to the negative side capacitance 318. do.
  • the SAR logic circuit 220 connects the positive side reference voltage VREFP to the positive side capacitance 312 and connects the negative side reference voltage VREFN to the negative side capacitance 318. do.
  • each of M + 1 positive capacitance, negative capacitance, positive switching circuit, and negative switching circuit including a dummy is arranged.
  • the capacity of the m (m is an integer from 0 to M-1) bit is set to be twice that of the m + 1 bit.
  • the method of controlling the reference voltage based on the result of M sequential comparisons is called the sequential comparison method.
  • a single-ended signal can be input to the SARADC200 instead of the differential signal. In this case, no capacitance or switch is required on either the positive side or the negative side of the CDAC 300. Further, a sampled and held single-ended signal is input to one input terminal of the comparator 400, and a reference voltage generated by the CDAC 300 is input to the other input terminal.
  • FIG. 4 is a circuit diagram showing a configuration example of the comparator 400 according to the first embodiment of the present technology.
  • the comparator 400 includes an enable control unit 410 and a differential amplifier circuit 420.
  • the enable control unit 410 generates an enable signal En_Comp from the output of the latch circuit 430 and the sampling clock CLK.
  • the enable control unit 410 includes an inverter 411, a NOR (logical sum) gate 412, and an AND (logical product) gate 413.
  • the inverter 411 inverts the sampling clock CLK and supplies it to the AND gate 413.
  • the NOR gate 412 supplies the AND gate 413 with the negative logic sum of the positive voltage V out_p and the negative voltage V out_n of the latch circuit 430.
  • the AND gate 413 supplies the logical product of the signal from the inverter 411 and the signal from the NOR gate 412 as an enable signal En_Comp to the differential amplifier circuit 420 and the ripple canceller 500.
  • the positive side voltage V cdac_p and the negative side voltage V cdac_n from the CDAC 300 are input to the differential amplifier circuit 420.
  • the differential amplifier circuit 420 compares their voltages. The comparison result is differentially output to the SAR logic circuit 220 latch circuit 430 via the positive side signal line 408 and the negative side signal line 409.
  • the differential amplifier circuit 420 includes pMOS (p-channel Metal Oxide Semiconductor) transistors 421 and 422 and nMOS (n-channel MOS) transistors 423 to 425.
  • the pMOS transistor 421 and the nMOS transistor 423 are connected in series between the power supply node and the drain of the nMOS transistor 425.
  • the pMOS transistor 422 and the nMOS transistor 423 are also connected in series between the power supply node and the drain of the nMOS transistor 425.
  • the source of the nMOS transistor 425 is connected to the grounded node.
  • an enable signal En_Comp is input to each gate of the pMOS transistors 421 and 422 and the nMOS transistor 425.
  • the negative voltage V cdac_n is input to the gate of the nMOS transistor 423, and the positive voltage V cdac_p is input to the gate of the nMOS transistor 424.
  • the voltage of the connection node of the pMOS transistor 421 and the nMOS transistor 423 is output as a negative voltage V gm_n .
  • the voltage of the connection node of the pMOS transistor 422 and the nMOS transistor 424 is output as the positive side voltage V gm_p .
  • FIG. 5 is a circuit diagram showing a configuration example of the latch circuit 430 according to the first embodiment of the present technology.
  • the latch circuit 430 includes pMOS transistors 431 to 434 and nMOS transistors 435 to 440.
  • the differential amplifier circuit 420 outputs the positive voltage V gm_p of the differential signal from the positive output terminal to the latch circuit 430, and outputs the negative voltage V gm_n of the differential signal from the negative output terminal to the latch circuit 430. ..
  • the pMOS transistors 431 and 432 are connected in series to the power supply voltage node.
  • the nMOS transistors 436 and 437 are connected in parallel between the drain of the pMOS transistor 432 on the ground side and the node of the ground voltage.
  • the nMOS transistor 435 is inserted between the connection node of the pMOS transistors 431 and 432 and the node of the ground voltage.
  • the pMOS transistors 433 and 434 are connected in series to the node of the power supply voltage.
  • the nMOS transistors 438 and 439 are connected in parallel between the drain of the pMOS transistor 434 on the ground side and the node of the ground voltage.
  • the nMOS transistor 440 is inserted between the connection node of the pMOS transistors 433 and 434 and the node of the ground voltage.
  • the positive voltage Vgm_p from the differential amplifier circuit 420 is input to the respective gates of the pMOS transistor 431 and the nMOS transistors 435 and 436.
  • the negative voltage Vgm_n from the differential amplifier circuit 420 is input to the respective gates of the pMOS transistor 433 and the nMOS transistors 439 and 440.
  • connection nodes of the pMOS transistor 432 and the nMOS transistor 437 are connected to the respective gates of the pMOS transistor 434 and the nMOS transistor 438.
  • the voltage of this connection node is output to the SAR logic circuit 220 and the comparator 400 as the positive voltage Vout_p .
  • connection nodes of the pMOS transistor 434 and the nMOS transistor 438 are connected to the respective gates of the pMOS transistor 432 and the nMOS transistor 437.
  • the voltage of this connection node is output to the SAR logic circuit 220 and the comparator 400 as a negative voltage V out_n .
  • the latch circuit 430 shifts to the through state. At this time, the positive side voltage V gm_p and the negative side voltage V gm_n are output as they are as the positive side voltage V out_p and the negative side voltage V out_n .
  • the latch circuit 430 shifts to the holding state, and the immediately preceding state is held.
  • the differential amplifier circuit 420 starts the comparison operation when the enable signal En_Comp changes from the low level to the high level.
  • V gm_p and V gm_n are discharged from the power supply voltage to the ground voltage.
  • the discharge speeds of V gm_p and V gm_n change depending on the magnitude of the difference between V cdac_p and V cdac_n , and the output logic of the latch circuit 430 is determined by the difference in the discharge speeds.
  • FIG. 6 is a circuit diagram showing a configuration example of the ripple canceller 500 according to the first embodiment of the present technology.
  • the figure illustrates a circuit when the resolution is 5 bits.
  • the ripple canceller 500 includes a capacitance unit 510 and a comparator unit 521 to 525. Sampling switches 511 and 512, a positive side common capacity 513, and a negative side common capacity 514 are arranged in the capacity unit 510.
  • the comparator units 524 and 525 are omitted.
  • the sampling switch 511 opens and closes the path between the common signal line 507 of the common voltage VCOM and the positive signal line 508 according to the sampling clock CLK.
  • the sampling switch 512 opens and closes the path between the common signal line 507 and the negative signal line 509 according to the sampling clock CLK. For example, the sampling switches 511 and 512 are closed while the sampling clock CLK is at a high level.
  • One end of the positive side common capacitance 513 is connected to the node of the positive side reference voltage VREFP, and the other end is connected to the positive side signal line 508.
  • One end of the negative side common capacitance 514 is connected to the node of the negative side reference voltage VREFN, and the other end is connected to the negative side signal line 509.
  • the positive reference voltage VREFP and the negative reference voltage VREFN are in a stable state without ripple.
  • the comparator section 521 includes switches 531 to 536, common side transistors 537 and 538, a positive side transistor 539, a negative side transistor 540, and a switch transistor 541. As these transistors, nMOS transistors are used.
  • the switch 531 opens and closes the path between the drain of the common side transistor 537 and the positive side signal line 408 according to the control signal from the SAR logic circuit 220.
  • This positive signal line 408 is connected to the positive output terminal of the comparator 400 as described above.
  • the switch 532 opens and closes the path between the drain of the common side transistor 538 and the negative side signal line 409 according to the control signal from the SAR logic circuit 220.
  • the negative signal line 409 is connected to the negative output terminal of the comparator 400 as described above.
  • the switch 533 opens and closes the path between the drain of the positive transistor 539 and the negative signal line 409 according to the control signal from the SAR logic circuit 220.
  • the switch 534 opens and closes the path between the drain of the positive transistor 539 and the positive signal line 408 according to the control signal from the SAR logic circuit 220.
  • the switch 535 opens and closes the path between the drain of the negative transistor 540 and the positive signal line 408 according to the control signal from the SAR logic circuit 220.
  • the switch 536 opens and closes the path between the drain of the negative transistor 540 and the negative signal line 409 according to the control signal from the SAR logic circuit 220.
  • the sources of the common side transistors 537 and 538 are commonly connected to the drain of the switch transistor 541, and their gates are commonly connected to the common signal line 507 of the common voltage VCOM.
  • the source of the positive transistor 539 is connected to the drain of the switch transistor 541, and its gate is connected to the positive common capacitance 513 via the positive signal line 508.
  • the source of the negative transistor 540 is connected to the drain of the switch transistor 541 and its gate is connected to the negative common capacitance 514 via the negative signal line 509.
  • the source of the switch transistor 541 is connected to the node of the ground voltage, and the enable signal En_Comp is input to the gate.
  • the circuit configurations of the comparator units 522 to 525 are the same as those of the comparator unit 521. However, the size of each transistor of these comparators is different.
  • the "size" of the transistor indicates the size of the gate of the transistor (gate width or gate length). For example, when the gate width is constant, the gate length is used as the size.
  • the size of each transistor in the comparator section 521, 522, 523 and 524 is set to "16", “8", "4" and "2". Will be done.
  • the comparator section 521 having a size of "16" corresponds to MSB.
  • the comparator section 522 corresponds to the second bit, and the comparator section 523 corresponds to the third bit.
  • the comparator section 524 corresponds to the 4th bit, and the comparator section 525 having a size of "1" corresponds to the LSB.
  • M comparator units are arranged.
  • the size of the transistor at the m-th bit is twice that of the m + 1-th bit. Further, the number of bits of the resolution and the number of the comparator units are matched, but the configuration is not limited to this.
  • the number of comparator units may be slightly smaller than the number of resolution bits. However, there is a risk that the ripple canceling effect, which will be described later, will be reduced.
  • FIG. 7 is a diagram for explaining the connection state of the CDAC 300 and the ripple canceller 500 in the first embodiment of the present technology.
  • the mth bit is Dac_p [m].
  • the mth bit is Dac_n [m].
  • the initial value of each bit of the control signals Dac_p and Dac_n is, for example, a logical value “0”.
  • the SAR logic circuit 220 refers to the m-th comparison result of the comparator 400, and updates Dac_n [m] to the logic value "1" when the positive side is equal to or greater than the negative side. At this time, Dac_p [m] remains “0". On the other hand, when the positive side is less than the negative side, the SAR logic circuit 220 updates Dac_p [m] to "1". At this time, Dac_n [m] remains "0".
  • FIG. 8 is a diagram for explaining an example of control of a switch of a ripple canceller according to the first embodiment of the present technique. In the figure, it is assumed that the control up to the third bit is completed. Further, in the figure, the comparator 400 is omitted.
  • the SAR logic circuit 220 connects the positive capacitance 311 of 16C to the positive reference voltage VREFP and the negative capacitance 317 of 16C to the negative reference voltage VREFN by the control signal.
  • the SAR logic circuit 220 connects the positive capacitance 312 of 8C to the negative reference voltage VREFN and the negative capacitance 318 of 8C to the positive reference voltage VREFP by the control signal.
  • the SAR logic circuit 220 connects the positive capacitance 313 of 4C to the positive reference voltage VREFP and the negative capacitance 319 of 4C to the negative reference voltage VREFN by the control signal.
  • V dac ⁇ (16-8 + 4) C / 32C ⁇ ⁇ ⁇ ⁇ ⁇ Equation 1
  • the positive transistor of the first bit comparator section 521 is connected to the negative output terminal of the comparator 400 via the negative signal line 409, and the negative transistor is connected to the comparator via the positive signal line 408. It is connected to the positive output terminal of 400.
  • a white triangle indicates a positive transistor, and a black triangle indicates a common transistor.
  • the gray triangle indicates the negative transistor.
  • the positive transistor of the second bit comparator section 522 is connected to the positive output terminal, and the negative transistor is connected to the negative output terminal.
  • the positive transistor of the third bit comparator section 523 is connected to the negative output terminal, and the negative transistor is connected to the positive output terminal.
  • ⁇ ' depends on the size of the smallest transistor in the ripple canceller 500.
  • the size of the minimum transistor is adjusted to a value in which ⁇ in Equation 1 and ⁇ 'in Equation 2 substantially match.
  • FIG. 9 is a circuit diagram showing a configuration example of the ripple canceller in the comparative example.
  • This comparative example is the circuit described in Non-Patent Document 1.
  • the resolution is set to M bits, and M comparator sections and M capacitive sections are arranged in the ripple canceller.
  • a differential pair of nMOS transistors and a switch transistor are arranged in each of the comparator sections, and four capacitances and six switches are arranged in each of the capacitive sections.
  • the capacity of the LSB and the size of the differential pair are the largest, and the capacity and the size are halved after the second bit.
  • the ripple component of CDAC can be canceled by controlling the switch.
  • each wiring has a very high impedance. Therefore, it may be affected by disturbance.
  • the gates of M pairs of transistors (positive side transistor 539 and negative side transistor 540) having different sizes are common to the positive side common capacitance 513 and the negative side common capacitance 514. Is connected to.
  • the number of capacities is only two regardless of the resolution, so that the circuit scale can be reduced as compared with the comparative example.
  • switches 531 to 536 on the drain side of the transistor in the capacitance section, the size of those switches can be made smaller than that of the comparative example. This makes it possible to reduce the power consumption for driving those switches.
  • FIG. 10 is a timing chart showing an example of the operation of the SARADC200 according to the first embodiment of the present technique.
  • the sampling clock CLK becomes a high level over the sampling period from the timing T0 to T1. Within this period, the CDAC 300 captures and retains the sampled differential signal.
  • the differential amplifier circuit 420 in the comparator 400 performs M comparisons in synchronization with the enable signal En_Comp. Based on the comparison result, the SAR logic circuit 220 updates the control signals Dac_p and Dac_n M times.
  • the CDAC 300 switches the connection destination of the capacitance to one of the positive side reference voltage VREFP and the negative side reference voltage VREFN. At this time, a ripple component is generated in the positive side reference voltage VREFP and the negative side reference voltage VREFN.
  • the positive signal line 508 and the negative signal line 509 in the ripple canceller 500 generate components of ⁇ p and ⁇ n . These ⁇ p and ⁇ n remove the ripple component generated in the CDAC300 .
  • FIG. 11 is an example of an overall view of the SARADC200 according to the first embodiment of the present technology.
  • the CDAC 300 When the differential signal is input to the SARADC 200, the CDAC 300 generates an analog differential signal based on the control signal from the SAR logic circuit 220 and outputs it to the comparator 400.
  • the single-ended signal is input to the SARADC 200, the CDAC 300 generates an analog single-ended signal and outputs it to the comparator 400. In this way, the CDAC 300 generates at least one of the pair of analog signals and outputs it to the comparator 400.
  • the CDAC300 is an example of the digital-to-analog converter described in the claims.
  • the comparator 400 compares the input differential signals and generates a comparison result.
  • the latch circuit 430 holds the comparison result and supplies it to the SAR logic circuit 220.
  • the SAR logic circuit 220 generates a control signal based on the comparison result and supplies the control signal to the CDAC 300 and the comparator unit 521 and the like.
  • the SAR logic circuit 220 is an example of the logic circuit described in the claims.
  • one end of the positive side common capacitance 513 is connected to the node of the positive side reference voltage VREFP, and one end of the negative side common capacitance 514 is connected to the node of the negative side reference voltage VREFN.
  • sampling switches 511 and 512 open and close the path between the other ends of the positive side common capacity 513 and the negative side common capacity 514 and the node of the common voltage VCOM in synchronization with the sampling clock CLK.
  • each gate of the M positive transistors 539 having different sizes is commonly connected to the positive common capacitance 513 via the positive signal line 508.
  • Each gate of the M negative transistors 540 of different sizes is commonly connected to the negative common capacitance 514 via the negative signal line 509.
  • Each gate of M pairs of common side transistors of different sizes is commonly connected to a node with a common voltage VCOM.
  • the switches 531 to 536 open and close the path between the drain of each transistor such as the common side transistor and the output terminal of the comparator 400 based on the control signal.
  • the sampling switches 511 and 512 in the ripple canceller 500 performed sampling within the sampling period. It is preferable that these sampling switches 511 and 512 sample in a stable voltage state without ripple.
  • the SARADC200 of the second embodiment is different from the first embodiment in that the sampling switches 511 and 512 perform sampling within the period from the end of conversion to the start of sampling.
  • FIG. 12 is an example of an overall view of the SARADC200 according to the second embodiment of the present technology.
  • the SARADC200 of the second embodiment differs from the first embodiment in that the sampling switches 511 and 512 open and close according to the comparison completion flag Conv_End from the SAR logic circuit 220.
  • the SAR logic circuit 220 of the second embodiment closes the sampling switches 511 and 512 by the comparison completion flag Conv_End within the period from the end of AD (Analog to Digital) conversion to the start of sampling.
  • FIG. 13 is a timing chart showing an example of the operation of the SARADC200 in the second embodiment of the present technology.
  • the SAR logic circuit 220 of the second embodiment supplies a high-level comparison completion flag Conv_End within the period from the timing T11 at the end of the AD conversion to the timing T12 at the start of the next sampling.
  • the sampling switches 511 and 512 shift to the closed state and perform sampling.
  • the voltage state may be more stable during the period from the end of AD conversion to the start of sampling than the sampling period. In this case, the influence of ripple can be reduced by performing the control shown in the figure.
  • the sampling switches 511 and 512 shift to the closed state within the period from the end of the AD conversion to the start of sampling, so that the voltage state becomes stable. You can sample while you are.
  • the differential pair of the nMOS transistor is arranged in the differential amplifier circuit 420 or the ripple canceller 500, but the differential pair of the pMOS transistor can be arranged instead of them.
  • the SARADC200 of the third embodiment is different from the first embodiment in that the differential pair of the pMOS transistor is arranged instead of the differential pair of the nMOS transistor.
  • FIG. 14 is a circuit diagram showing a configuration example of the differential amplifier circuit 460 according to the third embodiment of the present technology.
  • the differential amplifier circuit 460 of the third embodiment includes pMOS transistors 461 to 463 and nMOS transistors 464 and 465.
  • the circuit configuration of the differential amplifier circuit 460 is the same as that of the differential amplifier circuit 420 illustrated in FIG. 4, except that the polarities of the respective transistors are opposite to each other.
  • the differential amplifier circuit 460 starts the comparison operation when the enable signal En_Comp changes from the high level to the low level. Further, the inverter 450 is inserted in front of the positive input terminal of the differential amplifier circuit 460.
  • FIG. 15 is a circuit diagram showing a configuration example of the latch circuit 470 according to the third embodiment of the present technology.
  • the latch circuit 470 of the third embodiment includes pMOS transistors 471 to 476 and nMOS transistors 477 to 480.
  • the circuit configuration of the latch circuit 470 is the same as that of the latch circuit 430 illustrated in FIG. 13, except that the polarities of the respective transistors are opposite to each other.
  • FIG. 16 is a circuit diagram showing a configuration example of the ripple canceller 500 according to the third embodiment of the present technology.
  • the ripple canceller 500 of the third embodiment has a switch transistor 551, common side transistors 552 and 552, a positive side transistor 554, a negative side transistor 555, and switches 531 to 536 in the comparator section 521. Be prepared. As these transistors, pMOS transistors are used. The same applies to the comparator section after the comparator section 522.
  • the differential pair of the pMOS transistor is used instead of the differential pair of the nMOS transistor, when the enable signal En_Comp changes from the high level to the low level.
  • the comparator 400 starts the comparison operation.
  • the common voltage VCOM is supplied in the ripple canceller 500 in addition to the reference voltage (VREFP and VREFN), but this configuration requires a circuit to generate the common voltage VCOM. Become. Further, when the input common voltage of the SARADC200 and the VCOM are different, the ripple canceling effect may be reduced.
  • the SARADC 200 of the fourth embodiment is different from the first embodiment in that the supply of the common voltage VCOM to the ripple canceller 500 is not required.
  • FIG. 17 is a circuit diagram showing a configuration example of the ripple canceller 500 according to the fourth embodiment of the present technology.
  • the ripple canceller 500 of the fourth embodiment includes positive side common capacities 611 and 612, sampling switches 613 to 616, and negative side common capacities 617 and 618 in the capacitance unit 510.
  • each of the positive side common capacities 611 and 612 is commonly connected to the node of the positive side reference voltage VREFP.
  • the respective capacity values of these positive side common capacities 611 and 612 are set to half of the positive side common capacities 513 of the first embodiment.
  • the positive side common capacities 611 and 612 are examples of the first positive side common capacity and the second positive side common capacity described in the claims.
  • the sampling switch 613 opens and closes the path between the other end of the common capacitance 611 on the positive side and the sampling switch 615 in synchronization with the sampling clock CLK.
  • the sampling switch 614 opens and closes the path between the other end of the positive common capacitance 612 and the sampling switch 616 in synchronization with the sampling clock CLK.
  • each of the negative side common capacities 617 and 618 is commonly connected to the node of the negative side reference voltage VREFN.
  • the respective capacity values of these negative side common capacities 617 and 618 are set to half of the negative side common capacities 514 of the first embodiment.
  • the negative side common capacities 617 and 618 are examples of the first negative side common capacity and the second negative side common capacity described in the claims.
  • the sampling switch 615 opens and closes the path between the other end of the negative common capacitance 617 and the sampling switch 613 in synchronization with the sampling clock CLK.
  • the sampling switch 616 opens and closes the path between the other end of the negative common capacitance 618 and the sampling switch 614 in synchronization with the sampling clock CLK.
  • connection node of the positive side common capacitance 611 and the sampling switch 613 is connected to the positive side signal line 501
  • the connection node of the positive side common capacitance 612 and the sampling switch 614 is connected to the positive side signal line 502.
  • connection nodes of the sampling switches 613 and 615 are connected to the common signal line 503, and the connection nodes of the sampling switches 614 and 616 are connected to the common signal line 504.
  • the common signal line 503 is connected to the positive input terminal of the comparator 400 (that is, the positive output terminal of the CDAC 300), and Vcdac_p is supplied.
  • the common signal line 504 is connected to the negative input terminal of the comparator 400 (that is, the negative output terminal of the CDAC 300), and Vcdac_n is supplied.
  • connection node of the negative side common capacity 617 and the sampling switch 615 is connected to the negative side signal line 505, and the connection node of the negative side common capacity 618 and the sampling switch 616 is connected to the negative side signal line 506.
  • FIG. 18 is a circuit diagram showing a configuration example of the comparator section 521 according to the fourth embodiment of the present technology.
  • the common side transistors 621 to 624 are arranged in place of the common side transistors 537 and 538.
  • the positive transistor 625 and 626 are arranged in place of the positive transistor 539, and the negative transistors 627 and 628 are arranged in place of the negative transistor 540.
  • the size of each of the transistors in the fifth embodiment is set to half that of the first embodiment.
  • the size of each transistor of the comparator section 521, 522, 523, 524 and 525 is set to "8", "4", "2", "1" and "1/2".
  • drains of the common side transistors 621 and 622 are connected to the switch 531 and their gates are connected to the common signal line 503.
  • drains of the common side transistors 623 and 624 are connected to the switch 532, and their gates are connected to the common signal line 504.
  • the common-side transistors 621 and 622 are examples of the first common-side transistor described in the claims, and the common-side transistors 623 and 624 are examples of the second common-side transistors described in the claims. be.
  • the drains of the positive transistors 625 and 626 are connected to both switches 533 and 534.
  • the gate of the positive transistor 625 is connected to the positive signal line 501, and the gate of the positive transistor 626 is connected to the positive signal line 502.
  • the positive transistor 625 and 626 are examples of the first positive transistor and the second positive transistor described in the claims.
  • the drains of the negative transistors 627 and 628 are connected to both switches 535 and 536.
  • the gate of the negative transistor 627 is connected to the negative signal line 505, and the gate of the negative transistor 628 is connected to the negative signal line 506.
  • the negative transistor 627 and 628 are examples of the first negative transistor and the second negative transistor described in the claims.
  • each of the transistors is separated into two halves in size, and each of the capacitances is separated into two halves in capacitance value. Since the current equivalent to that of the embodiment is generated, the common voltage VCOM becomes unnecessary.
  • the technique according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
  • FIG. 19 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 has a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, turn signals or fog lamps.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the image pickup unit 12031 is connected to the vehicle outside information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the out-of-vehicle information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
  • the image pickup unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the image pickup unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects a driver's state is connected to the vehicle interior information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether or not the driver has fallen asleep.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generating device, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040, so that the driver can control the driver. It is possible to perform coordinated control for the purpose of automatic driving that runs autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
  • the audio image output unit 12052 transmits an output signal of at least one of audio and an image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a head-up display.
  • FIG. 20 is a diagram showing an example of the installation position of the image pickup unit 12031.
  • the image pickup unit 12031 As the image pickup unit 12031, the image pickup unit 12101, 12102, 12103, 12104, 12105 is provided.
  • the image pickup units 12101, 12102, 12103, 12104, 12105 are provided, for example, at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100.
  • the image pickup unit 12101 provided on the front nose and the image pickup section 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the image pickup units 12102 and 12103 provided in the side mirror mainly acquire images of the side of the vehicle 12100.
  • the image pickup unit 12104 provided in the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the image pickup unit 12105 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 20 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging range of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates the imaging range.
  • the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 can be obtained.
  • At least one of the image pickup units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image pickup units 12101 to 12104 may be a stereo camera including a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object within the image pickup range 12111 to 12114 based on the distance information obtained from the image pickup unit 12101 to 12104, and a temporal change of this distance (relative speed with respect to the vehicle 12100). By obtaining can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like that autonomously travels without relying on the driver's operation.
  • automatic braking control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, electric poles, and other three-dimensional objects based on the distance information obtained from the image pickup units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • At least one of the image pickup units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging unit 12101 to 12104.
  • recognition of a pedestrian is, for example, a procedure for extracting feature points in an image captured by an image pickup unit 12101 to 12104 as an infrared camera, and pattern matching processing is performed on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine.
  • the audio image output unit 12052 determines the square contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the above is an example of a vehicle control system to which the technique according to the present disclosure can be applied.
  • the technique according to the present disclosure can be applied to, for example, the image pickup unit 12031 among the configurations described above.
  • the electronic device 100 of FIG. 1 can be applied to the image pickup unit 12031.
  • the circuit scale thereof can be reduced.
  • the present technology can have the following configurations.
  • a digital-to-analog converter that generates at least one of a pair of analog signals according to a predetermined control signal.
  • a comparator that compares the pair of analog signals, generates a comparison result, and outputs the comparison result.
  • a logic circuit that generates the control signal based on the comparison result, With multiple positive transistors of different sizes, With multiple negative transistors of different sizes, A plurality of switches that open and close the path between one of the sources and drains of the plurality of positive transistors and the plurality of negative transistors and the output terminal of the comparator based on the control signal.
  • a positive common capacitance with one end connected to a node with a predetermined positive reference voltage and the other end connected to the gates of each of the plurality of positive transistors.
  • An analog-to-digital converter having one end connected to a node having a negative reference voltage lower than the positive reference voltage and the other end connected in common to each gate of the plurality of negative transistors. .. (2)
  • the pair of analog signals are differential signals.
  • the digital-to-analog converter is the analog-to-digital converter according to (1) above, which generates the differential signal.
  • each of the plurality of positive side transistors and the plurality of negative side transistors is a pMOS transistor.
  • a plurality of pairs of common-side transistors having different sizes are further provided.
  • Digital converter. (10) Multiple pairs of first common side transistors of different sizes, Further equipped with a plurality of pairs of second common side transistors of different sizes,
  • the positive side common capacity includes a first positive side common capacity and a second positive side common capacity.
  • the negative side common capacity includes a first negative side common capacity and a second negative side common capacity.
  • the plurality of positive transistors are Multiple first positive transistors of different sizes, Includes multiple second positive transistors of different sizes
  • the plurality of negative transistors are Multiple first negative transistors of different sizes, Includes multiple second negative transistors of different sizes
  • Each gate of the plurality of first positive transistor is connected in common to the common capacitance on the first positive side.
  • Each gate of the plurality of second positive transistors is commonly connected to the second positive common capacitance.
  • Each gate of the plurality of first negative transistors is commonly connected to the first negative common capacitance.
  • the analog-to-digital converter according to any one of (1) to (8), wherein each gate of the plurality of second negative transistors is commonly connected to the second negative common capacitance.
  • a digital-to-analog converter that generates at least one of a pair of analog signals according to a predetermined control signal.
  • a comparator that compares the pair of analog signals, generates a comparison result, and outputs the comparison result.
  • a logic circuit that generates the control signal and outputs a digital signal based on the comparison result, With multiple positive transistors of different sizes, With multiple negative transistors of different sizes, A plurality of switches that open and close the path between one of the sources and drains of the plurality of positive transistors and the plurality of negative transistors and the output terminal of the comparator based on the control signal.
  • a positive common capacitance with one end connected to a node with a predetermined positive reference voltage and the other end connected to the gates of each of the plurality of positive transistors.
  • a negative-side common capacitance having one end connected to a node having a negative reference voltage lower than the positive-side reference voltage and the other end connected to each gate of the plurality of negative-side transistors.
  • An electronic device including a digital signal processing circuit for processing the digital signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

