WO2022135220A1 - 基于压力调节振动频率的控制方法、控制系统及存储介质 - Google Patents

基于压力调节振动频率的控制方法、控制系统及存储介质 Download PDF

Info

Publication number
WO2022135220A1
WO2022135220A1 PCT/CN2021/137663 CN2021137663W WO2022135220A1 WO 2022135220 A1 WO2022135220 A1 WO 2022135220A1 CN 2021137663 W CN2021137663 W CN 2021137663W WO 2022135220 A1 WO2022135220 A1 WO 2022135220A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
value
oral care
vibration frequency
pressure value
Prior art date
Application number
PCT/CN2021/137663
Other languages
English (en)
French (fr)
Inventor
张金泉
李建
黄道臣
黄拔梓
Original Assignee
深圳市力博得科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市力博得科技有限公司 filed Critical 深圳市力博得科技有限公司
Publication of WO2022135220A1 publication Critical patent/WO2022135220A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/16Power-driven cleaning or polishing devices
    • A61C17/22Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/16Power-driven cleaning or polishing devices
    • A61C17/22Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like
    • A61C17/32Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating
    • A61C17/34Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating driven by electric motor

Definitions

  • the present application belongs to the technical field of intelligent oral care appliances, and in particular, relates to a control method, a control system and a storage medium for adjusting vibration frequency based on pressure.
  • the embodiments of the present application provide a control method, a control system, and a storage medium for adjusting the vibration frequency based on pressure, which can solve the problem that the pressure detection value of the smart oral care appliance is offset under temperature drift, and finally causes the smart oral care appliance to be The problem of inaccurate judgment of the working mode of oral care appliances.
  • an embodiment of the present application provides a control method for adjusting a vibration frequency based on pressure, which is applied to a smart oral care appliance.
  • the working frequency of the smart oral care appliance includes a first vibration frequency and a second vibration frequency, and the The smart oral care appliance has a base pressure value, and when the smart oral care appliance operates at the second vibration frequency, perform the following steps:
  • S101 Collect the current pressure value of the intelligent oral care appliance at a first preset time interval to construct a first pressure data set
  • S102 Perform a first equalization process on the constructed first pressure data set of the intelligent oral care appliance to obtain a first equalization value
  • the method further includes the following steps:
  • S202 Collect the current pressure value at a second preset time interval to construct a second pressure data set
  • S203 Perform a second equalization process on the second pressure data set to obtain a second equalization value
  • S204 Calculate the difference between the basic pressure value and the second equilibrium value, compare the difference with a preset threshold, and if the difference is greater than the preset threshold, control the The smart oral care implement operates at the first vibration frequency.
  • the redefining the base pressure value includes the following steps:
  • S301 Perform a third equalization process on the first pressure data set to obtain a third equalization value
  • the first equalization process includes calculating the variance of the first-order difference of the first pressure data set.
  • the value range of the preset fluctuation value is [2, 10].
  • the preset fluctuation value is 3.
  • the base pressure value is a pressure value collected when the smart oral care appliance is powered on.
  • the base pressure value is a pressure value collected every preset period when the smart oral care implement is not in use.
  • the first vibration frequency is greater than the second vibration frequency.
  • an embodiment of the present application provides a control system for adjusting vibration frequency based on pressure, which is applied to a smart oral care appliance, wherein the operating frequency of the smart oral care appliance includes a first vibration frequency and a second vibration frequency frequency, the intelligent oral care appliance has a basic pressure value, and the control system for adjusting the vibration frequency based on the pressure includes:
  • a data collection unit configured to collect the current pressure value of the smart oral care appliance at a first preset time interval to construct a first pressure data set
  • a first equalization processing unit configured to receive the first pressure data set of the smart oral care appliance constructed by the data acquisition unit, and perform a first equalization process on the first pressure data set to obtain the first equilibrium value
  • a fluctuation value judgment unit configured to receive the first equilibrium value, compare and judge the first equilibrium value with a preset fluctuation value, and determine whether to generate a redefinition instruction for redefining the basic pressure value according to the judgment result ;
  • a redefinition unit configured to redefine the basic pressure value according to the redefinition instruction output by the fluctuation value determination unit.
  • embodiments of the present application provide an intelligent oral care appliance, including a memory, a processor, and a computer program stored in the memory and executable on the processor, where the processor executes the computer During the program, any one of the above-mentioned control methods for adjusting the vibration frequency based on pressure is implemented.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, any one of the above-mentioned pressure-based adjustment of the vibration frequency is realized steps of the control method.
  • an embodiment of the present application provides a computer program product that, when the computer program product runs on a smart oral care appliance, enables the smart oral care appliance to perform any one of the above-mentioned control of adjusting the vibration frequency based on pressure in the first aspect method.
  • the current pressure value of the smart oral care device is collected at a first preset time interval to construct a first pressure data set; Perform a first equalization process on the constructed first pressure data set of the intelligent oral care appliance to obtain a first equalized value; compare the first equalized value with a preset fluctuation value, if the first equalized value is If the equilibrium value is smaller than the preset fluctuation value, the basic pressure value is redefined.
  • the intelligent oral care appliance is working, the current pressure value is collected at the first preset time interval, and the first equalization process is performed on the collected current pressure value to improve the accuracy of the current pressure value, and then the first equalization process is performed.
  • the value is compared with the preset fluctuation value to determine the current working mode of the smart oral care appliance, so as to determine whether the basic pressure value needs to be redefined according to the working mode.
  • the first equilibrium value is less than the preset fluctuation value, it indicates that the current
  • the smart oral care appliance is in the anti-splash mode, which is the working mode of vibrating at the second vibration frequency.
  • the smart oral care appliance needs to redefine the basic pressure value, so that the basic pressure value of the smart oral care appliance can change with the working temperature of the smart oral care appliance. changes according to the change of the pressure, thereby ensuring that the intelligent oral care appliance can accurately judge the current working mode according to the corrected basic pressure value, and avoids the error of working mode judgment caused by temperature drift.
  • Fig. 1 is the pressure change curve diagram during normal brushing provided by the embodiment of the present application
  • FIG. 2 is a graph showing the heightened pressure detection value under temperature drift provided by an embodiment of the present application
  • FIG. 3 is a graph showing a lower pressure detection value under temperature drift provided by an embodiment of the present application.
  • FIG. 4 is a first schematic flowchart of a control method for adjusting vibration frequency based on pressure provided by an embodiment of the present application
  • FIG. 5 is a second schematic flowchart of a control method for adjusting vibration frequency based on pressure provided by an embodiment of the present application
  • FIG. 6 is a third schematic flowchart of a control method for adjusting vibration frequency based on pressure provided by an embodiment of the present application
  • Fig. 7 is a pressure curve change diagram after generating a large pressure provided by an embodiment of the present application.
  • Fig. 8 is the pressure curve change diagram of continuing to brush teeth after a large pressure is generated in the normal brushing process provided by the embodiment of the present application;
  • Fig. 9 is the pressure curve change diagram of not performing the brushing action after the high pressure is generated in the normal brushing process provided by the embodiment of the present application;
  • Fig. 10 is the first pressure curve change diagram after the large pressure is generated in the splash-proof mode provided by the embodiment of the present application;
  • FIG. 11 is a second pressure curve change diagram after a large pressure is generated in the splash-proof mode provided by the embodiment of the present application.
  • FIG. 12 is a first pressure curve change diagram of a rebound process after generating a large pressure according to an embodiment of the present application
  • FIG. 13 is a second pressure curve change diagram of the rebound process after generating a large pressure provided by the embodiment of the present application;
  • FIG. 14 is a schematic structural diagram of a control system for adjusting vibration frequency based on pressure provided by an embodiment of the present application
  • FIG. 15 is a schematic structural diagram of an intelligent oral care appliance provided in an embodiment of the present application.
  • the term “if” may be contextually interpreted as “when” or “once” or “in response to determining” or “in response to detecting “.
  • the phrases “if it is determined” or “if the [described condition or event] is detected” may be interpreted, depending on the context, to mean “once it is determined” or “in response to the determination” or “once the [described condition or event] is detected. ]” or “in response to detection of the [described condition or event]”.
  • the above-mentioned smart oral care appliances may be common oral care tools such as smart electric toothbrushes, tooth irrigators, and tooth polishers.
  • This embodiment takes the electric toothbrush as the implementation object for specific description.
  • the electric toothbrush works normally, it includes two working modes, one is the brushing mode that works at the first vibration frequency, and the other is the second vibration frequency lower than the first vibration frequency.
  • the pressure change of the electric toothbrush during normal operation is shown in Figure 1.
  • the average value of the pressure values received by the toothbrush at the second vibration frequency is approximately equal to F1
  • the average value of the pressure values received by the toothbrush at the first vibration frequency is always greater than F1+ ⁇ F.
  • the detection result of the pressure sensor set up inside the electric toothbrush may cause the pressure value drift phenomenon (temperature drift phenomenon) due to the change of the working temperature of the electric toothbrush, indoor temperature and other external factors.
  • the pressure detection value detected by the pressure sensor will be shifted higher or lower under the phenomenon of temperature drift, as shown in Figure 2 and Figure 3.
  • Figure 2 is a graph showing the increase in pressure detection value under temperature drift, in which F1 refers to the basic pressure value, that is, the pressure value that the electric toothbrush is subjected to when the user does not apply pressure to the electric toothbrush when the toothbrush is started, and ⁇ F refers to the preset pressure value.
  • the critical value, F refers to the difference between the average value of the aforementioned pressure values and the base pressure value F1
  • t refers to the working time of the aforementioned electric toothbrush. It can be seen from Figure 2 that the current pressure value is higher than the pressure value shown in Figure 1, that is, the temperature drift causes the pressure value to shift upward, which will cause the average value of the current pressure value to appear in the anti-splash mode.
  • the difference between the base pressure values F1 actually compared is greater than the aforementioned preset threshold. Normally, the electric toothbrush should be in the anti-splash mode at this time, but due to the temperature drift, the electric toothbrush may accidentally enter the brushing mode, that is, the electric toothbrush should work at the second vibration frequency at this time, but it may be damaged. Error control operates at the first vibration frequency.
  • Figure 3 shows the lower pressure detection value under temperature drift. It can be seen from Figure 3 that the current pressure value is lower than the pressure value shown in Figure 1, that is, the temperature drift causes the pressure value to shift downward, and the As a result, the difference (absolute value) between the current pressure value and the actual base pressure value compared in the anti-splash mode is greater than the aforementioned preset threshold value. Normally, the electric toothbrush should be in the anti-splash mode at this time, but due to the temperature drift, the electric toothbrush may accidentally enter the brushing mode (although the pressure detection value becomes smaller), that is, the electric toothbrush should vibrate with the second vibration at this time. frequency, but may be incorrectly controlled to work at the first vibration frequency. In addition, when the user wants to brush his teeth, even if he brushes his teeth with the same force as usual, the pressure detection value is generally low due to temperature drift, so the electric toothbrush still operates at the second vibration frequency.
  • the present invention provides a control method for adjusting the vibration frequency based on pressure, as follows.
  • FIG. 4 is a schematic flowchart of a control method for adjusting vibration frequency based on pressure in an embodiment of the present application.
  • the execution body of the method may be an electric toothbrush.
  • the operating frequency of the electric toothbrush includes a first The vibration frequency and the second vibration frequency, the electric toothbrush has a basic pressure value, and when the electric toothbrush works at the second vibration frequency, the following steps are performed:
  • Step S101 collecting the current pressure value of the electric toothbrush at a first preset time interval to construct a first pressure data set.
  • a current pressure value collection method within a preset time period or a preset number of current pressure values can be set acquisition method, so as to construct a first pressure data set according to each collected current pressure value, and the aforementioned first preset time can be set according to the user's specific accuracy requirements, and is generally preferably 20ms.
  • Step S102 performing a first equalization process on the constructed first pressure data set of the electric toothbrush to obtain a first equalization value.
  • the first equalization process for the first pressure data set can be performed by calculating the variance of the first-order difference in the first pressure value data set, that is, firstly calculating two adjacent two pressure values in the current pressure value set. The difference between the current pressure values is calculated, and the variance of at least two difference values in the first pressure data set is calculated to obtain the first equilibrium value, which provides a data basis for subsequent comparison and judgment.
  • the first equalization process may be performed by calculating the variance and standard deviation of the first data set.
  • Step S103 Compare the first equilibrium value with a preset fluctuation value, and redefine the basic pressure value if the first equilibrium value is smaller than the preset fluctuation value.
  • the electric toothbrush keeps moving in the normal brushing mode, but when it is not in the normal brushing mode, the fluctuation of the electric toothbrush is relatively stable, that is, the fluctuation value is small, so the determined pressure value
  • the change value of the fluctuation that is, the aforementioned first equilibrium value, is compared with the preset fluctuation value, and then the current state is determined. If the first equilibrium value is less than the preset fluctuation value, it means that the current electric toothbrush is still in the anti-splash mode.
  • the basic pressure value F1 defined when the toothbrush is turned on may no longer be suitable for pressure detection that has shifted. Therefore, it is necessary to redefine the basic pressure value, so as to ensure the correct judgment of the working mode of the toothbrush and avoid misjudgment caused by the influence of temperature drift.
  • the obtained first equilibrium value is greater than the preset fluctuation value, it means that the current working mode is the brushing mode, that is, the user is performing the brushing action.
  • the aforementioned preset fluctuation value can be any integer within the range of [2, 10] according to specific precision requirements.
  • the aforementioned preset fluctuation value is preferably set to 3. The larger the preset fluctuation value, the more times the calibration will be performed against the base pressure value.
  • the specific example is not limited.
  • the aforementioned user can set to obtain each current pressure value within 0.6s, and obtain it at a frequency of every 20ms, that is, obtain 30 current pressure values to form a current pressure value set. If the current pressure value set The values are (20001, 20001, 20002, 20003, 20003, 20003, 20004, 20005, 20004, 20005, 20005, 20007, 20008, 20008, 20008, 20007, 20007, 20005, 20006, 20007, 2060, 2007 20008, 20009, 20008, 20006, 20007, 20009, 20006), the fluctuation value obtained by the pressure value set is less than the aforementioned fluctuation threshold 3, so the anti-splash control is performed, that is, the electric toothbrush vibrates at the second vibration frequency.
  • the fluctuation value obtained by this pressure value set is greater than the aforementioned fluctuation threshold 3, so normal brushing control is performed, that is, the electric toothbrush takes the first Vibration frequency for vibrating working mode.
