WO2022137291A1 - End of life determination device and power supply device equipped with same - Google Patents

End of life determination device and power supply device equipped with same Download PDF

Info

Publication number
WO2022137291A1
WO2022137291A1 PCT/JP2020/047722 JP2020047722W WO2022137291A1 WO 2022137291 A1 WO2022137291 A1 WO 2022137291A1 JP 2020047722 W JP2020047722 W JP 2020047722W WO 2022137291 A1 WO2022137291 A1 WO 2022137291A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
current
life
power supply
detection unit
Prior art date
Application number
PCT/JP2020/047722
Other languages
French (fr)
Japanese (ja)
Inventor
翔一 阿部
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2020/047722 priority Critical patent/WO2022137291A1/en
Publication of WO2022137291A1 publication Critical patent/WO2022137291A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a life determination device and a power supply device, and more particularly to a life determination device for determining the life of a capacitor connected to an AC terminal of a power converter, and a power supply device including the life determination device.
  • Patent Document 1 discloses a life determination device for determining the life of a capacitor connected to a DC terminal of a power converter.
  • This life determination device includes a current detector that detects the output current of the power converter, a voltage detector that detects the voltage between the terminals of the capacitor, and an initial charge that initially charges the capacitor to a predetermined voltage value by the output current of the power converter.
  • the charging unit, the current integrating unit that integrates the current detected by the current detector during the initial charging period to obtain the current integrated value, and the current integrated value, the predetermined voltage value, and the voltage detector detected before the initial charging.
  • the capacitance estimation unit that calculates the estimated capacitance value of the capacitor based on the voltage between the terminals of the capacitor, and the initial capacitance value of the unused capacitor measured in advance and the estimated capacitance value calculated by the capacitance estimation unit. , It is provided with a life determination unit for determining whether or not the life of the capacitor has reached the end.
  • Patent Document 1 does not describe any life determination device for determining the life of the capacitor connected to the AC terminal of the power converter.
  • a main object of the present invention is a low-cost life determination device capable of determining the life of a capacitor connected to an AC terminal of a power converter during normal operation of the power converter, and a power supply equipped with the same. It is to provide a device.
  • the life determination device is a life determination device for determining the life of a capacitor connected to an AC terminal of a power converter, and includes a current detection unit, a harmonic detection unit, and a determination unit. ..
  • the current detector detects the current flowing through the capacitor when the power converter is operating.
  • the harmonic detection unit detects the harmonic component of the current detected by the current detection unit.
  • the judgment unit compares the harmonic component detected by the harmonic detection unit at the start of use of the capacitor with the harmonic component detected this time by the harmonic detection unit, and the life of the capacitor is reached based on the comparison result. Determine if it has been done.
  • the current flowing through the capacitor connected to the AC terminal of the power converter is detected during the operation of the power converter, the harmonic component of the current is detected, and the capacitor is used at the start of use.
  • the detected harmonic component is compared with the harmonic component detected this time, and it is determined whether or not the life of the capacitor has reached the end of the life of the capacitor based on the comparison result. Therefore, the life of the capacitor connected to the AC terminal of the power converter can be determined during the normal operation of the power converter. Further, since it is not necessary to separately provide a resistor, a switch, etc. for charging the capacitor, the cost of the device can be reduced.
  • FIG. It is a circuit block diagram which shows the structure of the uninterruptible power supply according to Embodiment 1.
  • FIG. It is a circuit diagram which shows the structure of the converter and the inverter shown in FIG.
  • FIG. It is a block diagram which shows the structure of the part which is related to the determination of the life of a capacitor 13 in the control apparatus shown in FIG.
  • FIG. It is a figure which shows the frequency distribution of the capacitor current obtained by the frequency analysis unit shown in FIG.
  • FIG. It is a block diagram which shows the modification example of Embodiment 1.
  • FIG. It is a circuit block diagram which shows the structure of the uninterruptible power supply according to Embodiment 2.
  • FIG. 1 is a circuit block diagram showing a configuration of an uninterruptible power supply device 1 according to the first embodiment.
  • the uninterruptible power supply 1 temporarily converts the three-phase AC power supplied from the commercial AC power supply 21 into DC power, converts the DC power into three-phase AC power, and supplies the DC power to the load 24.
  • FIG. 1 for simplification of drawings and description, only the circuit corresponding to one phase (for example, U phase) of the three phases (U phase, V phase, W phase) is shown.
  • the uninterruptible power supply 1 includes an AC input terminal T1, a bypass input terminal T2, a battery terminal T3, and an AC output terminal T4.
  • the AC input terminal T1 receives AC power of a commercial frequency from the commercial AC power supply 21.
  • the bypass input terminal T2 receives commercial frequency AC power from the bypass AC power supply 22.
  • the bypass AC power supply 22 may be a commercial AC power supply or a generator.
  • the battery terminal T3 is connected to the battery (power storage device) 23.
  • the battery 23 stores DC power.
  • a capacitor may be connected instead of the battery 23.
  • the AC output terminal T4 is connected to the load 24. The load 24 is driven by AC power.
  • the uninterruptible power supply 1 further includes an electromagnetic contactor 2,8,14,17, a current detector 3,11,15, a capacitor 4,9,13, a reactor 5,12, a converter 6, a bidirectional chopper 7, and the like. It includes an inverter 10, a semiconductor switch 16, an operation unit 18, and a control device 19.
  • One terminal of the magnetic contactor 2 is connected to the AC input terminal T1, the other terminal of the magnetic contactor 2 (node N1) is connected to one terminal of the reactor 5, and the other terminal of the reactor 5 is connected to the AC terminal 6a of the converter 6. Be connected.
  • the capacitor 4 is connected between the node N1 and the neutral point NP.
  • the neutral point NP receives, for example, a ground voltage.
  • the magnetic contactor 2 is turned on when the uninterruptible power supply 1 is used, and is turned off, for example, when the uninterruptible power supply 1 is maintained.
  • the instantaneous value of the AC input voltage Vi appearing at the node N1 is detected by the control device 19. Whether or not a power failure has occurred is determined based on the instantaneous value of the AC input voltage Vi.
  • the current detector 3 detects the AC input current Ii flowing through the node N1 and gives a signal If indicating the detected value to the control device 19.
  • the capacitor 4 and the reactor 5 constitute an AC filter F1 to pass AC power of a commercial frequency and prevent a current of a switching frequency generated by the converter 6 from passing to a commercial AC power supply 21.
  • the converter 6 is controlled by the control device 19, and when the AC power is normally supplied from the commercial AC power supply 21 (when the commercial AC power supply 21 is sound), the AC power is converted into DC power and the DC line L1 is used. Output to. When the AC power is not normally supplied from the commercial AC power supply 21 (during a power failure of the commercial AC power supply 21), the operation of the converter 6 is stopped. The output voltage of the converter 6 can be controlled to a desired value.
  • the capacitor 4, the reactor 5, and the converter 6 constitute a forward converter.
  • the capacitor 9 is connected to the DC line L1 and smoothes the voltage of the DC line L1.
  • the instantaneous value of the DC voltage VDC appearing on the DC line L1 is detected by the control device 19.
  • the DC line L1 is connected to the high voltage side node of the bidirectional chopper 7, and the low voltage side node of the bidirectional chopper 7 is connected to the battery terminal T3 via the electromagnetic contactor 8.
  • the magnetic contactor 8 is turned on when the uninterruptible power supply 1 is used, and is turned off when the uninterruptible power supply 1 and the battery 23 are maintained, for example.
  • the instantaneous value of the voltage VB between the terminals of the battery 23 appearing at the battery terminal T3 is detected by the control device 19.
  • the bidirectional chopper 7 is controlled by the control device 19, and when the commercial AC power supply 21 is sound, the DC power generated by the converter 6 is stored in the battery 23, and when the commercial AC power supply 21 fails, the DC power of the battery 23 is DC. It is supplied to the inverter 10 via the line L1.
  • the bidirectional chopper 7 When the bidirectional chopper 7 stores DC power in the battery 23, the bidirectional chopper 7 steps down the DC voltage VDC of the DC line L1 and supplies it to the battery 23. Further, when the bidirectional chopper 7 supplies the DC power of the battery 23 to the inverter 10, the bidirectional chopper 7 boosts the voltage VB between the terminals of the battery 23 and outputs the DC power to the DC line L1.
  • the DC line L1 is connected to the input node of the inverter 10.
  • the inverter 10 is controlled by the control device 19 and converts the DC power supplied from the converter 6 or the bidirectional chopper 7 via the DC line L1 into commercial frequency AC power and outputs it. That is, the inverter 10 converts the DC power supplied from the converter 6 via the DC line L1 into AC power when the commercial AC power supply 21 is sound, and the bidirectional chopper 7 from the battery 23 when the commercial AC power supply 21 fails. Converts the DC power supplied via the AC power into AC power.
  • the output voltage of the inverter 10 can be controlled to a desired value.
  • the AC terminal 10a of the inverter 10 is connected to one terminal of the reactor 12, the other terminal (node N2) of the reactor 12 is connected to one terminal of the magnetic contactor 14, and the other terminal (node N3) of the magnetic contactor 14 is AC. It is connected to the output terminal T4.
  • the capacitor 13 is connected between the node N2 and the neutral point NP.
  • the neutral point NP receives, for example, a ground voltage.
  • the current detector 11 detects an instantaneous value of the output current Io of the inverter 10 and gives a signal Iof indicating the detected value to the control device 19.
  • the instantaneous value of the AC output voltage Vo appearing at the node N2 is detected by the control device 19.
  • the reactor 12 and the capacitor 13 constitute an AC filter F2, and the AC power of the commercial frequency generated by the inverter 10 is passed through the AC output terminal T4, and the current of the switching frequency generated by the inverter 10 is passed through the AC output terminal T4. Prevent it from happening.
  • the inverter 10, the reactor 12, and the capacitor 13 constitute an inverse converter.
  • the electromagnetic contactor 14 is controlled by the control device 19 and is turned on in the inverter power supply mode in which the AC power generated by the inverter 10 is supplied to the load 24.
  • the bypass power supply supplies the AC power from the bypass AC power supply 22 to the load 24. It is turned off in mode.
  • the current detector 15 detects an instantaneous value of the load current IL flowing between the node N3 and the AC output terminal T4, and gives a signal ILf indicating the detected value to the control device 19.
  • the semiconductor switch 16 includes a pair of thyristors connected in antiparallel to each other, and is connected between the bypass input terminal T2 and the node N3.
  • the magnetic contactor 17 is connected in parallel to the semiconductor switch 16.
  • the semiconductor switch 16 is controlled by the control device 19, is normally turned off, and is turned on instantly when the inverter 10 fails, and supplies AC power from the bypass AC power supply 22 to the load 24.
  • the semiconductor switch 16 is turned off after a predetermined time has elapsed since it was turned on.
  • the electromagnetic contactor 17 is turned off in the inverter power supply mode in which the AC power generated by the inverter 10 is supplied to the load 24, and is turned on in the bypass power supply mode in which the AC power from the bypass AC power supply 22 is supplied to the load 24.
  • the electromagnetic contactor 17 is turned on when the inverter 10 fails, and supplies AC power from the bypass AC power supply 22 to the load 24. That is, when the inverter 10 fails, the semiconductor switch 16 is instantly turned on for a predetermined time and the electromagnetic contactor 17 is turned on. This is to prevent the semiconductor switch 16 from being overheated and damaged.
  • the operation unit 18 includes a plurality of buttons operated by the user of the uninterruptible power supply 1, an image display unit that displays various information, and the like. By operating the operation unit 18, the user can turn on and off the power of the uninterruptible power supply 1, select either the bypass power supply mode or the inverter power supply mode, or use a new capacitor 13. It is possible to enter the fact that is set.
  • the operation unit 18 When the operation unit 18 is input to the effect that a new capacitor 13 is set and the inverter power supply mode is selected, the operation unit 18 outputs a signal ST instructing the start of the life determination of the capacitor 13 to the control device 19.
  • the control device 19 is a non-disruptive power supply based on a signal from the operation unit 18, AC input voltage Vi, AC input current Ii, DC voltage VDC, battery voltage VB, AC output current Io, AC output voltage Vo, load current IL, and the like. Controls the entire device 1. That is, the control device 19 detects whether or not a power failure has occurred based on the detected value of the AC input voltage Vi, and controls the converter 6 and the inverter 10 in synchronization with the phase of the AC input voltage Vi.
  • control device 19 controls the converter 6 based on the AC input voltage Vi, the AC input current Ii, and the DC voltage VDC.
  • the control device 19 controls the converter 6 so that the DC voltage VDC becomes a desired target voltage VDCT when the commercial AC power supply 21 is sound, and stops the operation of the converter 6 when the commercial AC power supply 21 fails.
  • control device 19 controls the bidirectional chopper 7 based on the DC voltage VDC and the battery voltage VB.
  • the control device 19 controls the bidirectional chopper 7 so that the battery voltage VB becomes the desired target battery voltage VBT when the commercial AC power supply 21 is sound, and the DC voltage VDC is the desired target when the commercial AC power supply 21 fails.
  • the bidirectional chopper 7 is controlled so that the voltage is VDCT.
  • control device 19 controls the inverter 10 so that the AC output voltage Vo becomes a desired target voltage VoT based on the AC output current Io and the AC output voltage Vo. Further, the control device 19 constantly monitors the load current IL, and when the load current IL becomes excessive, for example, the electromagnetic contactors 14 and 17 and the semiconductor switch 16 are turned off to protect the uninterruptible power supply device 1.
  • the control device 19 compares the harmonic component detected at the start of use of the capacitor 13 with the harmonic component detected this time, determines whether or not the life of the capacitor 13 has expired based on the comparison result, and determines whether the capacitor 13 has reached the end of its life.
  • the user of the uninterruptible power supply device 1 is notified to that effect by using sound, light, an image, or the like. The method of determining the life of the capacitor 13 will be described in detail later.
  • the AC power supplied from the commercial AC power supply 21 is converted into DC power by the converter 6.
  • This DC power is stored in the battery 23 by the bidirectional chopper 7 and converted into AC power by the inverter 10.
  • This AC power is supplied to the load 24 via the AC filter F2.
  • the load 24 is operated by AC power.
  • the impedance of the capacitor 13 includes a capacitance component and a resistance component. As the capacitor 13 deteriorates, the resistance component of the impedance of the capacitor 13 increases, and the harmonic component of the current flowing through the capacitor 13 decreases.
  • the control device 19 detects the harmonic component of the current Ic flowing through the capacitor 13 based on the output signals If and ILf of the current detectors 11 and 15 at predetermined time intervals, and the harmonic component detected at the start of use of the capacitor 13. Is compared with the harmonic component detected this time, and based on the comparison result, it is determined whether or not the life of the capacitor 13 has reached the end. When it is determined that the life of the capacitor 13 has reached the end of its life, the user of the uninterruptible power supply 1 is notified to that effect.
  • the user of the uninterruptible power supply 1 When it is notified that the life of the capacitor 13 has expired, the user of the uninterruptible power supply 1 operates the operation unit 18 to select the bypass power supply mode to turn on the magnetic contactor 17 and make electromagnetic contact.
  • the vessels 2, 8 and 14 are turned off, and the operation of the converter 6, the bidirectional chopper 7, and the inverter 10 is stopped.
  • the load 24 is driven by AC power supplied from the bypass AC power supply 22 via the electromagnetic contactor 17.
  • the user of the uninterruptible power supply 1 replaces the capacitor 13 with a new one.
  • the user operates the operation unit 18 to input that a new capacitor 13 has been set, and selects the inverter power supply mode.
  • the converter 6, the bidirectional chopper 7, and the inverter 10 are operated, the magnetic contactors 2, 8 and 14 are turned on, the magnetic contactor 17 is turned off, and the AC filter F2 and the electromagnetic contactor 14 are removed from the inverter 10.
  • AC power is supplied to the load 24 via the load 24. Further, the life of the capacitor 13 is determined every predetermined time.
  • the operation of the converter 6 is stopped, and the DC power of the battery 23 is supplied to the inverter 10 by the bidirectional chopper 7.
  • the inverter 10 converts the DC power from the bidirectional chopper 7 into AC power and supplies it to the load 24. Therefore, the operation of the load 24 can be continued while the DC power is stored in the battery 23.
  • the semiconductor switch 16 is instantly turned on, the magnetic contactor 14 is turned off, and the magnetic contactor 17 is turned on.
  • the AC power from the bypass AC power supply 22 is supplied to the load 24 via the semiconductor switch 16 and the electromagnetic contactor 17, and the operation of the load 24 is continued.
  • the semiconductor switch 16 is turned off to prevent the semiconductor switch 16 from being overheated and damaged.
  • FIG. 2 is a circuit diagram showing the configurations of the converter 6 and the inverter 10 shown in FIG. In FIG. 1, only the portion related to one phase of the three-phase AC voltage is shown, but in FIG. 2, the portion related to the three phases is shown.
  • the converter 6 includes IGBTs (Insulated Gate Bipolar Transistors) Q1 to Q6 and diodes D1 to D6.
  • the IGBT constitutes a switching element.
  • the collectors of IGBT Q1 to Q3 are both connected to the DC line L1, and their emitters are connected to the AC terminals 6a, 6b, 6c, respectively.
  • the collectors of IGBT Q4 to Q6 are connected to the AC terminals 6a, 6b, 6c, respectively, and their emitters are both connected to the DC line L2.
  • Diodes D1 to D6 are connected to IGBT Q1 to Q6 in antiparallel, respectively.
  • the AC terminals 6a, 6b, 6c receive a three-phase AC voltage supplied from the commercial AC power supply 21 via three sets of electromagnetic contactors 2 and an AC filter F1 (FIG. 1).
  • the three-phase AC voltage supplied to the AC terminals 6a to 6c is three-phase full-wave rectified by the diodes D1 to D6, converted into a DC voltage VDC, and applied between the terminals of the capacitor 9.
  • the IGBT Q1 and Q4 are controlled by the gate signals Au and Bu, respectively
  • the IGBT Q2 and Q5 are controlled by the gate signals Av and Bv, respectively
  • the IGBT Q3 and Q6 are controlled by the gate signals Aw and Bw, respectively.
  • the gate signals Bu, Bv, and Bw are inverted signals of the gate signals Au, Av, and Aw, respectively.
  • IGBTQ1 to Q3 are turned on when the gate signals Au, Av, and Aw are set to the "H” level, and turned off when the gate signals Au, Av, and Aw are set to the “L” level, respectively.
  • IGBTQ4 to Q6 are turned on when the gate signals Bu, Bv, and Bw are set to the "H” level, and turned off when the gate signals Bu, Bv, and Bw are set to the "L” level, respectively.
  • Each of the gate signals Au, Bu, Av, Bv, Aw, and Bw is a pulse signal sequence and is a PWM (Pulse Width Modulation) signal having a switching frequency (for example, 6 KHz).
  • the phases of the gate signals Au and Bu, the phases of the gate signals Av and Bv, and the phases of the gate signals Aw and Bw are deviated by 120 degrees.
  • the gate signals Au, Bu, Av, Bv, Aw, Bw are generated by the control device 19.
  • Each of IGBT Q1 to Q6 is turned on and off at the switching frequency.
  • the voltage between the terminals of the capacitor 9 is adjusted by turning each of the IGBT Q1 to Q6 on and off at a predetermined timing by the gate signals Au, Bu, Av, Bv, Aw, and Bw, and adjusting the on time of each of the IGBT Q1 to Q6. It is possible to convert the VDC into a commercial frequency three-phase AC voltage and output it to the AC terminals 6a to 6c.
  • the three-phase AC voltage output from the converter 6 includes a fundamental wave component of a commercial frequency and a harmonic component.
  • the harmonic component includes a high frequency component that is several times the natural number of the switching frequency.
  • the AC filter F1 passes the fundamental wave component of the commercial frequency and cuts off the harmonic component.
  • the inverter 10 has the same configuration as the converter 6, and includes the IGBT Q11 to Q16 and the diodes D11 to D16.
  • the IGBT constitutes a switching element.
  • the collectors of IGBT Q11 to Q13 are both connected to the DC line L1, and their emitters are connected to the AC terminals 10a, 10b, and 10c, respectively.
  • the collectors of IGBT Q14 to Q16 are connected to the AC terminals 10a, 10b, and 10c, respectively, and their emitters are both connected to the DC line L2.
  • the diodes D11 to D16 are connected to the IGBT Q11 to Q16 in antiparallel, respectively.
  • the IGBT Q11 and Q14 are controlled by the gate signals Xu and Yu, respectively, the IGBT Q12 and Q15 are controlled by the gate signals Xv and Yv, respectively, and the IGBT Q13 and Q16 are controlled by the gate signals Xw and Yw, respectively.
  • the gate signals Yu, Yv, and Yw are inverted signals of the gate signals Xu, Xv, and Xw, respectively.
  • IGBTQ11 to Q13 are turned on when the gate signals Xu, Xv, Xw are set to the "H” level, and turned off when the gate signals Xu, Xv, Xw are set to the "L” level, respectively.
  • IGBTQ14 to Q16 are turned on when the gate signals Yu, Yv, and Yw are set to the "H” level, and turned off when the gate signals Yu, Yv, and Yw are set to the "L” level, respectively.