The present invention reduces the size of a circuit in an SAR ADC in which a circuit for cancelling ripples is provided. According to the present invention, a digital-analog converter generates at least one of a pair of analog signals in accordance with a predetermined control signal. A comparator compares the pair of analog signals, and generates and outputs a comparison result. A logic circuit generates the control signal on the basis of the comparison result. A plurality of switches, on the basis of the control signal, open or close paths between an output terminal of the comparator and sources or drains of a plurality of positive-side transistors having different sizes and a plurality of negative-side transistors having different sizes. A positive-side common capacitor has one end connected to a node of a predetermined positive-side reference voltage, and has the other end connected to, in a shared manner, the gates of the plurality of positive-side transistors. A negative-side capacitor has one end connected to a node of a negative-side reference voltage which is lower than the positive-side reference voltage, and has the other end connected to, in a shared manner, the gates of the plurality of negative-side transistors.

Description

アナログデジタル変換器、および、電子機器Analog-to-digital converters and electronic devices
 本技術は、アナログデジタル変換器に関する。詳しくは、逐次比較型のアナログデジタル変換器、および、電子機器に関する。 This technology relates to analog-to-digital converters. More specifically, the present invention relates to a serial comparison type analog-to-digital converter and an electronic device.
 従来より、高分解能であることや、消費電力が小さいことから、様々な電子機器において、SARADC(Successive Approximation Register Analog to Digital Converter)が広く用いられている。ここで、SARADCは、サンプリングしたアナログ信号と、DAC(Digital to Analog Converter)で生成した参照信号とを比較器が逐次比較し、それらが一致するようにロジック回路がDACを制御する回路である。このSARADCでは、参照信号のレベルを変更する際に、DACの出力信号にリップルと呼ばれる揺れが生じることがあり、そのリップルにより、比較器の比較結果に誤差が生じるおそれがある。そこで、4個の容量と複数のスイッチとを含む容量部をビットごとに配列し、リップルと逆位相の信号を生成するSARADCが提案されている(例えば、特許文献1参照。)。 SARADC (Successive Approximation Register Analog to Digital Converter) is widely used in various electronic devices because of its high resolution and low power consumption. Here, the SARADC is a circuit in which a comparator sequentially compares a sampled analog signal and a reference signal generated by a DAC (Digital to Analog Converter), and a logic circuit controls the DAC so that they match. In this SARADC, when the level of the reference signal is changed, a fluctuation called ripple may occur in the output signal of the DAC, and the ripple may cause an error in the comparison result of the comparator. Therefore, a SARADC has been proposed in which a capacitance portion including four capacitances and a plurality of switches is arranged bit by bit to generate a signal having a phase opposite to that of the ripple (see, for example, Patent Document 1).
 上述の従来技術では、リップルと逆位相の信号を生成することにより、リップルのキャンセルを図っている。しかしながら、上述のSARADCでは、ビットごとに4個の容量を設ける必要があるため、SARADCの分解能が高くなるほど、回路規模が増大するという問題がある。例えば、分解能が5ビットの場合、5つの容量部内に合計20個の容量を配置しなければならなくなる。 In the above-mentioned conventional technique, the ripple is canceled by generating a signal having a phase opposite to that of the ripple. However, in the above-mentioned SARADC, since it is necessary to provide four capacitances for each bit, there is a problem that the circuit scale increases as the resolution of the SARADC increases. For example, when the resolution is 5 bits, a total of 20 capacities must be arranged in the five capacities.
 本技術はこのような状況に鑑みて生み出されたものであり、リップルを打ち消す回路が設けられたSARADCにおいて、回路規模を削減することを目的とする。 This technology was created in view of such a situation, and aims to reduce the circuit scale in SARADC provided with a circuit that cancels ripple.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、所定の制御信号に従って一対のアナログ信号の少なくとも一方を生成するデジタルアナログ変換器と、上記一対のアナログ信号を比較して比較結果を生成して出力する比較器と、上記比較結果に基づいて上記制御信号を生成するロジック回路と、サイズの異なる複数の正側トランジスタと、サイズの異なる複数の負側トランジスタと、上記複数の正側トランジスタと上記複数の負側トランジスタとのそれぞれのソースおよびドレインの一方と上記比較器の出力端子との間の経路を上記制御信号に基づいて開閉する複数のスイッチと、所定の正側参照電圧のノードに一端が接続され、上記複数の正側トランジスタのそれぞれのゲートに共通に他端が接続された正側共通容量と、上記正側参照電圧より低い負側参照電圧のノードに一端が接続され、上記複数の負側トランジスタのそれぞれのゲートに共通に他端が接続された負側共通容量とを具備するアナログデジタル変換器である。これにより、回路規模が削減されるという作用をもたらす。 The present technology has been made to solve the above-mentioned problems, and the first aspect thereof is a digital-analog converter that generates at least one of a pair of analog signals according to a predetermined control signal, and the above-mentioned pair. A comparator that compares analog signals to generate and output a comparison result, a logic circuit that generates the control signal based on the comparison result, multiple positive transistors of different sizes, and multiple negatives of different sizes. A plurality of switches that open and close the path between the side transistor, one of the source and drain of each of the plurality of positive transistors and the plurality of negative transistors, and the output terminal of the comparator based on the control signal. One end is connected to a node with a predetermined positive reference voltage, and the other end is commonly connected to the gate of each of the plurality of positive transistors. It is an analog-digital converter having one end connected to a node of a reference voltage and a negative side common capacitance having the other end connected in common to each gate of the plurality of negative side transistors. This has the effect of reducing the circuit scale.
 また、この第1の側面において、上記一対のアナログ信号は、差動信号であり、上記デジタルアナログ変換器は、上記差動信号を生成してもよい。これにより、差動入力のアナログデジタル変換器の回路規模が削減されるという作用をもたらす。 Further, in the first aspect, the pair of analog signals is a differential signal, and the digital-to-analog converter may generate the differential signal. This has the effect of reducing the circuit scale of the analog-to-digital converter with differential input.
 また、この第1の側面において、上記正側共通容量および上記負側共通容量のそれぞれの上記他端と上記正側参照電圧および上記負側参照電圧の間のコモン電圧との間の経路を開閉するサンプリングスイッチをさらに具備してもよい。これにより、正側共通容量および負側共通容量に参照電圧がサンプルされるという作用をもたらす。 Further, in this first aspect, the path between the other end of each of the positive side common capacitance and the negative side common capacitance and the common voltage between the positive side reference voltage and the negative side reference voltage is opened and closed. A sampling switch may be further provided. This has the effect that the reference voltage is sampled on the positive side common capacitance and the negative side common capacitance.
 また、この第1の側面において、上記サンプリングスイッチは、所定のサンプリング期間内に閉状態に移行してもよい。これにより、サンプリング期間内にサンプルされるという作用をもたらす。 Further, in this first aspect, the sampling switch may shift to the closed state within a predetermined sampling period. This has the effect of being sampled within the sampling period.
 また、この第1の側面において、上記サンプリングスイッチは、アナログデジタル変換の終了時からサンプリングの開始時までの期間内に閉状態に移行してもよい。これにより、アナログデジタル変換の終了時からサンプリングの開始時までの期間内にサンプルされるという作用をもたらす。 Further, in this first aspect, the sampling switch may shift to the closed state within the period from the end of the analog-to-digital conversion to the start of sampling. This has the effect of sampling within the period from the end of the analog-to-digital conversion to the start of sampling.
 また、この第1の側面において、上記比較結果を保持して上記ロジック回路に供給するラッチ回路をさらに具備してもよい。これにより、比較結果が保持されるという作用をもたらす。 Further, in this first aspect, a latch circuit that holds the comparison result and supplies it to the logic circuit may be further provided. This has the effect of preserving the comparison results.
 また、この第1の側面において、上記複数の正側トランジスタと上記複数の負側トランジスタとのそれぞれは、nMOSトランジスタであってもよい。これにより、nMOSトランジスタの差動対に電流が流れるという作用をもたらす。 Further, in this first aspect, each of the plurality of positive side transistors and the plurality of negative side transistors may be nMOS transistors. This has the effect that a current flows through the differential pair of the nMOS transistor.
 また、この第1の側面において、上記複数の正側トランジスタと上記複数の負側トランジスタとのそれぞれは、pMOSトランジスタであってもよい。これにより、pMOSトランジスタの差動対に電流が流れるという作用をもたらす。 Further, in this first aspect, each of the plurality of positive side transistors and the plurality of negative side transistors may be pMOS transistors. This has the effect that a current flows through the differential pair of the pMOS transistor.
 また、この第1の側面において、サイズの異なる複数対のコモン側トランジスタをさらに具備し、上記複数対のコモン側トランジスタのそれぞれのゲートは、上記正側参照電圧および上記負側参照電圧の間のコモン電圧のノードに接続されてもよい。これにより、コモン側トランジスタのゲートにコモン電圧が印加されるという作用をもたらす。 Further, in this first aspect, a plurality of pairs of common side transistors having different sizes are further provided, and each gate of the plurality of pairs of common side transistors is between the positive side reference voltage and the negative side reference voltage. It may be connected to a node with a common voltage. This has the effect of applying a common voltage to the gate of the common-side transistor.
 また、この第1の側面において、サイズの異なる複数対の第1コモン側トランジスタと、サイズの異なる複数対の第2コモン側トランジスタとをさらに具備し、上記正側共通容量は、第1正側共通容量および第2正側共通容量を含み、上記負側共通容量は、第1負側共通容量および第2負側共通容量を含み、上記複数の正側トランジスタは、サイズの異なる複数の第1正側トランジスタと、サイズの異なる複数の第2正側トランジスタとを含み、上記複数の負側トランジスタは、サイズの異なる複数の第1負側トランジスタと、サイズの異なる複数の第2負側トランジスタとを含み、上記複数の第1正側トランジスタのそれぞれのゲートは、上記第1正側共通容量に共通に接続され、上記複数の第2正側トランジスタのそれぞれのゲートは、上記第2正側共通容量に共通に接続され、上記複数の第1負側トランジスタのそれぞれのゲートは、上記第1負側共通容量に共通に接続され、上記複数の第2負側トランジスタのそれぞれのゲートは、上記第2負側共通容量に共通に接続されてもよい。これにより、コモン電圧が不要になるという作用をもたらす。 Further, in this first aspect, a plurality of pairs of first common side transistors having different sizes and a plurality of pairs of second common side transistors having different sizes are further provided, and the positive side common capacitance is the first positive side. The negative side common capacitance includes a common capacitance and a second positive side common capacitance, the negative side common capacitance includes a first negative side common capacitance and a second negative side common capacitance, and the plurality of positive side transistors are a plurality of firsts having different sizes. The plurality of negative side transistors include a plurality of positive side transistors and a plurality of second positive side transistors having different sizes, and the plurality of negative side transistors include a plurality of first negative side transistors having different sizes and a plurality of second negative side transistors having different sizes. The gates of the plurality of first positive-side transistors are commonly connected to the first positive-side common capacitance, and the respective gates of the plurality of second positive-side transistors are common to the second positive-side common. Commonly connected to the capacitance, each gate of the plurality of first negative transistor is commonly connected to the first negative common capacitance, and each gate of the plurality of second negative transistors is connected to the first negative transistor. 2 It may be connected in common to the common capacity on the negative side. This has the effect of eliminating the need for a common voltage.
 また、本技術の第2の側面は、所定の制御信号に従って一対のアナログ信号の少なくとも一方を生成するデジタルアナログ変換器と、上記一対のアナログ信号を比較して比較結果を生成して出力する比較器と、上記比較結果に基づいて上記制御信号を生成するとともにデジタル信号を出力するロジック回路と、サイズの異なる複数の正側トランジスタと、サイズの異なる複数の負側トランジスタと、上記複数の正側トランジスタと上記複数の負側トランジスタとのそれぞれのソースおよびドレインの一方と上記比較器の出力端子との間の経路を上記制御信号に基づいて開閉する複数のスイッチと、所定の正側参照電圧のノードに一端が接続され、上記複数の正側トランジスタのそれぞれのゲートに共通に他端が接続された正側共通容量と、上記正側参照電圧より低い負側参照電圧のノードに一端が接続され、上記複数の負側トランジスタのそれぞれのゲートに共通に他端が接続された負側共通容量と、上記デジタル信号を処理するデジタル信号処理回路とを具備する電子機器である。これにより、電子機器の回路規模が削減されるという作用をもたらす。 The second aspect of the present technology is a comparison between a digital-analog converter that generates at least one of a pair of analog signals according to a predetermined control signal and the pair of analog signals to generate and output a comparison result. A device, a logic circuit that generates the control signal based on the comparison result and outputs a digital signal, a plurality of positive-side transistors having different sizes, a plurality of negative-side transistors having different sizes, and a plurality of positive-side transistors. A plurality of switches that open and close the path between one of the source and drain of the transistor and the plurality of negative transistors and the output terminal of the comparator based on the control signal, and a predetermined positive reference voltage. One end is connected to the node, and one end is connected to the positive common capacitance in which the other end is commonly connected to the gate of each of the plurality of positive transistors and the node having a negative reference voltage lower than the positive reference voltage. This is an electronic device including a negative side common capacitance in which the other end is commonly connected to each gate of the plurality of negative side transistors, and a digital signal processing circuit for processing the digital signal. This has the effect of reducing the circuit scale of electronic devices.
本技術の第1の実施の形態における電子機器の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the electronic device in 1st Embodiment of this technique. 本技術の第1の実施の形態におけるSARADCの一構成例を示すブロック図である。It is a block diagram which shows one configuration example of SARADC in the 1st Embodiment of this technique. 本技術の第1の実施の形態におけるCDACの一構成例を示す回路図である。It is a circuit diagram which shows one structural example of CDAC in 1st Embodiment of this technique. 本技術の第1の実施の形態における比較器の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the comparator in the 1st Embodiment of this technique. 本技術の第1の実施の形態におけるラッチ回路の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the latch circuit in 1st Embodiment of this technique. 本技術の第1の実施の形態におけるリップルキャンセラーの一構成例を示す回路図である。It is a circuit diagram which shows one configuration example of the ripple canceller in 1st Embodiment of this technique. 本技術の第1の実施の形態におけるCDACおよびリップルキャンセラーの接続状態を説明するための図である。It is a figure for demonstrating the connection state of the CDAC and the ripple canceller in the 1st Embodiment of this technique. 本技術の第1の実施の形態におけるリップルキャンセラーのスイッチの制御の一例を説明するための図である。It is a figure for demonstrating an example of control of the switch of the ripple canceller in 1st Embodiment of this technique. 比較例におけるリップルキャンセラーの一構成例を示す回路図である。It is a circuit diagram which shows one configuration example of the ripple canceller in the comparative example. 本技術の第1の実施の形態におけるSARADCの動作の一例を示すタイミングチャートである。It is a timing chart which shows an example of the operation of SARADC in the 1st Embodiment of this technique. 本技術の第1の実施の形態におけるSARADCの全体図の一例である。It is an example of the whole view of SARADC in the 1st Embodiment of this technique. 本技術の第2の実施の形態におけるSARADCの全体図の一例である。It is an example of the whole view of SARADC in the 2nd Embodiment of this technique. 本技術の第2の実施の形態におけるSARADCの動作の一例を示すタイミングチャートである。It is a timing chart which shows an example of the operation of SARADC in the 2nd Embodiment of this technique. 本技術の第4の実施の形態における差動増幅回路の一構成例を示す回路図である。It is a circuit diagram which shows one configuration example of the differential amplifier circuit in 4th Embodiment of this technique. 本技術の第4の実施の形態におけるラッチ回路の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the latch circuit in 4th Embodiment of this technique. 本技術の第4の実施の形態におけるリップルキャンセラーの一構成例を示す回路図である。It is a circuit diagram which shows one configuration example of the ripple canceller in 4th Embodiment of this technique. 本技術の第5の実施の形態におけるリップルキャンセラーの一構成例を示す回路図である。It is a circuit diagram which shows one configuration example of the ripple canceller in 5th Embodiment of this technique. 本技術の第5の実施の形態におけるコンパレータ部の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the comparator part in 5th Embodiment of this technique. 車両制御システムの概略的な構成例を示すブロック図である。It is a block diagram which shows the schematic configuration example of a vehicle control system. 撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of the image pickup unit.
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(容量の個数を削減した例)
 2.第2の実施の形態(容量の個数を削減し、サンプルのタイミングを変更した例)
 3.第3の実施の形態(容量の個数を削減し、トランジスタの極性を変更した例)
 4.第4の実施の形態(容量の個数を削減し、コモン電圧を不要とした例)
 5.移動体への応用例
Hereinafter, embodiments for carrying out the present technology (hereinafter referred to as embodiments) will be described. The explanation will be given in the following order.
1. 1. First embodiment (example of reducing the number of capacities)
2. 2. Second embodiment (example of reducing the number of capacities and changing the sample timing)
3. 3. Third embodiment (example in which the number of capacitances is reduced and the polarity of the transistor is changed)
4. Fourth embodiment (example of reducing the number of capacities and eliminating the need for a common voltage)
5. Application example to mobile body
 <1.第1の実施の形態>
 [電子機器の構成例]
 図1は、本技術の第1の実施の形態における電子機器100の一構成例を示すブロック図である。この電子機器100は、アナログ信号をデジタル信号に変換して処理するものであり、アナログ信号生成部110、SARADC200およびデジタル信号処理部120を備える。電子機器100として、撮像装置、オーディオ機器や、通信装置などが想定される。
<1. First Embodiment>
[Example of electronic device configuration]
FIG. 1 is a block diagram showing a configuration example of an electronic device 100 according to a first embodiment of the present technology. The electronic device 100 converts an analog signal into a digital signal and processes it, and includes an analog signal generation unit 110, a SARADC 200, and a digital signal processing unit 120. As the electronic device 100, an image pickup device, an audio device, a communication device, and the like are assumed.
 アナログ信号生成部110は、アナログ信号AINを生成し、信号線119を介してSARADC200に供給するものである。アナログ信号AINとして、画素信号、音声信号やRF(Radio Frequency)信号が想定される。 The analog signal generation unit 110 generates an analog signal AIN and supplies it to the SARADC 200 via the signal line 119. As the analog signal AIN, a pixel signal, an audio signal, or an RF (Radio Frequency) signal is assumed.
 SARADC200は、入力されたアナログ信号AINを、逐次比較方式によりデジタル信号DOUTに変換するものである。このSARADC200は、デジタル信号DOUTをデジタル信号処理部120に信号線209を介して供給する。 The SARADC200 converts the input analog signal AIN into a digital signal DOUT by a sequential comparison method. The SARADC 200 supplies the digital signal DOUT to the digital signal processing unit 120 via the signal line 209.
 デジタル信号処理部120は、デジタル信号DOUTに対して所定の信号処理を行うものである。信号処理として、デモザイク処理などの画像処理、音声圧縮処理や復調処理などが想定される。 The digital signal processing unit 120 performs predetermined signal processing on the digital signal DOUT. As signal processing, image processing such as demodulation processing, audio compression processing, demodulation processing, and the like are assumed.
 なお、SARADC200の個数は、1つに限定されず、2つ以上であってもよい。例えば、撮像装置においては、列ごとにSARADC200が配置されることがある。 The number of SARADC200 is not limited to one, and may be two or more. For example, in an image pickup apparatus, SARADC200 may be arranged for each row.
 [SARADCの構成例]
 図2は、本技術の第1の実施の形態におけるSARADC200の一構成例を示すブロック図である。SARADC200は、サンプリングスイッチ211および212と、CDAC(Capacitor DAC)300と、ラッチ回路430と、比較器400と、SAR(Successive Approximation Register)ロジック回路220とを備える。また、SARADC200は、リップルキャンセラー500をさらに備える。
[SARAD C configuration example]
FIG. 2 is a block diagram showing a configuration example of the SARADC200 according to the first embodiment of the present technology. The SARADC 200 includes sampling switches 211 and 212, a CDAC (Capacitor DAC) 300, a latch circuit 430, a comparator 400, and a SAR (Successive Approximation Register) logic circuit 220. Further, the SARADC 200 further includes a ripple canceller 500.
 サンプリングスイッチ211および212には、アナログ信号生成部110からの差動のアナログ信号が入力される。この差動信号(すなわち、アナログ信号)は、正側信号AIN_pおよび負側信号AIN_nを含む。サンプリングスイッチ211および212は、サンプリングクロックCLKに同期して、アナログ信号生成部110とCDAC300との間の経路を開閉する。例えば、サンプリングクロックCLKがハイレベルの期間に、サンプリングスイッチ211および212が閉状態となり、差動信号がサンプリングされる。 A differential analog signal from the analog signal generation unit 110 is input to the sampling switches 211 and 212. This differential signal (ie, an analog signal) includes a positive signal AIN_p and a negative signal AIN_n. The sampling switches 211 and 212 open and close the path between the analog signal generation unit 110 and the CDAC 300 in synchronization with the sampling clock CLK. For example, while the sampling clock CLK is at a high level, the sampling switches 211 and 212 are closed and the differential signal is sampled.
 CDAC300は、DA(Digital to Analog)変換により、アナログの参照信号を生成するものである。このCDAC300は、サンプリングされた差動信号(アナログ信号)を保持し、そのアナログ信号と、内部生成した参照信号(アナログ信号)との差分を比較器400に差動出力する。 The CDAC300 generates an analog reference signal by DA (Digital to Analog) conversion. The CDAC 300 holds a sampled differential signal (analog signal), and differentially outputs the difference between the analog signal and the internally generated reference signal (analog signal) to the comparator 400.