  • the smart toothbrush in the aforementioned smart oral care appliance includes a handle and a brush head.
  • the handle includes a casing and a driving device arranged in the casing, the output shaft of the driving device extends out of the casing, and the brush head can be installed on the output shaft in a detachable manner, so that the output shaft is used to drive the brush head to drive the brush head when the driving device works.
  • the preset mode vibrates to facilitate the user to brush their teeth.
  • the aforementioned smart toothbrush further includes a pressure sensor.
  • the aforementioned pressure sensor can be arranged on the output shaft or on the brush head.
  • the brush head is provided with a first coil and the handle is provided with a second coil.
  • the second coil realizes the power supply between the pressure sensor on the brush head and the handle and the transmission operation of related signals, that is, the energy supply between the pressure sensor and the handle is realized by setting a device similar to a radio frequency tag between the pressure sensor and the handle and data transfer.
  • the method further includes the following steps:
  • Step S201 acquiring a basic pressure value.
  • the pressure sensor inside the electric toothbrush detects a certain pressure value due to some external factors, and the pressure value is the pressure value before the user does not brush his teeth, in order to ensure that the user is detected
  • the accuracy of the pressure applied when brushing teeth can obtain the basic pressure value, that is, the pressure value on the electric toothbrush when the user does not apply pressure to the electric toothbrush.
  • Step S202 collecting the current pressure value at a second preset time interval to construct a second pressure data set.
  • the pressure sensor by using the pressure sensor to collect the current pressure value of the electric toothbrush at the second preset time interval, the current pressure value collection method within the preset time period or the preset number of current pressure values can be set. acquisition method, so as to construct a second pressure data set according to the collected current pressure values.
  • the aforementioned second preset time can be set according to the user’s specific accuracy requirements, generally preferably 20ms, and the aforementioned preset number can be based on the user’s specific accuracy. Requirement to set, generally preferably 10 times.
  • Step S203 performing a second equalization process on the second pressure data set to obtain a second equalization value.
  • the current pressure value measured once is used for subsequent comparison, it is easy to cause the comparison result to be inaccurate. Therefore, the current pressure value can be detected at regular intervals. That is to say, the current pressure value is detected at the second preset time interval to obtain the second pressure data set, and then the second pressure data set is equalized to obtain the second equilibrium value to represent the pressure within a period of time. The current pressure value, thereby improving the accuracy of the current pressure value.
  • the aforementioned second equalization process may be to obtain the second equalization value by calculating the mathematical expectation of the data set.
  • Step S204 Calculate the difference between the basic pressure value and the second equilibrium value, compare the difference with a preset threshold, and if the difference is greater than the preset threshold, control the The electric toothbrush operates at the first vibration frequency.
  • the difference between the two is obtained by subtracting the obtained basic pressure value from the second equilibrium value obtained above, and the difference between the electric toothbrush and the initial basic pressure value is determined by the difference value. amount of change. If the aforementioned difference is greater than the preset critical value, it means that the user needs to perform normal brushing, so the controller of the electric toothbrush can control the electric toothbrush to enter the normal brushing mode, that is, the working mode vibrating at the first vibration frequency.
  • the aforementioned preset critical value can be set according to the user's specific accuracy requirements, and if the second equilibrium value is obtained by the aforementioned calculation method, the value range of the preset critical value is generally in the range of 18 to 28, preferably 20 ; If the second equalization value is obtained by calculating the variance of the first-order difference, the value range of the preset critical value is generally in the range of 2 to 10, preferably 3.
  • redefining the basic pressure value in step S103 includes the following steps:
  • Step S301 performing a third equalization process on the first pressure data set to obtain a third equalization value.
  • Step S302 taking the third equilibrium value as a new basic pressure value.
  • the first equilibrium value obtained by the aforementioned calculation is smaller than the preset fluctuation value, it means that the current electric toothbrush is not in the normal brushing mode, but in the anti-splash control mode, and the basic pressure value needs to be re-determined so as to facilitate The data is updated in real time to ensure that the electric toothbrush determines the working mode. Therefore, a third equalization process is performed on each current pressure value in the first pressure data set obtained above to obtain a third equalized value, and the aforementioned third equalized value is used as a new basis. Pressure value.
  • the aforesaid third equalization process may be to obtain a third equalization value, that is, the aforesaid new basic pressure value, by calculating a mathematical expectation.
  • the aforementioned basic pressure value is a pressure value collected when the electric toothbrush is powered on.
  • the aforementioned basic pressure value is a pressure value collected every preset period when the electric toothbrush is not in use.
  • the controller of the electric toothbrush collects the pressure value every preset period, and then equalizes the collected pressure value according to the collected pressure value before the brushing action is performed to obtain the balanced value to determine the electric toothbrush.
  • the basic pressure value when the toothbrush is not in use so as to prevent the aforementioned deviation of the basic pressure value from being too large, thereby causing inaccurate detection of the force applied by the user to the electric toothbrush.
  • the aforementioned preset period is the time interval for obtaining the pressure value when the electric toothbrush is not in use, which can be set according to the user’s specific accuracy requirements, and is generally preferably one hour; the aforementioned pressure value is every time the electric toothbrush is not brushing teeth.
  • the pressure value detected by the pressure sensor at intervals.
  • the aforementioned equalization process may be to obtain the basic pressure value by calculating the mathematical expectation of each collected pressure value.
  • a pressure difference between the pressure value collected in this cycle and the pressure value collected in an adjacent cycle is calculated.
  • the pressure value of each cycle when the smart oral care device is not in use can be collected, and the pressure difference between the pressure value collected in this cycle and the pressure value collected in the adjacent cycle can be calculated.
  • the difference threshold means that when the pressure value is collected in the current cycle, the pressure value changes drastically due to external factors, so the pressure value collected in this cycle is eliminated to improve the basic pressure when the smart oral care appliance is not in use. accuracy of the value.
  • the aforesaid preset difference threshold refers to the maximum pressure value that can differ between the pressure values to ensure the accuracy of the basic pressure value. If it is greater than the maximum pressure value that can be different, it means that the pressure value collected in this period is due to some external factors. As a result, the pressure value changes drastically.
  • the aforementioned preset difference threshold can be set according to user requirements, which is not limited here.
  • the basic pressure value cannot be accurately detected, that is, the pressure value sensed by the electric toothbrush when the user does not apply pressure to the electric toothbrush.
  • the basic pressure value determined by the pressure value collected every preset period is compared, and the pressure difference value is calculated. If the pressure difference value is greater than the pressure difference value threshold, it means the basic pressure determined by the pressure value collected when the electric toothbrush is turned on. If the value deviation is too large, the electric toothbrush may be in the stage of being placed on the tooth.
  • the pressure value collected when the electric toothbrush is turned on cannot be used as the basic pressure value, and the pressure value collected every preset period when the electric toothbrush is not in use is used as the pressure value.
  • Base pressure value to improve the accuracy of base pressure value. If the pressure difference is less than or equal to the pressure difference threshold, the pressure value collected when the electric toothbrush is turned on will be used as the basic pressure value. If the pressure difference threshold is not exceeded, the pressure value collected at startup will be used as the basic pressure value.
  • the current pressure value of the smart oral care device is collected at a first preset time interval to construct a first pressure data set; Perform a first equalization process on the constructed first pressure data set of the intelligent oral care appliance to obtain a first equalized value; compare the first equalized value with a preset fluctuation value, if the first equalized value is If the equilibrium value is smaller than the preset fluctuation value, the basic pressure value is redefined.
  • the intelligent oral care appliance is working, the current pressure value is collected at the first preset time interval, and the first equalization process is performed on the collected current pressure value to improve the accuracy of the current pressure value, and then the first equalization process is performed.
  • the value is compared with the preset fluctuation value to determine the current working mode of the smart oral care appliance, so as to determine whether the basic pressure value needs to be redefined according to the working mode.
  • the first equilibrium value is less than the preset fluctuation value, it indicates that the current
  • the smart oral care appliance is in the anti-splash mode, which is the working mode of vibrating at the second vibration frequency.
  • the smart oral care appliance needs to redefine the basic pressure value, so that the basic pressure value of the smart oral care appliance can change with the working temperature of the smart oral care appliance. changes according to the change of the pressure, thereby ensuring that the intelligent oral care appliance can accurately judge the current working mode according to the corrected basic pressure value, and avoids the error of working mode judgment caused by temperature drift.
  • the large pressure rebound phenomenon will also interfere with the pressure detection value.
  • the large pressure phenomenon may occur during the user's brushing, or when the toothbrush head is accidentally pressed or collided with a hard object.
  • the toothbrush head When the toothbrush head is subjected to large pressure, due to the material characteristics, the toothbrush head will have a pressure rebound process after the pressure source disappears, and the pressure after the rebound may deviate from the pressure before the rebound. This deviation makes the detected value too high or too low.
  • the present invention also proposes a control method for eliminating pressure rebound interference, which is as follows.
  • the controller of the electric toothbrush needs to detect the pressure value by controlling the pressure sensor, and compare it with the obtained pressure threshold value to determine whether the pressure value is greater than the pressure threshold value, and whether there will be a phenomenon of pressure rebound change.
  • the controller of the electric toothbrush determines that the pressure sensor detects that the pressure value is greater than the preset pressure threshold value, it determines that there is a large pressure.
  • the rebound of the pressure value causes Finally, the deviation of the pressure value acting on the toothbrush is detected, which affects the subsequent judgment. It is necessary to judge the pressure change trend during the pressure rebound process, so as to decide whether to redefine the basic pressure value according to the pressure change trend during the pressure rebound process.
  • the toothbrush may be in the anti-splash mode, or the user may turn off the brushing mode of the electric toothbrush.
  • the brushing mode includes normal brushing. Brush mode and anti-splash mode.
  • the basic pressure value needs to be adjusted so as to determine a more accurate basic pressure value.
  • the aforementioned pressure value is the pressure value obtained in real time by the pressure sensor of the electric toothbrush; the aforementioned pressure threshold value is used to judge whether there is a large pressure, if the detected pressure value of the electric toothbrush is greater than the pressure threshold value, it indicates that a large pressure has occurred, After the high pressure disappears, the pressure rebound changes.
  • Figure 7 is the pressure curve change diagram after the large pressure is generated.
  • the curve change process from t4 to t5 in Figure 7 is the above pressure. rebound process.
  • the value range of the aforementioned preset pressure threshold is between 400g and 600g.
  • the value of the aforementioned preset pressure threshold is 500g.
  • Figure 8 is a graph of the pressure curve change of the pressure sensor to continue the brushing action after the pressure sensor generates a large pressure during the normal brushing process.
  • F1 in Figure 8 refers to the basic pressure value
  • ⁇ F refers to the aforementioned preset critical value
  • F refers to the difference between the average value of the aforementioned pressure value and the basic pressure value F1
  • t refers to the working time of the aforementioned electric toothbrush.
  • the detected current pressure value When the brushing action is continued after the pressure, the detected current pressure value will be high, but it will not affect the judgment of the working mode, and the slope value of the curve in the curve change graph during the rising process after the detection of the huge pressure , showing an increasing trend, so it also means that after the user generates huge pressure and the huge pressure disappears, he applies force to the electric toothbrush to continue the brushing action, so there is no need to recalibrate the basic pressure value.
  • the aforementioned basic pressure value is the pressure value sensed by the pressure sensor of the electric toothbrush when the user does not exert pressure on the electric toothbrush. Due to some external factors, the electric toothbrush will cause the pressure sensor inside the electric toothbrush to detect a certain pressure value, and the pressure value is the pressure value before the user does not brush his teeth.
  • the aforementioned preset critical value corresponding to the actual force is compared with the force applied to the toothbrush to determine which mode the toothbrush is currently in, which can be determined by comparing the aforementioned basic pressure value and the aforementioned pressure sensor.
  • the pressure value detected in real time results in the force applied by the user on the toothbrush.
  • FIG. 9 is a graph of the pressure curve change when the pressure sensor generates a large pressure during the normal brushing process and does not perform the brushing action
  • F1 in FIG. 9 refers to the basic pressure value
  • ⁇ F refers to the aforementioned preset critical value
  • F refers to the difference between the average value of the aforementioned pressure value and the base pressure value F1
  • t refers to the working time of the aforementioned electric toothbrush.
  • the change of the slope value in the rising process after the detection of the huge pressure shows a decreasing trend, which means that the brushing action is not performed after the huge pressure is generated during the brushing process.
  • the current pressure value will be too high, which will cause the toothbrush to mistakenly enter the normal brushing mode, so the basic pressure value needs to be re-calibrated.
  • FIG. 10 is the first pressure curve change diagram after the pressure sensor generates a large pressure in the anti-splash mode
  • F1 in Figure 10 refers to the basic pressure value
  • ⁇ F refers to The aforementioned preset critical value
  • F refers to the difference between the average value of the aforementioned pressure value and the basic pressure value F1
  • t refers to the working time of the aforementioned electric toothbrush.
  • the change of the slope value in the ascending process after the high pressure shows a decreasing trend, which means that the brushing action is not performed after the high pressure is generated in the anti-splash mode.
  • the offset of the pressure value cannot be accurately obtained. In order to ensure that the pressure value that acts on the toothbrush again can be accurately detected, it is necessary to re-calibrate the basic pressure value.
  • FIG 11 is the second pressure curve change diagram after the pressure sensor generates a large pressure in the anti-splash mode
  • F1 in Figure 11 refers to the basic pressure value
  • ⁇ F refers to The aforementioned preset critical value corresponding to the actual force
  • F refers to the difference between the average value of the aforementioned pressure value and the base pressure value F1
  • t refers to the working time of the aforementioned electric toothbrush.
  • the curve The slope of the curve in the change graph shows a decreasing trend during the rising process after detecting the large pressure, which means that the brushing action is not performed after the large pressure is generated in the anti-splash mode. At this time, it should be in the anti-splash mode. As a result, the detected current pressure value will be high, and the toothbrush will be in the normal brushing mode, so the basic pressure value needs to be re-calibrated.
