WO2022137483A1 - 無線通信管理装置、無線通信管理方法および無線通信管理プログラム - Google Patents

無線通信管理装置、無線通信管理方法および無線通信管理プログラム Download PDF

Info

Publication number
WO2022137483A1
WO2022137483A1 PCT/JP2020/048626 JP2020048626W WO2022137483A1 WO 2022137483 A1 WO2022137483 A1 WO 2022137483A1 JP 2020048626 W JP2020048626 W JP 2020048626W WO 2022137483 A1 WO2022137483 A1 WO 2022137483A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
path
relay base
terminal
wireless communication
Prior art date
Application number
PCT/JP2020/048626
Other languages
English (en)
French (fr)
Inventor
笑子 篠原
保彦 井上
裕介 淺井
泰司 鷹取
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/048626 priority Critical patent/WO2022137483A1/ja
Priority to JP2022570929A priority patent/JPWO2022137483A1/ja
Publication of WO2022137483A1 publication Critical patent/WO2022137483A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • H04W40/08Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • H04W40/10Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on available power or energy

Definitions

  • the embodiment relates to a wireless communication management device, a wireless communication management method, and a wireless communication management program.
  • a wireless communication system composed of a base station and a terminal is known.
  • a typical example of a wireless communication system is a wireless LAN (Local area network) for public use.
  • a wireless LAN for public use for example, a use case in which data is transmitted from a base station to a public computer terminal and a smartphone terminal is assumed.
  • wireless LANs for industrial use have appeared.
  • a wireless LAN for industrial use for example, a use case is assumed in which data measured by an IoT (Internet of things) terminal is transmitted to a base station.
  • IoT Internet of things
  • ARIB STD-T108 1.3 version, "Radio equipment standard for 920MHz band telemeter, telecontrol and data transmission", April 12, 2019 IEEE Std 802.11ah TM-2016 (IEEE Standard for Information technology-Telecommunications and information exchange between systems Local and metropolitan area networks-Specific requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layers : Sub 1GHz License Exempt Operation, IEEE Computer Society, 7 December 2016
  • the optimum communication path including the repeater (simply a path) You need to select (call).
  • the transmittable time due to the Radio Law, etc., so not only the propagation environment of each terminal but also the transmittable time of the relay base station is restricted. Must be considered. If multiple terminals select a path via the same relay base station without considering the transmittable time of the relay base station, the traffic at each terminal is limited due to the limitation of the transmittable time of the relay base station. The amount can be reduced and the overall network throughput can be reduced.
  • the present invention has been made by paying attention to the above circumstances, and an object thereof is to provide a means for managing the optimum route selection.
  • One aspect of the wireless communication management device is taken as a network configuration by multi-hop communication based on wireless environment information collected from one or more relay base stations configured to wirelessly communicate with a root base station and a plurality of terminals.
  • a path calculation unit that calculates one or more path candidates that are connectable paths to be obtained and the traffic amount of each relay base station included in the connectable path is less than the threshold value, and one of the one or more path candidates. It is provided with a determination unit that determines one as the optimum path.
  • FIG. 1 is a diagram showing an example of a configuration of a communication system according to the present embodiment.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the wireless communication management device according to the present embodiment.
  • FIG. 3 is a block diagram showing an example of the hardware configuration of the base station according to the present embodiment.
  • FIG. 4 is a block diagram showing an example of the hardware configuration of the terminal according to the present embodiment.
  • FIG. 5 is a block diagram showing an example of the functional configuration of the wireless communication management device according to the present embodiment.
  • FIG. 6 is a block diagram showing an example of the functional configuration of the root base station according to the present embodiment.
  • FIG. 7 is a block diagram showing an example of the functional configuration of the relay base station according to the present embodiment.
  • FIG. 1 is a diagram showing an example of a configuration of a communication system according to the present embodiment.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the wireless communication management device according to the present embodiment.
  • FIG. 3 is
  • FIG. 8 is a block diagram showing an example of the functional configuration of the terminal according to the present embodiment.
  • FIG. 9 is a block diagram showing details of the control information generation unit according to the present embodiment.
  • FIG. 10 is a flowchart showing an example of a wireless communication management operation in the wireless communication management device according to the present embodiment.
  • FIG. 11 is a flowchart showing an optimum path determination process of the wireless communication management device according to the present embodiment.
  • FIG. 12 is a flowchart showing a calculation process of the minimum number of hops according to the present embodiment.
  • FIG. 13 is a diagram showing an example of the RSSI value management table according to the present embodiment.
  • FIG. 14 is a diagram showing an example of the result of determining the connection possibility according to the present embodiment.
  • FIG. 10 is a flowchart showing an example of a wireless communication management operation in the wireless communication management device according to the present embodiment.
  • FIG. 11 is a flowchart showing an optimum path determination process of the wireless communication management device according to the present embodiment
  • FIG. 15 is a diagram showing an example of a management table for the minimum number of hops according to the present embodiment.
  • FIG. 16 is a flowchart showing a path candidate calculation process according to the present embodiment.
  • FIG. 17 is a diagram showing an example of a management table showing connectable devices according to the present embodiment.
  • FIG. 18 is a conceptual diagram showing an example of one or more connectable paths according to the present embodiment.
  • FIG. 19 is a conceptual diagram showing another example of one or more connectable paths according to the present embodiment.
  • FIG. 20 is a diagram showing an example of a management table including a maximum traffic amount and an assumed traffic amount according to the present embodiment.
  • FIG. 21 is an example of a management table showing a determination result regarding the traffic according to the present embodiment.
  • FIG. 22 is a diagram showing an example of a management table including a maximum traffic amount and an assumed traffic amount when the estimated traffic amount according to the present embodiment is reduced.
  • FIG. 23 is a diagram showing a management table showing a determination result regarding traffic when the estimated traffic amount according to the present embodiment is reduced.
  • FIG. 24 is a flowchart showing details of transmission power control according to the present embodiment.
  • FIG. 1 is a block diagram showing an example of a configuration of a communication system according to an embodiment.
  • the communication system 1 is a system that manages the wireless environment of the wireless communication system 2.
  • the communication system 1 includes a wireless communication management device 100, a base station 200, relay base stations 210-1 and 201-2, a plurality of terminals 300-1, 300-2 and 300-3, and an external server 400. Includes a data server 500 and.
  • the base station 200, the relay base stations 210-1 and 201-2, and the plurality of terminals 300-1, 300-2, and 300-3 constitute the wireless communication system 2.
  • the base station 200 may be referred to as a "root base station”.
  • the relay base stations 210-1 and 201-2 When each of the relay base stations 210-1 and 201-2 is not particularly distinguished, it may be simply referred to as "relay base station 210". Further, when each of the root base station and the relay base stations 210-1 and 201-2 is not particularly distinguished, it may be simply referred to as a "base station”.
  • the base station 200, the relay base station 210, and the terminal 300 may be collectively referred to as "equipment”.
  • the wireless communication system 2 is a wireless communication system for industrial use.
  • the wireless communication system 2 is configured to use a frequency band (unlicensed band) that can be used without a radio station license.
  • a frequency band (unlicensed band) that can be used without a radio station license.
  • a sub-gigahertz (GHz) band is used as an unlicensed band.
  • the sub-gigahertz band includes, for example, the 920 megahertz (MHz) band.
  • the wireless communication management device 100 is an on-premises data processing server for managing the wireless environment of the wireless communication system 2.
  • the wireless communication management device 100 is configured to be connected to the base station 200, the external server 400, and the data server 500 by wire via, for example, a router or a hub (not shown) in the network NW.
  • the base station 200 is a master unit (AP: access point) of the wireless communication system 2.
  • the base station 200 is configured to connect between the terminal 300 and the wireless communication management device 100 and between the terminal 300 and the data server 500 via the network NW.
  • the relay base station 210 is configured to wirelessly connect between the base station 200 and the terminal 300.
  • the relay base stations 210 may be wirelessly connected to each other by the relay base stations 210, or may operate as a so-called Mesh AP.
  • the relay base station 210-1 may be wirelessly connected to the relay base station 210-2.
  • the terminal 300 is a slave unit (STA: station) of the wireless communication system 2.
  • the terminal 300 is, for example, an IoT terminal.
  • the terminal 300 is configured to wirelessly connect to the base station 200 or the relay base station 210.
  • the terminal 300-1 is configured to be wirelessly connected to the base station 200.
  • the terminal 300-2 wirelessly connects to the relay base station 210-1
  • the terminal 300-3 wirelessly connects to the relay base station 210-2.
  • the terminal 300-1 may be wirelessly connected to the relay base station 210-1
  • the terminal 300-2 may be wirelessly connected to the base station 200, that is, the terminal 300 and the base station.
  • the optimum path may be appropriately selected from a plurality of paths due to the propagation status of the terminal 300 and the base station, restrictions on the transmission time, and the like.
  • the external server 400 is a server that stores information (external environment information) regarding the external environment of the wireless communication system 2.
  • the data server 500 is a server in which sensor information measured by the wireless communication system 2 is aggregated and stored.
  • a management table that aggregates RSSI value information and traffic amount information of each device may be stored.
  • the wireless communication management device 100 and the data server 500 may be configured as one, and the wireless communication management device 100 may include the data server 500. Further, the wireless communication management device 100 may be configured integrally with the root base station, the root base station may include the wireless communication management device 100, and the root base station may execute the processing of the wireless communication management device 100.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the wireless communication management device according to the embodiment.
  • the wireless communication management device 100 includes a control circuit 101, a memory 102, a wired communication module 103, a user interface 104, a timer 105, and a drive 106.
  • the control circuit 101 is a circuit that controls each component of the wireless communication management device 100 as a whole.
  • the control circuit 101 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
  • the memory 102 is an auxiliary storage device of the wireless communication management device 100.
  • the memory 102 includes, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), a memory card, and the like.
  • Various information used for the wireless communication management operation and the wireless communication management program are stored in the memory 102.
  • the wireless communication management program can be stored in the memory 102 by being transmitted from the outside of the wireless communication management device 100 via the network NW.
  • the wireless communication management operation is a series of operations executed to appropriately manage the wireless communication environment in the wireless communication system 2.
  • the wireless communication management program is a program for causing the control circuit 101 to execute a wireless communication management operation. Details regarding the wireless communication management operation will be described later.
  • the wired communication module 103 is a circuit used for transmitting and receiving data by a wired signal.
  • the wired communication module 103 is configured to conform to, for example, the TCP / IP hierarchy model. Specifically, for example, the configuration corresponding to the network interface layer of the wired communication module 103 conforms to Ethernet.
  • the configuration corresponding to the Internet layer of the wired communication module 103 conforms to IP (Internet protocol).
  • the configuration corresponding to the transport layer of the wired communication module 103 conforms to TCP (Transmission control protocol).
  • the configuration corresponding to the application layer of the wired communication module 103 conforms to SSH (Secure shell).
  • the user interface 104 is a circuit for communicating information between the user and the control circuit 101.
  • the user interface 104 includes an input device and a display device.
  • Input devices include, for example, touch panels, operation buttons, and the like.
  • Display devices include, for example, LCDs (Liquid Crystal Display) and EL (Electroluminescence) displays).
  • the user interface 104 converts the input from the user (user input) into an electric signal, and then transmits the input to the control circuit 101.
  • the timer 105 is a circuit for measuring time. For example, the timer 105 starts counting (set) based on the start instruction from the control circuit 101. When the count value becomes equal to or higher than the threshold value in the set state, the timer 105 notifies the control circuit 101 that a time-out has occurred (time-out). The timer 105 ends the count (reset) based on the end instruction from the control circuit 101.
  • the drive 106 is a device for reading a program stored in the storage medium 107.
  • the drive 106 includes, for example, a CD (Compact Disk) drive, a DVD (Digital Versatile Disk) drive, and the like.
  • the storage medium 107 is a medium that stores information such as programs by electrical, magnetic, optical, mechanical, or chemical action.
  • the storage medium 107 may store the wireless communication management program.
  • FIG. 3 is a block diagram showing an example of the hardware configuration of the base station according to the embodiment. Since the configuration of the root base station and the configuration of the relay base station 210 are the same, the base station 200 will be described as an example. As shown in FIG. 3, the base station 200 includes a control circuit 201, a memory 202, a wired communication module 203, and a wireless communication module 204.
  • the control circuit 201 is a circuit that controls each component of the base station 200 as a whole.
  • the control circuit 201 includes a CPU, RAM, ROM, and the like.
  • the memory 202 is an auxiliary storage device for the base station 200.
  • the memory 202 includes, for example, an HDD, an SSD, a memory card, and the like.
  • the memory 202 stores the control information of the base station 200 generated by the wireless communication management device 100 in the wireless communication management operation.
  • the wired communication module 203 is a circuit used for transmitting and receiving data by a wired signal.
  • the wired communication module 203 conforms to the same protocol stack as the wired communication module 103. As a result, the wired communication module 203 can be connected to the wired communication module 103 by wire.
  • the wireless communication module 204 is a circuit used for transmitting and receiving data by wireless signals.
  • the wireless communication module 204 is connected to an antenna (not shown).
  • the wireless communication module 204 is configured to conform to, for example, the TCP / IP hierarchy model. Specifically, for example, the configuration corresponding to the network interface layer of the wireless communication module 204 conforms to IEEE (Institute of electrical and electronics engineers) 802.11 ah.
  • the configuration corresponding to the Internet layer of the wireless communication module 204 conforms to IP.
  • the configuration corresponding to the transport layer of the wireless communication module 204 conforms to TCP.
  • the configuration corresponding to the application layer of the wireless communication module 204 conforms to SSH.
  • FIG. 4 is a block diagram showing an example of the hardware configuration of the terminal according to the embodiment.
  • the terminal 300 includes a control circuit 301, a memory 302, a wireless communication module 303, a sensor 304, and a battery 305.
  • the control circuit 301 is a circuit that controls each component of the terminal 300 as a whole.
  • the control circuit 301 includes a CPU, RAM, ROM, and the like.
  • the memory 302 is an auxiliary storage device of the terminal 300.
  • the memory 302 includes, for example, an HDD, an SSD, a memory card, and the like.
  • the memory 302 stores the control information generated by the wireless communication management device 100 in the wireless communication management operation and the sensor information measured by the sensor 304.
  • the wireless communication module 303 is a circuit used for transmitting and receiving data by wireless signals.
  • the wireless communication module 303 conforms to the same protocol stack as the wireless communication module 204. As a result, the wireless communication module 303 can be wirelessly connected to the wireless communication module 204.
  • the sensor 304 is a circuit that measures the data monitored by the wireless communication system 2.
  • the sensor information measured by the sensor 304 is aggregated in the data server 500 via the base station and the network NW.
  • the battery 305 is a capacity for supplying electric power to the terminal 300.
  • the battery 305 is charged, for example, by a photovoltaic module (not shown).
  • FIG. 4 describes a case where the terminal 300 supplies electric power by charging the battery 305 by solar power generation, but the present invention is not limited to this.
  • the terminal 300 may be stably supplied with electric power from the power source.
  • FIG. 5 is a block diagram showing an example of the functional configuration of the wireless communication management device according to the embodiment.
  • the wireless communication management device 100 includes a user input unit 111, a wired signal receiving unit 112, a control information generating unit 113, a determination unit 114, a wired signal transmitting unit 115, and a command library 116. Functions as a equipped computer.
  • the user input unit 111 transmits the registration information input by the user to the control information generation unit 113.
  • the registration information includes device information and constraint information.
  • the device information is information for the wireless communication management device 100 to uniquely identify the base station and the terminal 300.
  • the device information includes, for example, a user name, a password, an IP address, a management target flag, and the like for each base station and terminal 300.
  • the user name, password, and IP address are used for the wireless communication management device 100 to log in to the base station and the terminal 300 by an external access method (for example, SSH).
  • the management target flag is information for identifying whether or not the corresponding base station and terminal 300 are the targets of the wireless communication management operation.
  • the constraint information is information indicating the constraint conditions that the wireless communication system 2 should comply with based on the Radio Law and other laws.
  • the constraint information includes, for example, an upper limit of the total transmission time for each device.
  • the wired signal receiving unit 112 receives the wireless environment information of the base station 200 and the terminal 300 from the base station 200.
  • the wired signal receiving unit 112 receives the external environment information from the external server 400.
  • the wired signal receiving unit 112 transmits the received various environmental information to the control information generating unit 113.
  • the wireless environment information is information collected from the base station and the terminal 300 in order to evaluate the throughput of wireless communication in the wireless communication management operation.
  • the wireless environment information includes, for example, the SSID (Service Set Idntifier) of the peripheral BSS (Basic service set), the channel, the bandwidth, the frequency, the RSSI (Received Signal Strength Indication) value, and the like as information common to the base station and the terminal 300. include. Further, the wireless environment information may include, for example, information indicating the remaining capacity of the battery 305 as information specific to the terminal 300.
  • the external environment information is information collected from the external server 400 in order to evaluate the throughput of wireless communication.
  • the external environment information includes, for example, a predicted value of the sunshine hours in the area where the wireless communication system 2 is provided.
  • the control information generation unit 113 generates control information of the base station and the terminal 300 based on the registration information, the radio environment information of the base station and the terminal 300, and the external environment information.
  • the control information generation unit 113 may store various received information in the memory 102 until all the information used for the wireless communication management operation is prepared.
  • the control information generation unit 113 transmits the generated control information to the determination unit 114.
  • the control information is a parameter used for constructing the wireless communication environment of the base station and the terminal 300.
  • the control information of a certain device is generated based on at least the radio environment information collected from the certain device.
  • the control information of a certain device can be further generated based on the radio environment information collected from the device other than the certain device.
  • the control information includes connection destination information (SSID), access parameters of the base station 200 and the terminal 300, channels, and transmission rates. Further, the control information includes information indicating a transmission time zone of the base station 200 and the terminal 300, and a transmission frequency (duty ratio).
  • the determination unit 114 determines various conditions. For example, for each base station and terminal 300 for which control information is generated, it is determined whether or not to update the wireless environment settings based on the generated control information. Further, the determination unit 114 further determines whether or not the update is accompanied by a restart for each base station and terminal 300 determined to update the wireless environment settings. The determination unit 114 transmits a set of control information and determination results for each base station and terminal 300 to the wired signal transmission unit 115.
  • the wired signal transmission unit 115 generates various commands for controlling the base station 200 and the terminal 300 based on the instruction from the control circuit 101. Various commands are generated with reference to the command library 116.
  • the command library 116 stores in advance a group of commands used for wireless communication management operation.
  • the command library 116 stores, for example, collect commands and update commands.
  • the collection command is a command for collecting wireless environment information from a designated base station or terminal 300 (for example, an IP address).
  • the update command is a command for updating the wireless environment settings of the designated base station 200 or terminal 300 (for example, the IP address) with the control information. Therefore, the update command includes control information for updating the wireless environment settings of the designated base station 200 or terminal 300.
  • the update command may include an instruction to restart the designated base station 200 or terminal 300.
  • FIG. 6 is a block diagram showing an example of the functional configuration of the base station 200 according to the embodiment.
  • the CPU of the control circuit 201 controls each component 202 to 204 based on various commands transmitted from the wireless communication management device 100.
  • the base station 200 includes a wired signal receiving unit 211, a wireless signal receiving unit 212, a collecting unit 213, an updating unit 214, a wired signal transmitting unit 215, and a wireless signal transmitting unit 216. Functions as a computer.
  • the wired signal receiving unit 211 receives the collection command and the update command from the wireless communication management device 100. Upon receiving the collection command (to the base station 200) destined for the base station 200, the wired signal receiving unit 211 transmits the collection command to the collection unit 213. Upon receiving the update command to the base station 200, the wired signal receiving unit 211 transmits the update command to the update unit 214. Upon receiving the collection command (to the terminal 300) and the update command destined for the terminal 300, the wired signal reception unit 211 transmits the collection command and the update command to the radio signal transmission unit 216. When data is transmitted from the wired signal receiving unit 211 to the wireless signal transmitting unit 216, the transmitted data is converted from the Ethernet frame format to the 802.11 ah frame format.
  • the wireless signal receiving unit 212 receives the wireless environment information of the terminal 300 from the terminal 300.
  • the wireless signal receiving unit 212 transmits the received wireless environment information of the terminal 300 to the wired signal transmitting unit 215.
  • the transmitted data is converted from the frame format of 802.11 ah to the frame format of Ethernet.
  • the collection unit 213 collects the wireless environment information of the base station 200 based on the received collection command.
  • the collection unit 213 transmits the collected wireless environment information of the base station 200 to the wired signal transmission unit 215.
  • the update unit 214 updates the setting of the wireless environment of the base station 200 with the control information in the update command based on the received update command.
  • the update command includes a restart instruction
  • the update unit 214 restarts the base station 200.
  • the wired signal transmission unit 215 transmits the received wireless environment information of the base station 200 to the wireless communication management device 100.
  • the wired signal transmission unit 215 transfers the received wireless environment information of the terminal 300 to the wireless communication management device 100.
  • the wireless signal transmission unit 216 transfers the received collection command and update command of the terminal 300 to the terminal 300.
  • FIG. 7 is a block diagram showing an example of the functional configuration of the relay base station 210 according to the embodiment.
  • the CPU of the control circuit 201 controls each component 202 and 204 based on various commands transmitted from the wireless communication management device 100.
  • the relay base station 210 functions as a computer including a radio signal receiving unit 212, a collecting unit 213, an updating unit 214, and a radio signal transmitting unit 216.
  • the wireless signal receiving unit 212 wirelessly receives the update command and the collection command to the relay base station 210.
  • the radio signal transmission unit 216 wirelessly transmits an update command and a collection command to the other relay base station 210 or the terminal 300 to the other relay base station 210 or the terminal 300 connected to the relay base station 210.
  • FIG. 8 is a block diagram showing an example of the functional configuration of the terminal according to the embodiment.
  • the CPU of the control circuit 301 controls the components 302 and 303 based on various commands transmitted from the wireless communication management device 100.
  • the terminal 300 functions as a computer including a radio signal receiving unit 311, a collecting unit 312, an updating unit 313, and a radio signal transmitting unit 314.
  • the radio signal receiving unit 311 receives a collection command and an update command from the base station.
  • the radio signal receiving unit 311 transmits a collecting command to the collecting unit 312.
  • the radio signal receiving unit 311 transmits an update command to the update unit 313.
  • the collection unit 312 collects the wireless environment information of the terminal 300 based on the received collection command.
  • the collection unit 312 transmits the collected radio environment information of the terminal 300 to the radio signal transmission unit 314.
  • the update unit 313 updates the setting of the wireless environment of the terminal 300 with the control information in the update command based on the received update command.
  • the update command includes a restart instruction
  • the update unit 313 restarts the terminal 300.
  • the wireless signal transmission unit 314 transmits the collected wireless environment information of the terminal 300 to the base station.
  • the control information generation unit 113 shown in FIG. 9 includes a hop number calculation unit 151, a path calculation unit 152, a determination unit 153, a difference calculation unit 154, and an update unit 155.
  • the hop number calculation unit 151 reaches the minimum number of hops from the root base station to the connectable relay base station 210, the root base station to the connectable terminal 300, or the hop number calculation unit 151 to the terminal 300 connectable via the relay base station 210. Calculate the minimum number of hops.
  • the root base station is a base station that serves as a starting point for multi-hop communication in which a plurality of devices, from the root base station to one or more relay base stations 210 and a plurality of terminals 300, communicate signals by a bucket brigade method.
  • the path calculation unit 152 can take a network configuration by multi-hop communication based on wireless environment information collected from one or more relay base stations 210 configured to wirelessly communicate with a root base station and a plurality of terminals 300. One or more path candidates that are connectable paths and the traffic amount of each relay base station 210 included in the connectable path is less than the threshold value are calculated.
  • the determination unit 153 determines one of one or more path candidates as the optimum path.
  • the determination unit 153 may determine the path candidate having the fairest transmission time duty ratio in the relay base station 210 and the terminal 300 as the optimum path.
  • the difference calculation unit 154 sets the received signal strength value between the root base station or the relay base station, which is the connection destination in the optimum path, and the root base station or the relay base station whose existence can be grasped by the terminal for each terminal. Calculate the difference from the maximum received signal strength value between.
  • the update unit 155 updates the connection destinations of the terminal 300 and the relay base station 210 based on the optimum path. Further, the update unit 155 updates the transmission power of the relay base station 210 by using the sum of the differences of the terminals 300 that can be connected to the relay base station 210.
  • step S11 the wireless communication management device 100 collects external environment information from the external server 400.
  • step S12 the wireless communication management device 100 collects external environment information from each of the base station and the terminal 300.
  • the process of step S12 may be executed before the process of step S11, or may be executed in parallel with the process of step S11.
  • step S13 the wireless communication management device 100 generates control information for each of the base station and the terminal 300 based on the collected external environment information, the wireless environment information, and the registration information.
  • step S14 the wireless communication management device 100 determines whether or not to update the setting of the wireless environment of the wireless communication system 2. If it is determined that the wireless environment setting of the wireless communication system 2 is to be updated, the process proceeds to step S15, and if it is determined that the wireless environment setting is not updated, the process ends.
  • step S15 the wireless communication management device 100 updates the wireless environment settings of the base station and the terminal 300 with the control information.
  • the optimum path determination process shown in FIG. 11 may be executed when it is determined in step S14 of FIG. 10 that the setting of the wireless environment is to be updated, or may be executed as the initial setting at the time of laying the wireless communication system 2. good.
  • step S21 the hop number calculation unit 151 calculates the minimum number of hops from the relay base station 210 or the terminal 300 to the root base station for each of the relay base station 210 and the terminal 300.
  • the processing of the hop number calculation unit 151 will be described later with reference to FIG.
  • step S22 the path calculation unit 152 calculates one or more path candidates that can be taken as a network configuration in multi-hop communication from the terminal 300 to the root base station. The processing of the path calculation unit 152 will be described later with reference to FIG.
  • step S23 the determination unit 153 determines the path candidate having the fairest transmission time duty ratio as the optimum path.
  • the optimum path is not limited to the determination of the optimum path from the viewpoint of fairening the duty ratio of the transmission time, but the optimum path is set from the viewpoint of fairening the power consumption based on the power consumption of the device and the remaining battery level of the device. You may.
  • the determination unit 153 excludes the relay base station 210 not included in the optimum path from the calculation of the transmission power in preparation for minimizing the transmission power. This is because the transmission power of the connectable relay base station 210 may be controlled.
  • step S25 the determination unit 114 determines whether or not the base station to be connected to the terminal can be specified by the connection destination ID.
  • the connection destination ID is, for example, an SSID. If it can be specified by the connection destination ID, the process proceeds to step S26. On the other hand, if it cannot be specified by the connection destination ID, for example, if the SSID is assigned the same value in the entire network, it is necessary to distinguish by the RSSI value or the like, so the process proceeds to step S27.
  • step S26 the update unit 155 registers the connection destination IDs of each terminal 300 and each relay base station 210 as control values.
  • step S27 for example, the difference calculation unit 154 and the update unit 155 execute transmission power control. The processing of the difference calculation unit 154 and the update unit 155 will be described later with reference to FIG. 24.
  • the path candidate having the most fair transmission time duty ratio is determined as the optimum path.
  • the determination unit 153 may determine the optimum path without considering the duty ratio of the transmission time. For example, the determination unit 153 may determine one path candidate selected by the user from the path candidates as the optimum path, or determine one path candidate randomly selected from the path candidates as the optimum path. You may. As a result, the optimum path can be determined while observing the transmission time restrictions imposed by laws and regulations.
  • step S31 the hop number calculation unit 151 sets the root base station as a starting point.
  • the initial value of the number of hops m (m is an integer of zero or more) is set to zero. That is, the root base station is set as the zero hop.
  • the hop number calculation unit 151 selects the relay base station 210 and the terminal 300 that can be connected to the base station at the m-th hop and have no registration of the minimum number of hops.
  • “connectable” indicates a state in which it can be determined that the base station at the m-hop can be directly communicated, and for example, it may be determined that the connection is possible when the RSSI value is equal to or higher than the threshold value.
  • Whether or not the minimum number of hops is registered may be determined by, for example, storing a management table in which the minimum number of hops obtained in the subsequent processing is registered in the data server 500, and the hop number calculation unit 151 may refer to the management table.
  • the RSSI value it is used to determine whether other indicators such as SNR (Signal to Noise Ratio) value and SINR (Signal to Interference plus Noise Ratio) are above the threshold value can be connected. You may.
  • step S33 the hop number calculation unit 151 registers the minimum number of hops of the relay base station 210 and the terminal 300 selected in step S32 as “m + 1” in the management table. For example, the zero-hop base station 200, that is, the minimum number of hops of the relay base station 210 or the terminal 300 that can reach the root base station is registered as "1".
  • step S34 the determination unit 114 determines whether or not the number of hops m is larger than the maximum number of hops. If m is larger than the maximum number of hops, the process proceeds to step S36, and if m is equal to or less than the maximum number of hops, the process proceeds to step S35. It is assumed that the maximum number of hops is preset based on the number and arrangement of the relay base station 210 and the terminal 300, for example, by user input.
  • step S35 the hop number calculation unit 151 increments the hop number m by one.
  • step S36 the determination unit 114 determines whether or not there is a relay base station 210 or a terminal 300 in which the minimum number of hops is not registered even if the number of hops m exceeds the maximum number of hops. If there is a relay base station 210 or terminal 300 for which the minimum number of hops is not registered, the process proceeds to step S37, and there is no relay base station 210 or terminal 300 for which the minimum number of hops is not registered, that is, all relay base stations 210. When the minimum number of hops is registered in the terminal 300, the process proceeds to step S22.
  • step S37 the wireless communication management device 100 notifies the user of a warning message.
  • the wireless communication management device 100 notifies the user of a warning message.
  • the communication process may be continued.
  • the user may be able to make a judgment by displaying a confirmation message such as "Do you want to continue the process as it is?" To the user.
  • the wireless communication management device 100 excludes the relay base station 210 or the terminal 300 that cannot be connected and is optimal.
  • the path calculation process may be executed.
  • the management table shown in FIG. 13 shows RSSI values in a combination of a device (base station or terminal 300) on the transmitting side (connection source) and a device (base station or terminal 300) on the receiving side (connection destination).
  • a device base station or terminal 300
  • connection source connection source
  • base station or terminal 300 base station or terminal 300
  • connection destination connection destination
  • the root base station AP1, the relay base stations AP2 and AP3, and the terminals STA1 to STA3 as starting points exist.
  • the network configuration will be described as an example. In the example of FIG.
  • the RSSI value is the same even if the device on the transmitting side and the device on the receiving side are exchanged.
  • Each may be measured independently, and a management table having a different RSSI value may be used when the device on the transmitting side and the device on the receiving side are exchanged.
  • the RSSI value between the root base station AP1 and the relay base station AP2 is the highest, "-55 [dBm]" (hereinafter, the unit of the RSSI value is omitted). It can be seen that the RSSI value with the terminal STA3 is the lowest and is "-95".
  • the threshold value of the RSSI value for determining that the connection is possible in FIG. 13 is set to "-75". Filling cells with RSSI values below the threshold gives the management table of FIG.
  • the RSSI value with the root base station AP1 is "-60”
  • the RSSI value with the relay base station AP2 is "-73”
  • both the RSSI values are the threshold values "-73”. Higher than -75 ". Therefore, it can be seen that the relay base station AP3 can be connected to both the root base station AP1 and the relay base station AP2.
  • FIG. 15 an example of the management table for the minimum number of hops is shown in FIG.
  • the type of device and the minimum number of hops are stored in association with each other.
  • the connection possibility determination result of FIG. 14 for example, since the relay base station AP2 and the relay base station AP3 can be directly connected to the root base station AP1, the relay base station AP2 and the relay base station AP3 are respectively.
  • the minimum number of hops is calculated as "1".
  • the terminal STA1 can be connected to the relay base station AP2 and the terminal STA2 and the terminal STA3 can each be connected to the relay base station AP3, the minimum number of hops of the terminal STA1 to the terminal STA3 is "2", respectively.
  • the relay base station AP3 can also be connected to the relay base station AP2, but when connected to the relay base station AP2, the number of hops is "2", so that the relay base station AP3 is directly connected to the root base station.
  • the number of hops "1" when connected to AP1 is calculated as the minimum number of hops.
  • the path calculation unit 152 can connect to the base station based on the minimum number of hops n (n is an integer of zero or more), and has the same minimum number of hops as the base station or "minimum number of hops + 1".
  • the relay base station 210 or the terminal 300 is determined as a connectable device.
  • the initial value of n is set to zero. Whether or not the connection is possible may be determined by using the same determination as in step S32.
  • the first process in step S41 is a process in which the minimum number of hops is zero, that is, the relay base station 210 and the terminal 300 that can be connected to the root base station are determined as connectable devices, and the subsequent processes are the processes for connecting to the relay base station 210. It will determine the possible equipment. Since the device belonging to the terminal 300 is not assumed, the connectable device is determined for the base station.
  • all the relay base stations 210 and terminals 300 that meet the conditions of step S41 may be determined as connectable devices, or a predetermined number of relay base stations 210 and terminals may be determined in descending order of RSSI value. 300 may be determined as a connectable device.
  • step S42 the determination unit 114 determines whether or not all the base stations in which the minimum number of hops are registered have been processed. If all the base stations have been processed, the process proceeds to step S44, and if all the base stations have not been processed, that is, if there are unprocessed base stations, the process proceeds to step S43. In step S43, n is incremented by one, the process returns to step S41, and the same process is repeated. By the processing from step S41 to step S43, it is confirmed in order from the root base station which device can connect to the base station to be processed so as to expand the area.
  • the path calculation unit 152 calculates one or more connectable paths based on a combination that the connectable device can take as a path to the root base station.
  • the relay base station 210 which is a connectable device to the root base station, generates a candidate that can be taken as a path to the root base station.
  • the terminal 300 which is a connectable device to the relay base station 210, generates a candidate that can be taken as a path to the relay base station 210, so that one or more connectable paths are generated.
  • the network configuration may not be appropriate due to restrictions such as the transmission time of the relay base station 210 and the terminal 300. Exclude from possible paths.
  • step S45 the determination unit 114 determines whether or not there is a connectable path that does not exceed the maximum traffic amount that is the upper limit of all the relay base stations 210. Specifically, it is assumed that one or more terminals 300 are directly or indirectly connected to the relay base station 210 via another relay base station 210, rather than the maximum traffic amount that the relay base station 210 can transmit. When the total traffic amount is large, it may be determined in the relay base station 210 that the maximum traffic amount is exceeded.
  • the assumed traffic amount of the terminal 300 is, for example, a traffic amount set by the application or a traffic amount set as a limit value defined by the Radio Law or the like. In the following, the traffic amount set as the limit value is assumed as the assumed traffic amount.
  • step S47 If there is a connectable path in which all the relay base stations 210 do not exceed the maximum traffic amount, the process proceeds to step S47. On the other hand, when there is no connectable path in which all the relay base stations do not exceed the maximum traffic amount, that is, when at least one relay base station 210 exceeds the maximum traffic amount in each of one or more connectable paths, step S46. Proceed to.
  • step S46 the path calculation unit 152 reduces the assumed traffic amount of the terminal 300 because the relay base station 210 that exceeds the maximum traffic amount is generated in all connectable paths.
  • the assumed traffic amount of the terminal 300 may be uniformly reduced by 20%, or the predetermined ratio or the predetermined value may be reduced from the assumed traffic amount in all the terminals 300, or among the terminals 300 connected to the relay base station 210.
  • the rate of decrease in the assumed traffic amount may be changed individually, such as by reducing the assumed traffic amount.
  • the process returns to step S45, and the processes of steps S45 and S46 are repeated until there is at least one connectable path in which all the relay base stations 210 do not exceed the maximum traffic amount.
  • step S47 the path calculation unit 152 determines as a path candidate a connectable path in which all the relay base stations 210 do not exceed the maximum traffic amount. After that, the process proceeds to step S23.
  • FIG. 17 shows an example of a connectable device that is the processing result of step S41.
  • FIG. 17 is a management table showing the correspondence between the connection destination device and the connectable device related to the connection destination device.
  • the minimum number of hops for the root base station AP1 is zero, and there is no base station having the same minimum number of hops.
  • the relay base station AP2 and the relay base station AP3 having the minimum number of hops n + 1, that is, the minimum number of hops "1” have an RSSI value equal to or higher than the threshold value for the root base station AP1, the relay base station AP1.
  • the relay base station AP2 and the relay base station AP3 are determined as connectable devices.
  • the relay base station AP3 since the relay base station AP3 having the same minimum hop number “1” has an RSSI value equal to or higher than the threshold value with respect to the relay base station AP2, the relay base station AP3 is a connectable device. Is determined as. Next, it is the terminals STA1 to STA3 that have the minimum number of hops "n + 1", that is, the minimum number of hops "2", and among them, the terminal STA1 having an RSSI value equal to or higher than the threshold value can be connected to the relay base station AP2. Determined as a device.
  • FIGS. 18 and 19 show an example of one or more connectable paths that is the processing result of step S44.
  • 18 and 19 are conceptual diagrams showing connectable paths in a network configuration that traces the assumed root base station AP1 to terminals STA1 to STA3, and FIGS. 18 and 19 show root base stations. It is a management table expressing connectable paths from AP1 to terminals STA1 to STA3 by the number of hops.
  • the relay base station AP3 surrounded by the broken line in FIG. 17 can be connected to the root base station AP1 and also to the relay base station AP2. Therefore, as shown in FIG. 18, the connectable path when the relay base station AP3 is connected (attributed) to the relay base station AP2 and only the relay base station AP2 is connected to the root base station AP1 and as shown in FIG. In addition, the connectable path when the relay base stations AP2 and AP3 are connected (attributed) to the root base station AP1 is determined as a possible connectable path.
  • the connectable path of FIG. 18 is referred to as a connectable path 1
  • the connectable path of FIG. 19 is referred to as a connectable path 2.
  • FIG. 20 is a management table including a maximum traffic amount that is an upper limit allowed in a relay base station and an assumed traffic amount assumed in a terminal, and it is assumed that a value is set in advance by user input, for example.
  • the relay base stations AP2 and AP3 have a maximum traffic amount of 300 [kbps], the terminal STA1 has an assumed traffic amount of 200 [kbps], and the terminal STA2 has a smaller and assumed traffic amount than the terminal STA1. Is 100 [kbps].
  • FIG. 21 is a management table showing the determination results of the maximum traffic amount and the assumed traffic amount of the relay base station included in the connectable path.
  • device indicates a relay base station in which the device is included in the connectable path.
  • number of connected STAs is the total of the terminals directly connected to the relay base station and the terminals indirectly connected via the relay base station.
  • the maximum traffic amount is the maximum traffic amount shown in FIG.
  • Traffic total is the total estimated traffic amount of each terminal for the number of connected STAs connected to the relay base station.
  • the “judgment” is the result of determining whether or not the total traffic exceeds the maximum traffic amount.
  • a connectable path in which even one relay base station that is "NG" exists is not treated as a path candidate.
  • Path 2 is also not treated as a path candidate.
  • FIG. 22 shows an example of a management table including the maximum traffic amount and the assumed traffic amount when the estimated traffic amount is reduced.
  • the path calculation unit 152 reduces the estimated traffic amount when the path candidate does not exist.
  • an example of reducing each estimated traffic amount from the terminals STA1 to STA3 by 20% is shown.
  • FIG. 23 shows a management table showing the determination results of the maximum traffic amount and the assumed traffic amount when the process of step S45 is executed again.
  • the connectable path 1 is not treated as a path candidate as in the case of FIG. 21, but the connectable path 2 is less than the maximum traffic amount for both the relay base station AP2 and the relay base station AP3. Since it is the total estimated traffic amount of, the connectable path 2 is determined as a path candidate.
  • the determination unit 153 calculates the SINR value of each device from the bandwidth information collected from each device and the RSSI value shown in FIG.
  • the determination unit 153 determines the MCS (Modulation Coding Scheme) index of each device by using the calculated SINR value and the MTU size collected from each device.
  • the determination unit 153 calculates the frame time length of each device using the determined MCS index, MTU size, and number of aggregations.
  • MCS Modulation Coding Scheme
  • the determination unit 153 calculates the transmission time required to reach the root base station in each terminal from the terminals STA1 to STA3 by using the calculated frame time length.
  • the frame time lengths of the relay base station and the root base station existing in the route that each terminal follows to the root base station are totaled. For example, when the path candidate shown in FIG. 18 is selected as the path candidate, the terminal STA1 is connected to the relay base station AP2, and the relay base station AP2 is connected to the root base station AP1, so that the relay base station AP2 and The total frame time length of each root base station AP1 is taken as the transmission time of the terminal STA1.
  • the terminal STA2 is connected to the relay base station AP3, the relay base station AP3 is connected to the relay base station AP2, and the relay base station AP2 is connected to the root base station AP1, so that the relay base station AP3 and the relay base are connected.
  • the total frame time length of each of the station AP2 and the root base station AP1 is taken as the transmission time of the terminal STA2.
  • the determination unit 153 calculates the standard deviation of the calculated transmission time of each terminal.
  • the determination unit 153 calculates the standard deviation of the transmission time for each path candidate as described above.
  • the determination unit 153 determines the path candidate having the smallest standard deviation of the transmission time of each path candidate as the optimum path. That is, if the standard deviation is small, the bias of the duty ratio of the transmission time in each terminal is small, and a uniform transmission frequency and transmission time are assigned to each terminal. That is, it can be said that the network configuration is fair from the viewpoint of the power consumption of each terminal.
  • any calculation method may be used as long as it is an index that can calculate the bias of the duty ratio of the transmission time, such as other general statistical processing.
  • the terminal 300 automatically selects the connection destination based on the RSSI value. Adopt the judgment logic. Therefore, the transmission power is controlled on the relay base station 210 side to maintain the path of the optimum path.
  • k is an integer of 0 or more
  • q is the total number of relay base stations 210 included in the optimum path
  • r is the total number of terminals 300 included in the optimum path.
  • the relay base station 210 is numbered as "base station k (1 ⁇ k ⁇ q)" so as to be uniquely identified.
  • the difference calculation unit 154 selects the child node device (k, i) that is unprocessed and has the smallest RSSI value among the child node devices (k, i) connected to the base station k. Get the minimum RSSI value.
  • the child node device is a relay base station 210 or terminal that exists in the path direction opposite to the root base station with respect to the device of interest, that is, in the direction toward the terminal, and is directly or indirectly connected to the device of interest. 300 is shown.
  • the child node device (k, i) is also numbered as (1 ⁇ i ⁇ r) so that the child node device i connected to the base station k is uniquely identified.
  • step S52 the difference calculation unit 154 acquires the maximum RSSI value between the child node device (k, i) having the minimum RSSI value and the base station whose existence can be grasped.
  • the existence can be grasped refers to a device that is determined to be connectable by the threshold value determination and a connected device that is not determined to be connectable by the threshold value determination and has acquired an RSSI value less than the threshold value.
  • step S53 the difference calculation unit 154 calculates the difference d (k, i) between the maximum RSSI value acquired in step S52 and the minimum RSSI value acquired in step S51.
  • step S54 the determination unit 114 determines whether or not the total sum d (k) of the differences d (k, i) calculated for each child node device (k, i) is equal to or greater than the threshold value. If d (k) is equal to or greater than the threshold value, the process proceeds to step S55, and if d (k) is less than the threshold value, the process proceeds to step S56. In step S55, if the difference calculation unit 154 controls the transmission power when d (k) is equal to or greater than the threshold value, the current optimum path route may not be maintained if the transmission power from the base station is reduced. Therefore, the optimum path is deleted.
  • step S56 the determination unit 114 determines whether or not there is an unprocessed child node device (k, i) connected to the base station k. If there is an unprocessed child node device (k, i), the process proceeds to step S57, and if there is no unprocessed child node device (k, i), the process proceeds to step S58.
  • step S57 the difference calculation unit 154 increments i by one and executes the processes from step S51 to step S56 for the remaining child node devices connected to the base station k.
  • step S58 the update unit 155 subtracts d (k) from the default transmission power value p (k) for the base station k to calculate the update transmission power value p'(k).
  • step S59 the update unit 155 updates the calculated update transmission power value p'(k) as a new transmission power value.
  • step S60 the determination unit 114 determines whether or not the update transmission power value p'(k) has been calculated for all the base stations in the optimum path.
  • step S61 the difference calculation unit 154 increments k by one and executes the processes from step S51 to step S56 for the remaining base stations.
  • step S62 the determination unit 114 determines whether or not there is another path candidate. If there are other path candidates, the process returns to step S23, and the same process is repeated so as to determine the optimum path from the other path candidates. On the other hand, if there is no other path candidate, the process returns to step S45 and executes a process such as whether to satisfy the traffic restrictions for the other connectable paths.
  • the difference calculation unit 154 identifies a terminal connected to the relay base station, that is, a terminal belonging to the relay base station in the direction from the terminal toward the root base station AP1. Referring to the optimum path of FIG. 19, the terminal AP1 belongs to the relay base station AP2, and the terminal STA2 and the terminal STA3 belong to the relay base station AP3.
  • the minimum RSSI value is "-55" of the terminal STA1.
  • the base stations grasped by the terminal STA1 are the root base station AP1 and the relay base station AP2, and the RSSI values are "-80" and "-46", respectively.
  • the terminal STA2 is "-42" and the terminal STA3 is "-70", so the minimum RSSI value is "-70” and the terminal is the terminal STA3.
  • the base stations grasped by the terminal STA3 are the root base station AP1 and the relay base station AP3, and the RSSI values are "-95" and "-70", respectively.
  • the difference d (AP3, STA2) becomes zero. Therefore, the total difference d (AP3) for the relay base station AP3 is also zero.
  • the relay base station AP2 and the relay base station AP3 belong to the root base station AP1 to be evaluated.
  • the relay base station AP2 is "-55" and the relay base station AP3 is "-60" with respect to the root base station AP1, so the minimum RSSI value is "-60".
  • the base stations grasped by the relay base station AP3 are the root base station AP1 and the relay base station AP2, and the RSSI values are "-60” and "-57", respectively.
  • the relay base station AP2 when the unprocessed relay base station AP2 belonging to the root base station AP1 is calculated in the same manner, the difference d (AP1, AP2) becomes zero. Therefore, the total sum d (AP1) of the differences for the root base station AP1 is "3".
  • the relay base station AP3 the relay base station AP2 has a higher radio field strength than the root base station AP1 in terms of RSSI value, but when looking at the entire multi-hop communication network, it should be connected to the root base station AP1. It can be said that it was decided.
  • the updated transmission power value p'(k) is updated by adding "3" of d (AP1) from the default transmission power value.
  • the transmission power of the base station to be evaluated is not limited to the update, and the transmission power of another base station having the maximum RSSI value may be updated.
  • "3" of d (AP1) may be subtracted from the transmission power value of the relay base station AP2.
  • the traffic does not exceed the maximum traffic amount from one or more connectable paths that can collect RSSI value information and traffic information of terminals and relay base stations and can be used as a network configuration.
  • One or more path candidates are determined, and the optimum path is determined from the one or more path candidates. Even when the transmission time of the terminal is restricted by the Radio Law or the like, the optimum path can be determined from the viewpoint of fairness of traffic, and the optimum route selection can be managed. Further, the path candidate having the fairest duty ratio of the transmission time of the terminal can be determined as the optimum path. As a result, the optimum path can be determined from the viewpoint of fairness of power consumption caused by data transmission from each terminal. As a result, you can improve the overall network throughput while complying with laws and regulations.
  • the terminal automatically determines the connection destination, by controlling the transmission power of the relay base station based on the RSSI value, it is possible to control the terminal to connect to the base station specified by the optimum path, which is optimal. You can select a suitable path.
  • the present invention is not limited to the above embodiment, and can be variously modified at the implementation stage without departing from the gist thereof.
  • each embodiment may be carried out in combination as appropriate, in which case the combined effect can be obtained.
  • the above-described embodiment includes various inventions, and various inventions can be extracted by a combination selected from a plurality of disclosed constituent requirements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, if the problem can be solved and the effect is obtained, the configuration in which the constituent elements are deleted can be extracted as an invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本発明の一態様に係る無線通信管理装置(100)は、ルート基地局(200)と無線通信するように構成された1以上の中継基地局(210)および複数の端末(300)から収集された無線環境情報に基づいて、マルチホップ通信によるネットワーク構成として取り得る接続可能なパスであり、かつ前記接続可能なパスに含まれる各中継基地局(210)のトラヒック量が閾値未満である1以上のパス候補を算出するパス算出部(152)と、前記1以上のパス候補の1つを最適パスとして決定する決定部(153)と、を備える。

Description

無線通信管理装置、無線通信管理方法および無線通信管理プログラム
 実施形態は、無線通信管理装置、無線通信管理方法および無線通信管理プログラムに関する。
 基地局および端末により構成される無線通信システムが知られている。
 無線通信システムの代表的な例として、公衆用途の無線LAN(Local area network)が挙げられる。公衆用途の無線LANでは、例えば、基地局から公衆のコンピュータ端末およびスマートフォン端末に対してデータを送信するユースケースが想定される。
 これに対し、近年、産業用途の無線LANが登場している。産業用途の無線LANでは、例えば、IoT(Internet of things)端末で測定されたデータを基地局に送信するユースケースが想定される。
ARIB STD-T108 1.3版, 「920MHz帯テレメータ用、テレコントロール用およびデータ伝送用無線設備 標準規格」, 2019年4月12日 IEEE Std 802.11ah TM-2016 (IEEE Standard for Information technology - Telecommunications and information exchange between systems Local and metropolitan area networks - Specific requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 2: Sub 1 GHz License Exempt Operation, IEEE Computer Society, 7 December 2016
 中継基地局(Mesh Access Point)などを介した端末と起点となる基地局との間のマルチホップ通信による無線通信ネットワークによって無線フレームを伝送する場合、中継機を含む最適な通信経路(単にパスとも呼ぶ)を選択する必要がある。また、国内の920MHz帯によって無線フレームを伝送する場合は、電波法などにより送信可能な時間に制約があるため、個々の端末の伝搬環境だけではなく、中継基地局の送信可能な時間の制約も考慮しなければならない。中継基地局の送信可能な時間を考慮せずに、複数の端末が同じ中継基地局を介するパスを選択してしまうと、当該中継基地局の送信可能な時間の制約から、各端末でのトラヒック量が減少し、ネットワーク全体のスループットが低下する可能性がある。
 本発明は、上記事情に着目してなされたもので、その目的とするところは、最適な経路選択を管理する手段を提供することにある。
 一態様の無線通信管理装置は、ルート基地局と無線通信するように構成された1以上の中継基地局および複数の端末から収集された無線環境情報に基づいて、マルチホップ通信によるネットワーク構成として取り得る接続可能なパスであり、かつ前記接続可能なパスに含まれる各中継基地局のトラヒック量が閾値未満である1以上のパス候補を算出するパス算出部と、前記1以上のパス候補の1つを最適パスとして決定する決定部と、を備える。
 実施形態によれば、最適な経路選択を管理する手段を提供することができる。
図1は、本実施形態に係る通信システムの構成の一例を示す図である。 図2は、本実施形態に係る無線通信管理装置のハードウェア構成の一例を示すブロック図である。 図3は、本実施形態に係る基地局のハードウェア構成の一例を示すブロック図である。 図4は、本実施形態に係る端末のハードウェア構成の一例を示すブロック図である。 図5は、本実施形態に係る無線通信管理装置の機能構成の一例を示すブロック図である。 図6は、本実施形態に係るルート基地局の機能構成の一例を示すブロック図である。 図7は、本実施形態に係る中継基地局の機能構成の一例を示すブロック図である。 図8は、本実施形態に係る端末の機能構成の一例を示すブロック図である。 図9は、本実施形態に係る制御情報生成部の詳細を示すブロック図である。 図10は、本実施形態に係る無線通信管理装置における無線通信管理動作の一例を示すフローチャートである。 図11は、本実施形態に係る無線通信管理装置の最適パス決定処理を示すフローチャートである。 図12は、本実施形態に係る最小ホップ数の算出処理を示すフローチャートである。 図13は、本実施形態に係るRSSI値の管理テーブルの一例を示す図である。 図14は、本実施形態に係る接続可能性を判定した結果の一例を示す図である。 図15は、本実施形態に係る最小ホップ数の管理テーブルの一例を示す図である。 図16は、本実施形態に係るパス候補の算出処理を示すフローチャートである。 図17は、本実施形態に係る接続可能機器を示す管理テーブルの一例を示す図である。 図18は、本実施形態に係る1以上の接続可能パスの一例を示す概念図である。 図19は、本実施形態に係る1以上の接続可能パスの別例を示す概念図である。 図20は、本実施形態に係る最大トラヒック量と想定トラヒック量とを含む管理テーブルの一例を示す図である。 図21は、本実施形態に係るトラヒックに関する判定結果を示す管理テーブルの一例である。 図22は、本実施形態に係る推定トラヒック量を減少させた場合の最大トラヒック量と想定トラヒック量とを含む管理テーブルの一例を示す図である。 図23は、本実施形態に係る推定トラヒック量を減少させた場合のトラヒックに関する判定結果を示す管理テーブルを示す図である。 図24は、本実施形態に係る送信電力制御の詳細を示すフローチャートである。
 以下、図面を参照して実施形態について説明する。なお、以下の説明において、同一の機能および構成を有する構成要素については、共通する参照符号を付す。また、共通する参照符号を有する複数の構成要素を区別する場合、当該共通する参照符号に後続して付される更なる参照符号(例えば、“-1”等のハイフンおよび数字)によって区別する。
 実施形態に係る通信システムの構成について説明する。図1は、実施形態に係る通信システムの構成の一例を示すブロック図である。
 図1に示すように、通信システム1は、無線通信システム2の無線環境を管理するシステムである。通信システム1は、無線通信管理装置100と、基地局200と、中継基地局210-1および201-2と、複数の端末300-1、300-2および300-3と、外部サーバ400と、データサーバ500と、を含む。基地局200と、中継基地局210-1および201-2と、複数の端末300-1、300-2および300-3とは、無線通信システム2を構成する。
 以下では、基地局200を「ルート基地局」と呼ぶ場合がある。中継基地局210-1および201-2の各々を特に区別しない場合、単に「中継基地局210」と呼ぶ場合がある。また、ルート基地局および中継基地局210-1および201-2の各々を特に区別しない場合、単に「基地局」と呼ぶ場合がある。複数の端末300-1~300-3の各々を特に区別しない場合、「端末300」と呼ぶ場合がある。さらに、基地局200、中継基地局210および端末300を総称して「機器」と呼ぶ場合がある。
 無線通信システム2は、産業用途の無線通信システムである。無線通信システム2は、無線局免許が無くても使用できる周波数帯(アンライセンスバンド)を使用するように構成される。無線通信システム2では、例えば、アンライセンスバンドとしてサブギガヘルツ(GHz)帯が使用される。サブギガヘルツ帯は、例えば、920メガヘルツ(MHz)帯を含む。
 無線通信管理装置100は、無線通信システム2の無線環境を管理するための、オンプレミス(on-premises)のデータ処理サーバである。無線通信管理装置100は、例えば、ネットワークNW内のルータ又はハブ(図示せず)を介して、基地局200、外部サーバ400、およびデータサーバ500と有線接続するように構成される。
 基地局200は、無線通信システム2の親機(AP:アクセスポイント)である。基地局200は、ネットワークNWを介して、端末300と無線通信管理装置100との間、および端末300とデータサーバ500との間を接続するように構成される。
 中継基地局210は、基地局200と端末300との間を無線接続するように構成される。図1の例では、中継基地局210が、基地局200と端末300-2との間を無線接続する場合が示される。また、中継基地局210は、中継基地局210同士で無線接続してもよく、いわゆるMesh APとして動作してもよい。図1の例では、中継基地局210-1が中継基地局210-2と無線接続してもよい。このように、中継基地局210を介した無線通信網を構成することにより、より広範囲にわたって端末300が分布する無線通信システム2を構築することができる。
 端末300は、無線通信システム2の子機(STA:ステーション)である。端末300は、例えば、IoT端末である。端末300は、基地局200または中継基地局210と無線接続するように構成される。
 図1の例では、端末300-1は、基地局200と無線接続するように構成される。端末300-2は中継基地局210-1と無線接続し、端末300-3は中継基地局210-2と無線接続する。なお、これに限らず、端末300-1が中継基地局210-1と無線接続してもよいし、端末300-2が基地局200と無線接続してもよい、すなわち、端末300と基地局200との間の無線接続は、端末300および基地局の伝搬状況および送信時間の制約などから、複数のパスから最適なパスが適宜選択されてもよい。
 外部サーバ400は、無線通信システム2の外部環境に関する情報(外部環境情報)が記憶されるサーバである。
 データサーバ500は、無線通信システム2にて計測されたセンサ情報が集約して記憶されるサーバである。また、各機器のRSSI値の情報およびトラヒック量の情報を集約した管理テーブルを記憶してもよい。
 なお、無線通信管理装置100とデータサーバ500とは、一体として構成され、無線通信管理装置100にデータサーバ500が含まれてもよい。また、無線通信管理装置100がルート基地局と一体として構成され、ルート基地局に無線通信管理装置100が含まれ、ルート基地局が無線通信管理装置100の処理を実行してもよい。
 次に、実施形態に係る通信システム内の主要な構成のハードウェア構成について説明する。
 図2は、実施形態に係る無線通信管理装置のハードウェア構成の一例を示すブロック図である。
 無線通信管理装置100は、制御回路101、メモリ102、有線通信モジュール103、ユーザインタフェース104、タイマ105、およびドライブ106を含む。
 制御回路101は、無線通信管理装置100の各構成要素を全体的に制御する回路である。制御回路101は、CPU(Central Processing Unit)、RAM(Random Access Memory)、およびROM(Read Only Memory)等を含む。
 メモリ102は、無線通信管理装置100の補助記憶装置である。メモリ102は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、およびメモリカード等を含む。メモリ102には、無線通信管理動作に使用される各種情報、および無線通信管理プログラムが記憶される。無線通信管理プログラムは、ネットワークNWを介して無線通信管理装置100の外部から送信されることにより、メモリ102内に記憶され得る。
 無線通信管理動作は、無線通信システム2内の無線通信の環境を適切に管理するために実行される一連の動作である。無線通信管理プログラムは、制御回路101に無線通信管理動作を実行させるためのプログラムである。無線通信管理動作に関する詳細は、後述する。
 有線通信モジュール103は、有線信号によるデータの送受信に使用される回路である。有線通信モジュール103は、例えば、TCP/IP階層モデルに準拠するように構成される。具体的には、例えば、有線通信モジュール103のネットワークインタフェース層に対応する構成は、イーサネットに準拠する。有線通信モジュール103のインターネット層に対応する構成は、IP(Internet protocol)に準拠する。有線通信モジュール103のトランスポート層に対応する構成は、TCP(Transmission control protocol)に準拠する。有線通信モジュール103のアプリケーション層に対応する構成は、SSH(Secure shell)に準拠する。
 ユーザインタフェース104は、ユーザと制御回路101との間で情報を通信するための回路である。ユーザインタフェース104は、入力機器および表示機器を含む。入力機器は、例えば、タッチパネルおよび操作ボタン等を含む。表示機器は、例えば、LCD(Liquid Crystal Display)およびEL(Electroluminescence)ディスプレイ等)を含む。ユーザインタフェース104は、ユーザからの入力(ユーザ入力)を電気信号に変換した後、制御回路101に送信する。
 タイマ105は、時間を計測する回路である。例えば、タイマ105は、制御回路101からの開始指示に基づき、カウントを開始する(セット)。セットされた状態においてカウント値が閾値以上となると、タイマ105は、制御回路101にタイムアウトしたことを通知する(タイムアウト)。タイマ105は、制御回路101からの終了指示に基づき、カウントを終了する(リセット)。
 ドライブ106は、記憶媒体107に記憶されたプログラムを読込むための装置である。ドライブ106は、例えば、CD(Compact Disk)ドライブ、およびDVD(Digital Versatile Disk)ドライブ等を含む。
 記憶媒体107は、プログラム等の情報を、電気的、磁気的、光学的、機械的又は化学的作用によって蓄積する媒体である。記憶媒体107は、無線通信管理プログラムを記憶してもよい。
 図3は、実施形態に係る基地局のハードウェア構成の一例を示すブロック図である。ルート基地局の構成と中継基地局210の構成は同様であるため、基地局200を例に説明する。
 図3に示すように、基地局200は、制御回路201、メモリ202、有線通信モジュール203、および無線通信モジュール204を含む。
 制御回路201は、基地局200の各構成要素を全体的に制御する回路である。制御回路201は、CPU、RAM、およびROM等を含む。
 メモリ202は、基地局200の補助記憶装置である。メモリ202は、例えば、HDD、SSD、およびメモリカード等を含む。メモリ202には、無線通信管理動作において無線通信管理装置100で生成される基地局200の制御情報が記憶される。
 有線通信モジュール203は、有線信号によるデータの送受信に使用される回路である。有線通信モジュール203は、有線通信モジュール103と同等のプロトコルスタックに準拠する。これにより、有線通信モジュール203は、有線通信モジュール103と有線接続することができる。
 無線通信モジュール204は、無線信号によるデータの送受信に使用される回路である。無線通信モジュール204は、アンテナ(図示せず)に接続される。無線通信モジュール204は、例えば、TCP/IP階層モデルに準拠するように構成される。具体的には、例えば、無線通信モジュール204のネットワークインタフェース層に対応する構成は、IEEE(Institute of electrical and electronics engineers) 802.11 ahに準拠する。無線通信モジュール204のインターネット層に対応する構成は、IPに準拠する。無線通信モジュール204のトランスポート層に対応する構成は、TCPに準拠する。無線通信モジュール204のアプリケーション層に対応する構成は、SSHに準拠する。
 図4は、実施形態に係る端末のハードウェア構成の一例を示すブロック図である。
 図4に示すように、端末300は、制御回路301、メモリ302、無線通信モジュール303、センサ304、およびバッテリ305を含む。
 制御回路301は、端末300の各構成要素を全体的に制御する回路である。制御回路301は、CPU、RAM、およびROM等を含む。
 メモリ302は、端末300の補助記憶装置である。メモリ302は、例えば、HDD、SSD、およびメモリカード等を含む。メモリ302には、無線通信管理動作において無線通信管理装置100で生成される制御情報、センサ304で計測されたセンサ情報が記憶される。
 無線通信モジュール303は、無線信号によるデータの送受信に使用される回路である。無線通信モジュール303は、無線通信モジュール204と同等のプロトコルスタックに準拠する。これにより、無線通信モジュール303は、無線通信モジュール204と無線接続することができる。
 センサ304は、無線通信システム2がモニタするデータを計測する回路である。センサ304にて計測されたセンサ情報は、基地局およびネットワークNWを介して、データサーバ500に集約される。
 バッテリ305は、端末300に電力を供給する容量である。バッテリ305は、例えば、太陽光発電モジュール(図示せず)によって充電される。なお、図4では、端末300が太陽光発電でバッテリ305を充電することによって電力を供給する場合について説明したが、これに限られない。例えば、端末300は、電源から安定的に電力を供給されてもよい。
 次に、実施形態に係る通信システム内の主要な構成の機能構成について説明する。
 図5は、実施形態に係る無線通信管理装置の機能構成の一例を示すブロック図である。
 制御回路101のCPUは、メモリ102又は記憶媒体107に記憶された無線通信管理プログラムをRAMに展開する。そして、制御回路101のCPUは、RAMに展開された無線通信管理プログラムを解釈および実行することにより各構成要素102~106を制御する。これによって、図5に示されるように、無線通信管理装置100は、ユーザ入力部111、有線信号受信部112、制御情報生成部113、判定部114、有線信号送信部115、およびコマンドライブラリ116を備えるコンピュータとして機能する。
 ユーザ入力部111は、ユーザから入力された登録情報を制御情報生成部113に送信する。登録情報は、機器情報および制約情報を含む。
 機器情報は、無線通信管理装置100が基地局および端末300を一意に識別するための情報である。機器情報は、例えば、基地局および端末300毎のユーザ名、パスワード、IPアドレス、および管理対象フラグ等を含む。ユーザ名およびパスワード、並びにIPアドレスは、無線通信管理装置100が基地局および端末300に外部からのアクセス方式(例えば、SSH)でログインするために使用される。管理対象フラグは、対応する基地局および端末300が無線通信管理動作の対象であるか否かを識別する情報である。
 制約情報は、電波法等の法律に基づいて無線通信システム2が遵守すべき制約条件を示す情報である。制約情報は、例えば、機器毎の総送信時間の上限値を含む。
 有線信号受信部112は、基地局200および端末300の無線環境情報を、基地局200から受信する。有線信号受信部112は、外部環境情報を外部サーバ400から受信する。有線信号受信部112は、受信した各種環境情報を、制御情報生成部113に送信する。
 無線環境情報は、無線通信管理動作において、無線通信のスループットを評価するために基地局および端末300から収集される情報である。無線環境情報は、基地局および端末300に共通する情報として、例えば、周辺BSS(Basic service set)のSSID(Service Set Idntifier)、チャネル、バンド幅、周波数、RSSI(Received Signal Strength Indication)値等を含む。また、無線環境情報は、端末300に特有の情報として、例えば、バッテリ305の残容量を示す情報を含み得る。
 外部環境情報は、無線通信のスループットを評価するために外部サーバ400から収集される情報である。外部環境情報は、例えば、無線通信システム2が設けられる地域の日照時間の予測値等を含む。
 制御情報生成部113は、登録情報、基地局および端末300の無線環境情報、並びに外部環境情報に基づき、基地局および端末300の制御情報を生成する。制御情報生成部113は、無線通信管理動作に使用される全ての情報が揃うまで、受信した各種情報をメモリ102に記憶させてもよい。制御情報生成部113は、生成した制御情報を判定部114に送信する。
 制御情報は、基地局および端末300の無線通信環境の構築に使用されるパラメタである。或る機器の制御情報は、少なくとも当該或る機器から収集された無線環境情報に基づいて、生成される。或る機器の制御情報は、当該或る機器以外の機器から収集された無線環境情報に更に基づいて、生成され得る。制御情報は、接続先の情報(SSID)、基地局200および端末300のアクセスパラメタ、チャネル、伝送レートを含む。また、制御情報は、基地局200および端末300の伝送時間帯を示す情報、および送信頻度(デューティ比)を含む。
 判定部114は、各種条件を判定する。例えば、制御情報が生成された基地局および端末300毎に、生成した制御情報によって無線環境の設定を更新するか否かを判定する。また、判定部114は、無線環境の設定を更新すると判定された基地局および端末300毎に、当該更新が再起動を伴うか否かを更に判定する。判定部114は、基地局および端末300毎の制御情報および判定結果の組を有線信号送信部115に送信する。
 有線信号送信部115は、制御回路101からの指示に基づいて、基地局200および端末300を制御するための各種コマンドを生成する。各種コマンドは、コマンドライブラリ116を参照して生成される。
 コマンドライブラリ116は、無線通信管理動作に使用されるコマンド群が予め記憶される。コマンドライブラリ116は、例えば、収集コマンド、および更新コマンドを記憶する。収集コマンドは、(例えばIPアドレスを)指定された基地局又は端末300から無線環境情報を収集させるコマンドである。更新コマンドは、(例えばIPアドレスを)指定された基地局200又は端末300の無線環境の設定を制御情報で更新させるコマンドである。このため、更新コマンドは、指定された基地局200又は端末300の無線環境の設定を更新するための制御情報を含む。また、更新コマンドは、指定された基地局200又は端末300を再起動させる指示を含む場合がある。
 次に、図6は、実施形態に係る基地局200の機能構成の一例を示すブロック図である。
 制御回路201のCPUは、無線通信管理装置100から送信された各種コマンドに基づいて各構成要素202~204を制御する。これによって、図6に示されるように、基地局200は、有線信号受信部211、無線信号受信部212、収集部213、更新部214、有線信号送信部215、および無線信号送信部216を備えるコンピュータとして機能する。
 有線信号受信部211は、収集コマンドおよび更新コマンドを無線通信管理装置100から受信する。基地局200を宛先とする(基地局200への)収集コマンドを受信すると、有線信号受信部211は、収集部213に収集コマンドを送信する。基地局200への更新コマンドを受信すると、有線信号受信部211は、更新部214に更新コマンドを送信する。端末300を宛先とする(端末300への)収集コマンドおよび更新コマンドを受信すると、有線信号受信部211は、収集コマンドおよび更新コマンドを無線信号送信部216へ送信する。有線信号受信部211から無線信号送信部216へデータを送信する際に、当該送信データは、イーサネットのフレームフォーマットから、802.11 ahのフレームフォーマットへ変換される。
 無線信号受信部212は、端末300の無線環境情報を端末300から受信する。無線信号受信部212は、受信した端末300の無線環境情報を有線信号送信部215に送信する。無線信号受信部212から有線信号送信部215へデータを送信する際に、当該送信データは、802.11 ahのフレームフォーマットから、イーサネットのフレームフォーマットへ変換される。
 収集部213は、受信した収集コマンドに基づき、基地局200の無線環境情報を収集する。収集部213は、収集した基地局200の無線環境情報を有線信号送信部215に送信する。
 更新部214は、受信した更新コマンドに基づき、基地局200の無線環境の設定を、更新コマンド内の制御情報で更新する。更新コマンドが再起動の指示を含む場合、更新部214は、基地局200を再起動させる。
 有線信号送信部215は、受信した基地局200の無線環境情報を、無線通信管理装置100に送信する。有線信号送信部215は、受信した端末300の無線環境情報を、無線通信管理装置100に転送する。
 無線信号送信部216は、受信した端末300の収集コマンドおよび更新コマンドを、端末300に転送する。
 次に、図7は、実施形態に係る中継基地局210の機能構成の一例を示すブロック図である。
 制御回路201のCPUは、無線通信管理装置100から送信された各種コマンドに基づいて各構成要素202および204を制御する。これによって、図7に示されるように、中継基地局210は、無線信号受信部212、収集部213、更新部214および無線信号送信部216を備えるコンピュータとして機能する。
 なお、中継基地局210の機能としては、無線接続による各種情報および各種コマンドの送受信となるため、中継基地局210への更新コマンドおよび収集コマンドは、無線信号受信部212が無線で受信し、当該中継基地局210に接続される他の中継基地局210または端末300には、無線信号送信部216が、他の中継基地局210または端末300へ更新コマンドおよび収集コマンドを無線で送信する。
 図8は、実施形態に係る端末の機能構成の一例を示すブロック図である。
 制御回路301のCPUは、無線通信管理装置100から送信された各種コマンドに基づいて各構成要素302および303を制御する。これによって、図8に示されるように、端末300は、無線信号受信部311、収集部312、更新部313、および無線信号送信部314を備えるコンピュータとして機能する。
 無線信号受信部311は、収集コマンドおよび更新コマンドを基地局から受信する。無線信号受信部311は、収集コマンドを収集部312に送信する。無線信号受信部311は、更新コマンドを更新部313へ送信する。
 収集部312は、受信した収集コマンドに基づき、端末300の無線環境情報を収集する。収集部312は、収集した端末300の無線環境情報を無線信号送信部314に送信する。
 更新部313は、受信した更新コマンドに基づき、端末300の無線環境の設定を、更新コマンド内の制御情報で更新する。更新コマンドが再起動の指示を含む場合、更新部313は、端末300を再起動させる。
 無線信号送信部314は、収集した端末300の無線環境情報を、基地局に送信する。
 次に、無線通信管理装置100における制御情報生成部113の詳細について図9を参照して説明する。
 図9に示す制御情報生成部113は、ホップ数算出部151、パス算出部152、決定部153、差分算出部154、および更新部155を含む。
 ホップ数算出部151は、ルート基地局から接続可能な中継基地局210までの最小ホップ数と、ルート基地局から接続可能な端末300まで、または中継基地局210を介して接続可能な端末300までの最小ホップ数とを算出する。ルート基地局は、ルート基地局から1以上の中継基地局210および複数の端末300までの、複数の機器がバケツリレー方式で信号を通信するマルチホップ通信の起点となる基地局である。
 パス算出部152は、ルート基地局と無線通信するように構成された1以上の中継基地局210および複数の端末300から収集された無線環境情報に基づいて、マルチホップ通信によるネットワーク構成として取り得る接続可能なパスであり、かつ前記接続可能なパスに含まれる各中継基地局210のトラヒック量が閾値未満である、1以上のパス候補を算出する。
 決定部153は、1以上のパス候補の1つを最適パスとして決定する。なお決定部153は、中継基地局210および端末300における送信時間のデューティ比が最も公平なパス候補を最適パスとして決定してもよい。
 差分算出部154は、端末ごとに、最適パスにおける接続先となるルート基地局または中継基地局との間の受信信号強度値と、端末が存在を把握可能なルート基地局または中継基地局との間の最大の受信信号強度値との差分を算出する。
 更新部155は、最適パスに基づいて、端末300および中継基地局210の接続先を更新する。また、更新部155は、中継基地局210に接続可能な端末300の差分の総和を用いて、中継基地局210の送信電力を更新する。
 次に、実施形態に係る無線通信管理装置における無線通信管理動作の一例を図10のフローチャートを参照して説明する。図10では、ユーザ入力によって予め登録情報がメモリ102内に記憶されているものとする。
 ステップS11では、無線通信管理装置100は、外部サーバ400から外部環境情報を収集する。
 ステップS12では、無線通信管理装置100は、基地局および端末300の各々から外部環境情報を収集する。ステップS12の処理は、ステップS11の処理の前に実行してもよいし、ステップS11の処理と並行に実行してもよい。
 ステップS13では、無線通信管理装置100は、収集した外部環境情報および無線環境情報と登録情報とに基づいて、基地局および端末300の各々の制御情報を生成する。
 ステップS14では、無線通信管理装置100は、無線通信システム2の無線環境の設定を更新するか否かを判定する。無線通信システム2の無線環境の設定を更新すると判定された場合、ステップS15に進み、無線環境の設定を更新しないと判定された場合、処理を終了する。
 ステップS15では、無線通信管理装置100は、基地局および端末300の各々の無線環境の設定を、制御情報で更新する。
 次に、本実施形態に係る無線通信管理装置の最適パス決定処理について図11のフローチャートを参照して説明する。図11に示す最適パス決定処理は、図10のステップS14において無線環境の設定を更新すると判定された場合に実行されてもよいし、無線通信システム2の敷設時における初期設定として実行されてもよい。
 ステップS21では、ホップ数算出部151が、中継基地局210および端末300の各々について、中継基地局210または端末300からルート基地局までの最小ホップ数を算出する。ホップ数算出部151の処理については、図12を参照して後述する。
 ステップS22では、パス算出部152が、端末300からルート基地局までのマルチホップ通信におけるネットワーク構成として取り得る、1以上のパス候補を算出する。パス算出部152の処理については、図16を参照して後述する。
 ステップS23では、決定部153が、送信時間のデューティ比が最も公平なパス候補を最適パスとして決定する。なお、送信時間のデューティ比を公平にする観点から最適パスを決定することに限らず、機器の消費電力および機器の電池残量などに基づいて、消費電力を公平にする観点から最適パスを設定してもよい。
 ステップS24では、決定部153が、送信電力を最小化する準備として、最適パスに含まれない中継基地局210を送信電力の計算から除外する。これは、接続可能な中継基地局210について送信電力を制御すればよいからである。
 ステップS25では、判定部114が、端末の接続先となる基地局を接続先IDで指定可能であるか否かを判定する。接続先IDは、例えばSSIDである。接続先IDで指定可能である場合、ステップS26に進む。一方、接続先IDで指定できない場合、例えばSSIDがネットワーク全体で同一の値が割り当てられる場合、RSSI値などで区別する必要があるため、ステップS27に進む。
 ステップS26では、更新部155が、各端末300および各中継基地局210の接続先IDを制御値として登録する。
 ステップS27では、例えば差分算出部154および更新部155が、送信電力制御を実行する。差分算出部154および更新部155の処理については、図24を参照して後述する。
 なお、ステップS23において、送信時間のデューティ比が最も公平なパス候補を最適パスとして決定したが、例えば、端末300が電源に接続され、安定した電力供給を受けることができる場合には、各端末300の電池残量を考慮しなくてもよい。よって、決定部153は、送信時間のデューティ比を考慮せずに最適パスを決定してもよい。例えば、決定部153は、パス候補の中からユーザが選択した1つのパス候補を最適パスとして決定してもよいし、パス候補の中からランダムに選択された1つのパス候補を最適パスとして決定してもよい。これにより、法規制などによる送信時間の制約を遵守しつつ、最適パスを決定できる。
 次に、ステップS21に係る最小ホップ数の算出処理について図12のフローチャートを参照して説明する。
 ステップS31では、ホップ数算出部151が、ルート基地局を起点として設定する。ここで、ホップ数m(mはゼロ以上の整数)の初期値をゼロとする。つまり、ルート基地局をゼロホップ目とする。
 ステップS32では、ホップ数算出部151が、mホップ目の基地局に接続可能であり、かつ最小ホップ数の登録がない中継基地局210および端末300を選択する。ここで「接続可能」とは、mホップ目の基地局と直接通信可能であると判定できる状態を示し、例えば、RSSI値が閾値以上である場合に接続可能であると判定されればよい。最小ホップ数の登録があるか否かは、例えば以降の処理で得られる最小ホップ数を登録した管理テーブルをデータサーバ500に格納し、ホップ数算出部151が当該管理テーブルを参照すればよい。なお、RSSI値に加えてSNR(Signal to Noise Ratio)値、SINR(Signal to Interference plus Noise Ratio)が閾値以上であるか否かなど、他の指標を接続可能であるか否かの判定に用いてもよい。
 ステップS33では、ホップ数算出部151が、ステップS32で選択された中継基地局210および端末300の最小ホップ数を「m+1」として、管理テーブルに登録する。例えば、ゼロホップ目の基地局200、つまりルート基地局に到達可能な中継基地局210または端末300の最小ホップ数は、「1」と登録される。
 ステップS34では、判定部114が、ホップ数mが、最大ホップ数よりも大きいか否かを判定する。mが最大ホップ数よりも大きい場合、ステップS36に進み、mが最大ホップ数以下である場合、ステップS35に進む。最大ホップ数は、例えばユーザ入力などにより、中継基地局210および端末300の数および配置関係に基づき予め設定されているとする。
 ステップS35では、ホップ数算出部151が、ホップ数mを1つインクリメントする。
 ステップS36では、判定部114が、ホップ数mが最大ホップ数を上回っても、最小ホップ数が登録されていない中継基地局210または端末300が存在するか否かを判定する。最小ホップ数が登録されていない中継基地局210または端末300が存在する場合、ステップS37に進み、最小ホップ数が登録されていない中継基地局210および端末300がない、つまり全ての中継基地局210および端末300に最小ホップ数が登録された場合、ステップS22に進む。
 ステップS37では、例えば無線通信管理装置100が、警告メッセージをユーザに通知する。これは、想定している最大のホップ数でも接続できない端末300があるということは、中継基地局210および端末300の配置に問題があるか、通信パラメタの設定に問題があることが考えられるからである。よって、ユーザに警告メッセージを通知することで、問題があることを通知できる。なお、接続できない中継基地局210または端末300が存在しても、通信処理を継続できるようにしてもよい。例えば、ユーザに「このまま処理を継続しますか?」といった確認メッセージを表示することで、ユーザが判断できるようにしてもよい。ユーザから接続できない中継基地局210または端末300が存在しても処理を実行する旨の指示を受け取った場合、無線通信管理装置100は、接続できない中継基地局210または端末300を除外して、最適パスの算出処理を実行すればよい。
 次に具体例として、最小ホップ数を設定するために用いられるRSSI値の管理テーブルの一例について図13を参照して説明する。
 図13に示す管理テーブルは、送信側(接続元)の機器(基地局または端末300)と受信側(接続先)の機器(基地局または端末300)との組み合わせにおけるRSSI値を示す。ここで想定するネットワーク構成に帰属する基地局および端末300は、起点となるルート基地局AP1、中継基地局AP2およびAP3、端末STA1からSTA3が存在する場合を想定する。以下、具体例においては、当該ネットワーク構成を例に説明する。なお、図13の例では、送信側のRSSI値と受信側のRSSI値とを加算平均した値を用いるため、送信側の機器と受信側の機器とを入れ替えてもRSSI値が同一であるが、それぞれ独立して測定し、送信側の機器と受信側の機器とを入れ替えた場合にRSSI値が異なる管理テーブルを用いてもよい。
 図13に示す管理テーブルを参照すると、ルート基地局AP1では、中継基地局AP2との間のRSSI値が最も高く「-55[dBm]」(以下、RSSI値の単位は省略する)であり、端末STA3との間のRSSI値が最も低く「-95」であることが分かる。
 次に、図13に示す管理テーブルを参照して、ホップ数算出部151が接続可能性を判定した結果の一例について図14を参照して説明する。
 図14は、図13と同一の管理テーブルである。ここで、図13において接続可能と判定されるためのRSSI値の閾値を「-75」とする。閾値未満のRSSI値となるセルを塗りつぶすと、図14の管理テーブルが得られる。例えば、中継基地局AP3は、ルート基地局AP1との間のRSSI値が「-60」であり、中継基地局AP2との間のRSSI値が「-73」であり、RSSI値が共に閾値「-75」よりも高い。よって中継基地局AP3は、ルート基地局AP1にも中継基地局AP2にも接続可能であることが分かる。
 次に、最小ホップ数の管理テーブルの一例について図15に示す。
 図15に示す管理テーブルは、機器の種別と最小ホップ数とが対応付けられて格納される。図14の接続可能性の判定結果を参照すれば、例えば、中継基地局AP2および中継基地局AP3は、ルート基地局AP1に直接接続可能であるため、中継基地局AP2および中継基地局AP3はそれぞれ、最小ホップ数が「1」と算出される。同様に、端末STA1は、中継基地局AP2に接続可能であり、端末STA2および端末STA3はそれぞれ、中継基地局AP3に接続可能であるため、端末STA1~端末STA3の最小ホップ数はそれぞれ「2」と算出される。なお、中継基地局AP3は、中継基地局AP2にも接続可能であるが、中継基地局AP2に接続される場合は、ホップ数が「2」となるため、中継基地局AP3が直接ルート基地局AP1に接続される場合のホップ数「1」が最小ホップ数として算出される。
 次に、ステップS22に係るパス候補の算出処理について図16のフローチャートを参照して説明する。
 ステップS41では、パス算出部152が、最小ホップ数n(nはゼロ以上の整数)に基づいて、基地局に接続可能であり、かつ当該基地局と同一の最小ホップ数または「最小ホップ数+1」となる中継基地局210または端末300を接続可能機器として決定する。ここで、nの初期値はゼロとする。接続可能か否かは、ステップS32と同様の判定を用いればよい。ステップS41の初回の処理は、最小ホップ数がゼロ、つまりルート基地局に接続可能な中継基地局210および端末300を接続可能機器として決定する処理であり、その後の処理は中継基地局210に対する接続可能機器を判定することになる。なお、端末300に帰属する機器は想定しないため、接続可能機器は、基地局に対して決定する。
 なお、接続可能機器としては、ステップS41の条件に該当する中継基地局210および端末300を全て接続可能機器として決定してもよいし、RSSI値の高い順から所定数の中継基地局210および端末300を接続可能機器として決定してもよい。
 ステップS42では、判定部114が、最小ホップ数が登録される全ての基地局について処理したか否かを判定する。全ての基地局について処理した場合は、ステップS44に進み、全ての基地局について処理していない、つまり未処理の基地局が存在する場合は、ステップS43に進む。
 ステップS43では、nを1つインクリメントし、ステップS41に戻り同様の処理を繰り返す。ステップS41からステップS43までの処理により、ルート基地局から順に、どの機器が処理対象とする基地局に接続可能であるかをエリアを拡げるように確認する。
 ステップS44では、パス算出部152が、接続可能機器がルート基地局までのパスとして取り得る組み合わせに基づいて、1以上の接続可能パスを算出する。接続可能パスの算出方法としては、例えば、ルート基地局への接続可能機器である中継基地局210が、ルート基地局までのパスとして取り得る候補を生成する。続いて、中継基地局210への接続可能機器である端末300が、中継基地局210までのパスとして取り得る候補を生成することで、1以上の接続可能パスが生成される。なお、最大ホップ数を超えるパスについては、冗長な経路を辿っている可能性があり、中継基地局210および端末300の送信時間などの制約からネットワーク構成して適切でない可能性があるため、接続可能パスから除外する。
 ステップS45では、判定部114が、全ての中継基地局210が上限となる最大トラヒック量を超えない接続可能パスが存在する否かを判定する。具体的には、中継基地局210が送信可能な最大トラヒック量よりも、当該中継基地局210に直接的または他の中継基地局210を介して間接的に接続される1以上の端末300の想定トラヒック量の総和が大きい場合、中継基地局210において最大トラヒック量を超えると判定すればよい。なお、端末300の想定トラヒック量は、例えば、アプリケーションで設定されているトラヒック量、または電波法などで規定される制限値として設定されているトラヒック量である。以下では、想定トラヒック量として、制限値として設定されているトラヒック量を想定する。
 全ての中継基地局210が最大トラヒック量を超えない接続可能パスが存在する場合、ステップS47に進む。一方、全ての中継基地局が最大トラヒック量を超えない接続可能パスが存在しない、つまり1以上の接続可能パスそれぞれにおいて、少なくとも1つの中継基地局210が最大トラヒック量を超えてしまう場合、ステップS46に進む。
 ステップS46では、パス算出部152が、全ての接続可能パスにおいて最大トラヒック量を超える中継基地局210が発生しているため、端末300の想定トラヒック量を減少させる。例えば、端末300の想定トラヒック量を一律20パーセント減少させるなど、全ての端末300において所定割合または所定値を想定トラヒック量から減少させてもよいし、中継基地局210に接続される端末300のうちの最も大きい想定トラヒック量を有する端末について、想定トラヒック量を減少させるなど、個別に想定トラヒック量の減少率を変動させてもよい。
 その後、ステップS45に戻り、全ての中継基地局210が最大トラヒック量を超えない接続可能パスが少なくとも1つ存在するまでステップS45およびステップS46の処理を繰り返す。
 ステップS47では、パス算出部152が、全ての中継基地局210が最大トラヒック量を超えない接続可能パスをパス候補として決定する。その後、ステップS23に進む。
 次に具体例として、ステップS41の処理結果となる接続可能機器の一例について図17に示す。
 図17は、接続先機器と当該接続先機器に関する接続可能機器との対応関係を示す管理テーブルである。例えば、図14および図15を参照すれば、ルート基地局AP1については最小ホップ数がゼロであり、同一の最小ホップ数を有する基地局は存在しない。次に、最小ホップ数n+1、つまり最小ホップ数「1」となる中継基地局AP2および中継基地局AP3は、ルート基地局AP1に対して閾値以上のRSSI値を有するため、ルート基地局AP1に対して中継基地局AP2および中継基地局AP3が接続可能機器として決定される。
 同様に、中継基地局AP2については、同一の最小ホップ数「1」を有する中継基地局AP3が、中継基地局AP2に対して閾値以上のRSSI値を有するため、中継基地局AP3が接続可能機器として判定される。次に、最小ホップ数「n+1」、つまり最小ホップ数「2」となるのは端末STA1からSTA3であり、この中で中継基地局AP2に対して閾値以上のRSSI値を有する端末STA1が接続可能機器として決定される。
 続いて、ステップS44の処理結果となる1以上の接続可能パスの一例について図18および図19に示す。
 図18上図および図19上図は、想定するルート基地局AP1から端末STA1からSTA3までを辿るネットワーク構成における接続可能パスを示す概念図であり、図18下図および図19下図は、ルート基地局AP1から端末STA1からSTA3までの接続可能パスをホップ数で表現した管理テーブルである。
 具体的に図17を参照すると、図17の破線で囲まれた中継基地局AP3は、ルート基地局AP1に接続可能であり、かつ中継基地局AP2にも接続可能である。よって、図18に示すように、中継基地局AP3が中継基地局AP2に接続(帰属)し、中継基地局AP2のみがルート基地局AP1に接続した場合の接続可能パスと、図19に示すように、中継基地局AP2およびAP3がルート基地局AP1に接続(帰属)した場合の接続可能パスとが、取り得る接続可能パスとして決定される。以下、説明の便宜上、図18の接続可能パスを接続可能パス1と呼び、図19の接続可能パスを接続可能パス2と呼ぶ。
 続いて、ステップS45およびステップS46における処理の具体例について図20から図23を参照して説明する。
 図20は、中継基地局で許容される上限となる最大トラヒック量と、端末で想定される想定トラヒック量とを含む管理テーブルであり、例えばユーザ入力により予め値が設定される場合を想定する。
 具体的に、例えば中継基地局AP2およびAP3は、最大トラヒック量が300[kbps]であり、端末STA1は想定トラヒック量が200[kbps]であり、端末STA2では端末STA1よりも少なく、想定トラヒック量が100[kbps]である。
 図21は、接続可能パスに含まれる中継基地局の最大トラヒック量と想定トラヒック量との判定結果を示す管理テーブルである。管理テーブルにおいて、「機器」は、機器は接続可能パスに含まれる中継基地局を示す。「接続STA数」は、中継基地局に直接接続される端末と、中継基地局を介して間接的に接続される端末との合計である。最大トラヒック量は、図20に示す最大トラヒック量である。「トラヒック合計」は、中継基地局に接続される接続STA数分の端末の各推定トラヒック量の合計である。「判定」は、トラヒック合計が最大トラヒック量を超えるか否かを判定した結果である。
 図21に示すように、接続可能パス1では、中継基地局AP2に接続される端末は、端末STA1からSTA3であるため、トラヒック合計は、「200+100+250=550」となる。よって、推定トラヒック量であるトラヒック合計が中継基地局AP2の最大トラヒック量「300」を超えるため、「NG」の判定結果となる。1つでも「NG」となる中継基地局が存在する接続可能パスは、パス候補としては扱わない。
 接続可能パス2についても同様の処理を実行し、中継基地局AP2については、トラヒック合計が最大トラヒック量を超えないが、中継基地局AP3については、トラヒック合計が最大トラヒック量を超えるため、接続可能パス2についてもパス候補としては扱わない。
 続いて、推定トラヒック量を減少させた場合最大トラヒック量と想定トラヒック量とを含む管理テーブルの一例を図22に示す。
 図22に示すように、ステップS46の処理により、パス算出部152は、パス候補が存在しない場合は推定トラヒック量を減少させる。ここでは、端末STA1からSTA3までの各推定トラヒック量を20パーセント減少させる例を示す。
 続いて、再度ステップS45の処理を実行した場合の最大トラヒック量と想定トラヒック量との判定結果を示す管理テーブルを図23に示す。
 図23に示すように、接続可能パス1については、図21の場合と同様にパス候補として扱われないが、接続可能パス2については、中継基地局AP2および中継基地局AP3ともに最大トラヒック量未満の推定トラヒック量の合計となるため、接続可能パス2をパス候補として決定する。
 次に、ステップS23における最適パスの決定処理の詳細について説明する。
 決定部153は、各機器から収集した帯域幅の情報と図14に示すRSSI値とから、各機器のSINR値を算出する。決定部153は、算出したSINR値と各機器から収集したMTUサイズとを用いて、各機器のMCS(Modulation Coding Scheme)インデックスを決定する。決定部153は、決定したMCSインデックス、MTUサイズおよびアグリゲーション数を用いて、各機器のフレーム時間長を算出する。
 その後、決定部153は、算出したフレーム時間長を用いて、端末STA1からSTA3までの各端末における、ルート基地局までに要する送信時間を算出する。ここでは、各端末がルート基地局までに辿る経路に存在する中継基地局およびルート基地局のフレーム時間長を合計する。例えば、パス候補として図18に示すパス候補が選択される場合は、端末STA1については、中継基地局AP2に接続し、中継基地局AP2がルート基地局AP1に接続するため、中継基地局AP2およびルート基地局AP1それぞれのフレーム時間長の合計を端末STA1の送信時間とする。同様に、端末STA2については、中継基地局AP3に接続し、中継基地局AP3が中継基地局AP2に接続し、中継基地局AP2がルート基地局AP1に接続するため、中継基地局AP3、中継基地局AP2およびルート基地局AP1それぞれのフレーム時間長の合計を端末STA2の送信時間とする。決定部153は、算出した各端末の送信時間の標準偏差を算出する。
 パス候補が複数存在する場合は、決定部153は、上述のように各パス候補について送信時間の標準偏差を算出する。決定部153は、各パス候補の送信時間の標準偏差が最も小さいパス候補を最適パスとして決定する。つまり、標準偏差が小さければ各端末における送信時間のデューティ比の偏りが小さく、各端末に対して均一な送信頻度および送信時間が割り当てられる。すなわち、各端末の消費電力量の観点で公平なネットワーク構成であるといえる。なお、標準偏差に限らず、一般的な他の統計処理など、送信時間のデューティ比の偏りを算出できる指標であればどのような算出方法を用いてもよい。
 次に、ステップS27における送信電力制御の詳細について図24のフローチャートを参照して説明する。ここでは、ルート基地局と中継基地局210とのSSIDが同一の場合などのように、SSIDで接続先の機器を指定できないことを想定し、端末300がRSSI値に基づき自動的に接続先を判定するロジックを採用する。よって、中継基地局210側で送信電力を制御して最適パスの経路を維持させる。なお、kは0以上の整数であり、qは最適パスに含まれる中継基地局210の総数であり、rは最適パスに含まれる端末300の総数である。また、ルート基地局は「基地局k=0」と設定され、中継基地局210は「基地局k(1≦k≦q)」として、一意に識別されるようにナンバリングされるものとする。
 ステップS51では、差分算出部154が、基地局kに接続される子ノード機器(k,i)のうち、未処理かつ最小のRSSI値を有する子ノード機器(k,i)を選択し、当該最小のRSSI値を取得する。子ノード機器とは、注目する機器を基準にルート基地局とは反対のパス方向、つまり端末に向かう方向に存在する、当該注目する機器と直接または間接的に接続される中継基地局210または端末300を示す。子ノード機器(k,i)についても、(1≦i≦r)として、基地局kに接続される子ノード機器iが一意に識別されるようにナンバリングされる。
 ステップS52では、差分算出部154が、最小のRSSI値を有する子ノード機器(k,i)が存在を把握可能な基地局との間における、最大のRSSI値を取得する。「存在を把握可能」とは、閾値判定により接続可能と判定された機器と、閾値判定により接続可能とは判定されなかった、閾値未満のRSSI値を取得した接続先の機器とを示す。
 ステップS53では、差分算出部154が、ステップS52で取得した最大のRSSI値とステップS51で取得した最小のRSSI値との差分d(k,i)を算出する。
 ステップS54では、判定部114が、各子ノード機器(k,i)について算出した差分d(k,i)の総和d(k)が閾値以上であるか否かを判定する。d(k)が閾値以上である場合、ステップS55に進み、d(k)が閾値未満である場合、ステップS56に進む。
 ステップS55では、差分算出部154が、d(k)が閾値以上である場合、送信電力を制御すると、基地局からの送信電力を小さくした場合は、現状の最適パスの経路を維持できない可能性があるため、当該最適パスを削除する。
 ステップS56では、判定部114が、基地局kに接続する未処理の子ノード機器(k,i)が存在するか否かを判定する。未処理の子ノード機器(k,i)が存在する場合、ステップS57に進み、未処理の子ノード機器(k,i)が存在しない場合、ステップS58に進む。
 ステップS57では、差分算出部154が、iを1つインクリメントし、基地局kに接続される残りの子ノード機器に対しステップS51からステップS56までの処理を実行する。
 ステップS58では、更新部155が、基地局kについてのデフォルトの送信電力値p(k)からd(k)を減算し、更新送信電力値p’(k)を算出する。
 ステップS59では、更新部155が、算出された更新送信電力値p’(k)を新たな送信電力値として更新する。
 ステップS60では、判定部114が、最適パスにおける全ての基地局について更新送信電力値p’(k)を算出したか否かを判定する。全ての基地局について更新送信電力値p’(k)を算出した場合は、処理を終了し、全ての基地局について更新送信電力値p’(k)を算出していない場合は、ステップS61に進む。
 ステップS61では、差分算出部154が、kを1つインクリメントし、残りの基地局についてステップS51からステップS56までの処理を実行する。
 ステップS62では、判定部114が、他のパス候補があるか否かを判定する。他のパス候補がある場合、ステップS23に戻り、他のパス候補の中から最適パスを決定するよう、同様の処理を繰り返す。一方、他のパス候補がない場合、ステップS45に戻り、他の接続可能パスについてトラヒック量の制約を満たすかといった処理を実行する。
 ここで、図24に示す送信電力制御の具体例について、図13および図19を参照して説明する。なお、図19の接続可能パスを最適パスとした場合を想定する。
 まず、差分算出部154は、端末からルート基地局AP1に向かう方向に、中継基地局に接続する端末、つまり中継基地局に帰属する端末を特定する。図19の最適パスを参照すると、端末AP1は、中継基地局AP2に帰属し、端末STA2および端末STA3は、中継基地局AP3に帰属する。
 図13のRSSI値の管理テーブルを参照すると、評価対象である中継基地局AP2に対して1つの端末AP1のみ帰属するので、最小のRSSI値は端末STA1の「-55」である。一方、端末STA1が把握する基地局は、ルート基地局AP1と中継基地局AP2とであり、RSSI値はそれぞれ「-80」と「-46」である。ここで、最大のRSSI値は、中継基地局AP2の「-46」である。よって、最大のRSSI値と最小のRSSI値との差分d(AP2,STA1)は、「-46-(-46)=0」となる。
 同様に、評価対象である中継基地局AP3に対して、端末STA2が「-42」、端末STA3が「-70」なので、最小のRSSI値は「-70」、端末は端末STA3である。端末STA3が把握する基地局は、ルート基地局AP1と中継基地局AP3とであり、RSSI値はそれぞれ「-95」と「-70」である。最大のRSSI値は、中継基地局AP2の「-70」である。よって、最大のRSSI値と最小のRSSI値との差分d(AP3,STA3)は、「-70-(-70)=0」となる。
 続いて中継基地局AP3に帰属する未処理の端末STA2についても同様に計算すると、差分d(AP3,STA2)はゼロとなる。よって、中継基地局AP3についての差分の総和d(AP3)もゼロである。
 次に、図19の最適パスを参照すると、評価対象であるルート基地局AP1には、中継基地局AP2および中継基地局AP3が帰属する。図13のRSSI値の管理テーブルを参照すると、ルート基地局AP1に対して、中継基地局AP2が「-55」、中継基地局AP3が「-60」なので、最小のRSSI値は「-60」、中継基地局AP3である。中継基地局AP3が把握する基地局は、ルート基地局AP1と中継基地局AP2とであり、RSSI値はそれぞれ「-60」と「-57」である。最大のRSSI値は、中継基地局AP2の「-57」である。よって、最大のRSSI値と最小のRSSI値との差分d(AP1,AP3)は、「-57-(-60)=3」となる。
 続いてルート基地局AP1に帰属する未処理の中継基地局AP2についても同様に計算すると、差分d(AP1,AP2)はゼロとなる。よって、ルート基地局AP1についての差分の総和d(AP1)は「3」となる。中継基地局AP3にとっては、RSSI値の観点ではルート基地局AP1よりも中継基地局AP2の方が電波強度が高いが、マルチホップ通信のネットワーク全体を見た場合は、ルート基地局AP1につながるべきと決定されたといえる。
 そこで、デフォルトの送信電力値からd(AP1)の「3」を加算することで、更新送信電力値p’(k)を更新する。なお、評価対象の基地局の送信電力を更新することに限らず、最大のRSSI値となっている他の基地局の送信電力を更新してもよい。例えば、上述の例では、中継基地局AP2の送信電力値からd(AP1)の「3」を減算してもよい。
 以上に示した本実施形態によれば、端末および中継基地局のRSSI値情報およびトラヒック情報を収集し、ネットワーク構成として取り得る1以上の接続可能パスの中から、トラヒックが最大トラヒック量を超えない1以上のパス候補を決定し、当該1以上のパス候補の中から最適パスを決定する。電波法等により端末の送信時間等に制約がある場合においても、トラヒックの公平性の観点から最適パスを決定でき、最適な経路選択を管理できる。また、端末の送信時間のデューティ比が最も公平なパス候補を最適パスとして決定することもできる。これにより、各端末からのデータ送信に起因する消費電力の公平性の観点から最適なパスを決定できる。結果として、法規制を順守しながら、ネットワーク全体のスループットを向上させることができる。
 また、端末が自動的に接続先を決定する場合でも、RSSI値に基づき中継基地局の送信電力を制御することにより、最適パスで指定された基地局に端末が接続するように制御でき、最適なパスを選択させることができる。
 なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。さらに、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
1…通信システム
2…無線通信システム
100…無線通信管理装置
101,201,301…制御回路
102,202,302…メモリ
103,203…有線通信モジュール
104…ユーザインタフェース
105…タイマ
106…ドライブ
107…記憶媒体
111…ユーザ入力部
112,211…有線信号受信部
113…制御情報生成部
114…判定部
115,215…有線信号送信部
116…コマンドライブラリ
151…ホップ数算出部
152…パス算出部
153…決定部
154…差分算出部
155,214,313…更新部
200…基地局
204,303…無線通信モジュール
210…中継基地局
212,311…無線信号受信部
213,312…収集部
216,314…無線信号送信部
300…端末
304…センサ
305…バッテリ
400…外部サーバ
500…データサーバ

Claims (7)

  1.  ルート基地局と無線通信するように構成された1以上の中継基地局および複数の端末から収集された無線環境情報に基づいて、マルチホップ通信によるネットワーク構成として取り得る接続可能なパスであり、かつ前記接続可能なパスに含まれる各中継基地局のトラヒック量が閾値未満である1以上のパス候補を算出するパス算出部と、
     前記1以上のパス候補の1つを最適パスとして決定する決定部と、
     を具備する無線通信管理装置。
  2.  前記決定部は、前記中継基地局および前記端末における送信時間のデューティ比が最も公平なパス候補を前記最適パスとして決定する、請求項1に記載の無線通信管理装置。
  3.  前記ルート基地局から接続可能な前記中継基地局までの最小ホップ数と、前記ルート基地局から接続可能な前記端末まで、または前記中継基地局を介して接続可能な前記端末までの最小ホップ数とを算出するホップ数算出部をさらに具備し、
     前記パス算出部は、前記最小ホップ数を基準として前記パス候補を算出する、請求項1または請求項2に記載の無線通信管理装置。
  4.  前記パス算出部は、前記接続可能なパスに含まれる少なくとも1つの中継基地局のトラヒック量が閾値以上である場合、前記少なくとも1つの中継基地局と通信する端末のトラヒック量を減少させる、請求項1から請求項3のいずれか1項に記載の無線通信管理装置。
  5.  前記端末ごとに、前記最適パスにおける接続先となる前記ルート基地局または第1中継基地局との間の受信信号強度値と、前記端末が存在を把握可能なルート基地局または第2中継基地局との間の最大の受信信号強度値との差分を算出する差分算出部と、
     前記第1中継基地局に帰属する端末の前記差分の総和を用いて、前記第1中継基地局および前記第2中継基地局の送信電力を更新する更新部と、をさらに具備する請求項1から請求項4のいずれか1項に記載の無線通信管理装置。
  6.  基地局と無線通信するように構成された1以上の中継基地局および複数の端末から収集された無線環境情報に基づいて、マルチホップ通信によるネットワーク構成として取り得る接続可能なパスであり、かつ前記接続可能なパスに含まれる各中継基地局のトラヒック量が閾値未満である1以上のパス候補を算出し、
     前記1以上のパス候補の1つを最適パスとして決定する、無線通信管理方法。
  7.  コンピュータに、
     基地局と無線通信するように構成された1以上の中継基地局および複数の端末から収集された無線環境情報に基づいて、マルチホップ通信によるネットワーク構成として取り得る接続可能なパスであり、かつ前記接続可能なパスに含まれる各中継基地局のトラヒック量が閾値未満である1以上のパス候補を算出するパス算出機能と、
     前記1以上のパス候補の1つを最適パスとして決定する決定機能と、
     を実現させるための無線通信管理プログラム。
PCT/JP2020/048626 2020-12-25 2020-12-25 無線通信管理装置、無線通信管理方法および無線通信管理プログラム WO2022137483A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/048626 WO2022137483A1 (ja) 2020-12-25 2020-12-25 無線通信管理装置、無線通信管理方法および無線通信管理プログラム
JP2022570929A JPWO2022137483A1 (ja) 2020-12-25 2020-12-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/048626 WO2022137483A1 (ja) 2020-12-25 2020-12-25 無線通信管理装置、無線通信管理方法および無線通信管理プログラム

Publications (1)

Publication Number Publication Date
WO2022137483A1 true WO2022137483A1 (ja) 2022-06-30

Family

ID=82157451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048626 WO2022137483A1 (ja) 2020-12-25 2020-12-25 無線通信管理装置、無線通信管理方法および無線通信管理プログラム

Country Status (2)

Country Link
JP (1) JPWO2022137483A1 (ja)
WO (1) WO2022137483A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199703A (ja) * 2011-03-18 2012-10-18 Fujitsu Ltd 無線通信装置および経路構築方法
WO2014208045A1 (ja) * 2013-06-26 2014-12-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 経路制御装置および経路制御方法
JP2017017670A (ja) * 2015-06-30 2017-01-19 Kddi株式会社 通信装置及び通信方法
WO2018229934A1 (ja) * 2017-06-15 2018-12-20 三菱電機株式会社 無線通信装置および無線通信プログラム
JP2020145540A (ja) * 2019-03-05 2020-09-10 沖電気工業株式会社 制御装置、制御プログラム、制御方法、通信装置および通信システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199703A (ja) * 2011-03-18 2012-10-18 Fujitsu Ltd 無線通信装置および経路構築方法
WO2014208045A1 (ja) * 2013-06-26 2014-12-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 経路制御装置および経路制御方法
JP2017017670A (ja) * 2015-06-30 2017-01-19 Kddi株式会社 通信装置及び通信方法
WO2018229934A1 (ja) * 2017-06-15 2018-12-20 三菱電機株式会社 無線通信装置および無線通信プログラム
JP2020145540A (ja) * 2019-03-05 2020-09-10 沖電気工業株式会社 制御装置、制御プログラム、制御方法、通信装置および通信システム

Also Published As

Publication number Publication date
JPWO2022137483A1 (ja) 2022-06-30

Similar Documents

Publication Publication Date Title
Zhou et al. Clustering hierarchy protocol in wireless sensor networks using an improved PSO algorithm
Radi et al. Interference-aware multipath routing protocol for QoS improvement in event-driven wireless sensor networks
KR100915520B1 (ko) 하이브리드-셀룰라 네트워크 내의 라우팅 프로토콜
CN101120555A (zh) 无线通信装置、通信路径控制装置、通信路径控制方法及通信系统
JP2005045828A (ja) ネットワークの伝送電力最適化装置及びその方法
US8233443B2 (en) Wireless communication apparatus and wireless communication method
Dai et al. Interference-aware resource allocation for D2D underlaid cellular network using SCMA: A hypergraph approach
CN104918305B (zh) 基于参数促进互通和网络选择
US9609591B2 (en) Communication device, power management system having communication device and control method of communication device
KR20140088375A (ko) 무선 통신 시스템에서 기지국 간 무선 링크 복구를 위한 방법 및 장치
Wang et al. An energy efficient clustering protocol for lifetime maximization in wireless sensor networks
WO2004114600A1 (ja) 無線lan通信システム
Safa et al. A load balancing energy efficient clustering algorithm for MANETs
CN111601268A (zh) 簇头选择方法、装置、终端设备及存储介质
WO2022137483A1 (ja) 無線通信管理装置、無線通信管理方法および無線通信管理プログラム
WO2019093937A1 (en) Network node and methods in a mesh network
CN103051531B (zh) 一种基于统计优化的ZigBee层级路由组网方法
JP2019041339A (ja) 無線通信システム、無線通信方法、無線基地局および制御局
da Silva Santos et al. μSDN: an SDN-based routing architecture for wireless sensor networks
KR101196643B1 (ko) 무선 센서 네트워크의 수명 관리 시스템과 그 방법
EP3398367A1 (en) Network performance framework for wireless local area networks
CN108028861A (zh) 用于密集大网络的绿色功率(代理表调节)
Long et al. Energy-aware routing scheme in industrial wireless sensor networks for Internet of Things systems
Ferreira et al. Energy-efficient radio resource management in self-organised multi-radio wireless mesh networks
WO2022137477A1 (ja) 無線通信管理装置、無線通信管理方法、及び無線通信管理プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570929

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966970

Country of ref document: EP

Kind code of ref document: A1