WO2022134924A1 - 呼吸输气管、鼻导管和通气治疗设备 - Google Patents
呼吸输气管、鼻导管和通气治疗设备 Download PDFInfo
- Publication number
- WO2022134924A1 WO2022134924A1 PCT/CN2021/130312 CN2021130312W WO2022134924A1 WO 2022134924 A1 WO2022134924 A1 WO 2022134924A1 CN 2021130312 W CN2021130312 W CN 2021130312W WO 2022134924 A1 WO2022134924 A1 WO 2022134924A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tube
- air delivery
- delivery tube
- thermal insulation
- breathing air
- Prior art date
Links
- 230000029058 respiratory gaseous exchange Effects 0.000 title claims abstract description 97
- 238000009423 ventilation Methods 0.000 title claims abstract description 15
- 238000002560 therapeutic procedure Methods 0.000 title abstract description 5
- 238000004321 preservation Methods 0.000 claims abstract description 42
- 238000009413 insulation Methods 0.000 claims description 100
- 239000010410 layer Substances 0.000 claims description 43
- 230000005540 biological transmission Effects 0.000 claims description 34
- 238000005485 electric heating Methods 0.000 claims description 27
- 239000002356 single layer Substances 0.000 claims description 14
- 125000006850 spacer group Chemical group 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 6
- 230000000241 respiratory effect Effects 0.000 claims description 5
- 230000014759 maintenance of location Effects 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 15
- 239000007789 gas Substances 0.000 description 132
- 238000010586 diagram Methods 0.000 description 16
- 238000001125 extrusion Methods 0.000 description 6
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000007779 soft material Substances 0.000 description 3
- 208000004756 Respiratory Insufficiency Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000002640 oxygen therapy Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 201000004193 respiratory failure Diseases 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/08—Bellows; Connecting tubes ; Water traps; Patient circuits
- A61M16/0875—Connecting tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/04—Tracheal tubes
- A61M16/0461—Nasoendotracheal tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/04—Tracheal tubes
- A61M16/0488—Mouthpieces; Means for guiding, securing or introducing the tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/06—Respiratory or anaesthetic masks
- A61M16/0666—Nasal cannulas or tubing
- A61M16/0672—Nasal cannula assemblies for oxygen therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/1075—Preparation of respiratory gases or vapours by influencing the temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/1075—Preparation of respiratory gases or vapours by influencing the temperature
- A61M16/1095—Preparation of respiratory gases or vapours by influencing the temperature in the connecting tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/08—Tubes; Storage means specially adapted therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/04—Tracheal tubes
- A61M16/0402—Special features for tracheal tubes not otherwise provided for
- A61M16/0425—Metal tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/08—Tubes; Storage means specially adapted therefor
- A61M2039/082—Multi-lumen tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/36—General characteristics of the apparatus related to heating or cooling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/36—General characteristics of the apparatus related to heating or cooling
- A61M2205/3633—General characteristics of the apparatus related to heating or cooling thermally insulated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2207/00—Methods of manufacture, assembly or production
- A61M2207/10—Device therefor
Definitions
- the invention relates to the field of ventilation treatment equipment, in particular to a breathing air delivery tube, a nasal guide and a ventilation treatment equipment.
- ventilation treatment equipment such as ventilator and high-flow oxygen therapy device are vital medical equipment for patients with respiratory failure to maintain breathing, ensure ventilation, and save and prolong the life of patients.
- the ventilation treatment method based on ventilation treatment equipment is currently an alternative to artificial
- the effective method of spontaneous ventilation has been widely used in respiratory failure caused by various reasons, anesthesia breathing management during major surgery, respiratory support treatment and emergency resuscitation.
- the nasal cannula used therein typically includes a machine end port, a catheter, and a patient port. The two ends of the conduit are respectively connected with the machine end interface and the patient interface, and the warm and humid gas provided by the machine can be delivered to the patient interface through the conduit, and then transmitted to the patient's airway through the patient interface.
- the catheter In actual use, the catheter is usually exposed to indoor air, and the warm and humid breathing gas delivered to the patient will produce a temperature drop in the catheter, which is accompanied by condensation water, especially when used for children's nasal cannula, the gas flow is very small ( Generally 2-25L/min), at this time, the temperature drop of the gas in the conduit will be very large, so the condensed water will be more obvious.
- the ventilation cross-section of the catheter is usually round, and when it is squeezed, such as flattened or bent, it is easy to be crushed, broken, and other phenomena that cannot be ventilated. If it is not found in time, it may affect the patient's treatment.
- the purpose of the present invention is to provide a breathing air delivery tube, which can reduce the temperature drop of the conveyed gas by itself, thereby reducing the generation of condensed water.
- the present invention provides a breathing air delivery tube, which is used for delivering gas to a patient interface
- the breathing air delivery tube includes an air delivery tube body
- the air delivery tube body includes an air delivery channel and a The thermal insulation structure for thermal insulation of the gas transport in the gas transport channel.
- the gas transmission pipe body since the gas transmission pipe body includes a thermal insulation structure for thermal insulation of the gas transmission in the gas transmission channel, the thermal insulation of the gas transmission pipe body through the thermal insulation structure can effectively slow down or avoid the thermal insulation of the gas transmission channel.
- the temperature drop can further slow down or avoid the temperature drop of the gas transported in the gas transmission channel, and avoid the generation of condensed water in the gas transmission channel.
- the thermal insulation structure includes a multi-layer thermal insulation structure arranged in a radial direction.
- the heat preservation structure can make the deformation of the gas transmission channel have a gas transmission gap for maintaining gas transmission when at least a part of the gas transmission pipe body is squeezed and deformed.
- the gas delivery pipe body includes an inner pipe and an outer pipe, the outer pipe is sleeved on the outside of the inner pipe, and between the inner pipe and the outer pipe, a spacer to spread the inner pipe and the outer pipe is arranged.
- the pipe supports ribs, so that a heat preservation interval is formed between the inner pipe and the outer pipe, the inner channel of the inner pipe serves as the gas transmission channel, and the heat preservation structure includes the heat preservation interval.
- one radial end of the tube support rib is integrally formed with the inner tube and the other radial end of the tube support rib is integrally formed with the outer tube;
- One radial end of the tube support rib is integrally formed with one of the inner tube and the outer tube, and the other radial end of the tube support rib is integrally formed with the other of the inner tube and the outer tube are not integrally formed.
- the heat preservation interval is a closed cavity.
- the outer side wall of the heat preservation interval is provided with a liquid drain and a side wall door capable of opening and closing the liquid drain.
- the thermal insulation structure includes an electric heating wire, and the electric heating wire is arranged in a tube wall of at least one of the inner tube and the outer tube.
- the electric heating wire extends axially straight or spirally around the tube.
- the thermal insulation structure includes an thermal insulation layer, and the thermal insulation layer is filled in the thermal insulation interval.
- At least one of the inner surface and the outer surface of the thermal insulation space is provided with an air-holding spacer structure, and the air-holding spacer structure causes the deformation to occur when at least part of the outer tube is squeezed and deformed. Keep air gaps.
- the air-maintaining space structure includes a convex portion protruding from at least one of the inner surface and the outer surface of the insulation space, and when the outer tube is squeezed and deformed, the convex portion is The raised portion is capable of contacting opposing structures within the thermal insulation space to form the air space on at least one circumferential side of the raised portion.
- the opposite structure is a side surface of the heat preservation interval that is radially opposite to the raised portion, or the opposite structure is any An opposite raised portion protruding from a side surface of the heat preservation interval diametrically opposite to the raised portion.
- the cross-sectional shape of the protruding portion is a peak, and the side surfaces of the peak adjacent to the peak in the circumferential direction are concave arc surfaces.
- the thermal insulation structure includes an thermal insulation layer
- the gas transmission pipe body includes an inner tube and an outer tube
- the outer tube is supported and sheathed on the outside of the inner tube through the thermal insulation layer
- the inner tube is The inner channel serves as the gas delivery channel.
- the gas delivery pipe body is a single-layer pipe body, and an electric heating wire is arranged in the pipe wall of the single-layer pipe body, and/or, the outer surface of the single-layer pipe body is wrapped with a thermal insulation Floor.
- the gas delivery tube body includes a gas-holding and delivery structure
- the gas delivery channel has a gas-holding and delivery-holding structure at the deformed position when the gas delivery tube body is at least partially squeezed and deformed. air gap.
- the gas retaining structure is arranged on the inner surface of the gas transmission channel.
- the width dimension of the cross-section of the retaining gas delivery structure tapers in a radially inward direction.
- the holding gas delivery structure includes a protrusion extending inward from the inner surface of the channel, the protrusion extends along the axial direction of the gas delivery channel, and the gas delivery pipe body is squeezed when the gas delivery pipe body is squeezed.
- the protrusions can be in contact with opposing structures on the inner surface of the channel to form the gas delivery gap on at least one circumferential side of the protrusions.
- the opposing structure is an inner surface portion of the inner surface of the channel that is radially opposite to the protrusion.