  • the aforementioned judging of the pressure change trend during the pressure rebound process includes the following steps: obtaining an initial period slope in the aforementioned rebound process, and an ending period slope during the aforementioned rebound process; and comparing the aforementioned initial period slope with the aforementioned ending period slope. ; if the slope of the initial period is greater than the slope of the end period, then determine that the trend of the rebound pressure is the decreasing trend; if the slope of the initial period is less than the slope of the end period, then determine the trend of the rebound pressure to be an increasing trend.
  • the initial period slope and the end period slope during the rebound process can be obtained, as shown in Figure 12 and Figure 13 ,
  • Figure 12 shows the rebound process after a large pressure is generated.
  • the first pressure curve change diagram, and FIG. 13 is the second pressure curve change diagram of the rebound process after a large pressure is generated.
  • the slope of the preset period after t4 including t4 in the aforementioned FIGS. 12 and 13 is the initial period slope, that is, the slope within the period of [t4, t4 + ⁇ t];
  • the slope of the preset period before t5 within the period is the end period slope, that is, the slope within the [t5- ⁇ t, t5] period.
  • the pressure change trend in the current rebound process can be judged. If the slope of the initial period is greater than or equal to the slope of the end period, it is determined that the pressure change trend in the rebound process is a decreasing trend, that is, the pressure curve in Figure 13 changes. At this time, the basic pressure value F1 is redefined; if the initial period slope is less than the end period If the slope of the time period is determined, the pressure change trend during the rebound process is determined to be an increasing trend, that is, the pressure curve in Figure 12 changes, indicating that after the current rebound process is over, the normal brushing will continue. At this time, it is not necessary to redefine the basic pressure value. . Wherein, the aforementioned ⁇ t for determining the preset time period may be set according to user requirements, which is not limited here.
  • the aforementioned determination of the pressure change trend during the pressure rebound process includes the following steps: obtaining a pressure value at an intermediate moment during the aforementioned rebound process, a preset intermediate threshold value; and comparing the aforementioned pressure value at the intermediate moment with the aforementioned pressure value The intermediate thresholds are compared; if the pressure value at the aforementioned intermediate time is greater than or equal to the aforementioned intermediate threshold, it is determined that the aforementioned rebound pressure change trend is the aforementioned decreasing trend; if the aforementioned intermediate pressure value is less than the aforementioned intermediate threshold value, then the aforementioned rebound pressure change trend is determined for an increasing trend.
  • the pressure value and the preset intermediate threshold value at the middle time during the rebound process can be obtained, as shown in FIG. 12 and FIG. 13 .
  • t0 is the pressure value at the middle time
  • F t0 is the pressure value at the middle time.
  • the pressure value at the middle time is greater than the preset middle threshold, it is determined that the pressure change trend in the rebound process is a decreasing trend, that is, the pressure curve in Figure 13 changes, indicating that after the current rebound process is over, the normal brushing will no longer be performed.
  • the aforementioned redefinition of the aforementioned basic pressure value includes the following steps: collecting the pressure value after the aforementioned rebound process ends, and constructing a pressure data set; performing equalization processing on the aforementioned pressure data set to obtain an equilibrium value; and using the aforementioned equilibrium value as a new value. the base pressure value.
  • the basic pressure value can be determined by the current real-time monitored pressure value, so that the basic pressure value can be made more accurate. Therefore, when the rebound process ends, the current pressure value
  • the change tends to be stable that is, the pressure value in the preset time period after t5 in the aforementioned FIG. 12 and FIG. 13
  • a pressure data set is constructed by using the pressure value collected in the preset time period, and the aforementioned pressure data set is analyzed. Perform equalization processing to obtain an equalized value that can represent the pressure data set, and use the equalized value as a new basic pressure value, so that the toothbrush can determine the current mode by using the latest basic pressure value.
  • the aforementioned equalization processing includes determining an equilibrium value by calculating the mathematical expectation of the pressure data set, determining the equilibrium value by using the median in the pressure data set, determining the equilibrium value by counting the pressure values with the most occurrences, and calculating the pressure data set. The median or mode, etc., to determine the equilibrium value.
  • the electric toothbrush can detect the current working time in real time. If the current electric toothbrush detects that the current working time is greater than the preset time threshold, it means that the current user may forget to turn off the electric toothbrush.
  • the working mode of the electric toothbrush in order to avoid waste of resources, the electric toothbrush can automatically close the current working mode when the current working time is greater than the preset time threshold.
  • the force applied to the teeth needs to be kept within a certain range, so that the teeth can be cleaned without damaging the teeth, so the preset time interval can be used to determine the power of the electric toothbrush when it is in the normal brushing mode.
  • the difference between the current pressure value detected in real time and the basic pressure value, and the preset minimum difference threshold and maximum difference threshold are established.
  • the electric toothbrush When the difference is less than the minimum difference threshold, it means that the force exerted by the current user is too small , the electric toothbrush needs to carry out the corresponding prompt operation; when the aforementioned difference is greater than the maximum difference threshold, it means that the force exerted by the current user is too large, and the electric toothbrush also needs to carry out the corresponding prompt operation, so that the user can apply the corresponding prompt operation in time. corresponding force.
  • the aforementioned minimum difference threshold and maximum difference threshold are both greater than the aforementioned critical value.
  • a preset threshold value is obtained and the current pressure value is detected; the preset threshold value is compared with the pressure value to determine whether the pressure value is greater than the preset threshold value ; if the pressure value is greater than the preset critical value, determine the pressure change trend during the pressure rebound process; if the judgment result shows that the pressure change trend is decreasing, redefine the basic pressure value.
  • the preset critical value it means that the current smart oral care appliance is subjected to a large force, and then the pressure change trend during the pressure rebound process is judged. If the pressure change trend shows a decreasing trend, it means that the current user If you suspend the use of the smart electric toothbrush, you need to redefine the basic pressure value.
  • the basic pressure value By detecting the large pressure and judging the rebound trend after the appearance of the high pressure, it is determined whether the basic pressure value needs to be redefined, so as to avoid the toothbrush pressure after the large pressure disappears.
  • the value detected by the sensor will deviate from the value detected before the large pressure is applied, so that the detected pressure value acting on the toothbrush during the subsequent brushing action will deviate from the original basic pressure value.
  • the judgment of the working mode of the toothbrush also ensures that the electric toothbrush will not generate erroneous indication information, which will cause the electric toothbrush to make an error or even fail to work, causing discomfort to the user.
  • FIG. 14 shows a schematic structural diagram of a control system for adjusting vibration frequency based on pressure in an embodiment of the application.
  • the The working frequency of the intelligent oral care appliance includes a first vibration frequency and a second vibration frequency
  • the intelligent oral care appliance has a basic pressure value
  • the control system for adjusting the vibration frequency based on the pressure may include:
  • the data collection unit 141 is configured to collect the current pressure value of the smart oral care appliance at a first preset time interval to construct a first pressure data set.
  • a first equalization processing unit 142 configured to receive the first pressure data set of the smart oral care appliance constructed by the data acquisition unit, and perform a first equalization process on the first pressure data set, Get the first equilibrium value.
  • the fluctuation value judgment unit 143 is configured to receive the first equilibrium value, compare and judge the first equilibrium value with a preset fluctuation value, and determine whether to generate a redefinition that redefines the basic pressure value according to the judgment result instruction.
  • the redefinition unit 144 is configured to redefine the basic pressure value according to the redefinition instruction output by the fluctuation value determination unit.
  • control system for adjusting the vibration frequency based on pressure may further include:
  • Get the base pressure value unit which is used to obtain the base pressure value.
  • the pressure value collection unit is configured to collect the current pressure value at a second preset time interval to construct a second pressure data set.
  • the second equalization processing unit is configured to perform a second equalization process on the second pressure data set to obtain a second equalization value.
  • a difference comparison unit configured to calculate the difference between the basic pressure value and the second equilibrium value, and compare the difference with a preset threshold, if the difference is greater than the preset threshold value, the smart oral care implement is controlled to work at the first vibration frequency.
  • the redefinition unit 144 may include:
  • An equalization processing unit configured to perform a third equalization process on the first pressure data set to obtain a third equalization value.
  • a base pressure value unit configured to use the third equilibrium value as a new base pressure value.
  • the first equalization process includes calculating the variance of the first-order difference of the first pressure data set.
  • the value range of the preset fluctuation value is [2, 10].
  • the preset fluctuation value is 3.
  • the base pressure value is a pressure value collected when the smart oral care appliance is powered on.
  • the base pressure value is a pressure value collected every preset period when the smart oral care appliance is not in use.
  • control system for adjusting the vibration frequency based on pressure may further include:
  • a pressure difference calculation unit configured to calculate, for each cycle when the smart oral care implement is not in use, a pressure difference between the pressure value collected in this cycle and the pressure value collected in an adjacent cycle.
  • a rejection unit configured to perform a rejection operation on the pressure value collected in the period when the pressure difference value is greater than a preset difference value threshold.
  • the first vibration frequency is greater than the second vibration frequency.
  • the current pressure value of the smart oral care device is collected at a first preset time interval to construct a first pressure data set; Perform a first equalization process on the constructed first pressure data set of the intelligent oral care appliance to obtain a first equalized value; compare the first equalized value with a preset fluctuation value, if the first equalized value is If the equilibrium value is smaller than the preset fluctuation value, the basic pressure value is redefined.
  • the intelligent oral care appliance is working, the current pressure value is collected at the first preset time interval, and the first equalization process is performed on the collected current pressure value to improve the accuracy of the current pressure value, and then the first equalization process is performed.
  • the value is compared with the preset fluctuation value to determine the current working mode of the smart oral care appliance, so as to determine whether the basic pressure value needs to be redefined according to the working mode.
  • the first equilibrium value is less than the preset fluctuation value, it indicates that the current
  • the smart oral care appliance is in the anti-splash mode, which is the working mode of vibrating at the second vibration frequency.
  • the smart oral care appliance needs to redefine the basic pressure value, thus ensuring that the smart oral care appliance can accurately measure the basic pressure value based on the corrected value. Determine the current working mode.
  • FIG. 15 is a schematic structural diagram of an intelligent oral care appliance provided in an embodiment of the application. For the convenience of description, only the parts related to the embodiments of the present application are shown.
  • the smart oral care appliance 15 of this embodiment includes: at least one processor 150 (only one is shown in FIG. 15 ), a memory 151 connected to the processor 150 , and a memory 151 stored in the memory 151
  • a computer program 152 executable in the at least one processor 150 such as a control program for adjusting the frequency of vibration based on pressure.
  • the processor 150 executes the computer program 152
  • the steps in each of the foregoing embodiments of the control method for adjusting vibration frequency based on pressure are implemented, for example, steps S101 to S103 shown in FIG. 4 .
  • the processor 150 executes the computer program 152
  • the functions of the units in the above-mentioned system embodiments for example, the functions of the units 141 to 144 shown in FIG. 14, are implemented.
  • the computer program 152 may be divided into one or more units, and the one or more units are stored in the memory 151 and executed by the processor 150 to complete the present application.
  • the one or more units may be a series of computer program instruction segments capable of performing specific functions, and the instruction segments are used to describe the execution process of the computer program 152 in the intelligent oral care implement 15 .
  • the computer program 152 can be divided into a data acquisition unit 141, a first equalization processing unit 142, a fluctuation value judgment unit 143, and a redefinition unit 144.
  • the specific functions of each unit are as follows:
  • a data collection unit 141 configured to collect the current pressure value of the smart oral care appliance at a first preset time interval to construct a first pressure data set
  • a first equalization processing unit 142 configured to receive the first pressure data set of the smart oral care appliance constructed by the data acquisition unit, and perform a first equalization process on the first pressure data set, get the first equilibrium value;
  • the fluctuation value judgment unit 143 is configured to receive the first equilibrium value, compare and judge the first equilibrium value with a preset fluctuation value, and determine whether to generate a redefinition that redefines the basic pressure value according to the judgment result instruction;
  • the redefinition unit 144 is configured to redefine the basic pressure value according to the redefinition instruction output by the fluctuation value determination unit.
  • the smart oral care implement 15 may include, but is not limited to, a processor 150 and a memory 151 .
  • FIG. 15 is only an example of the smart oral care device 15, and does not constitute a limitation to the smart oral care device 15, and may include more or less components than the one shown, or combine some components, Or different components, for example, may also include input and output devices, network access devices, buses, and the like.
  • the so-called processor 150 may be a central processing unit (Central Processing Unit, CPU), and the processor 150 may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuits) , ASIC), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 151 may be an internal storage unit of the smart oral care implement 15 in some embodiments, such as a hard disk or memory of the smart oral care implement 15 .
  • the memory 151 may also be an external storage device of the smart oral care appliance 15 in other embodiments, such as a plug-in hard disk equipped on the smart oral care appliance 15, a smart memory card (Smart Media Card, SMC) ), Secure Digital (SD) card, Flash Card (Flash Card), etc.
  • the memory 151 may also include both an internal storage unit of the smart oral care appliance 15 and an external storage device.
  • the memory 151 is used to store an operating system, an application program, a boot loader (Boot Loader), data, and other programs, such as program codes of the computer program.
  • the memory 151 may also be used to temporarily store data that has been output or will be output.
  • the disclosed device/smart oral care appliance and method may be implemented in other ways.
  • the above-described embodiments of the device/smart oral care appliance are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple divisions. Individual units or components may be combined or may be integrated into another system, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the present application realizes all or part of the processes in the methods of the above embodiments, which can be completed by instructing the relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium.
  • the computer program includes computer program code
  • the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable medium may include at least: any entity or device capable of carrying the computer program code to the photographing device/smart oral care appliance, recording medium, computer memory, read-only memory (ROM, Read-Only Memory), random storage Access memory (RAM, Random Access Memory), electrical carrier signals, telecommunication signals, and software distribution media.
  • ROM read-only memory
  • RAM random storage Access memory
  • electrical carrier signals telecommunication signals
  • software distribution media For example, U disk, mobile hard disk, disk or CD, etc.
  • computer readable media may not be electrical carrier signals and telecommunications signals.