  • Each of the gate signals Xu, Yu, Xv, Yv, Xw, and Yw is a pulse signal sequence and is a PWM signal having a switching frequency (for example, 6 KHz).
  • the phases of the gate signals Xu and Yu, the phases of the gate signals Xv and Yv, and the phases of the gate signals Xw and Yw are deviated by 120 degrees.
  • the gate signals Xu, Yu, Xv, Yv, Xw, Yw are generated by the control device 19.
  • Each of IGBT Q11 to Q16 is turned on and off at the switching frequency.
  • the voltage between the terminals of the capacitor 9 is adjusted by turning each of the IGBT Q11 to Q16 on and off at a predetermined timing by the gate signals Xu, Yu, Xv, Yv, Xw, and Yw and adjusting the on time of each of the IGBT Q11 to Q16. It is possible to convert the VDC into a commercial frequency three-phase AC voltage and output it to the AC terminals 10a, 10b, and 10c.
  • the three-phase AC voltage generated by the inverter 10 is supplied to the load 24 via the three sets of AC filters F2 and the electromagnetic contactor 14.
  • the three-phase AC voltage output from the inverter 10 includes a fundamental wave component of a commercial frequency and a harmonic component.
  • the harmonic component includes a high frequency component that is several times the natural number of the switching frequency.
  • the AC filter F2 passes the fundamental wave component of the commercial frequency and cuts off the harmonic component.
  • the capacitor 13 gradually deteriorates according to the usage time of the capacitor 13.
  • the resistance component of the capacitor 13 increases, it becomes difficult for the harmonic component to flow through the capacitor 13, and the harmonic component passing through the AC filter F2 increases. Since this harmonic component adversely affects the load 24, it is necessary to replace the capacitor 13 with a new one when the life of the capacitor 13 is reached.
  • the current Ic flowing through the capacitor 13 is obtained based on the detection results of the current detectors 11 and 15 during the normal operation of the inverter 10, and the harmonic component of the current Ic is detected. Then, the harmonic component detected at the start of use of the capacitor 13 is compared with the harmonic component detected this time, and based on the comparison result, it is determined whether or not the life of the capacitor 13 has reached, and the life of the capacitor 13 is reached. If it is determined that it has arrived, the user of the uninterruptible power supply device 1 is notified to that effect.
  • FIG. 3 is a block diagram showing a part of the control device 19 related to the determination of the life of the capacitor 13.
  • the control device 19 includes a calculation unit 30, a timer 31, a frequency analysis unit 32, an amplitude detection unit 33, a storage unit 34, a determination unit 35, and a notification unit 36.
  • the current detectors 11 and 15, the operation unit 18, and the control device 19 constitute a life determination device for determining the life of the capacitor 13.
  • the calculation unit 30 uses the instantaneous value of the output current Io of the inverter 10 indicated by the output signal Iof of the current detector 11 (FIG. 1) to the load current IL indicated by the output signal ILf of the current detector 15 (FIG. 1). The instantaneous value is subtracted to obtain the instantaneous value of the current Ic flowing through the capacitor 13.
  • FIG. 4 is a time chart for explaining the operation of the calculation unit 30.
  • (A) shows the waveforms of the three-phase AC voltages Vu, Vv, and Vw output from the inverter 10 and passed through the three AC filters F2, and (B) is the three currents output from the inverter 10.
  • the waveforms of the three-phase alternating currents Iu, Iv, and Iw detected by the detector 11 are shown.
  • FIGS. 1 and 3 only the portion corresponding to the U phase of the U phase, the V phase, and the W phase is shown for the sake of simplification of drawings and explanations.
  • the AC voltage Vo (FIG. 1) of the node N2 corresponds to the U-phase AC voltage Vu.
  • the AC output current Io of the inverter 10 indicated by the output signal If (FIG. 1) of the current detector 11 corresponds to the U-phase AC current Iu.
  • FIG. 3 shows the waveform of the current Ic flowing through the capacitor 13 calculated by the calculation unit 30 (FIG. 3).
  • each of the three-phase AC voltages Vu (that is, Vo), Vv, and Vw generated by the inverter 10 and the AC filter F2 changes in a sine wave shape at a commercial frequency.
  • the phases of the three-phase AC voltages Vu (that is, Vo), Vv, and Vw are shifted by 120 degrees.
  • each of the three-phase alternating currents Iu (that is, Io), Iv, and Iw output from the inverter 10 basically changes in a sinusoidal shape at a commercial frequency.
  • the phases of the three-phase alternating currents Iu (that is, Io), Iv, and Iw are shifted by 120 degrees.
  • Each of the three-phase alternating currents Iu (ie, Io), Iv, and Iw contains a fundamental wave component of a commercial frequency and a harmonic component having a frequency that is a natural number multiple of the switching frequency.
  • the harmonic component is superimposed on the fundamental wave component.
  • the capacitor current IcD actually detected by the separately provided current detector basically changes in a sinusoidal shape at a commercial frequency.
  • the phase of the capacitor current IcD is 90 degrees ahead of the phase of the AC voltage Vu (ie, Vo).
  • the capacitor current IcD includes a fundamental wave component of a commercial frequency and a harmonic component having a frequency that is a natural number multiple of the switching frequency.
  • the harmonic component is superimposed on the fundamental wave component.
  • the amplitude of the harmonic component of the current IcD after the deterioration of the capacitor 13 is smaller than the amplitude of the harmonic component of the current IcD before the deterioration of the capacitor 13. This corresponds to the fact that when the capacitor 13 deteriorates, the resistance component of the capacitor 13 increases, and it becomes difficult for the harmonic current to flow through the capacitor 13.
  • the load current IL basically changes in a sinusoidal shape at a commercial frequency.
  • the phase of the load current IL is the same as the phase of the AC voltage Vu (that is, Vo).
  • the load current IL does not contain a harmonic component.
  • the load current IL contains some harmonic components.
  • the waveform of the capacitor current Ic calculated by the calculation unit 30 is the waveform of the capacitor current IcD actually detected by the current detector (FIG. 4 (C)). Is consistent with. Therefore, in the first embodiment, it is not necessary to separately provide a current detector for detecting the current Ic flowing through the capacitor 13, so that the device configuration can be simplified and the cost of the device can be reduced.
  • the operation unit 18 (FIG. 1) is instructed to execute the inverter power supply mode.
  • the signal ST is output after a predetermined time required for stabilizing the operation of the device has elapsed.
  • the timer 31 is reset in response to the signal ST from the operation unit 18, measures the normal operation time TD of the inverter 10, and outputs a signal TDf indicating the measured time TD. Every time the measured time TD reaches a predetermined time, the measured time TD is reset to 0 seconds.
  • the normal operation time TD of the inverter 10 is the time during which the AC output power of the inverter 10 is supplied to the load 24 via the AC filter F2 and the electromagnetic contactor 14. At this time, the harmonic component flows through the capacitor 13, and the capacitor 13 gradually deteriorates.
  • the frequency analysis unit 32 captures the waveform of the current Ic obtained by the calculation unit 30 every time the time TD indicated by the output signal TDf of the timer 31 is reset to 0 seconds, and fast Fouriers the waveform of the captured current Ic.
  • the frequency distribution of the current Ic is obtained by performing the conversion.
  • FIG. 5 is a diagram showing the frequency distribution of the current Ic flowing through the capacitor 13.
  • (A) shows the frequency distribution of the current Ic before the deterioration of the capacitor 13 (that is, at the start of use), and (B) shows the frequency distribution of the current Ic after the deterioration of the capacitor 13.
  • the current Ic flowing through the capacitor 13 includes a fundamental wave component of a commercial frequency (50 Hz) and a harmonic component.
  • the harmonic components are mainly a high frequency component (first current) having a frequency N times (for example, 1 times) the switching frequency (6 KHz) and a high frequency component having a frequency M times (for example, 2 times) the switching frequency (for example, 2 times). Second current) and included.
  • N is a natural number and M is a natural number different from N.
  • the amplitude of the harmonic component after the deterioration of the capacitor 13 is smaller than the amplitude of the harmonic component before the deterioration of the capacitor 13. This corresponds to the fact that the resistance component of the capacitor 13 increases and the harmonic component flowing through the capacitor 13 decreases as the deterioration of the capacitor 13 progresses.
  • the amplitude detection unit 33 has an amplitude A1 of a current having a frequency of 1 times the switching frequency (6KHz) and a switching frequency of 2 based on the frequency distribution obtained by the frequency analysis unit 32.
  • the amplitude A2 of the current having a double frequency (12 KHz) is detected.
  • the storage unit 34 stores the amplitudes A1 and A2 detected by the amplitude detection unit 33 as initial amplitude values A1n and A2n, respectively, in response to the signal ST from the operation unit 18.
  • the determination unit 35 compares the initial amplitude values A1n and A2n stored in the storage unit 34 with the amplitudes A1 and A2 detected this time by the amplitude detection unit 33, and based on the comparison result, the life of the capacitor 13 has come to an end. It is determined whether or not it has been done, and a signal ⁇ 35 indicating the determination result is output.
  • the signal ⁇ 35 is set to the “L” level of the deactivation level.
  • the signal ⁇ 35 is set to the “H” level of the activation level.
  • the difference ⁇ A1 A1n ⁇ A1 between the initial amplitude value A1n (first amplitude) and the amplitude A1 (second amplitude) exceeds the upper limit value A1H, and the initial amplitude value A2n (first amplitude).
  • the difference ⁇ A2 A2n ⁇ A2n between (amplitude of 3) and amplitude A2 (fourth amplitude) exceeds the upper limit value A2H
  • the signal ⁇ 35 is set to the activation level “ Set to H "level.
  • the determination unit 35 sets the signal ⁇ 35 to the “L” level of the deactivation level.
  • the notification unit 36 When the signal ⁇ 35 is set to the activation level “H” level, the notification unit 36 indicates that the life of the capacitor 13 has reached the end of the life of the capacitor 13 by using light, sound, an image, or the like to notify the user of the uninterruptible power supply 1. Notify to.
  • the life determination operation of the capacitor 13 in the uninterruptible power supply 1 will be described.
  • the bypass feeding mode is selected and a new capacitor 13 is set.
  • the operation unit 18 is operated by the user of the uninterruptible power supply 1, it is input that a new capacitor 13 is set, and the inverter power supply mode is selected, the electromagnetic contactors 2, 8 and 14 are turned on and the converter is converted. 6.
  • the operation of the bidirectional chopper 7 and the inverter 10 is started, and the electromagnetic contactor 17 is turned off.
  • the AC power supplied from the commercial AC power supply 21 is converted into DC power by the converter 6, the DC power is stored in the battery 23 by the bidirectional chopper 7, and is converted into AC power by the inverter 10 and supplied to the load 24.
  • the output current Io of the inverter 10 is detected by the current detector 11, and the load current IL is detected by the current detector 15.
  • the calculation unit 30 (FIG. 3) subtracts the load current IL from the output current Io of the inverter 10 to calculate the current Ic flowing through the capacitor 13.
  • the signal ST is output from the operation unit 18 after a predetermined time required for stabilizing the operation of the device has elapsed.
  • the timer 31 is reset in response to the signal ST, and the operation time TD of the inverter 10 is reset to 0 seconds, and then the measurement of the operation time TD is started. Every time the operation time TD of the inverter 10 reaches a predetermined time, the operation time TD of the inverter 10 is reset to 0 seconds.
  • the waveform of the capacitor current Ic calculated by the calculation unit 30 is taken into the frequency analysis unit 32, and the frequency distribution of the capacitor current Ic is obtained. From the frequency distribution of the capacitor current Ic, the amplitude detection unit 33 determines that the amplitude A1 of the current having a frequency of 1 times the switching frequency (6 KHz) and the amplitude A2 of the current having a frequency twice the switching frequency (12 KHz). Detected.
  • the storage unit 34 stores the amplitudes A1 and A2 detected by the amplitude detection unit 33 as initial amplitude values A1n and A2n, respectively, in response to the signal ST from the operation unit 18. Every time the operating time TD of the inverter 10 reaches a predetermined time, the frequency analysis unit 32 obtains the frequency distribution of the capacitor current Ic, and the amplitude detection unit 33 detects the amplitudes A1 and A2.
  • the amplitudes A1 and A2 detected this time by the amplitude detection unit 33 and the initial amplitude values A1n and A2n stored in the storage unit 34 are compared by the determination unit 35, and the life of the capacitor 13 has come to an end based on the comparison result. Whether or not it is determined.
  • the determination unit 35 determines that the life of the capacitor 13 has reached the end, the notification unit 36 notifies the user of the uninterruptible power supply device 1 to that effect.
  • the user selects the bypass power supply mode using the operation unit 18.
  • the magnetic contactors 2, 8 and 14 are turned off, the magnetic contactor 17 is turned on, AC power is supplied from the bypass AC power supply 22 to the load 24 via the magnetic contactor 17, and the operation of the load 24 is continued. Will be done. Further, the operation of the converter 6, the bidirectional chopper 7, and the inverter 10 is stopped.
  • the user replaces the capacitor 13 that has reached the end of its life with a new capacitor 13, and then operates the operation unit 18 to instruct that the new capacitor 13 is set and that the inverter power supply mode is executed.
  • the magnetic contactors 2, 8 and 14 are turned on, the converter 6, the bidirectional chopper 7 and the inverter 10 are started to operate, the magnetic contactor 17 is turned off, and the load 24 is powered by the AC power from the inverter 10. Be driven. Further, the determination of the life of the new capacitor 13 is started.
  • the current Ic flowing through the capacitor 13 connected to the AC terminal 10a of the inverter 10 is detected during normal operation of the inverter 10, and the harmonic component of the current Ic is detected.
  • the harmonic component detected at the start of use of the capacitor is compared with the harmonic component detected this time, and it is determined whether or not the life of the capacitor 13 has reached the end of the life of the capacitor 13 based on the comparison result. Therefore, the life of the capacitor 13 can be determined while the inverter 10 is normally operated. Further, as compared with Patent Document 1, since it is not necessary to separately provide a resistor, a switch, or the like for charging the capacitor 13, the cost of the device can be reduced.
  • FIG. 6 is a block diagram showing a modified example of the first embodiment, and is a diagram to be compared with FIG. With reference to FIG. 6, the difference between this modification and the first embodiment is that the determination unit 35 is replaced with the determination unit 35A.
  • the determination unit 35A when the ratio A1 / A1n of the amplitude value A1 and the initial amplitude value A1n is lower than the lower limit value A1L and the ratio A2 / A2n of the amplitude value A2 and the initial amplitude value A2n is lower than the lower limit value A2L.
  • the signal ⁇ 35 is set to the “H” level of the activation level. Since other configurations and operations are the same as those in the first embodiment, the description thereof will not be repeated. Even in this modified example, the same effect as that of the first embodiment can be obtained.
  • the third condition (A1 / A1n ⁇ A1L) in which the ratio A1 / A1n of the amplitude value A1 and the initial amplitude value A1n is lower than the lower limit value A1L, and the amplitude value A2 and the initial amplitude value A2n.
  • the fourth condition (A2 / A2n ⁇ A2L) in which the ratio A2 / A2n is lower than the lower limit value A2L are satisfied, it is determined that the life of the capacitor 13 has come to an end, but this is limited to this. However, it may be determined that the life of the capacitor 13 has reached the end when any one of the third and fourth conditions is satisfied.
  • the converter 6 converts the terminal voltage VDC of the capacitor 9 into an AC voltage and outputs the voltage to the commercial AC power supply 21 via the AC filter F1.
  • a large number of loads (not shown) are connected to the commercial AC power supply 21 (that is, the power system).
  • the converter 6 and the AC filter F1 and the inverter 10 and the AC filter F2 have the same configuration.
  • the capacitor 4 included in the AC filter F1 also deteriorates in the same manner as the capacitor 13. Therefore, in the second embodiment, the life of the capacitor 4 is determined.
  • FIG. 7 is a circuit block diagram showing the configuration of the uninterruptible power supply device 1A according to the second embodiment, and is a diagram to be compared with FIG. 1.
  • the uninterruptible power supply 1A differs from the uninterruptible power supply 1 of the first embodiment in that the current detector 40 is added and the control device 19 is replaced by the control device 19A. be.
  • the current detector 40 detects the input current (that is, the current flowing through the reactor 5) Iic of the converter 6 and outputs the signal Iicf indicating the detected value.
  • the control device 19A subtracts the AC input current Ii indicated by the output signal If of the current detector 3 from the input current Iic of the converter 6 indicated by the output signal Iicf of the current detector 40 to obtain the capacitor 4.
  • the current IcA Iic-Ii flowing through the current IcA is obtained, and the harmonic component of the current IcA is detected.
  • control device 19A compares the harmonic component detected at the start of use of the capacitor 4 with the harmonic component detected this time, determines whether or not the life of the capacitor 4 has expired based on the comparison result, and determines whether the capacitor 4 has reached the end of its life.
  • the user of the uninterruptible power supply device 1A is notified by using sound, light, an image, or the like.
  • FIG. 8 is a block diagram showing a portion of the control device 19A related to the determination of the life of the capacitor 4, and is a diagram to be compared with FIG.
  • the control device 19A includes a calculation unit 30, a timer 31, a frequency analysis unit 32, an amplitude detection unit 33, a storage unit 34, a determination unit 35, and a notification unit 36, similarly to the control device 19. ..
  • the current detectors 3 and 40, the operation unit 18, and the control device 19A constitute a life determination device for determining the life of the capacitor 4.
  • the calculation unit 30 subtracts the instantaneous value of the AC input current Ii indicated by the output signal If of the current detector 3 from the instantaneous value of the input current Iic of the converter 6 indicated by the output signal Iicf of the current detector 40. The instantaneous value of the current IcA flowing through the capacitor 4 is obtained.
  • the operation unit 18 When the user of the uninterruptible power supply 1 inputs that a new capacitor 4 has been set and is instructed to execute the inverter power supply mode, the operation unit 18 has a predetermined time required for stabilizing the operation of the device. After the lapse of time, the signal ST is output.
  • the timer 31 is reset in response to the signal ST from the operation unit 18, measures the normal operation time TD of the converter 6, and outputs a signal TDf indicating the measured time TD. Every time the measured time TD reaches a predetermined time, the measured time TD is reset to 0 seconds.
  • the normal operating time TD of the converter 6 is the time when the AC output power of the commercial AC power supply 21 is supplied to the converter 6 via the electromagnetic contactor 2 and the AC filter F1 and the converter 6 is operated. At this time, the harmonic current generated by the converter 6 flows through the capacitor 4, and the capacitor 4 is gradually deteriorated.
  • the frequency analysis unit 32 captures the waveform of the current IcA obtained by the calculation unit 30 every time the time TD indicated by the output signal TDf of the timer 31 is reset to 0 seconds, and fast Fouriers the waveform of the captured current IcA.
  • the frequency distribution of the current IcA is obtained by performing the conversion.
  • the amplitude detection unit 33 has an amplitude A1 of a current having a frequency of 1 times the switching frequency (6 KHz) and a frequency (12 KHz) twice the switching frequency based on the frequency distribution obtained by the frequency analysis unit 32.
  • the current amplitude A2 and the like are detected.
  • the storage unit 34 stores the amplitudes A1 and A2 detected by the amplitude detection unit 33 as initial amplitude values A1n and A2n, respectively, in response to the signal ST from the operation unit 18.
  • the determination unit 35 compares the initial amplitude values A1n and A2n stored in the storage unit 34 with the amplitudes A1 and A2 detected this time by the amplitude detection unit 33, and based on the comparison result, the life of the capacitor 4 has come to an end. It is determined whether or not it has been done, and a signal ⁇ 35 indicating the determination result is output.
  • the signal ⁇ 35 is set to the "L” level of the deactivation level.
  • the signal ⁇ 35 is set to the “H” level of the activation level.
  • the difference ⁇ A1 A1n-A1 between the initial amplitude value A1n and the amplitude value A1 exceeds the upper limit value A1H
  • the difference ⁇ A2 A2n-A2n between the initial amplitude value A2n and the amplitude value A2 is
  • the upper limit value A2H exceeded, it is determined that the life of the capacitor 4 has expired, and the signal ⁇ 35 is set to the “H” level of the activation level. In other cases, the determination unit 35 sets the signal ⁇ 35 to the “L” level of the deactivation level.
  • the notification unit 36 When the signal ⁇ 35 is set to the activation level “H” level, the notification unit 36 indicates that the life of the capacitor 4 has reached the end of the life of the capacitor 4, by using light, sound, an image, or the like to notify the user of the uninterruptible power supply 1. Notify to.
  • 1,1A non-disruptive power supply T1 AC input terminal, T2 bypass input terminal, T3 battery terminal, T4 AC output terminal, 2,8,14,17 electromagnetic contactor, 3,11,15,40 current detector, 4 , 9, 13 Capacitor, 5, 12 Reactor, 6 Converter, 7 Bidirectional Chopper, 10 Inverter, 16 Semiconductor Switch, 18 Operation Unit, 19, 19A Control Device, 21 Commercial AC Power Supply, 22 Bypass AC Power Supply, 23 Battery, 24 Load, L1, L2 DC line, Q1 to Q6, Q11 to Q16 IGBT, D1 to D6, D11 to D16 diode, 30 calculation unit, 31 timer, 32 frequency analysis unit, 33 amplitude detection unit, 34 storage unit, 35 judgment unit , 36 Notification unit.