- the opposing structure is a protrusion on the inner surface of the channel that is radially opposite to the protrusion.
- the width dimension of the cross-section of the protrusions tapers in a radially inward direction.
- the cross-sectional shape of the protrusion is a peak.
- At least one side surface of the peaks adjacent to each other in the circumferential direction is a concave arc surface.
- the present invention provides a nasal cannula comprising an air source connection terminal, a patient interface and any of the above-mentioned breathing air tubes, wherein one end of the breathing air tube is connected to the air source connection terminal, so that The other end of the breathing air tube is connected to the patient interface.
- the present invention provides a ventilation therapy device comprising the nasal cannula described above.
- Fig. 1 is the cross-sectional structure schematic diagram of the first kind of breathing airway provided by the specific embodiment of the present invention
- FIG. 2 is a schematic cross-sectional structure diagram of a second type of breathing airway provided by a specific embodiment of the present invention
- FIG. 3 is a schematic cross-sectional structure diagram of a third breathing airway provided by a specific embodiment of the present invention.
- Fig. 4 is the cross-sectional structure schematic diagram of the fourth kind of breathing airway provided by the specific embodiment of the present invention.
- Fig. 5 is the partial structural representation of the side view of the respiratory airway of Fig. 4;
- FIG. 6 is a schematic cross-sectional structure diagram of a fifth breathing airway provided by a specific embodiment of the present invention.
- Fig. 7 is the partial structural representation of the side view of the respiratory airway of Fig. 6;
- Fig. 8 is a kind of structural representation that the breathing airway of Fig. 3 is squeezed
- Fig. 9 is another kind of structural representation that the respiratory airway of Fig. 3 is squeezed
- FIG. 10 is a schematic cross-sectional structure diagram of a sixth breathing airway provided by a specific embodiment of the present invention.
- FIG. 11 is a schematic cross-sectional structure diagram of a seventh breathing airway provided by a specific embodiment of the present invention.
- FIG. 12 is a schematic cross-sectional structure diagram of an eighth breathing airway provided by a specific embodiment of the present invention.
- FIG. 13 is a schematic cross-sectional structure diagram of a ninth breathing airway provided by a specific embodiment of the present invention.
- FIG. 14 is a schematic structural diagram of a breathing air delivery tube provided by a specific embodiment of the present invention with an air delivery gap for maintaining gas delivery at the deformed place when it is squeezed and deformed;
- 15 is another structural schematic diagram of a breathing air delivery tube provided by a specific embodiment of the present invention having an air delivery gap for maintaining gas delivery at the deformation position when it is squeezed and deformed;
- 16 is a schematic cross-sectional structure diagram of a tenth breathing airway provided by a specific embodiment of the present invention.
- FIG. 17 is a schematic structural diagram of a part of maintaining an air space at the deformation place when the heat preservation space of the breathing air delivery tube of FIG. 16 is squeezed and deformed;
- FIG. 18 is a schematic structural diagram of the connection between the end of a breathing air tube and a connector according to a specific embodiment of the present invention.
- 19 is another structural schematic diagram of the connection between the end of a breathing air tube and the connector according to the specific embodiment of the present invention.
- FIG. 20 is another structural schematic diagram of the connection between the end of a breathing air tube and the connector according to the specific embodiment of the present invention.
- the breathing airway provided by the present invention is used to deliver gas to a patient interface
- the breathing air delivery tube includes an air delivery tube body 1
- the air delivery tube body 1 includes an air delivery channel 2 and a thermal insulation structure for insulating the gas delivered in the air delivery channel 2 .
- the air delivery tube body 1 since the air delivery tube body 1 includes a thermal insulation structure for thermally insulating the gas in the gas delivery channel 2, the thermal insulation of the air delivery tube body 1 by the thermal insulation structure can effectively slow down or avoid The temperature drop of the gas transmission channel can further slow down or avoid the temperature drop of the gas transported in the gas transmission channel, and avoid the generation of condensed water in the gas transmission channel.
- the thermal insulation structure may be one layer, referring to the one-layer thermal insulation interval 7 shown in FIG.
- the electric heating wire 8 a layer of thermal insulation structure
- the thermal insulation space 7 another layer of thermal insulation structure
- the multi-layer thermal insulation structure is not limited to two layers, and may also be three layers or four layers arranged in sequence in the radial direction.
- the thermal insulation structure of the breathing air delivery tube can have the following function of maintaining the air delivery gap 3 while having the thermal insulation effect, that is, the thermal insulation structure can make the air delivery tube body 1 deformed when at least part of it is squeezed.
- the deformation of the gas delivery channel 2 has a gas delivery gap 3 for maintaining gas delivery.
- the gas delivery gap 3 can refer to Fig. 8, Fig. 9, Fig. 14 and Fig. 15. In this way, since the thermal insulation structure included in the gas delivery pipe body 1 can further enhance the anti-extrusion deformation strength of the gas delivery pipe body 1, when at least a part of the gas delivery pipe body 1 is squeezed and deformed, the deformation degree of the gas delivery passage 2 can be slowed down.
- the thermal insulation structure may have various types, and the various types of thermal insulation structures will be described in detail below.
- the gas delivery pipe body 1 includes an inner pipe 4 and an outer pipe 5, the outer pipe 5 is sheathed outside the inner pipe 4, and the inner pipe 4 and the outer pipe A tube support rib 6 is arranged between the tubes 5 to open the inner tube and the outer tube, so that a thermal insulation interval 7 is formed between the inner tube 4 and the outer tube 5, and the inner channel of the inner tube 4 is used as the gas transmission channel 2, and the thermal insulation structure Including keep warm interval 7. In this way, in actual use, the heat preservation interval 7 is sealed and filled.
- the air layer in the heat preservation interval 7 is basically not circulated, so as to play the role of heat insulation and heat preservation.
- the warm and humid breathing gas in the inner tube 4 will conduct heat to the air layer through the tube wall of the inner tube 4, and the air layer will conduct heat to the tube wall of the outer tube 5, and then release heat into the atmosphere.
- the air layer in the heat preservation interval 7 Since the thermal conductivity of air is very low, and the air layer in the heat preservation interval 7 is basically not circulated, after the breathing airway works for a short period of time, the air layer will be heated to a temperature close to the breathing gas in the inner tube 4, thereby reducing the The temperature difference between the two sides of the tube wall of the inner tube 4 is reduced, so that the breathing gas will not have a large temperature drop on the tube wall of the inner tube 4, thereby reducing the phenomenon that the temperature of the breathing gas is lowered and excessive condensation is generated. .
- the breathing gas transmitted by the breathing airway is 37°C, and there will be a temperature difference of 12°C between the inner and outer sides of the existing ordinary single-layer catheter, so that the inner wall of the catheter will have a larger temperature difference than the breathing gas.
- the breathing gas in contact with the inner wall will cause a temperature drop, which will generate condensation.
- the temperature of the air layer in the heat preservation interval 7 will be between 25-37°C (taking the middle value of 31°C as an example)
- the air layer in the insulation interval 7 is equivalent to raising the ambient temperature to 31 °C, thereby reducing the temperature difference between the two sides of the inner tube wall and improving the inner tube.
- the temperature inside the tube wall reduces the temperature drop of the breathing gas in contact with the inner tube wall, thereby reducing the generation of condensed water on the tube wall of the inner tube.
- the number of the tube support ribs 6 can be selected according to actual requirements, such as 2, 3 or 4, as long as the inner tube 4 and the outer tube 5 can be stretched apart.
- one radial end of the tube support rib 6 is integrally formed with the inner tube 4 and the other radial end of the tube support rib 6 is integrally formed with the outer tube 5 , which is convenient for forming and also facilitates the inner tube 4 and the outer tube. 5 can be connected stably and reliably.
- the tube support rib 6 may be separated from the inner tube 4 or the outer tube 5, that is, the radial end of the tube support rib 6 is integrally formed with one of the inner tube 4 and the outer tube 5, while the tube supports The radially other end of the rib 6 is not integrally formed with the other of the inner tube 4 and the outer tube 5 to form an assembled relationship.
- the radial ends of the tube support rib 6 are not integrally formed with the inner tube 4 and the outer tube 5 respectively and are assembled in shape.
- the tube support rib 6 can be pasted on the inner tube 4, and then the outer tube 5 is assembled and assembled. The inner surface of the outer tube 5 is brought into contact with the tube support rib 6 .
- the tube supporting ribs 6 may be annular tube supporting ribs, and a plurality of annular tube supporting ribs 6 are arranged at intervals along the length direction (axial direction) of the breathing air tube.
- the tube support rib 6 may be an axially extending rib segment having a predetermined length, and a plurality of axially extending ribs may be arranged at intervals along the length direction (axial direction) of the breathing air tube, or, the axially extending rib segment may extend from One end of the breathing air tube extends continuously to the other end.