 比較器400は、CDAC300からの差動信号の正側と負側とを比較するものである。この比較器400は、比較結果をラッチ回路430に供給する。ラッチ回路430は、比較結果を保持するものである。このラッチ回路430は、保持した比較結果をSARロジック回路220に供給する。 The comparator 400 compares the positive side and the negative side of the differential signal from the CDAC 300. The comparator 400 supplies the comparison result to the latch circuit 430. The latch circuit 430 holds the comparison result. The latch circuit 430 supplies the held comparison result to the SAR logic circuit 220.
 SARロジック回路220は、比較器400の比較結果に基づいて参照信号のレベルを制御するものである。このSARロジック回路220は、逐次比較方式により、CDAC300の出力の正側と負側とが均衡するように参照信号のレベルを更新する。SARADC200の分解能をM(Mは、整数)ビットとすると、逐次比較の回数はM回である。また、SARロジック回路220は、M回の比較結果のそれぞれを保持し、それらの比較結果を示すビットを配列したビット列をデジタル信号DOUTとしてデジタル信号処理部120に供給する。 The SAR logic circuit 220 controls the level of the reference signal based on the comparison result of the comparator 400. The SAR logic circuit 220 updates the level of the reference signal so that the positive side and the negative side of the output of the CDAC 300 are balanced by the sequential comparison method. Assuming that the resolution of the SARADC 200 is M (M is an integer) bit, the number of successive comparisons is M times. Further, the SAR logic circuit 220 holds each of the comparison results of M times, and supplies a bit string in which bits indicating the comparison results are arranged to the digital signal processing unit 120 as a digital signal DOUT.
 リップルキャンセラー500は、CDAC300の出力信号のリップルをキャンセルするものである。リップルキャンセラー500の回路構成については後述する。 The ripple canceller 500 cancels the ripple of the output signal of the CDAC 300. The circuit configuration of the ripple canceller 500 will be described later.
 [CDACの構成例]
 図3は、本技術の第1の実施の形態におけるCDAC300の一構成例を示す回路図である。同図は、分解能が5ビットの場合の回路を例示している。このCDAC300は、正側容量311乃至316と、負側容量317乃至322と、正側切替部330と、負側切替部340とを備える。正側切替部330には、正側切替回路331乃至336が配置され、負側切替部340には、負側切替回路341乃至346が配置される。なお、同図において、正側容量314および315と、負側容量320および321と、正側切替回路334および335と、負側切替回路344および345とは省略されている。
[CCDAC configuration example]
FIG. 3 is a circuit diagram showing a configuration example of the CDAC 300 according to the first embodiment of the present technology. The figure illustrates a circuit when the resolution is 5 bits. The CDAC 300 includes a positive capacity 311 to 316, a negative capacity 317 to 322, a positive switching unit 330, and a negative switching unit 340. The positive side switching circuits 331 to 336 are arranged in the positive side switching unit 330, and the negative side switching circuits 341 to 346 are arranged in the negative side switching unit 340. In the figure, the positive side capacities 314 and 315, the negative side capacities 320 and 321, the positive side switching circuits 334 and 335, and the negative side switching circuits 344 and 345 are omitted.
 また、CDAC300内には、正側信号線308および負側信号線309が配線される。正側信号線308は、CDAC300の正側入力端子と正側出力端子との間に配線される。負側信号線309は、CDAC300の負側入力端子と負側出力端子との間に配線される。正側信号線308の電圧は、正側電圧Vcdac_pとして比較器400に出力される。負側信号線309の電圧は、負側電圧Vcdac_nとして比較器400に出力される。 Further, a positive signal line 308 and a negative signal line 309 are wired in the CDAC 300. The positive signal line 308 is wired between the positive input terminal and the positive output terminal of the CDAC 300. The negative signal line 309 is wired between the negative input terminal and the negative output terminal of the CDAC 300. The voltage of the positive signal line 308 is output to the comparator 400 as the positive voltage V cdac_p . The voltage of the negative signal line 309 is output to the comparator 400 as the negative voltage V cdac_n .
 正側容量311乃至316の一端は、正側信号線308に共通に接続される。これらの正側容量311乃至316の他端は、正側切替回路331乃至336に接続される。また、正側容量311乃至315の容量は互いに異なる。例えば、所定の単位容量値をCとすると、正側容量311、312、313、314、315および316の容量値は、16C、8C、4C、2C、CおよびCに設定される。 One end of the positive capacitances 311 to 316 is commonly connected to the positive signal line 308. The other ends of these positive capacitances 311 to 316 are connected to the positive switching circuits 331 to 336. Further, the capacities of the positive capacities 311 to 315 are different from each other. For example, assuming that the predetermined unit capacity value is C, the capacity values of the positive side capacities 311, 312, 313, 314, 315 and 316 are set to 16C, 8C, 4C, 2C, C and C.
 負側容量317乃至322の一端は、負側信号線309に共通に接続される。これらの負側容量317乃至322の他端は、負側切替回路341乃至346に接続される。また、負側容量317乃至321の容量は互いに異なる。例えば、負側容量317、318、319、320、321および322の容量値は、16C、8C、4C、2C、CおよびCに設定される。 One end of the negative capacitance 317 to 322 is commonly connected to the negative signal line 309. The other ends of these negative capacitances 317 to 322 are connected to the negative switching circuits 341 to 346. Further, the capacities of the negative capacities 317 to 321 are different from each other. For example, the capacity values of the negative capacities 317, 318, 319, 320, 321 and 322 are set to 16C, 8C, 4C, 2C, C and C.
 16Cの容量と、対応する切替回路とが、5ビットのうちMSB(Most Significant Bit)に対応する。8Cの容量と、対応する切替回路とが、2ビット目に対応し、4Cの容量と、対応する切替回路とが、3ビット目に対応する。2Cの容量と、対応する切替回路とが、4ビット目に対応し、Cの容量の一方と、対応する切替回路とが、LSB(Least Significant Bit)に対応する。Cの容量の他方は、ダミー容量として用いられる。 The capacity of 16C and the corresponding switching circuit correspond to MSB (Most Significant Bit) out of 5 bits. The 8C capacitance and the corresponding switching circuit correspond to the second bit, and the 4C capacitance and the corresponding switching circuit correspond to the third bit. The 2C capacitance and the corresponding switching circuit correspond to the 4th bit, and one of the C capacitances and the corresponding switching circuit correspond to the LSB (Least Significant Bit). The other of the capacitances of C is used as a dummy capacitance.
 正側切替回路331乃至335は、SARロジック回路220からの制御信号Dac_pおよびDac_nに従って、対応する正側容量の他端を、正側参照電圧VREFP、コモン電圧VCOMおよび負側参照電圧VREFNのいずれかに接続するものである。制御信号Dac_pおよびDac_nのそれぞれのサイズは、5ビットである。正側切替回路336は、SARロジック回路220からの制御信号(不図示)に従って、ダミーの正側容量316の他端を、正側参照電圧VREFP、コモン電圧VCOMおよび負側参照電圧VREFNのいずれかに接続するものである。 The positive switching circuits 331 to 335 have one of the positive reference voltage VREFP, the common voltage VCOM and the negative reference voltage VREFN at the other end of the corresponding positive capacitance according to the control signals Dac_p and Dac_n from the SAR logic circuit 220. It connects to. The size of each of the control signals Dac_p and Dac_n is 5 bits. The positive side switching circuit 336 sets the other end of the dummy positive side capacitance 316 to either the positive side reference voltage VREFP, the common voltage VCOM, or the negative side reference voltage VREFN according to a control signal (not shown) from the SAR logic circuit 220. It connects to.
 正側参照電圧VREFPは、コモン電圧VCOMより高い一定の電圧であり、負側参照電圧VREFNは、コモン電圧VCOMより低い一定の電圧である。正側参照電圧VREFPを+VREF、負側参照電圧VREFNの値を-VREFと表すこともできる。 The positive side reference voltage VREFP is a constant voltage higher than the common voltage VCOM, and the negative side reference voltage VREFN is a constant voltage lower than the common voltage VCOM. The value of the positive reference voltage VREFF can be expressed as + VREF, and the value of the negative reference voltage VREFN can be expressed as −VREF.
 負側切替回路341乃至345は、SARロジック回路220からの制御信号Dac_pおよびDac_nに従って、対応する負側容量の他端を、正側参照電圧VREFP、コモン電圧VCOMおよび負側参照電圧VREFNのいずれかに接続するものである。負側切替回路346は、SARロジック回路220からの制御信号(不図示)に従って、ダミーの正側容量316の他端を、正側参照電圧VREFP、コモン電圧VCOMおよび負側参照電圧VREFNのいずれかに接続するものである。 Negative side switching circuits 341 to 345, according to the control signals Dac_p and Dac_n from the SAR logic circuit 220, set the other end of the corresponding negative capacitance to either the positive reference voltage VREFP, the common voltage VCOM, or the negative reference voltage VREFN. It connects to. The negative side switching circuit 346 has one of the positive side reference voltage VREFP, the common voltage VCOM, and the negative side reference voltage VREFN at the other end of the dummy positive side capacitance 316 according to the control signal (not shown) from the SAR logic circuit 220. It connects to.
 また、負側切替回路341は、例えば、スイッチ351乃至353から構成される。正側切替回路331乃至336と、他の負側切替回路についても同様である。 Further, the negative side switching circuit 341 is composed of, for example, switches 351 to 353. The same applies to the positive side switching circuits 331 to 336 and other negative side switching circuits.
 SARロジック回路220は、サンプリングスイッチ211および212が閉状態の期間(すなわち、サンプリング期間)内に、制御信号により正側容量311乃至316と負側容量317乃至322の全てをコモン電圧VCOMに接続する。これにより、サンプリングされた差動信号が保持される。 The SAR logic circuit 220 connects all of the positive capacitances 311 to 316 and the negative capacitances 317 to 322 to the common voltage VCOM by a control signal during the period when the sampling switches 211 and 212 are closed (that is, the sampling period). .. This keeps the sampled differential signal.
 そして、SARロジック回路220は、比較器400の比較結果を参照し、その比較結果に基づいて制御信号によりCDAC300内の容量の接続先を制御する。 Then, the SAR logic circuit 220 refers to the comparison result of the comparator 400, and controls the connection destination of the capacitance in the CDAC 300 by the control signal based on the comparison result.
 例えば、1回目の比較結果で正側が負側以上である場合に、SARロジック回路220は、正側容量311に負側参照電圧VREFNを接続し、負側容量317に正側参照電圧VREFPを接続する。一方、1回目の比較結果で正側が負側未満である場合に、SARロジック回路220は、正側容量311に正側参照電圧VREFPを接続し、負側容量317に負側参照電圧VREFNを接続する。これらの制御により、正側に-1/2VREFまたは+1/2VREFが加算され、負側に+1/2VREFまたは-1/2VREFが加算される。 For example, when the positive side is equal to or greater than the negative side in the first comparison result, the SAR logic circuit 220 connects the negative side reference voltage VREFN to the positive side capacitance 311 and connects the positive side reference voltage VREFN to the negative side capacitance 317. do. On the other hand, when the positive side is less than the negative side in the first comparison result, the SAR logic circuit 220 connects the positive side reference voltage VREFP to the positive side capacitance 311 and the negative side reference voltage VREFN to the negative side capacitance 317. do. By these controls, -1 / 2VREF or + 1 / 2VREF is added to the positive side, and + 1 / 2VREF or -1 / 2VREF is added to the negative side.
 また、2回目の比較結果で正側が負側以上である場合に、SARロジック回路220は、正側容量312に負側参照電圧VREFNを接続し、負側容量318に正側参照電圧VREFPを接続する。一方、2回目の比較結果で正側が負側未満である場合に、SARロジック回路220は、正側容量312に正側参照電圧VREFPを接続し、負側容量318に負側参照電圧VREFNを接続する。これらの制御により、正側に-1/4VREFまたは+1/4VREFが加算され、負側に+1/4VREFまたは-1/4VREFが加算される。 Further, when the positive side is equal to or greater than the negative side in the second comparison result, the SAR logic circuit 220 connects the negative side reference voltage VREFN to the positive side capacitance 312 and connects the positive side reference voltage VREFN to the negative side capacitance 318. do. On the other hand, when the positive side is less than the negative side in the second comparison result, the SAR logic circuit 220 connects the positive side reference voltage VREFP to the positive side capacitance 312 and connects the negative side reference voltage VREFN to the negative side capacitance 318. do. By these controls, -1/4 VREF or + 1/4 VREF is added to the positive side, and + 1/4 VREF or -1 / 4 VREF is added to the negative side.
 以下、同様の制御をSARロジック回路220は、比較回数が5回になるまで繰り返す。なお、分解能(Mビット)が5ビット以外である場合には、ダミーを含めてM+1個の正側容量、負側容量、正側切替回路および負側切替回路のそれぞれが配列される。m(mは、0乃至M-1の整数)ビット目の容量は、m+1ビット目の2倍に設定される。 Hereinafter, the same control is repeated by the SAR logic circuit 220 until the number of comparisons reaches five. When the resolution (M bit) is other than 5 bits, each of M + 1 positive capacitance, negative capacitance, positive switching circuit, and negative switching circuit including a dummy is arranged. The capacity of the m (m is an integer from 0 to M-1) bit is set to be twice that of the m + 1 bit.
 上述したように、M回の逐次比較の結果に基づいて参照電圧を制御する方式は、逐次比較方式と呼ばれる。 As described above, the method of controlling the reference voltage based on the result of M sequential comparisons is called the sequential comparison method.
 なお、差動信号の代わりに、シングルエンド信号をSARADC200に入力することもできる。この場合には、CDAC300内の正側および負側の一方において容量やスイッチが不要となる。また、比較器400の一方の入力端子には、サンプリング・ホールドされたシングルエンド信号が入力され、他方の入力端子にCDAC300の生成した参照電圧が入力される。 A single-ended signal can be input to the SARADC200 instead of the differential signal. In this case, no capacitance or switch is required on either the positive side or the negative side of the CDAC 300. Further, a sampled and held single-ended signal is input to one input terminal of the comparator 400, and a reference voltage generated by the CDAC 300 is input to the other input terminal.
 [比較器の制御例]
 図4は、本技術の第1の実施の形態における比較器400の一構成例を示す回路図である。この比較器400は、イネーブル制御部410および差動増幅回路420を備える。
[Comparator control example]
FIG. 4 is a circuit diagram showing a configuration example of the comparator 400 according to the first embodiment of the present technology. The comparator 400 includes an enable control unit 410 and a differential amplifier circuit 420.
 イネーブル制御部410は、ラッチ回路430の出力と、サンプリングクロックCLKとから、イネーブル信号En_Compを生成するものである。このイネーブル制御部410は、インバータ411、NOR(否定論理和)ゲート412およびAND(論理積)ゲート413を備える。 The enable control unit 410 generates an enable signal En_Comp from the output of the latch circuit 430 and the sampling clock CLK. The enable control unit 410 includes an inverter 411, a NOR (logical sum) gate 412, and an AND (logical product) gate 413.
 インバータ411は、サンプリングクロックCLKを反転してANDゲート413に供給するものである。 The inverter 411 inverts the sampling clock CLK and supplies it to the AND gate 413.
 NORゲート412は、ラッチ回路430の正側電圧Vout_pと、負側電圧Vout_nとの否定論理和をANDゲート413に供給するものである。 The NOR gate 412 supplies the AND gate 413 with the negative logic sum of the positive voltage V out_p and the negative voltage V out_n of the latch circuit 430.
 ANDゲート413は、インバータ411からの信号と、NORゲート412からの信号との論理積をイネーブル信号En_Compとして、差動増幅回路420およびリップルキャンセラー500に供給するものである。 The AND gate 413 supplies the logical product of the signal from the inverter 411 and the signal from the NOR gate 412 as an enable signal En_Comp to the differential amplifier circuit 420 and the ripple canceller 500.
 差動増幅回路420には、CDAC300からの正側電圧Vcdac_pおよび負側電圧Vcdac_nが入力される。差動増幅回路420は、それらの電圧を比較する。その比較結果は、正側信号線408および負側信号線409を介してSARロジック回路220ラッチ回路430に差動出力される。差動増幅回路420は、pMOS(p-channel Metal Oxide Semiconductor)トランジスタ421および422と、nMOS(n-channel MOS)トランジスタ423乃至425とを備える。 The positive side voltage V cdac_p and the negative side voltage V cdac_n from the CDAC 300 are input to the differential amplifier circuit 420. The differential amplifier circuit 420 compares their voltages. The comparison result is differentially output to the SAR logic circuit 220 latch circuit 430 via the positive side signal line 408 and the negative side signal line 409. The differential amplifier circuit 420 includes pMOS (p-channel Metal Oxide Semiconductor) transistors 421 and 422 and nMOS (n-channel MOS) transistors 423 to 425.
 pMOSトランジスタ421およびnMOSトランジスタ423は、電源ノードと、nMOSトランジスタ425のドレインとの間において、直列に接続される。pMOSトランジスタ422およびnMOSトランジスタ423も、電源ノードと、nMOSトランジスタ425のドレインとの間において、直列に接続される。nMOSトランジスタ425のソースは、接地ノードに接続される。 The pMOS transistor 421 and the nMOS transistor 423 are connected in series between the power supply node and the drain of the nMOS transistor 425. The pMOS transistor 422 and the nMOS transistor 423 are also connected in series between the power supply node and the drain of the nMOS transistor 425. The source of the nMOS transistor 425 is connected to the grounded node.
 また、pMOSトランジスタ421および422とnMOSトランジスタ425とのそれぞれのゲートには、イネーブル信号En_Compが入力される。nMOSトランジスタ423のゲートには、負側電圧Vcdac_nが入力され、nMOSトランジスタ424のゲートには、正側電圧Vcdac_pが入力される。 Further, an enable signal En_Comp is input to each gate of the pMOS transistors 421 and 422 and the nMOS transistor 425. The negative voltage V cdac_n is input to the gate of the nMOS transistor 423, and the positive voltage V cdac_p is input to the gate of the nMOS transistor 424.
 また、pMOSトランジスタ421およびnMOSトランジスタ423の接続ノードの電圧は、負側電圧Vgm_nとして出力される。pMOSトランジスタ422およびnMOSトランジスタ424の接続ノードの電圧は、正側電圧Vgm_pとして出力される。 Further, the voltage of the connection node of the pMOS transistor 421 and the nMOS transistor 423 is output as a negative voltage V gm_n . The voltage of the connection node of the pMOS transistor 422 and the nMOS transistor 424 is output as the positive side voltage V gm_p .
 [ラッチ回路の構成例]
 図5は、本技術の第1の実施の形態におけるラッチ回路430の一構成例を示す回路図である。このラッチ回路430は、pMOSトランジスタ431乃至434と、nMOSトランジスタ435乃至440とを備える。
[Latch circuit configuration example]
FIG. 5 is a circuit diagram showing a configuration example of the latch circuit 430 according to the first embodiment of the present technology. The latch circuit 430 includes pMOS transistors 431 to 434 and nMOS transistors 435 to 440.
 差動増幅回路420は、差動信号の正側電圧Vgm_pを正側出力端子からラッチ回路430に出力し、差動信号の負側電圧Vgm_nを負側出力端子からラッチ回路430に出力する。 The differential amplifier circuit 420 outputs the positive voltage V gm_p of the differential signal from the positive output terminal to the latch circuit 430, and outputs the negative voltage V gm_n of the differential signal from the negative output terminal to the latch circuit 430. ..
 ラッチ回路430において、pMOSトランジスタ431および432は、電源電圧のノードに直列に接続される。接地側のpMOSトランジスタ432のドレインと、接地電圧のノードとの間にnMOSトランジスタ436および437が並列に接続される。pMOSトランジスタ431および432の接続ノードと、接地電圧のノードとの間にnMOSトランジスタ435が挿入される。 In the latch circuit 430, the pMOS transistors 431 and 432 are connected in series to the power supply voltage node. The nMOS transistors 436 and 437 are connected in parallel between the drain of the pMOS transistor 432 on the ground side and the node of the ground voltage. The nMOS transistor 435 is inserted between the connection node of the pMOS transistors 431 and 432 and the node of the ground voltage.
 また、pMOSトランジスタ433および434は、電源電圧のノードに直列に接続される。接地側のpMOSトランジスタ434のドレインと、接地電圧のノードとの間にnMOSトランジスタ438および439が並列に接続される。pMOSトランジスタ433および434の接続ノードと、接地電圧のノードとの間にnMOSトランジスタ440が挿入される。 Further, the pMOS transistors 433 and 434 are connected in series to the node of the power supply voltage. The nMOS transistors 438 and 439 are connected in parallel between the drain of the pMOS transistor 434 on the ground side and the node of the ground voltage. The nMOS transistor 440 is inserted between the connection node of the pMOS transistors 433 and 434 and the node of the ground voltage.
 また、差動増幅回路420からの正側電圧Vgm_pが、pMOSトランジスタ431とnMOSトランジスタ435および436とのそれぞれのゲートに入力される。差動増幅回路420からの負側電圧Vgm_nは、pMOSトランジスタ433とnMOSトランジスタ439および440とのそれぞれのゲートに入力される。 Further, the positive voltage Vgm_p from the differential amplifier circuit 420 is input to the respective gates of the pMOS transistor 431 and the nMOS transistors 435 and 436. The negative voltage Vgm_n from the differential amplifier circuit 420 is input to the respective gates of the pMOS transistor 433 and the nMOS transistors 439 and 440.
 また、pMOSトランジスタ432およびnMOSトランジスタ437の接続ノードは、pMOSトランジスタ434およびnMOSトランジスタ438のそれぞれのゲートに接続される。この接続ノードの電圧が、正側電圧Vout_pとしてSARロジック回路220および比較器400へ出力される。 Further, the connection nodes of the pMOS transistor 432 and the nMOS transistor 437 are connected to the respective gates of the pMOS transistor 434 and the nMOS transistor 438. The voltage of this connection node is output to the SAR logic circuit 220 and the comparator 400 as the positive voltage Vout_p .
 また、pMOSトランジスタ434およびnMOSトランジスタ438の接続ノードは、pMOSトランジスタ432およびnMOSトランジスタ437のそれぞれのゲートに接続される。この接続ノードの電圧が、負側電圧Vout_nとしてSARロジック回路220および比較器400へ出力される。 Further, the connection nodes of the pMOS transistor 434 and the nMOS transistor 438 are connected to the respective gates of the pMOS transistor 432 and the nMOS transistor 437. The voltage of this connection node is output to the SAR logic circuit 220 and the comparator 400 as a negative voltage V out_n .
 同図に例示した接続構成により、正側電圧Vgm_pおよび負側電圧Vgm_nの一方がハイレベルで他方がローレベルの場合、ラッチ回路430はスルー状態に移行する。このとき、正側電圧Vgm_pおよび負側電圧Vgm_nが、そのまま、正側電圧Vout_pおよび負側電圧Vout_nとして出力される。 According to the connection configuration exemplified in the figure, when one of the positive side voltage V gm_p and the negative side voltage V gm_n is high level and the other is low level, the latch circuit 430 shifts to the through state. At this time, the positive side voltage V gm_p and the negative side voltage V gm_n are output as they are as the positive side voltage V out_p and the negative side voltage V out_n .
 また、正側電圧Vgm_pと負側電圧Vgm_nとが均衡している場合、ラッチ回路430は保持状態に移行し、直前の状態が保持される。 Further, when the positive side voltage Vgm_p and the negative side voltage Vgm_n are in equilibrium, the latch circuit 430 shifts to the holding state, and the immediately preceding state is held.
