WO2022137470A1 - Reception device and reception method - Google Patents

Reception device and reception method Download PDF

Info

Publication number
WO2022137470A1
WO2022137470A1 PCT/JP2020/048582 JP2020048582W WO2022137470A1 WO 2022137470 A1 WO2022137470 A1 WO 2022137470A1 JP 2020048582 W JP2020048582 W JP 2020048582W WO 2022137470 A1 WO2022137470 A1 WO 2022137470A1
Authority
WO
WIPO (PCT)
Prior art keywords
oam mode
oam
mode
signal
separation circuit
Prior art date
Application number
PCT/JP2020/048582
Other languages
French (fr)
Japanese (ja)
Inventor
康徳 八木
裕文 笹木
斗煥 李
貴之 山田
淳 増野
智貴 瀬本
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/048582 priority Critical patent/WO2022137470A1/en
Priority to JP2022570917A priority patent/JP7485089B2/en
Publication of WO2022137470A1 publication Critical patent/WO2022137470A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems

Definitions

  • This disclosure relates to a receiving device and a receiving method.
  • Radio waves with OAM have equiphase planes spirally distributed along the propagation direction around the propagation axis. Since the spatial phase distribution of each electromagnetic wave propagating in the same direction with different phase rotation speeds (OAM mode) is orthogonal in the rotation axis direction, the signals of each OAM mode modulated by different signal sequences should be separated on the receiving side. Therefore, it is possible to transmit multiple signals.
  • Non-Patent Document 1 the signals of each OAM mode can be separated only in the line-of-sight environment where the transmitting UCA and the receiving UCA are arranged at positions facing each other in the front and there is no reflected wave.
  • the transmitting UCA and the receiving UCA are fixedly installed at positions deviated from the front facing arrangement, and the influence of reflected waves due to the surrounding environment.
  • the channel matrix between the transmitting UCA and the receiving UCA deviates from the ideal front facing arrangement due to such an influence, the interference component between the OAM modes remains in the output stage of the OAM mode separation processing circuit on the receiving side.
  • the receiving side attempts to separate the signal in OAM mode 1
  • the transmitting UCA and the receiving UCA are in an ideal front facing arrangement
  • only the desired OAM mode signal component can be extracted.
  • the signal components of each OAM mode in the circuit output stage In addition, interference components from other OAM modes may be superimposed and the communication quality may deteriorate.
  • the purpose is to provide technology that can improve the transmission quality of OAM multiplex transmission.
  • the receiving device has an antenna that receives radio waves of a plurality of OAM (Orbital Angular Momentum) modes from the transmitting device, a separation circuit that separates each OAM mode signal received by the antenna, and the separation circuit. Based on the channel information of each OAM mode extracted based on the preamble signal of each OAM mode separated in, the first OAM mode of each OAM mode is selected, and the first OAM mode separated by the separation circuit is selected. Generation of generating a signal for the first OAM mode based on the signal of the OAM mode and the signal for the second OAM mode separated by the separation circuit and not used for receiving data from the transmitter. With a part.
  • OAM Orthogonal Angular Momentum
  • the transmission quality of OAM multiplex transmission can be improved.
  • FIG. 1 is a diagram illustrating a configuration of an OAM multiplex communication system 1 according to an embodiment.
  • the OAM multiplex communication system 1 has a transmitting station 10 (an example of a “transmitting device”) and a receiving station 20 (an example of a “receiving device”).
  • the transmitting station 10 includes a first transmitting UCA11-1 to an NTX transmitting UCA11-N TX as a transmitting antenna.
  • NTX is an integer of 1 or more.
  • a plurality of series of modulated signals transmitted in OAM modes 1 to L (1 to L are indexes indicating the order of the OAM mode) are input to the OAM mode transmission signal processing unit 13.
  • the rotation speed (order) of the phase of the radio wave having OAM is referred to as an OAM mode.
  • the OAM mode transmission signal processing unit 13 generates a signal to be transmitted in each OAM mode from each transmission UCA, and outputs the signal to the OAM mode generation processing units 12-1 to 12- NTX corresponding to each transmission UCA, respectively.
  • the OAM mode generation processing units 12-1 to 12-N TX input signals to be transmitted in OAM modes 1 to L, respectively, and transmit signals from each transmission UCA11-1 to 11-N TX as signals in OAM modes 1 to L, respectively.
  • the phase is adjusted so as to be output to the antenna element of each transmission UCA.
  • the receiving station 20 includes a first receiving UCA21-1 to an N RX receiving UCA21-N RX as a receiving antenna.
  • NRX is an integer of 1 or more.
  • the OAM mode separation processing unit 22-1 to 22-N RX (hereinafter, also simply referred to as "OAM mode separation processing unit 22" when it is not necessary to distinguish between them) is OAM from the received signal of each received UCA.
  • the signals of modes 1 to L are separated, and the signals of each OAM mode are output to the OAM mode reception signal generation unit 23.
  • L is the number of OAM modes to be used.
  • L 7, for example, signals of OAM mode -3, -2, -1, 0, 1, 2, 3 are multiplex transmitted, and one of them is referred to as OAM mode k.
  • k is an index indicating the OAM mode.
  • Each OAM mode separation processing unit 22 may separate each OAM mode signal by, for example, a Butler matrix circuit (Butler matrix; an example of a “separation circuit”) such as 8 ⁇ 8.
  • a Butler matrix circuit (Butler matrix; an example of a “separation circuit”) such as 8 ⁇ 8.
  • the OAM mode reception signal generation unit 23 (an example of the “generation unit”) is a quality-enhanced OAM mode signal from each OAM mode signal received from the OAM mode separation processing units 22-1 to 22- NRX . Generate a signal.
  • FIG. 2 is a diagram illustrating an example of UCA of the transmitting station 10 and the receiving station 20 according to the embodiment.
  • a plurality of first transmission UCA11-1 to N TX transmission UCA11-N TX of the transmission station 10 and first reception UCA21-1 to N RX reception UCA21-N RX of the reception station 20 are used.
  • a multi-circular array antenna (Multi-UCA) in which UCAs are arranged concentrically may be used.
  • Multi-UCA multi-circular array antenna
  • each UCA is shown as an example in which 16 antenna elements (indicated by ⁇ in the figure) are provided, the number of antenna elements of each UCA does not necessarily have to be the same.
  • FIG. 3 is a flowchart illustrating an example of processing of the OAM mode reception signal generation unit 23 of the reception station 20 according to the embodiment.
  • step S1 the OAM mode reception signal generation unit 23 acquires the channel (channel information) of each OAM mode separated by the OAM mode separation processing unit 22 from the orthogonal sequence preamble.
  • the OAM mode reception signal generation unit 23 may calculate the channel H by multiplying the preamble of the orthogonal sequence transmitted from the transmitting station 10 by a known orthogonal sequence. In this case, for example, when starting the transmission of data to the receiving station 20, the transmitting station 10 may first transmit the orthogonal series preamble signal to the receiving station 20.
  • the OAM mode reception signal generation unit 23 when the OAM mode reception signal generation unit 23 has an 8 ⁇ 8 butler matrix circuit, the OAM mode reception signal generation unit 23 extracts an 8 ⁇ 8 independent channel H as in the following equation (1). do.
  • L 8
  • a signal of OAM mode -3, -2, -1, 0, 1, 2, 3, 4 is input from the receiving UCA to the 8 ⁇ 8 Butler matrix circuit.
  • h ij is channel information from the transmission mode j to the reception mode i.
  • the signal of the component i ⁇ j also has power, so the power is measured. By doing so, the interference power can be obtained. Further, it is possible to know how much power is leaking from a certain transmission mode j to the reception mode i by the power of the signal of the component i ⁇ j.
  • the OAM mode reception signal generation unit 23 selects the OAM mode to be improved (an example of the "first OAM mode") based on the acquired channel (step S2).
  • the OAM mode reception signal generation unit 23 has SINR (Signal to Interference), which is the ratio of the sum of the noise power and the interference power to the reception power of the signal among the OAM modes separated by the OAM mode separation processing unit 22.
  • SINR Signal to Interference
  • the OAM mode in which plus Noise Ratio) is equal to or lower than the threshold value may be selected as the OAM mode to be improved.
  • the OAM mode reception signal generation unit 23 may select the OAM mode having the lowest SINR among the OAM modes as the OAM mode to be improved.
  • the OAM mode reception signal generation unit 23 selects the highest-order (largest absolute value of the mode) OAM mode among the OAM modes used for receiving data from the transmitting station 10 as the OAM mode to be improved. You may. As a result, it is possible to improve the high-order mode in which radio waves are difficult to reach far.
  • the signal of OAM mode -3, -2, -1, 0, 1, 2, 3, 4 is output from the 8 ⁇ 8 butler matrix circuit of the OAM mode separation processing unit 22, and the transmission station.
  • OAM mode-2, -1, 0, 1, 2 is used for receiving data from 10
  • the OAM mode reception signal generation unit 23 uses OAM mode-2, which is the highest order of the OAM modes used for reception.
  • 2 may be selected as the OAM mode to be improved.
  • the transmitting station 10 when the transmitting station 10 starts transmitting data to the receiving station 20, the transmitting station 10 first notifies the receiving station 20 of each OAM mode used by the transmitting station 10 for transmitting data to the receiving station 20 in advance. You may. Alternatively, for example, when the receiving station 20 starts receiving data from the transmitting station 10, the receiving station 20 first notifies the transmitting station 10 of each OAM mode used by the receiving station 20 for receiving data from the transmitting station 10 in advance. You may.
  • the OAM mode reception signal generation unit 23 selects a specific OAM mode (an example of the "second OAM mode") (step S3).
  • the OAM mode reception signal generation unit 23 specifies, for example, one or more OAM modes that are not used for receiving data from the transmission station 10 among the OAM modes separated by the OAM mode separation processing unit 22. It may be selected as the OAM mode of.
  • the signal of OAM mode -3, -2, -1, 0, 1, 2, 3, 4 is output from the 8 ⁇ 8 butler matrix circuit of the OAM mode separation processing unit 22, and the transmission station.
  • the OAM mode reception signal generation unit 23 sets the OAM mode -3, 3, 4 which is not used for the reception to the specific. It may be selected as the OAM mode.
  • the transmitting station 10 when the transmitting station 10 starts transmitting data to the receiving station 20, the transmitting station 10 first notifies the receiving station 20 of each OAM mode used by the transmitting station 10 for transmitting data to the receiving station 20 in advance. You may. Alternatively, for example, when the receiving station 20 starts receiving data from the transmitting station 10, the receiving station 20 first notifies the transmitting station 10 of each OAM mode used by the receiving station 20 for receiving data from the transmitting station 10 in advance. You may.
  • the power leaked (leaked) from the OAM mode to be improved is equal to or higher than the threshold value1.
  • the above OAM mode may be selected as the specific OAM mode.
  • the OAM mode reception signal generation unit 23 sets, for example, the OAM mode (reception mode i in which hiJ is the maximum) in which the power leaked from the OAM mode to be improved is the largest among the one or more reception modes i. It may be selected as a specific OAM mode.
  • the OAM mode reception signal generation unit 23 may select a specific OAM mode based on the order of the OAM mode to be improved among the OAM modes separated by the OAM mode separation processing unit 22, for example. good.
  • the OAM mode reception signal generation unit 23 selects, for example, the OAM mode closest to the order of the OAM mode to be improved among the one or more OAM modes not used for receiving data from the transmitting station 10. It may be selected as the mode. This is because it is considered that the OAM mode to be improved leaks most to the OAM mode in which the order is adjacent.
  • the signal of OAM mode -3, -2, -1, 0, 1, 2, 3, 4 is output from the 8 ⁇ 8 butler matrix circuit of the OAM mode separation processing unit 22, and the transmission station.
  • OAM mode-2, -1, 0, 1, 2 is used for receiving data from 10 and OAM mode-2 is set as the OAM mode to be improved
  • the OAM mode reception signal generation unit 23 is used for reception.
  • the OAM mode-3, 3 and 4 which do not exist, the OAM mode-3 having the closest order to the OAM mode-2 to be improved may be selected as the specific OAM mode.
  • the OAM mode reception signal generation unit 23 is based on the specific OAM mode signal received from the OAM mode separation processing unit 22 and the OAM mode signal to be improved received from the OAM mode separation processing unit 22. Then, the signal of the OAM mode to be improved is generated and output (step S4).
  • the OAM mode reception signal generation unit 23 generates a signal of the OAM mode of the improvement target by performing MIMO equalization processing based on, for example, the specific OAM mode and the OAM mode of the improvement target. You may.
  • the OAM mode reception signal generation unit 23 may use, for example, ZF (Zero-Forcing), MMSE (Mini-Mean Squared Error), MLD (Maximum Likelihood Detection), or the like as MIMO equalization processing.
  • ZF Zero-Forcing
  • MMSE Mini-Mean Squared Error
  • MLD Maximum Likelihood Detection
  • the OAM mode (unused OAM mode) that is conventionally terminated and not used is also available. It is possible to improve the SNR and improve the transmission efficiency by performing reception using the data and performing equalization processing between the desired OAM mode (OAM mode to be improved) and the unused OAM mode.
  • equalization processing is performed by utilizing the signal power leaked to the unused mode or the like.
  • the total SNR of the entire system is improved, so that the transmission quality of the OAM multiplex transmission can be improved.
  • OAM multiplex communication system 10 transmission station 11 transmission UCA 12 OAM mode generation processing unit 13 OAM mode transmission signal processing unit 20 Receiving station 21 Receiving UCA 22 OAM mode separation processing unit 23 OAM mode reception signal generation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

