WO2022137709A1 - Inverter control device - Google Patents
Inverter control device Download PDFInfo
- Publication number
- WO2022137709A1 WO2022137709A1 PCT/JP2021/036344 JP2021036344W WO2022137709A1 WO 2022137709 A1 WO2022137709 A1 WO 2022137709A1 JP 2021036344 W JP2021036344 W JP 2021036344W WO 2022137709 A1 WO2022137709 A1 WO 2022137709A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- axis
- value
- voltage
- term
- interference
- Prior art date
Links
- 235000005282 vitamin D3 Nutrition 0.000 description 14
- 239000011647 vitamin D3 Substances 0.000 description 14
- 230000005856 abnormality Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 230000010354 integration Effects 0.000 description 11
- 230000002452 interceptive effect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
Definitions
- the present invention relates to an inverter control device.
- Patent Document 1 is known as a background technique of the present invention.
- the control unit of the inverter is configured to perform a system state determination unit for determining the occurrence of a momentary drop and a gate block for shutting off the output of the inverter according to the determination result of the system state determination unit.
- a gate block unit and an initialization processing unit that initializes parameters related to the calculation of the operation amount of the inverter when the gate block is released, the output command is initialized before the protection operation is released.
- a technique for processing and appropriately calculating the operation amount of the inverter is disclosed.
- Patent Document 1 Although the calculation parameter before the output command value calculation can be initialized during the protection operation, when the control is restarted before the calculation parameter after the output command value returns to the normal value, the inverter is used. There is a problem that the pulse width (duty) of the PWM signal is improperly calculated, causing an abnormality in the output. In view of the above, it is an object of the present invention to provide an inverter control device capable of preventing an unintended overcurrent when the protection operation is released.
- the inverter control device of the present invention is an inverter control device that controls an applied voltage applied to a motor by an inverter based on an output command value, and has a d-axis current and a q-axis current flowing through the motor and the output command value. From the difference between the d-axis current command value and the q-axis current command value calculated based on the voltage term calculation unit, the voltage term calculation unit that calculates the voltage term according to the applied voltage, the filter value of the q-axis current command value, and the d.
- a non-interference term calculation unit that calculates the non-interference terms of the d-axis voltage value and the q-axis voltage value based on the filter value of the axis voltage command value, respectively, and when the applied voltage is turned off, the non-interference term is described.
- the interference term calculation unit sets a value when the output command value is 0 in at least one of the non-interference term of the d-axis voltage value and the non-interference term of the q-axis voltage value, and sets the applied voltage.
- the non-interference term calculation unit resumes the calculation of at least one of the non-interference term of the d-axis voltage value and the non-interference term of the q-axis voltage value.
- an inverter control device capable of preventing an unintended overcurrent when the protection operation is released.
- FIG. 8 shows the output waveform at the time of recovery with measures against D-axis non-interference.
- FIG. 8 shows the output waveform at the time of recovery with measures against Q-axis non-interference.
- FIG. 8 shows the output waveform at the time of recovery with measures against DQ axis non-interference.
- the block diagram of the PWM control logic which concerns on the 2nd Embodiment.
- FIG. 1 is an overall configuration diagram of an inverter circuit according to the first embodiment.
- the inverter device 110 converts electric power between the HVDC power supply 101 and the motor 102.
- the inverter device 110 includes a switching element unit 105 (controlled object) composed of a three-phase upper and lower arm circuit and composed of a switching element 103, a voltage smoothing capacitor 104, and an abnormality detecting unit 108.
- the inverter control unit 109 has a PWM control logic unit 106 and a protection operation determination unit 107.
- the PWM control logic unit 106 calculates the output PWM voltage based on the output command value input from the host device (not shown), and outputs the PWM signal corresponding to the output PWM duty, whereby the inverter device 110 motors.
- the voltage applied to 102 is controlled.
- the abnormality detection unit 108 detects when an abnormality such as overvoltage or overcurrent occurs in the inverter device 110.
- an abnormality detection signal is transmitted from the abnormality detection unit 108 to the protection operation determination unit 107 of the inverter control unit 109.
- the protection operation determination unit 107 Upon receiving this abnormality detection signal, the protection operation determination unit 107 outputs a protection operation command for performing a protection operation corresponding to the abnormality of the inverter device 110 to the inverter device 110.
- the inverter device 110 executes the protection operation in preference to the PWM signal output from the PWM control logic unit 106.
- the protection operation determination unit 107 transmits a reset signal to the PWM control logic unit 106 to stop the calculation during the protection operation.
- the intended PWM signal can be output when the protection operation is canceled.
- the inverter device 110 changes from the controlled state to the non-controlled state.
- the protection operation is an operation to safely stop the entire device when an abnormality occurs, and is a gate off (switching element open) or a three-phase short circuit.
- the gate-off protection operation is determined from the gate-off signal, which is a combination of both the software gate ON / OFF and hardware protection signals.
- the protection operation of the three-phase short circuit is determined to be a three-phase short circuit when the PWM output commanding the hardware and the gate-off signal are OFF.
- FIG. 2 is a block diagram of the PWM control logic unit of FIG.
- the PWM control logic unit 106 is composed of a dq-axis current command generation unit 201, a dq-axis voltage command generation unit 202, and a PWM Duty setting unit 203.
- the output command value 208 is a torque command value or the like input from the outside. Based on this value, the dq-axis current command generation unit 201 generates a dq-axis current command.
- the dq-axis current command generation unit 201 may be equipped with a filter for preventing sudden changes in the torque command value.
- the dq-axis voltage command generation unit 202 calculates the dq-axis voltage proportional term based on the difference between the generated dq-axis current command and the feedback current 207 that feeds back the detection result of the dq-axis current flowing through the motor.
- the unit 204 and the dq-axis voltage integration term calculation unit 205 perform calculations on the proportional term and the integration term of the dq-axis voltage according to the voltage applied from the inverter device to the motor, respectively.
- the dq-axis current flowing through the motor for example, a current sensor is provided between the inverter device and the motor, the three-phase AC current is detected by this current sensor, and the detected three-phase AC current is converted based on the rotation position of the motor. By doing so, the dq-axis current can be acquired.
- the dq-axis voltage non-interference term calculation unit 206 performs the calculation based on the generated dq-axis current command and the motor rotation speed 209 detected from the motor.
- the dq-axis non-interference term is a feed-forward control term for canceling the velocity electromotive force that interferes with each other between the dq axes and affects the d-axis current and the q-axis current.
- the non-interference term of the d-axis voltage value is calculated based on the filter value of the q-axis current command value.
- the non-interference term of the q-axis voltage value is calculated based on the filter value of the d-axis current command value.
- the output of the dq-axis voltage command generation unit 202 is the total value of the results of the dq-axis voltage proportional term calculation unit 204, the dq-axis voltage integration term calculation unit 205, and the dq-axis voltage non-interference term calculation unit 206. It is converted to PWM Duty in the PWM Duty setting unit 203.
- the PWM control logic unit 106 generates a PWM signal corresponding to this PWM Duty and outputs it to the inverter device.
- a reset signal is output from the protection operation determination unit 107 (FIG. 1) to the PWM control logic unit 106. Will be done. As shown in FIG. 2, this reset signal is input to the dq-axis voltage non-interference term calculation unit 206 as a reset signal 210. When the reset signal 210 is input, the dq-axis voltage non-interference term calculation unit 206 resets the value of the non-interference term calculated so far.
- FIG. 3 is a flowchart of the protection operation according to the first embodiment.
- step S2 the PWM control logic unit 106 resets the non-interference term after receiving the reset signal from the protection operation determination unit 107 (see FIG. 1). During the protection operation, the reset of the non-interference term is continued. In step S3, it is determined whether or not to release the protection operation. If it is released, the operation of the non-interfering term is restarted in step S4, and if not, the resetting of the non-interfering term in step S2 is continued. By restarting the calculation of the non-interference term in step S4, the intended PWM output can be obtained. After resuming the calculation in the non-interference term in step S4, the inverter device returns to the normal control and enters the standby state.
- FIGS. 4 to 7 are diagrams showing output waveforms when the protection operation is released.
- 4 shows the case of low motor rotation
- FIG. 5 shows the case where D-axis non-interference measures are taken at the time of motor low rotation
- FIG. 6 shows the case of Q-axis non-interference measures at the time of motor low rotation
- FIG. 7 shows the case of motor low rotation.
- This is the output waveform when the protection operation is released when the DQ axis non-interference measures are taken.
- the timing of resetting each value is performed when the gate-off is recognized and the protection operation is canceled.
- FIGS. 5 to 7 the description of the same reference numerals and waveforms as in FIG. 4 is omitted.
- FIG. 4 shows each state of torque, three-phase current, gate state, DQ axis voltage command, DQ axis voltage integration term, and DQ axis voltage non-interference term when the torque command is reset at low motor rotation. It is a thing.
- the waveform of the DQ-axis voltage command shows the state of the Q-axis voltage command 216 and the D-axis voltage command 217.
- the waveform of the DQ-axis voltage integration term shows the Q-axis voltage integration term 218 and the D-axis voltage integration term 219.
- the waveform of the DQ-axis voltage non-interference term shows the Q-axis voltage non-interference term 220 and the D-axis voltage non-interference term 221.
- the waveform of the voltage command (upper right) is a waveform formed by the sum of the proportional term, the integral term, and the non-interfering term.
- the actual torque 211 is set to 0 by the torque command reset 212 in the torque waveform (upper left in FIG. 4) at the timing of the gate return 215 when the gate is turned on again from the gate off 214 in the gate state (lower left in FIG. 4). , You can see how the torque gradually recovers.
- FIG. 5 is a waveform when the D-axis voltage non-interference term reset 222 is performed in addition to the torque command reset 212 of FIG.
- the Q-axis voltage non-interference term 220 is a state 224 without measures against rampage.
- the rampage due to the overcurrent is suppressed at the time of the gate return 215 from the gate off 214. This is because the difference between the output command value and the voltage command value is reduced by resetting the D-axis non-interference term 221 which occupies most of the voltage command.
- FIG. 6 is a waveform when the Q-axis voltage non-interference term reset 223 is performed in addition to the torque command reset 212 of FIG.
- the D-axis voltage non-interference term 221 is a state 224 without countermeasures against rampage.
- the rampage due to overcurrent is suppressed to a small extent at the time of gate return 215 from the gate off 214. This is because the difference between the output command value and the voltage command value is reduced by resetting the Q-axis non-interference term 220 in the voltage command.
- the reason why the rampage countermeasure effect is smaller than that of the D-axis non-interference term reset 222 shown in FIG. 5 is that the amount by which the Q-axis non-interference term 220 is reset is the amount by which the D-axis non-interference term 221 is reset. This is because it is relatively small.
- FIG. 7 is a waveform when the DQ axis voltage non-interference term reset 226 is performed in addition to the torque command reset 212 of FIG.
- the rampage countermeasure effect 225 of the torque waveform and the three-phase current waveform the rampage due to the overcurrent is suppressed at the time of the gate return 215 from the gate off 214, and the torque command reset 212 and the D-axis voltage shown in FIG. 5 are suppressed.
- the effect is higher than the suppression of the rampage by the non-interference term reset 222. This is because the difference between the output command value and the voltage command value became smaller by resetting the non-interference term that occupies most of the voltage command, and the effect of resetting the D-axis voltage non-interference term 221 and the Q-axis.
- the effect of resetting the voltage non-interference term 220 is synergistic. In this way, the reset of the non-interfering term is simulated by disabling the non-interfering term filter by setting the torque command to 0 Nm.
- FIGS. 8 to 11 are diagrams showing output waveforms when the protection operation is released when the motor is rotating at high speed.
- 8 shows the torque command reset when the motor is rotating at high speed
- FIG. 9 shows the torque command reset and D-axis non-interference measures are taken at high motor rotation
- FIG. 10 shows the torque command reset and Q-axis at high motor rotation.
- FIG. 11 shows an output waveform when the protection operation is released when the torque command is reset and the DQ axis non-interference measures are taken when the motor is rotating at high speed.
- FIGS. 4 to 7 and FIGS. 8 to 11 are only the difference between the low rotation speed and the high rotation speed of the motor. Therefore, FIG. 8 corresponds to FIG. 4, FIG. 9 corresponds to FIG. 5, FIG. 10 corresponds to FIG. 6, and FIG. 11 corresponds to FIG. 7, and combinations thereof show similar effects.
- FIG. 12 is a block diagram of the PWM control logic unit according to the second embodiment.
- the difference between the PWM control logic unit 106A according to the present embodiment and the PWM control logic unit 106 of FIG. 2 described in the first embodiment is that the reset signal 210A output from the protection operation determination unit 107 has a dq-axis voltage. Not only is it input to the non-interference term calculation unit 206, but it also resets the output command value 208. As a result, the PWM control logic unit 106A resets the output command value 208 to 0 in response to the reset signal 210A when performing the gate-off or three-phase short-circuit protection operation, and the dq-axis voltage non-interference term calculation unit 206. Disable the filter.
- FIG. 13 is a flowchart of the protection operation of FIG.
- the difference from the flowchart of FIG. 3 is that not only the non-interfering term filter is invalidated (the non-interfering term is reset), but also the torque command input as the output command value 208 is set to 0 Nm in step S8.
- the non-interfering term filter is enabled (restarting the calculation of the non-interfering term) in step S10 and the reception of the torque command is restarted (returning) in step S11 at the timing when the protection operation is released and restored. ..
- the same effect as that of the first embodiment can be obtained.
- the inverter control unit 109 controls the applied voltage applied to the motor 102 by the inverter device 110 based on the output command value, and includes the d-axis current, the q-axis current, and the output command value flowing through the motor 102.
- Dq-axis voltage proportional term calculation unit 204 and dq-axis voltage integration term calculation unit 205 that calculate the dq-axis voltage term according to the applied voltage from the difference between the d-axis current command value and the q-axis current command value calculated based on The dq-axis voltage non-interference term calculation unit that calculates the non-interference terms of the d-axis voltage value and the q-axis voltage value based on the filter value of the q-axis current command value and the filter value of the d-axis current command value. 206 and.
- the dq-axis voltage non-interference term calculation unit 206 performs when the output command value is 0 in at least one of the non-interference term of the d-axis voltage value and the non-interference term of the q-axis voltage value.
- the values are set (step S2 in FIG. 3) and the applied voltage is turned from off to on, the dq-axis voltage non-interference term calculation unit 206 uses the d-axis voltage value non-interference term and the q-axis voltage value non-interference term. At least one of the operations is restarted (step S4 in FIG. 3). By doing so, it is possible to provide an inverter control device capable of preventing an unintended overcurrent when the protection operation is released.
- the inverter control unit 109 sets the output command value (voltage value) to 0 when the applied voltage is turned off (step S8 in FIG. 13), and sets the output command value from 0 when the applied voltage is turned from off to on. Set it to a valid value (step S11 in FIG. 13). By doing so, it is possible to provide an inverter control device capable of preventing an unintended overcurrent when the protection operation is released.
- the configuration may be a combination of the above-described embodiment and a plurality of modified examples.
- dq axis voltage non-interference term calculation unit 207 ... Feedback current 208 ... Output command value 209 ... Motor rotation speed 210 , 210A ... Reset signal 211 ... Actual torque 212 ... Torque command reset 213 ... Rampage due to overcurrent 214 ... Gate off 215 ... Gate return 216 ... Q-axis voltage command 217 ... D-axis voltage command 218 ... Q-axis voltage integration term 219 ... D-axis voltage integration term 220 ... Q-axis voltage non-interference term 221 ... D-axis voltage non-interference term 222 ...
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Inverter Devices (AREA)
Abstract
This inverter control device comprises a voltage term calculation unit which calculates a voltage term according to a voltage applied to a motor, from a difference between a d-axis current command value and a q-axis current command value, and a non-interference term calculation unit which calculates the non-interference terms of a d-axis voltage value and a q-axis voltage value, respectively, wherein: when turning off the applied voltage, the non-interference term calculation unit sets at least one among the non-interference term of the d-axis voltage value and the non-interference term of the q-axis voltage value to a value when the output command value is 0; and when turning the applied voltage from off to on, the non-interference term calculation unit resumes the calculation of at least one among the non-interference term of the d-axis voltage value and the non-interference term of the q-axis voltage value.
Description
本発明は、インバータ制御装置に関する。
The present invention relates to an inverter control device.
インバータを制御してモータを駆動させるインバータ制御装置では、インバータの故障時や装置の保護のため、出力指令値に基づくPWM信号の演算結果に関わらず、インバータに対してゲートオフや3相短絡等の保護動作を実施するものがある。この際に、インバータ制御を再開する場合は、実施している保護動作を解除する必要がある。しかし、インバータ制御装置は保護動作中であってもPWM信号を正常に出力しようとする制御演算を続けているため、保護動作の解除時には意図しないPWM信号がインバータに出力され、インバータにおいて過剰な出力電流が発生するようになっていた。この課題を解決するための技術が以下のように開示されている。
In the inverter control device that controls the inverter to drive the motor, gate-off, three-phase short circuit, etc. are performed for the inverter regardless of the calculation result of the PWM signal based on the output command value in order to protect the device or when the inverter fails. Some perform protective actions. At this time, when restarting the inverter control, it is necessary to cancel the protection operation performed. However, since the inverter control device continues the control calculation to output the PWM signal normally even during the protection operation, an unintended PWM signal is output to the inverter when the protection operation is released, and the inverter outputs excessively. An electric current was being generated. The technique for solving this problem is disclosed as follows.
本願発明の背景技術として、下記の特許文献1が知られている。特許文献1では、インバータの制御部が、瞬低の発生を判定する系統状態判定部と、前記系統状態判定部の判定結果に応じて、インバータの出力を遮断するゲートブロックが行われるようにするゲートブロック部と、ゲートブロックが解除される際に、インバータの操作量の算出に関するパラメータを初期化する初期化処理部と、を有することで、保護動作が解除される前に出力指令を初期化処理し、インバータの操作量を適切に算出する技術について開示されている。
The following Patent Document 1 is known as a background technique of the present invention. In Patent Document 1, the control unit of the inverter is configured to perform a system state determination unit for determining the occurrence of a momentary drop and a gate block for shutting off the output of the inverter according to the determination result of the system state determination unit. By having a gate block unit and an initialization processing unit that initializes parameters related to the calculation of the operation amount of the inverter when the gate block is released, the output command is initialized before the protection operation is released. A technique for processing and appropriately calculating the operation amount of the inverter is disclosed.
しかしながら、特許文献1では保護動作中に出力指令値算出前の算出パラメータは初期化処理できるものの、出力指令値より後段の算出パラメータが正常値に戻る前に制御を再開する場合には、インバータに対するPWM信号のパルス幅(デューティ)が不適切に算出され、出力の異常を招く問題があった。以上を鑑みて本発明は、保護動作の解除時に意図しない過電流を防止できるインバータ制御装置を提供することが課題である。
However, in Patent Document 1, although the calculation parameter before the output command value calculation can be initialized during the protection operation, when the control is restarted before the calculation parameter after the output command value returns to the normal value, the inverter is used. There is a problem that the pulse width (duty) of the PWM signal is improperly calculated, causing an abnormality in the output. In view of the above, it is an object of the present invention to provide an inverter control device capable of preventing an unintended overcurrent when the protection operation is released.
本発明のインバータ制御装置は、インバータがモータへ印加する印加電圧を出力指令値に基づいて制御するインバータ制御装置であって、前記モータに流れるd軸電流およびq軸電流と前記出力指令値とに基づいて算出されるd軸電流指令値およびq軸電流指令値の差分から、前記印加電圧に応じた電圧項を算出する電圧項演算部と、前記q軸電流指令値のフィルタ値と、前記d軸電圧指令値のフィルタ値とに基づいて、d軸電圧値およびq軸電圧値の非干渉項をそれぞれ算出する非干渉項演算部と、を備え、前記印加電圧をオフにする際、前記非干渉項演算部は、前記d軸電圧値の非干渉項および前記q軸電圧値の非干渉項の少なくとも一方に、前記出力指令値が0である時の値をそれぞれ設定し、前記印加電圧をオフからオンにする際、前記非干渉項演算部は、前記d軸電圧値の非干渉項および前記q軸電圧値の非干渉項の少なくとも一方の演算を再開する。
The inverter control device of the present invention is an inverter control device that controls an applied voltage applied to a motor by an inverter based on an output command value, and has a d-axis current and a q-axis current flowing through the motor and the output command value. From the difference between the d-axis current command value and the q-axis current command value calculated based on the voltage term calculation unit, the voltage term calculation unit that calculates the voltage term according to the applied voltage, the filter value of the q-axis current command value, and the d. It is provided with a non-interference term calculation unit that calculates the non-interference terms of the d-axis voltage value and the q-axis voltage value based on the filter value of the axis voltage command value, respectively, and when the applied voltage is turned off, the non-interference term is described. The interference term calculation unit sets a value when the output command value is 0 in at least one of the non-interference term of the d-axis voltage value and the non-interference term of the q-axis voltage value, and sets the applied voltage. When turning from off to on, the non-interference term calculation unit resumes the calculation of at least one of the non-interference term of the d-axis voltage value and the non-interference term of the q-axis voltage value.
本発明によれば、保護動作の解除時に意図しない過電流を防止できるインバータ制御装置を提供できる。
According to the present invention, it is possible to provide an inverter control device capable of preventing an unintended overcurrent when the protection operation is released.
以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description and drawings are examples for explaining the present invention, and are appropriately omitted and simplified for the sake of clarification of the description. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.
図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc. in order to facilitate understanding of the invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range and the like disclosed in the drawings.
(本発明の第1の実施形態および構成)
図1は、第1の実施形態に係る、インバータ回路の全体構成図である。 (1st Embodiment and composition of this invention)
FIG. 1 is an overall configuration diagram of an inverter circuit according to the first embodiment.
図1は、第1の実施形態に係る、インバータ回路の全体構成図である。 (1st Embodiment and composition of this invention)
FIG. 1 is an overall configuration diagram of an inverter circuit according to the first embodiment.
インバータ装置110は、HVDC電源101とモータ102との間で電力を変換している。インバータ装置110は、3相の上下アーム回路で構成されスイッチング素子103からなるスイッチング素子部105(制御対象)と、電圧平滑用コンデンサ104と、異常検出部108と、を持つ。
The inverter device 110 converts electric power between the HVDC power supply 101 and the motor 102. The inverter device 110 includes a switching element unit 105 (controlled object) composed of a three-phase upper and lower arm circuit and composed of a switching element 103, a voltage smoothing capacitor 104, and an abnormality detecting unit 108.
インバータ制御部109は、PWM制御ロジック部106と、保護動作決定部107と、を持つ。PWM制御ロジック部106は、制御状態では上位装置(図示せず)から入力される出力指令値に基づき、出力PWM Dutyを算出し、それに応じたPWM信号を出力することで、インバータ装置110がモータ102へ印加する電圧を制御している。
The inverter control unit 109 has a PWM control logic unit 106 and a protection operation determination unit 107. In the control state, the PWM control logic unit 106 calculates the output PWM voltage based on the output command value input from the host device (not shown), and outputs the PWM signal corresponding to the output PWM duty, whereby the inverter device 110 motors. The voltage applied to 102 is controlled.
異常検出部108は、インバータ装置110において過電圧や過電流等の異常が発生した場合に、これを検出する。異常検出部108が、インバータ装置110の異常を検出すると、異常検出部108からインバータ制御部109の保護動作決定部107へ異常検出信号が伝達される。この異常検出信号を受けると、保護動作決定部107は、インバータ装置110の異常に対応した保護動作を行うための保護動作指令を、インバータ装置110へ出力する。保護動作決定部107から保護動作指令を受けると、インバータ装置110は、PWM制御ロジック部106から出力されるPWM信号よりも優先して、保護動作を実行する。この時、保護動作決定部107は、PWM制御ロジック部106へリセット信号を伝達し、保護動作中の演算を停止させる。これにより、保護動作が解除された際に、意図したPWM信号を出力できる。保護動作中は、インバータ装置110は、制御状態から非制御状態になる。
The abnormality detection unit 108 detects when an abnormality such as overvoltage or overcurrent occurs in the inverter device 110. When the abnormality detection unit 108 detects an abnormality in the inverter device 110, an abnormality detection signal is transmitted from the abnormality detection unit 108 to the protection operation determination unit 107 of the inverter control unit 109. Upon receiving this abnormality detection signal, the protection operation determination unit 107 outputs a protection operation command for performing a protection operation corresponding to the abnormality of the inverter device 110 to the inverter device 110. Upon receiving the protection operation command from the protection operation determination unit 107, the inverter device 110 executes the protection operation in preference to the PWM signal output from the PWM control logic unit 106. At this time, the protection operation determination unit 107 transmits a reset signal to the PWM control logic unit 106 to stop the calculation during the protection operation. As a result, the intended PWM signal can be output when the protection operation is canceled. During the protection operation, the inverter device 110 changes from the controlled state to the non-controlled state.
なお、保護動作とは、異常が発生した際に装置全体を安全に停止させる動作であり、ゲートオフ(スイッチング素子オープン)や3相短絡のことである。ゲートオフの保護動作は、ソフトウェアのゲートON/OFFとハードウェア保護との両方の信号を合わせたゲートオフ信号から判定する。3相短絡の保護動作は、ハードウェアへ指令するPWM出力とゲートオフ信号がOFFの場合、3相短絡と判定される。
The protection operation is an operation to safely stop the entire device when an abnormality occurs, and is a gate off (switching element open) or a three-phase short circuit. The gate-off protection operation is determined from the gate-off signal, which is a combination of both the software gate ON / OFF and hardware protection signals. The protection operation of the three-phase short circuit is determined to be a three-phase short circuit when the PWM output commanding the hardware and the gate-off signal are OFF.
図2は、図1のPWM制御ロジック部のブロック図である。
FIG. 2 is a block diagram of the PWM control logic unit of FIG.
PWM制御ロジック部106は、dq軸電流指令生成部201、dq軸電圧指令生成部202、PWM Duty設定部203から構成される。
The PWM control logic unit 106 is composed of a dq-axis current command generation unit 201, a dq-axis voltage command generation unit 202, and a PWM Duty setting unit 203.
出力指令値208は、外部から入力されるトルク指令値などである。この値に基づいてdq軸電流指令生成部201において、dq軸電流指令が生成される。なお、dq軸電流指令生成部201には、トルク指令値の急変防止のためのフィルタが実装されていてもよい。
The output command value 208 is a torque command value or the like input from the outside. Based on this value, the dq-axis current command generation unit 201 generates a dq-axis current command. The dq-axis current command generation unit 201 may be equipped with a filter for preventing sudden changes in the torque command value.
次に、dq軸電圧指令生成部202は、生成されたdq軸電流指令と、モータに流れるdq軸電流の検出結果をフィードバックしたフィードバック電流207と、の差分に基づいて、dq軸電圧比例項演算部204とdq軸電圧積分項演算部205とで、インバータ装置からモータへの印加電圧に応じたdq軸電圧の比例項と積分項の演算をそれぞれ実施する。
Next, the dq-axis voltage command generation unit 202 calculates the dq-axis voltage proportional term based on the difference between the generated dq-axis current command and the feedback current 207 that feeds back the detection result of the dq-axis current flowing through the motor. The unit 204 and the dq-axis voltage integration term calculation unit 205 perform calculations on the proportional term and the integration term of the dq-axis voltage according to the voltage applied from the inverter device to the motor, respectively.
モータに流れるdq軸電流について、例えばインバータ装置とモータとの間に電流センサを設け、この電流センサによって三相交流電流を検出し、検出された三相交流電流をモータの回転位置に基づいて変換することにより、dq軸電流を取得できる。一方、dq軸電圧非干渉項演算部206は、生成されたdq軸電流指令とモータから検出したモータ回転数209と、に基づいて演算を実施する。
Regarding the dq-axis current flowing through the motor, for example, a current sensor is provided between the inverter device and the motor, the three-phase AC current is detected by this current sensor, and the detected three-phase AC current is converted based on the rotation position of the motor. By doing so, the dq-axis current can be acquired. On the other hand, the dq-axis voltage non-interference term calculation unit 206 performs the calculation based on the generated dq-axis current command and the motor rotation speed 209 detected from the motor.
なお、dq軸非干渉項とは、dq軸間で互いに干渉しd軸電流とq軸電流とに影響を与える速度起電力を打ち消すためにある、フィードフォワード制御項である。d軸電圧値の非干渉項は、q軸電流指令値のフィルタ値に基づいて値が算出される。q軸電圧値の非干渉項は、d軸電流指令値のフィルタ値に基づいて値が算出される。それぞれの電流指令値のフィルタ値に基づいて非干渉項を算出することで、実電流の変化遅れが考慮されている。
The dq-axis non-interference term is a feed-forward control term for canceling the velocity electromotive force that interferes with each other between the dq axes and affects the d-axis current and the q-axis current. The non-interference term of the d-axis voltage value is calculated based on the filter value of the q-axis current command value. The non-interference term of the q-axis voltage value is calculated based on the filter value of the d-axis current command value. By calculating the non-interference term based on the filter value of each current command value, the change delay of the actual current is taken into consideration.
dq軸電圧指令生成部202の出力は、dq軸電圧比例項演算部204と、dq軸電圧積分項演算部205と、dq軸電圧非干渉項演算部206と、の結果の合計値であり、PWM Duty設定部203においてPWM Dutyに変換される。PWM制御ロジック部106では、このPWM Dutyに応じたPWM信号を生成し、インバータ装置へ出力する。
The output of the dq-axis voltage command generation unit 202 is the total value of the results of the dq-axis voltage proportional term calculation unit 204, the dq-axis voltage integration term calculation unit 205, and the dq-axis voltage non-interference term calculation unit 206. It is converted to PWM Duty in the PWM Duty setting unit 203. The PWM control logic unit 106 generates a PWM signal corresponding to this PWM Duty and outputs it to the inverter device.
ここで、モータへ印加される電圧をオフにすることで、ゲートオフまたは3相短絡の保護動作を行った際は、保護動作決定部107(図1)からPWM制御ロジック部106へリセット信号が出力される。このリセット信号は、図2に示すように、dq軸電圧非干渉項演算部206にリセット信号210として入力される。リセット信号210が入力されると、dq軸電圧非干渉項演算部206は、それまでに算出した非干渉項の値をリセットする。このリセットとは、d軸q軸それぞれの電圧値の項(非干渉項)のフィルタを無効化して、初期値(トランジスタの動作点の出力指令値が0の時の非干渉項値)に設定することを示す。ただし、非干渉項の初期値は動作条件によっては0とならない。
Here, by turning off the voltage applied to the motor, when a gate-off or three-phase short-circuit protection operation is performed, a reset signal is output from the protection operation determination unit 107 (FIG. 1) to the PWM control logic unit 106. Will be done. As shown in FIG. 2, this reset signal is input to the dq-axis voltage non-interference term calculation unit 206 as a reset signal 210. When the reset signal 210 is input, the dq-axis voltage non-interference term calculation unit 206 resets the value of the non-interference term calculated so far. This reset invalidates the filter of the voltage value term (non-interference term) of each d-axis and q-axis, and sets it to the initial value (non-interference term value when the output command value of the operating point of the transistor is 0). Show that you do. However, the initial value of the non-interference term may not be 0 depending on the operating conditions.
図3は、第1の実施形態に係る、保護動作時のフローチャートである。
FIG. 3 is a flowchart of the protection operation according to the first embodiment.
ステップS1で保護動作を実施する。ステップS2で、PWM制御ロジック部106が保護動作決定部107からリセット信号受信(図1参照)後、非干渉項をリセットする。なお、保護動作中は、非干渉項のリセットを継続する。ステップS3で、保護動作からの解除をするかどうか判断する。解除するならば、ステップS4で非干渉項の演算を再開し、そうでなければ、ステップS2の非干渉項のリセットを継続する。ステップS4で非干渉項の演算を再開させることにより、意図したPWM出力を得ることができる。ステップS4の非干渉項での演算の再開後、インバータ装置は通常制御にもどり待機状態になる。
Implement the protection operation in step S1. In step S2, the PWM control logic unit 106 resets the non-interference term after receiving the reset signal from the protection operation determination unit 107 (see FIG. 1). During the protection operation, the reset of the non-interference term is continued. In step S3, it is determined whether or not to release the protection operation. If it is released, the operation of the non-interfering term is restarted in step S4, and if not, the resetting of the non-interfering term in step S2 is continued. By restarting the calculation of the non-interference term in step S4, the intended PWM output can be obtained. After resuming the calculation in the non-interference term in step S4, the inverter device returns to the normal control and enters the standby state.
図4~図7は、保護動作解除時の出力波形を示す図である。図4は、モータ低回転の場合、図5は、モータ低回転時にD軸非干渉対策した場合、図6は、モータ低回転時にQ軸非干渉対策した場合、図7は、モータ低回転時にDQ軸非干渉対策した場合、の保護動作解除時の出力波形である。なお、各値リセットのタイミングはゲートオフを認識して保護動作を解除した際に行われるものである。また、図5~図7に説明の図では、図4と同様の符号や波形については説明を省略している。
FIGS. 4 to 7 are diagrams showing output waveforms when the protection operation is released. 4 shows the case of low motor rotation, FIG. 5 shows the case where D-axis non-interference measures are taken at the time of motor low rotation, FIG. 6 shows the case of Q-axis non-interference measures at the time of motor low rotation, and FIG. 7 shows the case of motor low rotation. This is the output waveform when the protection operation is released when the DQ axis non-interference measures are taken. The timing of resetting each value is performed when the gate-off is recognized and the protection operation is canceled. Further, in the figures described in FIGS. 5 to 7, the description of the same reference numerals and waveforms as in FIG. 4 is omitted.
図4は、モータ低回転時にトルク指令をリセットしたときに、トルク、3相電流、ゲート状態、DQ軸電圧指令、DQ軸電圧積分項、DQ軸電圧非干渉項、のそれぞれの状態を表したものである。DQ軸電圧指令の波形にはQ軸電圧指令216とD軸電圧指令217との様子が示されている。DQ軸電圧積分項の波形にはQ軸電圧積分項218とD軸電圧積分項219とが示されている。DQ軸電圧非干渉項の波形には、Q軸電圧非干渉項220とD軸電圧非干渉項221とが示されている。なお、電圧指令の波形(右上)は、比例項と積分項と非干渉項との合計によってできる波形である。
FIG. 4 shows each state of torque, three-phase current, gate state, DQ axis voltage command, DQ axis voltage integration term, and DQ axis voltage non-interference term when the torque command is reset at low motor rotation. It is a thing. The waveform of the DQ-axis voltage command shows the state of the Q-axis voltage command 216 and the D-axis voltage command 217. The waveform of the DQ-axis voltage integration term shows the Q-axis voltage integration term 218 and the D-axis voltage integration term 219. The waveform of the DQ-axis voltage non-interference term shows the Q-axis voltage non-interference term 220 and the D-axis voltage non-interference term 221. The waveform of the voltage command (upper right) is a waveform formed by the sum of the proportional term, the integral term, and the non-interfering term.
実トルク211は、ゲート状態(図4左下)において、ゲートオフ214から再びゲートがオンになるゲート復帰215のタイミングで、トルクの波形(図4左上)において、トルク指令リセット212によってトルクが0になり、徐々にトルクが復帰していく様子がわかる。
The actual torque 211 is set to 0 by the torque command reset 212 in the torque waveform (upper left in FIG. 4) at the timing of the gate return 215 when the gate is turned on again from the gate off 214 in the gate state (lower left in FIG. 4). , You can see how the torque gradually recovers.
しかし、トルクおよび3相電流の波形には、ゲート復帰215の直後では実トルク211が制御できておらず、過電流による暴れ213が発生していることがわかる。これは、出力指令値をリセットしたが、内部パラメータの電圧指令が戻り切っていないことが原因で、トルク指令リセット212後のトルク復帰の際に、リセット前の内部パラメータに基づく電圧指令が出力されてしまうために起きる現象である。
However, in the waveforms of the torque and the three-phase current, it can be seen that the actual torque 211 cannot be controlled immediately after the gate return 215, and the rampage 213 due to the overcurrent occurs. This is because the output command value was reset, but the voltage command of the internal parameter was not fully returned, so when the torque was restored after the torque command reset 212, the voltage command based on the internal parameter before the reset was output. It is a phenomenon that occurs because of the resetting.
図5は、図4のトルク指令リセット212に加えて、D軸電圧非干渉項リセット222をした場合の波形である。なお、Q軸電圧非干渉項220は、暴れ対策なしの状態224である。
FIG. 5 is a waveform when the D-axis voltage non-interference term reset 222 is performed in addition to the torque command reset 212 of FIG. The Q-axis voltage non-interference term 220 is a state 224 without measures against rampage.
トルク波形および3相電流波形の暴れ対策効果225に示すように、ゲートオフ214からのゲート復帰215の時に、過電流による暴れが抑えられている。これは、電圧指令の大半を占めているD軸非干渉項221をリセットしたことで、出力指令値と電圧指令値の差分が小さくなったためである。
As shown in the rampage countermeasure effect 225 of the torque waveform and the three-phase current waveform, the rampage due to the overcurrent is suppressed at the time of the gate return 215 from the gate off 214. This is because the difference between the output command value and the voltage command value is reduced by resetting the D-axis non-interference term 221 which occupies most of the voltage command.
図6は、図4のトルク指令リセット212に加えて、Q軸電圧非干渉項リセット223をした場合の波形である。なお、D軸電圧非干渉項221は、暴れ対策なしの状態224である。
FIG. 6 is a waveform when the Q-axis voltage non-interference term reset 223 is performed in addition to the torque command reset 212 of FIG. The D-axis voltage non-interference term 221 is a state 224 without countermeasures against rampage.
トルク波形および3相電流波形の暴れ対策効果225に示すように、ゲートオフ214からのゲート復帰215の時に、過電流による暴れが小程度抑えられている。これは、電圧指令においてQ軸非干渉項220をリセットしたことで、出力指令値と電圧指令値の差分が小さくなったためである。図5に示したD軸非干渉項リセット222と比較して、暴れ対策効果が小さい理由は、Q軸非干渉項220がリセットされる量が、D軸非干渉項221がリセットされる量と比較して小さいためである。
As shown in the effect of countermeasures against rampage of the torque waveform and the three-phase current waveform 225, the rampage due to overcurrent is suppressed to a small extent at the time of gate return 215 from the gate off 214. This is because the difference between the output command value and the voltage command value is reduced by resetting the Q-axis non-interference term 220 in the voltage command. The reason why the rampage countermeasure effect is smaller than that of the D-axis non-interference term reset 222 shown in FIG. 5 is that the amount by which the Q-axis non-interference term 220 is reset is the amount by which the D-axis non-interference term 221 is reset. This is because it is relatively small.
図7は、図4のトルク指令リセット212に加えて、DQ軸電圧非干渉項リセット226をした場合の波形である。
FIG. 7 is a waveform when the DQ axis voltage non-interference term reset 226 is performed in addition to the torque command reset 212 of FIG.
トルク波形および3相電流波形の暴れ対策効果225に示すように、ゲートオフ214からのゲート復帰215の時に、過電流による暴れが抑えられており、図5に示したトルク指令リセット212とD軸電圧非干渉項リセット222による暴れの抑制よりも、効果が高く出ていることがわかる。これは、電圧指令の大半を占めている非干渉項をリセットしたことで、出力指令値と電圧指令値の差分が小さくなったためであり、D軸電圧非干渉項221をリセットした効果とQ軸電圧非干渉項220をリセットした効果が相乗されている。このように、トルク指令を0Nmにして非干渉項フィルタを無効化することで、非干渉項のリセットを模擬している。
As shown in the rampage countermeasure effect 225 of the torque waveform and the three-phase current waveform, the rampage due to the overcurrent is suppressed at the time of the gate return 215 from the gate off 214, and the torque command reset 212 and the D-axis voltage shown in FIG. 5 are suppressed. It can be seen that the effect is higher than the suppression of the rampage by the non-interference term reset 222. This is because the difference between the output command value and the voltage command value became smaller by resetting the non-interference term that occupies most of the voltage command, and the effect of resetting the D-axis voltage non-interference term 221 and the Q-axis. The effect of resetting the voltage non-interference term 220 is synergistic. In this way, the reset of the non-interfering term is simulated by disabling the non-interfering term filter by setting the torque command to 0 Nm.
図8~図11は、モータ高回転時の保護動作解除時の出力波形を示す図である。図8は、モータ高回転時にトルク指令リセットを行った場合、図9は、モータ高回転時にトルク指令リセットとD軸非干渉対策した場合、図10は、モータ高回転時にトルク指令リセットとQ軸非干渉対策した場合、図11は、モータ高回転時にトルク指令リセットとDQ軸非干渉対策した場合、の保護動作解除時の出力波形である。
8 to 11 are diagrams showing output waveforms when the protection operation is released when the motor is rotating at high speed. 8 shows the torque command reset when the motor is rotating at high speed, FIG. 9 shows the torque command reset and D-axis non-interference measures are taken at high motor rotation, and FIG. 10 shows the torque command reset and Q-axis at high motor rotation. When non-interference measures are taken, FIG. 11 shows an output waveform when the protection operation is released when the torque command is reset and the DQ axis non-interference measures are taken when the motor is rotating at high speed.
図4~7と図8~11との違いは、モータが低回転時か高回転時かだけの違いである。そのため、図8は図4と、図9は図5と、図10は図6と、図11は図7とそれぞれ対応し、これらの組み合わせがそれぞれに同様の効果を示している。
The difference between FIGS. 4 to 7 and FIGS. 8 to 11 is only the difference between the low rotation speed and the high rotation speed of the motor. Therefore, FIG. 8 corresponds to FIG. 4, FIG. 9 corresponds to FIG. 5, FIG. 10 corresponds to FIG. 6, and FIG. 11 corresponds to FIG. 7, and combinations thereof show similar effects.
(第2の実施形態)
図12は、第2の実施形態に係る、PWM制御ロジック部のブロック図である。 (Second embodiment)
FIG. 12 is a block diagram of the PWM control logic unit according to the second embodiment.
図12は、第2の実施形態に係る、PWM制御ロジック部のブロック図である。 (Second embodiment)
FIG. 12 is a block diagram of the PWM control logic unit according to the second embodiment.
本実施形態に係るPWM制御ロジック部106Aにおいて、第1の実施形態で説明した図2のPWM制御ロジック部106との違いは、保護動作決定部107から出力されたリセット信号210Aが、dq軸電圧非干渉項演算部206に入力されるだけでなく、出力指令値208をリセットする点である。これにより、PWM制御ロジック部106Aは、ゲートオフまたは3相短絡の保護動作を行う際に、リセット信号210Aに応じて出力指令値208を0にリセットするとともに、dq軸電圧非干渉項演算部206のフィルタを無効化する。
The difference between the PWM control logic unit 106A according to the present embodiment and the PWM control logic unit 106 of FIG. 2 described in the first embodiment is that the reset signal 210A output from the protection operation determination unit 107 has a dq-axis voltage. Not only is it input to the non-interference term calculation unit 206, but it also resets the output command value 208. As a result, the PWM control logic unit 106A resets the output command value 208 to 0 in response to the reset signal 210A when performing the gate-off or three-phase short-circuit protection operation, and the dq-axis voltage non-interference term calculation unit 206. Disable the filter.
図13は、図12の保護動作時のフローチャートである。
FIG. 13 is a flowchart of the protection operation of FIG.
図3のフローチャートとの違いは、非干渉項フィルタを無効(非干渉項をリセット)するだけでなく、出力指令値208として入力されたトルク指令をステップS8で0Nmに設定することである。これにより、保護動作を解除して復帰したタイミングで、ステップS10で非干渉項フィルタを有効(非干渉項の演算を再開する)にさせて、ステップS11でトルク指令の受信を再開(復帰)させる。これにより第1の実施形態と同様の効果が得られる。
The difference from the flowchart of FIG. 3 is that not only the non-interfering term filter is invalidated (the non-interfering term is reset), but also the torque command input as the output command value 208 is set to 0 Nm in step S8. As a result, the non-interfering term filter is enabled (restarting the calculation of the non-interfering term) in step S10 and the reception of the torque command is restarted (returning) in step S11 at the timing when the protection operation is released and restored. .. As a result, the same effect as that of the first embodiment can be obtained.
以上説明した本発明の第1の実施形態および第2の実施形態によれば、以下の作用効果を奏する。
According to the first embodiment and the second embodiment of the present invention described above, the following functions and effects are obtained.
(1)インバータ制御部109は、インバータ装置110がモータ102へ印加する印加電圧を出力指令値に基づいて制御するものであって、モータ102に流れるd軸電流およびq軸電流と出力指令値とに基づいて算出されるd軸電流指令値およびq軸電流指令値の差分から、印加電圧に応じたdq軸電圧項を算出するdq軸電圧比例項演算部204およびdq軸電圧積分項演算部205と、q軸電流指令値のフィルタ値と、d軸電流指令値のフィルタ値とに基づいて、d軸電圧値およびq軸電圧値の非干渉項をそれぞれ算出するdq軸電圧非干渉項演算部206と、を備える。印加電圧をオフにする際、dq軸電圧非干渉項演算部206は、d軸電圧値の非干渉項およびq軸電圧値の非干渉項の少なくとも一方に、出力指令値が0である時の値をそれぞれ設定し(図3ステップS2)、印加電圧をオフからオンにする際、dq軸電圧非干渉項演算部206は、d軸電圧値の非干渉項およびq軸電圧値の非干渉項の少なくとも一方の演算を再開する(図3ステップS4)。このようにしたことで、保護動作の解除時に意図しない過電流を防止できるインバータ制御装置を提供できる。
(1) The inverter control unit 109 controls the applied voltage applied to the motor 102 by the inverter device 110 based on the output command value, and includes the d-axis current, the q-axis current, and the output command value flowing through the motor 102. Dq-axis voltage proportional term calculation unit 204 and dq-axis voltage integration term calculation unit 205 that calculate the dq-axis voltage term according to the applied voltage from the difference between the d-axis current command value and the q-axis current command value calculated based on The dq-axis voltage non-interference term calculation unit that calculates the non-interference terms of the d-axis voltage value and the q-axis voltage value based on the filter value of the q-axis current command value and the filter value of the d-axis current command value. 206 and. When the applied voltage is turned off, the dq-axis voltage non-interference term calculation unit 206 performs when the output command value is 0 in at least one of the non-interference term of the d-axis voltage value and the non-interference term of the q-axis voltage value. When the values are set (step S2 in FIG. 3) and the applied voltage is turned from off to on, the dq-axis voltage non-interference term calculation unit 206 uses the d-axis voltage value non-interference term and the q-axis voltage value non-interference term. At least one of the operations is restarted (step S4 in FIG. 3). By doing so, it is possible to provide an inverter control device capable of preventing an unintended overcurrent when the protection operation is released.
(2)インバータ制御部109は、印加電圧をオフにする際、出力指令値(電圧値)を0とし(図13ステップS8)、印加電圧をオフからオンにする際、出力指令値を0から有効値にする(図13ステップS11)。このようにしたことで、保護動作の解除時に意図しない過電流を防止できるインバータ制御装置を提供できる。
(2) The inverter control unit 109 sets the output command value (voltage value) to 0 when the applied voltage is turned off (step S8 in FIG. 13), and sets the output command value from 0 when the applied voltage is turned from off to on. Set it to a valid value (step S11 in FIG. 13). By doing so, it is possible to provide an inverter control device capable of preventing an unintended overcurrent when the protection operation is released.
以上説明したが、発明の技術的思想を逸脱しない範囲で、削除・他の構成に置換・他の構成の追加をすることが可能であり、その態様も本発明の範囲内に含まれる。さらに、上述の実施形態と複数の変形例を組み合わせた構成としてもよい。
As described above, it is possible to delete, replace with another configuration, or add another configuration without departing from the technical idea of the invention, and the embodiment thereof is also included in the scope of the present invention. Further, the configuration may be a combination of the above-described embodiment and a plurality of modified examples.
101・・・HVDC電源
102・・・モータ
103・・・スイッチング素子
104・・・コンデンサ
105・・・スイッチング素子部
106、106A・・・PWM制御ロジック部
107・・・保護動作決定部
108・・・異常検出部
109・・・インバータ制御部
110・・・インバータ装置
201・・・dq軸電流指令生成部
202・・・dq軸電圧指令生成部
203・・・PWM Duty設定部
204・・・dq軸電圧比例項演算部
205・・・dq軸電圧積分項演算部
206・・・dq軸電圧非干渉項演算部
207・・・フィードバック電流
208・・・出力指令値
209・・・モータ回転数
210、210A・・・リセット信号
211・・・実トルク
212・・・トルク指令リセット
213・・・過電流による暴れ
214・・・ゲートオフ
215・・・ゲート復帰
216・・・Q軸電圧指令
217・・・D軸電圧指令
218・・・Q軸電圧積分項
219・・・D軸電圧積分項
220・・・Q軸電圧非干渉項
221・・・D軸電圧非干渉項
222・・・D軸非干渉項リセット
223・・・Q軸非干渉項リセット
224・・・暴れ対策なしの状態
225・・・暴れ対策効果
226・・・DQ軸非干渉項リセット 101 ...HVDC power supply 102 ... Motor 103 ... Switching element 104 ... Condenser 105 ... Switching element unit 106, 106A ... PWM control logic unit 107 ... Protection operation determination unit 108 ...・ Abnormality detection unit 109 ・ ・ ・ Inverter control unit 110 ・ ・ ・ Inverter device 201 ・ ・ ・ dq axis current command generation unit 202 ・ ・ ・ dq axis voltage command generation unit 203 ・ ・ ・ PWM Duty setting unit 204 ・ ・ ・ dq Shaft voltage proportional term calculation unit 205 ... dq axis voltage integration term calculation unit 206 ... dq axis voltage non-interference term calculation unit 207 ... Feedback current 208 ... Output command value 209 ... Motor rotation speed 210 , 210A ... Reset signal 211 ... Actual torque 212 ... Torque command reset 213 ... Rampage due to overcurrent 214 ... Gate off 215 ... Gate return 216 ... Q-axis voltage command 217 ... D-axis voltage command 218 ... Q-axis voltage integration term 219 ... D-axis voltage integration term 220 ... Q-axis voltage non-interference term 221 ... D-axis voltage non-interference term 222 ... D-axis non-interference term Interference term reset 223 ・ ・ ・ Q-axis non-interference term reset 224 ・ ・ ・ State without rampage countermeasure 225 ・ ・ ・ Rampage countermeasure effect 226 ・ ・ ・ DQ axis non-interference term reset
102・・・モータ
103・・・スイッチング素子
104・・・コンデンサ
105・・・スイッチング素子部
106、106A・・・PWM制御ロジック部
107・・・保護動作決定部
108・・・異常検出部
109・・・インバータ制御部
110・・・インバータ装置
201・・・dq軸電流指令生成部
202・・・dq軸電圧指令生成部
203・・・PWM Duty設定部
204・・・dq軸電圧比例項演算部
205・・・dq軸電圧積分項演算部
206・・・dq軸電圧非干渉項演算部
207・・・フィードバック電流
208・・・出力指令値
209・・・モータ回転数
210、210A・・・リセット信号
211・・・実トルク
212・・・トルク指令リセット
213・・・過電流による暴れ
214・・・ゲートオフ
215・・・ゲート復帰
216・・・Q軸電圧指令
217・・・D軸電圧指令
218・・・Q軸電圧積分項
219・・・D軸電圧積分項
220・・・Q軸電圧非干渉項
221・・・D軸電圧非干渉項
222・・・D軸非干渉項リセット
223・・・Q軸非干渉項リセット
224・・・暴れ対策なしの状態
225・・・暴れ対策効果
226・・・DQ軸非干渉項リセット 101 ...
Claims (2)
- インバータがモータへ印加する印加電圧を出力指令値に基づいて制御するインバータ制御装置であって、
前記モータに流れるd軸電流およびq軸電流と前記出力指令値とに基づいて算出されるd軸電流指令値およびq軸電流指令値の差分から、前記印加電圧に応じた電圧項を算出する電圧項演算部と、
前記q軸電流指令値のフィルタ値と、前記d軸電流指令値のフィルタ値とに基づいて、d軸電圧値およびq軸電圧値の非干渉項をそれぞれ算出する非干渉項演算部と、を備え、
前記印加電圧をオフにする際、前記非干渉項演算部は、前記d軸電圧値の非干渉項および前記q軸電圧値の非干渉項の少なくとも一方に、前記出力指令値が0である時の値をそれぞれ設定し、
前記印加電圧をオフからオンにする際、前記非干渉項演算部は、前記d軸電圧値の非干渉項および前記q軸電圧値の非干渉項の少なくとも一方の演算を再開する
インバータ制御装置。 It is an inverter control device that controls the applied voltage applied to the motor by the inverter based on the output command value.
A voltage for calculating a voltage term according to the applied voltage from the difference between the d-axis current command value and the q-axis current command value calculated based on the d-axis current and q-axis current flowing through the motor and the output command value. Term calculation unit and
A non-interference term calculation unit that calculates the non-interference terms of the d-axis voltage value and the q-axis voltage value based on the filter value of the q-axis current command value and the filter value of the d-axis current command value. Prepare,
When the applied voltage is turned off, the non-interference term calculation unit receives when the output command value is 0 in at least one of the non-interference term of the d-axis voltage value and the non-interference term of the q-axis voltage value. Set each value of
When the applied voltage is turned from off to on, the non-interference term calculation unit restarts the calculation of at least one of the non-interference term of the d-axis voltage value and the non-interference term of the q-axis voltage value. - 請求項1に記載のインバータ制御装置であって、
前記印加電圧をオフにする際、前記出力指令値を0とし、
前記印加電圧をオフからオンにする際、前記出力指令値を0から有効値にする
インバータ制御装置。 The inverter control device according to claim 1.
When the applied voltage is turned off, the output command value is set to 0.
An inverter control device that changes the output command value from 0 to an effective value when the applied voltage is turned from off to on.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022571066A JP7395776B2 (en) | 2020-12-25 | 2021-09-30 | Inverter control device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020218060 | 2020-12-25 | ||
JP2020-218060 | 2020-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022137709A1 true WO2022137709A1 (en) | 2022-06-30 |
Family
ID=82157514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/036344 WO2022137709A1 (en) | 2020-12-25 | 2021-09-30 | Inverter control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7395776B2 (en) |
WO (1) | WO2022137709A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10313592A (en) * | 1997-05-09 | 1998-11-24 | Denso Corp | Motor control device and motor control method |
JP2002238163A (en) * | 2001-02-06 | 2002-08-23 | Mitsubishi Electric Corp | Power converter |
JP2015173547A (en) * | 2014-03-12 | 2015-10-01 | 日産自動車株式会社 | Motor controller |
-
2021
- 2021-09-30 JP JP2022571066A patent/JP7395776B2/en active Active
- 2021-09-30 WO PCT/JP2021/036344 patent/WO2022137709A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10313592A (en) * | 1997-05-09 | 1998-11-24 | Denso Corp | Motor control device and motor control method |
JP2002238163A (en) * | 2001-02-06 | 2002-08-23 | Mitsubishi Electric Corp | Power converter |
JP2015173547A (en) * | 2014-03-12 | 2015-10-01 | 日産自動車株式会社 | Motor controller |
Also Published As
Publication number | Publication date |
---|---|
JP7395776B2 (en) | 2023-12-11 |
JPWO2022137709A1 (en) | 2022-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5866034B2 (en) | Electric motor drive | |
KR100798511B1 (en) | Inverter device and current limiting method therefor | |
US9124210B2 (en) | Motor control apparatus with power failure determination unit | |
US20110310644A1 (en) | Power Conversion Device | |
JP6697181B2 (en) | Electric motor drive | |
JP5375059B2 (en) | Sensor abnormality detection device and sensor abnormality detection method | |
CN107240906B (en) | Motor rotation blockage protects control method | |
US20130286514A1 (en) | Power conversion apparatus | |
EP3641125B1 (en) | Control device for power tool | |
US10833614B2 (en) | Motor drive device and electric power steering device | |
JP6983305B2 (en) | Vehicle control device | |
JP2010273500A (en) | Control device for electric vehicle | |
WO2022137709A1 (en) | Inverter control device | |
JP6915695B2 (en) | Motor control method and motor control device | |
CN111740663B (en) | Method for inhibiting transition process of three-phase four-switch fault-tolerant control system | |
KR101488075B1 (en) | Induction motor drive device | |
JP7203253B2 (en) | AC rotary machine control device and electric power steering device | |
US20180183322A1 (en) | Method for controlling inverter | |
CN110937018B (en) | Steering apparatus, steering method, and steering control device | |
JP7047056B2 (en) | Motor control device | |
KR20030087256A (en) | A fail safety apparatus of electric motor type power steering apparatus | |
WO2022201685A1 (en) | Decompression system, control device, and control method | |
JP5361506B2 (en) | Motor control device with protection function | |
WO2024106339A1 (en) | Power converter and method for controlling power converter circuit | |
KR0127025B1 (en) | Motor control device of a washing machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21909867 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022571066 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21909867 Country of ref document: EP Kind code of ref document: A1 |