 また、差動増幅回路420は、イネーブル信号En_Compがローレベルからハイレベルに変化した際に比較動作を開始する。その動作開始とともに、Vgm_pおよびVgm_nが電源電圧から接地電圧に放電される。Vcdac_pおよびVcdac_nの差分の大小でVgm_pおよびVgm_nの放電スピードが変わり、その放電スピードの差によって、ラッチ回路430の出力論理が決定される。 Further, the differential amplifier circuit 420 starts the comparison operation when the enable signal En_Comp changes from the low level to the high level. At the start of the operation, V gm_p and V gm_n are discharged from the power supply voltage to the ground voltage. The discharge speeds of V gm_p and V gm_n change depending on the magnitude of the difference between V cdac_p and V cdac_n , and the output logic of the latch circuit 430 is determined by the difference in the discharge speeds.
 [リップルキャンセラーの構成例]
 図6は、本技術の第1の実施の形態におけるリップルキャンセラー500の一構成例を示す回路図である。同図は、分解能が5ビットの場合の回路を例示している。このリップルキャンセラー500は、容量部510と、コンパレータ部521乃至525とを備える。容量部510内には、サンプリングスイッチ511および512と、正側共通容量513と、負側共通容量514とが配置される。なお、同図において、コンパレータ部524および525は省略されている。
[Ripple canceller configuration example]
FIG. 6 is a circuit diagram showing a configuration example of the ripple canceller 500 according to the first embodiment of the present technology. The figure illustrates a circuit when the resolution is 5 bits. The ripple canceller 500 includes a capacitance unit 510 and a comparator unit 521 to 525. Sampling switches 511 and 512, a positive side common capacity 513, and a negative side common capacity 514 are arranged in the capacity unit 510. In the figure, the comparator units 524 and 525 are omitted.
 サンプリングスイッチ511は、サンプリングクロックCLKに従って、コモン電圧VCOMの共通信号線507と、正側信号線508との間の経路を開閉するものである。サンプリングスイッチ512は、サンプリングクロックCLKに従って、共通信号線507と、負側信号線509との間の経路を開閉するものである。例えば、サンプリングクロックCLKがハイレベルの期間に、サンプリングスイッチ511および512が閉状態となる。 The sampling switch 511 opens and closes the path between the common signal line 507 of the common voltage VCOM and the positive signal line 508 according to the sampling clock CLK. The sampling switch 512 opens and closes the path between the common signal line 507 and the negative signal line 509 according to the sampling clock CLK. For example, the sampling switches 511 and 512 are closed while the sampling clock CLK is at a high level.
 正側共通容量513の一端は、正側参照電圧VREFPのノードに接続され、他端は、正側信号線508に接続される。負側共通容量514の一端は、負側参照電圧VREFNのノードに接続され、他端は、負側信号線509に接続される。これらの電荷に蓄えられる電荷が安定したら、サンプリングスイッチ511および512が開状態に移行する。 One end of the positive side common capacitance 513 is connected to the node of the positive side reference voltage VREFP, and the other end is connected to the positive side signal line 508. One end of the negative side common capacitance 514 is connected to the node of the negative side reference voltage VREFN, and the other end is connected to the negative side signal line 509. When the charges stored in these charges are stable, the sampling switches 511 and 512 shift to the open state.
 ここで、正側参照電圧VREFPおよび負側参照電圧VREFNは、リップルの無い安定した状態であることが望ましい。 Here, it is desirable that the positive reference voltage VREFP and the negative reference voltage VREFN are in a stable state without ripple.
 コンパレータ部521は、スイッチ531乃至536と、コモン側トランジスタ537および538と、正側トランジスタ539と、負側トランジスタ540と、スイッチトランジスタ541とを備える。これらのトランジスタとして、nMOSトランジスタが用いられる。 The comparator section 521 includes switches 531 to 536, common side transistors 537 and 538, a positive side transistor 539, a negative side transistor 540, and a switch transistor 541. As these transistors, nMOS transistors are used.
 スイッチ531は、SARロジック回路220からの制御信号に従って、コモン側トランジスタ537のドレインと正側信号線408との間の経路を開閉するものである。この正側信号線408は、前述したように比較器400の正側出力端子に接続されている。 The switch 531 opens and closes the path between the drain of the common side transistor 537 and the positive side signal line 408 according to the control signal from the SAR logic circuit 220. This positive signal line 408 is connected to the positive output terminal of the comparator 400 as described above.
 スイッチ532は、SARロジック回路220からの制御信号に従って、コモン側トランジスタ538のドレインと負側信号線409との間の経路を開閉するものである。この負側信号線409は、前述したように比較器400の負側出力端子に接続されている。 The switch 532 opens and closes the path between the drain of the common side transistor 538 and the negative side signal line 409 according to the control signal from the SAR logic circuit 220. The negative signal line 409 is connected to the negative output terminal of the comparator 400 as described above.
 スイッチ533は、SARロジック回路220からの制御信号に従って、正側トランジスタ539のドレインと負側信号線409との間の経路を開閉するものである。スイッチ534は、SARロジック回路220からの制御信号に従って、正側トランジスタ539のドレインと正側信号線408との間の経路を開閉するものである。 The switch 533 opens and closes the path between the drain of the positive transistor 539 and the negative signal line 409 according to the control signal from the SAR logic circuit 220. The switch 534 opens and closes the path between the drain of the positive transistor 539 and the positive signal line 408 according to the control signal from the SAR logic circuit 220.
 スイッチ535は、SARロジック回路220からの制御信号に従って、負側トランジスタ540のドレインと正側信号線408との間の経路を開閉するものである。スイッチ536は、SARロジック回路220からの制御信号に従って、負側トランジスタ540のドレインと負側信号線409との間の経路を開閉するものである。 The switch 535 opens and closes the path between the drain of the negative transistor 540 and the positive signal line 408 according to the control signal from the SAR logic circuit 220. The switch 536 opens and closes the path between the drain of the negative transistor 540 and the negative signal line 409 according to the control signal from the SAR logic circuit 220.
 コモン側トランジスタ537および538のソースは、スイッチトランジスタ541のドレインに共通に接続され、それらのゲートは、コモン電圧VCOMの共通信号線507に共通に接続される。 The sources of the common side transistors 537 and 538 are commonly connected to the drain of the switch transistor 541, and their gates are commonly connected to the common signal line 507 of the common voltage VCOM.
 正側トランジスタ539のソースは、スイッチトランジスタ541のドレインに接続され、そのゲートは、正側信号線508を介して正側共通容量513に接続される。負側トランジスタ540のソースは、スイッチトランジスタ541のドレインに接続され、そのゲートは、負側信号線509を介して負側共通容量514に接続される。 The source of the positive transistor 539 is connected to the drain of the switch transistor 541, and its gate is connected to the positive common capacitance 513 via the positive signal line 508. The source of the negative transistor 540 is connected to the drain of the switch transistor 541 and its gate is connected to the negative common capacitance 514 via the negative signal line 509.
 スイッチトランジスタ541のソースは、接地電圧のノードに接続され、ゲートには、イネーブル信号En_Compが入力される。 The source of the switch transistor 541 is connected to the node of the ground voltage, and the enable signal En_Comp is input to the gate.
 コンパレータ部522乃至525のそれぞれの回路構成は、コンパレータ部521と同様である。ただし、これらのコンパレータ部のそれぞれのトランジスタのサイズが異なる。ここで、トランジスタの「サイズ」は、トランジスタのゲートのサイズ(ゲート幅やゲート長)を示す。例えば、ゲート幅を一定とした際は、ゲート長がサイズとして用いられる。 The circuit configurations of the comparator units 522 to 525 are the same as those of the comparator unit 521. However, the size of each transistor of these comparators is different. Here, the "size" of the transistor indicates the size of the gate of the transistor (gate width or gate length). For example, when the gate width is constant, the gate length is used as the size.
 コンパレータ部525内のトランジスタのサイズを「1」とした場合、コンパレータ部521、522、523および524のそれぞれのトランジスタのサイズは、「16」、「8」、「4」および「2」に設定される。 When the size of the transistor in the comparator section 525 is "1", the size of each transistor in the comparator section 521, 522, 523 and 524 is set to "16", "8", "4" and "2". Will be done.
 サイズが「16」のコンパレータ部521が、MSBに対応する。コンパレータ部522が2ビット目に対応し、コンパレータ部523が、3ビット目に対応する。コンパレータ部524が、4ビット目に対応し、サイズが「1」のコンパレータ部525が、LSBに対応する。 The comparator section 521 having a size of "16" corresponds to MSB. The comparator section 522 corresponds to the second bit, and the comparator section 523 corresponds to the third bit. The comparator section 524 corresponds to the 4th bit, and the comparator section 525 having a size of "1" corresponds to the LSB.
 サンプリング直後においては、全ビットのコモン側のスイッチ531および532のみが閉状態に制御され、比較結果に応じて、対応するビットの正側、負側のスイッチ533乃至536が開閉される。詳細な制御内容については後述する。 Immediately after sampling, only the switches 531 and 532 on the common side of all bits are controlled to be closed, and the switches 533 to 536 on the positive and negative sides of the corresponding bits are opened and closed according to the comparison result. The detailed control contents will be described later.
 なお、分解能(Mビット)が5ビット以外である場合には、M個のコンパレータ部が配列される。mビット目のトランジスタのサイズは、m+1ビット目の2倍である。また、分解能のビット数と、コンパレータ部の個数とを一致させているが、この構成に限定されない。コンパレータ部の個数は、分解能のビット数より若干、少なくてもよい。ただし、後述するリップルのキャンセル効果が低下してしまうおそれがある。 If the resolution (M bits) is other than 5 bits, M comparator units are arranged. The size of the transistor at the m-th bit is twice that of the m + 1-th bit. Further, the number of bits of the resolution and the number of the comparator units are matched, but the configuration is not limited to this. The number of comparator units may be slightly smaller than the number of resolution bits. However, there is a risk that the ripple canceling effect, which will be described later, will be reduced.
 図7は、本技術の第1の実施の形態におけるCDAC300およびリップルキャンセラー500の接続状態を説明するための図である。Mビットの制御信号Dac_pのうち、mビット目をDac_p[m]とする。同様に、制御信号Dac_nのうち、mビット目をDac_n[m]とする。制御信号Dac_pおよびDac_nのそれぞれのビットの初期値は、例えば、論理値「0」とする。 FIG. 7 is a diagram for explaining the connection state of the CDAC 300 and the ripple canceller 500 in the first embodiment of the present technology. Of the M-bit control signals Dac_p, the mth bit is Dac_p [m]. Similarly, in the control signal Dac_n, the mth bit is Dac_n [m]. The initial value of each bit of the control signals Dac_p and Dac_n is, for example, a logical value “0”.
 SARロジック回路220は、比較器400のm回目の比較結果を参照し、正側が負側以上である場合にDac_n[m]を論理値「1」に更新する。このとき、Dac_p[m]は「0」のままである。一方、正側が負側未満である場合にSARロジック回路220は、Dac_p[m]を「1」に更新する。このとき、Dac_n[m]は「0」のままである。 The SAR logic circuit 220 refers to the m-th comparison result of the comparator 400, and updates Dac_n [m] to the logic value "1" when the positive side is equal to or greater than the negative side. At this time, Dac_p [m] remains "0". On the other hand, when the positive side is less than the negative side, the SAR logic circuit 220 updates Dac_p [m] to "1". At this time, Dac_n [m] remains "0".
 CDAC300において、Dac_p[m]およびDac_n[m]が両方とも「0」である場合、mビット目の正側容量および負側容量は、コモン電圧VCOMに接続される。 In the CDAC300, when both Dac_p [m] and Dac_n [m] are "0", the positive capacitance and the negative capacitance of the m-th bit are connected to the common voltage VCOM.
 また、Dac_p[m]が「1」で、Dac_n[m]が「0」の場合、mビット目の正側容量は、正側参照電圧VREFPに接続され、負側容量は、負側参照電圧VREFNに接続される。 When Dac_p [m] is "1" and Dac_n [m] is "0", the positive capacitance of the m-th bit is connected to the positive reference voltage VREFP, and the negative capacitance is the negative reference voltage. Connected to VREFN.
 また、Dac_p[m]が「0」で、Dac_n[m]が「1」の場合、mビット目の正側容量は、負側参照電圧VREFNに接続され、負側容量は、正側参照電圧VREFPに接続される。 When Dac_p [m] is "0" and Dac_n [m] is "1", the positive capacitance of the m-th bit is connected to the negative reference voltage VREFN, and the negative capacitance is the positive reference voltage. Connected to VREFP.
 次に、リップルキャンセラー500において、Dac_p[m]およびDac_n[m]が両方とも「0」である場合、mビット目のスイッチ531および532が閉状態に移行する。これにより、mビット目のコモン側トランジスタ537および538のそれぞれのドレインが比較器400の正側出力端子および負側出力端子に接続される。このとき、スイッチ531および532以外の他のスイッチは、全て開状態に移行する。 Next, in the ripple canceller 500, when both Dac_p [m] and Dac_n [m] are "0", the switches 531 and 532 of the m-th bit shift to the closed state. As a result, the drains of the common side transistors 537 and 538 of the m-th bit are connected to the positive side output terminal and the negative side output terminal of the comparator 400, respectively. At this time, all the switches other than the switches 531 and 532 shift to the open state.
 また、Dac_p[m]が「1」で、Dac_n[m]が「0」の場合、mビット目のスイッチ533および535が閉状態に移行する。これにより、正側トランジスタ539のドレインが比較器400の負側出力端子に接続され、負側トランジスタ540のドレインが比較器400の正側出力端子に接続される。このとき、スイッチ533および535以外の他のスイッチは、全て開状態に移行する。 Further, when Dac_p [m] is "1" and Dac_n [m] is "0", the switches 533 and 535 of the m-th bit shift to the closed state. As a result, the drain of the positive transistor 539 is connected to the negative output terminal of the comparator 400, and the drain of the negative transistor 540 is connected to the positive output terminal of the comparator 400. At this time, all the switches other than the switches 533 and 535 shift to the open state.
 また、Dac_p[m]が「0」で、Dac_n[m]が「1」の場合、mビット目のスイッチ534および536が閉状態に移行する。これにより、正側トランジスタ539のドレインが比較器400の正側出力端子に接続され、負側トランジスタ540のドレインが比較器400の負側出力端子に接続される。このとき、スイッチ534および536以外の他のスイッチは、全て開状態に移行する。 Further, when Dac_p [m] is "0" and Dac_n [m] is "1", the switches 534 and 536 of the m-th bit shift to the closed state. As a result, the drain of the positive transistor 539 is connected to the positive output terminal of the comparator 400, and the drain of the negative transistor 540 is connected to the negative output terminal of the comparator 400. At this time, all the switches other than the switches 534 and 536 shift to the open state.
 図8は、本技術の第1の実施の形態におけるリップルキャンセラーのスイッチの制御の一例を説明するための図である。同図では、3ビット目までの制御が終了した状態を想定している。また、同図では、比較器400は省略されている。 FIG. 8 is a diagram for explaining an example of control of a switch of a ripple canceller according to the first embodiment of the present technique. In the figure, it is assumed that the control up to the third bit is completed. Further, in the figure, the comparator 400 is omitted.
 最初の比較結果に基づいて、SARロジック回路220は、制御信号により16Cの正側容量311を正側参照電圧VREFPに接続し、16Cの負側容量317を負側参照電圧VREFNに接続する。 Based on the first comparison result, the SAR logic circuit 220 connects the positive capacitance 311 of 16C to the positive reference voltage VREFP and the negative capacitance 317 of 16C to the negative reference voltage VREFN by the control signal.
 2回目の比較結果に基づいて、SARロジック回路220は、制御信号により8Cの正側容量312を負側参照電圧VREFNに接続し、8Cの負側容量318を正側参照電圧VREFPに接続する。 Based on the result of the second comparison, the SAR logic circuit 220 connects the positive capacitance 312 of 8C to the negative reference voltage VREFN and the negative capacitance 318 of 8C to the positive reference voltage VREFP by the control signal.
 3回目の比較結果に基づいて、SARロジック回路220は、制御信号により4Cの正側容量313を正側参照電圧VREFPに接続し、4Cの負側容量319を負側参照電圧VREFNに接続する。 Based on the result of the third comparison, the SAR logic circuit 220 connects the positive capacitance 313 of 4C to the positive reference voltage VREFP and the negative capacitance 319 of 4C to the negative reference voltage VREFN by the control signal.
 ここで、正側参照電圧VREFPにΔのリップル成分が生じたものとすると、CDAC300の差動出力に生じるリップル成分Vdacは、次の式により表される。
  Vdac={(16-8+4)C/32C}・Δ     ・・・式1
Here, assuming that a ripple component of Δ is generated in the positive reference voltage VREFP, the ripple component V dac generated in the differential output of the CDAC 300 is expressed by the following equation.
V dac = {(16-8 + 4) C / 32C} ・ Δ ・ ・ ・ Equation 1
 一方、1ビット目のコンパレータ部521の正側トランジスタは、負側信号線409を介して比較器400の負側出力端子に接続され、負側トランジスタは、正側信号線408を介して比較器400の正側出力端子に接続される。同図において、白い三角は、正側トランジスタを示し、黒い三角は、コモン側トランジスタを示す。灰色の三角は、負側トランジスタを示す。 On the other hand, the positive transistor of the first bit comparator section 521 is connected to the negative output terminal of the comparator 400 via the negative signal line 409, and the negative transistor is connected to the comparator via the positive signal line 408. It is connected to the positive output terminal of 400. In the figure, a white triangle indicates a positive transistor, and a black triangle indicates a common transistor. The gray triangle indicates the negative transistor.
 また、2ビット目のコンパレータ部522の正側トランジスタは、正側出力端子に接続され、負側トランジスタは、負側出力端子に接続される。3ビット目のコンパレータ部523の正側トランジスタは、負側出力端子に接続され、負側トランジスタは、正側出力端子に接続される。 Further, the positive transistor of the second bit comparator section 522 is connected to the positive output terminal, and the negative transistor is connected to the negative output terminal. The positive transistor of the third bit comparator section 523 is connected to the negative output terminal, and the negative transistor is connected to the positive output terminal.
 上述の接続により、リップルキャンセラー500内で生じるリップル成分Vcancelは、次の式により表される。
  Vcancel=-(16C/32)Δ'+(8C/32)Δ'-(4C/32)Δ'
       =-{(16-8+4)/32}・Δ'    ・・・式2
The ripple component V cancel generated in the ripple canceller 500 by the above connection is expressed by the following equation.
V cancel =-(16C / 32) Δ'+ (8C / 32) Δ'-(4C / 32) Δ'
=-{(16-8 + 4) / 32} ・ Δ'・ ・ ・ Equation 2
 Δ'の値は、リップルキャンセラー500内の最小のトランジスタのサイズに依存する。最小のトランジスタのサイズは、式1のΔと、式2のΔ'とが略一致する値に調整される。 The value of Δ'depends on the size of the smallest transistor in the ripple canceller 500. The size of the minimum transistor is adjusted to a value in which Δ in Equation 1 and Δ'in Equation 2 substantially match.
 ΔとのΔ'とが略一致する場合、式1および式2より、CDAC300のリップル成分と、リップルキャンセラー500内で生じるリップル成分とは、絶対値が同等で、符号が逆になる。このため、比較器400の出力端子で、それらが加算されると、CDAC300のリップル成分がキャンセルされる。リップル成分のキャンセルにより、比較器400の比較結果の誤差を低減することができる。 When Δ and Δ'are substantially the same, the absolute values of the ripple component of the CDAC 300 and the ripple component generated in the ripple canceller 500 are the same from Equations 1 and 2, and the symbols are reversed. Therefore, when they are added at the output terminal of the comparator 400, the ripple component of the CDAC 300 is canceled. By canceling the ripple component, it is possible to reduce the error of the comparison result of the comparator 400.
 図9は、比較例におけるリップルキャンセラーの一構成例を示す回路図である。この比較例は、非特許文献1に記載されていた回路である。この比較例では、分解能をMビットとして、リップルキャンセラー内にM個のコンパレータ部とM個の容量部とが配置される。コンパレータ部のそれぞれには、差動対のnMOSトランジスタとスイッチトランジスタとが配置され、容量部のそれぞれには、4個の容量と、6個のスイッチとが配置される。また、LSBの容量と差動対のサイズとが最も大きく、2ビット目以降は、容量およびサイズが半分になっていく。 FIG. 9 is a circuit diagram showing a configuration example of the ripple canceller in the comparative example. This comparative example is the circuit described in Non-Patent Document 1. In this comparative example, the resolution is set to M bits, and M comparator sections and M capacitive sections are arranged in the ripple canceller. A differential pair of nMOS transistors and a switch transistor are arranged in each of the comparator sections, and four capacitances and six switches are arranged in each of the capacitive sections. Further, the capacity of the LSB and the size of the differential pair are the largest, and the capacity and the size are halved after the second bit.
 比較例では、スイッチの制御により、CDACのリップル成分を打ち消すことができる。しかし、ビットごとに4個の容量を配置する必要があり、分解能が高くなるほど、回路規模が大きくなってしまう。 In the comparative example, the ripple component of CDAC can be canceled by controlling the switch. However, it is necessary to arrange four capacitances for each bit, and the higher the resolution, the larger the circuit scale.
 また、比較例では、容量部内の容量の値が大きいほど、その容量の接続先のスイッチのオン抵抗を下げる必要がある。このため、スイッチをnMOSトランジスタで実現する場合、容量の値が大きいほど、そのトランジスタのサイズを大きくする必要がある。このnMOSトランジスタは、CDAC300に連動して駆動する必要があるが、nMOSトランジスタのサイズが大きくなるほど、駆動するための消費電力が増大するおそれがある。 Also, in the comparative example, the larger the value of the capacity in the capacity section, the lower the on-resistance of the switch to which the capacity is connected needs to be lowered. Therefore, when the switch is realized by an nMOS transistor, it is necessary to increase the size of the transistor as the capacitance value is larger. This nMOS transistor needs to be driven in conjunction with the CDAC 300, but as the size of the nMOS transistor increases, the power consumption for driving may increase.
 さらに、比較例では、分解能が高いほど、容量部とコンパレータ部とを接続する配線が多くなる。容量部のコモン電圧VCOMの接続先のスイッチが開状態の場合、各配線は、非常にハイインピーダンスとなる。このため、外乱の影響を受ける可能性がある。特に、容量部と差動対とが離れているほど、それらの間の配線を長距離に亘って引き回す必要があり、外乱の影響を受けやすくなる。 Furthermore, in the comparative example, the higher the resolution, the more wiring connecting the capacitance section and the comparator section. When the switch to which the common voltage VCOM of the capacitance portion is connected is in the open state, each wiring has a very high impedance. Therefore, it may be affected by disturbance. In particular, the farther the capacitive portion and the differential pair are, the more the wiring between them needs to be routed over a long distance, and the more easily it is affected by disturbance.
 これに対して、図6に例示したリップルキャンセラー500では、サイズの異なるM対のトランジスタ(正側トランジスタ539および負側トランジスタ540)のゲートを、正側共通容量513および負側共通容量514に共通に接続している。この構成では、分解能に関わらず、容量の個数が2個で済むため、比較例よりも回路規模を削減することができる。 On the other hand, in the ripple canceller 500 illustrated in FIG. 6, the gates of M pairs of transistors (positive side transistor 539 and negative side transistor 540) having different sizes are common to the positive side common capacitance 513 and the negative side common capacitance 514. Is connected to. In this configuration, the number of capacities is only two regardless of the resolution, so that the circuit scale can be reduced as compared with the comparative example.
 また、図6では、容量部内のトランジスタのドレイン側にスイッチ531乃至536を設けることにより、それらのスイッチのサイズを比較例よりも小さくすることができる。これにより、それらのスイッチの駆動するための消費電力を低減することができる。 Further, in FIG. 6, by providing switches 531 to 536 on the drain side of the transistor in the capacitance section, the size of those switches can be made smaller than that of the comparative example. This makes it possible to reduce the power consumption for driving those switches.