- the insulation interval 7 can be an open space, and when in use, it is connected and matched with the connector 19 or the block 20 (refer to FIGS. 18-20 ), for example It can be blocked by the end face of the connector 19 or by the plug 21 on the end face of the connector 19 to encapsulate the insulation space 7 to form a sealed space.
- the breathing air tube can be detached from the connector 19 or the block 20. At this time, if there is condensed water in the heat preservation interval 7, the condensed water can be thrown out.
- the thermal insulation interval 7 is a closed cavity, for example, the end faces of the two axial ends of the outer tube 5 are connected to the inner tube 4 through annular end walls to encapsulate the thermal insulation interval 7 as a closed cavity ,
- the two ends of the inner tube 4 are respectively connected with the air source connection terminal and the patient interface.
- connecting heads 19 or plugs 20 are respectively connected to both ends of the breathing air tube to encapsulate the insulation interval 7 as a closed cavity.
- the connecting heads 19 are respectively connected to the gas source
- the terminal and/or the patient interface can be connected, or the two ends of the breathing air pipe can be connected to the air source connection terminal and the patient interface respectively.
- the outer side wall of the heat preservation interval 7 is provided with a liquid outlet and a side wall door capable of opening and closing the liquid outlet. In this way, after use, the side wall door body is opened, and the condensed water in the heat preservation interval 7 can be thrown out.
- the side wall door can be the connector 19 or the plug 20 or other door structures.
- the tube support ribs 6 are a plurality of annular tube support ribs and are arranged at intervals along the length direction (axial direction) of the breathing air tube, the annular heat preservation interval 7 between the adjacent annular tube support ribs will It is an annular closed cavity.
- the pipe wall section can be provided with a drain port and a side wall door that can open and close the drain port. After use, if there is condensed water in the annular closed cavity, the side wall door can be opened to remove condensation. The water is discharged, and if there is no condensed water, the side wall door body will not be opened.
- At least one of the inner surface 10 and the outer surface 11 of the thermal insulation interval 7 is provided with an air-holding spacer structure, and the holding-air spacer structure is at least partially covered by the outer pipe 5 .
- the air space 12 is maintained at the deformation.
- the thermal insulation interval 7 between the outer tubes is not completely pressed to death, so that a part of the thermal insulation interval 7 between the inner tube and the outer tube still forms the air gap 12, and the air layer in the air gap 12 can still be used for the breathing gas in the inner tube. It plays the role of heat insulation and heat preservation, thereby preventing the heat preservation performance from failing when the outer tube 5 and even the breathing air delivery tube is squeezed.
- the air-holding spacer structure may have various structural forms.
- the air-holding spacer structure is a support column, and the radial connection of the support column is respectively connected to the outer surface and the outer surface of the inner pipe.
- the air-holding spacer structure is a support column, and the radial connection of the support column is respectively connected to the outer surface and the outer surface of the inner pipe.
- the maintaining air spacing structure includes a raised portion 13 protruding from at least one of the inner surface 10 and the outer surface 11 of the thermal insulation gap 7 , the raised portion 13 can extend along the axial direction of the gas delivery channel 2 or along the circumferential direction to form a circumferentially extending section or an annular raised portion, when the outer tube 5 is squeezed and deformed, the raised portion 13 Can be brought into contact with opposing structures within the insulation space 7 to form an air space 12 on at least one circumferential side of the raised portion 13 .
- protrusions 13 protrude from the inner surface 10 and the outer surface 11 .
- FIG. 16 protrusions 13 protrude from the inner surface 10 and the outer surface 11 .
- the protrusions 13 and 13 on the inner surface 10 and The protrusions 13 on the outer surface 11 abut, thereby forming an air space 12 on the circumferential side.
- the inner surface 10 is protruded with the protrusions 13, and the outer surface 11 is not formed with the protrusions 13.
- the protrusions 13 on the inner surface 10 and the outer The surfaces 11 abut to form air gaps 12 on the circumferential sides.
- the raised portion 13 has a raised portion 13 protruding from the outer surface 11. When the outer tube 5 is squeezed and deformed, the relative structure is the inner surface 10. At this time, the raised portion 13 on the outer surface 11 and the inner surface 10 Abutting, thereby forming the air space 12 on the side in the circumferential direction.
- the opposite structure is the opposite raised portion 13 protruding from the side surface of the heat preservation space 7 diametrically opposite to the raised portion 13 , and the two raised portions 13 in contact can increase the air space 12
- the size of the outer tube 5 can improve the heat preservation ability.
- the inner surface 10 and the outer surface 11 are protruded with raised parts 13.
- the relative structure is the raised part 13, the inner surface
- the protrusions 13 on the 10 and the protrusions 13 on the outer surface 11 abut, thereby forming the air gap 12 on the circumferential side.
- the opposite structure may also be other bumps or bumps formed on the inner surface 10 or the outer surface 11 that are different from the raised portions 13 .
- the cross section of the protrusions 13 may have various shapes, such as a rectangle, that is, the protrusions 13 have the same size in the radial direction, for example, the protrusions 13 may be cylindrical.
- the width dimension of the cross section of the convex part 13 is reduced in the radially inward direction, for example, the convex part
- the cross-section of 13 may be trapezoidal, triangular or semicircular, among others.
- the cross-sectional shape of the protruding portion 13 is a peak 14
- the side surface 15 of the peak adjacent to the peak 14 in the circumferential direction is a concave arc surface.
- the peaks 14 themselves can reduce the occupation of the heat preservation interval 7
- the concave arc surface can further reduce the occupation of the heat preservation interval 7 by the peaks 14 .
- the heat preservation interval 7 is only used for heat preservation, and for the case where the room temperature is particularly low or the indoor air flow is relatively large and the heat dissipation is relatively large, the heat preservation interval 7 is used for heat preservation. There may also be a large heat loss, so that the temperature drop of the breathing gas in the inner tube is still large.
- the thermal insulation structure includes an electric heating wire 8, and the electric heating wire 8 is arranged in the tube wall of at least one of the inner tube 4 and the outer tube 5; for example, in FIG. 4 and FIG. 6, the electric heating wire 8 is arranged in the inner tube 4, so that the electric heating wire 8 and the insulation space 7 form a two-layer insulation structure.
- the inner tube of the electric heating wire is added and the heat preservation interval 7 works together, which not only plays the role of heat preservation and heat insulation, but also heats the breathing gas in the inner tube to reach the appropriate temperature of the patient and prevent the generation of condensed water.
- the electric heating wire 8 may be arranged in the tube wall of the outer tube, or both the inner tube and the outer tube are provided with electric heating wires.
- the electric heating wire 8 extends axially straight to facilitate the arrangement of the electric heating wire 8, refer to FIG. 5; or, the electric heating wire 8 extends helically around the tube (inner tube or outer tube), refer to FIG. 7, thereby elevating the electric heating wire heating area.
- the electric heating wire 8 may extend obliquely from one end of the breathing air tube to the other end in a non-spiral winding manner.
- the thermal insulation structure includes an thermal insulation layer 9 , and the thermal insulation layer 9 is filled in the thermal insulation interval 7 .
- the thermal insulation layer 9 can enhance the thermal insulation capability, and the thermal insulation material of the thermal insulation layer 9 can be a soft material, which has no obvious influence on the flexibility of the breathing air tube.
- the thermal insulation structure includes an thermal insulation layer 9
- the gas transmission pipe body 1 includes an inner tube 4 and an outer tube 5
- the outer tube 5 is supported and sheathed outside the inner tube 4 through the thermal insulation layer 9
- the inner channel of the inner tube 4 is used as the gas transmission channel 2 .
- the thermal insulation layer 9 can enhance the thermal insulation capability, and the thermal insulation material of the thermal insulation layer 9 can be a soft material, which has no obvious influence on the flexibility of the breathing air tube.
- the gas transmission pipe body 1 is a single-layer pipe body, and an electric heating wire 8 is arranged in the pipe wall of the single-layer pipe body, and the electric heating wire 8 can extend straight in the axial direction.
- the electric heating wire 8 can be spirally extended around the single-layer tube body to increase the heating area of the electric heating wire.
- the outer surface of the single-layer pipe body is wrapped with thermal insulation layer 9 .
- the thermal insulation layer 9 can enhance the thermal insulation capability, and the thermal insulation material of the thermal insulation layer 9 can be a soft material, which has no obvious influence on the flexibility of the breathing air tube.
- an electric heating wire 8 is arranged in the pipe wall of the single-layer pipe body, and an insulating layer 9 is wrapped on the outer surface of the single-layer pipe body.
- the gas delivery pipe body 1 includes a holding gas delivery structure, and the gas delivery structure is kept in the gas delivery pipe body 1 .
- the gas delivery channel 2 has a gas delivery gap 3 at the deformed place to keep the gas delivery.
- the gas delivery gap 3 can prevent the deformation from being completely squeezed and sealed to prevent ventilation. In this way, the gas delivered by the gas delivery channel 2 can be delivered through the gas delivery gap 3 to avoid adverse effects on the patient's treatment.