Abstract

基于压力调节振动频率的控制方法、控制系统及存储介质,适用于智能口腔护理器具领域。实施例中当智能口腔护理器具以第二振动频率工作时,以第一预设时间间隔对智能口腔护理器具的当前压力值进行采集,构建出第一压力数据集(S101);对构建出的智能口腔护理器具的第一压力数据集进行第一均衡化处理,得到第一均衡值(S102);将第一均衡值与预设波动值进行比较,若第一均衡值小于预设波动值,则重新定义基础压力值(S103)。从而保证了智能口腔护理器具能够根据修正后的基础压力值来准确判断当前工作模式。

Description

基于压力调节振动频率的控制方法、控制系统及存储介质 技术领域
本申请属于智能口腔护理器具技术领域,尤其涉及基于压力调节振动频率的控制方法、控制系统及存储介质。
背景技术
随着社会的发展,智能口腔护理器具以其智能化的表现在人们的生活中越来越常见,人们也越来越适应利用智能口腔护理器具去进行刷牙动作,来保护牙齿健康。但是在使用智能口腔护理器具的过程中,智能口腔护理器具内部的压力传感器的检测结果可能会因当前工作温度、室内温度等外界因素的变化而产生漂移,而由此会导致智能口腔护理器具的压力传感器在温漂下的压力检测值发生变高或变低的偏移,最终致使在使用智能口腔护理器具时,智能口腔护理器具的工作模式判断不准确。
发明内容
本申请实施例提供了基于压力调节振动频率的控制方法、控制系统及存储介质,可以解决智能口腔护理器具在温漂下的压力检测值发生偏移,最终致使在使用智能口腔护理器具时,智能口腔护理器具的工作模式判断不准确的问题。
第一方面,本申请实施例提供了一种基于压力调节振动频率的控制方法,应用于智能口腔护理器具,所述智能口腔护理器具的工作频率包括第一振动频率和第二振动频率,所述智能口腔护理器具存在基础压力值,当所述智能口腔护理器具以第二振动频率工作时,执行以下步骤:
S101:以第一预设时间间隔对所述智能口腔护理器具的当前压力值进行采集,构建出第一压力数据集;
S102:对构建出的所述智能口腔护理器具的所述第一压力数据集进行第一均衡化处理,得到第一均衡值;
S103:将所述第一均衡值与预设波动值进行比较,若所述第一均衡值小于所述预 设波动值,则重新定义所述基础压力值。
可选的,所述智能口腔护理器具启动后以第二振动频率工作时,所述方法还包括以下步骤:
S201:获取基础压力值;
S202:以第二预设时间间隔对当前压力值进行采集,构建出第二压力数据集;
S203:对所述第二压力数据集进行第二均衡化处理,得到第二均衡值;
S204:计算所述基础压力值与所述第二均衡值之间的差值,将所述差值与预设临界值进行比较,若所述差值大于所述预设临界值,则控制所述智能口腔护理器具以所述第一振动频率工作。
可选的,所述重新定义所述基础压力值包括以下步骤:
S301:将所述第一压力数据集进行第三均衡化处理,得到第三均衡值;
S302:以所述第三均衡值作为新的基础压力值。
可选的,所述第一均衡化处理包括计算所述第一压力数据集的一阶差分的方差。
可选的,所述预设波动值的取值范围为[2,10]。
可选的,所述预设波动值为3。
可选的,所述基础压力值为所述智能口腔护理器具开机时采集的压力值。
可选的,所述基础压力值为所述智能口腔护理器具未使用时每隔预设周期采集的压力值。
可选的,对于所述智能口腔护理器具未使用时的每个周期,计算该周期采集的压力值与相邻周期采集的压力值的压力差值;
当所述压力差值大于预设差值阈值时,将该周期采集的压力值进行剔除操作。
可选的,所述第一振动频率大于所述第二振动频率。
第二方面,本申请实施例提供了一种基于压力调节振动频率的控制系统,应用于智能口腔护理器具,其特征在于,所述智能口腔护理器具的工作频率包括第一振动频率和 第二振动频率,所述智能口腔护理器具存在基础压力值,所述基于压力调节振动频率的控制系统包括:
数据采集单元,用于以第一预设时间间隔对所述智能口腔护理器具的当前压力值进行采集,构建出第一压力数据集;
第一均衡化处理单元,用于接收所述数据采集单元构建出的所述智能口腔护理器具的所述第一压力数据集,并对所述第一压力数据集进行第一均衡化处理,得到第一均衡值;
波动值判断单元,用于接收所述第一均衡值,并将所述第一均衡值与预设波动值进行比较判断,并根据判断结果决定是否生成重定义所述基础压力值的重定义指令;
重定义单元,用于根据所述波动值判断单元输出的所述重定义指令重新定义所述基础压力值。
第三方面,本申请实施例提供了一种智能口腔护理器具,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述任一种基于压力调节振动频率的控制方法的步骤。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述的计算机程序被处理器执行时实现上述任一种基于压力调节振动频率的控制方法的步骤。
第五方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在智能口腔护理器具上运行时,使得智能口腔护理器具执行上述第一方面中任一种基于压力调节振动频率的控制方法。
本申请实施例中当所述智能口腔护理器具以第二振动频率工作时,以第一预设时间间隔对所述智能口腔护理器具的当前压力值进行采集,构建出第一压力数据集;对构建出的所述智能口腔护理器具的所述第一压力数据集进行第一均衡化处理,得到第一均衡值;将所述第一均衡值与预设波动值进行比较,若所述第一均衡值小于所述预设波动值, 则重新定义所述基础压力值。通过在智能口腔护理器具工作时,以第一预设时间间隔采集当前压力值,并对所采集的当前压力值进行第一均衡化处理,以提高当前压力值的准确性,再将第一均衡值与预设波动值进行比较,以确定智能口腔护理器具的当前工作模式,从而根据工作模式决定出是否需对基础压力值进行重新定义,当第一均衡值小于预设波动值时,说明当前智能口腔护理器具处于防飞溅模式,也就是以第二振动频率进行振动的工作模式,智能口腔护理器具需重新定义基础压力值,使得智能口腔护理器具的基础压力值可以随智能口腔护理器具工作温度的变化而变化,从而保证了智能口腔护理器具能够根据修正后的基础压力值来准确判断当前工作模式,避免了因温漂导致工作模式判断出错的情况。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的正常刷牙时的压力变化曲线图;
图2是本申请实施例提供的温漂下压力检测值变高图;
图3是本申请实施例提供的温漂下压力检测值变低图;
图4是本申请实施例提供的基于压力调节振动频率的控制方法的第一种流程示意图;
图5是本申请实施例提供的基于压力调节振动频率的控制方法的第二种流程示意图;
图6是本申请实施例提供的基于压力调节振动频率的控制方法的第三种流程示意图;
图7是本申请实施例提供的产生大压力后的压力曲线变化图;
图8是本申请实施例提供的正常刷牙过程中产生大压力后继续进行刷牙动作的压力曲线变化图;
图9是本申请实施例提供的正常刷牙过程中产生大压力后不进行刷牙动作的压力曲线变化图;
图10是本申请实施例提供的防飞溅模式下产生大压力后第一种压力曲线变化图;
图11是本申请实施例提供的防飞溅模式下产生大压力后第二种压力曲线变化图;
图12是本申请实施例提供的产生大压力后的反弹过程的第一种压力曲线变化图;
图13是本申请实施例提供的产生大压力后的反弹过程的第二种压力曲线变化图;
图14是本申请实施例提供的基于压力调节振动频率的控制系统的结构示意图;
图15是本申请实施例提供的智能口腔护理器具的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所 描述条件或事件]”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
上述智能口腔护理器具可以是智能电动牙刷、冲牙器、牙齿抛光器等常见口腔护理工具。
本实施例以电动牙刷为实施对象进行具体说明,电动牙刷正常工作时包括两种工作模式,一种是以第一振动频率工作的刷牙模式,一种是以低于第一振动频率的第二振动频率工作的防飞溅模式,电动牙刷正常工作时的压力变化如图1所示。如图1所示,第二振动频率下牙刷受到的压力值的平均值约等于F1,第一振动频率下牙刷受到的压力值的平均值总是大于F1+ΔF。牙刷启动时首先处于防飞溅工作模式,若后续牙刷受到的压力值变大,当压力值的变化量超过ΔF时,即前述压力值的平均值与基础压力值F1的差值超过ΔF时,则进入以第一振动频率工作的刷牙模式。
然而在使用电动牙刷的过程中,电动牙刷内部设立的压力传感器的检测结果可能会因电动牙刷工作温度、室内温度等外界因素的变化而产生压力值漂移现象(温漂现象),即电动牙刷的压力传感器在温漂现象下检测出的压力检测值会发生变高或变低的偏移,如图2和图3所示。
图2为温漂下压力检测值变高图,其中,F1是指基础压力值,也就是牙刷启动时,用户未施加给电动牙刷压力时,电动牙刷所受到的压力值,ΔF是指预设临界值,F是指前述压力值的平均值与基础压力值F1的差值,t是指前述电动牙刷的工作时间。由图2可以看出当前的压力值相较于图1所示的压力值变高,即温漂引起了压力值向上偏移,就会导致在防飞溅模式下出现当前压力值的平均值与实际进行比较的基础压力值F1之差要大于前述预设临界值。正常来说此时电动牙刷应该处于防飞溅模式下,但由于温漂的关系可能会造成电动牙刷意外进入刷牙模式,即电动牙刷此时本应该以第二振动频率工作,但是却有可能会被错误控制以第一振动频率工作。
图3为温漂下压力检测值变低图,由图3可以看出当前的压力值相较于图1所示的压力值变低,即温漂引起了压力值向下偏移,就会导致在防飞溅模式下当前压力值与实际进行比较的基础压力值之差(绝对值)大于前述预设临界值。正常来说此时电动牙刷应该处于防飞溅模式下,但由于温漂的关系可能会造成电动牙刷意外进入刷牙模式(虽然压力检测值变小了),即电动牙刷此时本应该以第二振动频率工作,但是却有可能会被错误控制以第一振动频率工作。此外,当用户想要进行刷牙时,即使用了跟平时差不多的力刷牙,但是因为温漂导致压力检测值整体偏低,故此时会导致电动牙刷仍以第二振动频率工作。
通过参考图2和图3可知,有时电动牙刷本应处于防飞溅模式下,也就是电动牙刷本应该处于以第二振动频率进行振动的刷牙模式,但当出现温漂现象时,压力传感器所检测的检测值会发生偏移。如图2所示,由于温漂导致检测值偏高,从而原本应该处于防飞溅模式下的电动牙刷将会在未收到压力时,可能会意外进入以第一振动频率工作的刷牙模式。反之则如图3所示,温漂导致检测值偏低,需要施加比平时更大的力才能使牙刷进入刷牙模式。
针对因温漂现象会引起压力传感器的压力检测值的偏移,而导致电动牙刷的工作模式判断不准确的问题,本发明实施提供了一种基于压力调节振动频率的控制方法,具体如下。
图4所示为本申请实施例中一种基于压力调节振动频率的控制方法的流程示意图,该方法的执行主体可以是电动牙刷,如图4所示,所述电动牙刷的工作频率包括第一振动频率和第二振动频率,所述电动牙刷存在基础压力值,当所述电动牙刷以第二振动频率工作时,执行以下步骤:
步骤S101、以第一预设时间间隔对所述电动牙刷的当前压力值进行采集,构建出第一压力数据集。
在本实施例中,通过利用压力传感器以第一预设时间间隔对前述电动牙刷的当前压 力值进行采集,可设定预设时间段内的当前压力值采集方式或预设数量的当前压力值采集方式,从而根据所采集的各个当前压力值构建出第一压力数据集,前述第一预设时间可根据用户具体精度需求进行设定,一般优选为20ms。
步骤S102、对构建出的所述电动牙刷的所述第一压力数据集进行第一均衡化处理,得到第一均衡值。
在本实施例中,前述对第一压力数据集进行第一均衡化处理,可通过计算前述第一压力值数据集中的一阶差分的方差,也就是先计算出当前压力值集合中相邻两个当前压力值的差值,再计算所得到的关于前述第一压力数据集中至少两个差值的方差,从而得到前述第一均衡值,为后续的比较判断,提供数据基础。在一些其他优选的实施例中,可通过计算第一数据集的方差、标准差等方式进行第一均衡化处理。
步骤S103、将所述第一均衡值与预设波动值进行比较,若所述第一均衡值小于所述预设波动值,则重新定义所述基础压力值。
在本实施例中,在通常情况下,在正常刷牙模式下电动牙刷一直在动,而不处于正常刷牙模式时,电动牙刷波动相对较为稳定,即波动值较小,所以通过确定出的压力值波动的变化值,也就是前述第一均衡值来与预设波动值进行比对,进而判断出当前状态,若第一均衡值小于预设波动值,则说明当前电动牙刷仍然处于防飞溅模式下,也就是以第二振动频率进行振动的工作模式下,由于牙刷开启一段时间后会出现温漂现象,所以牙刷开机时定义的基础压力值F1可能已不再适用于已发生偏移的压力检测值,故需重新定义基础压力值,以便于保证牙刷工作模式的正确判断,避免受温漂情况的影响出现误判的状况。可以理解的是,若得到的第一均衡值大于预设波动值,则说明当前所处的工作模式为刷牙模式,也就是用户正在执行刷牙动作。前述预设波动值可根据具体的精度需求在[2,10]范围内任选一个整数。优选将前述预设波动值设定为3。预设波动值越大,则针对基础压力值进行校准的次数就越多。
具体示例而非限定的,前述用户可设定获取0.6s内各个当前压力值,以每隔20ms 的频率进行获取,也就是获取30个当前压力值,组成当前压力值集合,若当前压力值集合的数值为(20001、20001、20002、20003、20003、20003、20004、20005、20004、20005、20005、20007、20008、20008、20008、20007、20007、20005、20006、20006、20007、20007、20006、20008、20009、20008、20006、20007、20009、20006),该压力值集合得到的波动变化值小于前述波动阈值3,故进行防飞溅控制,也就是电动牙刷以第二振动频率进行振动的工作模式下;若当前压力值集合的数值为(20334、20339、20339、20332、20318、20308、20305、20305、20312、20318、20313、20302、20302、20290、20286、20286、20286、20294、20311、20323、20328、20328、20315、20274、20235、20235、20215、20205、20210、20230),该压力值集合得到的波动变化值大于前述波动阈值3,故进行正常刷牙控制,也就是电动牙刷以第一振动频率进行振动的工作模式下。
可选的,前述智能口腔护理器具中的智能牙刷包括手柄和刷头。手柄包括外壳和设置在外壳内的驱动装置,驱动装置的输出轴伸出外壳,且前述刷头可以通过拆卸的方式安装在前述输出轴上,以使驱动装置工作时利用输出轴带动刷头以预设方式进行震动,以便于用户进行刷牙动作。前述智能牙刷还包括压力传感器,前述压力传感器可设置在输出轴上,也可设置在刷头上,且刷头上设有第一线圈,手柄上设有第二线圈,通过第一线圈和第二线圈实现刷头上的压力传感器和手柄之间的供电以及相关信号的传输操作,也就是压力传感器和手柄之间通过设置类似于射频标签的装置,来实现压力传感器和手柄之间的能量供应和数据传输。
可选的,如图5所示,所述电动牙刷启动后以第二振动频率工作时,所述方法还包括以下步骤:
步骤S201、获取基础压力值。
在本实施例中,因电动牙刷会因某些外界因素而导致电动牙刷内部的压力传感器检测到一定的压力值,而该压力值为用户未进行刷牙动作之前的压力值,为保证检测到用 户刷牙时施加压力的准确性,可获取基础压力值,也就是用户未施加给电动牙刷压力时,电动牙刷所受到的压力值。
步骤S202、以第二预设时间间隔对当前压力值进行采集,构建出第二压力数据集。
在本实施例中,通过利用压力传感器以第二预设时间间隔对前述电动牙刷的当前压力值进行采集,可设定预设时间段内的当前压力值采集方式或预设数量的当前压力值采集方式,从而根据所采集的各个当前压力值构建出第二压力数据集,前述第二预设时间可根据用户具体精度需求进行设定,一般优选为20ms,前述预设数量可根据用户具体精度需求进行设定,一般优选为10次。
步骤S203、对所述第二压力数据集进行第二均衡化处理,得到第二均衡值。
在本实施例中,因用户在进行刷牙动作时,可能会出现时而用力刷牙,时而又因换方向或换位置后再进行刷牙等行为,而导致没有向电动牙刷施加力的现象,又或者在刷牙过程中用户施加的力出现时大时小的现象,若仅以测量一次的当前压力值进行后续的比较,很容易导致比较结果并不准确,故可每隔一段时间检测一次当前压力值,也就是前述以第二预设时间间隔对当前压力值进行检测,从而得到第二压力数据集,再对第二压力数据集进行均衡化处理,从而得到第二均衡值,以代表一段时间内的当前压力值,从而提高当前压力值的准确性。可选的,前述第二均衡化处理可以是通过计算数据集的数学期望得到第二均衡值。
步骤S204、计算所述基础压力值与所述第二均衡值之间的差值,将所述差值与预设临界值进行比较,若所述差值大于所述预设临界值,则控制所述电动牙刷以所述第一振动频率工作。
在本实施例中,通过前述所得到的第二均衡值减去前述得到的基础压力值,来得到两者之间的差值,通过差值来判断电动牙刷相较于一开始基础压力值的变化量。如果前述差值大于预设的临界值时,说明用户当前需进行正常刷牙动作,故电动牙刷的控制器可控制电动牙刷进入正常刷牙模式,也就是以第一振动频率进行振动的工作模式。其中, 前述预设临界值可根据用户具体精度需求进行设定,如果通过前述计算期望的方式得到第二均衡值,则预设临界值的取值范围一般在18至28范围内,优选为20;如果通过前述计算一阶差分的方差的方式得到第二均衡值,则预设临界值的取值范围一般在2至10范围内,优选为3。
可选的,如图6所示,步骤S103中重新定义所述基础压力值包括以下步骤:
步骤S301、将所述第一压力数据集进行第三均衡化处理,得到第三均衡值。
步骤S302、以所述第三均衡值作为新的基础压力值。
在本实施例中,当前述计算得到的第一均衡值小于预设波动值时,说明当前电动牙刷未处于正常刷牙模式,而处于防飞溅控制模式时,则需重新确定基础压力值,以便于实时更新数据,确保电动牙刷确定工作模式,故对前述得到的第一压力数据集中的各个当前压力值进行第三均衡化处理,得到第三均衡值,并将前述第三均衡值作为新的基础压力值。
可选的,前述第三均衡化处理可以是通过计算数学期望得到第三均衡值,也就是前述新的基础压力值。
可选的,前述基础压力值为所述电动牙刷开机时采集的压力值。
可选的,前述基础压力值为所述电动牙刷未使用时每隔预设周期采集的压力值。
在本实施例中,因用户平时使用电动牙刷时,可能存在开启电动牙刷之前就将电动牙刷的刷头压在牙齿上,从而对电动牙刷施加一定作用力的现象,而由此将导致在开启电动牙刷之后,无法准确检测基础压力值,也就是用户未施加给电动牙刷压力时电动牙刷所感应到的压力值,故可利用在电动牙刷未使用之前,也就是电动牙刷没有进行刷牙动作时,电动牙刷的控制器每隔预设周期采集一次压力值,再根据所采集的未进行刷牙动作之前的压力值,将所采集的压力值按照前述方式进行均衡化处理,以得到均衡值来确定电动牙刷未使用时的基础压力值,从而防止出现前述基础压力值偏差过大等情况,进而造成检测用户施加给电动牙刷上的力不准确的现象。其中,前述预设周期为电动牙 刷未使用时的压力值获取的时间间隔,具体可根据用户具体精度需求进行设定,一般优选为一小时;前述压力值为在电动牙刷未进行刷牙动作时每隔一段时间利用压力传感器进行检测得到的压力值。
可选的,前述均衡化处理可以是通过计算所采集的各个压力值的数学期望,得到基础压力值。
可选的,对于所述智能口腔护理器具未使用时的每个周期,计算该周期采集的压力值与相邻周期采集的压力值的压力差值。
当所述压力差值大于预设差值阈值时,将该周期采集的压力值进行剔除操作。
在本实施例中,因电动牙刷停滞在某些位置时,可能会出现突然摔倒,又或者是某些物体压在电动牙刷上的状况,而由此导致前述压力值测量不准确,而最终导致智能口腔护理器具未使用时的基础压力值偏差过大。故可对于所述智能口腔护理器具未使用时的每个周期的压力值进行采集,计算该周期采集的压力值与相邻周期采集的压力值的压力差值,若前述压力差值大于预设差值阈值,则说明当前周期采集压力值时,出现因外界因素而导致的压力值剧变的状况,故将该周期采集的压力值进行剔除操作,以提高智能口腔护理器具未使用时的基础压力值的准确性。其中,前述预设差值阈值指为保证基础压力值准确的压力值之间最大可相差的压力值,若大于最大可相差的压力值,则说明该周期采集的压力值由于某些外界因素,而导致压力值剧变,前述预设差值阈值可根据用户需求进行设定,这里不做限定。
可选的,因用户平时使用电动牙刷时,可能存在开启电动牙刷之前就将电动牙刷的刷头压在牙齿上,从而对电动牙刷施加一定作用力的现象,而由此将导致在开启电动牙刷之后,无法准确检测基础压力值,也就是用户未施加给电动牙刷压力时电动牙刷所感应到的压力值,故可将电动牙刷开机时采集的压力值所确定的基础压力值与电动牙刷未使用时每隔预设周期采集的压力值所确定的基础压力值进行比较,计算其压力差值,若压力差值大于压力差值阈值,则说明电动牙刷开机时采集的压力值所确定的基础压力值 偏差过大,电动牙刷可能正处于放在牙齿上的阶段,故电动牙刷开机时采集的压力值不能作为基础压力值,而将前述电动牙刷未使用时每隔预设周期采集的压力值作为基础压力值,以提高基础压力值的准确性。倘若压力差值小于或等于压力差值阈值,则将电动牙刷开机时采集的压力值作为基础压力值,因开机时所采集的压力值为最适应于用户当前正常刷牙之前的基础压力值,故倘若不超过压力差值阈值,则以开机时采集的压力值作为基础压力值。
本申请实施例中当所述智能口腔护理器具以第二振动频率工作时,以第一预设时间间隔对所述智能口腔护理器具的当前压力值进行采集,构建出第一压力数据集;对构建出的所述智能口腔护理器具的所述第一压力数据集进行第一均衡化处理,得到第一均衡值;将所述第一均衡值与预设波动值进行比较,若所述第一均衡值小于所述预设波动值,则重新定义所述基础压力值。通过在智能口腔护理器具工作时,以第一预设时间间隔采集当前压力值,并对所采集的当前压力值进行第一均衡化处理,以提高当前压力值的准确性,再将第一均衡值与预设波动值进行比较,以确定智能口腔护理器具的当前工作模式,从而根据工作模式决定出是否需对基础压力值进行重新定义,当第一均衡值小于预设波动值时,说明当前智能口腔护理器具处于防飞溅模式,也就是以第二振动频率进行振动的工作模式,智能口腔护理器具需重新定义基础压力值,使得智能口腔护理器具的基础压力值可以随智能口腔护理器具工作温度的变化而变化,从而保证了智能口腔护理器具能够根据修正后的基础压力值来准确判断当前工作模式,避免了因温漂导致工作模式判断出错的情况。
在本发明在实施过程中,还发现大压力反弹现象也会对压力检测值造成干扰,大压力现象可能在用户刷牙过程中出现,也可能是牙刷头意外受到压迫或者与硬物撞击时出现。出现当牙刷头受到大压力后,由于材料特征,压力源消失后牙刷头会有一个压力反弹过程,反弹后的压力可能会与反弹前的压力有偏差。这个偏差使得检测值偏高或偏低。出现大压力反弹现象时同样也会对牙刷的工作模式判断造成影响。针对该问题,本发明 还提出一种消除压力反弹干扰的控制方法,具体如下。
获取预设压力临界值,以及检测当前压力值;将前述预设压力临界值与前述压力值进行比较,判断前述压力值是否大于前述预设压力临界值;若前述压力值大于前述预设压力临界值,则判断压力反弹过程中的压力变化趋势;若判断结果显示前述反弹压力变化趋势呈递减趋势,则重新定义前述基础压力值。
在本实施例中,因电动牙刷中的压力传感器突然检测到大压力,会导致压力值发生反弹变化,从而致使用户再次进行刷牙动作时,检测到的作用于牙刷的压力值不准确,而无法准确判断出当前牙刷所处的工作模式,该工作模式包括以第一频率进行振动的正常刷牙模式以及以第二频率进行振动的防飞溅模式,且前述第一振动频率大于前述第二振动频率。故而电动牙刷的控制器需通过控制压力传感器来检测压力值,并与所获取的压力临界值进行比较,以判断压力值是否大于压力临界值,是否会出现压力反弹变化的现象,从而根据当前所判断出的情况,进行对应的操作,以保证后续牙刷更为准确的确定出用户作用于其身上的压力,并确定其当前的工作模式。当电动牙刷的控制器判断出压力传感器检测到压力值大于预设在其内部的压力临界值时,则确定出现大压力,为防止当前大于压力临界值的压力值消失后,压力值的反弹导致最终检测作用于牙刷的压力值产生偏差,影响后续判断,需判断压力反弹过程中的压力变化趋势,从而根据压力反弹过程中的压力变化趋势,来决定是否需要对基础压力值进行重新定义。若反弹过程中的压力变化趋势为递减趋势,说明当前反弹过程结束后,将不再进行正常刷牙的工作状态;若反弹过程中的压力变化趋势为递增趋势,说明当前反弹过程结束后,将继续进行正常刷牙的工作状态。因压力反弹过程中的斜率值变化呈现递减趋势,说明当前为用户不继续进行正常刷牙动作的状态,此时牙刷可能为防飞溅模式,可能为用户关闭电动牙刷的刷牙模式,该刷牙模式包括正常刷牙模式和防飞溅模式。而且当判断出当前用户不进行正常刷牙动作时,为了后续能够准确确定用户作用于牙刷上的力,需调整基础压力值以便于确定更为准确的基础压力值。其中,前述压力值为电动牙刷的压力传感器实时 获取到的压力值;前述压力临界值用于判断是否出现大压力,若检测到电动牙刷的压力值大于压力临界值,则表明出现了大压力,大压力消失后则会发生压力反弹变化,前述压力反弹过程如图7所示,图7为产生大压力后的压力曲线变化图,图7中的t4到t5的曲线变化过程,也就是前述压力反弹过程。
可选的,前述预设压力临界值的取值范围为400g至600g之间。
可选的,前述预设压力临界值的取值为500g。
具体示例而非限定的,如图8所示,图8为压力传感器在正常刷牙过程中产生大压力后继续进行刷牙动作的压力曲线变化图,图8中的F1是指的基础压力值,ΔF是指前述预设临界值,F是指前述压力值的平均值与基础压力值F1的差值,t是指前述电动牙刷的工作时间,从图中可以看出,当在刷牙过程中产生大压力后继续进行刷牙动作时,检测到的当前压力值会偏高,但是对工作模式的判断并不会造成影响,且该曲线变化图中曲线在检测到巨大压力后的上升过程中的斜率值,呈现递增的趋势,故也说明用户在产生巨大压力,且巨大压力消失后,又向电动牙刷施加力,继续进行刷牙动作,故可不用重新校准基础压力值。其中,前述基础压力值为用户未施加给电动牙刷压力时,电动牙刷的压力传感器所感应到的压力值,通过基础压力值可以确定用户在刷牙过程中施加给电动牙刷的作用力。因电动牙刷会因某些外界因素而导致电动牙刷内部的压力传感器检测到一定的压力值,而该压力值为用户未进行刷牙动作之前的压力值,为保证检测到用户刷牙时施加压力的准确性,故需确保基础压力值准确;前述预设的对应于实际作用力的临界值为针对施加在牙刷上的力进行比较以判断当前牙刷处于什么模式,可通过前述基础压力值与前述压力传感器实时检测的压力值得到用户施加在牙刷上的力。
具体示例而非限定的,如图9所示,图9为压力传感器在正常刷牙过程中产生大压力后不进行刷牙动作时的压力曲线变化图,图9中的F1是指的基础压力值,ΔF是指前述预设临界值,F是指前述压力值的平均值与基础压力值F1的差值,t是指前述电动牙刷的工作时间,从图中可以看出,该曲线变化图中曲线在检测到巨大压力后的上升过程 中的斜率值变化呈现递减的趋势,说明在刷牙过程中产生巨大压力后不进行刷牙动作,此时本应处于防飞溅模式,但是由于反弹影响,导致检测到的当前压力值会偏高,而导致牙刷误判进入正常刷牙模式,故需重新校准基础压力值。
具体示例而非限定的,如图10所示,图10为压力传感器在防飞溅模式下产生大压力后第一种压力曲线变化图,图10中的F1是指的基础压力值,ΔF是指前述预设临界值,F是指前述压力值的平均值与基础压力值F1的差值,t是指前述电动牙刷的工作时间,从图中可以看出,该曲线变化图中曲线在检测到大压力后的上升过程中的斜率值变化呈现递减的趋势,说明在防飞溅模式下产生大压力后不进行刷牙动作,此时虽然对工作模式的判断并不会造成影响,但是回弹后的压力值的偏移量无法准确得到,为确保能准确检测之后再次作用于牙刷的压力值,故需重新校准基础压力值。
具体示例而非限定的,如图11所示,图11为压力传感器在防飞溅模式下产生大压力后第二种压力曲线变化图,图11中的F1是指的基础压力值,ΔF是指前述预设的对应于实际作用力的临界值,F是指前述压力值的平均值与基础压力值F1的差值,t是指前述电动牙刷的工作时间,从图中可以看出,该曲线变化图中曲线在检测到大压力后的上升过程中的斜率呈现递减的趋势,说明在防飞溅模式下产生大压力后不进行刷牙动作,此时本应处于防飞溅模式,但是由于反弹影响,导致检测到的当前压力值会偏高,而导致牙刷处于正常刷牙的模式,故需重新校准基础压力值。
可选的,前述判断压力反弹过程中的压力变化趋势包括以下步骤:获取前述反弹过程中的初始时段斜率,以及前述反弹过程中的结束时段斜率;将前述初始时段斜率与前述结束时段斜率进行对比;若前述初始时段斜率大于前述结束时段斜率,则确定前述反弹压力变化趋势为前述递减趋势;若前述初始时段斜率小于前述结束时段斜率,则确定前述反弹压力变化趋势为递增趋势。
在本实施例中,为确定反弹过程中的压力变化趋势,可获取反弹过程中的初始时段斜率和结束时段斜率,如图12和图13所示,图12为产生大压力后的反弹过程的第一 种压力曲线变化图,图13为产生大压力后的反弹过程的第二种压力曲线变化图。前述图12和图13中的包含t4在内的t4之后的预设时段的斜率为初始时段斜率,即[t4,t4+Δt]时段内的斜率;前述图12和图13中的包含t5在内的t5之前的预设时段的斜率为结束时段斜率,即[t5-Δt,t5]时段内的斜率。通过将初始时段斜率与结束时段斜率进行对比,来判断当前反弹过程中的压力变化趋势。若初始时段斜率大于或等于结束时段斜率,则确定反弹过程中的压力变化趋势为递减趋势,也就是图13中的压力曲线变化,此时则重新定义基础压力值F1;若初始时段斜率小于结束时段斜率,则确定反弹过程中的压力变化趋势为递增趋势,也就是图12中的压力曲线变化,说明当前反弹过程结束后,将继续进行正常刷牙的工作状态,此时不必重新定义基础压力值。其中,前述确定预设时段的Δt可根据用户需求进行设定,这里不做限定。
在另一个优选的实施例中,前述判断压力反弹过程中的压力变化趋势包括以下步骤:获取前述反弹过程中的中间时刻的压力值,预设的中间阈值;将前述中间时刻的压力值与前述中间阈值进行对比;若前述中间时刻的压力值大于或等于前述中间阈值,则确定前述反弹压力变化趋势为前述递减趋势;若前述中间时刻的压力值小于前述中间阈值,则确定前述反弹压力变化趋势为递增趋势。
在本实施例中,为确定反弹过程中的压力变化趋势,可获取反弹过程中的中间时刻的压力值和预设的中间阈值,如图12和图13所示,前述图12和图13中的t0为中间时刻以及F t0为中间时刻的压力值。通过将中间时刻的压力值与预设的中间阈值进行对比,预设的中间阈值也就是前述图12和图13中的F0,通过两者对比来判断当前反弹过程中的压力变化趋势。若中间时刻的压力值大于预设的中间阈值,则确定反弹过程中的压力变化趋势为递减趋势,也就是图13中的压力曲线变化,说明当前反弹过程结束后,将不再进行正常刷牙的工作状态,则重新定义基础压力值F1;若中间时刻的压力值小于预设的中间阈值,则确定反弹过程中的压力变化趋势为递增趋势,也就是图12中的压力曲线变化,说明当前反弹过程结束后,将继续进行正常刷牙的工作状态。
可选的,前述重新定义前述基础压力值包括以下步骤:在前述反弹过程结束后采集压力值,构建压力数据集;将前述压力数据集进行均衡化处理,得到均衡值;以前述均衡值作为新的基础压力值。
在本实施例中,因压力值趋于稳定后,再通过当前实时监测到的压力值来确定基础压力值,才能使基础压力值更为准确,故当反弹过程结束后,也就是当前压力值变化趋于稳定时,也就是前述图12和图13中的t5之后的预设时间段的压力值,利用该预设时间段内所采集的压力值构建压力数据集,并对前述压力数据集进行均衡化处理,以得到可代表该压力数据集的均衡值,并将该均衡值作为新的基础压力值,以便于牙刷利用最新的基础压力值确定当前模式。
可选的,前述均衡化处理包括通过计算压力数据集的数学期望确定均衡值、通过压力数据集中的中位数确定均衡值、通过统计出现次数最多的压力值确定均衡值、通过计算压力数据集的中位数或众数等来确定均衡值。
可选的,因用户有时存在忘记关闭电动牙刷的工作模式的行为,故电动牙刷可实时检测当前工作时间,若当前电动牙刷检测到当前工作时间大于预设时间阈值,则说明当前用户可能忘记关闭电动牙刷的工作模式,为避免资源浪费,电动牙刷可在当前工作时间大于预设时间阈值时,自行关闭当前工作模式。
可选的,在刷牙过程中需将向牙齿施加的力保持在一定范围内,才可在清洁牙齿的同时,不损伤牙齿,故可通过预设时间间隔确定电动牙刷在处于正常刷牙模式时的前述实时检测的当前压力值与前述基础压力值的差值,并建立预设的最小差值阈值和最大差值阈值,当前述差值小于最小差值阈值时,说明当前用户施加的力过小,电动牙刷需进行对应的提示操作;当前述差值大于最大差值阈值时,说明当前用户施加的力过大,电动牙刷也需进行对应的提示操作,以便于用户及时根据对应的提示操作施加相应的力。其中,前述最小差值阈值和最大差值阈值均大于前述临界值。
本申请实施例中本申请实施例中获取预设临界值,以及检测当前压力值;将所述预 设临界值与所述压力值进行比较,判断所述压力值是否大于所述预设临界值;若所述压力值大于所述预设临界值,则判断压力反弹过程中的压力变化趋势;若判断结果显示所述压力变化趋势呈递减趋势,则重新定义所述基础压力值。通过在判断出压力值大于预设的临界值时,说明当前智能口腔护理器具受到较大的作用力,再判断压力反弹过程中的压力变化趋势,若压力变化趋势呈递减趋势,则说明当前用户暂停使用智能电动牙刷,则需重新定义基础压力值,通过在检测出大压力,并对大压力出现后的反弹趋势进行判断后确定是否需要重新定义基础压力值,可以避免大压力消失后牙刷压力传感器检测到的值相对于受到较大压力之前检测到的值会有所偏移,从而致使后续进行刷牙动作时检测到的作用于牙刷的压力值产生偏差而与原基础压力值无法正常进行电动牙刷工作模式判断的情况;还确保了电动牙刷不会产生错误指示信息,而导致电动牙刷工作时出错甚至无法工作引起用户不适的情况。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
对应于上文所述的一种基于压力调节振动频率的控制方法,图14所示为本申请实施例中一种基于压力调节振动频率的控制系统的结构示意图,如图14所示,所述智能口腔护理器具的工作频率包括第一振动频率和第二振动频率,所述智能口腔护理器具存在基础压力值,所述基于压力调节振动频率的控制系统可以包括:
数据采集单元141,用于以第一预设时间间隔对所述智能口腔护理器具的当前压力值进行采集,构建出第一压力数据集。
第一均衡化处理单元142,用于接收所述数据采集单元构建出的所述智能口腔护理器具的所述第一压力数据集,并对所述第一压力数据集进行第一均衡化处理,得到第一均衡值。
波动值判断单元143,用于接收所述第一均衡值,并将所述第一均衡值与预设波动 值进行比较判断,并根据判断结果决定是否生成重定义所述基础压力值的重定义指令。
重定义单元144,用于根据所述波动值判断单元输出的所述重定义指令重新定义所述基础压力值。
可选的,所述基于压力调节振动频率的控制系统还可以包括:
获取基础压力值单元,用于获取基础压力值。
压力值采集单元,用于以第二预设时间间隔对当前压力值进行采集,构建出第二压力数据集。
第二均衡化处理单元,用于对所述第二压力数据集进行第二均衡化处理,得到第二均衡值。
差值比较单元,用于计算所述基础压力值与所述第二均衡值之间的差值,将所述差值与预设临界值进行比较,若所述差值大于所述预设临界值,则控制所述智能口腔护理器具以所述第一振动频率工作。
可选的,所述重定义单元144可以包括:
均衡化处理单元,用于将所述第一压力数据集进行第三均衡化处理,得到第三均衡值。
基础压力值单元,用于以所述第三均衡值作为新的基础压力值。
可选的,所述第一均衡化处理包括计算所述第一压力数据集的一阶差分的方差。
可选的,所述预设波动值的取值范围为[2,10]。
可选的,所述预设波动值为3。
可选的,所述基础压力值为智能口腔护理器具开机时采集的压力值。
可选的,所述基础压力值为智能口腔护理器具未使用时每隔预设周期采集的压力值。
可选的,所述基于压力调节振动频率的控制系统还可以包括:
压力差值计算单元,用于对于所述智能口腔护理器具未使用时的每个周期,计算该 周期采集的压力值与相邻周期采集的压力值的压力差值。
剔除单元,用于当所述压力差值大于预设差值阈值时,将该周期采集的压力值进行剔除操作。
可选的,所述第一振动频率大于所述第二振动频率。
本申请实施例中当所述智能口腔护理器具以第二振动频率工作时,以第一预设时间间隔对所述智能口腔护理器具的当前压力值进行采集,构建出第一压力数据集;对构建出的所述智能口腔护理器具的所述第一压力数据集进行第一均衡化处理,得到第一均衡值;将所述第一均衡值与预设波动值进行比较,若所述第一均衡值小于所述预设波动值,则重新定义所述基础压力值。通过在智能口腔护理器具工作时,以第一预设时间间隔采集当前压力值,并对所采集的当前压力值进行第一均衡化处理,以提高当前压力值的准确性,再将第一均衡值与预设波动值进行比较,以确定智能口腔护理器具的当前工作模式,从而根据工作模式决定出是否需对基础压力值进行重新定义,当第一均衡值小于预设波动值时,说明当前智能口腔护理器具处于防飞溅模式,也就是以第二振动频率进行振动的工作模式,智能口腔护理器具需重新定义基础压力值,从而保证了智能口腔护理器具能够根据修正后的基础压力值来准确判断当前工作模式。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图15为本申请实施例提供的智能口腔护理器具的结构示意图。为了便于说明,仅示出了与本申请实施例相关的部分。
如图15所示,该实施例的智能口腔护理器具15包括:至少一个处理器150(图15中仅示出一个),与所述处理器150连接的存储器151,以及存储在所述存储器151中并可在所述至少一个处理器150上运行的计算机程序152,例如基于压力调节振动频率的控制程序。所述处理器150执行所述计算机程序152时实现上述各个基于压力调节振动频率的控制方法实施例中的步骤,例如图4所示的步骤S101至S103。或者,所 述处理器150执行所述计算机程序152时实现上述各系统实施例中各单元的功能,例如图14所示单元141至144的功能。
示例性的,所述计算机程序152可以被分割成一个或多个单元,所述一个或者多个单元被存储在所述存储器151中,并由所述处理器150执行,以完成本申请。所述一个或多个单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序152在所述智能口腔护理器具15中的执行过程。例如,所述计算机程序152可以被分割成数据采集单元141、第一均衡化处理单元142、波动值判断单元143、重定义单元144,各单元具体功能如下:
数据采集单元141,用于以第一预设时间间隔对所述智能口腔护理器具的当前压力值进行采集,构建出第一压力数据集;
第一均衡化处理单元142,用于接收所述数据采集单元构建出的所述智能口腔护理器具的所述第一压力数据集,并对所述第一压力数据集进行第一均衡化处理,得到第一均衡值;
波动值判断单元143,用于接收所述第一均衡值,并将所述第一均衡值与预设波动值进行比较判断,并根据判断结果决定是否生成重定义所述基础压力值的重定义指令;
重定义单元144,用于根据所述波动值判断单元输出的所述重定义指令重新定义所述基础压力值。
所述智能口腔护理器具15可包括,但不仅限于,处理器150、存储器151。本领域技术人员可以理解,图15仅仅是智能口腔护理器具15的举例,并不构成对智能口腔护理器具15的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备、总线等。
所称处理器150可以是中央处理单元(Central Processing Unit,CPU),该处理器150还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列 (Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器151在一些实施例中可以是所述智能口腔护理器具15的内部存储单元,例如智能口腔护理器具15的硬盘或内存。所述存储器151在另一些实施例中也可以是所述智能口腔护理器具15的外部存储设备,例如所述智能口腔护理器具15上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器151还可以既包括所述智能口腔护理器具15的内部存储单元也包括外部存储设备。所述存储器151用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如所述计算机程序的程序代码等。所述存储器151还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究 竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/智能口腔护理器具和方法,可以通过其它的方式实现。例如,以上所描述的装置/智能口腔护理器具实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质至少可以包括:能够将计算机程序代码携带到拍照装置/智能口腔护理器具的任何 实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种基于压力调节振动频率的控制方法,应用于智能口腔护理器具,其特征在于,所述智能口腔护理器具的工作频率包括第一振动频率和第二振动频率,所述第一振动频率用于控制所述智能口腔护理器具以刷牙模式工作,所述第二振动频率用于控制所述智能口腔护理器具以防飞溅模式工作,所述智能口腔护理器具存在基础压力值,当所述智能口腔护理器具以第二振动频率工作时,执行以下步骤:
    S101:以第一预设时间间隔对所述智能口腔护理器具的当前压力值进行采集,构建出第一压力数据集;
    S102:对构建出的所述智能口腔护理器具的所述第一压力数据集进行第一均衡化处理,得到第一均衡值;所述第一均衡化处理至少包括计算所述第一压力数据集中的方差、标准差、一阶差分的方差中的任一项;
    S103:将所述第一均衡值与预设波动值进行比较,若所述第一均衡值小于所述预设波动值,则重新定义所述基础压力值;
    所述重新定义所述基础压力值包括以下步骤:
    S301:将所述第一压力数据集进行第三均衡化处理,得到第三均衡值;所述第三均衡化处理包括计算所述第一压力数据集的数学期望;
    S302:以所述第三均衡值作为新的基础压力值。
  2. 如权利要求1所述的基于压力调节振动频率的控制方法,其特征在于,当所述智能口腔护理器具启动后以第二振动频率工作时,所述方法还包括以下步骤:
    S201:获取基础压力值;
    S202:以第二预设时间间隔对当前压力值进行采集,构建出第二压力数据集;
    S203:对所述第二压力数据集进行第二均衡化处理,得到第二均衡值;所述第二均衡化处理包括计算所述第二压力数据集的数学期望;
    S204:计算所述基础压力值与所述第二均衡值之间的差值,将所述差值与预设临界值进行比较,若所述差值大于所述预设临界值,则控制所述智能口腔护理器具以所述 第一振动频率工作。
  3. 如权利要求1所述的基于压力调节振动频率的控制方法,其特征在于,所述第一均衡化处理包括计算所述第一压力数据集的一阶差分的方差。
  4. 如权利要求3所述的基于压力调节振动频率的控制方法,其特征在于,所述预设波动值的取值范围为[2,10]。
  5. 如权利要求2所述的基于压力调节振动频率的控制方法,其特征在于,所述预设波动值为3。
  6. 如权利要求1所述的基于压力调节振动频率的控制方法,其特征在于,所述基础压力值为所述智能口腔护理器具开机时采集的压力值。
  7. 如权利要求1所述的基于压力调节振动频率的控制方法,其特征在于,所述基础压力值为所述智能口腔护理器具未使用时每隔预设周期采集的压力值。
  8. 如权利要求7所述的基于压力调节振动频率的控制方法,其特征在于,包括以下步骤:
    对于所述智能口腔护理器具未使用时的每个周期,计算该周期采集的压力值与相邻周期采集的压力值的压力差值;
    当所述压力差值大于预设差值阈值时,将该周期采集的压力值进行剔除操作。
  9. 如权利要求1至8任一项所述的基于压力调节振动频率的控制方法,其特征在于,所述第一振动频率大于所述第二振动频率。
  10. 一种基于压力调节振动频率的控制系统,应用于智能口腔护理器具,其特征在于,所述智能口腔护理器具的工作频率包括第一振动频率和第二振动频率,所述第一振动频率用于控制所述智能口腔护理器具以刷牙模式工作,所述第二振动频率用于控制所述智能口腔护理器具以防飞溅模式工作,所述智能口腔护理器具存在基础压力值,所述基于压力调节振动频率的控制系统包括:
    数据采集单元,用于以第一预设时间间隔对所述智能口腔护理器具的当前压力值进 行采集,构建出第一压力数据集;
    第一均衡化处理单元,用于接收所述数据采集单元构建出的所述智能口腔护理器具的所述第一压力数据集,并对所述第一压力数据集进行第一均衡化处理,得到第一均衡值;所述第一均衡化处理至少包括计算所述第一压力数据集中的方差、标准差、一阶差分的方差中的任一项;
    波动值判断单元,用于接收所述第一均衡值,并将所述第一均衡值与预设波动值进行比较判断,并根据判断结果决定是否生成重定义所述基础压力值的重定义指令;
    重定义单元,用于根据所述波动值判断单元输出的所述重定义指令重新定义所述基础压力值;
    所述重定义单元包括:
    均衡化处理单元,用于将所述第一压力数据集进行第三均衡化处理,得到第三均衡值;所述第三均衡化处理包括计算所述第一压力数据集的数学期望;
    基础压力值单元,用于以所述第三均衡值作为新的基础压力值。
  11. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至9任一项所述的一种基于压力调节振动频率的控制方法的步骤。
PCT/CN2021/137663 2020-12-21 2021-12-14 基于压力调节振动频率的控制方法、控制系统及存储介质 WO2022135220A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011517901.XA CN112674898B (zh) 2020-12-21 2020-12-21 基于压力调节振动频率的控制方法、控制系统及存储介质
CN202011517901.X 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022135220A1 true WO2022135220A1 (zh) 2022-06-30

Family

ID=75449714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137663 WO2022135220A1 (zh) 2020-12-21 2021-12-14 基于压力调节振动频率的控制方法、控制系统及存储介质

Country Status (2)

Country Link
CN (1) CN112674898B (zh)
WO (1) WO2022135220A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112674898B (zh) * 2020-12-21 2021-08-31 深圳市力博得科技有限公司 基于压力调节振动频率的控制方法、控制系统及存储介质
CN113979250B (zh) * 2021-10-29 2023-03-24 杭州赛翔科技有限公司 基于油温的液压电梯启停调速控制方法
CN115553699B (zh) * 2022-09-28 2023-05-12 吉林医药学院附属医院 一种基于口腔修复用的智能口腔窥镜系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329024A (ja) * 1992-05-29 1993-12-14 Nippon Philips Kk 電動歯ブラシ
JP2011156204A (ja) * 2010-02-02 2011-08-18 Omron Healthcare Co Ltd 口腔ケア装置
CN108814744A (zh) * 2018-04-13 2018-11-16 深圳市力博得科技有限公司 防止电动牙刷泡沫飞溅的方法、装置、设备及存储介质
CN109069245A (zh) * 2016-03-30 2018-12-21 皇家飞利浦有限公司 用于校准口腔清洁设备的方法和系统
CN111772848A (zh) * 2020-07-14 2020-10-16 深圳市云顶信息技术有限公司 基于压力检测的牙刷控制方法、装置、设备、介质和电动牙刷
CN112674898A (zh) * 2020-12-21 2021-04-20 深圳市力博得科技有限公司 基于压力调节振动频率的控制方法、控制系统及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107432775B (zh) * 2016-05-27 2020-06-26 深圳减字科技有限公司 一种电动牙刷的振动强度控制方法及系统
CN111297506B (zh) * 2020-02-17 2021-12-07 广州舒客实业有限公司 一种电动牙刷控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329024A (ja) * 1992-05-29 1993-12-14 Nippon Philips Kk 電動歯ブラシ
JP2011156204A (ja) * 2010-02-02 2011-08-18 Omron Healthcare Co Ltd 口腔ケア装置
CN109069245A (zh) * 2016-03-30 2018-12-21 皇家飞利浦有限公司 用于校准口腔清洁设备的方法和系统
CN108814744A (zh) * 2018-04-13 2018-11-16 深圳市力博得科技有限公司 防止电动牙刷泡沫飞溅的方法、装置、设备及存储介质
CN111772848A (zh) * 2020-07-14 2020-10-16 深圳市云顶信息技术有限公司 基于压力检测的牙刷控制方法、装置、设备、介质和电动牙刷
CN112674898A (zh) * 2020-12-21 2021-04-20 深圳市力博得科技有限公司 基于压力调节振动频率的控制方法、控制系统及存储介质

Also Published As

Publication number Publication date
CN112674898A (zh) 2021-04-20
CN112674898B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2022135220A1 (zh) 基于压力调节振动频率的控制方法、控制系统及存储介质
WO2020061761A1 (zh) 一种耳机及一种实现佩戴检测和触控操作的方法
WO2015081864A1 (zh) 一种eMMC的监控方法及装置
US20220331079A1 (en) Electric toothbrush system with pressure detection
CN104360734A (zh) 一种终端操作的方法
WO2022228462A1 (zh) 电动牙刷的控制方法、装置及电动牙刷
CN110794092B (zh) 传感器及其控制方法、装置、设备和空气质量监测设备
TWI410838B (zh) 臨界值補償方法
TW201814309A (zh) 電荷狀態指示方法及指示系統
CN112674897B (zh) 压力数据处理控制方法、控制系统及计算机可读存储介质
CN111765898B (zh) 计步方法,计步装置及计算机可读存储介质
CN104539494A (zh) 一种识别唤醒信号的方法及系统
CN113126815A (zh) 一种按键响应控制方法、装置、终端设备及存储介质
CN107367633A (zh) 用于电压过零检测电路的过零处理方法、装置及设备
CN111493741B (zh) 尘盒检测方法、装置、电子设备及计算机可读存储介质
CN109799872B (zh) 提高低解析度实时时钟唤醒精度的方法、装置及电子设备
CN108495232B (zh) 一种麦克风音量的调节方法、装置、麦克风及存储介质
CN108877875B (zh) 生理传感器装置、方法及系统
CN113126813B (zh) 一种按键误判的修正方法、装置、终端设备及存储介质
US8555045B2 (en) Electronic meter for concurrently updating firmware and collecting meter usage with a micro controller calculates the usage when a reset time is longer than a predetermined period of storing time
KR20090097983A (ko) 전자파 간섭 방지를 위한 터치 기준값 설정 방법 및 이를이용한 터치 감지 장치
US7325153B2 (en) Obtaining configuration data for a data processing apparatus
US20210381903A1 (en) Temperature Detecting Device
CN109388217B (zh) 确定硬盘未上电时长的方法、装置及系统
CN208157071U (zh) 一种固态硬盘

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909217

Country of ref document: EP

Kind code of ref document: A1