This reception device has: an antenna for receiving a radio wave in a plurality of orbital angular momentum (OAM) modes from a transmission device; a separation circuit for separating the signal of each OAM mode having been received by the antenna; and a generation unit for selecting a first OAM mode from among the OAM modes on the basis of channel information of each OAM mode extracted on the basis of a preamble signal of each OAM mode having been separated by the separation circuit, and generating a signal for the first OAM mode on the basis of the signal of the first OAM mode having been separated by the separation circuit and the signal for a second OAM mode having been separated by the separation circuit and not used for reception of data from the transmission device.

Description

受信装置、及び受信方法Receiver and receiving method
 本開示は、受信装置、及び受信方法に関する。 This disclosure relates to a receiving device and a receiving method.
 近年、電波の軌道角運動量(OAM、Orbital Angular Momentum)を用いて無線信号を空間多重伝送することにより伝送容量を向上させる技術が研究されている。 In recent years, a technique for improving the transmission capacity by spatially multiplexing radio signals using the orbital angular momentum (OAM, Orbital Angular Momentum) of radio waves has been studied.
 OAMをもつ電波は、伝搬軸を中心に伝搬方向にそって等位相面が螺旋状に分布する。位相の回転数(OAMモード)が異なり同一方向に伝搬する各電磁波は、回転軸方向において空間位相分布が直交するため、異なる信号系列で変調された各OAMモードの信号を受信側において分離することにより、信号を多重伝送することが可能である。 Radio waves with OAM have equiphase planes spirally distributed along the propagation direction around the propagation axis. Since the spatial phase distribution of each electromagnetic wave propagating in the same direction with different phase rotation speeds (OAM mode) is orthogonal in the rotation axis direction, the signals of each OAM mode modulated by different signal sequences should be separated on the receiving side. Therefore, it is possible to transmit multiple signals.
 複数のアンテナ素子を等間隔に円形配置した等間隔円形アレーアンテナ(UCA、Uniform Circular Array)とバトラーマトリクス回路を用いて生成した複数のOAMモードの各電波を送信することにより、異なる信号系列の空間多重伝送を行う技術が知られている(例えば、非特許文献1を参照)。 Spaces of different signal sequences by transmitting each radio wave of multiple OAM modes generated by using an evenly spaced circular array antenna (UCA, Uniform Circular Array) in which multiple antenna elements are arranged in a circle at equal intervals and a butler matrix circuit. A technique for performing multiplex transmission is known (see, for example, Non-Patent Document 1).
 非特許文献1の構成では、送信UCAと受信UCAが正面で対向する位置に配置され、かつ、反射波がない見通し環境に限り、各OAMモードの信号を分離できる。しかし、実運用上は、送信UCAと受信UCAが正面対向配置からずれた位置に固定設置されている場合や、周辺環境による反射波などの影響も考慮する必要がある。このような影響によって、送信UCAと受信UCA間のチャネル行列が理想的な正面対向配置から乖離すると、受信側のOAMモード分離処理回路の出力段においてOAMモード間の干渉成分が残留する。 In the configuration of Non-Patent Document 1, the signals of each OAM mode can be separated only in the line-of-sight environment where the transmitting UCA and the receiving UCA are arranged at positions facing each other in the front and there is no reflected wave. However, in actual operation, it is necessary to consider the case where the transmitting UCA and the receiving UCA are fixedly installed at positions deviated from the front facing arrangement, and the influence of reflected waves due to the surrounding environment. When the channel matrix between the transmitting UCA and the receiving UCA deviates from the ideal front facing arrangement due to such an influence, the interference component between the OAM modes remains in the output stage of the OAM mode separation processing circuit on the receiving side.
 例えば、OAMモード1の信号の分離を受信側で試みたときに、送信UCAと受信UCAが理想的な正面対向配置の場合は、所望のOAMモードの信号成分だけを取り出せる。一方、バトラーマトリクス回路の不完全性や、送信UCAと受信UCAが理想的な正面対向配置からずれた位置に固定設置されている(軸ずれ)等により、回路出力段における各OAMモードの信号成分に、他のOAMモードからの干渉成分が重畳されて通信品質が劣化する場合がある。 For example, when the receiving side attempts to separate the signal in OAM mode 1, if the transmitting UCA and the receiving UCA are in an ideal front facing arrangement, only the desired OAM mode signal component can be extracted. On the other hand, due to the imperfections of the Butler matrix circuit and the fixed installation of the transmit UCA and the receive UCA at positions deviated from the ideal front facing arrangement (axis deviation), the signal components of each OAM mode in the circuit output stage In addition, interference components from other OAM modes may be superimposed and the communication quality may deteriorate.
 一側面では、OAM多重伝送の伝送品質を向上できる技術を提供することを目的とする。 On one side, the purpose is to provide technology that can improve the transmission quality of OAM multiplex transmission.
 一つの案では、受信装置が、複数のOAM(Orbital Angular Momentum)モードの電波を送信装置から受信するアンテナと、前記アンテナで受信された各OAMモードの信号を分離する分離回路と、前記分離回路で分離された各OAMモードのプリアンブル信号に基づいて抽出した各OAMモードのチャネル情報に基づいて、各OAMモードのうち第1のOAMモードを選択し、前記分離回路で分離された前記第1のOAMモードの信号と、前記分離回路で分離された、前記送信装置からのデータの受信に用いない前記第2のOAMモードに対する信号とに基づいて、前記第1のOAMモードに対する信号を生成する生成部と、を有する。 In one proposal, the receiving device has an antenna that receives radio waves of a plurality of OAM (Orbital Angular Momentum) modes from the transmitting device, a separation circuit that separates each OAM mode signal received by the antenna, and the separation circuit. Based on the channel information of each OAM mode extracted based on the preamble signal of each OAM mode separated in, the first OAM mode of each OAM mode is selected, and the first OAM mode separated by the separation circuit is selected. Generation of generating a signal for the first OAM mode based on the signal of the OAM mode and the signal for the second OAM mode separated by the separation circuit and not used for receiving data from the transmitter. With a part.
 一側面によれば、OAM多重伝送の伝送品質を向上させることができる。 According to one aspect, the transmission quality of OAM multiplex transmission can be improved.
実施形態に係るOAM多重通信システムの構成について説明する図である。It is a figure explaining the structure of the OAM multiplex communication system which concerns on embodiment. 実施形態に係る送信局及び受信局のUCAの一例について説明する図である。It is a figure explaining an example of UCA of a transmitting station and a receiving station which concerns on embodiment. 実施形態に係る受信局のOAMモード受信信号生成部の処理の一例について説明するフローチャートである。It is a flowchart explaining an example of the processing of the OAM mode reception signal generation part of the receiving station which concerns on embodiment.
 以下、図面を参照して、本開示の実施形態を説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 <全体構成>
 図1は、実施形態に係るOAM多重通信システム1の構成について説明する図である。図1の例では、OAM多重通信システム1は、送信局10(「送信装置」の一例。)、及び受信局20(「受信装置」の一例。)を有する。
<Overall configuration>
FIG. 1 is a diagram illustrating a configuration of an OAM multiplex communication system 1 according to an embodiment. In the example of FIG. 1, the OAM multiplex communication system 1 has a transmitting station 10 (an example of a “transmitting device”) and a receiving station 20 (an example of a “receiving device”).
 《送信局10》
 送信局10は、送信アンテナとして第1送信UCA11-1~第NTX送信UCA11-NTXを備える。なお、NTXは1以上の整数である。OAMモード1~L(1~LはOAMモードの次数を示すインデックス)で送信する複数の系列の変調信号は、OAMモード送信信号処理部13に入力する。なお、OAMを有する電波の位相の回転数(次数)をOAMモードと称する。
<< Transmission station 10 >>
The transmitting station 10 includes a first transmitting UCA11-1 to an NTX transmitting UCA11-N TX as a transmitting antenna. Note that NTX is an integer of 1 or more. A plurality of series of modulated signals transmitted in OAM modes 1 to L (1 to L are indexes indicating the order of the OAM mode) are input to the OAM mode transmission signal processing unit 13. The rotation speed (order) of the phase of the radio wave having OAM is referred to as an OAM mode.
 OAMモード送信信号処理部13は、各送信UCAから各OAMモードで送信する信号を生成し、各送信UCAに対応するOAMモード生成処理部12-1~12-NTXにそれぞれ出力する。OAMモード生成処理部12-1~12-NTXは、それぞれOAMモード1~Lで送信する信号を入力し、各送信UCA11-1~11-NTXからそれぞれOAMモード1~Lの信号として送信されるように位相調整して各送信UCAのアンテナ素子に出力する。 The OAM mode transmission signal processing unit 13 generates a signal to be transmitted in each OAM mode from each transmission UCA, and outputs the signal to the OAM mode generation processing units 12-1 to 12- NTX corresponding to each transmission UCA, respectively. The OAM mode generation processing units 12-1 to 12-N TX input signals to be transmitted in OAM modes 1 to L, respectively, and transmit signals from each transmission UCA11-1 to 11-N TX as signals in OAM modes 1 to L, respectively. The phase is adjusted so as to be output to the antenna element of each transmission UCA.
 《受信局20》
 受信局20は、受信アンテナとして第1受信UCA21-1~第NRX受信UCA21-NRXを備える。なお、NRXは1以上の整数である。OAMモード分離処理部22-1~22-NRX(以下で、それぞれを区別する必要がない場合は、単に「OAMモード分離処理部22」とも称する。)は、各受信UCAの受信信号からOAMモード1~Lの信号を分離し、各OAMモードの信号をOAMモード受信信号生成部23に出力する。ここで、Lは使用するOAMモードの数である。L=7の場合、例えばOAMモード-3,-2,-1,0,1,2,3の信号が多重伝送され、以下その一つをOAMモードkとする。ここで、kは、OAMモードを示すインデックスである。
<< Receiving station 20 >>
The receiving station 20 includes a first receiving UCA21-1 to an N RX receiving UCA21-N RX as a receiving antenna. NRX is an integer of 1 or more. The OAM mode separation processing unit 22-1 to 22-N RX (hereinafter, also simply referred to as "OAM mode separation processing unit 22" when it is not necessary to distinguish between them) is OAM from the received signal of each received UCA. The signals of modes 1 to L are separated, and the signals of each OAM mode are output to the OAM mode reception signal generation unit 23. Here, L is the number of OAM modes to be used. When L = 7, for example, signals of OAM mode -3, -2, -1, 0, 1, 2, 3 are multiplex transmitted, and one of them is referred to as OAM mode k. Here, k is an index indicating the OAM mode.
 各OAMモード分離処理部22は、例えば、8×8等のバトラーマトリクス回路(Butler matrix。「分離回路」の一例。)により各OAMモードの信号を分離してもよい。 Each OAM mode separation processing unit 22 may separate each OAM mode signal by, for example, a Butler matrix circuit (Butler matrix; an example of a “separation circuit”) such as 8 × 8.
 OAMモード受信信号生成部23(「生成部」の一例。)は、OAMモード分離処理部22-1~22-NRXから受信した各OAMモードの信号から、品質を向上させた各OAMモードの信号を生成する。 The OAM mode reception signal generation unit 23 (an example of the “generation unit”) is a quality-enhanced OAM mode signal from each OAM mode signal received from the OAM mode separation processing units 22-1 to 22- NRX . Generate a signal.
 《UCAの構成》
 図2は、実施形態に係る送信局10及び受信局20のUCAの一例について説明する図である。送信局10の第1送信UCA11-1~第NTX送信UCA11-NTXおよび受信局20の第1受信UCA21-1~第NRX受信UCA21-NRXは、図2に示すように、複数のUCAを同心円状に配置した多重円形アレーアンテナ(Multi-UCA)でもよい。図2の例では、互いに半径が異なる4つのUCA(NTX=NRX=4)を配置した構成を示し、内側のUCAから順番に、第1UCA,第2UCA,第3UCA,第4UCAとする。なお、各UCAは16素子のアンテナ素子(図中、●で示す)を備える例を示すが、各UCAのアンテナ素子数は必ずしも同数である必要はない。
<< Composition of UCA >>
FIG. 2 is a diagram illustrating an example of UCA of the transmitting station 10 and the receiving station 20 according to the embodiment. As shown in FIG. 2, a plurality of first transmission UCA11-1 to N TX transmission UCA11-N TX of the transmission station 10 and first reception UCA21-1 to N RX reception UCA21-N RX of the reception station 20 are used. A multi-circular array antenna (Multi-UCA) in which UCAs are arranged concentrically may be used. In the example of FIG. 2, a configuration in which four UCAs (NTX = NRX = 4) having different radii are arranged is shown, and the first UCA, the second UCA, the third UCA, and the fourth UCA are used in order from the inner UCA. Although each UCA is shown as an example in which 16 antenna elements (indicated by ● in the figure) are provided, the number of antenna elements of each UCA does not necessarily have to be the same.
 <処理>
 次に、図3を参照し、実施形態に係る受信局20のOAMモード受信信号生成部23の処理の一例について説明する。図3は、実施形態に係る受信局20のOAMモード受信信号生成部23の処理の一例について説明するフローチャートである。
<Processing>
Next, with reference to FIG. 3, an example of the processing of the OAM mode reception signal generation unit 23 of the reception station 20 according to the embodiment will be described. FIG. 3 is a flowchart illustrating an example of processing of the OAM mode reception signal generation unit 23 of the reception station 20 according to the embodiment.
 ステップS1において、OAMモード受信信号生成部23は、直交系列のプレアンブルから、OAMモード分離処理部22にて分離された各OAMモードのチャネル(チャネル情報)を取得する。ここで、OAMモード受信信号生成部23は、送信局10から送信された直交系列のプリアンブルに、既知の直交系列を乗算することにより、チャネルHを算出してもよい。この場合、送信局10は、例えば、受信局20へのデータの送信を開始する際に、まず、直交系列のプリアンブル信号を受信局20に送信してもよい。 In step S1, the OAM mode reception signal generation unit 23 acquires the channel (channel information) of each OAM mode separated by the OAM mode separation processing unit 22 from the orthogonal sequence preamble. Here, the OAM mode reception signal generation unit 23 may calculate the channel H by multiplying the preamble of the orthogonal sequence transmitted from the transmitting station 10 by a known orthogonal sequence. In this case, for example, when starting the transmission of data to the receiving station 20, the transmitting station 10 may first transmit the orthogonal series preamble signal to the receiving station 20.
 ここで、OAMモード受信信号生成部23は、OAMモード分離処理部22が8×8のバトラーマトリクス回路を有する場合、以下の式(1)のように、8×8の独立したチャネルHを抽出する。この場合、L=8であり、例えばOAMモード-3,-2,-1,0,1,2,3,4の信号が受信UCAから8×8のバトラーマトリクス回路に入力されている。なお、hijは送信モードjから受信モードiへのチャネル情報である。 Here, when the OAM mode reception signal generation unit 23 has an 8 × 8 butler matrix circuit, the OAM mode reception signal generation unit 23 extracts an 8 × 8 independent channel H as in the following equation (1). do. In this case, L = 8, for example, a signal of OAM mode -3, -2, -1, 0, 1, 2, 3, 4 is input from the receiving UCA to the 8 × 8 Butler matrix circuit. Note that h ij is channel information from the transmission mode j to the reception mode i.
Figure JPOXMLDOC01-appb-M000001
 モード間の干渉がない理想状態であれば、送受信が同じモードであるi=jの成分のみが残り、i≠jの成分は0になる。一方、アナログ回路の不完全性、及び送信UCAと受信UCAの軸ずれ等に起因する他モードへの干渉のある状態ではi≠jの成分の信号にも電力があるため、当該電力を測定することで干渉電力を取得できる。また、i≠jの成分の信号の電力により、ある送信モードjから受信モードiへどのくらいの電力が漏出しているかが分かる。
Figure JPOXMLDOC01-appb-M000001
In the ideal state where there is no interference between modes, only the component of i = j, which is the same mode for transmission and reception, remains, and the component of i ≠ j becomes 0. On the other hand, in a state where there is interference with other modes due to imperfections in the analog circuit and axis misalignment between the transmission UCA and the reception UCA, the signal of the component i ≠ j also has power, so the power is measured. By doing so, the interference power can be obtained. Further, it is possible to know how much power is leaking from a certain transmission mode j to the reception mode i by the power of the signal of the component i ≠ j.
 続いて、OAMモード受信信号生成部23は、取得したチャネルに基づいて改善対象のOAMモード(「第1のOAMモード」の一例。)を選択する(ステップS2)。ここで、OAMモード受信信号生成部23は、OAMモード分離処理部22にて分離された各OAMモードのうち、信号の受信電力に対する雑音電力と干渉電力の和の比率であるSINR(Signal to Interference plus Noise Ratio)が閾値以下のOAMモードを改善対象のOAMモードとして選択してもよい。この場合、OAMモード受信信号生成部23は、各OAMモードのうち、SINRが最も低いOAMモードを改善対象のOAMモードとして選択してもよい。 Subsequently, the OAM mode reception signal generation unit 23 selects the OAM mode to be improved (an example of the "first OAM mode") based on the acquired channel (step S2). Here, the OAM mode reception signal generation unit 23 has SINR (Signal to Interference), which is the ratio of the sum of the noise power and the interference power to the reception power of the signal among the OAM modes separated by the OAM mode separation processing unit 22. The OAM mode in which plus Noise Ratio) is equal to or lower than the threshold value may be selected as the OAM mode to be improved. In this case, the OAM mode reception signal generation unit 23 may select the OAM mode having the lowest SINR among the OAM modes as the OAM mode to be improved.
 また、OAMモード受信信号生成部23は、送信局10からのデータの受信に用いる各OAMモードのうち、最も高次(モードの絶対値が最も大きい)のOAMモードを改善対象のOAMモードとして選択してもよい。これにより、電波が遠くまで届きにくい高次モードを改善対象とすることができる。この場合、例えば、OAMモード分離処理部22の8×8のバトラーマトリクス回路からOAMモード-3,-2,-1,0,1,2,3,4の信号が出力されており、送信局10からのデータの受信にOAMモード-2,-1,0,1,2を用いる場合は、OAMモード受信信号生成部23は、受信に用いるOAMモードのうち最も高次であるOAMモード-2または2を改善対象のOAMモードとして選択してもよい。この場合、送信局10は、例えば、受信局20へのデータの送信を開始する際に、まず、送信局10が受信局20へのデータの送信に用いる各OAMモードを受信局20に予め通知してもよい。または、受信局20は、例えば、送信局10からのデータの受信を開始する際に、まず、受信局20が送信局10からのデータの受信に用いる各OAMモードを送信局10に予め通知してもよい。 Further, the OAM mode reception signal generation unit 23 selects the highest-order (largest absolute value of the mode) OAM mode among the OAM modes used for receiving data from the transmitting station 10 as the OAM mode to be improved. You may. As a result, it is possible to improve the high-order mode in which radio waves are difficult to reach far. In this case, for example, the signal of OAM mode -3, -2, -1, 0, 1, 2, 3, 4 is output from the 8 × 8 butler matrix circuit of the OAM mode separation processing unit 22, and the transmission station. When OAM mode-2, -1, 0, 1, 2 is used for receiving data from 10, the OAM mode reception signal generation unit 23 uses OAM mode-2, which is the highest order of the OAM modes used for reception. Alternatively, 2 may be selected as the OAM mode to be improved. In this case, for example, when the transmitting station 10 starts transmitting data to the receiving station 20, the transmitting station 10 first notifies the receiving station 20 of each OAM mode used by the transmitting station 10 for transmitting data to the receiving station 20 in advance. You may. Alternatively, for example, when the receiving station 20 starts receiving data from the transmitting station 10, the receiving station 20 first notifies the transmitting station 10 of each OAM mode used by the receiving station 20 for receiving data from the transmitting station 10 in advance. You may.
 続いて、OAMモード受信信号生成部23は、特定のOAMモード(「第2のOAMモード」の一例。)を選択する(ステップS3)。ここで、OAMモード受信信号生成部23は、例えば、OAMモード分離処理部22にて分離された各OAMモードのうち、送信局10からのデータの受信に用いない1以上のOAMモードを当該特定のOAMモードとして選択してもよい。この場合、例えば、OAMモード分離処理部22の8×8のバトラーマトリクス回路からOAMモード-3,-2,-1,0,1,2,3,4の信号が出力されており、送信局10からのデータの受信にOAMモード-2,-1,0,1,2を用いる場合は、OAMモード受信信号生成部23は、受信に用いないOAMモード-3,3,4を当該特定のOAMモードとして選択してもよい。この場合、送信局10は、例えば、受信局20へのデータの送信を開始する際に、まず、送信局10が受信局20へのデータの送信に用いる各OAMモードを受信局20に予め通知してもよい。または、受信局20は、例えば、送信局10からのデータの受信を開始する際に、まず、受信局20が送信局10からのデータの受信に用いる各OAMモードを送信局10に予め通知してもよい。 Subsequently, the OAM mode reception signal generation unit 23 selects a specific OAM mode (an example of the "second OAM mode") (step S3). Here, the OAM mode reception signal generation unit 23 specifies, for example, one or more OAM modes that are not used for receiving data from the transmission station 10 among the OAM modes separated by the OAM mode separation processing unit 22. It may be selected as the OAM mode of. In this case, for example, the signal of OAM mode -3, -2, -1, 0, 1, 2, 3, 4 is output from the 8 × 8 butler matrix circuit of the OAM mode separation processing unit 22, and the transmission station. When the OAM mode-2, -1, 0, 1, 2 is used for receiving the data from the 10, the OAM mode reception signal generation unit 23 sets the OAM mode -3, 3, 4 which is not used for the reception to the specific. It may be selected as the OAM mode. In this case, for example, when the transmitting station 10 starts transmitting data to the receiving station 20, the transmitting station 10 first notifies the receiving station 20 of each OAM mode used by the transmitting station 10 for transmitting data to the receiving station 20 in advance. You may. Alternatively, for example, when the receiving station 20 starts receiving data from the transmitting station 10, the receiving station 20 first notifies the transmitting station 10 of each OAM mode used by the receiving station 20 for receiving data from the transmitting station 10 in advance. You may.
 また、OAMモード受信信号生成部23は、例えば、OAMモード分離処理部22にて分離された各OAMモードのうち、改善対象のOAMモードから漏出した(漏れ込んだ)電力が閾値以上である1以上のOAMモードを当該特定のOAMモードとして選択してもよい。この場合、OAMモード受信信号生成部23は、例えば、上述した式(1)のチャネルHにおいて、改善対象のOAMモードをJとし、hiJが閾値以上である1以上の受信モードiを当該特定のOAMモードとして選択してもよい。この場合、OAMモード受信信号生成部23は、例えば、当該1以上の受信モードiのうち、改善対象のOAMモードから漏出した電力が最も大きいOAMモード(hiJが最大の受信モードi)を当該特定のOAMモードとして選択してもよい。 Further, in the OAM mode reception signal generation unit 23, for example, among the OAM modes separated by the OAM mode separation processing unit 22, the power leaked (leaked) from the OAM mode to be improved is equal to or higher than the threshold value1. The above OAM mode may be selected as the specific OAM mode. In this case, the OAM mode reception signal generation unit 23, for example, in the channel H of the above-mentioned equation (1), the OAM mode to be improved is set to J, and one or more reception modes i in which hiJ is equal to or higher than the threshold value are specified. It may be selected as the OAM mode of. In this case, the OAM mode reception signal generation unit 23 sets, for example, the OAM mode (reception mode i in which hiJ is the maximum) in which the power leaked from the OAM mode to be improved is the largest among the one or more reception modes i. It may be selected as a specific OAM mode.
 また、OAMモード受信信号生成部23は、例えば、OAMモード分離処理部22にて分離された各OAMモードのうち、改善対象のOAMモードの次数に基づいて、特定のOAMモードを選択してもよい。この場合、OAMモード受信信号生成部23は、例えば、送信局10からのデータの受信に用いない1以上のOAMモードのうち、改善対象のOAMモードの次数と最も近いOAMモードを当該特定のOAMモードとして選択してもよい。これは、改善対象のOAMモードは、次数が隣接するOAMモードに最も漏れ込んでいると考えられるためである。この場合、例えば、OAMモード分離処理部22の8×8のバトラーマトリクス回路からOAMモード-3,-2,-1,0,1,2,3,4の信号が出力されており、送信局10からのデータの受信にOAMモード-2,-1,0,1,2を用い、OAMモード-2を改善対象のOAMモードとする場合は、OAMモード受信信号生成部23は、受信に用いないOAMモード-3,3,4のうち改善対象のOAMモード-2と最も次数が近いOAMモード-3を当該特定のOAMモードとして選択してもよい。 Further, the OAM mode reception signal generation unit 23 may select a specific OAM mode based on the order of the OAM mode to be improved among the OAM modes separated by the OAM mode separation processing unit 22, for example. good. In this case, the OAM mode reception signal generation unit 23 selects, for example, the OAM mode closest to the order of the OAM mode to be improved among the one or more OAM modes not used for receiving data from the transmitting station 10. It may be selected as the mode. This is because it is considered that the OAM mode to be improved leaks most to the OAM mode in which the order is adjacent. In this case, for example, the signal of OAM mode -3, -2, -1, 0, 1, 2, 3, 4 is output from the 8 × 8 butler matrix circuit of the OAM mode separation processing unit 22, and the transmission station. When OAM mode-2, -1, 0, 1, 2 is used for receiving data from 10 and OAM mode-2 is set as the OAM mode to be improved, the OAM mode reception signal generation unit 23 is used for reception. Of the OAM modes -3, 3 and 4, which do not exist, the OAM mode-3 having the closest order to the OAM mode-2 to be improved may be selected as the specific OAM mode.
 続いて、OAMモード受信信号生成部23は、OAMモード分離処理部22から受信した当該特定のOAMモードの信号と、OAMモード分離処理部22から受信した当該改善対象のOAMモードの信号とに基づいて、当該改善対象のOAMモードの信号を生成して出力する(ステップS4)。ここで、OAMモード受信信号生成部23は、例えば、当該特定のOAMモードと、当該改善対象のOAMモードとに基づいてMIMO等化処理を行うことにより、当該改善対象のOAMモードの信号を生成してもよい。この場合、OAMモード受信信号生成部23は、MIMO等化処理として、例えば、ZF(Zero-Forcing)、MMSE(Minimum Mean Squared Error)、MLD(Maximum Likelihood Detection)等を用いてもよい。 Subsequently, the OAM mode reception signal generation unit 23 is based on the specific OAM mode signal received from the OAM mode separation processing unit 22 and the OAM mode signal to be improved received from the OAM mode separation processing unit 22. Then, the signal of the OAM mode to be improved is generated and output (step S4). Here, the OAM mode reception signal generation unit 23 generates a signal of the OAM mode of the improvement target by performing MIMO equalization processing based on, for example, the specific OAM mode and the OAM mode of the improvement target. You may. In this case, the OAM mode reception signal generation unit 23 may use, for example, ZF (Zero-Forcing), MMSE (Mini-Mean Squared Error), MLD (Maximum Likelihood Detection), or the like as MIMO equalization processing.
 これにより、例えば、受信局20のバトラーマトリクスが有する入出力ポート数が、送信局10からデータを送信するOAMモードの数より多い場合、従来は終端され使用されないOAMモード(未使用OAMモード)も用いて受信を行い、所望のOAMモード(改善対象のOAMモード)と未使用OAMモードとで等化処理を行うことによりSNRを改善し、伝送効率を向上させることができる。 As a result, for example, when the number of input / output ports of the butler matrix of the receiving station 20 is larger than the number of OAM modes for transmitting data from the transmitting station 10, the OAM mode (unused OAM mode) that is conventionally terminated and not used is also available. It is possible to improve the SNR and improve the transmission efficiency by performing reception using the data and performing equalization processing between the desired OAM mode (OAM mode to be improved) and the unused OAM mode.
 <本開示の効果>
 従来技術のOAM多重伝送では、バトラーマリクスのアナログ回路の不完全性、及び送信UCAと受信UCAとの軸ずれ等により、他モードへ信号が漏れ込みモード間干渉が発生し、伝送効率が低下する場合があるという問題がある。
<Effect of this disclosure>
In OAM multiplex transmission of the prior art, signals leak to other modes due to imperfections in the analog circuit of Butler Marix and axis misalignment between the transmit UCA and the receive UCA, causing interference between modes and reducing transmission efficiency. There is a problem that it may be done.
 上述した本開示の技術では、未使用モード等に漏れ込んだ信号電力を活用して等化処理行う。これにより、例えば、系全体の総SNRが向上するため、OAM多重伝送の伝送品質を向上させることができる。 In the technique of the present disclosure described above, equalization processing is performed by utilizing the signal power leaked to the unused mode or the like. As a result, for example, the total SNR of the entire system is improved, so that the transmission quality of the OAM multiplex transmission can be improved.
 以上、本発明の実施例について詳述したが、本発明は斯かる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such a specific embodiment, and various modifications are made within the scope of the gist of the present invention described in the claims.・ Can be changed.
1 OAM多重通信システム
10 送信局
11 送信UCA
12 OAMモード生成処理部
13 OAMモード送信信号処理部
20 受信局
21 受信UCA
22 OAMモード分離処理部
23 OAMモード受信信号生成部
1 OAM multiplex communication system 10 transmission station 11 transmission UCA
12 OAM mode generation processing unit 13 OAM mode transmission signal processing unit 20 Receiving station 21 Receiving UCA
22 OAM mode separation processing unit 23 OAM mode reception signal generation unit

Claims (7)

  1.  複数のOAM(Orbital Angular Momentum)モードの電波を送信装置から受信するアンテナと、
     前記アンテナで受信された各OAMモードの信号を分離する分離回路と、
     前記分離回路で分離された各OAMモードのプリアンブル信号に基づいて抽出した各OAMモードのチャネル情報に基づいて、各OAMモードのうち第1のOAMモードを選択し、
     前記分離回路で分離された前記第1のOAMモードの信号と、前記分離回路で分離された、前記送信装置からのデータの受信に用いない第2のOAMモードに対する信号とに基づいて、前記第1のOAMモードに対する信号を生成する生成部と、
    を有する受信装置。
    An antenna that receives radio waves in multiple OAM (Orbital Angular Momentum) modes from a transmitter, and
    A separation circuit that separates the signals of each OAM mode received by the antenna, and
    The first OAM mode of each OAM mode is selected based on the channel information of each OAM mode extracted based on the preamble signal of each OAM mode separated by the separation circuit.
    The first OAM mode signal separated by the separation circuit and the second OAM mode signal separated by the separation circuit and not used for receiving data from the transmission device. A generator that generates a signal for 1 OAM mode,
    Receiver with.
  2.  前記生成部は、各OAMモードのチャネルのSINR(Signal to Interference plus Noise Ratio)に基づいて、各OAMモードのうち前記第1のOAMモードを選択する、
    請求項1に記載の受信装置。
    The generation unit selects the first OAM mode among the OAM modes based on the SINR (Signal to Interface plus Noise Radio) of the channel of each OAM mode.
    The receiving device according to claim 1.
  3.  前記生成部は、前記送信装置から電波が送信される各OAMモードのうち、最も高次のOAMモードを前記第1のOAMモードとして選択する、
    請求項1または2に記載の受信装置。
    The generation unit selects the highest-order OAM mode as the first OAM mode among the OAM modes in which radio waves are transmitted from the transmission device.
    The receiving device according to claim 1 or 2.
  4.  前記生成部は、前記分離回路で分離された各OAMモードのうち、前記送信装置からのデータの受信に用いないOAMモードを前記第2のOAMモードとして選択する、
    請求項1から3のいずれか一項に記載の受信装置。
    The generation unit selects, among the OAM modes separated by the separation circuit, an OAM mode that is not used for receiving data from the transmission device as the second OAM mode.
    The receiving device according to any one of claims 1 to 3.
  5.  前記生成部は、前記分離回路で分離された各OAMモードのうち、前記第1のOAMモードから漏出した電力が最も大きいOAMモードを前記第2のOAMモードとして選択する、
    請求項1から4のいずれか一項に記載の受信装置。
    The generation unit selects the OAM mode having the largest electric power leaked from the first OAM mode as the second OAM mode among the OAM modes separated by the separation circuit.
    The receiving device according to any one of claims 1 to 4.
  6.  前記生成部は、前記分離回路で分離された各OAMモードのうち、前記送信装置からのデータの受信に用いないOAMモードであり、かつ前記第1のOAMモードの次数に最も近い次数のOAMモードを前記第2のOAMモードとして選択する、
    請求項1から5のいずれか一項に記載の受信装置。
    The generation unit is an OAM mode that is not used for receiving data from the transmission device among the OAM modes separated by the separation circuit, and is an OAM mode having a degree closest to the order of the first OAM mode. Is selected as the second OAM mode.
    The receiving device according to any one of claims 1 to 5.
  7.  複数のOAM(Orbital Angular Momentum)モードの電波を送信装置から受信するアンテナと、
     前記アンテナで受信された各OAMモードの信号を分離する分離回路と、を有する受信装置が、
     前記分離回路で分離された各OAMモードのプリアンブル信号に基づいて抽出した各OAMモードのチャネル情報に基づいて、各OAMモードのうち第1のOAMモードを選択し、
     前記分離回路で分離された前記第1のOAMモードの信号と、前記分離回路で分離された、前記送信装置からのデータの受信に用いない第2のOAMモードに対する信号とに基づいて、前記第1のOAMモードに対する信号を生成する、
    受信方法。
    An antenna that receives radio waves in multiple OAM (Orbital Angular Momentum) modes from a transmitter, and
    A receiving device having a separation circuit for separating each OAM mode signal received by the antenna.
    The first OAM mode of each OAM mode is selected based on the channel information of each OAM mode extracted based on the preamble signal of each OAM mode separated by the separation circuit.
    The first OAM mode signal separated by the separation circuit and the second OAM mode signal separated by the separation circuit and not used for receiving data from the transmission device. Generate a signal for 1 OAM mode,
    Receiving method.
PCT/JP2020/048582 2020-12-24 2020-12-24 Reception device and reception method WO2022137470A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/048582 WO2022137470A1 (en) 2020-12-24 2020-12-24 Reception device and reception method
JP2022570917A JP7485089B2 (en) 2020-12-24 2020-12-24 Receiving device and receiving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/048582 WO2022137470A1 (en) 2020-12-24 2020-12-24 Reception device and reception method

Publications (1)

Publication Number Publication Date
WO2022137470A1 true WO2022137470A1 (en) 2022-06-30

Family

ID=82157635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048582 WO2022137470A1 (en) 2020-12-24 2020-12-24 Reception device and reception method

Country Status (2)

Country Link
JP (1) JP7485089B2 (en)
WO (1) WO2022137470A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024154258A1 (en) * 2023-01-18 2024-07-25 日本電信電話株式会社 Wireless communication system, oam mode selection method, and reception device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11202211B2 (en) 2017-09-25 2021-12-14 Nippon Telegraph And Telephone Corporation OAM multiplexing communication system and OAM multiplexing communication method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAKURAYA, ET AL: "Suppression of performance degradation due to misalignment in OAM multiplexing", IEICE TECHNICAL REPORT, 17 June 2020 (2020-06-17), pages 61 - 66, XP055951364 *
SUGANUMA HIROFUMI; SAITO SHUHEI; OGAWA KAYO; MAEHARA FUMIAKI: "Inter-Mode Interference Suppression Employing Even-Numbered Modes for UCA-Based OAM Multiplexing", 2019 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), IEEE, 9 December 2019 (2019-12-09), pages 1 - 6, XP033735162, DOI: 10.1109/GCWkshps45667.2019.9024598 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024154258A1 (en) * 2023-01-18 2024-07-25 日本電信電話株式会社 Wireless communication system, oam mode selection method, and reception device

Also Published As

Publication number Publication date
JPWO2022137470A1 (en) 2022-06-30
JP7485089B2 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
JP6519887B2 (en) Signal generation method and signal generation apparatus
JP6996562B2 (en) OAM multiplex communication system and inter-mode interference elimination method
JP7028314B2 (en) OAM multiplex communication system and inter-mode interference elimination method
WO2019059408A1 (en) Oam multiplexing communication system and oam multiplexing communication method
EP3691149B1 (en) Oam multiplexing communication system and oam multiplexing communication method
KR20080065277A (en) Radio transmitter, radio receiver, radio communication method and radio communication system
CN110138438B (en) Modulation method for improving satellite communication spectrum efficiency
AU2007297959A1 (en) A method of performing phase shift-based precoding and an apparatus for supporting the same in a wireless communication system
CN111903081B (en) OAM multiplex communication system and inter-mode interference compensation method
JP2006101501A (en) Multiple input multiple output orthogonal frequency division multiplexing mobile communication system and channel estimation method
Zhang et al. Hybrid beamforming design for mmWave OFDM distributed antenna systems
US8045639B2 (en) Method for transmitting data in a MIMO communication system
Vasudevan et al. Coherent receiver for turbo coded single-user massive MIMO-OFDM with retransmissions
WO2022137470A1 (en) Reception device and reception method
Song et al. Millimeter wave beam-alignment for dual-polarized outdoor MIMO systems
Cao et al. Precoding aided generalized spatial modulation with an iterative greedy algorithm
Yuan et al. Implicit MIMO channel estimation without DC-offset based on ZCZ training sequences
Sulyman et al. Adaptive MIMO beamforming algorithm based on gradient search of the channel capacity in OFDM-SDMA systems
JP4001880B2 (en) Spatial multiplex transmission equipment
KR20160080847A (en) System and Method for Multi-User Multiple Polarized Input Multiple Output(MU-mPIMO)
Ge et al. Channel estimation for generalized superimposed cell-free massive MIMO-OFDM systems
Fadhil et al. Maximizing signal to leakage ratios in MIMO BCH cooperative beamforming scheme
Li et al. Cyclic-prefixed single-carrier transmission with reconfigurable intelligent surfaces
Alluhaibi et al. Impact of Overlapped AoAs on the Multi-user Hybrid DA Beamforming for mm-Wave Systems
Cyprien et al. IRS-Assisted OAM-MIMO Communication with Partial Arc Sampling Receiving (PASR) Scheme

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570917

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966958

Country of ref document: EP

Kind code of ref document: A1