- the holding gas delivery structure may include any of the above-mentioned thermal insulation structures, for example, electric heating wires, thermal insulation layers, etc. can further enhance the anti-extrusion deformation strength of the gas delivery pipe body 1, for example, the inner pipe and the outer pipe
- the thermal insulation interval 7 therebetween, or the thermal insulation layer arranged in the thermal insulation interval 7, etc. can also further enhance the anti-extrusion deformation strength of the gas delivery pipe body 1 .
- the holding gas delivery structure can be a reinforcing structure such as a spiral rib formed on the outer surface of the gas delivery pipe body 1, and the reinforcing structure can further enhance the anti-extrusion deformation strength of the gas delivery pipe body 1, so that the gas delivery pipe body 1 can be further strengthened.
- the degree of deformation of the gas delivery channel 2 can be slowed down to avoid completely squeezing and sealing the gas delivery channel 2 at the squeezed place and unable to ventilate, thereby forming the gas delivery gap 3 at the deformation place, In this way, the gas delivered by the gas delivery channel 2 can be delivered through the gas delivery gap 3 to avoid adverse effects on the treatment of the patient.
- the retaining gas transmission structure is arranged on the inner surface 16 of the channel of the gas transmission channel 2, so that the retaining gas transmission structure on the inner surface 16 of the channel can more easily directly form the air transmission gap 3 in the gas transmission channel. .
- the retaining gas delivery structures may have the same dimensions in the radial direction.
- the width dimension of the cross section of the gas delivery structure is kept tapered in a radially inward direction. In this way, due to the reduced width dimension, while ensuring the stable and reliable connection between the gas delivery structure and the inner surface 16 of the channel through a larger contact area, the occupation of the gas delivery channel 2 can be minimized as much as possible.
- the holding gas delivery structure includes a support rod, and two ends of the support rod are respectively connected to opposite surface portions of the inner surface 16 of the channel.
- the holding gas delivery structure includes a protrusion 17 protruding inward from the inner surface 16 of the channel, and the protrusion 17 extends along the axial direction of the gas delivery channel 2.
- the protrusions 17 can be in contact with the opposing structures on the inner surface 16 of the channel to form the gas delivery gap 3 on at least one circumferential side of the protrusions 17 .
- the protrusion 17 can effectively reduce the occupation of the gas transmission channel 2 .
- the opposing structures may be of various types, for example, in one type of opposing structures, the opposing structure is the inner surface portion 18 of the channel inner surface 16 diametrically opposed to the protrusion 17 .
- the number of protrusions 17 is one or more, such as two, three, four or five, when the air delivery tube body is squeezed, for example, shrunk or folded, the protrusions
- the protrusions 17 will come into contact with the inner surface portion 18 to form the gas delivery gap 3 on at least one circumferential side of the protrusions 17 .
- the protrusions 17 can be one or more and arranged at intervals in the circumferential direction, and the circumferentially spaced arrangement of the plurality of protrusions 17 can effectively improve the ability of the gas delivery tube body 1 to maintain gas delivery, for example, no matter where it is squeezed , the gas transmission gap 3 can be formed by the protrusion 17 at the corresponding position.
- the relative structure is a protrusion on the inner surface 16 of the channel that is radially opposite to the protrusion 17 from 17.
- the two protrusions 17 will contact to form the gas delivery gap 3 on at least one circumferential side of the protrusions 17, and the contacted two protrusions 17 can Increase the size of the gas delivery interval 3 to improve the ability to maintain gas delivery.
- the opposite structures may also be other bumps or bumps formed on the inner surface 16 of the channel, which are different from the bumps 17 .
- the cross-section of the protrusions 17 may have various shapes, such as a rectangle, that is, the protrusions 17 have the same size in the radial direction.
- the width dimension of the cross section of the protrusions 17 is tapered in the radially inward direction.
- the cross-sectional shape of the protrusion 17 may be trapezoidal, triangular, semicircular, or the like.
- the cross-sectional shape of the protrusion 17 is a peak 14 .
- the peaks 14 themselves can reduce the occupation of the gas delivery channel 2 .