Abstract

In an uninterruptable power supply device (1), a current (Ic) flowing through a capacitor (13) connected to an AC terminal of an inverter (10) is detected during operation of the inverter, a high frequency component of the current is detected, the high frequency component detected at this time is compared with a high frequency component detected when use of the capacitor was started, and whether the end of the life of the capacitor has been reached is determined on the basis of the comparison result. Accordingly, the end of life of the capacitor connected to the AC terminal of the inverter can be determined during normal operation of the inverter. In addition, there is no need to separately provide components such as a switch or a resistor for charging the capacitor, and therefore cost reductions of the device can be achieved.

Description

寿命判定装置およびそれを備えた電源装置Life judgment device and power supply device equipped with it
 この発明は寿命判定装置および電源装置に関し、特に、電力変換器の交流端子に接続されたコンデンサの寿命を判定する寿命判定装置と、それを備えた電源装置とに関する。 The present invention relates to a life determination device and a power supply device, and more particularly to a life determination device for determining the life of a capacitor connected to an AC terminal of a power converter, and a power supply device including the life determination device.
 たとえば特開2016-167948号公報(特許文献1)には、電力変換器の直流端子に接続されたコンデンサの寿命を判定する寿命判定装置が開示されている。この寿命判定装置は、電力変換器の出力電流を検出する電流検出器と、コンデンサの端子間電圧を検出する電圧検出器と、電力変換器の出力電流によってコンデンサを所定電圧値に初期充電する初期充電部と、初期充電期間中に電流検出器によって検出された電流を積分して電流積分値を求める電流積分部と、電流積分値、所定電圧値、および初期充電前に電圧検出器によって検出されたコンデンサの端子間電圧に基づいてコンデンサの推定容量値を算出する容量推定部と、予め測定された未使用時のコンデンサの初期容量値と容量推定部によって算出された推定容量値とに基づいて、コンデンサの寿命が到来したか否かを判定する寿命判定部とを備える。 For example, Japanese Patent Application Laid-Open No. 2016-167948 (Patent Document 1) discloses a life determination device for determining the life of a capacitor connected to a DC terminal of a power converter. This life determination device includes a current detector that detects the output current of the power converter, a voltage detector that detects the voltage between the terminals of the capacitor, and an initial charge that initially charges the capacitor to a predetermined voltage value by the output current of the power converter. The charging unit, the current integrating unit that integrates the current detected by the current detector during the initial charging period to obtain the current integrated value, and the current integrated value, the predetermined voltage value, and the voltage detector detected before the initial charging. Based on the capacitance estimation unit that calculates the estimated capacitance value of the capacitor based on the voltage between the terminals of the capacitor, and the initial capacitance value of the unused capacitor measured in advance and the estimated capacitance value calculated by the capacitance estimation unit. , It is provided with a life determination unit for determining whether or not the life of the capacitor has reached the end.
特開2016-167948号公報Japanese Unexamined Patent Publication No. 2016-167948
 しかし、特許文献1には、電力変換器の交流端子に接続されたコンデンサの寿命を判定する寿命判定装置については何ら記載されていない。 However, Patent Document 1 does not describe any life determination device for determining the life of the capacitor connected to the AC terminal of the power converter.
 また、特許文献1の寿命判定装置では、初期充電前の電圧から所定電圧値までコンデンサを充電して推定容量値を算出するので、電力変換器を通常運転しながらコンデンサの寿命を判定することはできない。 Further, in the life determination device of Patent Document 1, since the capacitor is charged from the voltage before the initial charge to a predetermined voltage value and the estimated capacitance value is calculated, it is not possible to determine the life of the capacitor while operating the power converter normally. Can not.
 また、特許文献1の寿命判定装置では、初期充電部として抵抗器およびスイッチを設ける必要があり、装置がコスト高になるという問題がある。 Further, in the life determination device of Patent Document 1, it is necessary to provide a resistor and a switch as the initial charging unit, and there is a problem that the cost of the device becomes high.
 それゆえに、この発明の主たる目的は、電力変換器の交流端子に接続されたコンデンサの寿命を電力変換器の通常運転時に判定することが可能で低コストの寿命判定装置と、それを備えた電源装置とを提供することである。 Therefore, a main object of the present invention is a low-cost life determination device capable of determining the life of a capacitor connected to an AC terminal of a power converter during normal operation of the power converter, and a power supply equipped with the same. It is to provide a device.
 この発明に係る寿命判定装置は、電力変換器の交流端子に接続されたコンデンサの寿命を判定する寿命判定装置であって、電流検出部、高調波検出部、および判定部を備えたものである。電流検出部は、電力変換器の運転時にコンデンサに流れる電流を検出する。高調波検出部は、電流検出部によって検出される電流のうちの高調波成分を検出する。判定部は、コンデンサの使用開始時に高調波検出部によって検出された高調波成分と、高調波検出部によって今回検出された高調波成分とを比較し、その比較結果に基づいてコンデンサの寿命が到来したか否かを判定する。 The life determination device according to the present invention is a life determination device for determining the life of a capacitor connected to an AC terminal of a power converter, and includes a current detection unit, a harmonic detection unit, and a determination unit. .. The current detector detects the current flowing through the capacitor when the power converter is operating. The harmonic detection unit detects the harmonic component of the current detected by the current detection unit. The judgment unit compares the harmonic component detected by the harmonic detection unit at the start of use of the capacitor with the harmonic component detected this time by the harmonic detection unit, and the life of the capacitor is reached based on the comparison result. Determine if it has been done.
 この発明に係る寿命判定装置では、電力変換器の交流端子に接続されたコンデンサに流れる電流を電力変換器の運転時に検出し、その電流のうちの高調波成分を検出し、コンデンサの使用開始時に検出した高調波成分と、今回検出した高調波成分とを比較し、その比較結果に基づいてコンデンサの寿命が到来したか否かを判定する。したがって、電力変換器の交流端子に接続されたコンデンサの寿命を電力変換器の通常運転時に判定することができる。また、コンデンサを充電するための抵抗器、スイッチなどを別途設ける必要がないので、装置の低コスト化を図ることができる。 In the life determination device according to the present invention, the current flowing through the capacitor connected to the AC terminal of the power converter is detected during the operation of the power converter, the harmonic component of the current is detected, and the capacitor is used at the start of use. The detected harmonic component is compared with the harmonic component detected this time, and it is determined whether or not the life of the capacitor has reached the end of the life of the capacitor based on the comparison result. Therefore, the life of the capacitor connected to the AC terminal of the power converter can be determined during the normal operation of the power converter. Further, since it is not necessary to separately provide a resistor, a switch, etc. for charging the capacitor, the cost of the device can be reduced.
実施の形態1による無停電電源装置の構成を示す回路ブロック図である。It is a circuit block diagram which shows the structure of the uninterruptible power supply according to Embodiment 1. FIG. 図1に示すコンバータおよびインバータの構成を示す回路図である。It is a circuit diagram which shows the structure of the converter and the inverter shown in FIG. 図1に示す制御装置のうちのコンデンサ13の寿命の判定に関連する部分の構成を示すブロック図である。It is a block diagram which shows the structure of the part which is related to the determination of the life of a capacitor 13 in the control apparatus shown in FIG. 図3に示す演算部の動作を説明するためのタイムチャートである。It is a time chart for demonstrating the operation of the arithmetic unit shown in FIG. 図3に示す周波数分析部によって求められるコンデンサ電流の周波数分布を示す図である。It is a figure which shows the frequency distribution of the capacitor current obtained by the frequency analysis unit shown in FIG. 実施の形態1の変更例を示すブロック図である。It is a block diagram which shows the modification example of Embodiment 1. FIG. 実施の形態2による無停電電源装置の構成を示す回路ブロック図である。It is a circuit block diagram which shows the structure of the uninterruptible power supply according to Embodiment 2. 図7に示す制御装置のうちのコンデンサ4の寿命の判定に関連する部分の構成を示すブロック図である。It is a block diagram which shows the structure of the part related to the determination of the life of a capacitor 4 in the control device shown in FIG. 7.
 [実施の形態1]
 図1は、実施の形態1による無停電電源装置1の構成を示す回路ブロック図である。この無停電電源装置1は、商用交流電源21から供給される三相交流電力を直流電力に一旦変換し、その直流電力を三相交流電力に変換して負荷24に供給するものである。図1では、図面および説明の簡単化のため、三相(U相、V相、W相)のうちの一相(たとえばU相)に対応する部分の回路のみが示されている。
[Embodiment 1]
FIG. 1 is a circuit block diagram showing a configuration of an uninterruptible power supply device 1 according to the first embodiment. The uninterruptible power supply 1 temporarily converts the three-phase AC power supplied from the commercial AC power supply 21 into DC power, converts the DC power into three-phase AC power, and supplies the DC power to the load 24. In FIG. 1, for simplification of drawings and description, only the circuit corresponding to one phase (for example, U phase) of the three phases (U phase, V phase, W phase) is shown.
 図1において、この無停電電源装置1は、交流入力端子T1、バイパス入力端子T2、バッテリ端子T3、および交流出力端子T4を備える。交流入力端子T1は、商用交流電源21から商用周波数の交流電力を受ける。バイパス入力端子T2は、バイパス交流電源22から商用周波数の交流電力を受ける。バイパス交流電源22は、商用交流電源であってもよいし、発電機であっても構わない。 In FIG. 1, the uninterruptible power supply 1 includes an AC input terminal T1, a bypass input terminal T2, a battery terminal T3, and an AC output terminal T4. The AC input terminal T1 receives AC power of a commercial frequency from the commercial AC power supply 21. The bypass input terminal T2 receives commercial frequency AC power from the bypass AC power supply 22. The bypass AC power supply 22 may be a commercial AC power supply or a generator.
 バッテリ端子T3は、バッテリ(電力貯蔵装置)23に接続される。バッテリ23は、直流電力を蓄える。バッテリ23の代わりにコンデンサが接続されていても構わない。交流出力端子T4は、負荷24に接続される。負荷24は、交流電力によって駆動される。 The battery terminal T3 is connected to the battery (power storage device) 23. The battery 23 stores DC power. A capacitor may be connected instead of the battery 23. The AC output terminal T4 is connected to the load 24. The load 24 is driven by AC power.
 この無停電電源装置1は、さらに、電磁接触器2,8,14,17、電流検出器3,11,15、コンデンサ4,9,13、リアクトル5,12、コンバータ6、双方向チョッパ7、インバータ10、半導体スイッチ16、操作部18、および制御装置19を備える。 The uninterruptible power supply 1 further includes an electromagnetic contactor 2,8,14,17, a current detector 3,11,15, a capacitor 4,9,13, a reactor 5,12, a converter 6, a bidirectional chopper 7, and the like. It includes an inverter 10, a semiconductor switch 16, an operation unit 18, and a control device 19.
 電磁接触器2の一方端子は交流入力端子T1に接続され、電磁接触器2の他方端子(ノードN1)はリアクトル5の一方端子に接続され、リアクトル5の他方端子はコンバータ6の交流端子6aに接続される。コンデンサ4は、ノードN1と中性点NPとの間に接続される。中性点NPは、たとえば接地電圧を受ける。電磁接触器2は、無停電電源装置1の使用時にオンされ、たとえば無停電電源装置1のメンテナンス時にオフされる。 One terminal of the magnetic contactor 2 is connected to the AC input terminal T1, the other terminal of the magnetic contactor 2 (node N1) is connected to one terminal of the reactor 5, and the other terminal of the reactor 5 is connected to the AC terminal 6a of the converter 6. Be connected. The capacitor 4 is connected between the node N1 and the neutral point NP. The neutral point NP receives, for example, a ground voltage. The magnetic contactor 2 is turned on when the uninterruptible power supply 1 is used, and is turned off, for example, when the uninterruptible power supply 1 is maintained.
 ノードN1に現れる交流入力電圧Viの瞬時値は、制御装置19によって検出される。交流入力電圧Viの瞬時値に基づいて、停電の発生の有無などが判別される。電流検出器3は、ノードN1に流れる交流入力電流Iiを検出し、その検出値を示す信号Iifを制御装置19に与える。 The instantaneous value of the AC input voltage Vi appearing at the node N1 is detected by the control device 19. Whether or not a power failure has occurred is determined based on the instantaneous value of the AC input voltage Vi. The current detector 3 detects the AC input current Ii flowing through the node N1 and gives a signal If indicating the detected value to the control device 19.
 コンデンサ4およびリアクトル5は、交流フィルタF1を構成し、商用周波数の交流電力を通過させるとともに、コンバータ6で発生するスイッチング周波数の電流が商用交流電源21に通過することを防止する。 The capacitor 4 and the reactor 5 constitute an AC filter F1 to pass AC power of a commercial frequency and prevent a current of a switching frequency generated by the converter 6 from passing to a commercial AC power supply 21.
 コンバータ6は、制御装置19によって制御され、商用交流電源21から交流電力が正常に供給されている場合(商用交流電源21の健全時)には、交流電力を直流電力に変換して直流ラインL1に出力する。商用交流電源21から交流電力が正常に供給されなくなった場合(商用交流電源21の停電時)には、コンバータ6の運転は停止される。コンバータ6の出力電圧は、所望の値に制御可能になっている。コンデンサ4、リアクトル5、およびコンバータ6は順変換器を構成する。 The converter 6 is controlled by the control device 19, and when the AC power is normally supplied from the commercial AC power supply 21 (when the commercial AC power supply 21 is sound), the AC power is converted into DC power and the DC line L1 is used. Output to. When the AC power is not normally supplied from the commercial AC power supply 21 (during a power failure of the commercial AC power supply 21), the operation of the converter 6 is stopped. The output voltage of the converter 6 can be controlled to a desired value. The capacitor 4, the reactor 5, and the converter 6 constitute a forward converter.
 コンデンサ9は、直流ラインL1に接続され、直流ラインL1の電圧を平滑化させる。直流ラインL1に現れる直流電圧VDCの瞬時値は、制御装置19によって検出される。直流ラインL1は双方向チョッパ7の高電圧側ノードに接続され、双方向チョッパ7の低電圧側ノードは電磁接触器8を介してバッテリ端子T3に接続される。 The capacitor 9 is connected to the DC line L1 and smoothes the voltage of the DC line L1. The instantaneous value of the DC voltage VDC appearing on the DC line L1 is detected by the control device 19. The DC line L1 is connected to the high voltage side node of the bidirectional chopper 7, and the low voltage side node of the bidirectional chopper 7 is connected to the battery terminal T3 via the electromagnetic contactor 8.
 電磁接触器8は、無停電電源装置1の使用時はオンされ、たとえば無停電電源装置1およびバッテリ23のメンテナンス時にオフされる。バッテリ端子T3に現れるバッテリ23の端子間電圧VBの瞬時値は、制御装置19によって検出される。 The magnetic contactor 8 is turned on when the uninterruptible power supply 1 is used, and is turned off when the uninterruptible power supply 1 and the battery 23 are maintained, for example. The instantaneous value of the voltage VB between the terminals of the battery 23 appearing at the battery terminal T3 is detected by the control device 19.
 双方向チョッパ7は、制御装置19によって制御され、商用交流電源21の健全時には、コンバータ6によって生成された直流電力をバッテリ23に蓄え、商用交流電源21の停電時には、バッテリ23の直流電力を直流ラインL1を介してインバータ10に供給する。 The bidirectional chopper 7 is controlled by the control device 19, and when the commercial AC power supply 21 is sound, the DC power generated by the converter 6 is stored in the battery 23, and when the commercial AC power supply 21 fails, the DC power of the battery 23 is DC. It is supplied to the inverter 10 via the line L1.
 双方向チョッパ7は、直流電力をバッテリ23に蓄える場合には、直流ラインL1の直流電圧VDCを降圧してバッテリ23に与える。また、双方向チョッパ7は、バッテリ23の直流電力をインバータ10に供給する場合には、バッテリ23の端子間電圧VBを昇圧して直流ラインL1に出力する。直流ラインL1は、インバータ10の入力ノードに接続されている。 When the bidirectional chopper 7 stores DC power in the battery 23, the bidirectional chopper 7 steps down the DC voltage VDC of the DC line L1 and supplies it to the battery 23. Further, when the bidirectional chopper 7 supplies the DC power of the battery 23 to the inverter 10, the bidirectional chopper 7 boosts the voltage VB between the terminals of the battery 23 and outputs the DC power to the DC line L1. The DC line L1 is connected to the input node of the inverter 10.
 インバータ10は、制御装置19によって制御され、コンバータ6または双方向チョッパ7から直流ラインL1を介して供給される直流電力を商用周波数の交流電力に変換して出力する。すなわち、インバータ10は、商用交流電源21の健全時には、コンバータ6から直流ラインL1を介して供給される直流電力を交流電力に変換し、商用交流電源21の停電時には、バッテリ23から双方向チョッパ7を介して供給される直流電力を交流電力に変換する。インバータ10の出力電圧は、所望の値に制御可能になっている。 The inverter 10 is controlled by the control device 19 and converts the DC power supplied from the converter 6 or the bidirectional chopper 7 via the DC line L1 into commercial frequency AC power and outputs it. That is, the inverter 10 converts the DC power supplied from the converter 6 via the DC line L1 into AC power when the commercial AC power supply 21 is sound, and the bidirectional chopper 7 from the battery 23 when the commercial AC power supply 21 fails. Converts the DC power supplied via the AC power into AC power. The output voltage of the inverter 10 can be controlled to a desired value.
 インバータ10の交流端子10aはリアクトル12の一方端子に接続され、リアクトル12の他方端子(ノードN2)は電磁接触器14の一方端子に接続され、電磁接触器14の他方端子(ノードN3)は交流出力端子T4に接続される。コンデンサ13は、ノードN2と中性点NPとの間に接続される。中性点NPは、たとえば接地電圧を受ける。 The AC terminal 10a of the inverter 10 is connected to one terminal of the reactor 12, the other terminal (node N2) of the reactor 12 is connected to one terminal of the magnetic contactor 14, and the other terminal (node N3) of the magnetic contactor 14 is AC. It is connected to the output terminal T4. The capacitor 13 is connected between the node N2 and the neutral point NP. The neutral point NP receives, for example, a ground voltage.
 電流検出器11は、インバータ10の出力電流Ioの瞬時値を検出し、その検出値を示す信号Iofを制御装置19に与える。ノードN2に現れる交流出力電圧Voの瞬時値は、制御装置19によって検出される。 The current detector 11 detects an instantaneous value of the output current Io of the inverter 10 and gives a signal Iof indicating the detected value to the control device 19. The instantaneous value of the AC output voltage Vo appearing at the node N2 is detected by the control device 19.
 リアクトル12およびコンデンサ13は、交流フィルタF2を構成し、インバータ10で生成される商用周波数の交流電力を交流出力端子T4に通過させ、インバータ10で発生するスイッチング周波数の電流が交流出力端子T4に通過することを防止する。インバータ10、リアクトル12、およびコンデンサ13は逆変換器を構成する。 The reactor 12 and the capacitor 13 constitute an AC filter F2, and the AC power of the commercial frequency generated by the inverter 10 is passed through the AC output terminal T4, and the current of the switching frequency generated by the inverter 10 is passed through the AC output terminal T4. Prevent it from happening. The inverter 10, the reactor 12, and the capacitor 13 constitute an inverse converter.
 電磁接触器14は、制御装置19によって制御され、インバータ10によって生成された交流電力を負荷24に供給するインバータ給電モード時にはオンされ、バイパス交流電源22からの交流電力を負荷24に供給するバイパス給電モード時にはオフされる。電流検出器15は、ノードN3と交流出力端子T4との間に流れる負荷電流ILの瞬時値を検出し、その検出値を示す信号ILfを制御装置19に与える。 The electromagnetic contactor 14 is controlled by the control device 19 and is turned on in the inverter power supply mode in which the AC power generated by the inverter 10 is supplied to the load 24. The bypass power supply supplies the AC power from the bypass AC power supply 22 to the load 24. It is turned off in mode. The current detector 15 detects an instantaneous value of the load current IL flowing between the node N3 and the AC output terminal T4, and gives a signal ILf indicating the detected value to the control device 19.
 半導体スイッチ16は、互いに逆並列に接続された一対のサイリスタを含み、バイパス入力端子T2とノードN3との間に接続される。電磁接触器17は、半導体スイッチ16に並列接続される。半導体スイッチ16は、制御装置19によって制御され、通常はオフされ、インバータ10が故障した場合には瞬時にオンし、バイパス交流電源22からの交流電力を負荷24に供給する。半導体スイッチ16は、オンしてから所定時間経過後にオフする。 The semiconductor switch 16 includes a pair of thyristors connected in antiparallel to each other, and is connected between the bypass input terminal T2 and the node N3. The magnetic contactor 17 is connected in parallel to the semiconductor switch 16. The semiconductor switch 16 is controlled by the control device 19, is normally turned off, and is turned on instantly when the inverter 10 fails, and supplies AC power from the bypass AC power supply 22 to the load 24. The semiconductor switch 16 is turned off after a predetermined time has elapsed since it was turned on.