 さらに、図6では、分解能に関わらず、容量部とコンパレータ部との間の配線は3本でよいため、外乱の影響を比較例よりも抑制することができる。 Further, in FIG. 6, regardless of the resolution, only three wires are required between the capacitance section and the comparator section, so that the influence of disturbance can be suppressed more than in the comparative example.
 [SARADCの動作例]
 図10は、本技術の第1の実施の形態におけるSARADC200の動作の一例を示すタイミングチャートである。タイミングT0からT1までのサンプリング期間に亘って、サンプリングクロックCLKがハイレベルになる。この期間内に、CDAC300は、サンプリングされた差動信号を取り込んで保持する。
[Operation example of SARADC]
FIG. 10 is a timing chart showing an example of the operation of the SARADC200 according to the first embodiment of the present technique. The sampling clock CLK becomes a high level over the sampling period from the timing T0 to T1. Within this period, the CDAC 300 captures and retains the sampled differential signal.
 タイミングT1からタイミングT2までの期間内に、イネーブル信号En_Compに同期して、比較器400内の差動増幅回路420がM回の比較を行う。それらの比較結果に基づいて、SARロジック回路220は、制御信号Dac_pおよびDac_nをM回、更新する。 Within the period from timing T1 to timing T2, the differential amplifier circuit 420 in the comparator 400 performs M comparisons in synchronization with the enable signal En_Comp. Based on the comparison result, the SAR logic circuit 220 updates the control signals Dac_p and Dac_n M times.
 制御信号Dac_pおよびDac_nの更新に従って、CDAC300は、容量の接続先を、正側参照電圧VREFPおよび負側参照電圧VREFNの一方に切り替える。この際に、正側参照電圧VREFPや負側参照電圧VREFNにリップル成分が生じる。一方、リップルキャンセラー500内の正側信号線508および負側信号線509には、ΔおよびΔの成分が生じる。これらのΔおよびΔにより、CDAC300内で生じたリップル成分が除去される。 According to the update of the control signals Dac_p and Dac_n, the CDAC 300 switches the connection destination of the capacitance to one of the positive side reference voltage VREFP and the negative side reference voltage VREFN. At this time, a ripple component is generated in the positive side reference voltage VREFP and the negative side reference voltage VREFN. On the other hand, the positive signal line 508 and the negative signal line 509 in the ripple canceller 500 generate components of Δp and Δn . These Δp and Δn remove the ripple component generated in the CDAC300 .
 図11は、本技術の第1の実施の形態におけるSARADC200の全体図の一例である。差動信号がSARADC200に入力される場合、CDAC300は、SARロジック回路220からの制御信号に基づいてアナログの差動信号を生成し、比較器400に出力する。一方、シングルエンド信号がSARADC200に入力される場合、CDAC300は、アナログのシングルエンド信号を生成し、比較器400に出力する。このように、CDAC300は、一対のアナログ信号の少なくとも一方を生成して比較器400に出力する。なお、CDAC300は、特許請求の範囲に記載のデジタルアナログ変換器の一例である。 FIG. 11 is an example of an overall view of the SARADC200 according to the first embodiment of the present technology. When the differential signal is input to the SARADC 200, the CDAC 300 generates an analog differential signal based on the control signal from the SAR logic circuit 220 and outputs it to the comparator 400. On the other hand, when the single-ended signal is input to the SARADC 200, the CDAC 300 generates an analog single-ended signal and outputs it to the comparator 400. In this way, the CDAC 300 generates at least one of the pair of analog signals and outputs it to the comparator 400. The CDAC300 is an example of the digital-to-analog converter described in the claims.
 比較器400は、入力された差動信号を比較し、比較結果を生成する。ラッチ回路430は、その比較結果を保持し、SARロジック回路220に供給する。SARロジック回路220は、その比較結果に基づいて制御信号を生成し、CDAC300とコンパレータ部521等とに供給する。なお、SARロジック回路220は、特許請求の範囲に記載のロジック回路の一例である。 The comparator 400 compares the input differential signals and generates a comparison result. The latch circuit 430 holds the comparison result and supplies it to the SAR logic circuit 220. The SAR logic circuit 220 generates a control signal based on the comparison result and supplies the control signal to the CDAC 300 and the comparator unit 521 and the like. The SAR logic circuit 220 is an example of the logic circuit described in the claims.
 リップルキャンセラー500において、正側共通容量513の一端が正側参照電圧VREFPのノードに接続され、負側共通容量514の一端が負側参照電圧VREFNのノードに接続される。 In the ripple canceller 500, one end of the positive side common capacitance 513 is connected to the node of the positive side reference voltage VREFP, and one end of the negative side common capacitance 514 is connected to the node of the negative side reference voltage VREFN.
 サンプリングスイッチ511および512は、サンプリングクロックCLKに同期して、正側共通容量513および負側共通容量514のそれぞれの他端と、コモン電圧VCOMのノードとの間の経路を開閉する。 The sampling switches 511 and 512 open and close the path between the other ends of the positive side common capacity 513 and the negative side common capacity 514 and the node of the common voltage VCOM in synchronization with the sampling clock CLK.
 また、サイズの異なるM個の正側トランジスタ539のそれぞれのゲートは、正側信号線508を介して正側共通容量513に共通に接続される。サイズの異なるM個の負側トランジスタ540のそれぞれのゲートは、負側信号線509を介して負側共通容量514に共通に接続される。 Further, each gate of the M positive transistors 539 having different sizes is commonly connected to the positive common capacitance 513 via the positive signal line 508. Each gate of the M negative transistors 540 of different sizes is commonly connected to the negative common capacitance 514 via the negative signal line 509.
 サイズの異なるM対のコモン側トランジスタのそれぞれのゲートは、コモン電圧VCOMのノードに共通に接続される。 Each gate of M pairs of common side transistors of different sizes is commonly connected to a node with a common voltage VCOM.
 スイッチ531乃至536は、制御信号に基づいて、コモン側トランジスタなどのトランジスタのそれぞれのドレインと、比較器400の出力端子との間の経路を開閉する。 The switches 531 to 536 open and close the path between the drain of each transistor such as the common side transistor and the output terminal of the comparator 400 based on the control signal.
 このように、本技術の第1の実施の形態によれば、M個のコンパレータ部を正側共通容量513および負側共通容量514に共通に接続したため、ビットごとに複数の容量を配置する場合と比較して回路規模を削減することができる。 As described above, according to the first embodiment of the present technology, since M comparator units are commonly connected to the positive side common capacity 513 and the negative side common capacity 514, a plurality of capacities are arranged for each bit. The circuit scale can be reduced as compared with.
 <2.第2の実施の形態>
 上述の第1の実施の形態では、リップルキャンセラー500内のサンプリングスイッチ511および512は、サンプリング期間内にサンプリングを行っていた。これらのサンプリングスイッチ511および512は、リップルの無い安定した電圧状態でサンプリングすることが好ましい。この第2の実施の形態のSARADC200は、変換の終了からサンプリング開始までの期間内にサンプリングスイッチ511および512がサンプリングを行う点において第1の実施の形態と異なる。
<2. Second Embodiment>
In the first embodiment described above, the sampling switches 511 and 512 in the ripple canceller 500 performed sampling within the sampling period. It is preferable that these sampling switches 511 and 512 sample in a stable voltage state without ripple. The SARADC200 of the second embodiment is different from the first embodiment in that the sampling switches 511 and 512 perform sampling within the period from the end of conversion to the start of sampling.
 図12は、本技術の第2の実施の形態におけるSARADC200の全体図の一例である。この第2の実施の形態のSARADC200は、サンプリングスイッチ511および512がSARロジック回路220からの比較完了フラグConv_Endに従って開閉する点において第1の実施の形態と異なる。 FIG. 12 is an example of an overall view of the SARADC200 according to the second embodiment of the present technology. The SARADC200 of the second embodiment differs from the first embodiment in that the sampling switches 511 and 512 open and close according to the comparison completion flag Conv_End from the SAR logic circuit 220.
 第2の実施の形態のSARロジック回路220は、AD(Analog to Digital)変換の終了時から、サンプリングの開始時までの期間内に比較完了フラグConv_Endによりサンプリングスイッチ511および512を閉状態にする。 The SAR logic circuit 220 of the second embodiment closes the sampling switches 511 and 512 by the comparison completion flag Conv_End within the period from the end of AD (Analog to Digital) conversion to the start of sampling.
 図13は、本技術の第2の実施の形態におけるSARADC200の動作の一例を示すタイミングチャートである。第2の実施の形態のSARロジック回路220は、AD変換の終了時のタイミングT11から、次のサンプリングの開始時のタイミングT12までの期間内にハイレベルの比較完了フラグConv_Endを供給する。 FIG. 13 is a timing chart showing an example of the operation of the SARADC200 in the second embodiment of the present technology. The SAR logic circuit 220 of the second embodiment supplies a high-level comparison completion flag Conv_End within the period from the timing T11 at the end of the AD conversion to the timing T12 at the start of the next sampling.
 ハイレベルの比較完了フラグConv_Endに従って、サンプリングスイッチ511および512は閉状態に移行し、サンプリングを行う。 According to the high-level comparison completion flag Conv_End, the sampling switches 511 and 512 shift to the closed state and perform sampling.
 SARADC200によっては、サンプリング期間よりも、AD変換の終了時からサンプリングの開始時までの期間の方が電圧状態が安定していることがある。この場合に、同図の制御を行うことにより、リップルの影響を低減することができる。 Depending on the SARADC200, the voltage state may be more stable during the period from the end of AD conversion to the start of sampling than the sampling period. In this case, the influence of ripple can be reduced by performing the control shown in the figure.
 このように、本技術の第2の実施の形態によれば、AD変換の終了時からサンプリングの開始時までの期間内にサンプリングスイッチ511および512が閉状態に移行するため、電圧状態が安定している際にサンプリングを行うことができる。 As described above, according to the second embodiment of the present technique, the sampling switches 511 and 512 shift to the closed state within the period from the end of the AD conversion to the start of sampling, so that the voltage state becomes stable. You can sample while you are.
 <3.第3の実施の形態>
 上述の第1の実施の形態では、差動増幅回路420やリップルキャンセラー500にnMOSトランジスタの差動対を配置していたが、それらの代わりにpMOSトランジスタの差動対を配置することもできる。この第3の実施の形態のSARADC200は、nMOSトランジスタの差動対の代わりにpMOSトランジスタの差動対を配置した点において第1の実施の形態と異なる。
<3. Third Embodiment>
In the first embodiment described above, the differential pair of the nMOS transistor is arranged in the differential amplifier circuit 420 or the ripple canceller 500, but the differential pair of the pMOS transistor can be arranged instead of them. The SARADC200 of the third embodiment is different from the first embodiment in that the differential pair of the pMOS transistor is arranged instead of the differential pair of the nMOS transistor.
 図14は、本技術の第3の実施の形態における差動増幅回路460の一構成例を示す回路図である。この第3の実施の形態の差動増幅回路460は、pMOSトランジスタ461乃至463と、nMOSトランジスタ464および465とを備える。差動増幅回路460の回路構成は、それぞれのトランジスタの極性が逆である点以外は、図4に例示した差動増幅回路420と同様である。第4の実施の形態では、差動増幅回路460は、イネーブル信号En_Compがハイレベルからローレベルに変化した際に比較動作を開始する。また、差動増幅回路460の正側入力端子の前段にインバータ450が挿入される。 FIG. 14 is a circuit diagram showing a configuration example of the differential amplifier circuit 460 according to the third embodiment of the present technology. The differential amplifier circuit 460 of the third embodiment includes pMOS transistors 461 to 463 and nMOS transistors 464 and 465. The circuit configuration of the differential amplifier circuit 460 is the same as that of the differential amplifier circuit 420 illustrated in FIG. 4, except that the polarities of the respective transistors are opposite to each other. In the fourth embodiment, the differential amplifier circuit 460 starts the comparison operation when the enable signal En_Comp changes from the high level to the low level. Further, the inverter 450 is inserted in front of the positive input terminal of the differential amplifier circuit 460.
 図15は、本技術の第3の実施の形態におけるラッチ回路470の一構成例を示す回路図である。この第3の実施の形態のラッチ回路470は、pMOSトランジスタ471乃至476と、nMOSトランジスタ477乃至480とを備える。ラッチ回路470の回路構成は、それぞれのトランジスタの極性が逆である点以外は、図13に例示したラッチ回路430と同様である。 FIG. 15 is a circuit diagram showing a configuration example of the latch circuit 470 according to the third embodiment of the present technology. The latch circuit 470 of the third embodiment includes pMOS transistors 471 to 476 and nMOS transistors 477 to 480. The circuit configuration of the latch circuit 470 is the same as that of the latch circuit 430 illustrated in FIG. 13, except that the polarities of the respective transistors are opposite to each other.
 図16は、本技術の第3の実施の形態におけるリップルキャンセラー500の一構成例を示す回路図である。この第3の実施の形態のリップルキャンセラー500は、コンパレータ部521内において、スイッチトランジスタ551と、コモン側トランジスタ552および553と、正側トランジスタ554と、負側トランジスタ555と、スイッチ531乃至536とを備える。これらのトランジスタとして、pMOSトランジスタが用いられる。コンパレータ部522以降のコンパレータ部についても同様である。 FIG. 16 is a circuit diagram showing a configuration example of the ripple canceller 500 according to the third embodiment of the present technology. The ripple canceller 500 of the third embodiment has a switch transistor 551, common side transistors 552 and 552, a positive side transistor 554, a negative side transistor 555, and switches 531 to 536 in the comparator section 521. Be prepared. As these transistors, pMOS transistors are used. The same applies to the comparator section after the comparator section 522.
 なお、第3の実施の形態に第2の実施の形態を適用することもできる。 It should be noted that the second embodiment can be applied to the third embodiment.
 このように、本技術の第3の実施の形態によれば、nMOSトランジスタの差動対の代わりにpMOSトランジスタの差動対を用いたため、イネーブル信号En_Compがハイレベルからローレベルに変化した際に比較器400が比較動作を開始する。 As described above, according to the third embodiment of the present technique, since the differential pair of the pMOS transistor is used instead of the differential pair of the nMOS transistor, when the enable signal En_Comp changes from the high level to the low level. The comparator 400 starts the comparison operation.
 <4.第4の実施の形態>
 上述の第1の実施の形態では、リップルキャンセラー500内に参照電圧(VREFPおよびVREFN)に加えて、コモン電圧VCOMを供給していたが、この構成では、コモン電圧VCOMを生成する回路が必要となる。また、SARADC200の入力コモン電圧と、VCOMとが異なる場合、リップルのキャンセル効果が低減するおそれがある。この第4の実施の形態のSARADC200は、リップルキャンセラー500へのコモン電圧VCOMの供給を不要とした点において第1の実施の形態と異なる。
<4. Fourth Embodiment>
In the first embodiment described above, the common voltage VCOM is supplied in the ripple canceller 500 in addition to the reference voltage (VREFP and VREFN), but this configuration requires a circuit to generate the common voltage VCOM. Become. Further, when the input common voltage of the SARADC200 and the VCOM are different, the ripple canceling effect may be reduced. The SARADC 200 of the fourth embodiment is different from the first embodiment in that the supply of the common voltage VCOM to the ripple canceller 500 is not required.
 図17は、本技術の第4の実施の形態におけるリップルキャンセラー500の一構成例を示す回路図である。この第4の実施の形態のリップルキャンセラー500は、容量部510内に、正側共通容量611および612と、サンプリングスイッチ613乃至616と、負側共通容量617および618とを備える。 FIG. 17 is a circuit diagram showing a configuration example of the ripple canceller 500 according to the fourth embodiment of the present technology. The ripple canceller 500 of the fourth embodiment includes positive side common capacities 611 and 612, sampling switches 613 to 616, and negative side common capacities 617 and 618 in the capacitance unit 510.
 正側共通容量611および612のそれぞれの一端は、正側参照電圧VREFPのノードに共通に接続される。これらの正側共通容量611および612のそれぞれの容量値は、第1の実施の形態の正側共通容量513の半分に設定される。なお、正側共通容量611および612は、特許請求の範囲に記載の第1正側共通容量および第2正側共通容量の一例である。 One end of each of the positive side common capacities 611 and 612 is commonly connected to the node of the positive side reference voltage VREFP. The respective capacity values of these positive side common capacities 611 and 612 are set to half of the positive side common capacities 513 of the first embodiment. The positive side common capacities 611 and 612 are examples of the first positive side common capacity and the second positive side common capacity described in the claims.
 サンプリングスイッチ613は、サンプリングクロックCLKに同期して、正側共通容量611の他端と、サンプリングスイッチ615との間の経路を開閉するものである。サンプリングスイッチ614は、サンプリングクロックCLKに同期して、正側共通容量612の他端と、サンプリングスイッチ616との間の経路を開閉するものである。 The sampling switch 613 opens and closes the path between the other end of the common capacitance 611 on the positive side and the sampling switch 615 in synchronization with the sampling clock CLK. The sampling switch 614 opens and closes the path between the other end of the positive common capacitance 612 and the sampling switch 616 in synchronization with the sampling clock CLK.
 負側共通容量617および618のそれぞれの一端は、負側参照電圧VREFNのノードに共通に接続される。これらの負側共通容量617および618のそれぞれの容量値は、第1の実施の形態の負側共通容量514の半分に設定される。なお、負側共通容量617および618は、特許請求の範囲に記載の第1負側共通容量および第2負側共通容量の一例である。 One end of each of the negative side common capacities 617 and 618 is commonly connected to the node of the negative side reference voltage VREFN. The respective capacity values of these negative side common capacities 617 and 618 are set to half of the negative side common capacities 514 of the first embodiment. The negative side common capacities 617 and 618 are examples of the first negative side common capacity and the second negative side common capacity described in the claims.
 サンプリングスイッチ615は、サンプリングクロックCLKに同期して、負側共通容量617の他端と、サンプリングスイッチ613との間の経路を開閉するものである。サンプリングスイッチ616は、サンプリングクロックCLKに同期して、負側共通容量618の他端と、サンプリングスイッチ614との間の経路を開閉するものである。 The sampling switch 615 opens and closes the path between the other end of the negative common capacitance 617 and the sampling switch 613 in synchronization with the sampling clock CLK. The sampling switch 616 opens and closes the path between the other end of the negative common capacitance 618 and the sampling switch 614 in synchronization with the sampling clock CLK.
 また、正側共通容量611およびサンプリングスイッチ613の接続ノードは、正側信号線501に接続され、正側共通容量612およびサンプリングスイッチ614の接続ノードは、正側信号線502に接続される。 Further, the connection node of the positive side common capacitance 611 and the sampling switch 613 is connected to the positive side signal line 501, and the connection node of the positive side common capacitance 612 and the sampling switch 614 is connected to the positive side signal line 502.
 また、サンプリングスイッチ613および615の接続ノードは、共通信号線503に接続され、サンプリングスイッチ614および616の接続ノードは、共通信号線504に接続される。共通信号線503は、比較器400の正側入力端子(すなわち、CDAC300の正側出力端子)に接続され、Vcdac_pが供給される。共通信号線504は、比較器400の負側入力端子(すなわち、CDAC300の負側出力端子)に接続され、Vcdac_nが供給される。 Further, the connection nodes of the sampling switches 613 and 615 are connected to the common signal line 503, and the connection nodes of the sampling switches 614 and 616 are connected to the common signal line 504. The common signal line 503 is connected to the positive input terminal of the comparator 400 (that is, the positive output terminal of the CDAC 300), and Vcdac_p is supplied. The common signal line 504 is connected to the negative input terminal of the comparator 400 (that is, the negative output terminal of the CDAC 300), and Vcdac_n is supplied.
 また、負側共通容量617およびサンプリングスイッチ615の接続ノードは、負側信号線505に接続され、負側共通容量618およびサンプリングスイッチ616の接続ノードは、負側信号線506に接続される。 Further, the connection node of the negative side common capacity 617 and the sampling switch 615 is connected to the negative side signal line 505, and the connection node of the negative side common capacity 618 and the sampling switch 616 is connected to the negative side signal line 506.
 図18は、本技術の第4の実施の形態におけるコンパレータ部521の一構成例を示す回路図である。この第4の実施の形態のコンパレータ部521には、コモン側トランジスタ537および538の代わりに、コモン側トランジスタ621乃至624が配置される。また、正側トランジスタ539の代わりに正側トランジスタ625および626が配置され、負側トランジスタ540の代わりに負側トランジスタ627および628が配置される。第5の実施の形態のトランジスタのそれぞれのサイズは、第1の実施の形態の半分に設定される。コンパレータ部521、522、523、524および525のそれぞれのトランジスタのサイズは、「8」、「4」、「2」、「1」および「1/2」に設定される。 FIG. 18 is a circuit diagram showing a configuration example of the comparator section 521 according to the fourth embodiment of the present technology. In the comparator section 521 of the fourth embodiment, the common side transistors 621 to 624 are arranged in place of the common side transistors 537 and 538. Further, the positive transistor 625 and 626 are arranged in place of the positive transistor 539, and the negative transistors 627 and 628 are arranged in place of the negative transistor 540. The size of each of the transistors in the fifth embodiment is set to half that of the first embodiment. The size of each transistor of the comparator section 521, 522, 523, 524 and 525 is set to "8", "4", "2", "1" and "1/2".
 また、コモン側トランジスタ621および622のドレインは、スイッチ531に接続され、それらのゲートは、共通信号線503に接続される。コモン側トランジスタ623および624のドレインは、スイッチ532に接続され、それらのゲートは、共通信号線504に接続される。 Further, the drains of the common side transistors 621 and 622 are connected to the switch 531 and their gates are connected to the common signal line 503. The drains of the common side transistors 623 and 624 are connected to the switch 532, and their gates are connected to the common signal line 504.
 なお、コモン側トランジスタ621および622は、特許請求の範囲に記載の第1コモン側トランジスタの一例であり、コモン側トランジスタ623および624は、特許請求の範囲に記載の第2コモン側トランジスタの一例である。 The common- side transistors 621 and 622 are examples of the first common-side transistor described in the claims, and the common- side transistors 623 and 624 are examples of the second common-side transistors described in the claims. be.
 正側トランジスタ625および626のドレインは、スイッチ533および534の両方に接続される。正側トランジスタ625のゲートは、正側信号線501に接続され、正側トランジスタ626のゲートは、正側信号線502に接続される。なお、正側トランジスタ625および626は、特許請求の範囲に記載の第1正側トランジスタおよび第2正側トランジスタの一例である。 The drains of the positive transistors 625 and 626 are connected to both switches 533 and 534. The gate of the positive transistor 625 is connected to the positive signal line 501, and the gate of the positive transistor 626 is connected to the positive signal line 502. The positive transistor 625 and 626 are examples of the first positive transistor and the second positive transistor described in the claims.
 負側トランジスタ627および628のドレインは、スイッチ535および536の両方に接続される。負側トランジスタ627のゲートは、負側信号線505に接続され、負側トランジスタ628のゲートは、負側信号線506に接続される。なお、負側トランジスタ627および628は、特許請求の範囲に記載の第1負側トランジスタおよび第2負側トランジスタの一例である。 The drains of the negative transistors 627 and 628 are connected to both switches 535 and 536. The gate of the negative transistor 627 is connected to the negative signal line 505, and the gate of the negative transistor 628 is connected to the negative signal line 506. The negative transistor 627 and 628 are examples of the first negative transistor and the second negative transistor described in the claims.
 コモン側のスイッチ531および532が閉状態の場合、コモン側の4つのトランジスタは放電動作を行う。8/32(=1/4)のサイズのトランジスタのトランスコンダクタンスを1/4×gとすると、スイッチ531および532に流れる電流Iは次の式で表される。
  I=(g/4)×(Vcdac_p+Vcdac_n
    =(g/2)×(Vcdac_com)        ・・・式3
When the switches 531 and 532 on the common side are in the closed state, the four transistors on the common side perform a discharge operation. Assuming that the transconductance of a transistor having a size of 8/32 (= 1/4) is 1/4 × gm , the current Ic flowing through the switches 531 and 532 is expressed by the following equation.
I c = (g m / 4) × (V cdac_p + V cdac_n )
= ( Gm / 2) × (V cdac_com )・ ・ ・ Equation 3
 ここで、Vcdac_comは、差動信号であるVcadc_pとVcadc_nのコモン電圧に等しい。仮に、Vcdac_com=VCOMであるならば、Iは第1の実施の形態のコモン側トランジスタ537および538が流そうとする電流と同じになる。このように、コモン電圧VCOMがない場合でも、第1の実施の形態と同等の電流を流すことが可能となり、所望の回路動作が実現できる。 Here, V cdac_com is equal to the common voltage of V cadc_p and V cadc_n , which are differential signals. If V cdac_com = VCOM, then Ic is the same as the current that the common side transistors 537 and 538 of the first embodiment try to pass. As described above, even when there is no common voltage VCOM, it is possible to pass a current equivalent to that of the first embodiment, and a desired circuit operation can be realized.
 一方、スイッチ533および534の一方と、スイッチ535および536の一方とが閉状態の場合も、比較動作するタイミングで、これらの接続先のトランジスタは放電動作を行う。このとき、ドレイン側のスイッチに流れる電流はそれぞれ次の式により表される。
  I=(g/4)×(Vcdac_p+Vcdac_n+2×Δ
    =(g/2)×(Vcdac_com+Δ)     ・・・式4
  I=(g/4)×(Vcdac_p+Vcdac_n+2×Δ
    =(g/2)×(Vcdac_com+Δ)     ・・・式5
On the other hand, even when one of the switches 533 and 534 and one of the switches 535 and 536 are in the closed state, the transistors to which they are connected perform the discharge operation at the timing of the comparative operation. At this time, the current flowing through the switch on the drain side is expressed by the following equations.
I p = (g m / 4) × (V cdac_p + V cdac_n + 2 × Δ p )
= ( Gm / 2) × (V cdac_com + Δ p ) ・ ・ ・ Equation 4
In = (g m / 4) × (V cdac_p + V cdac_n + 2 × Δ n )
= ( Gm / 2) × (V cdac_com + Δ n ) ・ ・ ・ Equation 5
 式4および式5のΔおよびΔは、それぞれ、正側参照電圧VREFPおよび負側参照電圧VREFNに発生するリップル成分である。仮に、Vcdac_com=VCOMであるならば、電流IおよびIは第1の実施の形態の正側トランジスタおよび負側トランジスタが流そうとする電流と同じになる。このように、コモン電圧VCOMがない場合でも、第1の実施の形態と同等の電流を流すことが可能となり、所望の回路動作が実現できる。 Δp and Δn of Equations 4 and 5 are ripple components generated in the positive reference voltage VREFP and the negative reference voltage VREFN , respectively. If V cdac_com = VCOM, the currents Ic and In are the same as the currents that the positive and negative transistors of the first embodiment try to flow. As described above, even when there is no common voltage VCOM, it is possible to pass a current equivalent to that of the first embodiment, and a desired circuit operation can be realized.
 なお、第4の実施の形態に、第2、第3の実施の形態を適用することもできる。 It should be noted that the second and third embodiments can be applied to the fourth embodiment.
 このように、本技術の第4の実施の形態によれば、トランジスタのそれぞれをサイズが半分の2つに分離し、容量のそれぞれを容量値が半分の2つに分離して、第1の実施の形態と同等の電流を生成するため、コモン電圧VCOMが不要となる。 Thus, according to the fourth embodiment of the present technique, each of the transistors is separated into two halves in size, and each of the capacitances is separated into two halves in capacitance value. Since the current equivalent to that of the embodiment is generated, the common voltage VCOM becomes unnecessary.
 <5.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<5. Application example to mobile>
The technique according to the present disclosure (the present technique) can be applied to various products. For example, the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
 図19は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 19 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図19に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001. In the example shown in FIG. 19, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050. Further, as a functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 has a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, turn signals or fog lamps. In this case, the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches. The body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000. For example, the image pickup unit 12031 is connected to the vehicle outside information detection unit 12030. The vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image. The out-of-vehicle information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The image pickup unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received. The image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the image pickup unit 12031 may be visible light or invisible light such as infrared light.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects the in-vehicle information. For example, a driver state detection unit 12041 that detects a driver's state is connected to the vehicle interior information detection unit 12040. The driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether or not the driver has fallen asleep.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit. A control command can be output to 12010. For example, the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 controls the driving force generating device, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040, so that the driver can control the driver. It is possible to perform coordinated control for the purpose of automatic driving that runs autonomously without depending on the operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Further, the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle outside information detection unit 12030. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図19の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio image output unit 12052 transmits an output signal of at least one of audio and an image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle. In the example of FIG. 19, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices. The display unit 12062 may include, for example, at least one of an onboard display and a head-up display.
 図20は、撮像部12031の設置位置の例を示す図である。 FIG. 20 is a diagram showing an example of the installation position of the image pickup unit 12031.
 図20では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 20, as the image pickup unit 12031, the image pickup unit 12101, 12102, 12103, 12104, 12105 is provided.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The image pickup units 12101, 12102, 12103, 12104, 12105 are provided, for example, at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100. The image pickup unit 12101 provided on the front nose and the image pickup section 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100. The image pickup units 12102 and 12103 provided in the side mirror mainly acquire images of the side of the vehicle 12100. The image pickup unit 12104 provided in the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100. The image pickup unit 12105 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図20には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 20 shows an example of the shooting range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, the imaging ranges 12112 and 12113 indicate the imaging range of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and the imaging range 12114 indicates the imaging range. The imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the image pickup units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the image pickup units 12101 to 12104 may be a stereo camera including a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051 has a distance to each three-dimensional object within the image pickup range 12111 to 12114 based on the distance information obtained from the image pickup unit 12101 to 12104, and a temporal change of this distance (relative speed with respect to the vehicle 12100). By obtaining can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like that autonomously travels without relying on the driver's operation.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, electric poles, and other three-dimensional objects based on the distance information obtained from the image pickup units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the image pickup units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging unit 12101 to 12104. Such recognition of a pedestrian is, for example, a procedure for extracting feature points in an image captured by an image pickup unit 12101 to 12104 as an infrared camera, and pattern matching processing is performed on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine. When the microcomputer 12051 determines that a pedestrian is present in the captured image of the image pickup unit 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 determines the square contour line for emphasizing the recognized pedestrian. The display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用され得る。具体的には、図1の電子機器100は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、その回路規模を削減することができる。 The above is an example of a vehicle control system to which the technique according to the present disclosure can be applied. The technique according to the present disclosure can be applied to, for example, the image pickup unit 12031 among the configurations described above. Specifically, the electronic device 100 of FIG. 1 can be applied to the image pickup unit 12031. By applying the technique according to the present disclosure to the image pickup unit 12031, the circuit scale thereof can be reduced.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 It should be noted that the above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the matters specifying the invention within the scope of claims have a corresponding relationship with each other. Similarly, the matters specifying the invention within the scope of claims and the matters in the embodiment of the present technology having the same name have a corresponding relationship with each other. However, the present technique is not limited to the embodiment, and can be embodied by applying various modifications to the embodiment without departing from the gist thereof.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 It should be noted that the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 なお、本技術は以下のような構成もとることができる。
(1)所定の制御信号に従って一対のアナログ信号の少なくとも一方を生成するデジタルアナログ変換器と、
 前記一対のアナログ信号を比較して比較結果を生成して出力する比較器と、
 前記比較結果に基づいて前記制御信号を生成するロジック回路と、
 サイズの異なる複数の正側トランジスタと、
 サイズの異なる複数の負側トランジスタと、
 前記複数の正側トランジスタと前記複数の負側トランジスタとのそれぞれのソースおよびドレインの一方と前記比較器の出力端子との間の経路を前記制御信号に基づいて開閉する複数のスイッチと、
 所定の正側参照電圧のノードに一端が接続され、前記複数の正側トランジスタのそれぞれのゲートに共通に他端が接続された正側共通容量と、
 前記正側参照電圧より低い負側参照電圧のノードに一端が接続され、前記複数の負側トランジスタのそれぞれのゲートに共通に他端が接続された負側共通容量と
を具備するアナログデジタル変換器。
(2)前記一対のアナログ信号は、差動信号であり、
 前記デジタルアナログ変換器は、前記差動信号を生成する
前記(1)記載のアナログデジタル変換器。
(3)前記正側共通容量および前記負側共通容量のそれぞれの前記他端と前記正側参照電圧および前記負側参照電圧の間のコモン電圧との間の経路を開閉するサンプリングスイッチをさらに具備する前記(1)または(2)に記載のアナログデジタル変換器。
(4)前記サンプリングスイッチは、所定のサンプリング期間内に閉状態に移行する
前記(3)記載のアナログデジタル変換器。
(5)前記サンプリングスイッチは、アナログデジタル変換の終了時からサンプリングの開始時までの期間内に閉状態に移行する
前記(3)記載のアナログデジタル変換器。
(6)前記比較結果を保持して前記ロジック回路に供給するラッチ回路をさらに具備する前記(1)から(5)のいずれかに記載のアナログデジタル変換器。
(7)前記複数の正側トランジスタと前記複数の負側トランジスタとのそれぞれは、nMOSトランジスタである
前記(1)から(6)のいずれかに記載のアナログデジタル変換器。
(8)前記複数の正側トランジスタと前記複数の負側トランジスタとのそれぞれは、pMOSトランジスタである
前記(1)から(6)のいずれかに記載のアナログデジタル変換器。
(9)サイズの異なる複数対のコモン側トランジスタをさらに具備し、
 前記複数対のコモン側トランジスタのそれぞれのゲートは、前記正側参照電圧および前記負側参照電圧の間のコモン電圧のノードに接続される
前記(1)から(8)のいずれかに記載のアナログデジタル変換器。
(10)サイズの異なる複数対の第1コモン側トランジスタと、
 サイズの異なる複数対の第2コモン側トランジスタと
をさらに具備し、
 前記正側共通容量は、第1正側共通容量および第2正側共通容量を含み、
 前記負側共通容量は、第1負側共通容量および第2負側共通容量を含み、
 前記複数の正側トランジスタは、
 サイズの異なる複数の第1正側トランジスタと、
 サイズの異なる複数の第2正側トランジスタと
を含み、
 前記複数の負側トランジスタは、
 サイズの異なる複数の第1負側トランジスタと、
 サイズの異なる複数の第2負側トランジスタと
を含み、
 前記複数の第1正側トランジスタのそれぞれのゲートは、前記第1正側共通容量に共通に接続され、
 前記複数の第2正側トランジスタのそれぞれのゲートは、前記第2正側共通容量に共通に接続され、
 前記複数の第1負側トランジスタのそれぞれのゲートは、前記第1負側共通容量に共通に接続され、
 前記複数の第2負側トランジスタのそれぞれのゲートは、前記第2負側共通容量に共通に接続される
前記(1)から(8)のいずれかに記載のアナログデジタル変換器。
(11)所定の制御信号に従って一対のアナログ信号の少なくとも一方を生成するデジタルアナログ変換器と、
 前記一対のアナログ信号を比較して比較結果を生成して出力する比較器と、
 前記比較結果に基づいて前記制御信号を生成するとともにデジタル信号を出力するロジック回路と、
 サイズの異なる複数の正側トランジスタと、
 サイズの異なる複数の負側トランジスタと、
 前記複数の正側トランジスタと前記複数の負側トランジスタとのそれぞれのソースおよびドレインの一方と前記比較器の出力端子との間の経路を前記制御信号に基づいて開閉する複数のスイッチと、
 所定の正側参照電圧のノードに一端が接続され、前記複数の正側トランジスタのそれぞれのゲートに共通に他端が接続された正側共通容量と、
 前記正側参照電圧より低い負側参照電圧のノードに一端が接続され、前記複数の負側トランジスタのそれぞれのゲートに共通に他端が接続された負側共通容量と、
 前記デジタル信号を処理するデジタル信号処理回路と
を具備する電子機器。
The present technology can have the following configurations.
(1) A digital-to-analog converter that generates at least one of a pair of analog signals according to a predetermined control signal.
A comparator that compares the pair of analog signals, generates a comparison result, and outputs the comparison result.
A logic circuit that generates the control signal based on the comparison result,
With multiple positive transistors of different sizes,
With multiple negative transistors of different sizes,
A plurality of switches that open and close the path between one of the sources and drains of the plurality of positive transistors and the plurality of negative transistors and the output terminal of the comparator based on the control signal.
A positive common capacitance with one end connected to a node with a predetermined positive reference voltage and the other end connected to the gates of each of the plurality of positive transistors.
An analog-to-digital converter having one end connected to a node having a negative reference voltage lower than the positive reference voltage and the other end connected in common to each gate of the plurality of negative transistors. ..
(2) The pair of analog signals are differential signals.
The digital-to-analog converter is the analog-to-digital converter according to (1) above, which generates the differential signal.
(3) Further provided with a sampling switch that opens and closes a path between the other end of each of the positive side common capacitance and the negative side common capacitance and the common voltage between the positive side reference voltage and the negative side reference voltage. The analog-to-digital converter according to (1) or (2) above.
(4) The analog-to-digital converter according to (3) above, wherein the sampling switch shifts to a closed state within a predetermined sampling period.
(5) The analog-digital converter according to (3) above, wherein the sampling switch shifts to a closed state within a period from the end of analog-digital conversion to the start of sampling.
(6) The analog-to-digital converter according to any one of (1) to (5) above, further comprising a latch circuit that holds the comparison result and supplies the logic circuit.
(7) The analog-to-digital converter according to any one of (1) to (6) above, wherein each of the plurality of positive side transistors and the plurality of negative side transistors is an nMOS transistor.
(8) The analog-to-digital converter according to any one of (1) to (6) above, wherein each of the plurality of positive side transistors and the plurality of negative side transistors is a pMOS transistor.
(9) A plurality of pairs of common-side transistors having different sizes are further provided.
The analog according to any one of (1) to (8) above, wherein each gate of the plurality of pairs of common side transistors is connected to a node having a common voltage between the positive side reference voltage and the negative side reference voltage. Digital converter.
(10) Multiple pairs of first common side transistors of different sizes,
Further equipped with a plurality of pairs of second common side transistors of different sizes,
The positive side common capacity includes a first positive side common capacity and a second positive side common capacity.
The negative side common capacity includes a first negative side common capacity and a second negative side common capacity.
The plurality of positive transistors are
Multiple first positive transistors of different sizes,
Includes multiple second positive transistors of different sizes
The plurality of negative transistors are
Multiple first negative transistors of different sizes,
Includes multiple second negative transistors of different sizes
Each gate of the plurality of first positive transistor is connected in common to the common capacitance on the first positive side.
Each gate of the plurality of second positive transistors is commonly connected to the second positive common capacitance.
Each gate of the plurality of first negative transistors is commonly connected to the first negative common capacitance.
The analog-to-digital converter according to any one of (1) to (8), wherein each gate of the plurality of second negative transistors is commonly connected to the second negative common capacitance.
(11) A digital-to-analog converter that generates at least one of a pair of analog signals according to a predetermined control signal.
A comparator that compares the pair of analog signals, generates a comparison result, and outputs the comparison result.
A logic circuit that generates the control signal and outputs a digital signal based on the comparison result,
With multiple positive transistors of different sizes,
With multiple negative transistors of different sizes,
A plurality of switches that open and close the path between one of the sources and drains of the plurality of positive transistors and the plurality of negative transistors and the output terminal of the comparator based on the control signal.
A positive common capacitance with one end connected to a node with a predetermined positive reference voltage and the other end connected to the gates of each of the plurality of positive transistors.
A negative-side common capacitance having one end connected to a node having a negative reference voltage lower than the positive-side reference voltage and the other end connected to each gate of the plurality of negative-side transistors.
An electronic device including a digital signal processing circuit for processing the digital signal.
 100 電子機器
 110 アナログ信号生成部
 120 デジタル信号処理部
 200 SARADC
 211、212、511、512、613~616 サンプリングスイッチ
 220 SARロジック回路
 300 CDAC
 311~316 正側容量
 317~322 負側容量
 330 正側切替部
 331~336 正側切替回路
 340 負側切替部
 341~346 負側切替回路
 351~353、531~536 スイッチ
 400 比較器
 410 イネーブル制御部
 411 インバータ
 412 NOR(否定論理和)ゲート
 413 AND(論理積)ゲート
 420、460 差動増幅回路
 421、422、431~434、461~463、471~476 pMOSトランジスタ
 423~425、435~440、464、465、477~480 nMOSトランジスタ
 430、470 ラッチ回路
 500 リップルキャンセラー
 510 容量部
 513、611、612 正側共通容量
 514、617、618 負側共通容量
 521~525 コンパレータ部
 537、538、552、553、621~624 コモン側トランジスタ
 539、554、625、626 正側トランジスタ
 540、555、627、628 負側トランジスタ
 541、551 スイッチトランジスタ
 12031 撮像部
100 Electronic equipment 110 Analog signal generator 120 Digital signal processor 200 SARADC
211, 212, 511, 512, 613-616 Sampling switch 220 SAR logic circuit 300 CDAC
311 to 316 Positive side capacity 317 to 322 Negative side capacity 330 Positive side switching unit 331 to 336 Positive side switching circuit 340 Negative side switching unit 341 to 346 Negative side switching circuit 351 to 353 Negative side switching circuit 351 to 536 Switch 400 Comparator 410 Enable control Part 411 Inverter 412 NOR (negative logical sum) gate 413 AND (logical product) gate 420, 460 differential amplification circuit 421, 422, 431 to 434, 461 to 463, 471 to 476 pMOS transistor 423 to 425, 435 to 440, 464, 465, 477 to 480 nMOS transistor 430, 470 Latch circuit 500 Ripple canceller 510 Capacity part 513, 611, 612 Positive side common capacity 514, 617, 618 Negative side common capacity 521 to 525 Comparator part 537, 538, 552, 552 , 621-624 Common side transistor 537, 554, 625, 626 Positive side transistor 540, 555, 627, 628 Negative side transistor 541, 551 Switch transistor 12031 Imaging unit

Claims (11)

  1.  所定の制御信号に従って一対のアナログ信号の少なくとも一方を生成するデジタルアナログ変換器と、
     前記一対のアナログ信号を比較して比較結果を生成して出力する比較器と、
     前記比較結果に基づいて前記制御信号を生成するロジック回路と、
     サイズの異なる複数の正側トランジスタと、
     サイズの異なる複数の負側トランジスタと、
     前記複数の正側トランジスタと前記複数の負側トランジスタとのそれぞれのソースおよびドレインの一方と前記比較器の出力端子との間の経路を前記制御信号に基づいて開閉する複数のスイッチと、
     所定の正側参照電圧のノードに一端が接続され、前記複数の正側トランジスタのそれぞれのゲートに共通に他端が接続された正側共通容量と、
     前記正側参照電圧より低い負側参照電圧のノードに一端が接続され、前記複数の負側トランジスタのそれぞれのゲートに共通に他端が接続された負側共通容量と
    を具備するアナログデジタル変換器。
    A digital-to-analog converter that produces at least one of a pair of analog signals according to a given control signal.
    A comparator that compares the pair of analog signals, generates a comparison result, and outputs the comparison result.
    A logic circuit that generates the control signal based on the comparison result,
    With multiple positive transistors of different sizes,
    With multiple negative transistors of different sizes,
    A plurality of switches that open and close the path between one of the sources and drains of the plurality of positive transistors and the plurality of negative transistors and the output terminal of the comparator based on the control signal.
    A positive common capacitance with one end connected to a node with a predetermined positive reference voltage and the other end connected to the gates of each of the plurality of positive transistors.
    An analog-to-digital converter having one end connected to a node having a negative reference voltage lower than the positive reference voltage and the other end connected in common to each gate of the plurality of negative transistors. ..
  2.  前記一対のアナログ信号は、差動信号であり、
     前記デジタルアナログ変換器は、前記差動信号を生成する
    請求項1記載のアナログデジタル変換器。
    The pair of analog signals are differential signals and are
    The analog-to-analog converter according to claim 1, wherein the digital-to-analog converter is used to generate the differential signal.
  3.  前記正側共通容量および前記負側共通容量のそれぞれの前記他端と前記正側参照電圧および前記負側参照電圧の間のコモン電圧との間の経路を開閉するサンプリングスイッチをさらに具備する請求項1記載のアナログデジタル変換器。 A claim further comprising a sampling switch that opens and closes a path between the other end of each of the positive side common capacitance and the negative side common capacitance and the common voltage between the positive side reference voltage and the negative side reference voltage. 1. The analog-to-digital converter according to 1.
  4.  前記サンプリングスイッチは、所定のサンプリング期間内に閉状態に移行する
    請求項3記載のアナログデジタル変換器。
    The analog-to-digital converter according to claim 3, wherein the sampling switch shifts to a closed state within a predetermined sampling period.
  5.  前記サンプリングスイッチは、アナログデジタル変換の終了時からサンプリングの開始時までの期間内に閉状態に移行する
    請求項3記載のアナログデジタル変換器。
    The analog-to-digital converter according to claim 3, wherein the sampling switch shifts to a closed state within a period from the end of analog-to-digital conversion to the start of sampling.
  6.  前記比較結果を保持して前記ロジック回路に供給するラッチ回路をさらに具備する請求項1記載のアナログデジタル変換器。 The analog-to-digital converter according to claim 1, further comprising a latch circuit that holds the comparison result and supplies the logic circuit.
  7.  前記複数の正側トランジスタと前記複数の負側トランジスタとのそれぞれは、nMOSトランジスタである
    請求項1記載のアナログデジタル変換器。
    The analog-to-digital converter according to claim 1, wherein each of the plurality of positive-side transistors and the plurality of negative-side transistors is an nMOS transistor.
  8.  前記複数の正側トランジスタと前記複数の負側トランジスタとのそれぞれは、pMOSトランジスタである
    請求項1記載のアナログデジタル変換器。
    The analog-to-digital converter according to claim 1, wherein each of the plurality of positive-side transistors and the plurality of negative-side transistors is a pMOS transistor.
  9.  サイズの異なる複数対のコモン側トランジスタをさらに具備し、
     前記複数対のコモン側トランジスタのそれぞれのゲートは、前記正側参照電圧および前記負側参照電圧の間のコモン電圧のノードに接続される
    請求項1記載のアナログデジタル変換器。
    Further equipped with multiple pairs of common side transistors of different sizes,
    The analog-to-digital converter according to claim 1, wherein each gate of the plurality of pairs of common side transistors is connected to a node having a common voltage between the positive side reference voltage and the negative side reference voltage.
  10.  サイズの異なる複数対の第1コモン側トランジスタと、
     サイズの異なる複数対の第2コモン側トランジスタと
    をさらに具備し、
     前記正側共通容量は、第1正側共通容量および第2正側共通容量を含み、
     前記負側共通容量は、第1負側共通容量および第2負側共通容量を含み、
     前記複数の正側トランジスタは、
     サイズの異なる複数の第1正側トランジスタと、
     サイズの異なる複数の第2正側トランジスタと
    を含み、
     前記複数の負側トランジスタは、
     サイズの異なる複数の第1負側トランジスタと、
     サイズの異なる複数の第2負側トランジスタと
    を含み、
     前記複数の第1正側トランジスタのそれぞれのゲートは、前記第1正側共通容量に共通に接続され、
     前記複数の第2正側トランジスタのそれぞれのゲートは、前記第2正側共通容量に共通に接続され、
     前記複数の第1負側トランジスタのそれぞれのゲートは、前記第1負側共通容量に共通に接続され、
     前記複数の第2負側トランジスタのそれぞれのゲートは、前記第2負側共通容量に共通に接続される
    請求項1記載のアナログデジタル変換器。
    Multiple pairs of first common side transistors of different sizes,
    Further equipped with a plurality of pairs of second common side transistors of different sizes,
    The positive side common capacity includes a first positive side common capacity and a second positive side common capacity.
    The negative side common capacity includes a first negative side common capacity and a second negative side common capacity.
    The plurality of positive transistors are
    Multiple first positive transistors of different sizes,
    Includes multiple second positive transistors of different sizes
    The plurality of negative transistors are
    Multiple first negative transistors of different sizes,
    Includes multiple second negative transistors of different sizes
    Each gate of the plurality of first positive transistor is connected in common to the common capacitance on the first positive side.
    Each gate of the plurality of second positive transistors is commonly connected to the second positive common capacitance.
    Each gate of the plurality of first negative transistors is commonly connected to the first negative common capacitance.
    The analog-to-digital converter according to claim 1, wherein each gate of the plurality of second negative transistors is commonly connected to the second negative common capacitance.
  11.  所定の制御信号に従って一対のアナログ信号の少なくとも一方を生成するデジタルアナログ変換器と、
     前記一対のアナログ信号を比較して比較結果を生成して出力する比較器と、
     前記比較結果に基づいて前記制御信号を生成するとともにデジタル信号を出力するロジック回路と、
     サイズの異なる複数の正側トランジスタと、
     サイズの異なる複数の負側トランジスタと、
     前記複数の正側トランジスタと前記複数の負側トランジスタとのそれぞれのソースおよびドレインの一方と前記比較器の出力端子との間の経路を前記制御信号に基づいて開閉する複数のスイッチと、
     所定の正側参照電圧のノードに一端が接続され、前記複数の正側トランジスタのそれぞれのゲートに共通に他端が接続された正側共通容量と、
     前記正側参照電圧より低い負側参照電圧のノードに一端が接続され、前記複数の負側トランジスタのそれぞれのゲートに共通に他端が接続された負側共通容量と、
     前記デジタル信号を処理するデジタル信号処理回路と
    を具備する電子機器。
    A digital-to-analog converter that produces at least one of a pair of analog signals according to a given control signal.
    A comparator that compares the pair of analog signals, generates a comparison result, and outputs the comparison result.
    A logic circuit that generates the control signal and outputs a digital signal based on the comparison result,
    With multiple positive transistors of different sizes,
    With multiple negative transistors of different sizes,
    A plurality of switches that open and close the path between one of the sources and drains of the plurality of positive transistors and the plurality of negative transistors and the output terminal of the comparator based on the control signal.
    A positive common capacitance with one end connected to a node with a predetermined positive reference voltage and the other end connected to the gates of each of the plurality of positive transistors.
    A negative-side common capacitance having one end connected to a node having a negative reference voltage lower than the positive-side reference voltage and the other end connected to each gate of the plurality of negative-side transistors.
    An electronic device including a digital signal processing circuit for processing the digital signal.
PCT/JP2021/040499 2020-12-24 2021-11-04 Analog-digital converter and electronic device WO2022137821A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022571933A JPWO2022137821A1 (en) 2020-12-24 2021-11-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-214432 2020-12-24
JP2020214432 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022137821A1 true WO2022137821A1 (en) 2022-06-30

Family

ID=82157557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040499 WO2022137821A1 (en) 2020-12-24 2021-11-04 Analog-digital converter and electronic device

Country Status (2)

Country Link
JP (1) JPWO2022137821A1 (en)
WO (1) WO2022137821A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130057422A1 (en) * 2011-09-06 2013-03-07 Aptina Imaging Corporation Comparator noise reduction by means of a programmable bandwidth
US20190131988A1 (en) * 2017-11-02 2019-05-02 Analog Devices, Inc. Comparator error suppression
JP2019220780A (en) * 2018-06-18 2019-12-26 株式会社ソシオネクスト Comparator and AD converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130057422A1 (en) * 2011-09-06 2013-03-07 Aptina Imaging Corporation Comparator noise reduction by means of a programmable bandwidth
US20190131988A1 (en) * 2017-11-02 2019-05-02 Analog Devices, Inc. Comparator error suppression
JP2019220780A (en) * 2018-06-18 2019-12-26 株式会社ソシオネクスト Comparator and AD converter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANG XIYUAN; SHEN YI; XIN XIN; LIU SHUBIN; CAI JUEPING; ZHU ZHANGMING; SUN NAN: "A 10-Bit 100-MS/s SAR ADC with Always-on Reference Ripple Cancellation", 2020 IEEE SYMPOSIUM ON VLSI CIRCUITS, 16 June 2020 (2020-06-16), pages 1 - 2, XP033808748, DOI: 10.1109/VLSICircuits18222.2020.9162786 *

Also Published As

Publication number Publication date
JPWO2022137821A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
JP2018186478A (en) Solid-state imaging device, imaging apparatus and control method for solid-state imaging device
EP3657776B1 (en) Analog-digital converter including miller capacitor, solid-state imaging element including said analog-digital converter, and control method for said analog-digital converter
WO2018198691A1 (en) Solid-state imaging element, imaging device and control method for solid-state imaging element
WO2020031439A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
JP7365775B2 (en) solid-state image sensor
WO2019044225A1 (en) Imaging device and imaging device control method
US11575545B2 (en) Transmission device, interface, and transmission method
WO2020017117A1 (en) Solid-state imaging element, imaging device, and control method for solid-state imaging element
EP4387261A2 (en) Signal processing circuit, solid-state imaging element, and control method for signal processing circuit
WO2022137821A1 (en) Analog-digital converter and electronic device
JP2021176206A (en) Solid-state electronic circuit, imaging element and method for controlling imaging element, and electronic equipment
WO2021157148A1 (en) Solid-state image capturing element, and image capturing device
WO2022074940A1 (en) Solid-state imaging element and imaging device
WO2022038885A1 (en) Solid-state imaging element, and imaging device
WO2021261375A1 (en) Imaging device and electronic apparatus
WO2021084826A1 (en) Solid-state image capture element
WO2022038903A1 (en) Solid-state imaging element
WO2019171686A1 (en) Amplification circuit, imaging device, and method for controlling amplification circuit
WO2022176807A1 (en) Analog-digital converter and electronic device
WO2022244293A1 (en) Analog/digital conversion circuit, solid-state image sensing device, and method for controlling analog/digital conversion circuit
EP4351127A1 (en) Imaging device and electronic apparatus
WO2021261367A1 (en) Imaging device and electronic apparatus
TWI840361B (en) Solid-state imaging element, imaging device, and control method of solid-state imaging element
WO2022038895A1 (en) Solid-state imaging element, and imaging device
WO2021145033A1 (en) Solid-state imaging element, imaging device, and control method for solid-state imaging element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571933

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18258276

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909976

Country of ref document: EP

Kind code of ref document: A1