- At least one peak side surface 15 adjacent to the peak 14 in the circumferential direction is a concave arc surface.
- the peak 14 itself can reduce the occupation of the gas delivery channel 2, and the concave arc surface can further reduce the occupation of the gas delivery channel 2 by the peak 14, which can further improve the retention at the extrusion deformation. Gas delivery capacity.
- the present invention provides a nasal cannula comprising an air source connection terminal, a patient interface and any of the above-mentioned breathing air tubes, wherein one end of the breathing air tube is connected to the air source connection terminal, and the other end of the breathing air tube is connected to the air source connection terminal. One end is connected to the patient interface. In this way, the overall performance of the nasal cannula is improved.
- the present invention provides a ventilation therapy device comprising the nasal cannula described above.
- the ventilation therapy equipment can be a ventilator or a high-flow oxygen therapy device.
Landscapes
- Health & Medical Sciences (AREA)
- Pulmonology (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Emergency Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Anesthesiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Otolaryngology (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
- Respiratory Apparatuses And Protective Means (AREA)
Abstract
一种呼吸输气管、鼻导管和通气治疗设备。呼吸输气管用于将气体输送至患者接口,呼吸输气管包括输气管体(1),输气管体(1)包括输气通道(2)和用于对输气通道(2)内的输气进行保温的保温结构。由于输气管体(1)包括用于对输气通道(2)内的输气进行保温的保温结构,这样,通过该保温结构对输气管体(1)的保温,可以有效地减缓或避免输气通道(2)的温降,从而进一步减缓或避免输气通道(2)内输送的气体的温降,避免了输气通道(2)冷凝水的产生。
Description
相关申请的交叉引用
本申请要求2020年12月25日提交的中国专利申请202011562168.3的权益,该申请的内容通过引用被合并于本文。
本发明涉及通气治疗设备领域,具体地涉及一种呼吸输气管、一种鼻导和一种通气治疗设备。
目前,通气治疗设备例如呼吸机、高流量氧疗仪是呼吸衰竭患者维持呼吸、保证通气、挽救及延长病人生命至关重要的医疗设备,基于通气治疗设备的通气治疗方法是目前能替代人工的自主通气功能的有效方法,已普遍使用于各种原因所致的呼吸衰竭、大手术期间的麻醉呼吸管理、呼吸支持治疗和急救复苏中。其中使用的鼻导管通常包括机器端接口、导管和患者接口。导管的两端分别与机器端接口和患者接口连接,可以通过导管将机器提供的温湿气体输送到患者接口,并经患者接口传到患者呼吸道。
在实际使用中,导管通常暴露在室内空气中,传输给患者的温湿呼吸气体在导管中就会产生温降,伴随着产生冷凝水,尤其是用于儿童鼻导管时,气体流量很小(一般为2-25L/min),此时气体在导管中的温降就会很大,从而冷凝水会更加明显。
另外,导管的通气截面通常是圆形,在受到挤压例如压扁或折弯时很容易出现压死、折死等不能通气的现象,如果发现不及时,可能会影响患者的治疗。
发明内容
本发明的目的是提供一种呼吸输气管,该呼吸输气管自身能够减少输送气体的温降,从而减少冷凝水的产生。
为了实现上述目的,本发明提供一种呼吸输气管,所述呼吸输气管用于将气 体输送至患者接口,所述呼吸输气管包括输气管体,所述输气管体包括输气通道和用于对所述输气通道内的输气进行保温的保温结构。
在该技术方案中,由于输气管体包括用于对输气通道内的输气进行保温的保温结构,这样,通过该保温结构对输气管体的保温,可以有效地减缓或避免输气通道的温降,从而进一步减缓或避免输气通道内输送的气体的温降,避免了输气通道冷凝水的产生。
进一步地,所述保温结构包括在径向方向布置的多层保温结构。
进一步地,所述保温结构能够在所述输气管体的至少局部被挤压而发生变形时使得所述输气通道的变形处具有保持输气的输气间隙。
进一步地,所述输气管体包括内管和外管,所述外管套装在所述内管的外部,所述内管和所述外管之间设置有将内管和外管撑开的管支撑筋,以使得所述内管和所述外管之间形成保温间隔,所述内管的内部通道作为所述输气通道,所述保温结构包括所述保温间隔。
更进一步地,所述管支撑筋的径向一端与所述内管一体成型并且所述管支撑筋的径向另一端和所述外管一体成型;
或者,
所述管支撑筋的径向一端与所述内管和所述外管中的一者一体成型,所述管支撑筋的径向另一端与所述内管和所述外管中的另一者非一体成型。
进一步地,所述保温间隔为封闭腔体。
更进一步地,所述保温间隔的外部侧壁上设置有排液口以及能够打开和关闭所述排液口的侧壁门体。
进一步地,所述保温结构包括电加热丝,所述电加热丝设置在所述内管和所述外管中的至少一者的管壁内。
更进一步地,所述电加热丝轴向平直延伸或者绕管螺旋延伸。
进一步地,所述保温结构包括保温层,所述保温层填充在所述保温间隔内。
进一步地,所述保温间隔的内侧表面和外侧表面中的至少一者上设置有保持空气间隔结构,所述保持空气间隔结构在所述外管的至少局部被挤压而发生变形时使得变形处保持空气间隔。
更进一步地,所述保持空气间隔结构包括所述保温间隔的内侧表面和外侧表 面中的至少一者上伸出的凸起部,在所述外管被挤压而发生变形时,所述凸起部能够与所述保温间隔内的相对结构接触,以在所述凸起部的至少周向一侧形成所述空气间隔。
更进一步地,所述凸起部有多个并且沿周向间隔布置,所述相对结构为所述保温间隔的与所述凸起部径向相对的侧表面,或者,所述相对结构为所述保温间隔的与所述凸起部径向相对的侧表面上伸出的相对的凸起部。
进一步地,所述凸起部的横截面形状为尖峰,所述尖峰周向邻接的尖峰侧面为内凹弧形面。
另外,可选择地,所述保温结构包括保温层,所述输气管体包括内管和外管,所述外管通过所述保温层支撑套装在所述内管的外部,所述内管的内部通道作为所述输气通道。
另外,可选择地,所述输气管体为单层管体,所述单层管体的管壁内设置有电加热丝,和/或,所述单层管体的外表面上包裹有保温层。
此外,所述输气管体包括保持输气结构,所述保持输气结构在所述输气管体的至少局部被挤压而发生变形时使得所述输气通道在变形处具有保持输气的输气间隙。
进一步地,所述保持输气结构设置在所述输气通道的通道内表面上。
更进一步地,所述保持输气结构的横截面的宽度尺寸在径向向内的方向上渐缩。
进一步地,所述保持输气结构包括从所述通道内表面上向内伸出的凸起,所述凸起沿着所述输气通道的轴向延伸,在所述输气管体被挤压而发生变形时,所述凸起能够与所述通道内表面上的相对结构接触,以在所述凸起的至少周向一侧形成所述输气间隙。
更进一步地,所述相对结构为所述通道内表面的与所述凸起径向相对的内表面部分。
进一步地,所述凸起有多个并且沿周向间隔布置。
更进一步地,所述相对结构为所述通道内表面上的与所述凸起径向相对的凸起。
进一步地,所述凸起的横截面的宽度尺寸在径向向内的方向上渐缩。
更进一步地,所述凸起的横截面形状为尖峰。
更进一步地,所述尖峰周向邻接的至少一个尖峰侧面为内凹弧形面。
另外,本发明提供一种鼻导管,该鼻导管包括气源连接端子、患者接口和以上所述的任意呼吸输气管,其中,所述呼吸输气管的一端和所述气源连接端子连接,所述呼吸输气管的另一端和所述患者接口连接。
最后,本发明提供一种通气治疗设备,该通气治疗设备包括以上所述的鼻导管。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明具体实施方式提供的第一种呼吸输气管的横截面结构示意图;
图2是本发明具体实施方式提供的第二种呼吸输气管的横截面结构示意图;
图3是本发明具体实施方式提供的第三种呼吸输气管的横截面结构示意图;
图4是本发明具体实施方式提供的第四种呼吸输气管的横截面结构示意图;
图5是图4的呼吸输气管的侧视的一部分结构示意图;
图6是本发明具体实施方式提供的第五种呼吸输气管的横截面结构示意图;
图7是图6的呼吸输气管的侧视的一部分结构示意图;
图8是图3的呼吸输气管被挤压的一种结构示意图;
图9是图3的呼吸输气管被挤压的另一种结构示意图;
图10是本发明具体实施方式提供的第六种呼吸输气管的横截面结构示意图;
图11是本发明具体实施方式提供的第七种呼吸输气管的横截面结构示意图;
图12是本发明具体实施方式提供的第八种呼吸输气管的横截面结构示意图;
图13是本发明具体实施方式提供的第九种呼吸输气管的横截面结构示意图;
图14是本发明具体实施方式提供的呼吸输气管被挤压变形时在变形处具有保持输气的输气间隙的一种结构示意图;
图15是本发明具体实施方式提供的呼吸输气管被挤压变形时在变形处具有保持输气的输气间隙的另一种结构示意图;
图16是本发明具体实施方式提供的第十种呼吸输气管的横截面结构示意图;
图17是图16的呼吸输气管的保温间隔被挤压变形时在变形处保持空气间隔的局部的一种结构示意图;
图18是本发明具体实施方式提供的一种呼吸输气管的端部与连接头连接的一种结构示意图;
图19是本发明具体实施方式提供的一种呼吸输气管的端部与连接头连接的另一种结构示意图;
图20是本发明具体实施方式提供的一种呼吸输气管的端部与连接头连接的再一种结构示意图。
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
参考图1-4、图6、图10、图11、图12、图13、图16所示的不同实施例的呼吸输气管,本发明提供的呼吸输气管用于将气体输送至患者接口,呼吸输气管包括输气管体1,输气管体1包括输气通道2和用于对输气通道2内的输气进行保温的保温结构。
在该呼吸输气管中,由于输气管体1包括用于对输气通道2内的输气进行保温的保温结构,这样,通过该保温结构对输气管体1的保温,可以有效地减缓或避免输气通道的温降,从而进一步减缓或避免输气通道内输送的气体的温降,避免了输气通道冷凝水的产生。
另外,在该呼吸输气管中,保温结构可以为一层,参考图1-图3所示的一层保温间隔7,或者为了进一步提升保温效果,保温结构包括在径向方向布置的多层保温结构,参考图4所示的电加热丝8(一层保温结构)和保温间隔7(另一层保温结构)。当然,多层保温结构并不局限于两层,还可以为径向方向依次布置的三层或四层。
另外,该呼吸输气管的保温结构在具备保温作用的同时,还可以具有以下保持输气间隙3的作用,也就是,保温结构能够在输气管体1的至少局部被挤压而发生变形时使得输气通道2的变形处具有保持输气的输气间隙3。输气间隙3可 以参考图8、图9、图14和图15。这样,由于输气管体1包括的保温结构能够进一步增强输气管体1的抗挤压变形强度,使得输气管体1的至少局部被挤压而发生变形时,可以减缓输气通道2的变形程度,以避免将输气通道2在挤压处完全挤压封死而无法通气,从而在变形处形成输气间隙3,这样,输气通道2输送的气体可以通过输气间隙3来输送,避免对患者的治疗产生不利影响。
当然,本发明的呼吸输气管中,保温结构可以具有多种类型,以下将详细说明保温结构的各种类型。
保温结构的第一种类型中,参照图1-4、图6和图16,输气管体1包括内管4和外管5,外管5套装在内管4的外部,内管4和外管5之间设置有将内管和外管撑开的管支撑筋6,以使得内管4和外管5之间形成保温间隔7,内管4的内部通道作为输气通道2,保温结构包括保温间隔7。这样,在实际使用中,保温间隔7处于密封装填,由于空气的导热系数远小于管壁,保温间隔7内的空气层也基本不流通,从而起到隔热、保温的作用。内管4内的温湿呼吸气体会通过内管4的管壁导热到空气层,空气层再导热到外管5的管壁,然后向大气中释放热量。由于空气的导热率非常低,且保温间隔7中的空气层基本上不流通,呼吸输气管工作一小段时间以后,空气层就会被加热到接近内管4内的呼吸气体的温度,从而减小了内管4的管壁两侧的温差,这样,呼吸气体在内管4的管壁处就不会有很大的温降,从而减少了呼吸气体温度降低而产生过多冷凝水的现象。例如,室温25℃时,呼吸输气管传输的呼吸气体为37℃,现有的普通单层导管的内外侧就会有12℃的温差,从而导管内壁较呼吸气体就会有比较大的温差,与内壁接触的呼吸气体就会产生温降,进而产生冷凝水。而通过本申请的一种实施例的保温间隔7内的空气层,在使用过程中,保温间隔7内的空气层的温度会介于25-37℃之间(以中间值31℃为例),如果把内管看作现有的普通单层导管,保温间隔7内的空气层相当于把环境温度提升到了31℃,从而降低了内管的管壁两侧的温差、提高了内管的管壁内侧的温度,从而减小了与内管的管壁内侧接触的呼吸气体的温降,进而减少了内管的管壁的冷凝水的产生。
另外,管支撑筋6的数量可以实际需求来选择,例如2个、3个或4个等,只要能够将内管4和外管5撑开即可。
另外,参考图1,管支撑筋6的径向一端与内管4一体成型并且管支撑筋6 的径向另一端和外管5一体成型,这样便于成型,也可以便于内管4和外管5之间能够稳定可靠地连接。或者,参考图2,管支撑筋6可以与内管4或外管5分离,也就是,管支撑筋6的径向一端与内管4和外管5中的一者一体成型,而管支撑筋6的径向另一端与内管4和外管5中的另一者非一体成型以形成组装关系。或者,管支撑筋6的径向两端分别与内管4和外管5非一体成型并形状组装关系,例如,可以将管支撑筋6粘贴在内管4上,然后将外管5套装并让外管5的内表面与管支撑筋6接触。
另外,管支撑筋6可以为环形的管支撑筋,多个环形的管支撑筋6沿着呼吸输气管的长度方向(轴向方向)间隔布置。或者,管支撑筋6可以为具有预定长度的轴向延伸筋段,多个轴向延伸筋可以沿着呼吸输气管的长度方向(轴向方向)间隔布置,或者,轴向延伸筋段可以从呼吸输气管的一端连续延伸到另一端。
另外,呼吸输气管的一种实施例中,呼吸输气管在未使用前,保温间隔7可以为敞开空间,而在使用时与连接头19或堵塞20连接配合(参考图18-20),例如可以被连接头19的端面封堵,或者被连接头19的端面上的堵头21封堵,以将保温间隔7封装以形成密封间隔。在使用完毕后,呼吸输气管可以与连接头19或堵塞20脱离,此时,如果保温间隔7内具有凝结水时可以将凝结水甩出。
或者,呼吸输气管的另一种实施例中,保温间隔7为封闭腔体,例如外管5的轴向两端的端面通过环形端壁与内管4连接以将保温间隔7封装为封闭腔体,在实际使用中,将内管4的两端分别与气源连接端子和患者接口连接即可。或者,在呼吸输气管的两端分别连接有连接头19或堵塞20(参考图18-20)以将保温间隔7封装为封闭腔体,在实际使用中,将连接头19分别与气源连接端子和/或患者接口连接即可,或者将呼吸输气管的两端分别与气源连接端子和患者接口连接即可。
另外,在实际使用中,封闭的保温间隔7内可能会产生凝结水,为此,保温间隔7的外部侧壁上设置有排液口以及能够打开和关闭排液口的侧壁门体。这样,使用完毕后,将侧壁门体打开,并将保温间隔7内的凝结水甩出即可。侧壁门体可以为连接头19或者为堵塞20或者为其他门体结构。例如,当管支撑筋6为多个环形的管支撑筋并沿着呼吸输气管的长度方向(轴向方向)间隔布置时,相邻的环形的管支撑筋之间的环形的保温间隔7将为环形的封闭腔体,此时,该环形 的封闭腔体的轴向两端的环形的管支撑筋位于外管5内而不易打开,此时,外管5的形成该环形的封闭腔体的管壁段上可以设置有排液口以及能够打开和关闭排液口的侧壁门体,当使用完毕后,如果环形的封闭腔体内具有冷凝水,则可以将侧壁门体打开以将冷凝水排出,如果没有冷凝水,则就不打开侧壁门体。
另外,一种实施例中,参考图16和图17,保温间隔7的内侧表面10和外侧表面11中的至少一者上设置有保持空气间隔结构,保持空气间隔结构在外管5的至少局部被挤压而发生变形时使得变形处保持空气间隔12。这样,实际使用中,如果外管5被挤压发生变形时,保持空气间隔结构可以在变形处保持空气间隔12,例如,外管5在外力压瘪、折弯时,还可以保证内管和外管之间的保温间隔7没有完全挤压贴死,使得内管和外管之间的保温间隔7的一部分仍然形成空气间隔12,空气间隔12内的空气层对内管内的呼吸气体仍然可以起到隔热、保温作用,从而防止外管5甚至呼吸输气管被挤压时保温性能失效。
当然,保持空气间隔结构可以具有多种结构形式,例如,保持空气间隔结构的一种结构形式中,保持空气间隔结构为支撑柱,该支撑柱的径向连接分别连接在内管的外表面和外管的内表面上,这样,外管被挤压时,在支撑柱的两侧将形成空气间隔12。
或者,保持空气间隔结构的另一种结构形式中,参考图16和图17,保持空气间隔结构包括保温间隔7的内侧表面10和外侧表面11中的至少一者上伸出的凸起部13,凸起部13可以沿着输气通道2的轴向延伸或者沿着周向延伸以形成周向延伸段或环形的凸起部,在外管5被挤压而发生变形时,凸起部13能够与保温间隔7内的相对结构接触,以在凸起部13的至少周向一侧形成空气间隔12。例如,在图16中,内侧表面10和外侧表面11上都伸出有凸起部13,在图17中,在外管5被挤压而发生变形时,内侧表面10上的凸起部13和外侧表面11上的凸起部13抵接,从而在周向侧部形成空气间隔12。或者,例如,内侧表面10上伸出有凸起部13,外侧表面11上未形成有凸起部13,在外管5被挤压而发生变形时,内侧表面10上的凸起部13和外侧表面11抵接,从而在周向侧部形成空气间隔12。
当然,凸起部13可以为一个,或者为多个。例如,一种实施例中,凸起部13有多个并且沿周向间隔布置,相对结构为保温间隔7的与凸起部13径向相对 的侧表面,例如内侧表面10未伸出有凸起部13,外侧表面11上伸出有凸起部13,在外管5被挤压而发生变形时,相对结构为内侧表面10,此时,外侧表面11上的凸起部13和内侧表面10抵接,从而在周向侧部形成空气间隔12。或者,参考图17,相对结构为保温间隔7的与凸起部13径向相对的侧表面上伸出的相对的凸起部13,接触的两个凸起部13则能够增大空气间隔12的尺寸,提升保温能力,内侧表面10和外侧表面11上都伸出有凸起部13,在图17中,在外管5被挤压而发生变形时,相对结构为凸起部13,内侧表面10上的凸起部13和外侧表面11上的凸起部13抵接,从而在周向侧部形成空气间隔12。
当然,相对结构还可以为内侧表面10或外侧表面11上形成的不同于凸起部13的其他凸块或凸点。
另外,凸起部13的横截面可以具有多种形状,例如矩形,也就是,凸起部13在径向方向上具有相同的尺寸,例如凸起部13可以为圆柱体。
一种实施例中,为了尽可能减小凸起部13对保温间隔7的占据,提升保温性能,凸起部13的横截面的宽度尺寸在径向向内方向上减缩,例如,凸起部13的横截面可以为梯形、三角形或半圆形等等。
另外,参考图16,凸起部13的横截面形状为尖峰14,尖峰14周向邻接的尖峰侧面15为内凹弧形面。这样,尖峰14自身就能够减小对保温间隔7的占据,而内凹弧形面则能够进一步减小尖峰14对保温间隔7的占据。
再者,参考图4和图6,一种实施例中,在实际使用中,保温间隔7仅用于保温,而对于室温特别低或者室内空气流动比较大等散热比较大的情况,保温间隔7可能还会有较大的热量损失,使得内管内的呼吸气体的温降仍然较大。为此,保温结构包括电加热丝8,电加热丝8设置在内管4和外管5中的至少一者的管壁内;例如图4和图6中,电加热丝8设置在内管4的管壁内,这样,电加热丝8和保温间隔7就形成两层的保温结构。这样,增加了电加热丝的内管和保温间隔7共同作用,不但起到保温、隔热的作用,还可以加热内管内的呼吸气体,以达到患者合适的温度,防止产生冷凝水。当然,电加热丝8可以设置在外管的管壁内,或者内管和外管的管壁内都设置有电加热丝。
另外,电加热丝8轴向平直延伸以便于布置电加热丝8,参考图5;或者,电加热丝8绕管(内管或外管)螺旋延伸,参考图7,从而提升电加热丝的加热 面积。当然,电加热丝8可以从呼吸输气管的一端非螺旋缠绕地倾斜延伸到另一端。
可选择的实施例中,参考图11,保温结构包括保温层9,保温层9填充在保温间隔7内。这样,保温层9可以增强保温能力,保温层9的保温材质可以是柔软的材料,对呼吸输气管的柔软性没有明显的影响。
此外,保温结构的第二种类型中,参考图12,保温结构包括保温层9,输气管体1包括内管4和外管5,外管5通过保温层9支撑套装在内管4的外部,内管4的内部通道作为输气通道2。保温层9可以增强保温能力,保温层9的保温材质可以是柔软的材料,对呼吸输气管的柔软性没有明显的影响。
另外,保温结构的第三种类型中,参考图10,输气管体1为单层管体,单层管体的管壁内设置有电加热丝8,电加热丝8可以轴向平直延伸以便于布置,或者,电加热丝8可以绕单层管体螺旋延伸从而提升电加热丝的加热面积。
另外,保温结构的第四种类型中,参考图13,单层管体的外表面上包裹有保温层9。保温层9可以增强保温能力,保温层9的保温材质可以是柔软的材料,对呼吸输气管的柔软性没有明显的影响。或者,单层管体的管壁内设置有电加热丝8并且单层管体的外表面上包裹有保温层9。
此外,参考图3、图4、图6、图8-9、图10、图11-16所示的各个实施例,输气管体1包括保持输气结构,保持输气结构在输气管体1的至少局部被挤压而发生变形时使得输气通道2在变形处具有保持输气的输气间隙3。输气间隙3可以使得变形处不能被完全挤压封死而无法通气,这样,输气通道2输送的气体可以通过输气间隙3来输送,避免对患者的治疗产生不利影响。
一种实施例中,保持输气结构可以包括以上任意所述的保温结构,例如,电加热丝、保温层等可以进一步增强输气管体1的抗挤压变形强度,例如,内管和外管之间的保温间隔7,或者设置在保温间隔7内的保温层等也能够进一步增强输气管体1的抗挤压变形强度。
一种实施例中,保持输气结构可以为形成在输气管体1的外表面上的加强结构例如螺旋筋,加强结构可以进一步增强输气管体1的抗挤压变形强度,使得输气管体1的至少局部被挤压而发生变形时,可以减缓输气通道2的变形程度以避免将输气通道2在挤压处完全挤压封死而无法通气,从而在变形处形成输气间隙 3,这样,输气通道2输送的气体可以通过输气间隙3来输送,避免对患者的治疗产生不利影响。
一种实施例中,保持输气结构设置在输气通道2的通道内表面16上,这样,通道内表面16上的保持输气结构可以更易于直接地在输气通道内形成输气间隙3。
保持输气结构在径向方向上可以具有相同的尺寸。或者,另外,为了进一步减少对输气通道2的占用,以尽可能减小对输送的气体的影响,保持输气结构的横截面的宽度尺寸在径向向内的方向上渐缩。这样,由于宽度尺寸减缩,在确保保持输气结构和通道内表面16之间通过较大接触面积实现稳定可靠连接的同时,能够尽可能减小对输气通道2的占用。
另外,一种实施例中,保持输气结构包括支撑杆,支撑杆的两端分别连接在通道内表面16的相对的表面部分上。或者,保持输气结构包括从通道内表面16上向内伸出的凸起17,凸起17沿着输气通道2的轴向延伸,在输气管体1被挤压而发生变形时,参考图8、图9、图14和图15,凸起17能够与通道内表面16上的相对结构接触,以在凸起17的至少周向一侧形成输气间隙3。凸起17相对于支撑杆而言,可以有效地减小对输气通道2的占用。
另外,相对结构可以具有多种类型,例如,相对结构的一种类型中,相对结构为通道内表面16的与凸起17径向相对的内表面部分18。参考图9和图15,此时,不论凸起17的数量是1个还是多个例如两个、三个、四个或者五个,输气管体被挤压例如被压瘪或折叠时,凸起17将与内表面部分18接触,以在凸起17的至少周向一侧形成输气间隙3。
当然,凸起17可以为一个或者多个并且周向间隔布置,多个凸起17周向间隔布置可以有效地提升输气管体1的保持输气能力,例如,不论在何处位置受到挤压,都能够通过对应位置处的凸起17来形成输气间隙3。
对应地,相对结构的另一种类型中,参考图8和图14,凸起17有多个并且沿周向间隔布置,相对结构为通道内表面16上的与凸起17径向相对的凸起17。这样,输气管体被挤压例如被压瘪或折叠时,两个凸起17将接触以在凸起17的至少周向一侧形成输气间隙3,而接触的两个凸起17则能够增大输气间隔3的尺寸,提升保持输气能力。
当然,相对结构还可以为通道内表面16上形成的不同于凸起17的其他凸块或凸点。
另外,凸起17的横截面可以具有多种形状,例如矩形,也就是,凸起17在径向方向上具有相同的尺寸。一种实施例中,为了尽可能减小凸起17对输气通道2的占据,提升保持输气能力,凸起17的横截面的宽度尺寸在径向向内的方向上渐缩。例如凸起17的横截面形状可以为梯形、三角形或半圆形等等。
另外,一种实施例中,参考图16,凸起17的横截面形状为尖峰14。这样,尖峰14自身就能够减小对输气通道2的占据。
另外,尖峰14周向邻接的至少一个尖峰侧面15为内凹弧形面。这样,尖峰14自身就能够减小对输气通道2的占据,而内凹弧形面则能够进一步减小尖峰14对输气通道2的占据,这能够更进一步提升在挤压变形处的保持输气能力。
此外,本发明提供一种鼻导管,该鼻导管包括气源连接端子、患者接口和以上任意所述的呼吸输气管,其中,呼吸输气管的一端和气源连接端子连接,呼吸输气管的另一端和患者接口连接。这样,该鼻导管的整体性能得到提升。
最后,本发明提供一种通气治疗设备,该通气治疗设备包括以上所述的鼻导管。该通气治疗设备可以为呼吸机或高流量氧疗仪。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。
Claims (28)
- 一种呼吸输气管,所述呼吸输气管用于将气体输送至患者接口,其特征在于,所述呼吸输气管包括输气管体(1),所述输气管体(1)包括输气通道(2)和用于对所述输气通道(2)内的输气进行保温的保温结构。
- 根据权利要求1所述的呼吸输气管,其特征在于,所述保温结构包括在径向方向布置的多层保温结构。
- 根据权利要求1所述的呼吸输气管,其特征在于,所述保温结构能够在所述输气管体(1)的至少局部被挤压而发生变形时使得所述输气通道(2)的变形处具有保持输气的输气间隙(3)。
- 根据权利要求1-3中任意一项所述的呼吸输气管,其特征在于,所述输气管体(1)包括内管(4)和外管(5),所述外管(5)套装在所述内管(4)的外部,所述内管(4)和所述外管(5)之间设置有将内管和外管撑开的管支撑筋(6),以使得所述内管(4)和所述外管(5)之间形成保温间隔(7),所述内管(4)的内部通道作为所述输气通道(2),所述保温结构包括所述保温间隔(7)。
- 根据权利要求4所述的呼吸输气管,其特征在于,所述管支撑筋(6)的径向一端与所述内管(4)一体成型并且所述管支撑筋(6)的径向另一端和所述外管(5)一体成型;或者,所述管支撑筋(6)的径向一端与所述内管(4)和所述外管(5)中的一者一体成型,所述管支撑筋(6)的径向另一端与所述内管(4)和所述外管(5)中的另一者非一体成型。
- 根据权利要求4所述的呼吸输气管,其特征在于,所述保温间隔(7)为封闭腔体。
- 根据权利要求6所述的呼吸输气管,其特征在于,所述保温间隔(7)的外部侧壁上设置有排液口以及能够打开和关闭所述排液口的侧壁门体。
- 根据权利要求4-7中任意一项所述的呼吸输气管,其特征在于,所述保温结构包括电加热丝(8),所述电加热丝(8)设置在所述内管(4)和所述外管(5)中的至少一者的管壁内。
- 根据权利要求8所述的呼吸输气管,其特征在于,所述电加热丝(8)轴向平直延伸或者绕管螺旋延伸。
- 根据权利要求4-7中任意一项所述的呼吸输气管,其特征在于,所述保温结构包括保温层(9),所述保温层(9)填充在所述保温间隔(7)内。
- 根据权利要求4-7中任意一项所述的呼吸输气管,其特征在于,所述保温间隔(7)的内侧表面(10)和外侧表面(11)中的至少一者上设置有保持空气间隔结构,所述保持空气间隔结构在所述外管(5)的至少局部被挤压而发生变形时使得变形处保持空气间隔(12)。
- 根据权利要求11所述的呼吸输气管,其特征在于,所述保持空气间隔结构包括所述保温间隔(7)的内侧表面(10)和外侧表面(11)中的至少一者上伸出的凸起部(13),在所述外管(5)被挤压而发生变形时,所述凸起部(13)能够与所述保温间隔(7)内的相对结构接触,以在所述凸起部(13)的至少周向一侧形成所述空气间隔(12)。
- 根据权利要求12所述的呼吸输气管,其特征在于,所述凸起部(13)有多个并且沿周向间隔布置,所述相对结构为所述保温间隔(7)的与所述凸起部(13)径向相对的侧表面,或者,所述相对结构为所述保温间隔(7)的与所述凸起部(13)径向相对的侧表面上伸出的相对的凸起部(13)。
- 根据权利要求12所述的呼吸输气管,其特征在于,所述凸起部(13)的横截面形状为尖峰(14),所述尖峰(14)周向邻接的尖峰侧面(15)为内凹弧形面。
- 根据权利要求1-3中任意一项所述的呼吸输气管,其特征在于,所述保温结构包括保温层(9),所述输气管体(1)包括内管(4)和外管(5),所述外管(5)通过所述保温层(9)支撑套装在所述内管(4)的外部,所述内管(4)的内部通道作为所述输气通道(2)。
- 根据权利要求1所述的呼吸输气管,其特征在于,所述输气管体(1)为单层管体,所述单层管体的管壁内设置有电加热丝(8),和/或,所述单层管体的外表面上包裹有保温层(9)。
- 根据权利要求1所述的呼吸输气管,其特征在于,所述输气管体(1)包括保持输气结构,所述保持输气结构在所述输气管体(1)的至少局部被挤压而发生变形时使得所述输气通道(2)在变形处具有保持输气的输气间隙(3)。
- 根据权利要求17所述的呼吸输气管,其特征在于,所述保持输气结构设置在所述输气通道(2)的通道内表面(16)上。
- 根据权利要求18所述的呼吸输气管,其特征在于,所述保持输气结构的横截面的宽度尺寸在径向向内的方向上渐缩。
- 根据权利要求18或19所述的呼吸输气管,其特征在于,所述保持输气结构包括从所述通道内表面(16)上向内伸出的凸起(17),所述凸起(17)沿着所述输气通道(2)的轴向延伸,在所述输气管体(1)被挤压而发生变形时,所述凸起(17)能够与所述通道内表面(16)上的相对结构接触,以在所述凸起(17)的至少周向一侧形成所述输气间隙(3)。
- 根据权利要求20所述的呼吸输气管,其特征在于,所述相对结构为所述通道内表面(16)的与所述凸起(17)径向相对的内表面部分(18)。
- 根据权利要求20所述的呼吸输气管,其特征在于,所述凸起(17)有多个并且沿周向间隔布置。
- 根据权利要求20所述的呼吸输气管,其特征在于,所述相对结构为所述通道内表面(16)上的与所述凸起径向相对的凸起(17)。
- 根据权利要求20所述的呼吸输气管,其特征在于,所述凸起(17)的横截面的宽度尺寸在径向向内的方向上渐缩。
- 根据权利要求24所述的呼吸输气管,其特征在于,所述凸起(17)的横截面形状为尖峰(14)。
- 根据权利要求25所述的呼吸输气管,其特征在于,所述尖峰(14)周向邻接的至少一个尖峰侧面(15)为内凹弧形面。
- 一种鼻导管,其特征在于,包括气源连接端子、患者接口和权利要求1-26中任意一项所述的呼吸输气管,其中,所述呼吸输气管的一端和所述气源连接端子连接,所述呼吸输气管的另一端和所述患者接口连接。
- 一种通气治疗设备,其特征在于,包括权利要求27所述的鼻导管。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21908924.0A EP4226961A4 (en) | 2020-12-25 | 2021-11-12 | BREATHING GAS DELIVERY TUBE, NASAL CATHETER AND VENTILATION THERAPY DEVICE |
US18/269,038 US20240042156A1 (en) | 2020-12-25 | 2021-11-12 | Breathing gas delivery pipe, nasal catheter, and ventilation therapy device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011562168.3A CN112604111A (zh) | 2020-12-25 | 2020-12-25 | 呼吸输气管、鼻导管和通气治疗设备 |