 電磁接触器17は、インバータ10によって生成された交流電力を負荷24に供給するインバータ給電モード時にはオフされ、バイパス交流電源22からの交流電力を負荷24に供給するバイパス給電モード時にはオンされる。 The electromagnetic contactor 17 is turned off in the inverter power supply mode in which the AC power generated by the inverter 10 is supplied to the load 24, and is turned on in the bypass power supply mode in which the AC power from the bypass AC power supply 22 is supplied to the load 24.
 また、電磁接触器17は、インバータ10が故障した場合にオンし、バイパス交流電源22からの交流電力を負荷24に供給する。つまり、インバータ10が故障した場合には、半導体スイッチ16が瞬時に所定時間だけオンするとともに電磁接触器17がオンする。これは、半導体スイッチ16が過熱されて破損するのを防止するためである。 Further, the electromagnetic contactor 17 is turned on when the inverter 10 fails, and supplies AC power from the bypass AC power supply 22 to the load 24. That is, when the inverter 10 fails, the semiconductor switch 16 is instantly turned on for a predetermined time and the electromagnetic contactor 17 is turned on. This is to prevent the semiconductor switch 16 from being overheated and damaged.
 操作部18は、無停電電源装置1の使用者によって操作される複数のボタン、種々の情報を表示する画像表示部などを含む。使用者が操作部18を操作することにより、無停電電源装置1の電源をオンおよびオフしたり、バイパス給電モードおよびインバータ給電モードのうちのいずれか一方のモードを選択したり、新品のコンデンサ13をセットした旨を入力することが可能となっている。 The operation unit 18 includes a plurality of buttons operated by the user of the uninterruptible power supply 1, an image display unit that displays various information, and the like. By operating the operation unit 18, the user can turn on and off the power of the uninterruptible power supply 1, select either the bypass power supply mode or the inverter power supply mode, or use a new capacitor 13. It is possible to enter the fact that is set.
 操作部18は、新品のコンデンサ13をセットした旨が入力され、かつインバータ給電モードが選択された場合には、コンデンサ13の寿命判定の開始を指令する信号STを制御装置19に出力する。 When the operation unit 18 is input to the effect that a new capacitor 13 is set and the inverter power supply mode is selected, the operation unit 18 outputs a signal ST instructing the start of the life determination of the capacitor 13 to the control device 19.
 制御装置19は、操作部18からの信号、交流入力電圧Vi、交流入力電流Ii、直流電圧VDC、バッテリ電圧VB、交流出力電流Io、交流出力電圧Vo、負荷電流ILなどに基づいて無停電電源装置1全体を制御する。すなわち、制御装置19は、交流入力電圧Viの検出値に基づいて停電が発生したか否かを検出し、交流入力電圧Viの位相に同期してコンバータ6およびインバータ10を制御する。 The control device 19 is a non-disruptive power supply based on a signal from the operation unit 18, AC input voltage Vi, AC input current Ii, DC voltage VDC, battery voltage VB, AC output current Io, AC output voltage Vo, load current IL, and the like. Controls the entire device 1. That is, the control device 19 detects whether or not a power failure has occurred based on the detected value of the AC input voltage Vi, and controls the converter 6 and the inverter 10 in synchronization with the phase of the AC input voltage Vi.
 また制御装置19は、交流入力電圧Vi、交流入力電流Ii、および直流電圧VDCに基づいてコンバータ6を制御する。制御装置19は、商用交流電源21の健全時には、直流電圧VDCが所望の目標電圧VDCTになるようにコンバータ6を制御し、商用交流電源21の停電時には、コンバータ6の運転を停止させる。 Further, the control device 19 controls the converter 6 based on the AC input voltage Vi, the AC input current Ii, and the DC voltage VDC. The control device 19 controls the converter 6 so that the DC voltage VDC becomes a desired target voltage VDCT when the commercial AC power supply 21 is sound, and stops the operation of the converter 6 when the commercial AC power supply 21 fails.
 また制御装置19は、直流電圧VDCおよびバッテリ電圧VBに基づいて双方向チョッパ7を制御する。制御装置19は、商用交流電源21の健全時には、バッテリ電圧VBが所望の目標バッテリ電圧VBTになるように双方向チョッパ7を制御し、商用交流電源21の停電時には、直流電圧VDCが所望の目標電圧VDCTになるように双方向チョッパ7を制御する。 Further, the control device 19 controls the bidirectional chopper 7 based on the DC voltage VDC and the battery voltage VB. The control device 19 controls the bidirectional chopper 7 so that the battery voltage VB becomes the desired target battery voltage VBT when the commercial AC power supply 21 is sound, and the DC voltage VDC is the desired target when the commercial AC power supply 21 fails. The bidirectional chopper 7 is controlled so that the voltage is VDCT.
 また制御装置19は、交流出力電流Ioおよび交流出力電圧Voに基づいて、交流出力電圧Voが所望の目標電圧VoTになるようにインバータ10を制御する。また制御装置19は、負荷電流ILを常時監視し、たとえば負荷電流ILが過大になった場合には電磁接触器14,17および半導体スイッチ16をオフさせて無停電電源装置1を保護する。 Further, the control device 19 controls the inverter 10 so that the AC output voltage Vo becomes a desired target voltage VoT based on the AC output current Io and the AC output voltage Vo. Further, the control device 19 constantly monitors the load current IL, and when the load current IL becomes excessive, for example, the electromagnetic contactors 14 and 17 and the semiconductor switch 16 are turned off to protect the uninterruptible power supply device 1.
 さらに制御装置19は、操作部18からの信号STに応答して、所定時間が経過する毎にコンデンサ13の寿命が到来したか否かを判定する。制御装置19は、寿命判定時には、電流検出器11の出力信号Iofによって示されるインバータ10の出力電流Ioから、電流検出器15の出力信号ILfによって示される負荷電流ILを減算してコンデンサ13に流れる電流Ic=Io-ILを求め、その電流Icの高調波成分を検出する。この高調波成分は、インバータ10で発生するスイッチング周波数(たとえば6KHz)の自然数倍の周波数の電流を含む。 Further, the control device 19 responds to the signal ST from the operation unit 18 and determines whether or not the life of the capacitor 13 has reached every time a predetermined time elapses. At the time of life determination, the control device 19 subtracts the load current IL indicated by the output signal ILf of the current detector 15 from the output current Io of the inverter 10 indicated by the output signal Iof of the current detector 11 and flows to the capacitor 13. The current Ic = Io-IL is obtained, and the harmonic component of the current Ic is detected. This harmonic component includes a current having a frequency that is several times the natural number of the switching frequency (for example, 6 KHz) generated by the inverter 10.
 そして、制御装置19は、コンデンサ13の使用開始時に検出した高調波成分と今回検出した高調波成分とを比較し、比較結果に基づいて、コンデンサ13の寿命が到来したかどうかを判定し、コンデンサ13の寿命が到来したと判定した場合には、その旨を音、光、画像などを用いて無停電電源装置1の使用者に報知する。コンデンサ13の寿命判定方法については、後で詳細に説明する。 Then, the control device 19 compares the harmonic component detected at the start of use of the capacitor 13 with the harmonic component detected this time, determines whether or not the life of the capacitor 13 has expired based on the comparison result, and determines whether the capacitor 13 has reached the end of its life. When it is determined that the life of 13 has reached the end of its life, the user of the uninterruptible power supply device 1 is notified to that effect by using sound, light, an image, or the like. The method of determining the life of the capacitor 13 will be described in detail later.
 次に、この無停電電源装置1の使用方法および動作について説明する。初期状態では、商用交流電源21が健全であり、インバータ給電モードが選択され、半導体スイッチ16および電磁接触器17がオフされ、電磁接触器2,8,14がオンされているものとする。 Next, the usage and operation of this uninterruptible power supply 1 will be described. In the initial state, it is assumed that the commercial AC power supply 21 is sound, the inverter power supply mode is selected, the semiconductor switch 16 and the magnetic contactor 17 are turned off, and the magnetic contactors 2, 8 and 14 are turned on.
 商用交流電源21から供給される交流電力は、コンバータ6によって直流電力に変換される。この直流電力は、双方向チョッパ7によってバッテリ23に蓄えられるとともに、インバータ10によって交流電力に変換される。この交流電力は、交流フィルタF2を介して負荷24に供給される。負荷24は、交流電力によって運転される。 The AC power supplied from the commercial AC power supply 21 is converted into DC power by the converter 6. This DC power is stored in the battery 23 by the bidirectional chopper 7 and converted into AC power by the inverter 10. This AC power is supplied to the load 24 via the AC filter F2. The load 24 is operated by AC power.
 インバータ10から交流フィルタF2を介して負荷24に交流電力が供給されると、熱などに起因してコンデンサ13が徐々に劣化する。コンデンサ13のインピーダンスは、容量成分と抵抗成分とを含む。コンデンサ13が劣化するに従って、コンデンサ13のインピーダンスの抵抗成分が増大し、コンデンサ13に流れる電流のうちの高調波成分が減少する。 When AC power is supplied from the inverter 10 to the load 24 via the AC filter F2, the capacitor 13 gradually deteriorates due to heat or the like. The impedance of the capacitor 13 includes a capacitance component and a resistance component. As the capacitor 13 deteriorates, the resistance component of the impedance of the capacitor 13 increases, and the harmonic component of the current flowing through the capacitor 13 decreases.
 制御装置19により、所定時間毎に、電流検出器11,15の出力信号Iof,ILfに基づいてコンデンサ13に流れる電流Icの高調波成分が検出され、コンデンサ13の使用開始時に検出した高調波成分と今回検出した高調波成分とが比較され、その比較結果に基づいて、コンデンサ13の寿命が到来したかどうかが判定される。コンデンサ13の寿命が到来したと判定した場合には、その旨が無停電電源装置1の使用者に報知される。 The control device 19 detects the harmonic component of the current Ic flowing through the capacitor 13 based on the output signals If and ILf of the current detectors 11 and 15 at predetermined time intervals, and the harmonic component detected at the start of use of the capacitor 13. Is compared with the harmonic component detected this time, and based on the comparison result, it is determined whether or not the life of the capacitor 13 has reached the end. When it is determined that the life of the capacitor 13 has reached the end of its life, the user of the uninterruptible power supply 1 is notified to that effect.
 コンデンサ13の寿命が到来した旨が報知された場合、無停電電源装置1の使用者は、操作部18を操作してバイパス給電モードを選択することにより、電磁接触器17をオンさせるとともに電磁接触器2,8,14をオフさせ、コンバータ6、双方向チョッパ7、およびインバータ10の運転を停止させる。負荷24は、バイパス交流電源22から電磁接触器17を介して供給される交流電力によって駆動される。無停電電源装置1の使用者は、コンデンサ13を新品と交換する。 When it is notified that the life of the capacitor 13 has expired, the user of the uninterruptible power supply 1 operates the operation unit 18 to select the bypass power supply mode to turn on the magnetic contactor 17 and make electromagnetic contact. The vessels 2, 8 and 14 are turned off, and the operation of the converter 6, the bidirectional chopper 7, and the inverter 10 is stopped. The load 24 is driven by AC power supplied from the bypass AC power supply 22 via the electromagnetic contactor 17. The user of the uninterruptible power supply 1 replaces the capacitor 13 with a new one.
 次に使用者は、操作部18を操作して新品のコンデンサ13をセットした旨を入力するとともに、インバータ給電モードを選択する。これにより、コンバータ6、双方向チョッパ7、およびインバータ10が運転され、電磁接触器2,8,14がオンされ、電磁接触器17をオフされ、インバータ10から交流フィルタF2および電磁接触器14を介して負荷24に交流電力が供給される。また、所定時間毎にコンデンサ13の寿命が判定される。 Next, the user operates the operation unit 18 to input that a new capacitor 13 has been set, and selects the inverter power supply mode. As a result, the converter 6, the bidirectional chopper 7, and the inverter 10 are operated, the magnetic contactors 2, 8 and 14 are turned on, the magnetic contactor 17 is turned off, and the AC filter F2 and the electromagnetic contactor 14 are removed from the inverter 10. AC power is supplied to the load 24 via the load 24. Further, the life of the capacitor 13 is determined every predetermined time.
 商用交流電源21の停電が発生すると、コンバータ6の運転が停止され、バッテリ23の直流電力が双方向チョッパ7によってインバータ10に供給される。インバータ10は、双方向チョッパ7からの直流電力を交流電力に変換して負荷24に供給する。したがって、バッテリ23に直流電力が蓄えられている期間は、負荷24の運転を継続することができる。 When a power failure occurs in the commercial AC power supply 21, the operation of the converter 6 is stopped, and the DC power of the battery 23 is supplied to the inverter 10 by the bidirectional chopper 7. The inverter 10 converts the DC power from the bidirectional chopper 7 into AC power and supplies it to the load 24. Therefore, the operation of the load 24 can be continued while the DC power is stored in the battery 23.
 また、インバータ給電モード時においてインバータ10が故障した場合には、半導体スイッチ16が瞬時にオンし、電磁接触器14がオフするとともに、電磁接触器17がオンする。これにより、バイパス交流電源22からの交流電力が半導体スイッチ16および電磁接触器17を介して負荷24に供給され、負荷24の運転が継続される。一定時間後に半導体スイッチ16がオフされ、半導体スイッチ16が過熱されて破損することが防止される。 Further, when the inverter 10 fails in the inverter power supply mode, the semiconductor switch 16 is instantly turned on, the magnetic contactor 14 is turned off, and the magnetic contactor 17 is turned on. As a result, the AC power from the bypass AC power supply 22 is supplied to the load 24 via the semiconductor switch 16 and the electromagnetic contactor 17, and the operation of the load 24 is continued. After a certain period of time, the semiconductor switch 16 is turned off to prevent the semiconductor switch 16 from being overheated and damaged.
 次に、コンデンサ13の寿命判定方法について詳細に説明する。図2は、図1に示したコンバータ6およびインバータ10の構成を示す回路図である。図1では三相交流電圧のうちの一相に関連する部分のみを示したが、図2では三相に関連する部分を示している。 Next, the method of determining the life of the capacitor 13 will be described in detail. FIG. 2 is a circuit diagram showing the configurations of the converter 6 and the inverter 10 shown in FIG. In FIG. 1, only the portion related to one phase of the three-phase AC voltage is shown, but in FIG. 2, the portion related to the three phases is shown.
 図2において、コンバータ6は、IGBT(Insulated Gate Bipolar Transistor)Q1~Q6およびダイオードD1~D6を含む。IGBTは、スイッチング素子を構成する。IGBTQ1~Q3のコレクタはともに直流ラインL1に接続され、それらのエミッタはそれぞれ交流端子6a,6b,6cに接続される。IGBTQ4~Q6のコレクタはそれぞれ交流端子6a,6b,6cに接続され、それらのエミッタはともに直流ラインL2に接続される。ダイオードD1~D6は、それぞれIGBTQ1~Q6に逆並列に接続される。 In FIG. 2, the converter 6 includes IGBTs (Insulated Gate Bipolar Transistors) Q1 to Q6 and diodes D1 to D6. The IGBT constitutes a switching element. The collectors of IGBT Q1 to Q3 are both connected to the DC line L1, and their emitters are connected to the AC terminals 6a, 6b, 6c, respectively. The collectors of IGBT Q4 to Q6 are connected to the AC terminals 6a, 6b, 6c, respectively, and their emitters are both connected to the DC line L2. Diodes D1 to D6 are connected to IGBT Q1 to Q6 in antiparallel, respectively.
 交流端子6a,6b,6cは、商用交流電源21から3組の電磁接触器2および交流フィルタF1(図1)を介して供給される三相交流電圧を受ける。交流端子6a~6cに供給される三相交流電圧は、ダイオードD1~D6によって三相全波整流されて直流電圧VDCに変換され、コンデンサ9の端子間に与えられる。 The AC terminals 6a, 6b, 6c receive a three-phase AC voltage supplied from the commercial AC power supply 21 via three sets of electromagnetic contactors 2 and an AC filter F1 (FIG. 1). The three-phase AC voltage supplied to the AC terminals 6a to 6c is three-phase full-wave rectified by the diodes D1 to D6, converted into a DC voltage VDC, and applied between the terminals of the capacitor 9.
 IGBTQ1,Q4はそれぞれゲート信号Au,Buによって制御され、IGBTQ2,Q5はそれぞれゲート信号Av,Bvによって制御され、IGBTQ3,Q6はそれぞれゲート信号Aw,Bwによって制御される。ゲート信号Bu,Bv,Bwは、それぞれゲート信号Au,Av,Awの反転信号である。 The IGBT Q1 and Q4 are controlled by the gate signals Au and Bu, respectively, the IGBT Q2 and Q5 are controlled by the gate signals Av and Bv, respectively, and the IGBT Q3 and Q6 are controlled by the gate signals Aw and Bw, respectively. The gate signals Bu, Bv, and Bw are inverted signals of the gate signals Au, Av, and Aw, respectively.
 IGBTQ1~Q3は、それぞれゲート信号Au,Av,Awが「H」レベルにされた場合にオンし、それぞれゲート信号Au,Av,Awが「L」レベルにされた場合にオフする。IGBTQ4~Q6は、それぞれゲート信号Bu,Bv,Bwが「H」レベルにされた場合にオンし、それぞれゲート信号Bu,Bv,Bwが「L」レベルにされた場合にオフする。 IGBTQ1 to Q3 are turned on when the gate signals Au, Av, and Aw are set to the "H" level, and turned off when the gate signals Au, Av, and Aw are set to the "L" level, respectively. IGBTQ4 to Q6 are turned on when the gate signals Bu, Bv, and Bw are set to the "H" level, and turned off when the gate signals Bu, Bv, and Bw are set to the "L" level, respectively.
 ゲート信号Au,Bu,Av,Bv,Aw,Bwの各々は、パルス信号列であり、スイッチング周波数(たとえば6KHz)のPWM(Pulse Width Modulation)信号である。ゲート信号Au,Buの位相とゲート信号Av,Bvの位相とゲート信号Aw,Bwの位相とは120度ずつずれている。ゲート信号Au,Bu,Av,Bv,Aw,Bwは、制御装置19によって生成される。IGBTQ1~Q6の各々は、スイッチング周波数でオンおよびオフされる。 Each of the gate signals Au, Bu, Av, Bv, Aw, and Bw is a pulse signal sequence and is a PWM (Pulse Width Modulation) signal having a switching frequency (for example, 6 KHz). The phases of the gate signals Au and Bu, the phases of the gate signals Av and Bv, and the phases of the gate signals Aw and Bw are deviated by 120 degrees. The gate signals Au, Bu, Av, Bv, Aw, Bw are generated by the control device 19. Each of IGBT Q1 to Q6 is turned on and off at the switching frequency.
 ゲート信号Au,Bu,Av,Bv,Aw,BwによってIGBTQ1~Q6の各々を所定のタイミングでオンおよびオフさせるとともに、IGBTQ1~Q6の各々のオン時間を調整することにより、コンデンサ9の端子間電圧VDCを商用周波数の三相交流電圧に変換して交流端子6a~6cに出力することが可能となっている。 The voltage between the terminals of the capacitor 9 is adjusted by turning each of the IGBT Q1 to Q6 on and off at a predetermined timing by the gate signals Au, Bu, Av, Bv, Aw, and Bw, and adjusting the on time of each of the IGBT Q1 to Q6. It is possible to convert the VDC into a commercial frequency three-phase AC voltage and output it to the AC terminals 6a to 6c.
 コンバータ6から出力される三相交流電圧の位相を商用交流電源21から供給される三相交流電圧の位相よりも遅らせると、商用交流電源21からコンバータ6を介してコンデンサ9に電力が供給され、コンデンサ9の端子間電圧VDCが上昇する。 When the phase of the three-phase AC voltage output from the converter 6 is delayed from the phase of the three-phase AC voltage supplied from the commercial AC power supply 21, power is supplied from the commercial AC power supply 21 to the capacitor 9 via the converter 6. The voltage VDC between the terminals of the capacitor 9 rises.
 逆に、コンバータ6から出力される三相交流電圧の位相を商用交流電源21から供給される三相交流電圧の位相よりも進ませると、コンデンサ9からコンバータ6を介して商用交流電源21に電力が供給され、コンデンサ9の端子間電圧VDCが下降する。したがって、コンバータ6から出力される三相交流電圧の位相を調整することにより、コンデンサ9の端子間電圧VDCを所望の目標電圧VDCTに維持することができる。 On the contrary, when the phase of the three-phase AC voltage output from the converter 6 is advanced from the phase of the three-phase AC voltage supplied from the commercial AC power supply 21, power is supplied from the capacitor 9 to the commercial AC power supply 21 via the converter 6. Is supplied, and the voltage VDC between the terminals of the capacitor 9 drops. Therefore, by adjusting the phase of the three-phase AC voltage output from the converter 6, the voltage VDC between the terminals of the capacitor 9 can be maintained at a desired target voltage VDCT.
 コンバータ6から出力される三相交流電圧は、商用周波数の基本波成分と、高調波成分とを含む。高調波成分は、スイッチング周波数の自然数倍の高周波成分を含む。交流フィルタF1は、商用周波数の基本波成分を通過させ、高調波成分を遮断する。 The three-phase AC voltage output from the converter 6 includes a fundamental wave component of a commercial frequency and a harmonic component. The harmonic component includes a high frequency component that is several times the natural number of the switching frequency. The AC filter F1 passes the fundamental wave component of the commercial frequency and cuts off the harmonic component.
 また、インバータ10は、コンバータ6と同様の構成であり、IGBTQ11~Q16およびダイオードD11~D16を含む。IGBTは、スイッチング素子を構成する。IGBTQ11~Q13のコレクタはともに直流ラインL1に接続され、それらのエミッタはそれぞれ交流端子10a,10b,10cに接続される。IGBTQ14~Q16のコレクタはそれぞれ交流端子10a,10b,10cに接続され、それらのエミッタはともに直流ラインL2に接続される。ダイオードD11~D16は、それぞれIGBTQ11~Q16に逆並列に接続される。 Further, the inverter 10 has the same configuration as the converter 6, and includes the IGBT Q11 to Q16 and the diodes D11 to D16. The IGBT constitutes a switching element. The collectors of IGBT Q11 to Q13 are both connected to the DC line L1, and their emitters are connected to the AC terminals 10a, 10b, and 10c, respectively. The collectors of IGBT Q14 to Q16 are connected to the AC terminals 10a, 10b, and 10c, respectively, and their emitters are both connected to the DC line L2. The diodes D11 to D16 are connected to the IGBT Q11 to Q16 in antiparallel, respectively.
 IGBTQ11,Q14はそれぞれゲート信号Xu,Yuによって制御され、IGBTQ12,Q15はそれぞれゲート信号Xv,Yvによって制御され、IGBTQ13,Q16はそれぞれゲート信号Xw,Ywによって制御される。ゲート信号Yu,Yv,Ywは、それぞれゲート信号Xu,Xv,Xwの反転信号である。 The IGBT Q11 and Q14 are controlled by the gate signals Xu and Yu, respectively, the IGBT Q12 and Q15 are controlled by the gate signals Xv and Yv, respectively, and the IGBT Q13 and Q16 are controlled by the gate signals Xw and Yw, respectively. The gate signals Yu, Yv, and Yw are inverted signals of the gate signals Xu, Xv, and Xw, respectively.
 IGBTQ11~Q13は、それぞれゲート信号Xu,Xv,Xwが「H」レベルにされた場合にオンし、それぞれゲート信号Xu,Xv,Xwが「L」レベルにされた場合にオフする。IGBTQ14~Q16は、それぞれゲート信号Yu,Yv,Ywが「H」レベルにされた場合にオンし、それぞれゲート信号Yu,Yv,Ywが「L」レベルにされた場合にオフする。 IGBTQ11 to Q13 are turned on when the gate signals Xu, Xv, Xw are set to the "H" level, and turned off when the gate signals Xu, Xv, Xw are set to the "L" level, respectively. IGBTQ14 to Q16 are turned on when the gate signals Yu, Yv, and Yw are set to the "H" level, and turned off when the gate signals Yu, Yv, and Yw are set to the "L" level, respectively.
 ゲート信号Xu,Yu,Xv,Yv,Xw,Ywの各々は、パルス信号列であり、スイッチング周波数(たとえば6KHz)のPWM信号である。ゲート信号Xu,Yuの位相とゲート信号Xv,Yvの位相とゲート信号Xw,Ywの位相とは120度ずつずれている。ゲート信号Xu,Yu,Xv,Yv,Xw,Ywは、制御装置19によって生成される。IGBTQ11~Q16の各々は、スイッチング周波数でオンおよびオフされる。 Each of the gate signals Xu, Yu, Xv, Yv, Xw, and Yw is a pulse signal sequence and is a PWM signal having a switching frequency (for example, 6 KHz). The phases of the gate signals Xu and Yu, the phases of the gate signals Xv and Yv, and the phases of the gate signals Xw and Yw are deviated by 120 degrees. The gate signals Xu, Yu, Xv, Yv, Xw, Yw are generated by the control device 19. Each of IGBT Q11 to Q16 is turned on and off at the switching frequency.
 ゲート信号Xu,Yu,Xv,Yv,Xw,YwによってIGBTQ11~Q16の各々を所定のタイミングでオンおよびオフさせるとともに、IGBTQ11~Q16の各々のオン時間を調整することにより、コンデンサ9の端子間電圧VDCを商用周波数の三相交流電圧に変換して交流端子10a,10b,10cに出力することが可能となっている。インバータ10によって生成された三相交流電圧は、三組の交流フィルタF2および電磁接触器14を介して負荷24に供給される。 The voltage between the terminals of the capacitor 9 is adjusted by turning each of the IGBT Q11 to Q16 on and off at a predetermined timing by the gate signals Xu, Yu, Xv, Yv, Xw, and Yw and adjusting the on time of each of the IGBT Q11 to Q16. It is possible to convert the VDC into a commercial frequency three-phase AC voltage and output it to the AC terminals 10a, 10b, and 10c. The three-phase AC voltage generated by the inverter 10 is supplied to the load 24 via the three sets of AC filters F2 and the electromagnetic contactor 14.
 インバータ10から出力される三相交流電圧は、商用周波数の基本波成分と、高調波成分とを含む。高調波成分は、スイッチング周波数の自然数倍の高周波成分を含む。交流フィルタF2は、商用周波数の基本波成分を通過させ、高調波成分を遮断する。 The three-phase AC voltage output from the inverter 10 includes a fundamental wave component of a commercial frequency and a harmonic component. The harmonic component includes a high frequency component that is several times the natural number of the switching frequency. The AC filter F2 passes the fundamental wave component of the commercial frequency and cuts off the harmonic component.
 しかし、コンデンサ13の使用時間に応じてコンデンサ13が徐々に劣化する。コンデンサ13が劣化すると、コンデンサ13の抵抗成分が増大し、コンデンサ13に高調波成分が流れ難くなり、交流フィルタF2を通過する高調波成分が増大する。この高調波成分は負荷24に悪影響を及ぼすので、コンデンサ13の寿命が到来した場合にはコンデンサ13を新品と交換する必要がある。 However, the capacitor 13 gradually deteriorates according to the usage time of the capacitor 13. When the capacitor 13 deteriorates, the resistance component of the capacitor 13 increases, it becomes difficult for the harmonic component to flow through the capacitor 13, and the harmonic component passing through the AC filter F2 increases. Since this harmonic component adversely affects the load 24, it is necessary to replace the capacitor 13 with a new one when the life of the capacitor 13 is reached.
 そこで、本実施の形態1では、インバータ10の通常運転時に電流検出器11,15の検出結果に基づいてコンデンサ13に流れる電流Icを求め、その電流Icの高調波成分を検出する。そして、コンデンサ13の使用開始時に検出した高調波成分と今回検出した高調波成分とを比較し、その比較結果に基づいてコンデンサ13の寿命が到来したか否かを判定し、コンデンサ13の寿命が到来したと判定した場合には、その旨を無停電電源装置1の使用者に報知する。 Therefore, in the first embodiment, the current Ic flowing through the capacitor 13 is obtained based on the detection results of the current detectors 11 and 15 during the normal operation of the inverter 10, and the harmonic component of the current Ic is detected. Then, the harmonic component detected at the start of use of the capacitor 13 is compared with the harmonic component detected this time, and based on the comparison result, it is determined whether or not the life of the capacitor 13 has reached, and the life of the capacitor 13 is reached. If it is determined that it has arrived, the user of the uninterruptible power supply device 1 is notified to that effect.
 図3は、制御装置19のうちのコンデンサ13の寿命の判定に関連する部分を示すブロック図である。図3において、制御装置19は、演算部30、タイマー31、周波数分析部32、振幅検出部33、記憶部34、判定部35、および報知部36を含む。電流検出器11,15、操作部18、および制御装置19は、コンデンサ13の寿命を判定する寿命判定装置を構成する。 FIG. 3 is a block diagram showing a part of the control device 19 related to the determination of the life of the capacitor 13. In FIG. 3, the control device 19 includes a calculation unit 30, a timer 31, a frequency analysis unit 32, an amplitude detection unit 33, a storage unit 34, a determination unit 35, and a notification unit 36. The current detectors 11 and 15, the operation unit 18, and the control device 19 constitute a life determination device for determining the life of the capacitor 13.
 演算部30は、電流検出器11(図1)の出力信号Iofによって示されるインバータ10の出力電流Ioの瞬時値から、電流検出器15(図1)の出力信号ILfによって示される負荷電流ILの瞬時値を減算して、コンデンサ13に流れる電流Icの瞬時値を求める。 The calculation unit 30 uses the instantaneous value of the output current Io of the inverter 10 indicated by the output signal Iof of the current detector 11 (FIG. 1) to the load current IL indicated by the output signal ILf of the current detector 15 (FIG. 1). The instantaneous value is subtracted to obtain the instantaneous value of the current Ic flowing through the capacitor 13.
 図4は、演算部30の動作を説明するためのタイムチャートである。図4において、(A)は、インバータ10から出力されて3つの交流フィルタF2を通過した三相交流電圧Vu,Vv,Vwの波形を示し、(B)はインバータ10から出力されて3つの電流検出器11によって検出される三相交流電流Iu,Iv,Iwの波形を示している。 FIG. 4 is a time chart for explaining the operation of the calculation unit 30. In FIG. 4, (A) shows the waveforms of the three-phase AC voltages Vu, Vv, and Vw output from the inverter 10 and passed through the three AC filters F2, and (B) is the three currents output from the inverter 10. The waveforms of the three-phase alternating currents Iu, Iv, and Iw detected by the detector 11 are shown.
 図1および図3では、図面および説明の簡単化のため、U相、V相、およびW相のうちのU相に対応する部分のみが示されている。ノードN2の交流電圧Vo(図1)は、U相の交流電圧Vuに対応している。電流検出器11の出力信号Iof(図1)によって示されるインバータ10の交流出力電流Ioは、U相の交流電流Iuに対応している。 In FIGS. 1 and 3, only the portion corresponding to the U phase of the U phase, the V phase, and the W phase is shown for the sake of simplification of drawings and explanations. The AC voltage Vo (FIG. 1) of the node N2 corresponds to the U-phase AC voltage Vu. The AC output current Io of the inverter 10 indicated by the output signal If (FIG. 1) of the current detector 11 corresponds to the U-phase AC current Iu.
 (C)は、ノードN2(図1)とコンデンサ13との間に電流検出器を別途設け、その電流検出器によって実際に検出したコンデンサ電流IcDの波形を示し、(D)は電流検出器15の出力信号ILf(図1)によって示される負荷電流ILの波形を示し、(E)は演算部30(図3)によって算出されたコンデンサ13に流れる電流Icの波形を示している。 (C) shows the waveform of the capacitor current IcD actually detected by a current detector separately provided between the node N2 (FIG. 1) and the capacitor 13, and (D) shows the current detector 15. The waveform of the load current IL shown by the output signal ILf (FIG. 1) of the above is shown, and FIG. 3 (E) shows the waveform of the current Ic flowing through the capacitor 13 calculated by the calculation unit 30 (FIG. 3).
 また、図4において、時刻t1~t3の期間では、コンデンサ13の劣化前(使用開始時)におけるコンデンサ電流Icなどの波形が示され、時刻t3~t5の期間では、コンデンサ13の劣化後におけるコンデンサ電流Icなどの波形が示されている。 Further, in FIG. 4, in the period from time t1 to t3, the waveform of the capacitor current Ic or the like before the deterioration of the capacitor 13 (at the start of use) is shown, and in the period from time t3 to t5, the capacitor after the deterioration of the capacitor 13 is shown. Waveforms such as current Ic are shown.
 図4(A)に示すように、インバータ10および交流フィルタF2によって生成された三相交流電圧Vu(すなわちVo),Vv,Vwの各々は商用周波数で正弦波状に変化する。三相交流電圧Vu(すなわちVo),Vv,Vwの位相は、120度ずつずれている。 As shown in FIG. 4A, each of the three-phase AC voltages Vu (that is, Vo), Vv, and Vw generated by the inverter 10 and the AC filter F2 changes in a sine wave shape at a commercial frequency. The phases of the three-phase AC voltages Vu (that is, Vo), Vv, and Vw are shifted by 120 degrees.
 また図4(B)に示すように、インバータ10から出力される三相交流電流Iu(すなわちIo),Iv,Iwの各々は、基本的には商用周波数で正弦波状に変化する。三相交流電流Iu(すなわちIo),Iv,Iwの位相は、120度ずつずれている。三相交流電流Iu(すなわちIo),Iv,Iwの各々は、商用周波数の基本波成分と、スイッチング周波数の自然数倍の周波数を有する高調波成分とを含む。高調波成分は、基本波成分に重畳している。 Further, as shown in FIG. 4B, each of the three-phase alternating currents Iu (that is, Io), Iv, and Iw output from the inverter 10 basically changes in a sinusoidal shape at a commercial frequency. The phases of the three-phase alternating currents Iu (that is, Io), Iv, and Iw are shifted by 120 degrees. Each of the three-phase alternating currents Iu (ie, Io), Iv, and Iw contains a fundamental wave component of a commercial frequency and a harmonic component having a frequency that is a natural number multiple of the switching frequency. The harmonic component is superimposed on the fundamental wave component.
 また図4(C)に示すように、別途設けられた電流検出器によって実際に検出されたコンデンサ電流IcDは、基本的には商用周波数で正弦波状に変化する。コンデンサ電流IcDの位相は、交流電圧Vu(すなわちVo)の位相よりも90度進んでいる。コンデンサ電流IcDは、商用周波数の基本波成分と、スイッチング周波数の自然数倍の周波数を有する高調波成分とを含む。高調波成分は、基本波成分に重畳している。 Further, as shown in FIG. 4C, the capacitor current IcD actually detected by the separately provided current detector basically changes in a sinusoidal shape at a commercial frequency. The phase of the capacitor current IcD is 90 degrees ahead of the phase of the AC voltage Vu (ie, Vo). The capacitor current IcD includes a fundamental wave component of a commercial frequency and a harmonic component having a frequency that is a natural number multiple of the switching frequency. The harmonic component is superimposed on the fundamental wave component.
 図4(C)から分かるように、コンデンサ13の劣化後の電流IcDの高調波成分の振幅は、コンデンサ13の劣化前の電流IcDの高調波成分の振幅よりも小さいことが分かる。これは、コンデンサ13が劣化するとコンデンサ13の抵抗成分が増大し、コンデンサ13に高調波電流が流れ難くなることに対応している。 As can be seen from FIG. 4C, it can be seen that the amplitude of the harmonic component of the current IcD after the deterioration of the capacitor 13 is smaller than the amplitude of the harmonic component of the current IcD before the deterioration of the capacitor 13. This corresponds to the fact that when the capacitor 13 deteriorates, the resistance component of the capacitor 13 increases, and it becomes difficult for the harmonic current to flow through the capacitor 13.
 また図4(D)に示すように、負荷電流ILは、基本的には商用周波数で正弦波状に変化する。負荷電流ILの位相は、交流電圧Vu(すなわちVo)の位相と同じである。コンデンサ13の劣化前では、負荷電流ILに高調波成分は含まれていない。コンデンサ13の劣化後では、負荷電流ILに若干の高調波成分が含まれている。 Further, as shown in FIG. 4 (D), the load current IL basically changes in a sinusoidal shape at a commercial frequency. The phase of the load current IL is the same as the phase of the AC voltage Vu (that is, Vo). Before the deterioration of the capacitor 13, the load current IL does not contain a harmonic component. After the deterioration of the capacitor 13, the load current IL contains some harmonic components.
 また図4(E)に示すように、演算部30(図3)によって算出されたコンデンサ電流Icの波形は、電流検出器によって実際に検出されたコンデンサ電流IcDの波形(図4(C))と一致している。したがって、本実施の形態1では、コンデンサ13に流れる電流Icを検出するための電流検出器を別途設ける必要はないので、装置構成の簡単化と装置の低コスト化を図ることができる。 Further, as shown in FIG. 4 (E), the waveform of the capacitor current Ic calculated by the calculation unit 30 (FIG. 3) is the waveform of the capacitor current IcD actually detected by the current detector (FIG. 4 (C)). Is consistent with. Therefore, in the first embodiment, it is not necessary to separately provide a current detector for detecting the current Ic flowing through the capacitor 13, so that the device configuration can be simplified and the cost of the device can be reduced.
 再び図3を参照して、操作部18(図1)は、無停電電源装置1の使用者により、新品のコンデンサ13をセットしたことが入力され、インバータ給電モードの実行が指示された場合に、装置動作の安定化に必要な所定時間の経過後に信号STを出力する。 With reference to FIG. 3 again, when the user of the uninterruptible power supply 1 inputs that a new capacitor 13 has been set and is instructed to execute the inverter power supply mode, the operation unit 18 (FIG. 1) is instructed to execute the inverter power supply mode. , The signal ST is output after a predetermined time required for stabilizing the operation of the device has elapsed.
 タイマー31は、操作部18からの信号STに応答してリセットされ、インバータ10の通常運転時間TDを計測し、計測した時間TDを示す信号TDfを出力する。計測した時間TDが所定時間に到達する毎に、計測時間TDは0秒にリセットされる。 The timer 31 is reset in response to the signal ST from the operation unit 18, measures the normal operation time TD of the inverter 10, and outputs a signal TDf indicating the measured time TD. Every time the measured time TD reaches a predetermined time, the measured time TD is reset to 0 seconds.
 ここで、インバータ10の通常運転時間TDとは、インバータ10の交流出力電力が交流フィルタF2および電磁接触器14を介して負荷24に供給されている時間である。このとき、高調波成分がコンデンサ13に流れてコンデンサ13が徐々に劣化する。 Here, the normal operation time TD of the inverter 10 is the time during which the AC output power of the inverter 10 is supplied to the load 24 via the AC filter F2 and the electromagnetic contactor 14. At this time, the harmonic component flows through the capacitor 13, and the capacitor 13 gradually deteriorates.
 周波数分析部32は、タイマー31の出力信号TDfによって示される時間TDが0秒にリセットされる毎に、演算部30によって求められた電流Icの波形を取り込み、取り込んだ電流Icの波形に高速フーリエ変換を施して電流Icの周波数分布を求める。 The frequency analysis unit 32 captures the waveform of the current Ic obtained by the calculation unit 30 every time the time TD indicated by the output signal TDf of the timer 31 is reset to 0 seconds, and fast Fouriers the waveform of the captured current Ic. The frequency distribution of the current Ic is obtained by performing the conversion.
 図5は、コンデンサ13に流れる電流Icの周波数分布を示す図である。図5において、(A)はコンデンサ13の劣化前(すなわち使用開始時)における電流Icの周波数分布を示し、(B)はコンデンサ13の劣化後における電流Icの周波数分布を示している。 FIG. 5 is a diagram showing the frequency distribution of the current Ic flowing through the capacitor 13. In FIG. 5, (A) shows the frequency distribution of the current Ic before the deterioration of the capacitor 13 (that is, at the start of use), and (B) shows the frequency distribution of the current Ic after the deterioration of the capacitor 13.
 図5において、コンデンサ13に流れる電流Icは、商用周波数(50Hz)の基本波成分と、高調波成分とを含む。高調波成分は、主に、スイッチング周波数(6KHz)のN倍(たとえば1倍)の周波数の高周波成分(第1の電流)と、スイッチング周波数のM倍(たとえば2倍)の周波数の高周波成分(第2の電流)とを含む。Nは自然数であり、MはNと異なる自然数である。 In FIG. 5, the current Ic flowing through the capacitor 13 includes a fundamental wave component of a commercial frequency (50 Hz) and a harmonic component. The harmonic components are mainly a high frequency component (first current) having a frequency N times (for example, 1 times) the switching frequency (6 KHz) and a high frequency component having a frequency M times (for example, 2 times) the switching frequency (for example, 2 times). Second current) and included. N is a natural number and M is a natural number different from N.
 図5から分かるように、コンデンサ13の劣化後における高調波成分の振幅は、コンデンサ13の劣化前における高調波成分の振幅よりも小さくなっている。これは、コンデンサ13の劣化が進行することによってコンデンサ13の抵抗成分が増大し、コンデンサ13に流れる高調波成分が減少したことに対応している。 As can be seen from FIG. 5, the amplitude of the harmonic component after the deterioration of the capacitor 13 is smaller than the amplitude of the harmonic component before the deterioration of the capacitor 13. This corresponds to the fact that the resistance component of the capacitor 13 increases and the harmonic component flowing through the capacitor 13 decreases as the deterioration of the capacitor 13 progresses.
 再び図3を参照して、振幅検出部33は、周波数分析部32によって求められた周波数分布に基づいて、スイッチング周波数(6KHz)の1倍の周波数を有する電流の振幅A1と、スイッチング周波数の2倍の周波数(12KHz)を有する電流の振幅A2とを検出する。 With reference to FIG. 3 again, the amplitude detection unit 33 has an amplitude A1 of a current having a frequency of 1 times the switching frequency (6KHz) and a switching frequency of 2 based on the frequency distribution obtained by the frequency analysis unit 32. The amplitude A2 of the current having a double frequency (12 KHz) is detected.
 記憶部34は、操作部18からの信号STに応答して、振幅検出部33によって検出された振幅A1,A2をそれぞれ初期振幅値A1n,A2nとして記憶する。判定部35は、記憶部34に記憶された初期振幅値A1n,A2nと、振幅検出部33によって今回検出された振幅A1,A2とを比較し、比較結果に基づいて、コンデンサ13の寿命が到来したか否かを判定し、判定結果を示す信号φ35を出力する。 The storage unit 34 stores the amplitudes A1 and A2 detected by the amplitude detection unit 33 as initial amplitude values A1n and A2n, respectively, in response to the signal ST from the operation unit 18. The determination unit 35 compares the initial amplitude values A1n and A2n stored in the storage unit 34 with the amplitudes A1 and A2 detected this time by the amplitude detection unit 33, and based on the comparison result, the life of the capacitor 13 has come to an end. It is determined whether or not it has been done, and a signal φ35 indicating the determination result is output.
 コンデンサ13の寿命が未だ到来していないと判定された場合には、信号φ35は非活性化レベルの「L」レベルにされる。コンデンサ13の寿命が到来した判定された場合には、信号φ35は活性化レベルの「H」レベルにされる。 When it is determined that the life of the capacitor 13 has not reached yet, the signal φ35 is set to the “L” level of the deactivation level. When it is determined that the life of the capacitor 13 has come to an end, the signal φ35 is set to the “H” level of the activation level.
 具体的には判定部35は、初期振幅値A1n(第1の振幅)と振幅A1(第2の振幅)との差ΔA1=A1n-A1が上限値A1Hを超え、かつ初期振幅値A2n(第3の振幅)と振幅A2(第4の振幅)との差ΔA2=A2n-A2nが上限値A2Hを超えた場合に、コンデンサ13の寿命が到来したと判定し、信号φ35を活性化レベルの「H」レベルにする。それ以外の場合には判定部35は、信号φ35を非活性化レベルの「L」レベルにする。 Specifically, in the determination unit 35, the difference ΔA1 = A1n−A1 between the initial amplitude value A1n (first amplitude) and the amplitude A1 (second amplitude) exceeds the upper limit value A1H, and the initial amplitude value A2n (first amplitude). When the difference ΔA2 = A2n−A2n between (amplitude of 3) and amplitude A2 (fourth amplitude) exceeds the upper limit value A2H, it is determined that the life of the capacitor 13 has reached the end, and the signal φ35 is set to the activation level “ Set to H "level. In other cases, the determination unit 35 sets the signal φ35 to the “L” level of the deactivation level.
 報知部36は、信号φ35が活性化レベルの「H」レベルにされた場合には、コンデンサ13の寿命が到来したことを、光、音、画像などを用いて無停電電源装置1の使用者に報知する。 When the signal φ35 is set to the activation level “H” level, the notification unit 36 indicates that the life of the capacitor 13 has reached the end of the life of the capacitor 13 by using light, sound, an image, or the like to notify the user of the uninterruptible power supply 1. Notify to.
 次に、無停電電源装置1におけるコンデンサ13の寿命判定動作について説明する。初期状態では、バイパス給電モードが選択されており、新品のコンデンサ13がセットされたものとする。無停電電源装置1の使用者によって操作部18が操作され、新品のコンデンサ13をセットしたことが入力され、インバータ給電モードが選択されると、電磁接触器2,8,14がオンされ、コンバータ6、双方向チョッパ7、およびインバータ10の運転が開始され、電磁接触器17がオフされる。 Next, the life determination operation of the capacitor 13 in the uninterruptible power supply 1 will be described. In the initial state, it is assumed that the bypass feeding mode is selected and a new capacitor 13 is set. When the operation unit 18 is operated by the user of the uninterruptible power supply 1, it is input that a new capacitor 13 is set, and the inverter power supply mode is selected, the electromagnetic contactors 2, 8 and 14 are turned on and the converter is converted. 6. The operation of the bidirectional chopper 7 and the inverter 10 is started, and the electromagnetic contactor 17 is turned off.
 商用交流電源21から供給される交流電力がコンバータ6によって直流電力に変換され、その直流電力が双方向チョッパ7によってバッテリ23に蓄えられるとともに、インバータ10によって交流電力に変換されて負荷24に供給される。インバータ10の出力電流Ioは電流検出器11によって検出され、負荷電流ILは電流検出器15によって検出される。演算部30(図3)により、インバータ10の出力電流Ioから負荷電流ILが減算されてコンデンサ13に流れる電流Icが算出される。 The AC power supplied from the commercial AC power supply 21 is converted into DC power by the converter 6, the DC power is stored in the battery 23 by the bidirectional chopper 7, and is converted into AC power by the inverter 10 and supplied to the load 24. To. The output current Io of the inverter 10 is detected by the current detector 11, and the load current IL is detected by the current detector 15. The calculation unit 30 (FIG. 3) subtracts the load current IL from the output current Io of the inverter 10 to calculate the current Ic flowing through the capacitor 13.
 装置動作の安定化に必要な所定時間の経過後に、操作部18から信号STが出力される。信号STに応答してタイマー31がリセットされ、インバータ10の運転時間TDが0秒にリセットされた後に運転時間TDの計測が開始される。インバータ10の運転時間TDが所定時間に到達する度に、インバータ10の運転時間TDが0秒にリセットされる。 The signal ST is output from the operation unit 18 after a predetermined time required for stabilizing the operation of the device has elapsed. The timer 31 is reset in response to the signal ST, and the operation time TD of the inverter 10 is reset to 0 seconds, and then the measurement of the operation time TD is started. Every time the operation time TD of the inverter 10 reaches a predetermined time, the operation time TD of the inverter 10 is reset to 0 seconds.
 運転時間TDが0秒にリセットされると、演算部30によって算出されるコンデンサ電流Icの波形が周波数分析部32に取り込まれ、コンデンサ電流Icの周波数分布が求められる。振幅検出部33により、コンデンサ電流Icの周波数分布から、スイッチング周波数(6KHz)の1倍の周波数を有する電流の振幅A1と、スイッチング周波数の2倍の周波数(12KHz)を有する電流の振幅A2とが検出される。 When the operation time TD is reset to 0 seconds, the waveform of the capacitor current Ic calculated by the calculation unit 30 is taken into the frequency analysis unit 32, and the frequency distribution of the capacitor current Ic is obtained. From the frequency distribution of the capacitor current Ic, the amplitude detection unit 33 determines that the amplitude A1 of the current having a frequency of 1 times the switching frequency (6 KHz) and the amplitude A2 of the current having a frequency twice the switching frequency (12 KHz). Detected.
 記憶部34は、操作部18からの信号STに応答して、振幅検出部33によって検出された振幅A1,A2をそれぞれ初期振幅値A1n,A2nとして記憶する。インバータ10の運転時間TDが所定時間に到達する度に、周波数分析部32によってコンデンサ電流Icの周波数分布が求められ、振幅検出部33によって振幅A1,A2が検出される。 The storage unit 34 stores the amplitudes A1 and A2 detected by the amplitude detection unit 33 as initial amplitude values A1n and A2n, respectively, in response to the signal ST from the operation unit 18. Every time the operating time TD of the inverter 10 reaches a predetermined time, the frequency analysis unit 32 obtains the frequency distribution of the capacitor current Ic, and the amplitude detection unit 33 detects the amplitudes A1 and A2.
 振幅検出部33によって今回検出された振幅A1,A2と、記憶部34に記憶された初期振幅値A1n,A2nとが判定部35によって比較され、比較結果に基づいて、コンデンサ13の寿命が到来したか否かが判定される。判定部35によってコンデンサ13の寿命が到来したと判定された場合には、その旨が報知部36によって無停電電源装置1の使用者に報知される。 The amplitudes A1 and A2 detected this time by the amplitude detection unit 33 and the initial amplitude values A1n and A2n stored in the storage unit 34 are compared by the determination unit 35, and the life of the capacitor 13 has come to an end based on the comparison result. Whether or not it is determined. When the determination unit 35 determines that the life of the capacitor 13 has reached the end, the notification unit 36 notifies the user of the uninterruptible power supply device 1 to that effect.
 これに応じて使用者は、操作部18を用いてバイパス給電モードを選択する。これにより、電磁接触器2,8,14がオフされ、電磁接触器17がオンされ、バイパス交流電源22から電磁接触器17を介して負荷24に交流電力が供給され、負荷24の運転が継続される。また、コンバータ6、双方向チョッパ7、およびインバータ10の運転が停止される。 In response to this, the user selects the bypass power supply mode using the operation unit 18. As a result, the magnetic contactors 2, 8 and 14 are turned off, the magnetic contactor 17 is turned on, AC power is supplied from the bypass AC power supply 22 to the load 24 via the magnetic contactor 17, and the operation of the load 24 is continued. Will be done. Further, the operation of the converter 6, the bidirectional chopper 7, and the inverter 10 is stopped.
 使用者は、寿命が到来したコンデンサ13を新品のコンデンサ13と交換した後、操作部18を操作して、新品のコンデンサ13がセットされたことと、インバータ給電モードの実行を指示する。これにより、電磁接触器2,8,14がオンされ、コンバータ6、双方向チョッパ7、およびインバータ10の運転が開始され、電磁接触器17がオフされ、負荷24はインバータ10からの交流電力によって運転される。また、新品のコンデンサ13の寿命の判定が開始される。 The user replaces the capacitor 13 that has reached the end of its life with a new capacitor 13, and then operates the operation unit 18 to instruct that the new capacitor 13 is set and that the inverter power supply mode is executed. As a result, the magnetic contactors 2, 8 and 14 are turned on, the converter 6, the bidirectional chopper 7 and the inverter 10 are started to operate, the magnetic contactor 17 is turned off, and the load 24 is powered by the AC power from the inverter 10. Be driven. Further, the determination of the life of the new capacitor 13 is started.
 以上のように、この実施の形態1では、インバータ10の交流端子10aに接続されたコンデンサ13に流れる電流Icをインバータ10の通常運転時に検出し、その電流Icのうちの高調波成分を検出し、コンデンサの使用開始時に検出した高調波成分と今回検出した高調波成分とを比較し、その比較結果に基づいてコンデンサ13の寿命が到来したか否かを判定する。したがって、インバータ10を通常運転しながらコンデンサ13の寿命を判定することができる。また、特許文献1と比べ、コンデンサ13を充電するための抵抗器、スイッチなどを別途設ける必要がないので、装置の低コスト化を図ることができる。 As described above, in the first embodiment, the current Ic flowing through the capacitor 13 connected to the AC terminal 10a of the inverter 10 is detected during normal operation of the inverter 10, and the harmonic component of the current Ic is detected. , The harmonic component detected at the start of use of the capacitor is compared with the harmonic component detected this time, and it is determined whether or not the life of the capacitor 13 has reached the end of the life of the capacitor 13 based on the comparison result. Therefore, the life of the capacitor 13 can be determined while the inverter 10 is normally operated. Further, as compared with Patent Document 1, since it is not necessary to separately provide a resistor, a switch, or the like for charging the capacitor 13, the cost of the device can be reduced.
 なお、この実施の形態1では、初期振幅値A1nと振幅値A1との差ΔA1=A1n-A1が上限値A1Hを超えた第1の条件(ΔA1>A1H)と、初期振幅値A2nと振幅値A2との差ΔA2=A2n-A2nが上限値A2Hを超えた第2の条件(ΔA2>A2H)との両方の条件が満たされた場合に、コンデンサ13の寿命が到来したと判定したが、これに限るものではなく、第1および第2の条件のうちのいずれか1つの条件が満たされた場合にコンデンサ13の寿命が到来したと判定しても構わない。 In the first embodiment, the first condition (ΔA1> A1H) in which the difference ΔA1 = A1n−A1 between the initial amplitude value A1n and the amplitude value A1 exceeds the upper limit value A1H, and the initial amplitude value A2n and the amplitude value. When both the conditions of the second condition (ΔA2> A2H) in which the difference ΔA2 = A2n−A2n from A2 exceeds the upper limit value A2H are satisfied, it is determined that the life of the capacitor 13 has come to an end. However, it may be determined that the life of the capacitor 13 has reached the end when any one of the first and second conditions is satisfied.
 図6は、実施の形態1の変更例を示すブロック図であって、図3と対比される図である。図6を参照して、この変更例が実施の形態1と異なる点は、判定部35が判定部35Aと置換されている点である。判定部35Aは、振幅値A1と初期振幅値A1nの比A1/A1nが下限値A1Lよりも低下し、かつ振幅値A2と初期振幅値A2nの比A2/A2nが下限値A2Lよりも低下した場合に、コンデンサ13の寿命が到来したと判定して、信号φ35を活性化レベルの「H」レベルにする。他の構成および動作は、実施の形態1と同じであるので、その説明は繰り返さない。この変更例でも、実施の形態1と同じ効果が得られる。 FIG. 6 is a block diagram showing a modified example of the first embodiment, and is a diagram to be compared with FIG. With reference to FIG. 6, the difference between this modification and the first embodiment is that the determination unit 35 is replaced with the determination unit 35A. In the determination unit 35A, when the ratio A1 / A1n of the amplitude value A1 and the initial amplitude value A1n is lower than the lower limit value A1L and the ratio A2 / A2n of the amplitude value A2 and the initial amplitude value A2n is lower than the lower limit value A2L. In addition, it is determined that the life of the capacitor 13 has reached the end, and the signal φ35 is set to the “H” level of the activation level. Since other configurations and operations are the same as those in the first embodiment, the description thereof will not be repeated. Even in this modified example, the same effect as that of the first embodiment can be obtained.
 なお、この変更例では、振幅値A1と初期振幅値A1nの比A1/A1nが下限値A1Lよりも低下した第3の条件(A1/A1n<A1L)と、振幅値A2と初期振幅値A2nの比A2/A2nが下限値A2Lよりも低下した第4の条件(A2/A2n<A2L)との両方の条件が満たされた場合に、コンデンサ13の寿命が到来したと判定したが、これに限るものではなく、第3および第4の条件のうちのいずれか1つの条件が満たされた場合にコンデンサ13の寿命が到来したと判定しても構わない。 In this modification, the third condition (A1 / A1n <A1L) in which the ratio A1 / A1n of the amplitude value A1 and the initial amplitude value A1n is lower than the lower limit value A1L, and the amplitude value A2 and the initial amplitude value A2n. When both the conditions of the fourth condition (A2 / A2n <A2L) in which the ratio A2 / A2n is lower than the lower limit value A2L are satisfied, it is determined that the life of the capacitor 13 has come to an end, but this is limited to this. However, it may be determined that the life of the capacitor 13 has reached the end when any one of the third and fourth conditions is satisfied.
 [実施の形態2]
 図2で説明したように、コンデンサ9が充電された後には、コンバータ6は、コンデンサ9の端子間電圧VDCを交流電圧に変換し、交流フィルタF1を介して商用交流電源21に出力する。商用交流電源21(すなわち電力系統)には多数の負荷(図示せず)が接続されている。コンデンサ9から見れば、コンバータ6および交流フィルタF1と、インバータ10および交流フィルタF2とは、同じ構成である。交流フィルタF1に含まれるコンデンサ4も、コンデンサ13と同様に劣化する。そこで、本実施の形態2では、コンデンサ4の寿命を判定する。
[Embodiment 2]
As described with reference to FIG. 2, after the capacitor 9 is charged, the converter 6 converts the terminal voltage VDC of the capacitor 9 into an AC voltage and outputs the voltage to the commercial AC power supply 21 via the AC filter F1. A large number of loads (not shown) are connected to the commercial AC power supply 21 (that is, the power system). From the viewpoint of the capacitor 9, the converter 6 and the AC filter F1 and the inverter 10 and the AC filter F2 have the same configuration. The capacitor 4 included in the AC filter F1 also deteriorates in the same manner as the capacitor 13. Therefore, in the second embodiment, the life of the capacitor 4 is determined.
 図7は、実施の形態2による無停電電源装置1Aの構成を示す回路ブロック図であって、図1と対比される図である。図7を参照して、この無停電電源装置1Aが実施の形態1の無停電電源装置1と異なる点は電流検出器40が追加され、制御装置19が制御装置19Aで置換されている点である。 FIG. 7 is a circuit block diagram showing the configuration of the uninterruptible power supply device 1A according to the second embodiment, and is a diagram to be compared with FIG. 1. With reference to FIG. 7, the uninterruptible power supply 1A differs from the uninterruptible power supply 1 of the first embodiment in that the current detector 40 is added and the control device 19 is replaced by the control device 19A. be.
 電流検出器40は、コンバータ6の入力電流(すなわちリアクトル5に流れる電流)Iicを検出し、その検出値を示す信号Iicfを出力する。制御装置19Aは、インバータ給電モード時に、電流検出器40の出力信号Iicfによって示されるコンバータ6の入力電流Iicから、電流検出器3の出力信号Iifによって示される交流入力電流Iiを減算してコンデンサ4に流れる電流IcA=Iic-Iiを求め、その電流IcAの高調波成分を検出する。 The current detector 40 detects the input current (that is, the current flowing through the reactor 5) Iic of the converter 6 and outputs the signal Iicf indicating the detected value. In the inverter power supply mode, the control device 19A subtracts the AC input current Ii indicated by the output signal If of the current detector 3 from the input current Iic of the converter 6 indicated by the output signal Iicf of the current detector 40 to obtain the capacitor 4. The current IcA = Iic-Ii flowing through the current IcA is obtained, and the harmonic component of the current IcA is detected.
 そして、制御装置19Aは、コンデンサ4の使用開始時に検出した高調波成分と今回検出した高調波成分とを比較し、比較結果に基づいて、コンデンサ4の寿命が到来したかどうかを判定し、コンデンサ4の寿命が到来したと判定した場合には、その旨を音、光、画像などを用いて無停電電源装置1Aの使用者に報知する。 Then, the control device 19A compares the harmonic component detected at the start of use of the capacitor 4 with the harmonic component detected this time, determines whether or not the life of the capacitor 4 has expired based on the comparison result, and determines whether the capacitor 4 has reached the end of its life. When it is determined that the life of 4 has reached the end of its life, the user of the uninterruptible power supply device 1A is notified by using sound, light, an image, or the like.
 図8は、制御装置19Aのうちのコンデンサ4の寿命の判定に関連する部分を示すブロック図であって、図3と対比される図である。図8を参照して、制御装置19Aは、制御装置19と同様に、演算部30、タイマー31、周波数分析部32、振幅検出部33、記憶部34、判定部35、および報知部36を含む。電流検出器3,40、操作部18、および制御装置19Aは、コンデンサ4の寿命を判定する寿命判定装置を構成する。 FIG. 8 is a block diagram showing a portion of the control device 19A related to the determination of the life of the capacitor 4, and is a diagram to be compared with FIG. With reference to FIG. 8, the control device 19A includes a calculation unit 30, a timer 31, a frequency analysis unit 32, an amplitude detection unit 33, a storage unit 34, a determination unit 35, and a notification unit 36, similarly to the control device 19. .. The current detectors 3 and 40, the operation unit 18, and the control device 19A constitute a life determination device for determining the life of the capacitor 4.
 演算部30は、電流検出器40の出力信号Iicfによって示されるコンバータ6の入力電流Iicの瞬時値から、電流検出器3の出力信号Iifによって示される交流入力電流Iiの瞬時値を減算して、コンデンサ4に流れる電流IcAの瞬時値を求める。 The calculation unit 30 subtracts the instantaneous value of the AC input current Ii indicated by the output signal If of the current detector 3 from the instantaneous value of the input current Iic of the converter 6 indicated by the output signal Iicf of the current detector 40. The instantaneous value of the current IcA flowing through the capacitor 4 is obtained.
 操作部18は、無停電電源装置1の使用者により、新品のコンデンサ4をセットしたことが入力され、インバータ給電モードの実行が指示された場合に、装置動作の安定化に必要な所定時間の経過後に信号STを出力する。 When the user of the uninterruptible power supply 1 inputs that a new capacitor 4 has been set and is instructed to execute the inverter power supply mode, the operation unit 18 has a predetermined time required for stabilizing the operation of the device. After the lapse of time, the signal ST is output.
 タイマー31は、操作部18からの信号STに応答してリセットされ、コンバータ6の通常運転時間TDを計測し、計測した時間TDを示す信号TDfを出力する。計測した時間TDが所定時間に到達する毎に、計測時間TDは0秒にリセットされる。 The timer 31 is reset in response to the signal ST from the operation unit 18, measures the normal operation time TD of the converter 6, and outputs a signal TDf indicating the measured time TD. Every time the measured time TD reaches a predetermined time, the measured time TD is reset to 0 seconds.
 ここで、コンバータ6の通常運転時間TDとは、商用交流電源21の交流出力電力が電磁接触器2および交流フィルタF1を介してコンバータ6に供給され、コンバータ6が運転されている時間である。このとき、コンバータ6で発生する高調波電流がコンデンサ4に流れてコンデンサ4が徐々に劣化される。 Here, the normal operating time TD of the converter 6 is the time when the AC output power of the commercial AC power supply 21 is supplied to the converter 6 via the electromagnetic contactor 2 and the AC filter F1 and the converter 6 is operated. At this time, the harmonic current generated by the converter 6 flows through the capacitor 4, and the capacitor 4 is gradually deteriorated.
 周波数分析部32は、タイマー31の出力信号TDfによって示される時間TDが0秒にリセットされる毎に、演算部30によって求められた電流IcAの波形を取り込み、取り込んだ電流IcAの波形に高速フーリエ変換を施して電流IcAの周波数分布を求める。 The frequency analysis unit 32 captures the waveform of the current IcA obtained by the calculation unit 30 every time the time TD indicated by the output signal TDf of the timer 31 is reset to 0 seconds, and fast Fouriers the waveform of the captured current IcA. The frequency distribution of the current IcA is obtained by performing the conversion.
 振幅検出部33は、周波数分析部32によって求められた周波数分布に基づいて、スイッチング周波数(6KHz)の1倍の周波数を有する電流の振幅A1と、スイッチング周波数の2倍の周波数(12KHz)を有する電流の振幅A2とを検出する。 The amplitude detection unit 33 has an amplitude A1 of a current having a frequency of 1 times the switching frequency (6 KHz) and a frequency (12 KHz) twice the switching frequency based on the frequency distribution obtained by the frequency analysis unit 32. The current amplitude A2 and the like are detected.
 記憶部34は、操作部18からの信号STに応答して、振幅検出部33によって検出された振幅A1,A2をそれぞれ初期振幅値A1n,A2nとして記憶する。判定部35は、記憶部34に記憶された初期振幅値A1n,A2nと、振幅検出部33によって今回検出された振幅A1,A2とを比較し、比較結果に基づいて、コンデンサ4の寿命が到来したか否かを判定し、判定結果を示す信号φ35を出力する。 The storage unit 34 stores the amplitudes A1 and A2 detected by the amplitude detection unit 33 as initial amplitude values A1n and A2n, respectively, in response to the signal ST from the operation unit 18. The determination unit 35 compares the initial amplitude values A1n and A2n stored in the storage unit 34 with the amplitudes A1 and A2 detected this time by the amplitude detection unit 33, and based on the comparison result, the life of the capacitor 4 has come to an end. It is determined whether or not it has been done, and a signal φ35 indicating the determination result is output.
 コンデンサ4の寿命が未だ到来していないと判定された場合には、信号φ35は非活性化レベルの「L」レベルにされる。コンデンサ4の寿命が到来した判定された場合には、信号φ35は活性化レベルの「H」レベルにされる。 If it is determined that the life of the capacitor 4 has not reached yet, the signal φ35 is set to the "L" level of the deactivation level. When it is determined that the life of the capacitor 4 has come to an end, the signal φ35 is set to the “H” level of the activation level.
 具体的には判定部35は、初期振幅値A1nと振幅値A1との差ΔA1=A1n-A1が上限値A1Hを超え、かつ初期振幅値A2nと振幅値A2との差ΔA2=A2n-A2nが上限値A2Hを超えた場合に、コンデンサ4の寿命が到来したと判定し、信号φ35を活性化レベルの「H」レベルにする。それ以外の場合には判定部35は、信号φ35を非活性化レベルの「L」レベルにする。 Specifically, in the determination unit 35, the difference ΔA1 = A1n-A1 between the initial amplitude value A1n and the amplitude value A1 exceeds the upper limit value A1H, and the difference ΔA2 = A2n-A2n between the initial amplitude value A2n and the amplitude value A2 is When the upper limit value A2H is exceeded, it is determined that the life of the capacitor 4 has expired, and the signal φ35 is set to the “H” level of the activation level. In other cases, the determination unit 35 sets the signal φ35 to the “L” level of the deactivation level.
 報知部36は、信号φ35が活性化レベルの「H」レベルにされた場合には、コンデンサ4の寿命が到来したことを、光、音、画像などを用いて無停電電源装置1の使用者に報知する。 When the signal φ35 is set to the activation level “H” level, the notification unit 36 indicates that the life of the capacitor 4 has reached the end of the life of the capacitor 4, by using light, sound, an image, or the like to notify the user of the uninterruptible power supply 1. Notify to.
 他の構成および動作は、実施の形態1と同じであるので、その説明は繰り返さない。この実施の形態2でも、実施の形態1と同じ動作が得られる。 Since other configurations and operations are the same as those in the first embodiment, the description thereof will not be repeated. Also in the second embodiment, the same operation as that of the first embodiment can be obtained.
 なお、上記実施の形態1,2および種々の変更例を適宜組み合わせてもよいことは言うまでもない。 Needless to say, the above embodiments 1 and 2 and various modified examples may be appropriately combined.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1,1A 無停電電源装置、T1 交流入力端子、T2 バイパス入力端子、T3 バッテリ端子、T4 交流出力端子、2,8,14,17 電磁接触器、3,11,15,40 電流検出器、4,9,13 コンデンサ、5,12 リアクトル、6 コンバータ、7 双方向チョッパ、10 インバータ、16 半導体スイッチ、18 操作部、19,19A 制御装置、21 商用交流電源、22 バイパス交流電源、23 バッテリ、24 負荷、L1,L2 直流ライン、Q1~Q6,Q11~Q16 IGBT、D1~D6,D11~D16 ダイオード、30 演算部、31 タイマー、32 周波数分析部、33 振幅検出部、34 記憶部、35 判定部、36 報知部。 1,1A non-disruptive power supply, T1 AC input terminal, T2 bypass input terminal, T3 battery terminal, T4 AC output terminal, 2,8,14,17 electromagnetic contactor, 3,11,15,40 current detector, 4 , 9, 13 Capacitor, 5, 12 Reactor, 6 Converter, 7 Bidirectional Chopper, 10 Inverter, 16 Semiconductor Switch, 18 Operation Unit, 19, 19A Control Device, 21 Commercial AC Power Supply, 22 Bypass AC Power Supply, 23 Battery, 24 Load, L1, L2 DC line, Q1 to Q6, Q11 to Q16 IGBT, D1 to D6, D11 to D16 diode, 30 calculation unit, 31 timer, 32 frequency analysis unit, 33 amplitude detection unit, 34 storage unit, 35 judgment unit , 36 Notification unit.

Claims (13)

  1.  電力変換器の交流端子に接続されたコンデンサの寿命を判定する寿命判定装置であって、
     前記電力変換器の運転時に前記コンデンサに流れる電流を検出する電流検出部と、
     前記電流検出部によって検出される電流のうちの高調波成分を検出する高調波検出部と、
     前記コンデンサの使用開始時に前記高調波検出部によって検出された高調波成分と、前記高調波検出部によって今回検出された高調波成分とを比較し、その比較結果に基づいて前記コンデンサの寿命が到来したか否かを判定する判定部とを備える、寿命判定装置。
    It is a life judgment device that judges the life of the capacitor connected to the AC terminal of the power converter.
    A current detector that detects the current flowing through the capacitor during operation of the power converter, and
    A harmonic detection unit that detects a harmonic component of the current detected by the current detection unit, and a harmonic detection unit.
    The harmonic component detected by the harmonic detection unit at the start of use of the capacitor is compared with the harmonic component detected this time by the harmonic detection unit, and the life of the capacitor is reached based on the comparison result. A life determination device including a determination unit for determining whether or not a capacitor has been used.
  2.  前記電力変換器は、スイッチング周波数でオンおよびオフされるスイッチング素子を含み、
     前記高調波成分は、前記スイッチング周波数のN倍の周波数を有する第1の電流を含み、Nは自然数であり、
     前記高調波検出部は、
     前記電流検出部によって検出される電流の周波数分布を求める周波数分析部と、
     前記周波数分析部によって求められた周波数分布に基づいて、前記第1の電流の振幅を検出する振幅検出部とを含み、
     前記判定部は、前記コンデンサの使用開始時に前記振幅検出部によって検出された前記第1の電流の第1の振幅と、前記振幅検出部によって今回検出された前記第1の電流の第2の振幅とを比較し、その比較結果に基づいて前記コンデンサの寿命が到来したか否かを判定する、請求項1に記載の寿命判定装置。
    The power converter comprises a switching element that is turned on and off at a switching frequency.
    The harmonic component comprises a first current having a frequency N times the switching frequency, where N is a natural number.
    The harmonic detection unit
    A frequency analysis unit that obtains the frequency distribution of the current detected by the current detection unit, and
    The frequency detection unit includes an amplitude detection unit that detects the amplitude of the first current based on the frequency distribution obtained by the frequency analysis unit.
    The determination unit has a first amplitude of the first current detected by the amplitude detection unit at the start of use of the capacitor and a second amplitude of the first current detected this time by the amplitude detection unit. The life determination device according to claim 1, wherein the capacitor is compared with the above and it is determined whether or not the life of the capacitor has reached the end of the life of the capacitor based on the comparison result.
  3.  前記周波数分析部は、前記電流検出部によって求められた前記コンデンサに流れる電流の波形に高速フーリエ変換を施して前記周波数分布を求める、請求項2に記載の寿命判定装置。 The life determination device according to claim 2, wherein the frequency analysis unit performs a fast Fourier transform on the waveform of the current flowing through the capacitor obtained by the current detection unit to obtain the frequency distribution.
  4.  前記判定部は、前記第1および第2の振幅の差に基づいて、前記コンデンサの寿命が到来したか否かを判定する、請求項2に記載の寿命判定装置。 The life determination device according to claim 2, wherein the determination unit determines whether or not the life of the capacitor has reached the end of the life of the capacitor based on the difference between the first and second amplitudes.
  5.  前記判定部は、前記第2および第1の振幅の比率に基づいて、前記コンデンサの寿命が到来したか否かを判定する、請求項2に記載の寿命判定装置。 The life determination device according to claim 2, wherein the determination unit determines whether or not the life of the capacitor has reached the end of the life of the capacitor based on the ratio of the second and first amplitudes.
  6.  前記高調波成分は、前記スイッチング周波数のM倍の周波数を有する第2の電流を含み、Mは、Nと異なる自然数であり、
     前記振幅検出部は、前記周波数分析部によって求められた周波数分布に基づいて、前記第2の電流の振幅をさらに検出し、
     前記判定部は、前記コンデンサの使用開始時に前記振幅検出部によって検出された前記第2の電流の第3の振幅と前記振幅検出部によって今回検出された前記第2の電流の第4の振幅とを比較し、その比較結果と、前記第1および第2の振幅の比較結果とに基づいて前記コンデンサの寿命が到来したか否かを判定する、請求項2に記載の寿命判定装置。
    The harmonic component includes a second current having a frequency M times that of the switching frequency, where M is a natural number different from N.
    The amplitude detection unit further detects the amplitude of the second current based on the frequency distribution obtained by the frequency analysis unit.
    The determination unit includes the third amplitude of the second current detected by the amplitude detection unit at the start of use of the capacitor and the fourth amplitude of the second current detected this time by the amplitude detection unit. The life determination device according to claim 2, wherein the capacitor is compared and it is determined whether or not the life of the capacitor has reached the end of the life of the capacitor based on the comparison result and the comparison result of the first and second amplitudes.
  7.  Nは1であり、Mは2である、請求項6に記載の寿命判定装置。 The life determination device according to claim 6, wherein N is 1 and M is 2.
  8.  前記判定部によって前記コンデンサの寿命が到来したと判定された場合に、その旨を報知する報知部をさらに備える、請求項1に記載の寿命判定装置。 The life determination device according to claim 1, further comprising a notification unit for notifying when the determination unit determines that the life of the capacitor has reached the end.
  9.  直流電源から供給される直流電力を交流電力に変換する第1の電力変換器と、
     前記第1の電力変換器の交流端子と負荷の間に接続される交流フィルタと、
     前記交流フィルタに含まれるコンデンサの寿命を判定する寿命判定装置とを備え、
     前記寿命判定装置は、
     前記第1の電力変換器の運転時に前記コンデンサに流れる電流を検出する電流検出部と、
     前記電流検出部によって検出される電流のうちの高調波成分を検出する高調波検出部と、
     前記コンデンサの使用開始時に前記高調波検出部によって検出された高調波成分と前記高調波検出部によって今回検出された高調波成分とを比較し、その比較結果に基づいて前記コンデンサの寿命が到来したか否かを判定する判定部とを含む、電源装置。
    A first power converter that converts DC power supplied from a DC power source to AC power,
    An AC filter connected between the AC terminal of the first power converter and the load,
    A life determination device for determining the life of the capacitor included in the AC filter is provided.
    The life determination device is
    A current detector that detects the current flowing through the capacitor during operation of the first power converter, and
    A harmonic detection unit that detects a harmonic component of the current detected by the current detection unit, and a harmonic detection unit.
    The harmonic component detected by the harmonic detection unit at the start of use of the capacitor is compared with the harmonic component detected this time by the harmonic detection unit, and the life of the capacitor has come to an end based on the comparison result. A power supply device including a determination unit for determining whether or not.
  10.  前記交流フィルタはリアクトルおよび前記コンデンサを含み、
     前記リアクトルの一方端子は前記第1の電力変換器の交流端子に接続され、前記リアクトルの他方端子は前記負荷に接続され、
     前記コンデンサは、前記リアクトルの他方端子に接続されている、請求項9に記載の電源装置。
    The AC filter includes the reactor and the capacitor.
    One terminal of the reactor is connected to the AC terminal of the first power converter, and the other terminal of the reactor is connected to the load.
    The power supply device according to claim 9, wherein the capacitor is connected to the other terminal of the reactor.
  11.  前記電流検出部は、
     前記リアクトルに流れる電流を検出する第1の電流検出器と、
     負荷電流を検出する第2の電流検出器と、
     前記第1および第2の電流検出器の検出値の差に基づいて前記コンデンサに流れる電流を求める演算部とを含む、請求項10に記載の電源装置。
    The current detector is
    A first current detector that detects the current flowing through the reactor, and
    A second current detector that detects the load current, and
    The power supply device according to claim 10, further comprising an arithmetic unit for obtaining a current flowing through the capacitor based on a difference between the detected values of the first and second current detectors.
  12.  前記直流電源は、交流電源から供給される交流電力を直流電力に変換して前記第1の電力変換器に与える第2の電力変換器を含む、請求項9に記載の電源装置。 The power supply device according to claim 9, wherein the DC power supply includes a second power converter that converts AC power supplied from the AC power supply into DC power and supplies the AC power to the first power converter.
  13.  前記交流電源の健全時には、前記第2の電力変換器によって生成される直流電力を電力貯蔵装置に蓄え、前記交流電源の停電時には、前記電力貯蔵装置の直流電力を前記第1の電力変換器に与える第3の電力変換器をさらに備える、請求項12に記載の電源装置。 When the AC power supply is sound, the DC power generated by the second power converter is stored in the power storage device, and when the AC power supply fails, the DC power of the power storage device is stored in the first power converter. 12. The power supply according to claim 12, further comprising a third power converter to provide.
PCT/JP2020/047722 2020-12-21 2020-12-21 End of life determination device and power supply device equipped with same WO2022137291A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/047722 WO2022137291A1 (en) 2020-12-21 2020-12-21 End of life determination device and power supply device equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/047722 WO2022137291A1 (en) 2020-12-21 2020-12-21 End of life determination device and power supply device equipped with same

Publications (1)

Publication Number Publication Date
WO2022137291A1 true WO2022137291A1 (en) 2022-06-30

Family

ID=82158640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047722 WO2022137291A1 (en) 2020-12-21 2020-12-21 End of life determination device and power supply device equipped with same

Country Status (1)

Country Link
WO (1) WO2022137291A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3265410B2 (en) * 1993-10-27 2002-03-11 株式会社日立製作所 Power converter
JP3661155B2 (en) * 2003-02-07 2005-06-15 エイテック株式会社 Harmonic diagnosis method for electrical equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3265410B2 (en) * 1993-10-27 2002-03-11 株式会社日立製作所 Power converter
JP3661155B2 (en) * 2003-02-07 2005-06-15 エイテック株式会社 Harmonic diagnosis method for electrical equipment

Similar Documents

Publication Publication Date Title
KR102376604B1 (en) uninterruptible power supply
US10615636B2 (en) Uninterruptible power supply
US11394295B2 (en) Power supply apparatus
JP6706390B2 (en) Power converter
JP5917921B2 (en) Uninterruptible power system
JP6714157B2 (en) Power supply device and power supply system using the same
US11196290B2 (en) Uninterruptible power supply apparatus
JP6668556B2 (en) Power supply device and power supply system using the same
US11336114B2 (en) Uninterruptible power supply apparatus
US11196292B2 (en) Uninterruptible power supply system
WO2022137291A1 (en) End of life determination device and power supply device equipped with same
US11936237B2 (en) Uninterruptible power supply apparatus
CN114731113A (en) Power conversion device
JPS63206165A (en) Uninterruptible power supply
TWI640153B (en) Power conversion device
KR20230007479A (en) uninterruptible power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP