WO2022137770A1 - Exhaust gas treatment device - Google Patents

Exhaust gas treatment device Download PDF

Info

Publication number
WO2022137770A1
WO2022137770A1 PCT/JP2021/039117 JP2021039117W WO2022137770A1 WO 2022137770 A1 WO2022137770 A1 WO 2022137770A1 JP 2021039117 W JP2021039117 W JP 2021039117W WO 2022137770 A1 WO2022137770 A1 WO 2022137770A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
exhaust gas
amount
control unit
unit
Prior art date
Application number
PCT/JP2021/039117
Other languages
French (fr)
Japanese (ja)
Inventor
和芳 糸川
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2022137770A1 publication Critical patent/WO2022137770A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/32Arrangements of propulsion power-unit exhaust uptakes; Funnels peculiar to vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/04Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers

Definitions

  • the present invention relates to an exhaust gas treatment device.
  • Patent Document 1 "a fuzzy arithmetic unit that determines the pH-corrected supply amount demand of an absorbent by using a deviation signal between a measured value of pH and a target value and fuzzy inference based on the rate of change of the deviation signal is installed. "To do” (means for solving the problem). Patent Document 2 states that "magnesium sulfite and magnesium sulfite produced by desulfurizing exhaust gas are air-oxidized in a liquid reservoir tank to become magnesium sulfate having high solubility, so that the pH value of the circulating absorbent is stable. "(Action).
  • Patent Document 3 states that "sulfur dioxide in exhaust gas is treated using seawater, and seawater (desulfurized seawater) that has absorbed sulfurous acid gas is adjusted within an appropriate pH range within an optimum decarbonation rate range. After decarbonating and mixing with seawater that has not been subjected to desulfurization (undesulfurized seawater) at an optimum mixing ratio, oxidation and decarbonation treatment are performed "(paragraph 0014). Patent Document 4 states, “Further improvement of the environmental aspects of the waste treatment procedure, improvement of the efficiency of the waste treatment procedure, minimizing the amount of waste that needs to be handled and disposed of, and the need for inspection and repair. To minimize "(paragraph 0009).
  • Patent Document 5 states, "Since PM is removed from the exhaust gas discharged from the marine diesel engine by an electrostatic precipitator and SOx is removed by a seawater scrubber, PM and SOx can be reliably removed.” It is described (paragraph 0041).
  • Patent Document 6 states that "SO 2 contained in the exhaust gas (g1) in the scrubber (10) is brought into contact with the washed seawater (a1) to purify the exhaust gas into purified gas (g2) and absorb SO 2 . The washed seawater that has been cleaned is discharged as drainage (a2). "(Summary).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 3-267114
  • Patent Document 2 Japanese Patent Application Laid-Open No.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2015-142912 [Patent Document 4] Patent No. 5784719 [Patent Document 5] Patent No. 5971355 [Patent Document 6] International Publication No. 2016/0354887
  • the pH of the wastewater meets the regulation value while downsizing the equipment such as a pump that supplies the liquid for treating the exhaust gas.
  • an exhaust gas treatment device consists of a reaction tower in which exhaust gas discharged by a power unit and containing sulfur is introduced and a liquid for treating the exhaust gas is supplied, and hydrogen sulfite ion in the waste liquid obtained by treating the exhaust gas in the reaction tower. It includes a substance amount calculation unit that calculates the substance amount and an output control unit that controls the output of the power unit. The output control unit controls the output of the power unit based on the substance amount of hydrogen sulfite ion in the drainage calculated by the substance amount calculation unit.
  • the exhaust gas treatment device may further include an exhaust gas sulfur concentration measuring unit for measuring the sulfur concentration of the exhaust gas introduced into the reaction tower.
  • the substance amount calculation unit may calculate the substance amount of hydrogen sulfite ion in the effluent based on the sulfur concentration of the exhaust gas.
  • the exhaust gas treatment device may further include a purification gas sulfur concentration measuring unit that measures the sulfur concentration of the purification gas in which the exhaust gas is treated with a liquid.
  • the substance amount calculation unit may calculate the substance amount of hydrogen sulfite ion in the effluent based on the sulfur concentration of the purifying gas.
  • the exhaust gas treatment device may further include a fuel consumption measuring unit that measures the fuel consumption for operating the power device.
  • the substance amount calculation unit may calculate the substance amount of hydrogen sulfite ion in the effluent based on the fuel consumption amount.
  • the exhaust gas treatment device may further include an output measuring unit that measures the output of the power device.
  • the substance amount calculation unit may calculate the substance amount of hydrogen sulfite ion in the effluent based on the output of the power device measured by the output measurement unit.
  • the exhaust gas treatment device may further include an exhaust gas amount measuring unit that measures the amount of exhaust gas emitted by the power unit.
  • the substance amount calculation unit may calculate the substance amount of hydrogen sulfite ion in the effluent based on the amount of exhaust gas measured by the exhaust gas amount measuring unit.
  • the exhaust gas treatment device may further include a hydrogen sulfite ion concentration measuring unit for measuring the hydrogen sulfite ion concentration of the effluent.
  • the substance amount calculation unit may calculate the substance amount of hydrogen sulfite ion in the drainage based on the hydrogen sulfite ion concentration in the drainage.
  • the substance amount calculation unit may further calculate the substance amount of the liquid alkaline ion.
  • the output control unit may control the output of the power device based on the substance amount of the liquid alkali ion and the substance amount of the hydrogen sulfite ion of the drainage, which are calculated by the substance amount calculation unit.
  • the exhaust gas treatment device may further include a flow rate control unit that controls the flow rate of the liquid.
  • the substance amount calculation unit may calculate the substance amount of the alkaline ion of the liquid based on the flow rate of the liquid controlled by the flow rate control unit.
  • the exhaust gas treatment device may further include an alkali ion concentration measuring unit for measuring the alkali ion concentration of the liquid.
  • the substance amount calculation unit may calculate the substance amount of the alkaline ion of the liquid based on the alkali ion concentration of the liquid.
  • the exhaust gas treatment device may further include a storage unit that stores at least a part of the waste liquid and a storage amount control unit that controls the amount of the waste liquid stored in the storage unit.
  • the substance amount calculation unit may calculate the substance amount of the alkaline ion of the liquid based on the amount of drainage controlled by the storage amount control unit.
  • the exhaust gas treatment device may further include a mixing ratio control unit that controls the mixing ratio of a part of the liquid and at least a part of the drainage.
  • the substance amount calculation unit may calculate the substance amount of the liquid alkali ion based on the mixing ratio controlled by the mixing ratio control unit.
  • the exhaust gas treatment device may further include a purifying agent supply amount control unit that is supplied to at least one of the liquid and the effluent and controls the supply amount of the purifying agent that removes at least a part of hydrogen sulfite ions in the effluent.
  • the substance amount calculation unit may calculate the substance amount of the liquid alkali ion based on the supply amount of the purifying agent controlled by the purifying agent supply amount control unit.
  • the substance amount calculation unit may calculate the pH coefficient of the liquid based on the hydrogen ion concentration of the liquid.
  • the output control unit controls the output of the power unit based on the pH coefficient of the liquid calculated by the substance amount calculation unit, the substance amount of the alkaline ion of the liquid, and the substance amount of hydrogen sulfite ion of the drainage liquid. You can do it.
  • the output control unit may control the output of the power unit so that the substance amount of the alkaline ion of the liquid becomes larger than the product of the pH coefficient of the liquid and the substance amount of the hydrogen sulfite ion of the drainage liquid.
  • the exhaust gas treatment device includes a flow rate control unit that controls the flow rate of the liquid, a storage amount control unit that controls the amount of the waste liquid stored in the storage unit that stores a part of the waste liquid, and at least a part of the liquid and discharge. It controls the supply amount of the mixing ratio control unit that controls the mixing ratio with at least a part of the liquid and the purifying agent that is supplied to at least one of the liquid and the drainage and removes at least a part of the hydrogen sulfite ion of the drainage.
  • a purifying agent supply amount control unit may be further provided.
  • the substance amount calculation unit has a liquid flow rate controlled by the flow rate control unit, a drainage amount controlled by the storage amount control unit, a mixing ratio controlled by the mixing ratio control unit, and a purifying agent supply amount control unit.
  • the amount of liquid alkali ion material may be calculated based on at least one of the controlled purifier supplies.
  • the flow control unit controls the flow rate of the liquid or the storage amount control unit controls the flow rate of the liquid so that the substance amount of the alkaline ion of the liquid calculated by the substance amount calculation unit is less than the predetermined set value.
  • the amount may be controlled, the mixing ratio control unit may control the mixing ratio, or the purifying agent supply amount control unit may control the supply amount of the purifying agent.
  • the substance amount calculation unit may calculate the pH coefficient of the liquid based on the hydrogen ion concentration of the liquid.
  • the substance amount of the alkaline ion of the liquid calculated by the substance amount calculation unit is larger than the product of the pH coefficient of the liquid and the substance amount of hydrogen sulfite ion of the waste liquid calculated by the substance amount calculation unit. If it is small, the output of the power unit may be reduced.
  • the reaction tower may be mounted on a ship.
  • the output control unit may control the output of the power unit based on the navigation schedule of the ship and the substance amount of hydrogen sulfite ion in the effluent calculated by the substance amount calculation unit.
  • the exhaust gas treatment device may further include a position information acquisition unit that acquires the current position of the ship.
  • the output control unit may control the output of the power unit based on the current position of the ship acquired by the position information acquisition unit.
  • the ship may navigate the first sea area where the regulated value of the pH of the effluent is the first pH and the second sea area where the regulated value of the pH of the effluent is the second pH larger than the first pH. While the ship is navigating in the first sea area, the output control unit may reduce the output of the power unit before the ship is navigating in the second sea area.
  • the ship may navigate the first sea area where the regulated value of the pH of the effluent is the first pH and the second sea area where the regulated value of the pH of the effluent is the second pH larger than the first pH. While the ship is navigating in the second sea area, the output control unit may increase the output of the power unit before the ship is navigating in the first sea area.
  • the output control unit may control the output of the power unit based on the distance between the current position of the ship and the second sea area while the ship is navigating in the first sea area, and the output control unit may control the output of the power unit while the ship is navigating in the second sea area.
  • the output of the power unit may be controlled based on the distance between the current position of the sea and the first sea area.
  • an exhaust gas treatment device consists of a reaction tower in which exhaust gas discharged by a power unit and containing sulfur is introduced and a liquid for treating the exhaust gas is supplied, and hydrogen sulfite ion in the waste liquid obtained by treating the exhaust gas in the reaction tower. It includes a substance amount calculation unit that calculates the substance amount and an output control unit that controls the output of the power unit. The output control unit controls the output of the power device based on the amount of substance of the liquid alkaline ion calculated by the substance amount calculation unit.
  • the output control unit may reduce the output of the power unit.
  • the output control unit may increase the output of the power unit.
  • the output control unit may increase the output of the power unit as long as the amount of substance of hydrogen sulfite ion in the drainage is equal to or less than the amount of substance of alkaline ion in the liquid.
  • the exhaust gas treatment device may further include a flow rate control unit.
  • a flow rate control unit determines the flow rate of the liquid. May be increased.
  • the exhaust gas treatment device may further include a first pH meter that measures the pH of the effluent.
  • the substance amount calculation unit may calculate the substance amount of hydrogen sulfite ion in the drainage solution based on the pH of the drainage solution measured by the first pH meter.
  • the output control unit may increase the output of the power unit when the pH of the drainage measured by the first pH meter is higher than the predetermined pH.
  • the output control unit may reduce the output of the power unit when the pH of the drainage measured by the first pH meter is less than a predetermined pH.
  • the exhaust gas treatment device may further include a second pH meter that measures the pH of the liquid.
  • the substance amount calculation unit may calculate the substance amount of hydrogen sulfite ion in the drainage liquid based on the pH of the liquid measured by the second pH meter.
  • the amount of substance calculation unit determines the amount of substance of carbonic acid (H2 CO 3 ), the amount of substance of hydrogen carbonate ion ( HCO 3- ) , and the amount of substance of carbonic acid ion (CO 3-2- ) based on the pH of the liquid. You may calculate.
  • the amount of substance calculation unit may calculate the amount of substance of hydrogen sulfite ion in the effluent based on at least one of the amount of substance of hydrogen carbonate ion ( HCO 3- ) and the amount of substance of carbonate ion (CO 3-2- ). ..
  • At least one of the flow rate control unit, the storage amount control unit, the mixing ratio control unit and the purifying agent supply amount control unit is set to the pH of the effluent. May be controlled.
  • At least one of the flow rate control unit, the storage amount control unit, the mixing ratio control unit and the purifying agent supply amount control unit is set to the pH of the drainage liquid. May be controlled.
  • H 2 CO 3 hydrogen carbonate ion
  • HCO 3 - hydrogen carbonate ion
  • CO 3-2- carbonate ion
  • FIG. 1 is a diagram showing an example of an exhaust gas treatment device 100 according to an embodiment of the present invention.
  • the exhaust gas treatment device 100 includes a reaction tower 10, a substance amount calculation unit 74, and an output control unit 73.
  • the exhaust gas treatment device 100 may include a power device 50 and an exhaust gas introduction pipe 32.
  • the substance quantity calculation unit 74 may be a CPU of a computer.
  • the power unit 50 discharges the exhaust gas 30.
  • the power unit 50 is, for example, an engine, a boiler, or the like.
  • the exhaust gas introduction pipe 32 connects the power unit 50 and the reaction tower 10. Exhaust gas 30 is introduced into the reaction column 10. In this example, the exhaust gas 30 discharged from the power unit 50 is introduced into the reaction tower 10 after passing through the exhaust gas introduction pipe 32.
  • the exhaust gas 30 contains sulfur (S).
  • the exhaust gas 30 may contain sulfur oxides (SO x ).
  • the exhaust gas 30 may further contain nitrogen oxides (NO x ).
  • the reaction tower 10 may have an exhaust gas introduction port 11 into which the exhaust gas 30 is introduced and an exhaust gas discharge port 17 into which the exhaust gas 30 is discharged.
  • the liquid 40 for treating the exhaust gas 30 is supplied to the reaction column 10.
  • the liquid 40 supplied to the reaction tower 10 treats the exhaust gas 30 inside the reaction tower 10.
  • the liquid 40 may be seawater or an alkaline liquid other than seawater. Treating the exhaust gas 30 means removing harmful substances contained in the exhaust gas 30.
  • the liquid 40 becomes a drainage 46 after treating the exhaust gas 30.
  • the exhaust gas 30 contains sulfur (S). Therefore, the exhaust liquid 46 treated with the exhaust gas 30 contains sulfur (S).
  • the reaction column 10 discharges the waste liquid 46 containing sulfur (S).
  • the exhaust gas 30 becomes a purifying gas 34 after being treated with the liquid 40.
  • the purification gas 34 is generated inside the reaction tower 10.
  • the purified gas 34 is a gas from which harmful substances such as sulfur oxides (SO x ) have been removed from the exhaust gas 30 in the gas treatment unit 18.
  • the purified gas 34 is discharged from the exhaust gas discharge port 17.
  • the reaction tower 10 of this example has a side wall 15, a bottom surface 16, a gas treatment unit 18, and a liquid discharge port 19.
  • the reaction column 10 of this example is columnar.
  • the exhaust gas discharge port 17 is arranged at a position facing the bottom surface 16 in a direction parallel to the central axis of the columnar reaction tower 10.
  • the side wall 15 and the bottom surface 16 are the inner side surface and the bottom surface of the columnar reaction tower 10, respectively.
  • the exhaust gas introduction port 11 may be provided on the side wall 15.
  • the exhaust gas 30 is introduced into the gas treatment unit 18 after passing through the exhaust gas introduction port 11 from the exhaust gas introduction pipe 32.
  • the side wall 15 and the bottom surface 16 are formed of a material having durability against the exhaust gas 30, the liquid 40 and the drainage 46.
  • the material is a combination of an iron material such as SS400 and S-TEN (registered trademark) and at least one of a coating agent and a coating agent, a copper alloy such as never brass, an aluminum alloy such as aluminum brass, and a nickel alloy such as cupronickel. , Hastelloy®, SUS316L, SUS329J4L or SUS312 and the like.
  • the plane parallel to the bottom surface 16 of the reaction column 10 is referred to as the XY plane.
  • the direction connecting the bottom surface 16 and the exhaust gas discharge port 17 is the Z-axis direction.
  • a predetermined direction in the XY plane is defined as the X-axis direction
  • a direction orthogonal to the X-axis in the XY plane is defined as the Y-axis direction.
  • the X-axis direction refers to a direction from one to the other and a direction from the other to one in a direction parallel to the X axis. That is, in the present specification, the X-axis direction does not refer to either one of the two directions parallel to the X-axis, but refers to the direction parallel to the X-axis. The same applies to the Y-axis direction and the Z-axis direction in the present specification.
  • the Z-axis direction may be parallel to the gravity direction. If the Z-axis direction is parallel to the gravitational direction, the XY plane may be a horizontal plane. The Z-axis direction may be parallel to the horizontal direction. If the Z-axis direction is parallel to the horizontal direction, the XY plane may be parallel to the direction of gravity.
  • the exhaust gas treatment device 100 is, for example, a cyclone type scrubber for ships.
  • the exhaust gas 30 introduced into the reaction tower 10 advances in the direction from the exhaust gas introduction port 11 to the exhaust gas discharge port 17 (in this example, the Z-axis direction) while swirling inside the reaction tower 10. ..
  • the exhaust gas 30 swirls in the XY plane when viewed from the exhaust gas discharge port 17 toward the bottom surface 16.
  • the reaction tower 10 may have one or more trunk tubes 12 to which the liquid 40 is supplied, and one or more branch tubes 13.
  • the reaction column 10 may have one or more ejection portions 14 that eject the liquid 40.
  • the ejection portion 14 is connected to the branch pipe 13, and the branch pipe 13 is connected to the trunk pipe 12.
  • the reaction tower 10 of this example has three trunk tubes 12 (trunk tube 12-1, trunk tube 12-2, and trunk tube 12-3).
  • the trunk pipes 12-1 and the trunk pipes 12-3 are the trunk pipes 12 provided on the most exhaust gas introduction port 11 side and the most exhaust gas discharge port 17 side, respectively, in the direction parallel to the Z axis.
  • the trunk pipe 12-2 is a trunk pipe 12 provided between the trunk pipe 12-1 and the trunk pipe 12-3 in the Z-axis direction.
  • the reaction tower 10 of this example includes branch pipes 13-1 to 13-12.
  • the branch pipe 13-1 and the branch pipe 13-12 are the branch pipes 13 provided on the most exhaust gas introduction port 11 side and the most exhaust gas discharge port 17 side, respectively, in the direction parallel to the Z axis.
  • the branch pipe 13-1, the branch pipe 13-3, the branch pipe 13-5, the branch pipe 13-7, the branch pipe 13-9 and the branch pipe 13-11 extend in the Y-axis direction
  • the branch pipe 13 -2, Branch pipe 13-4, Branch pipe 13-6, Branch pipe 13-8, Branch pipe 13-10 and Branch pipe 13-12 extend in the X-axis direction.
  • branch pipe 13-1 to the branch pipe 13-4 are connected to the trunk pipe 12-1, the branch pipe 13-5 to the branch pipe 13-8 are connected to the trunk pipe 12-2, and the branch pipe 13- 9 to branch pipe 13-12 are connected to trunk pipe 12-3.
  • Branch pipes 13-1, branch pipes 13-3, branch pipes 13-5, branch pipes 13-7, branch pipes 13-9 and branch pipes 13-11 are located on both sides of the trunk pipe 12 in a direction parallel to the Y axis. May be placed in.
  • Branch pipes 13-2, branch pipes 13-4, branch pipes 13-6, branch pipes 13-8, branch pipes 13-10 and branch pipes 13-12 are located on both sides of the trunk pipe 12 in a direction parallel to the X-axis. May be placed in.
  • the branch pipe 13-1A and the branch pipe 13-1B are arranged on one side and the other side of the trunk pipe 12-1 in the direction parallel to the Y axis, respectively. 13-1. In the direction parallel to the Y axis, the branch pipe 13-1A and the branch pipe 13-1B may be provided so as to sandwich the trunk pipe 12-1. In FIG. 1, the branch pipe 13-1A and the branch pipe 13-3A are not shown because they are arranged at positions overlapping with the trunk pipe 12-1.
  • the branch pipe 13-2A and the branch pipe 13-2B are arranged on one side and the other side of the trunk pipe 12-1 in the direction parallel to the X axis, respectively. 13-2. In the direction parallel to the X-axis, the branch pipe 13-2A and the branch pipe 13-2B may be provided so as to sandwich the trunk pipe 12-1.
  • the reaction tower 10 of this example includes ejection portions 14-1 to ejection portions 14-12.
  • the ejection portion 14-1 and the ejection portion 14-12 are the ejection portions 14 provided on the most exhaust gas introduction port 11 side and the most exhaust gas discharge port 17 side, respectively, in the direction parallel to the Z axis.
  • the ejection portions 14-1 to 14-12 of this example are connected to the branch pipes 13-1 to 13-12, respectively.
  • a plurality of ejection portions 14 may be provided on one side of the trunk pipe 12 in a direction parallel to the Y-axis, and a plurality of ejection portions 14 may be provided on the other side. May be done.
  • a plurality of ejection portions 14 may be provided on one side of the trunk pipe 12 in a direction parallel to the X-axis, and a plurality of ejection portions 14 may be provided on the other side. May be done.
  • the ejection portion 14-1A, the ejection portion 14-3A, the ejection portion 14-5A, the ejection portion 14-7A, the ejection portion 14-9A, and the ejection portion 14-11A are located at positions overlapping with the trunk pipe 12. Not shown because it is arranged.
  • the ejection portion 14 has an opening surface for ejecting the liquid 40.
  • the opening surface is indicated by an “x” mark.
  • the opening surfaces of the ejection portions 14 arranged on one side and the other side of the trunk pipe 12 have one direction and the other direction forming a predetermined angle with the extension direction of the branch pipe 13. You may point.
  • the opening surface of the ejection portion 14-2A arranged on one side of the trunk pipe 12-1 forms a predetermined angle with the branch pipe 13-2A.
  • the opening surface of the ejection portion 14-2B arranged on the other side of the trunk pipe 12-1 points in one direction at a predetermined angle with the branch pipe 13-2B.
  • the exhaust gas treatment device 100 may include a first pump 60, an introduction pipe 22, and a flow rate control unit 70.
  • the first pump 60 may be provided in the introduction pipe 22.
  • the first pump 60 of this example supplies the liquid 40 to the reaction column 10.
  • the flow rate control unit 70 controls the flow rate of the liquid 40.
  • the flow rate control unit 70 controls the flow rate of the liquid 40 flowing through the introduction pipe 22.
  • the flow rate control unit 70 may control the flow rate of the liquid 40 supplied to the reaction tower 10.
  • the flow rate of the liquid 40 supplied to the reaction column 10 may refer to the volume of the liquid 40 supplied to the reaction column 10 per unit time, or may refer to the mass.
  • the flow rate control unit 70 may have a valve 72.
  • the flow rate control unit 70 controls the flow rate of the liquid 40 supplied to the reaction tower 10 by the valve 72.
  • the flow rate control unit 70 of this example includes three valves 72 (valve 72-1, valve 72-2, and valve 72-3).
  • the flow rate control unit 70 of this example is the liquid 40 supplied to the trunk pipe 12-1, the trunk pipe 12-2, and the trunk pipe 12-3 by the valve 72-1, the valve 72-2, and the valve 72-3, respectively. Control the flow rate.
  • the flow rate control unit 70 may control the flow rate of the liquid 40 supplied to the ejection unit 14.
  • the flow rate control unit 70 may control the flow rate of the liquid 40 so that the flow rate of the liquid 40 supplied to the trunk pipe 12-1 is larger than the flow rate of the liquid 40 supplied to the trunk pipe 12-2.
  • the flow rate control unit 70 may control the flow rate of the liquid 40 so that the flow rate of the liquid 40 supplied to the trunk pipe 12-2 is larger than the flow rate of the liquid 40 supplied to the trunk pipe 12-3.
  • the ratio of the flow rate of the liquid 40 supplied to the trunk pipe 12-3, the flow rate of the liquid 40 supplied to the trunk pipe 12-2, and the flow rate of the liquid 40 supplied to the trunk pipe 12-1 is, for example, 1. : 2: 9.
  • the exhaust gas 30 contains harmful substances such as sulfur oxides (SO x ).
  • the sulfur oxide (SO x ) is, for example, sulfurous acid gas (SO 2 ).
  • the liquid 40 contains bicarbonate ion ( HCO 3- ) and carbonate ion (CO 3-2- ).
  • the alkaline ion contained in the liquid 40 is referred to as alkaline ion AkI.
  • the alkaline ion AkI is at least one of bicarbonate ion (HCO 3- ) and carbonate ion (CO 3-2- ).
  • the amount of substance of hydrogen sulfite ion (HSO 3- ) generated by [Chemical formula 1] is based on the amount of substance of hydrogen carbonate ion ( HCO 3- ) and the amount of substance of carbonate ion (CO 3-2- ) contained in the liquid 40. If it is too large, hydrogen sulfite ion (HSO 3- ) remains in the drainage 46.
  • the amount of hydrogen ion (H + ) produced by [Chemical Formula 1] is larger than the amount of hydrogen carbonate ion ( HCO 3- ) and the amount of carbonate ion ( CO 3-2- ) contained in the liquid 40. In this case, hydrogen ions (H + ) remain in the drainage 46.
  • the substance amount calculation unit 74 calculates the substance amount of the hydrogen sulfite ion ShI of the drainage 46.
  • Amount of substance refers to the number of elemental particles that make up a substance.
  • Element particles refer to the atoms or molecules that make up a substance.
  • the amount of substance is, for example, the number of moles.
  • the number of moles is a number in which a set of Avogadro constant (6.02 ⁇ 10 23 ) element particles is used as a unit.
  • the substance amount calculation unit 74 may calculate the substance amount of the hydrogen ion HI of the drainage 46.
  • the output control unit 73 controls the output of the power unit 50.
  • the output control unit 73 controls the output of the power device 50 based on the substance amount of the hydrogen sulfite ion ShI of the drainage 46 calculated by the substance amount calculation unit 74.
  • the output control unit 73 can control the amount of the exhaust gas 30 discharged from the power device 50.
  • the substance amount calculation unit 74 may calculate the substance amount of the alkaline ion AkI of the liquid 40.
  • the output control unit 73 may control the output of the power device 50 based on the substance amount of the alkaline ion AkI of the liquid 40 calculated by the substance amount calculation unit 74. By controlling the output of the power device 50 based on the amount of substance of the alkaline ion AkI, the output control unit 73 can control the amount of the exhaust gas 30 discharged from the power device 50.
  • the pH regulation value for scrubber wastewater discharged from ships to the ocean is set by the International Maritime Organization (IMO).
  • IMO International Maritime Organization
  • the regulation value varies depending on the sea area, but in the strictest sea area, the regulation value of pH is 6.0 or more at the time of outboard discharge (as of 2020).
  • the output control unit 73 controls the output of the power device 50 based on the amount of substance of the hydrogen sulfite ion ShI of the effluent 46. Therefore, in the exhaust gas treatment device 100 of this example, the output control unit 73 can control the output of the power device 50 so that the pH of the drainage 46 satisfies the regulated value. In the exhaust gas treatment device 100 of this example, the output control unit 73 controls the output of the power device 50 based on the amount of substance of the alkaline ion AkI of the liquid 40. Therefore, in the exhaust gas treatment device 100 of this example, the output control unit 73 can control the output of the power device 50 so that the pH of the drainage 46 satisfies the regulated value.
  • the output control unit 73 controls the output of the power device 50 based on the substance amount of hydrogen sulfite ion ShI of the drainage 46 and the substance amount of the alkali ion AkI of the liquid 40 calculated by the substance amount calculation unit 74. good.
  • the output control unit 73 may reduce the output of the power unit 50. By reducing the output of the power device 50 by the output control unit 73, the amount of the exhaust gas 30 discharged from the power device 50 can be easily reduced.
  • the amount of sulfur oxides (SO x ) contained in the exhaust gas 30 and introduced into the reaction tower 10 can be easily reduced. Therefore, the amount of hydrogen sulfite ion ShI and the amount of hydrogen ion HI that do not chemically react with the alkaline ion AkI are more likely to be reduced than before the output of the power unit 50 was reduced. Therefore, the pH of the drainage 46 easily satisfies the regulation value.
  • the output control unit 73 may increase the output of the power unit 50.
  • the amount of the exhaust gas 30 discharged from the power device 50 tends to increase. Therefore, the amount of sulfur oxides (SO x ) contained in the exhaust gas 30 and introduced into the reaction tower 10 tends to increase. Therefore, the amount of the hydrogen sulfite ion ShI and the alkaline ion AkI that does not chemically react with the hydrogen ion HI is more likely to be reduced than before the output of the power unit 50 is reduced.
  • the output control unit 73 may increase the output of the power device 50 as long as the amount of substance of hydrogen sulfite ion ShI is equal to or less than the amount of substance of alkaline ion AkI.
  • the output control unit 73 may increase the output of the power unit 50 within a range in which the pH of the drainage 46 satisfies the regulated value.
  • Heavy oil C may be used as the fuel for operating the marine scrubber.
  • the concentration of sulfur (S) in the C heavy oil is specified to be 3.5% by weight or less. Therefore, in the marine scrubber, even when the concentration of sulfur (S) in the heavy oil C is 3.5% by weight, which is the upper limit of the concentration, the pH of the scrubber wastewater satisfies the regulation value and
  • the scrubber is designed so that the concentration of sulfur dioxide (SO 2 ), etc. in the exhaust gas emitted from the scrubber meets the regulation value.
  • the concentration of sulfur (S) in heavy fuel oil C which is usually used for marine scrubbers, is 2.0 to 2.5% by weight. Therefore, when the marine scrubber is operated with C heavy oil having a sulfur (S) concentration of 2.0 to 2.5% by weight, the reaction tower, seawater pump, etc. provided in the marine scrubber may be excessively large. be. However, if the reaction tower, seawater pump, etc. are designed on the assumption that the marine scrubber will be operated with C heavy oil having a sulfur (S) concentration of 2.0 to 2.5% by weight, the marine scrubber will be used.
  • the output control unit 73 controls the output of the power device 50 based on the amount of substance of hydrogen sulfite ion ShI of the drainage 46 and the amount of substance of alkali ion AkI of the liquid 40. Therefore, assuming that the exhaust gas treatment device 100 is operated with C heavy oil having a sulfur (S) concentration of, for example, 2.0 to 2.5% by weight, the power device 50, the first pump 60, and the second pump Even when 62 (described later) and the purifying agent storage unit 75 (described later) are designed, the output control unit 73 controls the output of the power unit 50, so that the pH of the drainage 46 satisfies the regulation value.
  • S sulfur
  • the concentration of sulfur dioxide (SO 2 ) or the like in the purifying gas 34 is likely to meet the regulation value. Therefore, in the exhaust gas treatment device 100 of this example, the pH of the waste liquid 46 satisfies the regulation value, and the concentration of sulfur dioxide (SO 2 ) or the like of the purification gas 34 satisfies the regulation value, while the power device 50, It is possible to suppress the increase in size of the reaction tower 10, the first pump 60, the second pump 62 (described later), the purifying agent storage unit 75 (described later), and the like.
  • the exhaust gas treatment device 100 may include an output measuring unit 95.
  • the output measuring unit 95 measures the output of the power unit 50.
  • the concentration of sulfur (S) in the exhaust gas 30 tends to increase as the output of the power unit 50 increases.
  • the substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the drainage 46 based on the output of the power device 50 measured by the output measurement unit 95.
  • the exhaust gas treatment device 100 may include an exhaust gas sulfur concentration measuring unit 91.
  • the exhaust gas sulfur concentration measuring unit 91 measures the sulfur (S) concentration of the exhaust gas 30 introduced into the reaction tower 10.
  • the concentration of sulfur (S) in the exhaust gas 30 tends to increase as the output of the power unit 50 increases.
  • the substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the waste liquid 46 based on the sulfur (S) concentration of the exhaust gas 30 measured by the exhaust gas sulfur concentration measuring unit 91.
  • the exhaust gas sulfur concentration measuring unit 91 is provided in the exhaust gas introduction pipe 32.
  • the exhaust gas sulfur concentration measuring unit 91 may measure the concentration of sulfur (S) in the exhaust gas 30 passing through the exhaust gas introduction pipe 32.
  • the exhaust gas treatment device 100 may include an exhaust gas amount measuring unit 92.
  • the exhaust gas amount measuring unit 92 measures the amount of the exhaust gas 30 discharged by the power unit 50.
  • the amount of the exhaust gas 30 may refer to the volume of the exhaust gas 30 discharged by the power unit 50 per unit time, or may refer to the mass.
  • the amount of the exhaust gas 30 tends to increase as the load on the power unit 50 increases.
  • the substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the effluent 46 based on the amount of the exhaust gas 30 measured by the exhaust gas amount measurement unit 92.
  • the exhaust gas amount measuring unit 92 is provided in the exhaust gas introduction pipe 32.
  • the exhaust gas amount measuring unit 92 may measure the flow rate of the exhaust gas 30 passing through the cross section of the exhaust gas introduction pipe 32 intersecting the traveling direction of the exhaust gas 30 in the exhaust gas introduction pipe 32 per unit time.
  • the exhaust gas treatment device 100 may include a hydrogen sulfite ion concentration measuring unit 93.
  • the hydrogen sulfite ion concentration measuring unit 93 measures the concentration of hydrogen sulfite ion ShI in the drainage 46.
  • the exhaust gas 30 becomes a drainage 46 after being treated with the liquid 40. Therefore, the concentration of hydrogen sulfite ion ShI in the drainage 46 reflects the desulfurization rate of the exhaust gas 30 by the liquid 40.
  • the substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the drainage 46 based on the concentration of the hydrogen sulfite ion ShI of the drainage 46.
  • the hydrogen sulfite ion concentration measuring unit 93 is provided in the drain pipe 20.
  • the hydrogen sulfite ion concentration measuring unit 93 may measure the concentration of hydrogen sulfite ion ShI in the drainage 46 passing through the drain pipe 20.
  • the flow rate control unit 70 controls the flow rate of the liquid 40.
  • the substance amount calculation unit 74 may calculate the substance amount of the alkali ion AkI of the liquid 40 based on the flow rate of the liquid 40 controlled by the flow rate control unit 70.
  • the flow rate control unit 70 may increase the flow rate of the liquid 40.
  • the exhaust gas treatment device 100 may include a second pump 62, an introduction pipe 24, a purifying agent storage unit 75, and a purifying agent supply amount control unit 77.
  • the introduction pipe 24 connects the purifying agent storage portion 75 and the drain pipe 20.
  • the purifying agent 78 is stored in the purifying agent storage unit 75.
  • the purifying agent 78 removes at least a part of the hydrogen sulfite ion ShI of the drainage 46.
  • the purifying agent 78 may be supplied to at least one of the liquid 40 and the drain 46. In this example, the purifying agent 78 is supplied to the drainage 46.
  • the purifying agent supply amount control unit 77 controls the supply amount of the purifying agent 78.
  • the purifying agent supply amount control unit 77 controls the flow rate of the purifying agent 78 flowing through the introduction pipe 24.
  • the second pump 62 may be provided in the introduction pipe 24.
  • the second pump 62 of this example supplies the purifying agent 78 to the drain pipe 20.
  • the purifying agent 78 may be supplied to the introduction pipe 22.
  • the purifying agent supply amount control unit 77 may have a valve 76.
  • the purifying agent supply amount control unit 77 controls the supply amount of the purifying agent 78 by the valve 76.
  • the purifying agent supply amount control unit 77 may control the supply amount of the purifying agent 78 supplied to the drain pipe 20.
  • the supply amount of the purifying agent 78 supplied to the drain pipe 20 may refer to the volume of the purifying agent 78 supplied to the drain pipe 20 per unit time, or may refer to the mass. In the drain pipe 20, the purifying agent 78 is mixed with the drainage 46.
  • the purifying agent 78 may be at least one of a magnesium compound, a sodium compound and a calcium compound.
  • the purifying agent 78 is at least one of magnesium hydroxide (Mg (OH) 2 ), magnesium oxide (MgO), sodium hydroxide (NaOH), sodium hydrogen carbonate (Na 2 CO 3 ) and calcium carbonate (CaCO 3 ). May be.
  • the hydrogen ion (H +) in [Chemical formula 4] may be the hydrogen ion (H + ) generated in [Chemical formula 1].
  • At least a part of hydrogen sulfite ion ShI becomes sodium sulfate (Na 2 SO 4 ) and water (H 2 O) by the chemical reaction shown in [Chemical formula 4].
  • the aqueous solution of sodium sulfate (Na 2 SO 4 ) contains sulfate ions (SO 4-2 ).
  • the substance amount calculation unit 74 may calculate the substance amount of the alkaline ion AkI of the liquid 40 based on the supply amount of the purifying agent 78 controlled by the purifying agent supply amount control unit 77.
  • the purifying agent 78 chemically reacts with the hydrogen sulfite ion ShI as shown in [Chemical formula 4], so that the amount of substance of the hydrogen sulfite ion ShI is the amount of the sulfite when the purifying agent 78 is not supplied. It tends to be smaller than the amount of substance of hydrogen ion ShI.
  • the output control unit 73 may control the output of the power device 50 based on the amount of substance of the hydrogen sulfite ion ShI when the purifying agent 78 is supplied.
  • the exhaust gas treatment device 100 may include a first pH meter 89.
  • the first pH meter 89 measures the pH of the drainage 46.
  • the first pH meter 89 is provided in the drain pipe 20.
  • the substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the drainage liquid 46 based on the pH of the drainage liquid 46 measured by the first pH meter 89. In [Chemical Formula 1], the amount of substance of hydrogen sulfite ion ShI and the amount of substance of hydrogen ion HI are equal. Therefore, the substance amount calculation unit 74 can calculate the substance amount of the hydrogen sulfite ion ShI of the drainage 46 based on the pH of the drain 46.
  • the first pH meter 89 may measure the pH of the drainage liquid 46 before the purifying agent 78 is supplied.
  • the first pH meter 89 measures the pH of the drainage 46 before the purifying agent 78 is supplied, so that the first pH meter 89 has the liquid 40 and the exhaust gas 30 inside the reaction tower 10 [Chemical formula 1]. It becomes easy to measure the pH of the effluent 46 produced by carrying out the chemical reaction shown in.
  • the output control unit 73 may increase the output of the power unit 50 when the pH of the drainage 46 measured by the first pH meter 89 is higher than a predetermined pH.
  • the output control unit 73 may reduce the output of the power unit 50 when the pH of the effluent 46 measured by the pH meter is less than a predetermined pH.
  • the exhaust gas treatment device 100 may include a second pH meter 88.
  • the second pH meter 88 measures the pH of the liquid 40.
  • the second pH meter 88 is provided in the introduction tube 22.
  • the substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the drainage 46 based on the pH of the liquid 40 measured by the second pH meter 88.
  • the amount of substance of hydrogen sulfite ion ShI is equal to the amount of substance of hydrogen ion HI
  • the amount of substance of hydrogen carbonate ion (HCO 3- ) is twice the amount of substance of hydrogen sulfite ion ShI. ..
  • the substance amount calculation unit 74 can calculate the substance amount of the hydrogen sulfite ion ShI of the drainage 46 based on the pH of the liquid 40.
  • FIG. 2 shows an example of the relationship between the pH of the liquid 40 and the substance amount ratios of carbonic acid (H 2 CO 3 ), bicarbonate ion (HCO 3 ⁇ ) and carbonate ion (CO 3-2- ) contained in the liquid 40.
  • H 2 CO 3 the amount of substance of carbonic acid
  • HCO 3 ⁇ hydrogen carbonate ion
  • CO 3-2- the substance of carbonic acid
  • the substance amount ratio of carbonic acid (H 2 CO 3 ), bicarbonate ion (HCO 3 ⁇ ) and carbonate ion (CO 3-2- ) depends on the pH of the liquid 40.
  • the amount of substance calculation unit 74 is based on the pH of the liquid 40, the amount of substance of carbonic acid (H 2 CO 3 ), the amount of substance of hydrogen carbonate ion ( HCO 3 ⁇ ), and the substance of carbonic acid ion (CO 3-2- ). You may calculate the amount.
  • the substance amount calculation unit 74 determines the hydrogen sulfite ion ShI of the effluent 46 based on at least one of the calculated substance amount of hydrogen carbonate ion (HCO 3 ⁇ ) and the substance amount of carbonate ion (CO 3-2- ). You may calculate the amount of substance.
  • FIG. 3 is a diagram showing an example of a block diagram of the exhaust gas treatment device 100 according to one embodiment of the present invention.
  • the exhaust gas introduction pipe 32, the introduction pipe 24, the introduction pipe 22, and the drainage pipe 20 in FIG. 1 are shown by thick solid lines.
  • the exhaust gas treatment device 100 of this example is different from the exhaust gas treatment device 100 shown in FIG. 1 in that it further includes a purified gas sulfur concentration measuring unit 94, a fuel supply unit 97, and a fuel consumption amount measuring unit 98.
  • the fuel supply unit 97 supplies the power unit 50 with the fuel 96 for operating the power unit 50.
  • the fuel 96 is, for example, C heavy oil.
  • the fuel consumption measuring unit 98 measures the consumption of the fuel 96.
  • the consumption amount of the fuel 96 may refer to the volume of the fuel 96 consumed by the power unit 50 per unit time, or may refer to the mass. The consumption of the fuel 96 tends to increase as the output of the power unit 50 increases.
  • the substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the effluent 46 based on the consumption amount of the fuel 96.
  • the fuel 96 is heavy fuel oil C
  • the fuel 96 contains sulfur (S). Therefore, as the fuel 96 is consumed by the power unit 50, the exhaust gas 30 tends to contain sulfur oxides (SO x ).
  • the sulfur oxide (SO x ) is, for example, sulfurous acid gas (SO 2 ).
  • SO 2 sulfurous acid gas
  • the waste liquid 46 tends to contain hydrogen sulfite ion ShI.
  • the substance amount calculation unit 74 calculates the substance amount of the hydrogen sulfite ion ShI of the effluent 46 based on the consumption amount of the fuel 96 measured by the fuel consumption amount measurement unit 98.
  • the output control unit 73 controls the output of the power device 50 based on the amount of the substance of the hydrogen sulfite ion ShI. Therefore, in this example, the output control unit 73 can control the output of the power device 50 so that the pH of the drainage 46 satisfies the regulated value.
  • the purified gas sulfur concentration measuring unit 94 measures the sulfur (S) concentration of the purified gas 34.
  • the purified gas 34 is a gas in which the exhaust gas 30 is treated with the liquid 40. Sulfur oxides (SO x ) and the like contained in the exhaust gas 30 and not treated by the liquid 40 may remain in the purified gas 34.
  • the substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the waste liquid 46 based on the sulfur (S) concentration of the purification gas 34 measured by the purification gas sulfur concentration measurement unit 94.
  • the purified gas sulfur concentration measuring unit 94 is provided at the exhaust gas discharge port 17.
  • the purified gas sulfur concentration measuring unit 94 may measure the concentration of sulfur (S) in the purified gas 34 passing through the exhaust gas discharge port 17 from the inside to the outside of the reaction tower 10.
  • the substance amount calculation unit 74 has the sulfur (S) concentration of the exhaust gas 30 measured by the exhaust gas sulfur concentration measuring unit 91 and the sulfur (S) concentration of the purified gas 34 measured by the purified gas sulfur concentration measuring unit 94.
  • the amount of substance of the hydrogen sulfite ion ShI of the effluent 46 may be calculated based on at least one of the above.
  • the difference between the sulfur (S) concentration of the exhaust gas 30 and the sulfur (S) concentration of the purified gas 34 reflects the desulfurization rate of the exhaust gas 30 by the liquid 40.
  • the sulfur (S) concentration of the exhaust gas 30 measured by the exhaust gas sulfur concentration measuring unit 91 is defined as the sulfur concentration Ds [%].
  • the consumption amount of the fuel 96 measured by the fuel consumption amount measuring unit 98 is defined as the consumption amount Cs [g / kWh].
  • the output of the power unit 50 measured by the output measuring unit 95 is defined as an output Ps [kW].
  • the concentration of hydrogen sulfite ion ShI in the waste liquid 46 measured by the hydrogen sulfite ion concentration measuring unit 93 is defined as the hydrogen sulfite ion concentration Dsh.
  • the output Ps may be calculated by the exhaust gas amount measuring unit 92 based on the amount of the exhaust gas 30.
  • the substance amount calculation unit 74 may calculate the substance amount of hydrogen sulfite ion ShI based on the sulfur concentration Ds, the consumption amount Cs, the output Ps, and the hydrogen sulfite ion concentration Dsh.
  • the amount of the substance is the first factor that affects the pH of the effluent 46.
  • the first factor is defined as the first factor S1 [mol / h].
  • the desulfurization rate of sulfur (S) contained in the exhaust gas 30 is defined as the desulfurization rate De [%].
  • the first factor S1 is represented by the following equation (1).
  • the desulfurization rate De may be calculated based on the sulfite ion concentration Dsh.
  • the desulfurization rate De may be calculated based on the concentration of sulfur (S) in the exhaust gas 30 and the concentration of sulfur (S) in the purified gas 34.
  • the output Ps of the power unit 50 may be calculated based on the amount of the exhaust gas 30 measured by the exhaust gas amount measuring unit 92.
  • the first factor S1 represents the amount of the sulfur (S) contained in the exhaust gas 30 that has become the hydrogen sulfite ion ShI by the chemical reaction of the liquid 40 with the [chemical formula 1].
  • the output control unit 73 may control the output of the power device 50 based on the first factor S1.
  • FIG. 4 is a diagram showing another example of the block diagram of the exhaust gas treatment device 100 according to one embodiment of the present invention.
  • the exhaust gas treatment device 100 of this example is different from the exhaust gas treatment device 100 shown in FIG. 3 in that it further includes an alkaline ion concentration measuring unit 82.
  • the alkaline ion concentration measuring unit 82 measures the concentration of alkaline ion AkI in the liquid 40.
  • the alkaline ion AkI is at least one of hydrogen carbonate ion (HCO 3- ) and carbonate ion (CO 3-2- ).
  • the alkaline ion concentration measuring unit 82 is provided in the introduction pipe 22.
  • the alkaline ion concentration measuring unit 82 may measure the concentration of the alkaline ion AkI of the liquid 40 passing through the introduction pipe 22.
  • the substance amount calculation unit 74 may calculate the substance amount of the alkali ion of the liquid 40 based on the concentration of the alkali ion AkI of the liquid 40 measured by the alkali ion concentration measuring unit 82.
  • the flow rate of the liquid 40 controlled by the flow rate control unit 70 is defined as a flow rate F [l / h].
  • the flow rate F is the total flow rate of the liquid 40 passing through the valves 72-1 to 72-3 (see FIG. 1).
  • the concentration of the alkaline ion AkI measured by the alkaline ion concentration measuring unit 82 is defined as the alkaline ion concentration Da [%].
  • the substance amount calculation unit 74 may calculate the substance amount of the alkali ion AkI based on the flow rate F and the alkali ion concentration Da.
  • the amount of the substance is a second factor that affects the pH of the effluent 46.
  • the second factor is referred to as the second factor S2 [mol / h].
  • the second factor S2 is represented by the following equation (2).
  • the flow rate F may be the flow rate of the liquid 40 diluted with water ( H2O ) containing no alkaline ion AkI.
  • the alkaline ion concentration Da may be the concentration of the alkaline ion AkI of the liquid 40 diluted with water ( H2O ) containing no alkaline ion AkI.
  • hydrogen sulfite ion ShI is produced by the chemical reaction of [Chemical formula 1].
  • the second factor S2 represents the amount of substance of the alkaline ion AkI capable of undergoing a chemical reaction with the hydrogen sulfite ion ShI at least one of [Chemical formula 2] and [Chemical formula 3].
  • the output control unit 73 may control the output Ps of the power unit 50 based on the second factor S2.
  • the output control unit 73 may control the output Ps of the power device 50 based on the first factor S1 and the second factor S2.
  • the output control unit 73 may control the output Ps of the power device 50 so that the second factor S2 is larger than the first factor S1.
  • the pH of the drainage 46 is likely to satisfy the regulation value.
  • FIG. 5 is a diagram showing another example of the block diagram of the exhaust gas treatment device 100 according to one embodiment of the present invention.
  • the exhaust gas treatment device 100 of this example is different from the exhaust gas treatment device 100 shown in FIG. 3 in that it further includes a pipe 25, a storage unit 87, a storage amount control unit 86, and a gas supply unit 85.
  • the pipe 25 connects the drain pipe 20 and the storage unit 87.
  • the exhaust gas treatment device 100 includes two pipes 25 (pipe 25-1 and pipe 25-2).
  • the storage amount control unit 86 includes a valve 79.
  • the storage amount control unit 86 includes two valves 79 (valve 79-1 and valve 79-2).
  • the valve 79-1 is provided in the pipe 25-1
  • the valve 79-2 is provided in the pipe 25-2.
  • the storage unit 87 stores at least a part of the drainage 46.
  • the storage unit 87 is, for example, a decarbonation tower. At least a part of the drainage 46 flowing through the drainage pipe 20 flows through the pipe 25-1, and then is stored in the storage unit 87. At least a part of the drainage 47 stored in the storage unit 87 flows through the pipe 25-2 and then into the drainage pipe 20.
  • the storage amount control unit 86 controls the amount of the drainage liquid 46 stored in the storage unit 87. In this example, the storage amount control unit 86 controls the amount of the drainage 46 flowing through the pipe 25-1 by controlling the valve 79-1. In this example, the storage amount control unit 86 controls the amount of the drainage 47 flowing through the pipe 25-2 by controlling the valve 79-2.
  • the drainage 47 is a drainage from which at least a part of hydrogen carbonate ion (HCO 3- ) contained in the drainage 46 has been removed.
  • the amount of the drainage 46 flowing through the pipe 25-1 may refer to the volume of the drainage 46 flowing through the pipe 25-1 per unit time, or may refer to the mass.
  • the amount of the drainage 47 flowing through the pipe 25-2 may refer to the volume of the drainage 47 flowing through the pipe 25-2 per unit time, or may refer to the mass.
  • the gas supply unit 85 supplies gas to the storage unit 87.
  • the gas may be the atmosphere.
  • carbon dioxide (CO 2 ) may be generated from the hydrogen carbonate ion (HCO 3- ) contained in the waste liquid 46.
  • the carbon dioxide (CO 2 ) may be released into the atmosphere by aeration.
  • the carbon dioxide (CO 2 ) is aerated by the gas supplied by the gas supply unit 85.
  • the drainage 47 may be mixed with the drainage 46 in the drainage pipe 20.
  • the drainage 47 mixed with the drainage 46 may be discharged to the outside of the exhaust gas treatment device 100.
  • the reservoir 87 is a decarboxylation tower
  • the pH of the drainage 47 tends to be higher than the pH of the drainage 46. Therefore, the pH of the drainage 46 mixed with the drainage 47 tends to be higher than the pH of the drainage 46 not mixed with the drainage 47. Therefore, the pH of the drainage 46 mixed with the drainage 47 easily satisfies the regulation value.
  • the substance amount calculation unit 74 may calculate the substance amount of the alkali ion AkI of the liquid 40 based on the amount of the drainage 46 controlled by the storage amount control unit 86.
  • FIG. 6 is a diagram showing another example of the block diagram of the exhaust gas treatment device 100 according to one embodiment of the present invention.
  • the exhaust gas treatment device 100 of this example is different from the exhaust gas treatment device 100 shown in FIG. 5 in that it further includes a pipe 23 and a mixing ratio control unit 84.
  • the pipe 23 connects the introduction pipe 22 and the drain pipe 20.
  • the mixing ratio control unit 84 includes a valve 83.
  • the valve 83 is provided on the pipe 23.
  • the mixing ratio control unit 84 controls the flow rate of the liquid 40 flowing through the pipe 23 by controlling the valve 83.
  • the flow rate of the liquid 40 flowing through the tube 23 may refer to the volume of the liquid 40 flowing through the tube 23 per unit time, or may refer to the mass.
  • the mixing ratio control unit 84 controls the mixing ratio of a part of the liquid 40 and at least a part of the drainage 46.
  • the mixing ratio control unit 84 controls the mixing ratio of the liquid 40 and the drainage liquid 46 to be mixed in the drainage pipe 20.
  • the substance amount calculation unit 74 may calculate the substance amount of the alkaline ion AkI of the liquid 40 based on the mixing ratio controlled by the mixing ratio control unit 84.
  • the concentration of hydrogen sulfite ion ShI and the concentration of hydrogen ion HI in the drainage 46 are diluted by mixing with the liquid 40. Therefore, the pH of the drainage 46 mixed with the liquid 40 tends to be higher than the pH of the drainage 46 not mixed with the liquid 40. Therefore, the mixing ratio control unit 84 controls the mixing ratio of a part of the liquid 40 and at least a part of the drainage 46, so that the pH of the drainage 46 mixed with the liquid 40 satisfies the regulation value. It will be easier.
  • the substance amount calculation unit 74 has a mixing ratio of a part of the liquid 40 and at least a part of the drainage 46 controlled by the mixing ratio control unit 84, and the drainage controlled by the storage amount control unit 86. The amount of substance of the alkali ion AkI of the liquid 40 may be calculated based on the amount of 46.
  • a part of the bicarbonate ion ( HCO 3- ) shown in [Chemical formula 6] is further ionized into the carbonate ion (CO 3-2- ) as shown in the following [Chemical formula 7].
  • [Chemical formula 7] HCO 3- ⁇ H + + CO 3 2-
  • the ratio of ionization to bicarbonate ion (CO 3-2- ) among hydrogen carbonate ion ( HCO 3 ⁇ ) depends on the concentration of hydrogen carbonate ion (HCO 3 ⁇ ) contained in the liquid 40. Due to the hydrogen ions (H + ) represented by [Chemical Formula 6] and [Chemical Formula 7], the pH of the liquid 40 may be lower than the pH of water ( H2O ).
  • the hydrogen ion (H + ) contained in the liquid 40 is referred to as hydrogen ion HI.
  • the substance amount calculation unit 74 may calculate the pH coefficient of the liquid 40 based on the concentration of the hydrogen ion HI of the liquid 40.
  • the substance amount calculation unit 74 may calculate the pH coefficient of the liquid 40 based on the pH of the liquid 40 measured by the second pH meter 88.
  • the pH coefficient of the liquid 40 is a predetermined coefficient with respect to the first factor S1 that affects the amount of substance of the hydrogen sulfite ion ShI of the drainage 46.
  • the pH coefficient is referred to as pH coefficient A.
  • the substance amount calculation unit 74 may calculate the substance amount of the hydrogen carbonate ion (HCO 3- ) of the liquid 40 based on the pH of the liquid 40 measured by the second pH meter 88.
  • the substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the drainage liquid 46 based on the pH of the drainage liquid 46 measured by the first pH meter 89.
  • the substance amount calculation unit 74 is based on the substance amount of the hydrogen carbonate ion (HCO 3- ) of the calculated liquid 40 and the substance amount of the hydrogen sulfite ion ShI of the calculated drainage 46, and is based on the substance amount of the liquid 40.
  • the pH coefficient A may be calculated.
  • the substance amount calculation unit 74 may calculate the concentration of bicarbonate ion (HCO 3- ) of the liquid 40 based on the pH of the liquid 40 measured by the second pH meter 88.
  • the substance amount calculation unit 74 may calculate the concentration of hydrogen sulfite ion ShI in the drainage 46 based on the pH of the drainage 46 measured by the first pH meter 89.
  • the substance amount calculation unit 74 determines the pH coefficient of the liquid 40 based on the calculated concentration of hydrogen carbonate ion (HCO 3- ) of the liquid 40 and the concentration of the calculated hydrogen sulfite ion ShI of the discharged liquid 46. A may be calculated.
  • the substance amount calculation unit 74 includes a measured value of the amount of hydrogen carbonate ion (HCO 3- ) contained in the liquid 40 and introduced into the reaction tower 10 per unit time, and is contained in the waste liquid 46 from the reaction tower 10.
  • the pH coefficient A of the liquid 40 may be calculated based on the measured value of the amount of hydrogen sulfite ion ShI discharged per unit time.
  • the pH coefficient A of the liquid 40 may be a value obtained by dividing the measured value of the amount of hydrogen carbonate ion (HCO 3- ) by the measured value of the amount of hydrogen sulfite ion ShI.
  • the output control unit 73 is based on the pH coefficient A of the liquid 40 calculated by the substance amount calculation unit 74, the substance amount of the alkaline ion AkI of the liquid 40, and the substance amount of the hydrogen sulfite ion ShI of the drainage 46.
  • the output of the power unit 50 may be controlled.
  • the output control unit 73 may control the output of the power device 50 based on the pH coefficient A, the first factor S1, and the second factor S2.
  • the output control unit 73 controls the output of the power device 50 based on the pH coefficient A of the liquid 40, the substance amount of the alkaline ion AkI of the liquid 40, and the substance amount of the hydrogen sulfite ion ShI of the drainage 46.
  • the output control unit 73 can control the output of the power device 50 in consideration of the influence of the pH of the liquid 40.
  • the output control unit 73 outputs the power device 50 so that the substance amount of the alkaline ion AkI of the liquid 40 becomes larger than the product of the pH coefficient A of the liquid 40 and the substance amount of the hydrogen sulfite ion ShI of the drainage 46. May be controlled.
  • the first factor S1, the second factor and the pH coefficient A may satisfy the relationship of the following formula (3).
  • the output control unit 73 controls the output of the power device 50 so as to satisfy the relationship of the equation (3), so that the exhaust gas treatment device 100 has a sulfur (S) concentration of, for example, 2.0 to 2.5% by weight.
  • S sulfur
  • the power unit 50, the first pump 60, the second pump 62, the purifying agent storage unit 75, etc. are designed on the assumption that they are operated with C heavy oil, the pH of the drainage 46 is a regulated value.
  • the concentration of sulfur dioxide (SO 2 ) or the like in the purifying gas 34 is easy to satisfy the regulation value.
  • the pH coefficient A may be 2.0 or more and 2.33 or less.
  • the sulfur concentration Ds and the consumption Cs of the fuel 96 hardly change during the voyage of the ship. Therefore, by controlling the output Ps of the power device 50, the first factor S1 and the second factor S2 can easily satisfy the relationship of the equation (3).
  • FIG. 7 is a flowchart showing an example of a method of controlling the pH of the drainage 46 and a method of controlling the output Ps of the power unit 50 according to one embodiment of the present invention.
  • Step S100 is a step of determining whether the first factor S1, the second factor S2, and the pH coefficient A satisfy the relationship represented by the formula (3).
  • the substance amount calculation unit 74 may determine whether the first factor S1, the second factor S2, and the pH coefficient A satisfy the relationship shown in the equation (3).
  • step S100 If it is determined in step S100 that the first factor S1, the second factor S2 and the pH coefficient A satisfy the relationship shown in the formula (3), the exhaust gas treatment device 100 may continue the operation. If it is determined in step S100 that the first factor S1, the second factor S2, and the pH coefficient A do not satisfy the relationship represented by the formula (3), the control method proceeds to step S102.
  • Step S102 is a step of controlling the pH of the drainage 46.
  • at least one of the flow rate control unit 70, the storage amount control unit 86, the mixing ratio control unit 84, and the purifying agent supply amount control unit 77 may control the pH of the drainage 46.
  • the flow rate control unit 70 controls the pH of the drainage liquid 46
  • the flow rate control unit 70 may control the pH of the drainage liquid 46 by controlling the flow rate of the liquid 40.
  • the storage amount control unit 86 controls the pH of the drainage 46
  • the storage amount control unit 86 controls the pH of the drainage 46 by controlling the amount of the drainage 46 stored in the storage unit 87. good.
  • the mixing ratio control unit 84 controls the pH of the drainage 46
  • the mixing ratio control unit 84 controls the mixing ratio of a part of the liquid 40 and at least a part of the drainage 46 to control the drainage 46.
  • the pH may be controlled.
  • the purifying agent supply amount control unit 77 controls the pH of the drainage liquid 46
  • the purifying agent supply amount control unit 77 may control the pH of the drainage liquid 46 by controlling the supply amount of the purifying agent 78.
  • the predetermined set value in the substance amount of the alkaline ion AkI of the liquid 40 calculated by the substance amount calculation unit 74 is set as the set value X'.
  • the set value X' is the maximum value of the pH adjusting ability of the second factor S2.
  • the substance amount of the alkaline ion AkI of the liquid 40 calculated by the substance amount calculation unit 74 is defined as the substance amount X.
  • the amount of substance X represents the pH adjusting ability of the second factor S2.
  • the amount of substance X is the supply capacity of the liquid 40 by the first pump 60, the storage capacity of the drainage 46 by the storage unit 87, the maximum flow rate of the liquid 40 controlled by the mixing ratio control unit 84, and the purifying agent supply amount control unit. It is determined by the supply capacity of the purifying agent 78 by 77.
  • the flow rate control unit 70 may control the flow rate of the liquid 40 so that the amount of substance X is less than the set value X'.
  • the storage amount control unit 86 may control the amount of the drainage 46 so that the substance amount X is less than the set value X'.
  • the mixing ratio control unit 84 may control the mixing ratio of a part of the liquid 40 and at least a part of the drainage 46 so that the substance amount X becomes less than the set value X'.
  • the purifying agent supply amount control unit 77 may control the supply amount of the purifying agent 78 so that the substance amount X becomes less than the set value X'.
  • Step S104 is a step of determining whether the amount of substance X is less than the set value X'.
  • the substance amount calculation unit 74 may determine whether the substance amount X is less than the set value X'. If it is determined in step S104 that the amount of substance X is less than the set value X', the control method returns to step S100. If it is determined in step S104 that the amount of substance X is equal to or greater than the set value X', the control method proceeds to step S106.
  • Step S106 is a step of controlling the output Ps of the power unit 50.
  • the substance amount calculation unit 74 may control the output Ps of the power device 50, and the substance amount calculation unit 74 notifies the user of the exhaust gas treatment device 100 of a notification (guidance) for controlling the output Ps of the power device 50. You may send it.
  • the output control unit 73 may reduce the output Ps of the power unit 50 to be smaller than the output Ps when the amount of substance X is equal to or greater than the set value X'. The control method returns to step S100 after the output Ps of the power unit 50 is controlled.
  • step S100 the substance amount calculation unit 74 may again determine whether the first factor S1, the second factor S2, and the pH coefficient A satisfy the relationship shown in the equation (3).
  • the first factor S1 is likely to be reduced as shown in the equation (1). Therefore, the first factor S1, the second factor S2, and the pH coefficient A can easily satisfy the relationship shown in the formula (3).
  • FIG. 8 is a diagram showing an example of the route of the ship 200.
  • port A and port B are the port from which the vessel 200 departs and the port from which the vessel 200 arrives, respectively.
  • the distance between the port A and the port B is defined as the distance d1.
  • the reaction tower 10 is mounted on the ship 200.
  • the output control unit 73 may control the output of the power unit 50 based on the navigation schedule of the ship 200 and the substance amount of the hydrogen sulfite ion ShI of the drainage 46 calculated by the substance amount calculation unit 74.
  • the output control unit 73 may control the output of the power device 50 based on the distance d1 and the amount of substance of the hydrogen sulfite ion ShI.
  • FIG. 9 is a diagram showing another example of the block diagram of the exhaust gas treatment device 100 according to one embodiment of the present invention.
  • the exhaust gas treatment device 100 of this example is different from the exhaust gas treatment device 100 shown in FIG. 6 in that it further includes a position information acquisition unit 81.
  • the position information acquisition unit 81 acquires the current position PS of the ship 200.
  • the position information acquisition unit 81 is, for example, a global positioning system (GPS (Global Positioning System)).
  • GPS Global Positioning System
  • FIG. 10 is a diagram showing another example of the route of the ship 200.
  • the vessel 200 is currently navigating the current position PS.
  • the distance between the port A and the current position PS is defined as the distance dd1.
  • the distance between the current position PS and the port B is defined as the distance dd2.
  • the sum of the distance dd1 and the distance dd2 is the distance d1.
  • the output control unit 73 is a power device 50 based on the current position of the ship 200 acquired by the position information acquisition unit 81 and the substance amount of the hydrogen sulfite ion ShI of the drainage 46 calculated by the substance amount calculation unit 74. You may control the output of.
  • the output control unit 73 may control the output of the power device 50 based on the distance dd2 and the amount of substance of the hydrogen sulfite ion ShI.
  • FIG. 11 is a diagram showing another example of the route of the ship 200.
  • the ship 200 navigates the first sea area A1 where the pH regulation value of the drainage 46 is the first pH and the second sea area A2 where the pH regulation value of the drainage 46 is the second pH.
  • the second pH is greater than the first pH. That is, the pH regulation in the second sea area A2 is stricter than the pH regulation in the first sea area A1.
  • the route of the ship 200 is indicated by an arrow.
  • the boundary between the first sea area A1 and the second sea area A2 is shown by a broken line.
  • the position of the intersection of the route of the ship 200 and the boundary between the first sea area A1 and the second sea area A2 is defined as the position C. It is assumed that the vessel 200 is currently navigating the position PS in the first sea area A1.
  • the output control unit 73 may reduce the output of the power unit 50 before the ship 200 is navigating in the second sea area A2. Since the second pH is higher than the first pH, the output of the power unit 50 is reduced before the ship 200 navigates the second sea area A2, so that the ship 200 has entered the second sea area A2 from the first sea area A1. At the time point, the pH of the drainage 46 tends to be less than the second pH.
  • the position information acquisition unit 81 may acquire the current position PS of the ship 200.
  • the distance between the current position PS and the position C is defined as the distance d3.
  • the distance d3 is the distance between the current position PS and the second sea area A2.
  • the output control unit 73 may control the output of the power unit 50 based on the distance d3 between the first sea area A1 and the second sea area A2. By controlling the output of the power unit 50 based on the distance d3, the output control unit 73 controls the pH of the effluent 46 to be less than the second pH when the ship 200 invades from the first sea area A1 to the second sea area A2. It becomes easy to become.
  • the flow rate control unit 70 While the ship 200 is navigating in the first sea area A1, before the ship 200 is navigating in the second sea area A2, the flow rate control unit 70, the storage amount control unit 86, the mixing ratio control unit 84, and the purifying agent supply amount control unit 77. At least one may control the pH of the effluent 46. While the ship 200 is navigating in the first sea area A1, the flow rate control unit 70 may increase the flow rate of the liquid 40, and the storage amount control unit 86 may increase the amount of the drainage 46 stored in the storage unit 87.
  • the mixing ratio control unit 84 may increase the ratio of the liquid 40 in the mixing ratio of a part of the liquid 40 and at least a part of the drainage 46, and the purifying agent supply amount control unit 77 may increase the supply amount of the purifying agent 78. You may increase it. As a result, the pH of the effluent 46 tends to be lower than the second pH when the ship 200 invades the first sea area A1 to the second sea area A2.
  • FIG. 12 is a diagram showing another example of the route of the ship 200.
  • the vessel 200 is currently navigating in the second sea area A2.
  • the vessel 200 sails in the second sea area A2 and then sails in the first sea area A1. This example differs from the example shown in FIG. 11 in these respects.
  • the route of the vessel 200 is indicated by an arrow.
  • the output control unit 73 may increase the output of the power unit 50 before the ship 200 is navigating in the first sea area A1. Since the first pH is smaller than the second pH, the output of the power unit 50 is increased before the ship 200 navigates the first sea area A1, so that the ship 200 has entered the first sea area A1 from the second sea area A2. At the time point, the pH of the drainage 46 tends to be less than the first pH.
  • the position information acquisition unit 81 may acquire the current position PS of the ship 200.
  • the distance between the current position PS and the position C is defined as the distance d4.
  • the distance d4 is the distance between the current position PS and the first sea area A1.
  • the output control unit 73 may control the output of the power unit 50 based on the distance d4 between the first sea area A1 and the second sea area A2. By controlling the output of the power unit 50 based on the distance d4, the output control unit 73 controls the pH of the effluent 46 to be less than the first pH when the ship 200 enters the first sea area A1 from the second sea area A2. It becomes easy to become.
  • the mixing ratio control unit 84 may reduce the ratio of the liquid 40 in the mixing ratio of a part of the liquid 40 and at least a part of the drainage 46, and the purifying agent supply amount control unit 77 may reduce the supply amount of the purifying agent 78. It may be reduced. As a result, the pH of the drainage 46 tends to be lower than the first pH when the ship 200 invades the first sea area A1 from the second sea area A2.
  • Material amount calculation unit 75 ... Purifying agent storage unit, 76 ... Valve, 77 ... Purifying agent supply amount control unit, 78 ... Purifying agent, 79 ... Valve, 81 ... Position information acquisition unit, 82. Alkaline ion concentration measuring unit, 83 ... valve, 84 ... mixing ratio control unit, 85 ... gas supply unit, 86 ... storage amount control unit, 87 ... storage unit, 88 ... 2nd pH meter, 89 ... 1st pH meter, 91 ... Exhaust gas sulfur concentration measuring unit, 92 ... Exhaust gas amount measuring unit, 93 ... Hydrogen sulfite ion concentration measuring unit, 94 ... Purifying gas sulfur Concentration measuring unit, 95 ... Output measuring unit, 96 ... Fuel, 97 ... Fuel supply unit, 98 ... Fuel consumption measuring unit, 100 ... Exhaust gas treatment device, 200 ... Ship

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

The present invention provides an exhaust gas treatment device comprising: a reaction tower into which an exhaust gas that is discharged from a motive power device and contains sulfur is introduced, and to which a liquid that treats the exhaust gas is provided; a substance amount calculation unit that calculates a substance amount for bisulfite ions in the waste liquid that has treated the exhaust gas in the reaction tower; and an output control unit that controls the output of the motive power device, wherein the output control unit controls the output of the motive power device on the basis of the substance amount, for the bisulfite ions in the waste liquid, calculated by the substance amount calculation unit.

Description

排ガス処理装置Exhaust gas treatment equipment
 本発明は、排ガス処理装置に関する。 The present invention relates to an exhaust gas treatment device.
 特許文献1には、「pHの計測値と目標値との間の偏差信号、および偏差信号の変化率によるファジィ推論を用いて、吸収剤のpH補正供給量デマンドを決定するファジィ演算器を設置する」と記載されている(課題を解決するための手段)。
 特許文献2には、「排ガスを脱硫処理して生成した亜硫酸マグネシウムと亜硫酸水素マグネシウムが液溜めタンク内で空気酸化されて溶解度が高い硫酸マグネシウムとなるので、循環吸収液のpH値が安定する。」と記載されている(作用)。
 特許文献3には、「海水を利用して排ガス中の二酸化硫黄を処理し、亜硫酸ガスを吸収した海水(脱硫酸性海水)を適切なpH範囲内に調整し、最適な脱炭酸率範囲内で脱炭酸し、脱硫に供していない海水(未脱硫海水)と最適な混合比によって混合した後に、酸化、脱炭酸処理する」と記載されている(段落0014)。
 特許文献4には、「排出物処理手順の環境面をさらに改善し、排出物処理手順の効率を改善し、取り扱われ処分される必要のある廃棄物の量を最小にし、点検修理の必要性を最小にする」と記載されている(段落0009)。
 特許文献5には、「舶用ディーゼルエンジンから排出される排ガスを電気集塵装置でPMを除去し、海水スクラバでSOxを除去するので、PM及びSOxの除去を確実に行うことができる。」と記載されている(段落0041)。
 特許文献6には、「スクラバ(10)において排ガス(g1)中に含まれるSOを洗浄海水(a1)と接触させることで、排ガスを浄化して浄化ガス(g2)にし、SOを吸収した洗浄海水を排水(a2)として排出する。」と記載されている(要約)。
[先行技術文献]
[特許文献]
  [特許文献1] 特開平3-267114号公報
  [特許文献2] 特開平3-275123号公報
  [特許文献3] 特開2015-142912号公報
  [特許文献4] 特許第5784719号
  [特許文献5] 特許第5971355号
  [特許文献6] 国際公開第2016/035487号
In Patent Document 1, "a fuzzy arithmetic unit that determines the pH-corrected supply amount demand of an absorbent by using a deviation signal between a measured value of pH and a target value and fuzzy inference based on the rate of change of the deviation signal is installed. "To do" (means for solving the problem).
Patent Document 2 states that "magnesium sulfite and magnesium sulfite produced by desulfurizing exhaust gas are air-oxidized in a liquid reservoir tank to become magnesium sulfate having high solubility, so that the pH value of the circulating absorbent is stable. "(Action).
Patent Document 3 states that "sulfur dioxide in exhaust gas is treated using seawater, and seawater (desulfurized seawater) that has absorbed sulfurous acid gas is adjusted within an appropriate pH range within an optimum decarbonation rate range. After decarbonating and mixing with seawater that has not been subjected to desulfurization (undesulfurized seawater) at an optimum mixing ratio, oxidation and decarbonation treatment are performed "(paragraph 0014).
Patent Document 4 states, "Further improvement of the environmental aspects of the waste treatment procedure, improvement of the efficiency of the waste treatment procedure, minimizing the amount of waste that needs to be handled and disposed of, and the need for inspection and repair. To minimize "(paragraph 0009).
Patent Document 5 states, "Since PM is removed from the exhaust gas discharged from the marine diesel engine by an electrostatic precipitator and SOx is removed by a seawater scrubber, PM and SOx can be reliably removed." It is described (paragraph 0041).
Patent Document 6 states that "SO 2 contained in the exhaust gas (g1) in the scrubber (10) is brought into contact with the washed seawater (a1) to purify the exhaust gas into purified gas (g2) and absorb SO 2 . The washed seawater that has been cleaned is discharged as drainage (a2). "(Summary).
[Prior Art Document]
[Patent Document]
[Patent Document 1] Japanese Patent Application Laid-Open No. 3-267114 [Patent Document 2] Japanese Patent Application Laid-Open No. 3-275123 [Patent Document 3] Japanese Patent Application Laid-Open No. 2015-142912 [Patent Document 4] Patent No. 5784719 [Patent Document 5] Patent No. 5971355 [Patent Document 6] International Publication No. 2016/0354887
解決しようとする課題The problem to be solved
 排ガス処理装置においては、排ガスを処理する液体を供給するポンプ等の機器を小型化させつつ、排水のpHが規制値を満たすことが好ましい。 In the exhaust gas treatment device, it is preferable that the pH of the wastewater meets the regulation value while downsizing the equipment such as a pump that supplies the liquid for treating the exhaust gas.
一般的開示General disclosure
 本発明の第1の態様においては、排ガス処理装置を提供する。排ガス処理装置は、動力装置により排出された排ガスであって硫黄を含む排ガスが導入され、排ガスを処理する液体が供給される反応塔と、反応塔において排ガスを処理した排液の亜硫酸水素イオンの物質量を演算する物質量演算部と、動力装置の出力を制御する出力制御部と、を備える。出力制御部は、物質量演算部により演算された排液の亜硫酸水素イオンの物質量に基づいて、動力装置の出力を制御する。 In the first aspect of the present invention, an exhaust gas treatment device is provided. The exhaust gas treatment device consists of a reaction tower in which exhaust gas discharged by a power unit and containing sulfur is introduced and a liquid for treating the exhaust gas is supplied, and hydrogen sulfite ion in the waste liquid obtained by treating the exhaust gas in the reaction tower. It includes a substance amount calculation unit that calculates the substance amount and an output control unit that controls the output of the power unit. The output control unit controls the output of the power unit based on the substance amount of hydrogen sulfite ion in the drainage calculated by the substance amount calculation unit.
 排ガス処理装置は、反応塔に導入される排ガスの硫黄濃度を測定する排ガス硫黄濃度測定部をさらに備えてよい。物質量演算部は、排ガスの硫黄濃度に基づいて、排液の亜硫酸水素イオンの物質量を演算してよい。 The exhaust gas treatment device may further include an exhaust gas sulfur concentration measuring unit for measuring the sulfur concentration of the exhaust gas introduced into the reaction tower. The substance amount calculation unit may calculate the substance amount of hydrogen sulfite ion in the effluent based on the sulfur concentration of the exhaust gas.
 排ガス処理装置は、排ガスが液体により処理された浄化ガスの硫黄濃度を測定する浄化ガス硫黄濃度測定部をさらに備えてよい。物質量演算部は、浄化ガスの硫黄濃度に基づいて、排液の亜硫酸水素イオンの物質量を演算してよい。 The exhaust gas treatment device may further include a purification gas sulfur concentration measuring unit that measures the sulfur concentration of the purification gas in which the exhaust gas is treated with a liquid. The substance amount calculation unit may calculate the substance amount of hydrogen sulfite ion in the effluent based on the sulfur concentration of the purifying gas.
 排ガス処理装置は、動力装置を稼働させるための燃料の消費量を測定する燃料消費量測定部をさらに備えてよい。物質量演算部は、燃料の消費量に基づいて、排液の亜硫酸水素イオンの物質量を演算してよい。 The exhaust gas treatment device may further include a fuel consumption measuring unit that measures the fuel consumption for operating the power device. The substance amount calculation unit may calculate the substance amount of hydrogen sulfite ion in the effluent based on the fuel consumption amount.
 排ガス処理装置は、動力装置の出力を測定する出力測定部をさらに備えてよい。物質量演算部は、出力測定部により測定された動力装置の出力に基づいて、排液の亜硫酸水素イオンの物質量を演算してよい。 The exhaust gas treatment device may further include an output measuring unit that measures the output of the power device. The substance amount calculation unit may calculate the substance amount of hydrogen sulfite ion in the effluent based on the output of the power device measured by the output measurement unit.
 排ガス処理装置は、動力装置が排出する排ガスの量を測定する排ガス量測定部をさらに備えてよい。物質量演算部は、排ガス量測定部により測定された排ガスの量に基づいて、排液の亜硫酸水素イオンの物質量を演算してよい。 The exhaust gas treatment device may further include an exhaust gas amount measuring unit that measures the amount of exhaust gas emitted by the power unit. The substance amount calculation unit may calculate the substance amount of hydrogen sulfite ion in the effluent based on the amount of exhaust gas measured by the exhaust gas amount measuring unit.
 排ガス処理装置は、排液の亜硫酸水素イオン濃度を測定する亜硫酸水素イオン濃度測定部をさらに備えてよい。物質量演算部は、排液の亜硫酸水素イオン濃度に基づいて、排液の亜硫酸水素イオンの物質量を演算してよい。 The exhaust gas treatment device may further include a hydrogen sulfite ion concentration measuring unit for measuring the hydrogen sulfite ion concentration of the effluent. The substance amount calculation unit may calculate the substance amount of hydrogen sulfite ion in the drainage based on the hydrogen sulfite ion concentration in the drainage.
 物質量演算部は、液体のアルカリイオンの物質量をさらに演算してよい。出力制御部は、物質量演算部により演算された、液体のアルカリイオンの物質量および排液の亜硫酸水素イオンの物質量に基づいて、動力装置の出力を制御してよい。 The substance amount calculation unit may further calculate the substance amount of the liquid alkaline ion. The output control unit may control the output of the power device based on the substance amount of the liquid alkali ion and the substance amount of the hydrogen sulfite ion of the drainage, which are calculated by the substance amount calculation unit.
 排ガス処理装置は、液体の流量を制御する流量制御部をさらに備えてよい。物質量演算部は、流量制御部により制御された液体の流量に基づいて、液体のアルカリイオンの物質量を演算してよい。 The exhaust gas treatment device may further include a flow rate control unit that controls the flow rate of the liquid. The substance amount calculation unit may calculate the substance amount of the alkaline ion of the liquid based on the flow rate of the liquid controlled by the flow rate control unit.
 排ガス処理装置は、液体のアルカリイオン濃度を測定するアルカリイオン濃度測定部をさらに備えてよい。物質量演算部は、液体のアルカリイオン濃度に基づいて、液体のアルカリイオンの物質量を演算してよい。 The exhaust gas treatment device may further include an alkali ion concentration measuring unit for measuring the alkali ion concentration of the liquid. The substance amount calculation unit may calculate the substance amount of the alkaline ion of the liquid based on the alkali ion concentration of the liquid.
 排ガス処理装置は、排液の少なくとも一部を貯留する貯留部と、貯留部に貯留する排液の量を制御する貯留量制御部と、をさらに備えてよい。物質量演算部は、貯留量制御部により制御された排液の量に基づいて、液体のアルカリイオンの物質量を演算してよい。 The exhaust gas treatment device may further include a storage unit that stores at least a part of the waste liquid and a storage amount control unit that controls the amount of the waste liquid stored in the storage unit. The substance amount calculation unit may calculate the substance amount of the alkaline ion of the liquid based on the amount of drainage controlled by the storage amount control unit.
 排ガス処理装置は、液体の一部と、排液の少なくとも一部との混合比を制御する混合比制御部をさらに備えてよい。物質量演算部は、混合比制御部により制御された混合比に基づいて、液体のアルカリイオンの物質量を演算してよい。 The exhaust gas treatment device may further include a mixing ratio control unit that controls the mixing ratio of a part of the liquid and at least a part of the drainage. The substance amount calculation unit may calculate the substance amount of the liquid alkali ion based on the mixing ratio controlled by the mixing ratio control unit.
 排ガス処理装置は、液体および排液の少なくとも一方に供給され、排液の亜硫酸水素イオンの少なくとも一部を除去する浄化剤の供給量を制御する浄化剤供給量制御部をさらに備えてよい。物質量演算部は、浄化剤供給量制御部により制御された浄化剤の供給量に基づいて、液体のアルカリイオンの物質量を演算してよい。 The exhaust gas treatment device may further include a purifying agent supply amount control unit that is supplied to at least one of the liquid and the effluent and controls the supply amount of the purifying agent that removes at least a part of hydrogen sulfite ions in the effluent. The substance amount calculation unit may calculate the substance amount of the liquid alkali ion based on the supply amount of the purifying agent controlled by the purifying agent supply amount control unit.
 物質量演算部は、液体の水素イオン濃度に基づいて、液体のpH係数を演算してよい。出力制御部は、物質量演算部により演算された、液体のpH係数と、液体のアルカリイオンの物質量と、排液の亜硫酸水素イオンの物質量と、に基づいて、動力装置の出力を制御してよい。 The substance amount calculation unit may calculate the pH coefficient of the liquid based on the hydrogen ion concentration of the liquid. The output control unit controls the output of the power unit based on the pH coefficient of the liquid calculated by the substance amount calculation unit, the substance amount of the alkaline ion of the liquid, and the substance amount of hydrogen sulfite ion of the drainage liquid. You can do it.
 出力制御部は、液体のアルカリイオンの物質量が、液体のpH係数と排液の亜硫酸水素イオンの物質量との積よりも大きくなるように、動力装置の出力を制御してよい。 The output control unit may control the output of the power unit so that the substance amount of the alkaline ion of the liquid becomes larger than the product of the pH coefficient of the liquid and the substance amount of the hydrogen sulfite ion of the drainage liquid.
 排ガス処理装置は、液体の流量を制御する流量制御部と、排液の一部を貯留する貯留部に貯留する排液の量を制御する貯留量制御部と、液体の少なくとも一部と、排液の少なくとも一部との混合比を制御する混合比制御部と、液体および排液の少なくとも一方に供給され、排液の亜硫酸水素イオンの少なくとも一部を除去する浄化剤の供給量を制御する浄化剤供給量制御部と、をさらに備えてよい。物質量演算部は、流量制御部により制御された液体の流量、貯留量制御部により制御された排液の量、混合比制御部により制御された混合比、および、浄化剤供給量制御部により制御された浄化剤の供給量の少なくとも1つに基づいて、液体のアルカリイオンの物質量を演算してよい。物質量演算部により演算された、液体のアルカリイオンの物質量が、予め定められた設定値未満になるように、流量制御部が液体の流量を制御するか、貯留量制御部が排液の量を制御するか、混合比制御部が混合比を制御するか、または、浄化剤供給量制御部が浄化剤の供給量を制御してよい。 The exhaust gas treatment device includes a flow rate control unit that controls the flow rate of the liquid, a storage amount control unit that controls the amount of the waste liquid stored in the storage unit that stores a part of the waste liquid, and at least a part of the liquid and discharge. It controls the supply amount of the mixing ratio control unit that controls the mixing ratio with at least a part of the liquid and the purifying agent that is supplied to at least one of the liquid and the drainage and removes at least a part of the hydrogen sulfite ion of the drainage. A purifying agent supply amount control unit may be further provided. The substance amount calculation unit has a liquid flow rate controlled by the flow rate control unit, a drainage amount controlled by the storage amount control unit, a mixing ratio controlled by the mixing ratio control unit, and a purifying agent supply amount control unit. The amount of liquid alkali ion material may be calculated based on at least one of the controlled purifier supplies. The flow control unit controls the flow rate of the liquid or the storage amount control unit controls the flow rate of the liquid so that the substance amount of the alkaline ion of the liquid calculated by the substance amount calculation unit is less than the predetermined set value. The amount may be controlled, the mixing ratio control unit may control the mixing ratio, or the purifying agent supply amount control unit may control the supply amount of the purifying agent.
 物質量演算部は、液体の水素イオン濃度に基づいて、液体のpH係数を演算してよい。出力制御部は、物質量演算部により演算された液体のアルカリイオンの物質量が、液体のpH係数と、物質量演算部により演算された排液の亜硫酸水素イオンの物質量との積よりも小さい場合、動力装置の出力を低減させてよい。 The substance amount calculation unit may calculate the pH coefficient of the liquid based on the hydrogen ion concentration of the liquid. In the output control unit, the substance amount of the alkaline ion of the liquid calculated by the substance amount calculation unit is larger than the product of the pH coefficient of the liquid and the substance amount of hydrogen sulfite ion of the waste liquid calculated by the substance amount calculation unit. If it is small, the output of the power unit may be reduced.
 反応塔は、船舶に搭載されてよい。出力制御部は、船舶の航行予定、および、物質量演算部により演算された排液の亜硫酸水素イオンの物質量に基づいて、動力装置の出力を制御してよい。 The reaction tower may be mounted on a ship. The output control unit may control the output of the power unit based on the navigation schedule of the ship and the substance amount of hydrogen sulfite ion in the effluent calculated by the substance amount calculation unit.
 排ガス処理装置は、船舶の現在位置を取得する位置情報取得部をさらに備えてよい。出力制御部は、位置情報取得部により取得された船舶の現在位置に基づいて、動力装置の出力を制御してよい。 The exhaust gas treatment device may further include a position information acquisition unit that acquires the current position of the ship. The output control unit may control the output of the power unit based on the current position of the ship acquired by the position information acquisition unit.
 船舶は、排液のpHの規制値が第1pHである第1海域と、排液のpHの規制値が第1pHよりも大きい第2pHである第2海域と、を航行してよい。船舶が第1海域を航行中において、出力制御部は、船舶が第2海域を航行する前に、動力装置の出力を低減させてよい。 The ship may navigate the first sea area where the regulated value of the pH of the effluent is the first pH and the second sea area where the regulated value of the pH of the effluent is the second pH larger than the first pH. While the ship is navigating in the first sea area, the output control unit may reduce the output of the power unit before the ship is navigating in the second sea area.
 船舶は、排液のpHの規制値が第1pHである第1海域と、排液のpHの規制値が第1pHよりも大きい第2pHである第2海域と、を航行してよい。船舶が第2海域を航行中において、出力制御部は、船舶が第1海域を航行する前に、動力装置の出力を増加させてよい。 The ship may navigate the first sea area where the regulated value of the pH of the effluent is the first pH and the second sea area where the regulated value of the pH of the effluent is the second pH larger than the first pH. While the ship is navigating in the second sea area, the output control unit may increase the output of the power unit before the ship is navigating in the first sea area.
 出力制御部は、船舶が第1海域を航行中において、船舶の現在位置と第2海域との距離に基づいて動力装置の出力を制御してよく、船舶が第2海域を航行中において、船舶の現在位置と第1海域との距離に基づいて動力装置の出力を制御してよい。 The output control unit may control the output of the power unit based on the distance between the current position of the ship and the second sea area while the ship is navigating in the first sea area, and the output control unit may control the output of the power unit while the ship is navigating in the second sea area. The output of the power unit may be controlled based on the distance between the current position of the sea and the first sea area.
 本発明の第2の態様においては、排ガス処理装置を提供する。排ガス処理装置は、動力装置により排出された排ガスであって硫黄を含む排ガスが導入され、排ガスを処理する液体が供給される反応塔と、反応塔において排ガスを処理した排液の亜硫酸水素イオンの物質量を演算する物質量演算部と、動力装置の出力を制御する出力制御部と、を備える。出力制御部は、物質量演算部により演算された液体のアルカリイオンの物質量に基づいて、動力装置の出力を制御する。 In the second aspect of the present invention, an exhaust gas treatment device is provided. The exhaust gas treatment device consists of a reaction tower in which exhaust gas discharged by a power unit and containing sulfur is introduced and a liquid for treating the exhaust gas is supplied, and hydrogen sulfite ion in the waste liquid obtained by treating the exhaust gas in the reaction tower. It includes a substance amount calculation unit that calculates the substance amount and an output control unit that controls the output of the power unit. The output control unit controls the output of the power device based on the amount of substance of the liquid alkaline ion calculated by the substance amount calculation unit.
 物質量演算部により演算された、排液の亜硫酸水素イオンの物質量が、液体のアルカリイオンの物質量よりも大きい場合、出力制御部は、動力装置の出力を減少させてよい。 When the substance amount of hydrogen sulfite ion in the drainage calculated by the substance amount calculation unit is larger than the substance amount of the alkaline ion in the liquid, the output control unit may reduce the output of the power unit.
 物質量演算部により演算された、排液の亜硫酸水素イオンの物質量が、液体のアルカリイオンの物質量よりも小さい場合、出力制御部は、動力装置の出力を増加させてよい。 When the substance amount of hydrogen sulfite ion in the drainage calculated by the substance amount calculation unit is smaller than the substance amount of the liquid alkali ion, the output control unit may increase the output of the power unit.
 出力制御部は、排液の亜硫酸水素イオンの物質量が液体のアルカリイオンの物質量以下である範囲で、動力装置の出力を増加させてよい。 The output control unit may increase the output of the power unit as long as the amount of substance of hydrogen sulfite ion in the drainage is equal to or less than the amount of substance of alkaline ion in the liquid.
 排ガス処理装置は、流量制御部をさらに備えてよい。物質量演算部により演算された、排液の亜硫酸水素イオンの物質量が、物質量演算部により演算された、液体のアルカリイオンの物質量よりも大きい場合、流量制御部は、液体の流量を増加させてよい。 The exhaust gas treatment device may further include a flow rate control unit. When the substance amount of hydrogen sulfite ion in the drainage calculated by the substance amount calculation unit is larger than the substance amount of the liquid alkali ion calculated by the substance amount calculation unit, the flow control unit determines the flow rate of the liquid. May be increased.
 排ガス処理装置は、排液のpHを測定する第1pH計をさらに備えてよい。物質量演算部は、第1pH計により測定された排液のpHに基づいて、排液の亜硫酸水素イオンの物質量を演算してよい。 The exhaust gas treatment device may further include a first pH meter that measures the pH of the effluent. The substance amount calculation unit may calculate the substance amount of hydrogen sulfite ion in the drainage solution based on the pH of the drainage solution measured by the first pH meter.
 出力制御部は、第1pH計により測定された排液のpHが、予め定められたpHよりも大きい場合、動力装置の出力を増加させてよい。 The output control unit may increase the output of the power unit when the pH of the drainage measured by the first pH meter is higher than the predetermined pH.
 出力制御部は、第1pH計により測定された排液のpHが、予め定められたpH未満である場合、動力装置の出力を減少させてよい。 The output control unit may reduce the output of the power unit when the pH of the drainage measured by the first pH meter is less than a predetermined pH.
 排ガス処理装置は、液体のpHを測定する第2pH計をさらに備えてよい。物質量演算部は、第2pH計により測定された液体のpHに基づいて、排液の亜硫酸水素イオンの物質量を演算してよい。 The exhaust gas treatment device may further include a second pH meter that measures the pH of the liquid. The substance amount calculation unit may calculate the substance amount of hydrogen sulfite ion in the drainage liquid based on the pH of the liquid measured by the second pH meter.
 物質量演算部は、液体のpHに基づいて、炭酸(HCO)の物質量、炭酸水素イオン(HCO )の物質量、および、炭酸イオン(CO 2-)の物質量を演算してよい。物質量演算部は、炭酸水素イオン(HCO )の物質量および炭酸イオン(CO 2-)の物質量の少なくとも一方に基づいて、排液の亜硫酸水素イオンの物質量を演算してよい。 The amount of substance calculation unit determines the amount of substance of carbonic acid (H2 CO 3 ), the amount of substance of hydrogen carbonate ion ( HCO 3- ) , and the amount of substance of carbonic acid ion (CO 3-2- ) based on the pH of the liquid. You may calculate. The amount of substance calculation unit may calculate the amount of substance of hydrogen sulfite ion in the effluent based on at least one of the amount of substance of hydrogen carbonate ion ( HCO 3- ) and the amount of substance of carbonate ion (CO 3-2- ). ..
 船舶が第1海域を航行中において、船舶が第2海域を航行する前に、流量制御部、貯留量制御部、混合比制御部および浄化剤供給量制御部の少なくとも1つが、排液のpHを制御してよい。 While the ship is navigating in the first sea area, before the ship is navigating in the second sea area, at least one of the flow rate control unit, the storage amount control unit, the mixing ratio control unit and the purifying agent supply amount control unit is set to the pH of the effluent. May be controlled.
 船舶が第2海域を航行中において、船舶が第1海域を航行する前に、流量制御部、貯留量制御部、混合比制御部および浄化剤供給量制御部の少なくとも1つが、排液のpHを制御してよい。 While the ship is navigating in the second sea area, before the ship is navigating in the first sea area, at least one of the flow rate control unit, the storage amount control unit, the mixing ratio control unit and the purifying agent supply amount control unit is set to the pH of the drainage liquid. May be controlled.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 The outline of the above invention does not list all the necessary features of the present invention. A subcombination of these feature groups can also be an invention.
本発明の一つの実施形態に係る排ガス処理装置100の一例を示す図である。It is a figure which shows an example of the exhaust gas treatment apparatus 100 which concerns on one Embodiment of this invention. 液体40のpHと、液体40に含まれる炭酸(HCO)、炭酸水素イオン(HCO )および炭酸イオン(CO 2-)の物質量比との関係の一例を、それぞれ示す図である。The figure which shows an example of the relationship between the pH of liquid 40 and the substance amount ratio of carbonic acid (H 2 CO 3 ), hydrogen carbonate ion ( HCO 3 ) and carbonate ion (CO 3-2- ) contained in liquid 40, respectively. Is. 本発明の一つの実施形態に係る排ガス処理装置100のブロック図の一例を示す図である。It is a figure which shows an example of the block diagram of the exhaust gas treatment apparatus 100 which concerns on one Embodiment of this invention. 本発明の一つの実施形態に係る排ガス処理装置100のブロック図の他の一例を示す図である。It is a figure which shows another example of the block diagram of the exhaust gas treatment apparatus 100 which concerns on one Embodiment of this invention. 本発明の一つの実施形態に係る排ガス処理装置100のブロック図の他の一例を示す図である。It is a figure which shows another example of the block diagram of the exhaust gas treatment apparatus 100 which concerns on one Embodiment of this invention. 本発明の一つの実施形態に係る排ガス処理装置100のブロック図の他の一例を示す図である。It is a figure which shows another example of the block diagram of the exhaust gas treatment apparatus 100 which concerns on one Embodiment of this invention. 本発明の一つの実施形態に係る、排液46のpHの制御方法および動力装置50の出力Psの制御方法の一例を示すフローチャートである。It is a flowchart which shows an example of the control method of the pH of a drainage 46, and the control method of the output Ps of a power apparatus 50, which concerns on one Embodiment of this invention. 船舶200の航路の一例を示す図である。It is a figure which shows an example of the route of a ship 200. 本発明の一つの実施形態に係る排ガス処理装置100のブロック図の他の一例を示す図である。It is a figure which shows another example of the block diagram of the exhaust gas treatment apparatus 100 which concerns on one Embodiment of this invention. 船舶200の航路の他の一例を示す図である。It is a figure which shows another example of the route of a ship 200. 船舶200の航路の他の一例を示す図である。It is a figure which shows another example of the route of a ship 200. 船舶200の航路の他の一例を示す図である。It is a figure which shows another example of the route of a ship 200.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. Also, not all combinations of features described in the embodiments are essential to the means of solving the invention.
 図1は、本発明の一つの実施形態に係る排ガス処理装置100の一例を示す図である。排ガス処理装置100は、反応塔10、物質量演算部74および出力制御部73を備える。排ガス処理装置100は、動力装置50および排ガス導入管32を備えてよい。物質量演算部74は、コンピュータのCPUであってよい。 FIG. 1 is a diagram showing an example of an exhaust gas treatment device 100 according to an embodiment of the present invention. The exhaust gas treatment device 100 includes a reaction tower 10, a substance amount calculation unit 74, and an output control unit 73. The exhaust gas treatment device 100 may include a power device 50 and an exhaust gas introduction pipe 32. The substance quantity calculation unit 74 may be a CPU of a computer.
 動力装置50は、排ガス30を排出する。動力装置50は、例えばエンジン、ボイラー等である。排ガス導入管32は、動力装置50と反応塔10とを接続する。反応塔10には、排ガス30が導入される。本例において、動力装置50から排出された排ガス30は、排ガス導入管32を通った後、反応塔10に導入される。 The power unit 50 discharges the exhaust gas 30. The power unit 50 is, for example, an engine, a boiler, or the like. The exhaust gas introduction pipe 32 connects the power unit 50 and the reaction tower 10. Exhaust gas 30 is introduced into the reaction column 10. In this example, the exhaust gas 30 discharged from the power unit 50 is introduced into the reaction tower 10 after passing through the exhaust gas introduction pipe 32.
 排ガス30は、硫黄(S)を含む。排ガス30は、硫黄酸化物(SO)を含んでよい。排ガス30は、窒素酸化物(NO)さらに含んでもよい。 The exhaust gas 30 contains sulfur (S). The exhaust gas 30 may contain sulfur oxides (SO x ). The exhaust gas 30 may further contain nitrogen oxides (NO x ).
 反応塔10は、排ガス30が導入される排ガス導入口11と、排ガス30が排出される排ガス排出口17と、を有してよい。反応塔10には、排ガス30を処理する液体40が供給される。反応塔10に供給された液体40は、反応塔10の内部において排ガス30を処理する。液体40は、海水であってよく、海水以外のアルカリ性の液体であってもよい。排ガス30を処理するとは、排ガス30に含まれる有害物質を除去することを指す。 The reaction tower 10 may have an exhaust gas introduction port 11 into which the exhaust gas 30 is introduced and an exhaust gas discharge port 17 into which the exhaust gas 30 is discharged. The liquid 40 for treating the exhaust gas 30 is supplied to the reaction column 10. The liquid 40 supplied to the reaction tower 10 treats the exhaust gas 30 inside the reaction tower 10. The liquid 40 may be seawater or an alkaline liquid other than seawater. Treating the exhaust gas 30 means removing harmful substances contained in the exhaust gas 30.
 液体40は、排ガス30を処理した後、排液46となる。上述したとおり、排ガス30は硫黄(S)を含む。このため、排ガス30を処理した排液46は、硫黄(S)を含む。反応塔10は、硫黄(S)を含む当該排液46を排出する。 The liquid 40 becomes a drainage 46 after treating the exhaust gas 30. As described above, the exhaust gas 30 contains sulfur (S). Therefore, the exhaust liquid 46 treated with the exhaust gas 30 contains sulfur (S). The reaction column 10 discharges the waste liquid 46 containing sulfur (S).
 排ガス30は、液体40により処理された後、浄化ガス34となる。浄化ガス34は、反応塔10の内部において生成される。浄化ガス34は、ガス処理部18において排ガス30から硫黄酸化物(SO)等の有害物質が除去されたガスである。浄化ガス34は、排ガス排出口17から排出される。 The exhaust gas 30 becomes a purifying gas 34 after being treated with the liquid 40. The purification gas 34 is generated inside the reaction tower 10. The purified gas 34 is a gas from which harmful substances such as sulfur oxides (SO x ) have been removed from the exhaust gas 30 in the gas treatment unit 18. The purified gas 34 is discharged from the exhaust gas discharge port 17.
 本例の反応塔10は、側壁15、底面16、ガス処理部18および液体排出口19を有する。本例の反応塔10は、円柱状である。本例において、排ガス排出口17は、円柱状の反応塔10の中心軸と平行な方向において底面16と対向する位置に配置されている。本例において、側壁15および底面16は、それぞれ円柱状の反応塔10の内側面および底面である。排ガス導入口11は、側壁15に設けられてよい。本例において、排ガス30は排ガス導入管32から排ガス導入口11を通った後、ガス処理部18に導入される。 The reaction tower 10 of this example has a side wall 15, a bottom surface 16, a gas treatment unit 18, and a liquid discharge port 19. The reaction column 10 of this example is columnar. In this example, the exhaust gas discharge port 17 is arranged at a position facing the bottom surface 16 in a direction parallel to the central axis of the columnar reaction tower 10. In this example, the side wall 15 and the bottom surface 16 are the inner side surface and the bottom surface of the columnar reaction tower 10, respectively. The exhaust gas introduction port 11 may be provided on the side wall 15. In this example, the exhaust gas 30 is introduced into the gas treatment unit 18 after passing through the exhaust gas introduction port 11 from the exhaust gas introduction pipe 32.
 側壁15および底面16は、排ガス30、並びに液体40および排液46に対して耐久性を有する材料で形成される。当該材料は、SS400、S-TEN(登録商標)等の鉄材とコーティング剤および塗装剤の少なくとも一方との組合せ、ネバール黄銅等の銅合金、アルミニウムブラス等のアルミニウム合金、キュープロニッケル等のニッケル合金、ハステロイ(登録商標)、SUS316L、SUS329J4LまたはSUS312等のステンレスであってよい。 The side wall 15 and the bottom surface 16 are formed of a material having durability against the exhaust gas 30, the liquid 40 and the drainage 46. The material is a combination of an iron material such as SS400 and S-TEN (registered trademark) and at least one of a coating agent and a coating agent, a copper alloy such as never brass, an aluminum alloy such as aluminum brass, and a nickel alloy such as cupronickel. , Hastelloy®, SUS316L, SUS329J4L or SUS312 and the like.
 本明細書においては、X軸、Y軸およびZ軸の直交座標軸を用いて技術的事項を説明する場合がある。本明細書においては、反応塔10の底面16と平行な面をXY面とする。本明細書において、底面16と排ガス排出口17とを結ぶ方向(底面16に垂直な方向)をZ軸方向とする。本明細書において、XY面内における所定の方向をX軸方向とし、XY面内においてX軸に直交する方向をY軸方向とする。 In this specification, technical matters may be described using orthogonal coordinate axes of X-axis, Y-axis, and Z-axis. In the present specification, the plane parallel to the bottom surface 16 of the reaction column 10 is referred to as the XY plane. In the present specification, the direction connecting the bottom surface 16 and the exhaust gas discharge port 17 (the direction perpendicular to the bottom surface 16) is the Z-axis direction. In the present specification, a predetermined direction in the XY plane is defined as the X-axis direction, and a direction orthogonal to the X-axis in the XY plane is defined as the Y-axis direction.
 本明細書において、X軸方向とは、X軸に平行な方向における一方から他方への方向、および、他方から一方への方向を指す。即ち、本明細書において、X軸方向とは、X軸に平行な2つの方向のいずれか一方を指さず、X軸に平行な方向を指す。本明細書において、Y軸方向およびZ軸方向も同様である。 In the present specification, the X-axis direction refers to a direction from one to the other and a direction from the other to one in a direction parallel to the X axis. That is, in the present specification, the X-axis direction does not refer to either one of the two directions parallel to the X-axis, but refers to the direction parallel to the X-axis. The same applies to the Y-axis direction and the Z-axis direction in the present specification.
 Z軸方向は重力方向に平行であってよい。Z軸方向が重力方向に平行である場合、XY面は水平面であってよい。Z軸方向は水平方向に平行であってもよい。Z軸方向が水平方向に平行である場合、XY面は重力方向に平行であってよい。 The Z-axis direction may be parallel to the gravity direction. If the Z-axis direction is parallel to the gravitational direction, the XY plane may be a horizontal plane. The Z-axis direction may be parallel to the horizontal direction. If the Z-axis direction is parallel to the horizontal direction, the XY plane may be parallel to the direction of gravity.
 排ガス処理装置100は、例えば船舶向けサイクロン式スクラバである。サイクロン式スクラバにおいては、反応塔10に導入された排ガス30は、反応塔10の内部を旋回しながら、排ガス導入口11から排ガス排出口17への方向(本例においてはZ軸方向)に進む。本例においては、排ガス30は、排ガス排出口17から底面16への方向に見た場合において、XY面内を旋回する。 The exhaust gas treatment device 100 is, for example, a cyclone type scrubber for ships. In the cyclone type scrubber, the exhaust gas 30 introduced into the reaction tower 10 advances in the direction from the exhaust gas introduction port 11 to the exhaust gas discharge port 17 (in this example, the Z-axis direction) while swirling inside the reaction tower 10. .. In this example, the exhaust gas 30 swirls in the XY plane when viewed from the exhaust gas discharge port 17 toward the bottom surface 16.
 反応塔10は、液体40が供給される一または複数の幹管12、および、一または複数の枝管13を有してよい。反応塔10は、液体40を噴出する一または複数の噴出部14を有してよい。本例において、噴出部14は枝管13に接続され、枝管13は幹管12に接続されている。 The reaction tower 10 may have one or more trunk tubes 12 to which the liquid 40 is supplied, and one or more branch tubes 13. The reaction column 10 may have one or more ejection portions 14 that eject the liquid 40. In this example, the ejection portion 14 is connected to the branch pipe 13, and the branch pipe 13 is connected to the trunk pipe 12.
 本例の反応塔10は、3つの幹管12(幹管12-1、幹管12-2および幹管12-3)を有する。本例において、幹管12-1および幹管12-3は、Z軸に平行な方向において、それぞれ最も排ガス導入口11側および最も排ガス排出口17側に設けられている幹管12である。本例において、幹管12-2は、幹管12-1と幹管12-3とのZ軸方向における間に設けられている幹管12である。 The reaction tower 10 of this example has three trunk tubes 12 (trunk tube 12-1, trunk tube 12-2, and trunk tube 12-3). In this example, the trunk pipes 12-1 and the trunk pipes 12-3 are the trunk pipes 12 provided on the most exhaust gas introduction port 11 side and the most exhaust gas discharge port 17 side, respectively, in the direction parallel to the Z axis. In this example, the trunk pipe 12-2 is a trunk pipe 12 provided between the trunk pipe 12-1 and the trunk pipe 12-3 in the Z-axis direction.
 本例の反応塔10は、枝管13-1~枝管13-12を備える。本例において、枝管13-1および枝管13-12は、Z軸に平行な方向において、それぞれ最も排ガス導入口11側および最も排ガス排出口17側に設けられている枝管13である。本例において、枝管13-1、枝管13-3、枝管13-5、枝管13-7、枝管13-9および枝管13-11はY軸方向に延伸し、枝管13-2、枝管13-4、枝管13-6、枝管13-8、枝管13-10および枝管13-12はX軸方向に延伸している。 The reaction tower 10 of this example includes branch pipes 13-1 to 13-12. In this example, the branch pipe 13-1 and the branch pipe 13-12 are the branch pipes 13 provided on the most exhaust gas introduction port 11 side and the most exhaust gas discharge port 17 side, respectively, in the direction parallel to the Z axis. In this example, the branch pipe 13-1, the branch pipe 13-3, the branch pipe 13-5, the branch pipe 13-7, the branch pipe 13-9 and the branch pipe 13-11 extend in the Y-axis direction, and the branch pipe 13 -2, Branch pipe 13-4, Branch pipe 13-6, Branch pipe 13-8, Branch pipe 13-10 and Branch pipe 13-12 extend in the X-axis direction.
 本例において、枝管13-1~枝管13-4は幹管12-1に接続され、枝管13-5~枝管13-8は幹管12-2に接続され、枝管13-9~枝管13-12は幹管12-3に接続されている。枝管13-1、枝管13-3、枝管13-5、枝管13-7、枝管13-9および枝管13-11は、Y軸に平行な方向において、幹管12の両側に配置されてよい。枝管13-2、枝管13-4、枝管13-6、枝管13-8、枝管13-10および枝管13-12は、X軸に平行な方向において、幹管12の両側に配置されてよい。 In this example, the branch pipe 13-1 to the branch pipe 13-4 are connected to the trunk pipe 12-1, the branch pipe 13-5 to the branch pipe 13-8 are connected to the trunk pipe 12-2, and the branch pipe 13- 9 to branch pipe 13-12 are connected to trunk pipe 12-3. Branch pipes 13-1, branch pipes 13-3, branch pipes 13-5, branch pipes 13-7, branch pipes 13-9 and branch pipes 13-11 are located on both sides of the trunk pipe 12 in a direction parallel to the Y axis. May be placed in. Branch pipes 13-2, branch pipes 13-4, branch pipes 13-6, branch pipes 13-8, branch pipes 13-10 and branch pipes 13-12 are located on both sides of the trunk pipe 12 in a direction parallel to the X-axis. May be placed in.
 枝管13-1を例に説明すると、枝管13-1Aおよび枝管13-1Bは、Y軸に平行な方向において、それぞれ幹管12-1の一方側および他方側に配置される枝管13-1である。Y軸に平行な方向において、枝管13-1Aおよび枝管13-1Bは、幹管12-1を挟むように設けられてよい。なお、図1において枝管13-1Aおよび枝管13-3Aは、幹管12-1と重なる位置に配置されているので図示されていない。 Taking the branch pipe 13-1 as an example, the branch pipe 13-1A and the branch pipe 13-1B are arranged on one side and the other side of the trunk pipe 12-1 in the direction parallel to the Y axis, respectively. 13-1. In the direction parallel to the Y axis, the branch pipe 13-1A and the branch pipe 13-1B may be provided so as to sandwich the trunk pipe 12-1. In FIG. 1, the branch pipe 13-1A and the branch pipe 13-3A are not shown because they are arranged at positions overlapping with the trunk pipe 12-1.
 枝管13-2を例に説明すると、枝管13-2Aおよび枝管13-2Bは、X軸に平行な方向において、それぞれ幹管12-1の一方側および他方側に配置される枝管13-2である。X軸に平行な方向において、枝管13-2Aおよび枝管13-2Bは、幹管12-1を挟むように設けられてよい。 Taking the branch pipe 13-2 as an example, the branch pipe 13-2A and the branch pipe 13-2B are arranged on one side and the other side of the trunk pipe 12-1 in the direction parallel to the X axis, respectively. 13-2. In the direction parallel to the X-axis, the branch pipe 13-2A and the branch pipe 13-2B may be provided so as to sandwich the trunk pipe 12-1.
 本例の反応塔10は、噴出部14-1~噴出部14-12を備える。本例において、噴出部14-1および噴出部14-12は、Z軸に平行な方向において、それぞれ最も排ガス導入口11側および最も排ガス排出口17側に設けられている噴出部14である。本例の噴出部14-1~噴出部14-12は、それぞれ枝管13-1~枝管13-12に接続されている。Y軸方向に延伸する1つの枝管13において、Y軸に平行な方向における幹管12の一方側に複数の噴出部14が設けられてよく、且つ、他方側に複数の噴出部14が設けられてよい。X軸方向に延伸する1つの枝管13において、X軸に平行な方向における幹管12の一方側に複数の噴出部14が設けられてよく、且つ、他方側に複数の噴出部14が設けられてよい。なお、図1において、噴出部14-1A、噴出部14-3A、噴出部14-5A、噴出部14-7A、噴出部14-9Aおよび噴出部14-11Aは、幹管12と重なる位置に配置されているので図示されていない。 The reaction tower 10 of this example includes ejection portions 14-1 to ejection portions 14-12. In this example, the ejection portion 14-1 and the ejection portion 14-12 are the ejection portions 14 provided on the most exhaust gas introduction port 11 side and the most exhaust gas discharge port 17 side, respectively, in the direction parallel to the Z axis. The ejection portions 14-1 to 14-12 of this example are connected to the branch pipes 13-1 to 13-12, respectively. In one branch pipe 13 extending in the Y-axis direction, a plurality of ejection portions 14 may be provided on one side of the trunk pipe 12 in a direction parallel to the Y-axis, and a plurality of ejection portions 14 may be provided on the other side. May be done. In one branch pipe 13 extending in the X-axis direction, a plurality of ejection portions 14 may be provided on one side of the trunk pipe 12 in a direction parallel to the X-axis, and a plurality of ejection portions 14 may be provided on the other side. May be done. In FIG. 1, the ejection portion 14-1A, the ejection portion 14-3A, the ejection portion 14-5A, the ejection portion 14-7A, the ejection portion 14-9A, and the ejection portion 14-11A are located at positions overlapping with the trunk pipe 12. Not shown because it is arranged.
 噴出部14は、液体40を噴出する開口面を有する。図1において、当該開口面は「×」印にて示されている。1つの枝管13において、幹管12の一方側および他方側に配置される噴出部14のそれぞれの開口面は、枝管13の延伸方向と所定の角度をなす一方の方向および他方の方向を指してよい。噴出部14-2を例に説明すると、本例においては、幹管12-1の一方側に配置される噴出部14-2Aの開口面は、枝管13-2Aと所定の角度をなす一方の方向を指し、幹管12-1の他方側に配置される噴出部14-2Bの開口面は、枝管13-2Bと所定の角度をなす一方の方向を指している。 The ejection portion 14 has an opening surface for ejecting the liquid 40. In FIG. 1, the opening surface is indicated by an “x” mark. In one branch pipe 13, the opening surfaces of the ejection portions 14 arranged on one side and the other side of the trunk pipe 12 have one direction and the other direction forming a predetermined angle with the extension direction of the branch pipe 13. You may point. Taking the ejection portion 14-2 as an example, in this example, the opening surface of the ejection portion 14-2A arranged on one side of the trunk pipe 12-1 forms a predetermined angle with the branch pipe 13-2A. The opening surface of the ejection portion 14-2B arranged on the other side of the trunk pipe 12-1 points in one direction at a predetermined angle with the branch pipe 13-2B.
 排ガス処理装置100は、第1ポンプ60、導入管22および流量制御部70を備えてよい。第1ポンプ60は、導入管22に設けられてよい。本例の第1ポンプ60は、液体40を反応塔10に供給する。流量制御部70は、液体40の流量を制御する。本例においては、流量制御部70は、導入管22を流れる液体40の流量を制御する。流量制御部70は、反応塔10に供給される液体40の流量を制御してよい。反応塔10に供給される液体40の流量とは、反応塔10に単位時間当たり供給される液体40の体積を指してよく、質量を指してもよい。 The exhaust gas treatment device 100 may include a first pump 60, an introduction pipe 22, and a flow rate control unit 70. The first pump 60 may be provided in the introduction pipe 22. The first pump 60 of this example supplies the liquid 40 to the reaction column 10. The flow rate control unit 70 controls the flow rate of the liquid 40. In this example, the flow rate control unit 70 controls the flow rate of the liquid 40 flowing through the introduction pipe 22. The flow rate control unit 70 may control the flow rate of the liquid 40 supplied to the reaction tower 10. The flow rate of the liquid 40 supplied to the reaction column 10 may refer to the volume of the liquid 40 supplied to the reaction column 10 per unit time, or may refer to the mass.
 流量制御部70は、バルブ72を有してよい。本例においては、流量制御部70は、反応塔10に供給される液体40の流量を、バルブ72により制御する。本例の流量制御部70は、3つのバルブ72(バルブ72-1、バルブ72-2およびバルブ72-3)を備える。本例の流量制御部70は、バルブ72-1、バルブ72-2およびバルブ72-3により、それぞれ幹管12-1、幹管12-2および幹管12-3に供給される液体40の流量を制御する。 The flow rate control unit 70 may have a valve 72. In this example, the flow rate control unit 70 controls the flow rate of the liquid 40 supplied to the reaction tower 10 by the valve 72. The flow rate control unit 70 of this example includes three valves 72 (valve 72-1, valve 72-2, and valve 72-3). The flow rate control unit 70 of this example is the liquid 40 supplied to the trunk pipe 12-1, the trunk pipe 12-2, and the trunk pipe 12-3 by the valve 72-1, the valve 72-2, and the valve 72-3, respectively. Control the flow rate.
 流量制御部70は、噴出部14に供給される液体40の流量を制御してよい。流量制御部70は、幹管12-1に供給される液体40の流量が幹管12-2に供給される液体40の流量よりも多くなるように、液体40の流量を制御してよい。流量制御部70は、幹管12-2に供給される液体40の流量が幹管12-3に供給される液体40の流量よりも多くなるように、液体40の流量を制御してよい。幹管12-3に供給される液体40の流量と、幹管12-2に供給される液体40の流量と、幹管12-1に供給される液体40の流量との比は、例えば1:2:9である。 The flow rate control unit 70 may control the flow rate of the liquid 40 supplied to the ejection unit 14. The flow rate control unit 70 may control the flow rate of the liquid 40 so that the flow rate of the liquid 40 supplied to the trunk pipe 12-1 is larger than the flow rate of the liquid 40 supplied to the trunk pipe 12-2. The flow rate control unit 70 may control the flow rate of the liquid 40 so that the flow rate of the liquid 40 supplied to the trunk pipe 12-2 is larger than the flow rate of the liquid 40 supplied to the trunk pipe 12-3. The ratio of the flow rate of the liquid 40 supplied to the trunk pipe 12-3, the flow rate of the liquid 40 supplied to the trunk pipe 12-2, and the flow rate of the liquid 40 supplied to the trunk pipe 12-1 is, for example, 1. : 2: 9.
 上述したとおり、排ガス30には硫黄酸化物(SO)等の有害物質が含まれる。硫黄酸化物(SO)は、例えば亜硫酸ガス(SO)である。液体40が海水である場合、液体40は、炭酸水素イオン(HCO )および炭酸イオン(CO 2-)を含む。本明細書において、液体40に含まれるアルカリイオンを、アルカリイオンAkIとする。本例においては、アルカリイオンAkIは、炭酸水素イオン(HCO )および炭酸イオン(CO 2-)の少なくとも一方である。 As described above, the exhaust gas 30 contains harmful substances such as sulfur oxides (SO x ). The sulfur oxide (SO x ) is, for example, sulfurous acid gas (SO 2 ). When the liquid 40 is seawater, the liquid 40 contains bicarbonate ion ( HCO 3- ) and carbonate ion (CO 3-2- ). In the present specification, the alkaline ion contained in the liquid 40 is referred to as alkaline ion AkI. In this example, the alkaline ion AkI is at least one of bicarbonate ion (HCO 3- ) and carbonate ion (CO 3-2- ).
 液体40が海水である場合、当該液体40と亜硫酸ガス(SO)との反応は、下記の[化学式1]~[化学式3]で示される。
 [化学式1]
 SO+HO→HSO +H
 [化学式2]
 HSO +H+2HCO +HO→SO 2-+2CO+3H
 [化学式3]
 HSO +H+CO 2-→SO 2-+CO+H
When the liquid 40 is seawater, the reaction between the liquid 40 and the sulfurous acid gas (SO 2 ) is represented by the following [Chemical Formula 1] to [Chemical Formula 3].
[Chemical formula 1]
SO 2 + H 2 O → HSO 3- + H +
[Chemical formula 2]
HSO 3- + H + + 2HCO 3- + H 2 O → SO 3 2- + 2CO 2 + 3H 2 O
[Chemical formula 3]
HSO 3- + H + + CO 3 2- → SO 3 2- + CO 2 + H 2 O
 [化学式1]に示されるように、亜硫酸ガス(SO)は化学反応により亜硫酸水素イオン(HSO )となる。[化学式2]および[化学式3]は、[化学式1]の化学反応により生成された亜硫酸水素イオン(HSO )が、それぞれ炭酸水素イオン(HCO )および炭酸イオン(CO 2-)と反応する場合である。亜硫酸水素イオン(HSO )は、[化学式2]および[化学式3]に示される化学反応により、亜硫酸イオン(SO 2-)となる。 As shown in [Chemical Formula 1], sulfurous acid gas (SO 2 ) becomes hydrogen sulfite ion (HSO 3- ) by a chemical reaction. In [Chemical formula 2 ] and [Chemical formula 3], hydrogen sulfite ions (HSO 3- ) generated by the chemical reaction of [Chemical formula 1] are hydrogen carbonate ion (HCO 3- ) and carbonate ion ( CO 3-2- ), respectively. When it reacts with. Hydrogen sulfite ion (HSO 3- ) becomes sulfite ion (SO 3-2- ) by the chemical reaction shown in [Chemical formula 2 ] and [Chemical formula 3].
 [化学式1]により生成された亜硫酸水素イオン(HSO )の物質量が、液体40に含まれる炭酸水素イオン(HCO )の物質量および炭酸イオン(CO 2-)の物質量よりも大きい場合、排液46には、亜硫酸水素イオン(HSO )が残留する。[化学式1]により生成された水素イオン(H)の物質量が、液体40に含まれる炭酸水素イオン(HCO )の物質量および炭酸イオン(CO 2-)の物質量よりも大きい場合、排液46には、水素イオン(H)が残留する。 The amount of substance of hydrogen sulfite ion (HSO 3- ) generated by [Chemical formula 1] is based on the amount of substance of hydrogen carbonate ion ( HCO 3- ) and the amount of substance of carbonate ion (CO 3-2- ) contained in the liquid 40. If it is too large, hydrogen sulfite ion (HSO 3- ) remains in the drainage 46. The amount of hydrogen ion (H + ) produced by [Chemical Formula 1] is larger than the amount of hydrogen carbonate ion ( HCO 3- ) and the amount of carbonate ion ( CO 3-2- ) contained in the liquid 40. In this case, hydrogen ions (H + ) remain in the drainage 46.
 本明細書において、[化学式1]により生成された亜硫酸水素イオン(HSO )および水素イオン(H)を、それぞれ亜硫酸水素イオンShIおよび水素イオンHIとする。物質量演算部74は、排液46の亜硫酸水素イオンShIの物質量を演算する。物質量とは、物質を構成する要素粒子の数を指す。要素粒子とは、物質を構成する原子または分子を指す。物質量は、例えばモル数である。モル数は、アボガドロ定数(6.02×1023)個の要素粒子の集合を単位とする数である。なお、物質量演算部74は、排液46の水素イオンHIの物質量を演算してもよい。 In the present specification, hydrogen sulfite ion (HSO 3- ) and hydrogen ion (H + ) generated by [Chemical Formula 1] are referred to as hydrogen sulfite ion ShI and hydrogen ion HI, respectively. The substance amount calculation unit 74 calculates the substance amount of the hydrogen sulfite ion ShI of the drainage 46. Amount of substance refers to the number of elemental particles that make up a substance. Element particles refer to the atoms or molecules that make up a substance. The amount of substance is, for example, the number of moles. The number of moles is a number in which a set of Avogadro constant (6.02 × 10 23 ) element particles is used as a unit. The substance amount calculation unit 74 may calculate the substance amount of the hydrogen ion HI of the drainage 46.
 出力制御部73は、動力装置50の出力を制御する。出力制御部73は、物質量演算部74により演算された排液46の亜硫酸水素イオンShIの物質量に基づいて、動力装置50の出力を制御する。動力装置50の出力が亜硫酸水素イオンShIの物質量に基づいて制御されることにより、出力制御部73は、動力装置50から排出される排ガス30の量を制御できる。 The output control unit 73 controls the output of the power unit 50. The output control unit 73 controls the output of the power device 50 based on the substance amount of the hydrogen sulfite ion ShI of the drainage 46 calculated by the substance amount calculation unit 74. By controlling the output of the power device 50 based on the amount of substance of the hydrogen sulfite ion ShI, the output control unit 73 can control the amount of the exhaust gas 30 discharged from the power device 50.
 物質量演算部74は、液体40のアルカリイオンAkIの物質量を演算してよい。出力制御部73は、物質量演算部74により演算された液体40のアルカリイオンAkIの物質量に基づいて、動力装置50の出力を制御してよい。動力装置50の出力がアルカリイオンAkIの物質量に基づいて制御されることにより、出力制御部73は、動力装置50から排出される排ガス30の量を制御できる。 The substance amount calculation unit 74 may calculate the substance amount of the alkaline ion AkI of the liquid 40. The output control unit 73 may control the output of the power device 50 based on the substance amount of the alkaline ion AkI of the liquid 40 calculated by the substance amount calculation unit 74. By controlling the output of the power device 50 based on the amount of substance of the alkaline ion AkI, the output control unit 73 can control the amount of the exhaust gas 30 discharged from the power device 50.
 船舶から海洋へ排出されるスクラバ排水のpHの規制値は、国際海事機関(IMO)により定められている。当該規制値は海域によって異なるが、最も厳しい海域においては、pHの当該規制値は船外排出時pH6.0以上(2020年現在)である。 The pH regulation value for scrubber wastewater discharged from ships to the ocean is set by the International Maritime Organization (IMO). The regulation value varies depending on the sea area, but in the strictest sea area, the regulation value of pH is 6.0 or more at the time of outboard discharge (as of 2020).
 本例の排ガス処理装置100においては、出力制御部73が、排液46の亜硫酸水素イオンShIの物質量に基づいて、動力装置50の出力を制御する。このため、本例の排ガス処理装置100においては、出力制御部73は、排液46のpHが規制値を満たすように、動力装置50の出力を制御できる。本例の排ガス処理装置100においては、出力制御部73が、液体40のアルカリイオンAkIの物質量に基づいて、動力装置50の出力を制御する。このため、本例の排ガス処理装置100においては、出力制御部73は、排液46のpHが規制値を満たすように、動力装置50の出力を制御できる。 In the exhaust gas treatment device 100 of this example, the output control unit 73 controls the output of the power device 50 based on the amount of substance of the hydrogen sulfite ion ShI of the effluent 46. Therefore, in the exhaust gas treatment device 100 of this example, the output control unit 73 can control the output of the power device 50 so that the pH of the drainage 46 satisfies the regulated value. In the exhaust gas treatment device 100 of this example, the output control unit 73 controls the output of the power device 50 based on the amount of substance of the alkaline ion AkI of the liquid 40. Therefore, in the exhaust gas treatment device 100 of this example, the output control unit 73 can control the output of the power device 50 so that the pH of the drainage 46 satisfies the regulated value.
 出力制御部73は、物質量演算部74により演算された、排液46の亜硫酸水素イオンShIの物質量および液体40のアルカリイオンAkIの物質量に基づいて、動力装置50の出力を制御してよい。物質量演算部74により演算された亜硫酸水素イオンShIの物質量がアルカリイオンAkIの物質量よりも大きい場合、出力制御部73は、動力装置50の出力を減少させてよい。出力制御部73が動力装置50の出力を減少させることにより、動力装置50から排出される排ガス30の量は低減しやすくなる。このため、排ガス30に含まれ、反応塔10に導入される硫黄酸化物(SO)の量は、低減しやすくなる。このため、アルカリイオンAkIと化学反応しない亜硫酸水素イオンShIの量および水素イオンHIの量が、動力装置50の出力が減少される前よりも、低減しやすくなる。このため、排液46のpHが、規制値を満たしやすくなる。 The output control unit 73 controls the output of the power device 50 based on the substance amount of hydrogen sulfite ion ShI of the drainage 46 and the substance amount of the alkali ion AkI of the liquid 40 calculated by the substance amount calculation unit 74. good. When the substance amount of the hydrogen sulfite ion ShI calculated by the substance amount calculation unit 74 is larger than the substance amount of the alkaline ion AkI, the output control unit 73 may reduce the output of the power unit 50. By reducing the output of the power device 50 by the output control unit 73, the amount of the exhaust gas 30 discharged from the power device 50 can be easily reduced. Therefore, the amount of sulfur oxides (SO x ) contained in the exhaust gas 30 and introduced into the reaction tower 10 can be easily reduced. Therefore, the amount of hydrogen sulfite ion ShI and the amount of hydrogen ion HI that do not chemically react with the alkaline ion AkI are more likely to be reduced than before the output of the power unit 50 was reduced. Therefore, the pH of the drainage 46 easily satisfies the regulation value.
 物質量演算部74により演算された亜硫酸水素イオンShIの物質量がアルカリイオンAkIの物質量よりも小さい場合、出力制御部73は、動力装置50の出力を増加させてよい。出力制御部73が動力装置50の出力を増加させることにより、動力装置50から排出される排ガス30の量は増加しやすくなる。このため、排ガス30に含まれ、反応塔10に導入される硫黄酸化物(SO)の量は、増加しやすくなる。このため、亜硫酸水素イオンShIおよび水素イオンHIと化学反応しないアルカリイオンAkIの量が、動力装置50の出力が減少される前よりも、低減しやすくなる。 When the substance amount of the hydrogen sulfite ion ShI calculated by the substance amount calculation unit 74 is smaller than the substance amount of the alkaline ion AkI, the output control unit 73 may increase the output of the power unit 50. By increasing the output of the power device 50 by the output control unit 73, the amount of the exhaust gas 30 discharged from the power device 50 tends to increase. Therefore, the amount of sulfur oxides (SO x ) contained in the exhaust gas 30 and introduced into the reaction tower 10 tends to increase. Therefore, the amount of the hydrogen sulfite ion ShI and the alkaline ion AkI that does not chemically react with the hydrogen ion HI is more likely to be reduced than before the output of the power unit 50 is reduced.
 出力制御部73は、亜硫酸水素イオンShIの物質量がアルカリイオンAkIの物質量以下である範囲で、動力装置50の出力を増加させてよい。出力制御部73は、排液46のpHが規制値を満たす範囲で、動力装置50の出力を増加させてよい。 The output control unit 73 may increase the output of the power device 50 as long as the amount of substance of hydrogen sulfite ion ShI is equal to or less than the amount of substance of alkaline ion AkI. The output control unit 73 may increase the output of the power unit 50 within a range in which the pH of the drainage 46 satisfies the regulated value.
 船舶用スクラバを稼働させるための燃料には、C重油が用いられる場合がある。当該C重油の硫黄(S)の濃度は、3.5重量%以下と規定されている。このため、船舶用スクラバにおいては、C重油の硫黄(S)の濃度が、当該濃度の上限である3.5重量%の場合であっても、スクラバ排水のpHが規制値を満たし、且つ、スクラバから排出される排ガスの二酸化硫黄(SO)等の濃度が規制値を満たすように、スクラバが設計されている。 Heavy oil C may be used as the fuel for operating the marine scrubber. The concentration of sulfur (S) in the C heavy oil is specified to be 3.5% by weight or less. Therefore, in the marine scrubber, even when the concentration of sulfur (S) in the heavy oil C is 3.5% by weight, which is the upper limit of the concentration, the pH of the scrubber wastewater satisfies the regulation value and The scrubber is designed so that the concentration of sulfur dioxide (SO 2 ), etc. in the exhaust gas emitted from the scrubber meets the regulation value.
 船舶用スクラバに通常用いられているC重油の硫黄(S)の濃度は、2.0~2.5重量%である。このため、船舶用スクラバが、2.0~2.5重量%の硫黄(S)濃度のC重油で稼働される場合、船舶用スクラバが備える反応塔および海水ポンプ等が、過剰に大きい場合がある。しかしながら、船舶用スクラバが2.0~2.5重量%の硫黄(S)濃度のC重油で稼働されることを想定して反応塔および海水ポンプ等が設計された場合、当該船舶用スクラバが3.5重量%の硫黄(S)濃度のC重油で稼働された場合に、スクラバ排水のpHが規制値を満たさなくなりやすく、且つ、スクラバから排出される排ガスの二酸化硫黄(SO)等の濃度が規制値を満たさなくなりやすい。 The concentration of sulfur (S) in heavy fuel oil C, which is usually used for marine scrubbers, is 2.0 to 2.5% by weight. Therefore, when the marine scrubber is operated with C heavy oil having a sulfur (S) concentration of 2.0 to 2.5% by weight, the reaction tower, seawater pump, etc. provided in the marine scrubber may be excessively large. be. However, if the reaction tower, seawater pump, etc. are designed on the assumption that the marine scrubber will be operated with C heavy oil having a sulfur (S) concentration of 2.0 to 2.5% by weight, the marine scrubber will be used. When operated with C heavy oil having a sulfur (S) concentration of 3.5% by weight, the pH of the scrubber wastewater tends not to meet the regulation value, and sulfur dioxide (SO 2 ), etc., of the exhaust gas discharged from the scrubber, etc. Concentration tends not to meet the regulation value.
 本例の排ガス処理装置100においては、出力制御部73が、排液46の亜硫酸水素イオンShIの物質量および液体40のアルカリイオンAkIの物質量に基づいて、動力装置50の出力を制御する。このため、排ガス処理装置100が、例えば2.0~2.5重量%の硫黄(S)濃度のC重油で稼働されることを想定して、動力装置50、第1ポンプ60、第2ポンプ62(後述)および浄化剤貯留部75(後述)等が設計された場合であっても、出力制御部73が動力装置50の出力を制御することにより、排液46のpHは規制値を満たしやすくなり、且つ、浄化ガス34の二酸化硫黄(SO)等の濃度は規制値を満たしやすくなる。このため、本例の排ガス処理装置100においては、排液46のpHが規制値を満たし、且つ、浄化ガス34の二酸化硫黄(SO)等の濃度が規制値を満たしつつ、動力装置50、反応塔10、第1ポンプ60、第2ポンプ62(後述)および浄化剤貯留部75(後述)等の大型化を抑制できる。 In the exhaust gas treatment device 100 of this example, the output control unit 73 controls the output of the power device 50 based on the amount of substance of hydrogen sulfite ion ShI of the drainage 46 and the amount of substance of alkali ion AkI of the liquid 40. Therefore, assuming that the exhaust gas treatment device 100 is operated with C heavy oil having a sulfur (S) concentration of, for example, 2.0 to 2.5% by weight, the power device 50, the first pump 60, and the second pump Even when 62 (described later) and the purifying agent storage unit 75 (described later) are designed, the output control unit 73 controls the output of the power unit 50, so that the pH of the drainage 46 satisfies the regulation value. In addition, the concentration of sulfur dioxide (SO 2 ) or the like in the purifying gas 34 is likely to meet the regulation value. Therefore, in the exhaust gas treatment device 100 of this example, the pH of the waste liquid 46 satisfies the regulation value, and the concentration of sulfur dioxide (SO 2 ) or the like of the purification gas 34 satisfies the regulation value, while the power device 50, It is possible to suppress the increase in size of the reaction tower 10, the first pump 60, the second pump 62 (described later), the purifying agent storage unit 75 (described later), and the like.
 排ガス処理装置100は、出力測定部95を備えてよい。出力測定部95は、動力装置50の出力を測定する。排ガス30の硫黄(S)の濃度は、動力装置50の出力が大きいほど、大きくなりやすい。物質量演算部74は、出力測定部95により測定された動力装置50の出力に基づいて、排液46の亜硫酸水素イオンShIの物質量を演算してよい。 The exhaust gas treatment device 100 may include an output measuring unit 95. The output measuring unit 95 measures the output of the power unit 50. The concentration of sulfur (S) in the exhaust gas 30 tends to increase as the output of the power unit 50 increases. The substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the drainage 46 based on the output of the power device 50 measured by the output measurement unit 95.
 排ガス処理装置100は、排ガス硫黄濃度測定部91を備えてよい。排ガス硫黄濃度測定部91は、反応塔10に導入される排ガス30の硫黄(S)の濃度を測定する。排ガス30の硫黄(S)の濃度は、動力装置50の出力が大きいほど、大きくなりやすい。物質量演算部74は、排ガス硫黄濃度測定部91により測定された排ガス30の硫黄(S)の濃度に基づいて、排液46の亜硫酸水素イオンShIの物質量を演算してよい。 The exhaust gas treatment device 100 may include an exhaust gas sulfur concentration measuring unit 91. The exhaust gas sulfur concentration measuring unit 91 measures the sulfur (S) concentration of the exhaust gas 30 introduced into the reaction tower 10. The concentration of sulfur (S) in the exhaust gas 30 tends to increase as the output of the power unit 50 increases. The substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the waste liquid 46 based on the sulfur (S) concentration of the exhaust gas 30 measured by the exhaust gas sulfur concentration measuring unit 91.
 本例においては、排ガス硫黄濃度測定部91は、排ガス導入管32に設けられている。排ガス硫黄濃度測定部91は、排ガス導入管32を通過する排ガス30の硫黄(S)の濃度を測定してよい。 In this example, the exhaust gas sulfur concentration measuring unit 91 is provided in the exhaust gas introduction pipe 32. The exhaust gas sulfur concentration measuring unit 91 may measure the concentration of sulfur (S) in the exhaust gas 30 passing through the exhaust gas introduction pipe 32.
 排ガス処理装置100は、排ガス量測定部92を備えてよい。排ガス量測定部92は、動力装置50が排出する排ガス30の量を測定する。排ガス30の当該量とは、動力装置50が単位時間当たりに排出する排ガス30の体積を指してよく、質量を指してもよい。排ガス30の量は、動力装置50の負荷が大きいほど、多くなりやすい。物質量演算部74は、排ガス量測定部92により測定された排ガス30の量に基づいて、排液46の亜硫酸水素イオンShIの物質量を演算してよい。 The exhaust gas treatment device 100 may include an exhaust gas amount measuring unit 92. The exhaust gas amount measuring unit 92 measures the amount of the exhaust gas 30 discharged by the power unit 50. The amount of the exhaust gas 30 may refer to the volume of the exhaust gas 30 discharged by the power unit 50 per unit time, or may refer to the mass. The amount of the exhaust gas 30 tends to increase as the load on the power unit 50 increases. The substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the effluent 46 based on the amount of the exhaust gas 30 measured by the exhaust gas amount measurement unit 92.
 本例においては、排ガス量測定部92は、排ガス導入管32に設けられている。排ガス量測定部92は、排ガス導入管32における排ガス30の進行方向に交差する、排ガス導入管32の断面を、単位時間当たり通過する排ガス30の流量を測定してよい。 In this example, the exhaust gas amount measuring unit 92 is provided in the exhaust gas introduction pipe 32. The exhaust gas amount measuring unit 92 may measure the flow rate of the exhaust gas 30 passing through the cross section of the exhaust gas introduction pipe 32 intersecting the traveling direction of the exhaust gas 30 in the exhaust gas introduction pipe 32 per unit time.
 排ガス処理装置100は、亜硫酸水素イオン濃度測定部93を備えてよい。亜硫酸水素イオン濃度測定部93は、排液46の亜硫酸水素イオンShIの濃度を測定する。上述したとおり、排ガス30は、液体40により処理された後、排液46となる。このため、排液46の亜硫酸水素イオンShIの濃度は、液体40による排ガス30の脱硫率を反映している。物質量演算部74は、排液46の亜硫酸水素イオンShIの濃度に基づいて、排液46の亜硫酸水素イオンShIの物質量を演算してよい。 The exhaust gas treatment device 100 may include a hydrogen sulfite ion concentration measuring unit 93. The hydrogen sulfite ion concentration measuring unit 93 measures the concentration of hydrogen sulfite ion ShI in the drainage 46. As described above, the exhaust gas 30 becomes a drainage 46 after being treated with the liquid 40. Therefore, the concentration of hydrogen sulfite ion ShI in the drainage 46 reflects the desulfurization rate of the exhaust gas 30 by the liquid 40. The substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the drainage 46 based on the concentration of the hydrogen sulfite ion ShI of the drainage 46.
 本例においては、亜硫酸水素イオン濃度測定部93は、排水管20に設けられている。亜硫酸水素イオン濃度測定部93は、排水管20を通過する排液46の亜硫酸水素イオンShIの濃度を測定してよい。 In this example, the hydrogen sulfite ion concentration measuring unit 93 is provided in the drain pipe 20. The hydrogen sulfite ion concentration measuring unit 93 may measure the concentration of hydrogen sulfite ion ShI in the drainage 46 passing through the drain pipe 20.
 上述したとおり、流量制御部70は、液体40の流量を制御する。物質量演算部74は、流量制御部70により制御された液体40の流量に基づいて、液体40のアルカリイオンAkIの物質量を演算してよい。物質量演算部74により演算された亜硫酸水素イオンShIの物質量がアルカリイオンAkIの物質量よりも大きい場合、流量制御部70は、液体40の流量を増加させてよい。流量制御部70が液体40の流量を増加させることにより、液体40に含まれ、反応塔10に供給されるアルカリイオンAkIの量が増加しやすくなる。このため、排液46のpHが、規制値を満たしやすくなる。 As described above, the flow rate control unit 70 controls the flow rate of the liquid 40. The substance amount calculation unit 74 may calculate the substance amount of the alkali ion AkI of the liquid 40 based on the flow rate of the liquid 40 controlled by the flow rate control unit 70. When the substance amount of hydrogen sulfite ion ShI calculated by the substance amount calculation unit 74 is larger than the substance amount of the alkali ion AkI, the flow rate control unit 70 may increase the flow rate of the liquid 40. By increasing the flow rate of the liquid 40 by the flow rate control unit 70, the amount of alkaline ion AkI contained in the liquid 40 and supplied to the reaction tower 10 tends to increase. Therefore, the pH of the drainage 46 easily satisfies the regulation value.
 排ガス処理装置100は、第2ポンプ62、導入管24、浄化剤貯留部75および浄化剤供給量制御部77を備えてよい。導入管24は、浄化剤貯留部75と排水管20とを接続する。浄化剤貯留部75には、浄化剤78が貯留されている。 The exhaust gas treatment device 100 may include a second pump 62, an introduction pipe 24, a purifying agent storage unit 75, and a purifying agent supply amount control unit 77. The introduction pipe 24 connects the purifying agent storage portion 75 and the drain pipe 20. The purifying agent 78 is stored in the purifying agent storage unit 75.
 浄化剤78は、排液46の亜硫酸水素イオンShIの少なくとも一部を除去する。浄化剤78は、液体40および排液46の少なくとも一方に供給されてよい。本例においては、浄化剤78は排液46に供給される。 The purifying agent 78 removes at least a part of the hydrogen sulfite ion ShI of the drainage 46. The purifying agent 78 may be supplied to at least one of the liquid 40 and the drain 46. In this example, the purifying agent 78 is supplied to the drainage 46.
 浄化剤供給量制御部77は、浄化剤78の供給量を制御する。本例においては、浄化剤供給量制御部77は、導入管24を流れる浄化剤78の流量を制御する。第2ポンプ62は、導入管24に設けられてよい。本例の第2ポンプ62は、浄化剤78を排水管20に供給する。なお、浄化剤78が液体40に供給される場合、浄化剤78は導入管22に供給されてよい。 The purifying agent supply amount control unit 77 controls the supply amount of the purifying agent 78. In this example, the purifying agent supply amount control unit 77 controls the flow rate of the purifying agent 78 flowing through the introduction pipe 24. The second pump 62 may be provided in the introduction pipe 24. The second pump 62 of this example supplies the purifying agent 78 to the drain pipe 20. When the purifying agent 78 is supplied to the liquid 40, the purifying agent 78 may be supplied to the introduction pipe 22.
 浄化剤供給量制御部77は、バルブ76を有してよい。本例においては、浄化剤供給量制御部77は、浄化剤78の供給量をバルブ76により制御する。浄化剤供給量制御部77は、排水管20に供給される浄化剤78の供給量を制御してよい。排水管20に供給される浄化剤78の供給量とは、排水管20に単位時間当たり供給される浄化剤78の体積を指してよく、質量を指してもよい。排水管20において、浄化剤78は排液46と混合される。 The purifying agent supply amount control unit 77 may have a valve 76. In this example, the purifying agent supply amount control unit 77 controls the supply amount of the purifying agent 78 by the valve 76. The purifying agent supply amount control unit 77 may control the supply amount of the purifying agent 78 supplied to the drain pipe 20. The supply amount of the purifying agent 78 supplied to the drain pipe 20 may refer to the volume of the purifying agent 78 supplied to the drain pipe 20 per unit time, or may refer to the mass. In the drain pipe 20, the purifying agent 78 is mixed with the drainage 46.
 浄化剤78は、マグネシウム化合物、ナトリウム化合物およびカルシウム化合物の少なくともいずれかであってよい。浄化剤78は、水酸化マグネシウム(Mg(OH))、酸化マグネシウム(MgO)、水酸化ナトリウム(NaOH)、炭酸水素ナトリウム(NaCO)および炭酸カルシウム(CaCO)、の少なくともいずれかであってよい。 The purifying agent 78 may be at least one of a magnesium compound, a sodium compound and a calcium compound. The purifying agent 78 is at least one of magnesium hydroxide (Mg (OH) 2 ), magnesium oxide (MgO), sodium hydroxide (NaOH), sodium hydrogen carbonate (Na 2 CO 3 ) and calcium carbonate (CaCO 3 ). May be.
 浄化剤78が水酸化ナトリウム(NaOH)である場合、排液46に含まれる亜硫酸水素イオンShI(HSO )と浄化剤78との反応は、下記の[化学式4]で示される。
 [化学式4]
 HSO +H+2NaOH→NaSO+H
When the purifying agent 78 is sodium hydroxide (NaOH), the reaction between the hydrogen sulfite ion ShI (HSO 3- ) contained in the waste liquid 46 and the purifying agent 78 is represented by the following [Chemical Formula 4].
[Chemical formula 4]
HSO 3- + H + + 2 NaOH → Na 2 SO 4 + H 2 O
 [化学式4]における水素イオン(H)は、[化学式1]で生成した水素イオン(H)であってよい。亜硫酸水素イオンShIの少なくとも一部は、[化学式4]に示される化学反応により、硫酸ナトリウム(NaSO)と水(HO)になる。硫酸ナトリウム(NaSO)水溶液には、硫酸イオン(SO 2-)が含まれる。 The hydrogen ion (H +) in [Chemical formula 4] may be the hydrogen ion (H + ) generated in [Chemical formula 1]. At least a part of hydrogen sulfite ion ShI becomes sodium sulfate (Na 2 SO 4 ) and water (H 2 O) by the chemical reaction shown in [Chemical formula 4]. The aqueous solution of sodium sulfate (Na 2 SO 4 ) contains sulfate ions (SO 4-2 ).
 物質量演算部74は、浄化剤供給量制御部77により制御された浄化剤78の供給量に基づいて、液体40のアルカリイオンAkIの物質量を演算してよい。浄化剤78が供給された場合、浄化剤78は、[化学式4]に示されるとおり亜硫酸水素イオンShIと化学反応するので、亜硫酸水素イオンShIの物質量は、浄化剤78が供給されない場合における亜硫酸水素イオンShIの物質量よりも小さくなりやすい。出力制御部73は、浄化剤78が供給された場合における亜硫酸水素イオンShIの物質量に基づいて、動力装置50の出力を制御してよい。 The substance amount calculation unit 74 may calculate the substance amount of the alkaline ion AkI of the liquid 40 based on the supply amount of the purifying agent 78 controlled by the purifying agent supply amount control unit 77. When the purifying agent 78 is supplied, the purifying agent 78 chemically reacts with the hydrogen sulfite ion ShI as shown in [Chemical formula 4], so that the amount of substance of the hydrogen sulfite ion ShI is the amount of the sulfite when the purifying agent 78 is not supplied. It tends to be smaller than the amount of substance of hydrogen ion ShI. The output control unit 73 may control the output of the power device 50 based on the amount of substance of the hydrogen sulfite ion ShI when the purifying agent 78 is supplied.
 排ガス処理装置100は、第1pH計89を備えてよい。第1pH計89は、排液46のpHを測定する。本例においては、第1pH計89は、排水管20に設けられている。物質量演算部74は、第1pH計89により測定された排液46のpHに基づいて、排液46の亜硫酸水素イオンShIの物質量を演算してよい。[化学式1]において、亜硫酸水素イオンShIの物質量と水素イオンHIの物質量とは、等しい。このため、物質量演算部74は、排液46のpHに基づいて、排液46の亜硫酸水素イオンShIの物質量を演算できる。 The exhaust gas treatment device 100 may include a first pH meter 89. The first pH meter 89 measures the pH of the drainage 46. In this example, the first pH meter 89 is provided in the drain pipe 20. The substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the drainage liquid 46 based on the pH of the drainage liquid 46 measured by the first pH meter 89. In [Chemical Formula 1], the amount of substance of hydrogen sulfite ion ShI and the amount of substance of hydrogen ion HI are equal. Therefore, the substance amount calculation unit 74 can calculate the substance amount of the hydrogen sulfite ion ShI of the drainage 46 based on the pH of the drain 46.
 なお、排液46に浄化剤78が供給される場合、第1pH計89は浄化剤78が供給される前の排液46のpHを測定してよい。第1pH計89が、浄化剤78が供給される前の排液46のpHを測定することにより、第1pH計89は、液体40と排ガス30とが、反応塔10の内部において[化学式1]に示される化学反応をすることにより生成される排液46のpHを測定しやすくなる。 When the purifying agent 78 is supplied to the drainage liquid 46, the first pH meter 89 may measure the pH of the drainage liquid 46 before the purifying agent 78 is supplied. The first pH meter 89 measures the pH of the drainage 46 before the purifying agent 78 is supplied, so that the first pH meter 89 has the liquid 40 and the exhaust gas 30 inside the reaction tower 10 [Chemical formula 1]. It becomes easy to measure the pH of the effluent 46 produced by carrying out the chemical reaction shown in.
 出力制御部73は、第1pH計89により測定された排液46のpHが予め定められたpHよりも大きい場合、動力装置50の出力を増加させてよい。出力制御部73は、pH計により測定された排液46のpHが予め定められたpH未満である場合、動力装置50の出力を減少させてよい。 The output control unit 73 may increase the output of the power unit 50 when the pH of the drainage 46 measured by the first pH meter 89 is higher than a predetermined pH. The output control unit 73 may reduce the output of the power unit 50 when the pH of the effluent 46 measured by the pH meter is less than a predetermined pH.
 排ガス処理装置100は、第2pH計88を備えてよい。第2pH計88は、液体40のpHを測定する。本例においては、第2pH計88は、導入管22に設けられている。物質量演算部74は、第2pH計88により測定された液体40のpHに基づいて、排液46の亜硫酸水素イオンShIの物質量を演算してよい。[化学式2]において、亜硫酸水素イオンShIの物質量と水素イオンHIの物質量とは等しく、且つ、炭酸水素イオン(HCO )の物質量は亜硫酸水素イオンShIの物質量の2倍である。[化学式3]において、亜硫酸水素イオンShIの物質量と水素イオンHIの物質量とは等しく、且つ、亜硫酸水素イオンShIの物質量と炭酸イオン(CO 2-)の物質量とは等しい。このため、物質量演算部74は、液体40のpHに基づいて、排液46の亜硫酸水素イオンShIの物質量を演算できる。 The exhaust gas treatment device 100 may include a second pH meter 88. The second pH meter 88 measures the pH of the liquid 40. In this example, the second pH meter 88 is provided in the introduction tube 22. The substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the drainage 46 based on the pH of the liquid 40 measured by the second pH meter 88. In [Chemical Formula 2], the amount of substance of hydrogen sulfite ion ShI is equal to the amount of substance of hydrogen ion HI, and the amount of substance of hydrogen carbonate ion (HCO 3- ) is twice the amount of substance of hydrogen sulfite ion ShI. .. In [Chemical Formula 3], the amount of substance of hydrogen sulfite ion ShI and the amount of substance of hydrogen ion HI are equal, and the amount of substance of hydrogen sulfite ion ShI and the amount of substance of carbonate ion (CO 3-2- ) are equal. Therefore, the substance amount calculation unit 74 can calculate the substance amount of the hydrogen sulfite ion ShI of the drainage 46 based on the pH of the liquid 40.
 図2は、液体40のpHと、液体40に含まれる炭酸(HCO)、炭酸水素イオン(HCO )および炭酸イオン(CO 2-)の物質量比との関係の一例を、それぞれ示す図である。図2において、炭酸(HCO)、炭酸水素イオン(HCO )および炭酸イオン(CO 2-)の物質量は、pHが3の場合における、炭酸(HCO)の物質量で規格化されている。 FIG. 2 shows an example of the relationship between the pH of the liquid 40 and the substance amount ratios of carbonic acid (H 2 CO 3 ), bicarbonate ion (HCO 3 ) and carbonate ion (CO 3-2- ) contained in the liquid 40. , Each is a diagram showing. In FIG. 2 , the amount of substance of carbonic acid (H 2 CO 3 ), hydrogen carbonate ion (HCO 3 ) and carbonate ion (CO 3-2- ) is the substance of carbonic acid (H 2 CO 3 ) when the pH is 3. It is standardized by quantity.
 図2より、炭酸(HCO)、炭酸水素イオン(HCO )および炭酸イオン(CO 2-)の物質量比は、液体40のpHに依存する。物質量演算部74は、液体40のpHに基づいて、炭酸(HCO)の物質量、炭酸水素イオン(HCO )の物質量、および、炭酸イオン(CO 2-)の物質量を演算してもよい。物質量演算部74は、当該演算された炭酸水素イオン(HCO )の物質量および炭酸イオン(CO 2-)の物質量の少なくとも一方に基づいて、排液46の亜硫酸水素イオンShIの物質量を演算してもよい。 From FIG. 2 , the substance amount ratio of carbonic acid (H 2 CO 3 ), bicarbonate ion (HCO 3 ) and carbonate ion (CO 3-2- ) depends on the pH of the liquid 40. The amount of substance calculation unit 74 is based on the pH of the liquid 40, the amount of substance of carbonic acid (H 2 CO 3 ), the amount of substance of hydrogen carbonate ion ( HCO 3 ), and the substance of carbonic acid ion (CO 3-2- ). You may calculate the amount. The substance amount calculation unit 74 determines the hydrogen sulfite ion ShI of the effluent 46 based on at least one of the calculated substance amount of hydrogen carbonate ion (HCO 3 ) and the substance amount of carbonate ion (CO 3-2- ). You may calculate the amount of substance.
 図3は、本発明の一つの実施形態に係る排ガス処理装置100のブロック図の一例を示す図である。図3においては、図1における排ガス導入管32、導入管24、導入管22および排水管20が太い実線で示されている。本例の排ガス処理装置100は、浄化ガス硫黄濃度測定部94、燃料供給部97および燃料消費量測定部98をさらに備える点で、図1に示される排ガス処理装置100と異なる。 FIG. 3 is a diagram showing an example of a block diagram of the exhaust gas treatment device 100 according to one embodiment of the present invention. In FIG. 3, the exhaust gas introduction pipe 32, the introduction pipe 24, the introduction pipe 22, and the drainage pipe 20 in FIG. 1 are shown by thick solid lines. The exhaust gas treatment device 100 of this example is different from the exhaust gas treatment device 100 shown in FIG. 1 in that it further includes a purified gas sulfur concentration measuring unit 94, a fuel supply unit 97, and a fuel consumption amount measuring unit 98.
 燃料供給部97は、動力装置50に、動力装置50を稼働させるための燃料96を供給する。排ガス処理装置100が船舶用スクラバである場合、燃料96は、例えばC重油である。燃料消費量測定部98は、燃料96の消費量を測定する。燃料96の消費量とは、動力装置50が単位時間当たりに消費する燃料96の体積を指してよく、質量を指してもよい。燃料96の消費量は、動力装置50の出力が大きいほど、多くなりやすい。 The fuel supply unit 97 supplies the power unit 50 with the fuel 96 for operating the power unit 50. When the exhaust gas treatment device 100 is a marine scrubber, the fuel 96 is, for example, C heavy oil. The fuel consumption measuring unit 98 measures the consumption of the fuel 96. The consumption amount of the fuel 96 may refer to the volume of the fuel 96 consumed by the power unit 50 per unit time, or may refer to the mass. The consumption of the fuel 96 tends to increase as the output of the power unit 50 increases.
 物質量演算部74は、燃料96の消費量に基づいて、排液46の亜硫酸水素イオンShIの物質量を演算してよい。燃料96がC重油である場合、燃料96には硫黄(S)が含まれる。このため、動力装置50による燃料96の消費に伴い、排ガス30には硫黄酸化物(SO)が含まれやすい。硫黄酸化物(SO)は、例えば亜硫酸ガス(SO)である。[化学式1]に示されるとおり、液体40が亜硫酸ガス(SO)を含む排ガス30を処理した場合(図1参照)、排液46には亜硫酸水素イオンShIが含まれやすい。 The substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the effluent 46 based on the consumption amount of the fuel 96. When the fuel 96 is heavy fuel oil C, the fuel 96 contains sulfur (S). Therefore, as the fuel 96 is consumed by the power unit 50, the exhaust gas 30 tends to contain sulfur oxides (SO x ). The sulfur oxide (SO x ) is, for example, sulfurous acid gas (SO 2 ). As shown in [Chemical Formula 1], when the liquid 40 treats the exhaust gas 30 containing sulfurous acid gas (SO 2 ) (see FIG. 1), the waste liquid 46 tends to contain hydrogen sulfite ion ShI.
 本例においては、物質量演算部74は、燃料消費量測定部98により測定された燃料96の消費量に基づいて、排液46の亜硫酸水素イオンShIの物質量を演算する。本例においては、出力制御部73は、亜硫酸水素イオンShIの当該物質量に基づいて、動力装置50の出力を制御する。このため、本例においては、出力制御部73は、排液46のpHが規制値を満たすように、動力装置50の出力を制御できる。 In this example, the substance amount calculation unit 74 calculates the substance amount of the hydrogen sulfite ion ShI of the effluent 46 based on the consumption amount of the fuel 96 measured by the fuel consumption amount measurement unit 98. In this example, the output control unit 73 controls the output of the power device 50 based on the amount of the substance of the hydrogen sulfite ion ShI. Therefore, in this example, the output control unit 73 can control the output of the power device 50 so that the pH of the drainage 46 satisfies the regulated value.
 浄化ガス硫黄濃度測定部94は、浄化ガス34の硫黄(S)の濃度を測定する。浄化ガス34は、上述したとおり、排ガス30が液体40により処理されたガスである。浄化ガス34には、排ガス30に含まれる硫黄酸化物(SO)等であって、液体40により処理されなかった硫黄酸化物(SO)等が残留している場合がある。物質量演算部74は、浄化ガス硫黄濃度測定部94により測定された浄化ガス34の硫黄(S)の濃度に基づいて、排液46の亜硫酸水素イオンShIの物質量を演算してよい。 The purified gas sulfur concentration measuring unit 94 measures the sulfur (S) concentration of the purified gas 34. As described above, the purified gas 34 is a gas in which the exhaust gas 30 is treated with the liquid 40. Sulfur oxides (SO x ) and the like contained in the exhaust gas 30 and not treated by the liquid 40 may remain in the purified gas 34. The substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the waste liquid 46 based on the sulfur (S) concentration of the purification gas 34 measured by the purification gas sulfur concentration measurement unit 94.
 本例においては、浄化ガス硫黄濃度測定部94は、排ガス排出口17に設けられている。浄化ガス硫黄濃度測定部94は、反応塔10の内部から外部に排ガス排出口17を通過する浄化ガス34の硫黄(S)の濃度を測定してよい。 In this example, the purified gas sulfur concentration measuring unit 94 is provided at the exhaust gas discharge port 17. The purified gas sulfur concentration measuring unit 94 may measure the concentration of sulfur (S) in the purified gas 34 passing through the exhaust gas discharge port 17 from the inside to the outside of the reaction tower 10.
 物質量演算部74は、排ガス硫黄濃度測定部91により測定された排ガス30の硫黄(S)の濃度、および、浄化ガス硫黄濃度測定部94により測定された浄化ガス34の硫黄(S)の濃度の少なくとも一方に基づいて、排液46の亜硫酸水素イオンShIの物質量を演算してもよい。排ガス30の硫黄(S)の濃度と浄化ガス34の硫黄(S)の濃度との差分は、液体40による排ガス30の脱硫率を反映している。 The substance amount calculation unit 74 has the sulfur (S) concentration of the exhaust gas 30 measured by the exhaust gas sulfur concentration measuring unit 91 and the sulfur (S) concentration of the purified gas 34 measured by the purified gas sulfur concentration measuring unit 94. The amount of substance of the hydrogen sulfite ion ShI of the effluent 46 may be calculated based on at least one of the above. The difference between the sulfur (S) concentration of the exhaust gas 30 and the sulfur (S) concentration of the purified gas 34 reflects the desulfurization rate of the exhaust gas 30 by the liquid 40.
 排ガス硫黄濃度測定部91により測定された排ガス30の硫黄(S)の濃度を、硫黄濃度Ds[%]とする。燃料消費量測定部98により測定された燃料96の消費量を、消費量Cs[g/kWh]とする。出力測定部95により測定された動力装置50の出力を、出力Ps[kW]とする。亜硫酸水素イオン濃度測定部93により測定された排液46の亜硫酸水素イオンShIの濃度を、亜硫酸水素イオン濃度Dshとする。なお、出力Psは、排ガス量測定部92により排ガス30の量に基づいて、算出されてもよい。 The sulfur (S) concentration of the exhaust gas 30 measured by the exhaust gas sulfur concentration measuring unit 91 is defined as the sulfur concentration Ds [%]. The consumption amount of the fuel 96 measured by the fuel consumption amount measuring unit 98 is defined as the consumption amount Cs [g / kWh]. The output of the power unit 50 measured by the output measuring unit 95 is defined as an output Ps [kW]. The concentration of hydrogen sulfite ion ShI in the waste liquid 46 measured by the hydrogen sulfite ion concentration measuring unit 93 is defined as the hydrogen sulfite ion concentration Dsh. The output Ps may be calculated by the exhaust gas amount measuring unit 92 based on the amount of the exhaust gas 30.
 物質量演算部74は、硫黄濃度Ds、消費量Cs、出力Psおよび亜硫酸水素イオン濃度Dshに基づいて、亜硫酸水素イオンShIの物質量を演算してよい。当該物質量は、排液46のpHに影響を与える第1因子である。当該第1因子を、第1因子S1[mol/h]とする。排ガス30に含まれる硫黄(S)の脱硫率を、脱硫率De[%]とする。第1因子S1は、以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
The substance amount calculation unit 74 may calculate the substance amount of hydrogen sulfite ion ShI based on the sulfur concentration Ds, the consumption amount Cs, the output Ps, and the hydrogen sulfite ion concentration Dsh. The amount of the substance is the first factor that affects the pH of the effluent 46. The first factor is defined as the first factor S1 [mol / h]. The desulfurization rate of sulfur (S) contained in the exhaust gas 30 is defined as the desulfurization rate De [%]. The first factor S1 is represented by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
 脱硫率Deは、亜硫酸イオン濃度Dshに基づいて算出されてよい。脱硫率Deは、排ガス30の硫黄(S)の濃度と浄化ガス34の硫黄(S)の濃度とに基づいて、算出されてもよい。動力装置50の出力Psは、排ガス量測定部92により測定された排ガス30の量に基づいて、算出されてもよい。 The desulfurization rate De may be calculated based on the sulfite ion concentration Dsh. The desulfurization rate De may be calculated based on the concentration of sulfur (S) in the exhaust gas 30 and the concentration of sulfur (S) in the purified gas 34. The output Ps of the power unit 50 may be calculated based on the amount of the exhaust gas 30 measured by the exhaust gas amount measuring unit 92.
 第1因子S1は、排ガス30に含まれる硫黄(S)のうち、液体40と[化学式1]の化学反応をすることにより、亜硫酸水素イオンShIとなった物質量を表す。出力制御部73は、第1因子S1に基づいて、動力装置50の出力を制御してよい。 The first factor S1 represents the amount of the sulfur (S) contained in the exhaust gas 30 that has become the hydrogen sulfite ion ShI by the chemical reaction of the liquid 40 with the [chemical formula 1]. The output control unit 73 may control the output of the power device 50 based on the first factor S1.
 図4は、本発明の一つの実施形態に係る排ガス処理装置100のブロック図の他の一例を示す図である。本例の排ガス処理装置100は、アルカリイオン濃度測定部82をさらに備える点で、図3に示される排ガス処理装置100と異なる。 FIG. 4 is a diagram showing another example of the block diagram of the exhaust gas treatment device 100 according to one embodiment of the present invention. The exhaust gas treatment device 100 of this example is different from the exhaust gas treatment device 100 shown in FIG. 3 in that it further includes an alkaline ion concentration measuring unit 82.
 アルカリイオン濃度測定部82は、液体40のアルカリイオンAkIの濃度を測定する。上述したとおり、本例においては、アルカリイオンAkIは、炭酸水素イオン(HCO )および炭酸イオン(CO 2-)の少なくとも一方である。本例においては、アルカリイオン濃度測定部82は、導入管22に設けられている。アルカリイオン濃度測定部82は、導入管22を通過する液体40のアルカリイオンAkIの濃度を測定してよい。物質量演算部74は、アルカリイオン濃度測定部82により測定された、液体40のアルカリイオンAkIの濃度に基づいて、液体40のアルカリイオンの物質量を演算してよい。 The alkaline ion concentration measuring unit 82 measures the concentration of alkaline ion AkI in the liquid 40. As mentioned above, in this example, the alkaline ion AkI is at least one of hydrogen carbonate ion (HCO 3- ) and carbonate ion (CO 3-2- ). In this example, the alkaline ion concentration measuring unit 82 is provided in the introduction pipe 22. The alkaline ion concentration measuring unit 82 may measure the concentration of the alkaline ion AkI of the liquid 40 passing through the introduction pipe 22. The substance amount calculation unit 74 may calculate the substance amount of the alkali ion of the liquid 40 based on the concentration of the alkali ion AkI of the liquid 40 measured by the alkali ion concentration measuring unit 82.
 流量制御部70により制御された液体40の流量を、流量F[l/h]とする。本例においては、流量Fは、バルブ72-1~バルブ72-3(図1参照)を通過する液体40の流量の合計である。アルカリイオン濃度測定部82により測定されたアルカリイオンAkIの濃度を、アルカリイオン濃度Da[%]とする。 The flow rate of the liquid 40 controlled by the flow rate control unit 70 is defined as a flow rate F [l / h]. In this example, the flow rate F is the total flow rate of the liquid 40 passing through the valves 72-1 to 72-3 (see FIG. 1). The concentration of the alkaline ion AkI measured by the alkaline ion concentration measuring unit 82 is defined as the alkaline ion concentration Da [%].
 物質量演算部74は、流量Fおよびアルカリイオン濃度Daに基づいて、アルカリイオンAkIの物質量を演算してよい。当該物質量は、排液46のpHに影響を与える第2因子である。当該第2因子を、第2因子S2[mol/h]とする。第2因子S2は、以下の式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 なお、流量Fは、アルカリイオンAkIを含まない水(HO)で希釈された液体40の流量であってもよい。アルカリイオン濃度Daは、アルカリイオンAkIを含まない水(HO)で希釈された液体40のアルカリイオンAkIの濃度であってもよい。
The substance amount calculation unit 74 may calculate the substance amount of the alkali ion AkI based on the flow rate F and the alkali ion concentration Da. The amount of the substance is a second factor that affects the pH of the effluent 46. The second factor is referred to as the second factor S2 [mol / h]. The second factor S2 is represented by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
The flow rate F may be the flow rate of the liquid 40 diluted with water ( H2O ) containing no alkaline ion AkI. The alkaline ion concentration Da may be the concentration of the alkaline ion AkI of the liquid 40 diluted with water ( H2O ) containing no alkaline ion AkI.
 上述したとおり、亜硫酸水素イオンShIは、[化学式1]の化学反応により生成される。第2因子S2は、当該亜硫酸水素イオンShIと[化学式2]および[化学式3]の少なくとも一方の化学反応をすることが可能な、アルカリイオンAkIの物質量を表す。出力制御部73は、第2因子S2に基づいて、動力装置50の出力Psを制御してよい。 As described above, hydrogen sulfite ion ShI is produced by the chemical reaction of [Chemical formula 1]. The second factor S2 represents the amount of substance of the alkaline ion AkI capable of undergoing a chemical reaction with the hydrogen sulfite ion ShI at least one of [Chemical formula 2] and [Chemical formula 3]. The output control unit 73 may control the output Ps of the power unit 50 based on the second factor S2.
 出力制御部73は、第1因子S1および第2因子S2に基づいて、動力装置50の出力Psを制御してよい。出力制御部73は、第2因子S2が第1因子S1よりも大きくなるように、動力装置50の出力Psを制御してよい。第2因子S2が第1因子S1よりも大きくなるように出力Psが制御されることにより、排液46のpHが規制値を満たしやすくなる。 The output control unit 73 may control the output Ps of the power device 50 based on the first factor S1 and the second factor S2. The output control unit 73 may control the output Ps of the power device 50 so that the second factor S2 is larger than the first factor S1. By controlling the output Ps so that the second factor S2 is larger than the first factor S1, the pH of the drainage 46 is likely to satisfy the regulation value.
 図5は、本発明の一つの実施形態に係る排ガス処理装置100のブロック図の他の一例を示す図である。本例の排ガス処理装置100は、管25、貯留部87、貯留量制御部86および気体供給部85をさらに備える点で、図3に示される排ガス処理装置100と異なる。 FIG. 5 is a diagram showing another example of the block diagram of the exhaust gas treatment device 100 according to one embodiment of the present invention. The exhaust gas treatment device 100 of this example is different from the exhaust gas treatment device 100 shown in FIG. 3 in that it further includes a pipe 25, a storage unit 87, a storage amount control unit 86, and a gas supply unit 85.
 管25は、排水管20と貯留部87とを接続する。本例においては、排ガス処理装置100は、2つの管25(管25-1および管25-2)を備える。貯留量制御部86は、バルブ79を備える。本例においては、貯留量制御部86は2つのバルブ79(バルブ79-1およびバルブ79-2)を備える。本例において、バルブ79-1は管25-1に設けられ、バルブ79-2は管25-2に設けられている。 The pipe 25 connects the drain pipe 20 and the storage unit 87. In this example, the exhaust gas treatment device 100 includes two pipes 25 (pipe 25-1 and pipe 25-2). The storage amount control unit 86 includes a valve 79. In this example, the storage amount control unit 86 includes two valves 79 (valve 79-1 and valve 79-2). In this example, the valve 79-1 is provided in the pipe 25-1, and the valve 79-2 is provided in the pipe 25-2.
 貯留部87は、排液46の少なくとも一部を貯留する。貯留部87は、例えば脱炭酸塔である。排水管20を流れる排液46の少なくとも一部は、管25-1を流れた後、貯留部87に貯留される。貯留部87に貯留されている排液47の少なくとも一部は、管25-2を流れた後、排水管20に流れる。 The storage unit 87 stores at least a part of the drainage 46. The storage unit 87 is, for example, a decarbonation tower. At least a part of the drainage 46 flowing through the drainage pipe 20 flows through the pipe 25-1, and then is stored in the storage unit 87. At least a part of the drainage 47 stored in the storage unit 87 flows through the pipe 25-2 and then into the drainage pipe 20.
 貯留量制御部86は、貯留部87に貯留する排液46の量を制御する。本例においては、貯留量制御部86は、バルブ79-1を制御することにより、管25-1を流れる排液46の量を制御する。本例においては、貯留量制御部86は、バルブ79-2を制御することにより、管25-2を流れる排液47の量を制御する。貯留部87が脱炭酸塔である場合、排液47は、排液46に含まれる炭酸水素イオン(HCO )の少なくとも一部が除去された排液である。 The storage amount control unit 86 controls the amount of the drainage liquid 46 stored in the storage unit 87. In this example, the storage amount control unit 86 controls the amount of the drainage 46 flowing through the pipe 25-1 by controlling the valve 79-1. In this example, the storage amount control unit 86 controls the amount of the drainage 47 flowing through the pipe 25-2 by controlling the valve 79-2. When the reservoir 87 is a decarboxylation tower, the drainage 47 is a drainage from which at least a part of hydrogen carbonate ion (HCO 3- ) contained in the drainage 46 has been removed.
 管25-1を流れる排液46の量とは、管25-1を単位時間当たりに流れる排液46の体積を指してよく、質量を指してもよい。管25-2を流れる排液47の量とは、管25-2を単位時間当たりに流れる排液47の体積を指してよく、質量を指してもよい。 The amount of the drainage 46 flowing through the pipe 25-1 may refer to the volume of the drainage 46 flowing through the pipe 25-1 per unit time, or may refer to the mass. The amount of the drainage 47 flowing through the pipe 25-2 may refer to the volume of the drainage 47 flowing through the pipe 25-2 per unit time, or may refer to the mass.
 気体供給部85は、貯留部87に気体を供給する。当該気体は、大気であってよい。貯留部87においては、排液46に含まれる炭酸水素イオン(HCO )から、二酸化炭素(CO)が生成されてよい。当該二酸化炭素(CO)は、曝気により大気に放出されてよい。本例においては、当該二酸化炭素(CO)は、気体供給部85により供給された気体により、曝気される。 The gas supply unit 85 supplies gas to the storage unit 87. The gas may be the atmosphere. In the storage unit 87, carbon dioxide (CO 2 ) may be generated from the hydrogen carbonate ion (HCO 3- ) contained in the waste liquid 46. The carbon dioxide (CO 2 ) may be released into the atmosphere by aeration. In this example, the carbon dioxide (CO 2 ) is aerated by the gas supplied by the gas supply unit 85.
 排液47は、排水管20において排液46と混合されてよい。排液46と混合された排液47は、排ガス処理装置100の外部に排出されてよい。貯留部87が脱炭酸塔である場合、排液47のpHは、排液46のpHよりも大きくなりやすい。このため、排液47と混合された排液46のpHは、排液47と混合されない排液46のpHよりも大きくなりやすい。このため、排液47と混合された排液46のpHは、規制値を満たしやすくなる。 The drainage 47 may be mixed with the drainage 46 in the drainage pipe 20. The drainage 47 mixed with the drainage 46 may be discharged to the outside of the exhaust gas treatment device 100. When the reservoir 87 is a decarboxylation tower, the pH of the drainage 47 tends to be higher than the pH of the drainage 46. Therefore, the pH of the drainage 46 mixed with the drainage 47 tends to be higher than the pH of the drainage 46 not mixed with the drainage 47. Therefore, the pH of the drainage 46 mixed with the drainage 47 easily satisfies the regulation value.
 物質量演算部74は、貯留量制御部86により制御された排液46の量に基づいて、液体40のアルカリイオンAkIの物質量を演算してよい。貯留量制御部86により制御された排液46の量が多いほど、排水管20において排液47と混合された排液46のpHは大きくなりやすい。このため、貯留量制御部86により制御された排液46の量が多いほど、第2因子S2が第1因子S1よりも大きくなるアルカリイオンAkIの物質量は、小さくなりやすい。 The substance amount calculation unit 74 may calculate the substance amount of the alkali ion AkI of the liquid 40 based on the amount of the drainage 46 controlled by the storage amount control unit 86. The larger the amount of the drainage 46 controlled by the storage amount control unit 86, the higher the pH of the drainage 46 mixed with the drainage 47 in the drainage pipe 20 is likely to be. Therefore, as the amount of the drainage 46 controlled by the storage amount control unit 86 increases, the amount of substance of the alkaline ion AkI in which the second factor S2 becomes larger than that of the first factor S1 tends to be smaller.
 図6は、本発明の一つの実施形態に係る排ガス処理装置100のブロック図の他の一例を示す図である。本例の排ガス処理装置100は、管23および混合比制御部84をさらに備える点で、図5に示される排ガス処理装置100と異なる。 FIG. 6 is a diagram showing another example of the block diagram of the exhaust gas treatment device 100 according to one embodiment of the present invention. The exhaust gas treatment device 100 of this example is different from the exhaust gas treatment device 100 shown in FIG. 5 in that it further includes a pipe 23 and a mixing ratio control unit 84.
 管23は、導入管22と排水管20とを接続する。本例においては、混合比制御部84はバルブ83を備える。本例において、バルブ83は、管23に設けられている。 The pipe 23 connects the introduction pipe 22 and the drain pipe 20. In this example, the mixing ratio control unit 84 includes a valve 83. In this example, the valve 83 is provided on the pipe 23.
 導入管22を流れる液体40の一部は、管23を流れる。本例においては、混合比制御部84は、バルブ83を制御することにより、管23を流れる液体40の流量を制御する。管23を流れる液体40の流量とは、管23を単位時間当たりに流れる液体40の体積を指してよく、質量を指してもよい。 A part of the liquid 40 flowing through the introduction pipe 22 flows through the pipe 23. In this example, the mixing ratio control unit 84 controls the flow rate of the liquid 40 flowing through the pipe 23 by controlling the valve 83. The flow rate of the liquid 40 flowing through the tube 23 may refer to the volume of the liquid 40 flowing through the tube 23 per unit time, or may refer to the mass.
 混合比制御部84は、液体40の一部と、排液46の少なくとも一部との混合比を制御する。本例においては、混合比制御部84は、排水管20において混合される液体40と排液46との混合比を制御する。物質量演算部74は、混合比制御部84により制御された当該混合比に基づいて、液体40のアルカリイオンAkIの物質量を演算してよい。 The mixing ratio control unit 84 controls the mixing ratio of a part of the liquid 40 and at least a part of the drainage 46. In this example, the mixing ratio control unit 84 controls the mixing ratio of the liquid 40 and the drainage liquid 46 to be mixed in the drainage pipe 20. The substance amount calculation unit 74 may calculate the substance amount of the alkaline ion AkI of the liquid 40 based on the mixing ratio controlled by the mixing ratio control unit 84.
 排液46の亜硫酸水素イオンShIの濃度および水素イオンHIの濃度は、液体40と混合されることにより、希釈される。このため、液体40と混合された排液46のpHは、液体40と混合されない排液46のpHよりも大きくなりやすい。このため、混合比制御部84が、液体40の一部と排液46の少なくとも一部との混合比を制御することにより、液体40と混合された排液46のpHは、規制値を満たしやすくなる。なお、物質量演算部74は、混合比制御部84により制御された、液体40の一部と排液46の少なくとも一部との混合比、および、貯留量制御部86により制御された排液46の量に基づいて、液体40のアルカリイオンAkIの物質量を演算してもよい。 The concentration of hydrogen sulfite ion ShI and the concentration of hydrogen ion HI in the drainage 46 are diluted by mixing with the liquid 40. Therefore, the pH of the drainage 46 mixed with the liquid 40 tends to be higher than the pH of the drainage 46 not mixed with the liquid 40. Therefore, the mixing ratio control unit 84 controls the mixing ratio of a part of the liquid 40 and at least a part of the drainage 46, so that the pH of the drainage 46 mixed with the liquid 40 satisfies the regulation value. It will be easier. The substance amount calculation unit 74 has a mixing ratio of a part of the liquid 40 and at least a part of the drainage 46 controlled by the mixing ratio control unit 84, and the drainage controlled by the storage amount control unit 86. The amount of substance of the alkali ion AkI of the liquid 40 may be calculated based on the amount of 46.
 液体40が海水である場合、液体40には大気中の二酸化炭素(CO)が溶解している場合がある。当該液体40と二酸化炭素(CO)との反応は、下記の[化学式5]で示される。
 [化学式5]
 CO+HO→HCO
When the liquid 40 is seawater, carbon dioxide (CO 2 ) in the atmosphere may be dissolved in the liquid 40. The reaction between the liquid 40 and carbon dioxide (CO 2 ) is represented by the following [Chemical Formula 5].
[Chemical formula 5]
CO 2 + H 2 O → H 2 CO 3
 [化学式5]の化学反応により生成された炭酸(HCO)は、液体40において下記の[化学式6]で示されるように電離している。
 [化学式6]
 HCO→H+HCO
The carbonic acid (H 2 CO 3 ) produced by the chemical reaction of [Chemical formula 5] is ionized in the liquid 40 as shown by the following [Chemical formula 6].
[Chemical formula 6]
H 2 CO 3 → H + + HCO 3
 [化学式6]に示される炭酸水素イオン(HCO )の一部は、下記の[化学式7]で示されるように、炭酸イオン(CO 2-)にさらに電離している。
 [化学式7]
 HCO →H+CO 2-
 炭酸水素イオン(HCO )のうち、炭酸イオン(CO 2-)に電離する割合は、液体40に含まれる炭酸水素イオン(HCO )の濃度に依存する。[化学式6]および[化学式7]に示される水素イオン(H)により、液体40のpHは、水(HO)のpHよりも小さくなる場合がある。液体40に含まれる水素イオン(H)を、水素イオンHIとする。
A part of the bicarbonate ion ( HCO 3- ) shown in [Chemical formula 6] is further ionized into the carbonate ion (CO 3-2- ) as shown in the following [Chemical formula 7].
[Chemical formula 7]
HCO 3- → H + + CO 3 2-
The ratio of ionization to bicarbonate ion (CO 3-2- ) among hydrogen carbonate ion ( HCO 3 ) depends on the concentration of hydrogen carbonate ion (HCO 3 ) contained in the liquid 40. Due to the hydrogen ions (H + ) represented by [Chemical Formula 6] and [Chemical Formula 7], the pH of the liquid 40 may be lower than the pH of water ( H2O ). The hydrogen ion (H + ) contained in the liquid 40 is referred to as hydrogen ion HI.
 物質量演算部74は、液体40の水素イオンHIの濃度に基づいて、液体40のpH係数を演算してよい。物質量演算部74は、第2pH計88により測定された液体40のpHに基づいて、液体40のpH係数を演算してもよい。液体40のpH係数とは、排液46の亜硫酸水素イオンShIの物質量に影響を与える第1因子S1に対する、予め定められた係数である。当該pH係数を、pH係数Aとする。 The substance amount calculation unit 74 may calculate the pH coefficient of the liquid 40 based on the concentration of the hydrogen ion HI of the liquid 40. The substance amount calculation unit 74 may calculate the pH coefficient of the liquid 40 based on the pH of the liquid 40 measured by the second pH meter 88. The pH coefficient of the liquid 40 is a predetermined coefficient with respect to the first factor S1 that affects the amount of substance of the hydrogen sulfite ion ShI of the drainage 46. The pH coefficient is referred to as pH coefficient A.
 物質量演算部74は、第2pH計88により測定された液体40のpHに基づいて、液体40の炭酸水素イオン(HCO )の物質量を演算してよい。物質量演算部74は、第1pH計89により測定された排液46のpHに基づいて、排液46の亜硫酸水素イオンShIの物質量を演算してよい。物質量演算部74は、当該演算された液体40の炭酸水素イオン(HCO )の物質量と、当該演算された排液46の亜硫酸水素イオンShIの物質量とに基づいて、液体40のpH係数Aを演算してもよい。 The substance amount calculation unit 74 may calculate the substance amount of the hydrogen carbonate ion (HCO 3- ) of the liquid 40 based on the pH of the liquid 40 measured by the second pH meter 88. The substance amount calculation unit 74 may calculate the substance amount of the hydrogen sulfite ion ShI of the drainage liquid 46 based on the pH of the drainage liquid 46 measured by the first pH meter 89. The substance amount calculation unit 74 is based on the substance amount of the hydrogen carbonate ion (HCO 3- ) of the calculated liquid 40 and the substance amount of the hydrogen sulfite ion ShI of the calculated drainage 46, and is based on the substance amount of the liquid 40. The pH coefficient A may be calculated.
 物質量演算部74は、第2pH計88により測定された液体40のpHに基づいて、液体40の炭酸水素イオン(HCO )の濃度を演算してもよい。物質量演算部74は、第1pH計89により測定された排液46のpHに基づいて、排液46の亜硫酸水素イオンShIの濃度を演算してもよい。物質量演算部74は、当該演算された液体40の炭酸水素イオン(HCO )の濃度と、当該演算された排液46の亜硫酸水素イオンShIの濃度とに基づいて、液体40のpH係数Aを演算してもよい。 The substance amount calculation unit 74 may calculate the concentration of bicarbonate ion (HCO 3- ) of the liquid 40 based on the pH of the liquid 40 measured by the second pH meter 88. The substance amount calculation unit 74 may calculate the concentration of hydrogen sulfite ion ShI in the drainage 46 based on the pH of the drainage 46 measured by the first pH meter 89. The substance amount calculation unit 74 determines the pH coefficient of the liquid 40 based on the calculated concentration of hydrogen carbonate ion (HCO 3- ) of the liquid 40 and the concentration of the calculated hydrogen sulfite ion ShI of the discharged liquid 46. A may be calculated.
 物質量演算部74は、液体40に含まれ、反応塔10に単位時間当たりに導入される炭酸水素イオン(HCO )の量の測定値と、排液46に含まれ、反応塔10から単位時間当たりに排出される亜硫酸水素イオンShIの量の測定値とに基づいて、液体40のpH係数Aを演算してもよい。液体40のpH係数Aは、炭酸水素イオン(HCO )の量の当該測定値を亜硫酸水素イオンShIの量の当該測定値で除した値であってよい。 The substance amount calculation unit 74 includes a measured value of the amount of hydrogen carbonate ion (HCO 3- ) contained in the liquid 40 and introduced into the reaction tower 10 per unit time, and is contained in the waste liquid 46 from the reaction tower 10. The pH coefficient A of the liquid 40 may be calculated based on the measured value of the amount of hydrogen sulfite ion ShI discharged per unit time. The pH coefficient A of the liquid 40 may be a value obtained by dividing the measured value of the amount of hydrogen carbonate ion (HCO 3- ) by the measured value of the amount of hydrogen sulfite ion ShI.
 出力制御部73は、物質量演算部74により演算された、液体40のpH係数Aと、液体40のアルカリイオンAkIの物質量と、排液46の亜硫酸水素イオンShIの物質量と、に基づいて、動力装置50の出力を制御してよい。出力制御部73は、pH係数Aと、第1因子S1と、第2因子S2とに基づいて、動力装置50の出力を制御してよい。出力制御部73が、液体40のpH係数Aと、液体40のアルカリイオンAkIの物質量と、排液46の亜硫酸水素イオンShIの物質量と、に基づいて、動力装置50の出力を制御することにより、出力制御部73は、液体40のpHの影響を考慮した、動力装置50の出力の制御が可能となる。 The output control unit 73 is based on the pH coefficient A of the liquid 40 calculated by the substance amount calculation unit 74, the substance amount of the alkaline ion AkI of the liquid 40, and the substance amount of the hydrogen sulfite ion ShI of the drainage 46. The output of the power unit 50 may be controlled. The output control unit 73 may control the output of the power device 50 based on the pH coefficient A, the first factor S1, and the second factor S2. The output control unit 73 controls the output of the power device 50 based on the pH coefficient A of the liquid 40, the substance amount of the alkaline ion AkI of the liquid 40, and the substance amount of the hydrogen sulfite ion ShI of the drainage 46. As a result, the output control unit 73 can control the output of the power device 50 in consideration of the influence of the pH of the liquid 40.
 出力制御部73は、液体40のアルカリイオンAkIの物質量が、液体40のpH係数Aと排液46の亜硫酸水素イオンShIの物質量との積よりも大きくなるように、動力装置50の出力を制御してよい。第1因子S1、第2因子およびpH係数Aは、下記の式(3)の関係を満たしてよい。
Figure JPOXMLDOC01-appb-M000003
The output control unit 73 outputs the power device 50 so that the substance amount of the alkaline ion AkI of the liquid 40 becomes larger than the product of the pH coefficient A of the liquid 40 and the substance amount of the hydrogen sulfite ion ShI of the drainage 46. May be controlled. The first factor S1, the second factor and the pH coefficient A may satisfy the relationship of the following formula (3).
Figure JPOXMLDOC01-appb-M000003
 出力制御部73が、式(3)の関係を満たすように動力装置50の出力を制御することにより、排ガス処理装置100が、例えば2.0~2.5重量%の硫黄(S)濃度のC重油で稼働されることを想定して、動力装置50、第1ポンプ60、第2ポンプ62および浄化剤貯留部75等が設計された場合であっても、排液46のpHは規制値を満たしやすくなり、且つ、浄化ガス34の二酸化硫黄(SO)等の濃度は規制値を満たしやすくなる。 The output control unit 73 controls the output of the power device 50 so as to satisfy the relationship of the equation (3), so that the exhaust gas treatment device 100 has a sulfur (S) concentration of, for example, 2.0 to 2.5% by weight. Even when the power unit 50, the first pump 60, the second pump 62, the purifying agent storage unit 75, etc. are designed on the assumption that they are operated with C heavy oil, the pH of the drainage 46 is a regulated value. And the concentration of sulfur dioxide (SO 2 ) or the like in the purifying gas 34 is easy to satisfy the regulation value.
 排液46のpHを7.0とするためには、pH係数Aは、2.0以上2.33以下であってよい。排ガス処理装置100が船舶用スクラバである場合、燃料96の硫黄濃度Dsおよび消費量Csは、船舶が航海中に殆ど変化しない。このため、動力装置50の出力Psが制御されることにより、第1因子S1と第2因子S2とは、式(3)の関係を満たしやすくなる。 In order to set the pH of the drainage 46 to 7.0, the pH coefficient A may be 2.0 or more and 2.33 or less. When the exhaust gas treatment device 100 is a marine scrubber, the sulfur concentration Ds and the consumption Cs of the fuel 96 hardly change during the voyage of the ship. Therefore, by controlling the output Ps of the power device 50, the first factor S1 and the second factor S2 can easily satisfy the relationship of the equation (3).
 図7は、本発明の一つの実施形態に係る、排液46のpHの制御方法および動力装置50の出力Psの制御方法の一例を示すフローチャートである。ステップS100は、第1因子S1、第2因子S2およびpH係数Aが、式(3)に示される関係を満たすかを判断するステップである。ステップS100において、物質量演算部74が、第1因子S1、第2因子S2およびpH係数Aが式(3)に示される関係を満たすかを判断してよい。 FIG. 7 is a flowchart showing an example of a method of controlling the pH of the drainage 46 and a method of controlling the output Ps of the power unit 50 according to one embodiment of the present invention. Step S100 is a step of determining whether the first factor S1, the second factor S2, and the pH coefficient A satisfy the relationship represented by the formula (3). In step S100, the substance amount calculation unit 74 may determine whether the first factor S1, the second factor S2, and the pH coefficient A satisfy the relationship shown in the equation (3).
 ステップS100において、第1因子S1、第2因子S2およびpH係数Aが式(3)に示される関係を満たすと判断された場合、排ガス処理装置100は運転を継続してよい。ステップS100において、第1因子S1、第2因子S2およびpH係数Aが式(3)に示される関係を満たさないと判断された場合、制御方法はステップS102に進む。 If it is determined in step S100 that the first factor S1, the second factor S2 and the pH coefficient A satisfy the relationship shown in the formula (3), the exhaust gas treatment device 100 may continue the operation. If it is determined in step S100 that the first factor S1, the second factor S2, and the pH coefficient A do not satisfy the relationship represented by the formula (3), the control method proceeds to step S102.
 ステップS102は、排液46のpHを制御する段階である。ステップS102において、流量制御部70、貯留量制御部86、混合比制御部84および浄化剤供給量制御部77の少なくとも1つが、排液46のpHを制御してよい。流量制御部70が排液46のpHを制御する場合、流量制御部70は、液体40の流量を制御することにより、排液46のpHを制御してよい。貯留量制御部86が排液46のpHを制御する場合、貯留量制御部86は、貯留部87に貯留される排液46の量を制御することにより、排液46のpHを制御してよい。混合比制御部84が排液46のpHを制御する場合、混合比制御部84は、液体40の一部と排液46の少なくとも一部との混合比を制御することにより、排液46のpHを制御してよい。浄化剤供給量制御部77が排液46のpHを制御する場合、浄化剤供給量制御部77は、浄化剤78の供給量を制御することにより、排液46のpHを制御してよい。 Step S102 is a step of controlling the pH of the drainage 46. In step S102, at least one of the flow rate control unit 70, the storage amount control unit 86, the mixing ratio control unit 84, and the purifying agent supply amount control unit 77 may control the pH of the drainage 46. When the flow rate control unit 70 controls the pH of the drainage liquid 46, the flow rate control unit 70 may control the pH of the drainage liquid 46 by controlling the flow rate of the liquid 40. When the storage amount control unit 86 controls the pH of the drainage 46, the storage amount control unit 86 controls the pH of the drainage 46 by controlling the amount of the drainage 46 stored in the storage unit 87. good. When the mixing ratio control unit 84 controls the pH of the drainage 46, the mixing ratio control unit 84 controls the mixing ratio of a part of the liquid 40 and at least a part of the drainage 46 to control the drainage 46. The pH may be controlled. When the purifying agent supply amount control unit 77 controls the pH of the drainage liquid 46, the purifying agent supply amount control unit 77 may control the pH of the drainage liquid 46 by controlling the supply amount of the purifying agent 78.
 物質量演算部74により演算された、液体40のアルカリイオンAkIの物質量における予め定められた設定値を、設定値X'とする。設定値X'は、第2因子S2のpH調整能力の最大値である。 The predetermined set value in the substance amount of the alkaline ion AkI of the liquid 40 calculated by the substance amount calculation unit 74 is set as the set value X'. The set value X'is the maximum value of the pH adjusting ability of the second factor S2.
 物質量演算部74により演算された、液体40のアルカリイオンAkIの物質量を、物質量Xとする。物質量Xは、第2因子S2のpH調整能力を表す。物質量Xは、第1ポンプ60による液体40の供給能力、貯留部87による排液46の貯留能力、混合比制御部84により制御された液体40の最大流量、および、浄化剤供給量制御部77による浄化剤78の供給能力により、決定される。 The substance amount of the alkaline ion AkI of the liquid 40 calculated by the substance amount calculation unit 74 is defined as the substance amount X. The amount of substance X represents the pH adjusting ability of the second factor S2. The amount of substance X is the supply capacity of the liquid 40 by the first pump 60, the storage capacity of the drainage 46 by the storage unit 87, the maximum flow rate of the liquid 40 controlled by the mixing ratio control unit 84, and the purifying agent supply amount control unit. It is determined by the supply capacity of the purifying agent 78 by 77.
 流量制御部70は、物質量Xが設定値X'未満になるように、液体40の流量を制御してよい。貯留量制御部86は、物質量Xが設定値X'未満になるように、排液46の量を制御してよい。混合比制御部84は、物質量Xが設定値X'未満になるように、液体40の一部と排液46の少なくとも一部との混合比を制御してよい。浄化剤供給量制御部77は、物質量Xが設定値X'未満になるように、浄化剤78の供給量を制御してよい。 The flow rate control unit 70 may control the flow rate of the liquid 40 so that the amount of substance X is less than the set value X'. The storage amount control unit 86 may control the amount of the drainage 46 so that the substance amount X is less than the set value X'. The mixing ratio control unit 84 may control the mixing ratio of a part of the liquid 40 and at least a part of the drainage 46 so that the substance amount X becomes less than the set value X'. The purifying agent supply amount control unit 77 may control the supply amount of the purifying agent 78 so that the substance amount X becomes less than the set value X'.
 ステップS104は、物質量Xが設定値X'未満であるかを判断するステップである。ステップS104において、物質量演算部74が、物質量Xが設定値X'未満であるかを判断してよい。ステップS104において物質量Xが設定値X'未満であると判断された場合、制御方法はステップS100に戻る。ステップS104において物質量Xが設定値X'以上であると判断された場合、制御方法はステップS106に進む。 Step S104 is a step of determining whether the amount of substance X is less than the set value X'. In step S104, the substance amount calculation unit 74 may determine whether the substance amount X is less than the set value X'. If it is determined in step S104 that the amount of substance X is less than the set value X', the control method returns to step S100. If it is determined in step S104 that the amount of substance X is equal to or greater than the set value X', the control method proceeds to step S106.
 ステップS106は、動力装置50の出力Psを制御する段階である。ステップS106において、物質量演算部74が動力装置50の出力Psを制御してよく、物質量演算部74は排ガス処理装置100のユーザーに、動力装置50の出力Psを制御する通知(ガイダンス)を送信してもよい。ステップS106において、出力制御部73は、動力装置50の出力Psを、物質量Xが設定値X'以上である場合の出力Psよりも、低減させてよい。制御方法は、動力装置50の出力Psが制御された後、ステップS100に戻る。 Step S106 is a step of controlling the output Ps of the power unit 50. In step S106, the substance amount calculation unit 74 may control the output Ps of the power device 50, and the substance amount calculation unit 74 notifies the user of the exhaust gas treatment device 100 of a notification (guidance) for controlling the output Ps of the power device 50. You may send it. In step S106, the output control unit 73 may reduce the output Ps of the power unit 50 to be smaller than the output Ps when the amount of substance X is equal to or greater than the set value X'. The control method returns to step S100 after the output Ps of the power unit 50 is controlled.
 ステップS100において、物質量演算部74は、第1因子S1、第2因子S2およびpH係数Aが式(3)に示される関係を満たすかを、再び判断してよい。動力装置50の出力Psが低減された場合、式(1)に示されるとおり、第1因子S1が低減しやすくなる。このため、第1因子S1、第2因子S2およびpH係数Aは、式(3)に示される関係を満たしやすくなる。 In step S100, the substance amount calculation unit 74 may again determine whether the first factor S1, the second factor S2, and the pH coefficient A satisfy the relationship shown in the equation (3). When the output Ps of the power unit 50 is reduced, the first factor S1 is likely to be reduced as shown in the equation (1). Therefore, the first factor S1, the second factor S2, and the pH coefficient A can easily satisfy the relationship shown in the formula (3).
 図8は、船舶200の航路の一例を示す図である。図8において、港Aおよび港Bは、それぞれ船舶200が出発する港および到着する港である。港Aと港Bとの距離を、距離d1とする。本例において、反応塔10は、船舶200に搭載されている。 FIG. 8 is a diagram showing an example of the route of the ship 200. In FIG. 8, port A and port B are the port from which the vessel 200 departs and the port from which the vessel 200 arrives, respectively. The distance between the port A and the port B is defined as the distance d1. In this example, the reaction tower 10 is mounted on the ship 200.
 出力制御部73は、船舶200の航行予定、および、物質量演算部74により演算された排液46の亜硫酸水素イオンShIの物質量に基づいて、動力装置50の出力を制御してよい。出力制御部73は、距離d1および当該亜硫酸水素イオンShIの物質量に基づいて、動力装置50の出力を制御してよい。 The output control unit 73 may control the output of the power unit 50 based on the navigation schedule of the ship 200 and the substance amount of the hydrogen sulfite ion ShI of the drainage 46 calculated by the substance amount calculation unit 74. The output control unit 73 may control the output of the power device 50 based on the distance d1 and the amount of substance of the hydrogen sulfite ion ShI.
 図9は、本発明の一つの実施形態に係る排ガス処理装置100のブロック図の他の一例を示す図である。本例の排ガス処理装置100は、位置情報取得部81をさらに備える点で、図6に示される排ガス処理装置100と異なる。位置情報取得部81は、船舶200の現在位置PSを取得する。位置情報取得部81は、例えば全地球測位システム(GPS(Global Positioning System))である。 FIG. 9 is a diagram showing another example of the block diagram of the exhaust gas treatment device 100 according to one embodiment of the present invention. The exhaust gas treatment device 100 of this example is different from the exhaust gas treatment device 100 shown in FIG. 6 in that it further includes a position information acquisition unit 81. The position information acquisition unit 81 acquires the current position PS of the ship 200. The position information acquisition unit 81 is, for example, a global positioning system (GPS (Global Positioning System)).
 図10は、船舶200の航路の他の一例を示す図である。本例において、船舶200は現在、現在位置PSを航行しているとする。港Aと現在位置PSとの距離を、距離dd1とする。現在位置PSと港Bとの距離を、距離dd2とする。なお、距離dd1と距離dd2との和は、距離d1である。 FIG. 10 is a diagram showing another example of the route of the ship 200. In this example, it is assumed that the vessel 200 is currently navigating the current position PS. The distance between the port A and the current position PS is defined as the distance dd1. The distance between the current position PS and the port B is defined as the distance dd2. The sum of the distance dd1 and the distance dd2 is the distance d1.
 出力制御部73は、位置情報取得部81により取得された船舶200の現在位置、および、物質量演算部74により演算された排液46の亜硫酸水素イオンShIの物質量に基づいて、動力装置50の出力を制御してよい。出力制御部73は、距離dd2および当該亜硫酸水素イオンShIの物質量に基づいて、動力装置50の出力を制御してよい。 The output control unit 73 is a power device 50 based on the current position of the ship 200 acquired by the position information acquisition unit 81 and the substance amount of the hydrogen sulfite ion ShI of the drainage 46 calculated by the substance amount calculation unit 74. You may control the output of. The output control unit 73 may control the output of the power device 50 based on the distance dd2 and the amount of substance of the hydrogen sulfite ion ShI.
 図11は、船舶200の航路の他の一例を示す図である。本例において、船舶200は、排液46のpHの規制値が第1pHである第1海域A1と、排液46のpHの規制値が第2pHである第2海域A2とを航行する。本例において、第2pHは第1pHよりも大きいい。即ち、第2海域A2におけるpHの規制は、第1海域A1におけるpHの規制よりも厳しい。図11において、船舶200の航路が矢印にて示されている。 FIG. 11 is a diagram showing another example of the route of the ship 200. In this example, the ship 200 navigates the first sea area A1 where the pH regulation value of the drainage 46 is the first pH and the second sea area A2 where the pH regulation value of the drainage 46 is the second pH. In this example, the second pH is greater than the first pH. That is, the pH regulation in the second sea area A2 is stricter than the pH regulation in the first sea area A1. In FIG. 11, the route of the ship 200 is indicated by an arrow.
 図11において、第1海域A1と第2海域A2との境界が破線で示されている。船舶200の航路と、第1海域A1と第2海域A2との境界との交点の位置を、位置Cとする。船舶200は現在、第1海域A1における位置PSを航行中であるとする。 In FIG. 11, the boundary between the first sea area A1 and the second sea area A2 is shown by a broken line. The position of the intersection of the route of the ship 200 and the boundary between the first sea area A1 and the second sea area A2 is defined as the position C. It is assumed that the vessel 200 is currently navigating the position PS in the first sea area A1.
 船舶200が第1海域A1を航行中において、出力制御部73は、船舶200が第2海域A2を航行する前に、動力装置50の出力を低減させてよい。第2pHは第1pHよりも大きいので、船舶200が第2海域A2を航行する前に、動力装置50の出力が低減されることにより、船舶200が第1海域A1から第2海域A2に侵入した時点において、排液46のpHは、第2pH未満になりやすくなる。 While the ship 200 is navigating in the first sea area A1, the output control unit 73 may reduce the output of the power unit 50 before the ship 200 is navigating in the second sea area A2. Since the second pH is higher than the first pH, the output of the power unit 50 is reduced before the ship 200 navigates the second sea area A2, so that the ship 200 has entered the second sea area A2 from the first sea area A1. At the time point, the pH of the drainage 46 tends to be less than the second pH.
 船舶200が第1海域A1を航行している場合において、位置情報取得部81(図9参照)は、船舶200の現在位置PSを取得してよい。現在位置PSと位置Cとの間の距離を、距離d3とする。距離d3は、現在位置PSと第2海域A2までの距離である。 When the ship 200 is navigating in the first sea area A1, the position information acquisition unit 81 (see FIG. 9) may acquire the current position PS of the ship 200. The distance between the current position PS and the position C is defined as the distance d3. The distance d3 is the distance between the current position PS and the second sea area A2.
 出力制御部73は、第1海域A1と第2海域A2との距離d3に基づいて、動力装置50の出力を制御してよい。出力制御部73が距離d3に基づいて動力装置50の出力を制御することにより、船舶200が第1海域A1から第2海域A2に侵入した時点において、排液46のpHは、第2pH未満になりやすくなる。 The output control unit 73 may control the output of the power unit 50 based on the distance d3 between the first sea area A1 and the second sea area A2. By controlling the output of the power unit 50 based on the distance d3, the output control unit 73 controls the pH of the effluent 46 to be less than the second pH when the ship 200 invades from the first sea area A1 to the second sea area A2. It becomes easy to become.
 船舶200が第1海域A1を航行中において、船舶200が第2海域A2を航行する前に、流量制御部70、貯留量制御部86、混合比制御部84および浄化剤供給量制御部77の少なくとも1つが、排液46のpHを制御してもよい。船舶200が第1海域A1を航行中において、流量制御部70は液体40の流量を増加させてよく、貯留量制御部86は貯留部87に貯留される排液46の量を増加させてよく、混合比制御部84は液体40の一部と排液46の少なくとも一部との混合比において液体40の比率を増加させてよく、浄化剤供給量制御部77は浄化剤78の供給量を増加させてよい。これにより、船舶200が第1海域A1から第2海域A2に侵入する時点で、排液46のpHは、第2pH未満になりやすくなる。 While the ship 200 is navigating in the first sea area A1, before the ship 200 is navigating in the second sea area A2, the flow rate control unit 70, the storage amount control unit 86, the mixing ratio control unit 84, and the purifying agent supply amount control unit 77. At least one may control the pH of the effluent 46. While the ship 200 is navigating in the first sea area A1, the flow rate control unit 70 may increase the flow rate of the liquid 40, and the storage amount control unit 86 may increase the amount of the drainage 46 stored in the storage unit 87. , The mixing ratio control unit 84 may increase the ratio of the liquid 40 in the mixing ratio of a part of the liquid 40 and at least a part of the drainage 46, and the purifying agent supply amount control unit 77 may increase the supply amount of the purifying agent 78. You may increase it. As a result, the pH of the effluent 46 tends to be lower than the second pH when the ship 200 invades the first sea area A1 to the second sea area A2.
 図12は、船舶200の航路の他の一例を示す図である。本例においては、船舶200は現在、第2海域A2を航行しているとする。本例においては、船舶200は、第2海域A2を航行した後、第1海域A1を航行するとする。本例は、これらの点で図11に示される例と異なる。図12において、船舶200の航路が矢印にて示されている。 FIG. 12 is a diagram showing another example of the route of the ship 200. In this example, it is assumed that the vessel 200 is currently navigating in the second sea area A2. In this example, it is assumed that the vessel 200 sails in the second sea area A2 and then sails in the first sea area A1. This example differs from the example shown in FIG. 11 in these respects. In FIG. 12, the route of the vessel 200 is indicated by an arrow.
 船舶200が第2海域A2を航行中において、出力制御部73は、船舶200が第1海域A1を航行する前に、動力装置50の出力を増加させてよい。第1pHは第2pHよりも小さいので、船舶200が第1海域A1を航行する前に、動力装置50の出力が増加されることにより、船舶200が第2海域A2から第1海域A1に侵入した時点において、排液46のpHは、第1pH未満になりやすくなる。 While the ship 200 is navigating in the second sea area A2, the output control unit 73 may increase the output of the power unit 50 before the ship 200 is navigating in the first sea area A1. Since the first pH is smaller than the second pH, the output of the power unit 50 is increased before the ship 200 navigates the first sea area A1, so that the ship 200 has entered the first sea area A1 from the second sea area A2. At the time point, the pH of the drainage 46 tends to be less than the first pH.
 船舶200が第2海域A2を航行している場合において、位置情報取得部81(図9参照)は、船舶200の現在位置PSを取得してよい。現在位置PSと位置Cとの間の距離を、距離d4とする。距離d4は、現在位置PSと第1海域A1までの距離である。 When the ship 200 is navigating in the second sea area A2, the position information acquisition unit 81 (see FIG. 9) may acquire the current position PS of the ship 200. The distance between the current position PS and the position C is defined as the distance d4. The distance d4 is the distance between the current position PS and the first sea area A1.
 出力制御部73は、第1海域A1と第2海域A2との距離d4に基づいて、動力装置50の出力を制御してよい。出力制御部73が距離d4に基づいて動力装置50の出力を制御することにより、船舶200が第2海域A2から第1海域A1に侵入した時点において、排液46のpHは、第1pH未満になりやすくなる。 The output control unit 73 may control the output of the power unit 50 based on the distance d4 between the first sea area A1 and the second sea area A2. By controlling the output of the power unit 50 based on the distance d4, the output control unit 73 controls the pH of the effluent 46 to be less than the first pH when the ship 200 enters the first sea area A1 from the second sea area A2. It becomes easy to become.
 船舶200が第2海域A2を航行中において、船舶200が第1海域A1を航行する前に、流量制御部70、貯留量制御部86、混合比制御部84および浄化剤供給量制御部77の少なくとも1つが、排液46のpHを制御してもよい。船舶200が第2海域A2を航行中において、流量制御部70は液体40の流量を減少させてよく、貯留量制御部86は貯留部87に貯留される排液46の量を減少させてよく、混合比制御部84は液体40の一部と排液46の少なくとも一部との混合比において液体40の比率を減少させてよく、浄化剤供給量制御部77は浄化剤78の供給量を減少させてよい。これにより、船舶200が第2海域A2から第1海域A1に侵入する時点で、排液46のpHは、第1pH未満になりやすくなる。 While the ship 200 is navigating in the second sea area A2, before the ship 200 is navigating in the first sea area A1, the flow rate control unit 70, the storage amount control unit 86, the mixing ratio control unit 84, and the purifying agent supply amount control unit 77. At least one may control the pH of the effluent 46. While the ship 200 is navigating in the second sea area A2, the flow rate control unit 70 may reduce the flow rate of the liquid 40, and the storage amount control unit 86 may reduce the amount of the drainage 46 stored in the storage unit 87. , The mixing ratio control unit 84 may reduce the ratio of the liquid 40 in the mixing ratio of a part of the liquid 40 and at least a part of the drainage 46, and the purifying agent supply amount control unit 77 may reduce the supply amount of the purifying agent 78. It may be reduced. As a result, the pH of the drainage 46 tends to be lower than the first pH when the ship 200 invades the first sea area A1 from the second sea area A2.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments. It will be apparent to those skilled in the art that various changes or improvements can be made to the above embodiments. It is clear from the claims that embodiments with such modifications or improvements may also be included in the technical scope of the invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The order of execution of operations, procedures, steps, steps, etc. in the equipment, system, program, and method shown in the claims, description, and drawings is particularly "before" and "prior to". It should be noted that it can be realized in any order unless the output of the previous process is used in the subsequent process. Even if the claims, the description, and the operation flow in the drawings are explained using "first", "next", etc. for convenience, it means that it is essential to carry out in this order. is not.
10・・・反応塔、11・・・排ガス導入口、12・・・幹管、13・・・枝管、14・・・噴出部、15・・・側壁、16・・・底面、17・・・排ガス排出口、18・・・ガス処理部、19・・・液体排出口、20・・・排水管、22・・・導入管、23・・・管、24・・・導入管、25・・・管、30・・・排ガス、32・・・排ガス導入管、34・・・浄化ガス、40・・・液体、46・・・排液、47・・・排液、50・・・動力装置、60・・・第1ポンプ、62・・・第2ポンプ、70・・・流量制御部、72・・・バルブ、73・・・出力制御部、74・・・物質量演算部、75・・・浄化剤貯留部、76・・・バルブ、77・・・浄化剤供給量制御部、78・・・浄化剤、79・・・バルブ、81・・・位置情報取得部、82・・・アルカリイオン濃度測定部、83・・・バルブ、84・・・混合比制御部、85・・・気体供給部、86・・・貯留量制御部、87・・・貯留部、88・・・第2pH計、89・・・第1pH計、91・・・排ガス硫黄濃度測定部、92・・・排ガス量測定部、93・・・亜硫酸水素イオン濃度測定部、94・・・浄化ガス硫黄濃度測定部、95・・・出力測定部、96・・・燃料、97・・・燃料供給部、98・・・燃料消費量測定部、100・・・排ガス処理装置、200・・・船舶 10 ... reaction tower, 11 ... exhaust gas inlet, 12 ... trunk pipe, 13 ... branch pipe, 14 ... ejection part, 15 ... side wall, 16 ... bottom surface, 17 ... ... Exhaust gas discharge port, 18 ... Gas treatment unit, 19 ... Liquid discharge port, 20 ... Drain pipe, 22 ... Introduction pipe, 23 ... Pipe, 24 ... Introduction pipe, 25 ... pipe, 30 ... exhaust gas, 32 ... exhaust gas introduction pipe, 34 ... purifying gas, 40 ... liquid, 46 ... drainage, 47 ... drainage, 50 ... Power unit, 60 ... 1st pump, 62 ... 2nd pump, 70 ... Flow control unit, 72 ... Valve, 73 ... Output control unit, 74 ... Material amount calculation unit, 75 ... Purifying agent storage unit, 76 ... Valve, 77 ... Purifying agent supply amount control unit, 78 ... Purifying agent, 79 ... Valve, 81 ... Position information acquisition unit, 82. Alkaline ion concentration measuring unit, 83 ... valve, 84 ... mixing ratio control unit, 85 ... gas supply unit, 86 ... storage amount control unit, 87 ... storage unit, 88 ... 2nd pH meter, 89 ... 1st pH meter, 91 ... Exhaust gas sulfur concentration measuring unit, 92 ... Exhaust gas amount measuring unit, 93 ... Hydrogen sulfite ion concentration measuring unit, 94 ... Purifying gas sulfur Concentration measuring unit, 95 ... Output measuring unit, 96 ... Fuel, 97 ... Fuel supply unit, 98 ... Fuel consumption measuring unit, 100 ... Exhaust gas treatment device, 200 ... Ship

Claims (22)

  1.  動力装置により排出された排ガスであって硫黄を含む前記排ガスが導入され、前記排ガスを処理する液体が供給される反応塔と、
     前記反応塔において前記排ガスを処理した排液の亜硫酸水素イオンの物質量を演算する物質量演算部と、
     前記動力装置の出力を制御する出力制御部と、
     を備え、
     前記出力制御部は、前記物質量演算部により演算された前記排液の亜硫酸水素イオンの物質量に基づいて、前記動力装置の出力を制御する、
     排ガス処理装置。
    A reaction tower in which the exhaust gas discharged by a power unit and containing sulfur is introduced and a liquid for treating the exhaust gas is supplied.
    A substance amount calculation unit for calculating the amount of hydrogen sulfite ion in the waste liquid treated with the exhaust gas in the reaction tower, and a substance amount calculation unit.
    An output control unit that controls the output of the power unit,
    Equipped with
    The output control unit controls the output of the power unit based on the substance amount of hydrogen sulfite ion in the drainage calculated by the substance amount calculation unit.
    Exhaust gas treatment equipment.
  2.  前記反応塔に導入される前記排ガスの硫黄濃度を測定する排ガス硫黄濃度測定部をさらに備え、
     前記物質量演算部は、前記排ガスの硫黄濃度に基づいて、前記排液の亜硫酸水素イオンの物質量を演算する、
     請求項1に記載の排ガス処理装置。
    Further, an exhaust gas sulfur concentration measuring unit for measuring the sulfur concentration of the exhaust gas introduced into the reaction tower is provided.
    The substance amount calculation unit calculates the substance amount of hydrogen sulfite ion in the waste liquid based on the sulfur concentration of the exhaust gas.
    The exhaust gas treatment device according to claim 1.
  3.  前記排ガスが前記液体により処理された浄化ガスの硫黄濃度を測定する浄化ガス硫黄濃度測定部をさらに備え、
     前記物質量演算部は、前記浄化ガスの硫黄濃度に基づいて、前記排液の亜硫酸水素イオンの物質量を演算する、
     請求項1または2に記載の排ガス処理装置。
    Further provided with a purified gas sulfur concentration measuring unit for measuring the sulfur concentration of the purified gas in which the exhaust gas is treated with the liquid.
    The substance amount calculation unit calculates the substance amount of hydrogen sulfite ion in the effluent based on the sulfur concentration of the purification gas.
    The exhaust gas treatment apparatus according to claim 1 or 2.
  4.  前記動力装置を稼働させるための燃料の消費量を測定する燃料消費量測定部をさらに備え、
     前記物質量演算部は、前記燃料の消費量に基づいて、前記排液の亜硫酸水素イオンの物質量を演算する、
     請求項1から3のいずれか一項に記載の排ガス処理装置。
    Further, a fuel consumption measuring unit for measuring the fuel consumption for operating the power unit is provided.
    The substance amount calculation unit calculates the substance amount of hydrogen sulfite ion in the effluent based on the consumption amount of the fuel.
    The exhaust gas treatment apparatus according to any one of claims 1 to 3.
  5.  前記動力装置の出力を測定する出力測定部をさらに備え、
     前記物質量演算部は、前記出力測定部により測定された前記動力装置の出力に基づいて、前記排液の亜硫酸水素イオンの物質量を演算する、
     請求項1から4のいずれか一項に記載の排ガス処理装置。
    Further, an output measuring unit for measuring the output of the power unit is provided.
    The substance amount calculation unit calculates the substance amount of hydrogen sulfite ion in the effluent based on the output of the power unit measured by the output measurement unit.
    The exhaust gas treatment apparatus according to any one of claims 1 to 4.
  6.  前記動力装置が排出する前記排ガスの量を測定する排ガス量測定部をさらに備え、
     前記物質量演算部は、前記排ガス量測定部により測定された前記排ガスの量に基づいて、前記排液の亜硫酸水素イオンの物質量を演算する、
     請求項1から5のいずれか一項に記載の排ガス処理装置。
    Further provided with an exhaust gas amount measuring unit for measuring the amount of the exhaust gas discharged by the power unit, the exhaust gas amount measuring unit is further provided.
    The substance amount calculation unit calculates the substance amount of hydrogen sulfite ion in the effluent based on the amount of the exhaust gas measured by the exhaust gas amount measuring unit.
    The exhaust gas treatment apparatus according to any one of claims 1 to 5.
  7.  前記排液の亜硫酸水素イオン濃度を測定する亜硫酸水素イオン濃度測定部をさらに備え、
     前記物質量演算部は、前記排液の亜硫酸水素イオン濃度に基づいて、前記排液の亜硫酸水素イオンの物質量を演算する、
     請求項1から6のいずれか一項に記載の排ガス処理装置。
    Further provided with a hydrogen sulfite ion concentration measuring unit for measuring the hydrogen sulfite ion concentration of the drainage liquid is provided.
    The substance amount calculation unit calculates the substance amount of hydrogen sulfite ion in the drainage solution based on the hydrogen sulfite ion concentration in the drainage solution.
    The exhaust gas treatment apparatus according to any one of claims 1 to 6.
  8.  前記物質量演算部は、前記液体のアルカリイオンの物質量をさらに演算し、
     前記出力制御部は、前記物質量演算部により演算された、前記液体のアルカリイオンの物質量および前記排液の亜硫酸水素イオンの物質量に基づいて、前記動力装置の出力を制御する、
     請求項1から7のいずれか一項に記載の排ガス処理装置。
    The substance amount calculation unit further calculates the substance amount of the alkaline ion of the liquid, and then
    The output control unit controls the output of the power unit based on the substance amount of the alkali ion of the liquid and the substance amount of the hydrogen sulfite ion of the drainage, which are calculated by the substance amount calculation unit.
    The exhaust gas treatment apparatus according to any one of claims 1 to 7.
  9.  前記液体の流量を制御する流量制御部をさらに備え、
     前記物質量演算部は、前記流量制御部により制御された前記液体の流量に基づいて、前記液体のアルカリイオンの物質量を演算する、
     請求項8に記載の排ガス処理装置。
    Further, a flow rate control unit for controlling the flow rate of the liquid is provided.
    The substance amount calculation unit calculates the substance amount of the alkali ion of the liquid based on the flow rate of the liquid controlled by the flow rate control unit.
    The exhaust gas treatment apparatus according to claim 8.
  10.  前記液体のアルカリイオン濃度を測定するアルカリイオン濃度測定部をさらに備え、
     前記物質量演算部は、前記液体のアルカリイオン濃度に基づいて、前記液体のアルカリイオンの物質量を演算する、
     請求項8または9に記載の排ガス処理装置。
    Further, an alkali ion concentration measuring unit for measuring the alkali ion concentration of the liquid is provided.
    The substance amount calculation unit calculates the amount of substance of the alkali ion of the liquid based on the alkali ion concentration of the liquid.
    The exhaust gas treatment apparatus according to claim 8 or 9.
  11.  前記排液の少なくとも一部を貯留する貯留部と、
     前記貯留部に貯留する前記排液の量を制御する貯留量制御部と、
     をさらに備え、
     前記物質量演算部は、前記貯留量制御部により制御された前記排液の量に基づいて、前記液体のアルカリイオンの物質量を演算する、
     請求項8から10のいずれか一項に記載の排ガス処理装置。
    A storage unit that stores at least a part of the drainage
    A storage amount control unit that controls the amount of the drainage stored in the storage unit,
    Further prepare
    The substance amount calculation unit calculates the substance amount of the alkaline ion of the liquid based on the amount of the drainage controlled by the storage amount control unit.
    The exhaust gas treatment apparatus according to any one of claims 8 to 10.
  12.  前記液体の一部と、前記排液の少なくとも一部との混合比を制御する混合比制御部をさらに備え、
     前記物質量演算部は、前記混合比制御部により制御された前記混合比に基づいて、前記液体のアルカリイオンの物質量を演算する、
     請求項8から11のいずれか一項に記載の排ガス処理装置。
    Further, a mixing ratio control unit for controlling a mixing ratio of a part of the liquid and at least a part of the drainage is provided.
    The substance amount calculation unit calculates the substance amount of the alkaline ion of the liquid based on the mixing ratio controlled by the mixing ratio control unit.
    The exhaust gas treatment apparatus according to any one of claims 8 to 11.
  13.  前記液体および前記排液の少なくとも一方に供給され、前記排液の亜硫酸水素イオンの少なくとも一部を除去する浄化剤の供給量を制御する浄化剤供給量制御部をさらに備え、
     前記物質量演算部は、前記浄化剤供給量制御部により制御された前記浄化剤の供給量に基づいて、前記液体のアルカリイオンの物質量を演算する、
     請求項8から12のいずれか一項に記載の排ガス処理装置。
    Further provided with a purifying agent supply amount control unit that controls the supply amount of the purifying agent that is supplied to at least one of the liquid and the drainage liquid and removes at least a part of hydrogen sulfite ions in the drainage liquid.
    The substance amount calculation unit calculates the substance amount of the alkaline ion of the liquid based on the supply amount of the purifying agent controlled by the purifying agent supply amount control unit.
    The exhaust gas treatment apparatus according to any one of claims 8 to 12.
  14.  前記物質量演算部は、前記液体の水素イオン濃度に基づいて、前記液体のpH係数を演算し、
     前記出力制御部は、前記物質量演算部により演算された、前記液体のpH係数と、前記液体のアルカリイオンの物質量と、前記排液の亜硫酸水素イオンの物質量と、に基づいて、前記動力装置の出力を制御する、
     請求項8から13のいずれか一項に記載の排ガス処理装置。
    The substance amount calculation unit calculates the pH coefficient of the liquid based on the hydrogen ion concentration of the liquid, and calculates the pH coefficient of the liquid.
    The output control unit is based on the pH coefficient of the liquid calculated by the substance amount calculation unit, the substance amount of the alkali ion of the liquid, and the substance amount of hydrogen sulfite ion of the drainage liquid. Control the output of the power unit,
    The exhaust gas treatment apparatus according to any one of claims 8 to 13.
  15.  前記出力制御部は、前記液体のアルカリイオンの物質量が、前記液体のpH係数と前記排液の亜硫酸水素イオンの物質量との積よりも大きくなるように、前記動力装置の出力を制御する、請求項14に記載の排ガス処理装置。 The output control unit controls the output of the power unit so that the substance amount of the alkaline ion of the liquid becomes larger than the product of the pH coefficient of the liquid and the substance amount of the hydrogen sulfite ion of the drainage liquid. The exhaust gas treatment apparatus according to claim 14.
  16.  前記液体の流量を制御する流量制御部と、
     前記排液の一部を貯留する貯留部に貯留する前記排液の量を制御する貯留量制御部と、
     前記液体の少なくとも一部と、前記排液の少なくとも一部との混合比を制御する混合比制御部と、
     前記液体および前記排液の少なくとも一方に供給され、前記排液の亜硫酸水素イオンの少なくとも一部を除去する浄化剤の供給量を制御する浄化剤供給量制御部と、
     をさらに備え、
     前記物質量演算部は、前記流量制御部により制御された前記液体の流量、前記貯留量制御部により制御された前記排液の量、前記混合比制御部により制御された前記混合比、および、前記浄化剤供給量制御部により制御された前記浄化剤の供給量の少なくとも1つに基づいて、前記液体のアルカリイオンの物質量を演算し、
     前記物質量演算部により演算された、前記液体のアルカリイオンの物質量が、予め定められた設定値未満になるように、前記流量制御部が前記液体の流量を制御するか、前記貯留量制御部が前記排液の量を制御するか、前記混合比制御部が前記混合比を制御するか、または、前記浄化剤供給量制御部が前記浄化剤の供給量を制御する、
     請求項8に記載の排ガス処理装置。
    A flow rate control unit that controls the flow rate of the liquid,
    A storage amount control unit that controls the amount of the drainage stored in the storage unit that stores a part of the drainage, and a storage amount control unit.
    A mixing ratio control unit that controls the mixing ratio of at least a part of the liquid and at least a part of the drainage liquid.
    A purifying agent supply amount control unit that controls the supply amount of a purifying agent that is supplied to at least one of the liquid and the drainage liquid and removes at least a part of hydrogen sulfite ions in the drainage liquid.
    Further prepare
    The substance amount calculation unit includes the flow rate of the liquid controlled by the flow rate control unit, the amount of the drainage liquid controlled by the storage amount control unit, the mixing ratio controlled by the mixing ratio control unit, and The substance amount of the alkali ion of the liquid is calculated based on at least one of the supply amount of the purifying agent controlled by the purifying agent supply amount control unit.
    The flow control unit controls the flow rate of the liquid or the storage amount control so that the substance amount of the alkaline ion of the liquid calculated by the substance amount calculation unit becomes less than a predetermined set value. The unit controls the amount of the drainage, the mixing ratio control unit controls the mixing ratio, or the purifying agent supply amount control unit controls the supply amount of the purifying agent.
    The exhaust gas treatment apparatus according to claim 8.
  17.  前記物質量演算部は、前記液体の水素イオン濃度に基づいて、前記液体のpH係数を演算し、
     前記出力制御部は、前記物質量演算部により演算された前記液体のアルカリイオンの物質量が、前記液体のpH係数と、前記物質量演算部により演算された前記排液の亜硫酸水素イオンの物質量との積よりも小さい場合、前記動力装置の出力を低減させる、
     請求項16に記載の排ガス処理装置。
    The substance amount calculation unit calculates the pH coefficient of the liquid based on the hydrogen ion concentration of the liquid, and calculates the pH coefficient of the liquid.
    In the output control unit, the substance amount of the alkali ion of the liquid calculated by the substance amount calculation unit is the pH coefficient of the liquid and the substance of the hydrogen sulfite ion of the drainage calculated by the substance amount calculation unit. If it is less than the product of quantity, it reduces the output of the power unit.
    The exhaust gas treatment apparatus according to claim 16.
  18.  前記反応塔は、船舶に搭載され、
     前記出力制御部は、前記船舶の航行予定、および、前記物質量演算部により演算された前記排液の亜硫酸水素イオンの物質量に基づいて、前記動力装置の出力を制御する、
     請求項1から17のいずれか一項に記載の排ガス処理装置。
    The reaction tower is mounted on a ship and
    The output control unit controls the output of the power unit based on the navigation schedule of the ship and the substance amount of hydrogen sulfite ion of the effluent calculated by the substance amount calculation unit.
    The exhaust gas treatment apparatus according to any one of claims 1 to 17.
  19.  前記船舶の現在位置を取得する位置情報取得部をさらに備え、
     前記出力制御部は、前記位置情報取得部により取得された前記船舶の前記現在位置に基づいて、前記動力装置の出力を制御する、
     請求項18に記載の排ガス処理装置。
    Further equipped with a position information acquisition unit for acquiring the current position of the ship,
    The output control unit controls the output of the power unit based on the current position of the ship acquired by the position information acquisition unit.
    The exhaust gas treatment apparatus according to claim 18.
  20.  前記船舶は、前記排液のpHの規制値が第1pHである第1海域と、前記排液のpHの規制値が前記第1pHよりも大きい第2pHである第2海域と、を航行し、
     前記船舶が前記第1海域を航行中において、前記出力制御部は、前記船舶が前記第2海域を航行する前に、前記動力装置の出力を低減させる、
     請求項19に記載の排ガス処理装置。
    The ship navigates the first sea area where the pH regulation value of the drainage liquid is the first pH and the second sea area where the pH regulation value of the drainage liquid is the second pH larger than the first pH.
    While the ship is navigating in the first sea area, the output control unit reduces the output of the power unit before the ship is navigating in the second sea area.
    The exhaust gas treatment apparatus according to claim 19.
  21.  前記船舶は、前記排液のpHの規制値が第1pHである第1海域と、前記排液のpHの規制値が前記第1pHよりも大きい第2pHである第2海域と、を航行し、
     前記船舶が前記第2海域を航行中において、前記出力制御部は、前記船舶が前記第1海域を航行する前に、前記動力装置の出力を増加させる、
     請求項19に記載の排ガス処理装置。
    The ship navigates the first sea area where the pH regulation value of the drainage liquid is the first pH and the second sea area where the pH regulation value of the drainage liquid is the second pH larger than the first pH.
    While the ship is navigating in the second sea area, the output control unit increases the output of the power unit before the ship is navigating in the first sea area.
    The exhaust gas treatment apparatus according to claim 19.
  22.  前記出力制御部は、前記船舶が前記第1海域を航行中において、前記船舶の前記現在位置と前記第2海域との距離に基づいて前記動力装置の出力を制御し、前記船舶が前記第2海域を航行中において、前記船舶の前記現在位置と前記第1海域との距離に基づいて前記動力装置の出力を制御する、請求項20または21に記載の排ガス処理装置。 The output control unit controls the output of the power unit based on the distance between the current position of the ship and the second sea area while the ship is navigating in the first sea area, and the ship controls the output of the power unit. The exhaust gas treatment device according to claim 20 or 21, which controls the output of the power unit based on the distance between the current position of the ship and the first sea area while navigating in a sea area.
PCT/JP2021/039117 2020-12-23 2021-10-22 Exhaust gas treatment device WO2022137770A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020214314A JP2022100133A (en) 2020-12-23 2020-12-23 Exhaust gas treatment apparatus
JP2020-214314 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022137770A1 true WO2022137770A1 (en) 2022-06-30

Family

ID=82158969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039117 WO2022137770A1 (en) 2020-12-23 2021-10-22 Exhaust gas treatment device

Country Status (2)

Country Link
JP (1) JP2022100133A (en)
WO (1) WO2022137770A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364674A (en) * 1976-11-22 1978-06-09 Kurashiki Boseki Kk Method of removing sulfur oxides from exhaust gas
JP2007245055A (en) * 2006-03-17 2007-09-27 Mitsui Eng & Shipbuild Co Ltd Discharged liquid treatment method for marine exhaust gas cleaning apparatus
JP2011524800A (en) * 2008-06-13 2011-09-08 斯幹 彭 Exhaust gas desulfurization method and exhaust gas desulfurization apparatus for a marine vessel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364674A (en) * 1976-11-22 1978-06-09 Kurashiki Boseki Kk Method of removing sulfur oxides from exhaust gas
JP2007245055A (en) * 2006-03-17 2007-09-27 Mitsui Eng & Shipbuild Co Ltd Discharged liquid treatment method for marine exhaust gas cleaning apparatus
JP2011524800A (en) * 2008-06-13 2011-09-08 斯幹 彭 Exhaust gas desulfurization method and exhaust gas desulfurization apparatus for a marine vessel

Also Published As

Publication number Publication date
JP2022100133A (en) 2022-07-05

Similar Documents

Publication Publication Date Title
Flagiello et al. Experimental and modelling analysis of seawater scrubbers for sulphur dioxide removal from flue-gas
KR101530499B1 (en) Scrubber system and method
EP3189883B1 (en) Exhaust gas treatment device and waste water treatment method for exhaust gas treatment device
CN104736225A (en) Seawater quantity controller for scrubber, seawater quantity control method for scrubber, alkali quantity controller, and alkali quantity control method
WO2000010691A1 (en) Method and apparatus for extracting and sequestering carbon dioxide
CN102309912A (en) Device and method for performing alkali desulfurization and dust removal on ship exhaust fume
JP3751340B2 (en) Exhaust gas desulfurization method
WO2022137770A1 (en) Exhaust gas treatment device
TWI519338B (en) Desulphurization seawater treatment system
JP5731291B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
DK3012010T3 (en) Process and plant for cleaning the exhaust gases from an engine of a marine vessel
WO2021111957A1 (en) Exhaust gas processing device
WO2022249611A1 (en) Exhaust gas treatment device
WO2021029149A1 (en) Exhaust gas treatment device for ships
JP6285773B2 (en) Wastewater treatment method for exhaust gas treatment equipment
KR101908561B1 (en) SCR system comprising with multi-reactor and direct straight connector
WO2021210272A1 (en) Exhaust gas treatment device for ships
JPH10128053A (en) Stack gas treating device and treatment of stack gas
CN114206476A (en) Exhaust gas treatment device and liquid discharge unit
JP3831136B2 (en) Method and apparatus for controlling bubble content in liquid
CN109395586A (en) A kind of Hydrodynamic cavitation strengthens the device of nitrogen oxides in chlorine dioxide removing ship tail gas
JP7164344B2 (en) Oxidation-reduction potential determination device, desulfurization device provided with the same, and oxidation-reduction potential determination method
CN215388696U (en) Semi-open loop seawater desulfurization treatment device
SA96170306B1 (en) Process for removing sulfur dioxide from flue gas
CN114616171A (en) Marine exhaust gas treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909927

Country of ref document: EP

Kind code of ref document: A1