CN202011562168.3 | 2020-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022134924A1 true WO2022134924A1 (zh) | 2022-06-30 |
Family
ID=75245290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/130312 WO2022134924A1 (zh) | 2020-12-25 | 2021-11-12 | 呼吸输气管、鼻导管和通气治疗设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240042156A1 (zh) |
EP (1) | EP4226961A4 (zh) |
CN (1) | CN112604111A (zh) |
WO (1) | WO2022134924A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP1697391S (ja) * | 2020-12-02 | 2021-10-18 | 吸入器用噴霧器用マスク | |
CN112604111A (zh) * | 2020-12-25 | 2021-04-06 | 北京怡和嘉业医疗科技股份有限公司 | 呼吸输气管、鼻导管和通气治疗设备 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5357948A (en) * | 1992-01-18 | 1994-10-25 | Heinz Eilentropp | Heatable respiratory hose |
US6536428B1 (en) * | 1999-08-10 | 2003-03-25 | Fisher & Paykel Limited | Ventilation system and/or breathing tube |
US20030059213A1 (en) * | 2000-03-21 | 2003-03-27 | Mackie Scott Robert | Gases delivery conduit |
CN2659466Y (zh) * | 2003-11-03 | 2004-12-01 | 李宝章 | 血液保温管组 |
WO2004105848A1 (en) * | 2003-05-30 | 2004-12-09 | E.M.E. (Electro Medical Equipment) Limited | Heaters for breathing tubes |
WO2005089847A1 (ja) * | 2004-03-22 | 2005-09-29 | Metran Co., Ltd. | 呼吸回路用の蛇管 |
US20130112201A1 (en) * | 2010-05-25 | 2013-05-09 | Fisher & Paykel Healthcare Limited | Breathing tube |
CN108310551A (zh) * | 2018-02-08 | 2018-07-24 | 佛山特种医用导管有限责任公司 | 医用保温输液装置 |
US20190009047A1 (en) * | 2017-07-10 | 2019-01-10 | Teleflex Medical Incorporated | Moisture removal and condensation and humidity management apparatus for a breathing circuit |
CN112604111A (zh) * | 2020-12-25 | 2021-04-06 | 北京怡和嘉业医疗科技股份有限公司 | 呼吸输气管、鼻导管和通气治疗设备 |
CN214807561U (zh) * | 2020-12-25 | 2021-11-23 | 北京怡和嘉业医疗科技股份有限公司 | 呼吸输气管、鼻导管和通气治疗设备 |
CN214807560U (zh) * | 2020-12-25 | 2021-11-23 | 北京怡和嘉业医疗科技股份有限公司 | 呼吸输气管、鼻导管和通气治疗设备 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3782688B8 (en) * | 2006-11-08 | 2022-11-02 | ResMed Pty Ltd | Respiratory apparatus |
WO2013147623A1 (en) * | 2012-03-30 | 2013-10-03 | Dexter Chi Lun Cheung | Humidification system |
EP4011426A1 (en) * | 2013-03-15 | 2022-06-15 | Fisher & Paykel Healthcare Limited | Components for medical circuits |
-
2020
- 2020-12-25 CN CN202011562168.3A patent/CN112604111A/zh active Pending
-
2021
- 2021-11-12 EP EP21908924.0A patent/EP4226961A4/en active Pending
- 2021-11-12 WO PCT/CN2021/130312 patent/WO2022134924A1/zh active Application Filing
- 2021-11-12 US US18/269,038 patent/US20240042156A1/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5357948A (en) * | 1992-01-18 | 1994-10-25 | Heinz Eilentropp | Heatable respiratory hose |
US6536428B1 (en) * | 1999-08-10 | 2003-03-25 | Fisher & Paykel Limited | Ventilation system and/or breathing tube |
US20030059213A1 (en) * | 2000-03-21 | 2003-03-27 | Mackie Scott Robert | Gases delivery conduit |
WO2004105848A1 (en) * | 2003-05-30 | 2004-12-09 | E.M.E. (Electro Medical Equipment) Limited | Heaters for breathing tubes |
CN2659466Y (zh) * | 2003-11-03 | 2004-12-01 | 李宝章 | 血液保温管组 |
WO2005089847A1 (ja) * | 2004-03-22 | 2005-09-29 | Metran Co., Ltd. | 呼吸回路用の蛇管 |
US20130112201A1 (en) * | 2010-05-25 | 2013-05-09 | Fisher & Paykel Healthcare Limited | Breathing tube |
US20190009047A1 (en) * | 2017-07-10 | 2019-01-10 | Teleflex Medical Incorporated | Moisture removal and condensation and humidity management apparatus for a breathing circuit |
CN108310551A (zh) * | 2018-02-08 | 2018-07-24 | 佛山特种医用导管有限责任公司 | 医用保温输液装置 |
CN112604111A (zh) * | 2020-12-25 | 2021-04-06 | 北京怡和嘉业医疗科技股份有限公司 | 呼吸输气管、鼻导管和通气治疗设备 |
CN214807561U (zh) * | 2020-12-25 | 2021-11-23 | 北京怡和嘉业医疗科技股份有限公司 | 呼吸输气管、鼻导管和通气治疗设备 |
CN214807560U (zh) * | 2020-12-25 | 2021-11-23 | 北京怡和嘉业医疗科技股份有限公司 | 呼吸输气管、鼻导管和通气治疗设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4226961A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP4226961A1 (en) | 2023-08-16 |
CN112604111A (zh) | 2021-04-06 |
US20240042156A1 (en) | 2024-02-08 |
EP4226961A4 (en) | 2024-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022134924A1 (zh) | 呼吸输气管、鼻导管和通气治疗设备 | |
JP6704891B2 (ja) | 医療用チューブおよび製造方法 | |
AU2024216402A1 (en) | Medical tubes and methods of manufacture | |
US5377670A (en) | Insulated breathing tube | |
EP2585163B1 (en) | Components for medical circuits | |
CN214807561U (zh) | 呼吸输气管、鼻导管和通气治疗设备 | |
BR112020016864A2 (pt) | Tubos médicos para circuito respiratório | |
US10953185B2 (en) | Moisture wicking conduit and system | |
CN214807560U (zh) | 呼吸输气管、鼻导管和通气治疗设备 | |
RU2777931C2 (ru) | Медицинские трубки и способы их изготовления | |
CN115192837A (zh) | 呼吸管路与加热模块一体成型结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21908924 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021908924 Country of ref document: EP Effective date: 20230510 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18269038 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |