WO2022134715A1 - 整机柜服务器中子节点的异常断电保护系统、方法及设备 - Google Patents

整机柜服务器中子节点的异常断电保护系统、方法及设备 Download PDF

Info

Publication number
WO2022134715A1
WO2022134715A1 PCT/CN2021/121424 CN2021121424W WO2022134715A1 WO 2022134715 A1 WO2022134715 A1 WO 2022134715A1 CN 2021121424 W CN2021121424 W CN 2021121424W WO 2022134715 A1 WO2022134715 A1 WO 2022134715A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
node
sub
insertion depth
Prior art date
Application number
PCT/CN2021/121424
Other languages
English (en)
French (fr)
Inventor
马义超
Original Assignee
山东海量信息技术研究院
浪潮电子信息产业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东海量信息技术研究院, 浪潮电子信息产业股份有限公司 filed Critical 山东海量信息技术研究院
Priority to US18/250,948 priority Critical patent/US12019491B2/en
Publication of WO2022134715A1 publication Critical patent/WO2022134715A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/266Arrangements to supply power to external peripherals either directly from the computer or under computer control, e.g. supply of power through the communication port, computer controlled power-strips

Definitions

  • the present application relates to the field of electronic technology, and in particular, to an abnormal power-off protection system, method, electronic device and computer-readable storage medium for a neutron node of a server in a complete cabinet.
  • the power supply of a single-node server is usually a 1+1 redundant design of CRPS (Common Redundant Power Supplies, common redundant power supply).
  • CRPS Common Redundant Power Supplies, common redundant power supply.
  • the CRPS power supply can individually supply power to the entire server node to protect server data from loss of power failure or abnormal power failure.
  • the power supply of the sub-node servers usually depends on the power supply copper bars at the rear of the whole cabinet, and the power supply copper bars supply power to all the sub-nodes in the whole cabinet at the same time. Once the power supply clip of the child node leaves the power supply copper bar, the server system of the child node will be directly powered off. Therefore, the whole cabinet server cannot do a similar power supply 1+1 redundant power supply design imitating the single-node server.
  • the user will first press the power switch of the sub-node.
  • the main power supply network of the system will power down in an orderly manner according to the pre-designed sequence (the standby power will be turned off after waiting for the main power to be completely turned off), and
  • the orderly power-off process includes data storage and other operations, which can avoid server data loss.
  • the purpose of this application is to provide an abnormal power failure protection system, method, electronic device and computer-readable storage medium for a sub-node in a server in a complete cabinet, so as to effectively deal with the abnormal power-off situation when the sub-node server system is pulled out under load , to prevent system data loss and damage to sensitive components.
  • the present application discloses an abnormal power-off protection system for a neutron node of an entire cabinet server, wherein the entire cabinet server supplies power to each sub-node through a power supply copper bar; the abnormal power-off
  • the protection system includes a logic control module and a plug-in trigger module;
  • the plugging trigger module is used for detecting the contact state of the power supply clip of the sub-node and the power supply copper bar at the second plugging depth through a metal probe, and converts to generate a detection signal and send it to the logic control module;
  • the second insertion depth is greater than the third insertion depth and not larger than the first insertion depth, and the first insertion depth and the third insertion depth respectively correspond to the maximum pluggable connection of the power supply copper bars deep and shallow edges;
  • the logic control module is configured to, after it is determined according to the detection signal that the power supply clip is separated from the second insertion depth of the power supply copper bar, the power supply clip is separated from the power supply copper bar at the second insertion depth. Before the third insertion depth, the main power supply and the standby power supply of the sub-nodes are sequentially turned off, so that the sub-nodes can perform normal shutdown and power-off logic.
  • the plug-in trigger module includes the metal probe and a level conversion circuit connected to the first end of the metal probe;
  • the metal probe is installed in parallel with the power supply clip of the sub-node, and the protruding distance of the second end of the metal probe relative to the chassis is smaller than the power supply clip, so that the power supply clip is inserted into the power supply clip.
  • the second end of the metal probe is just in contact with the third insertion depth of the power supply copper bar.
  • the level conversion circuit includes a connected pull-up resistor and a controllable grounding switch, and a common terminal of the pull-up resistor and the controllable grounding switch is used as the output terminal of the level conversion circuit and the controllable grounding switch.
  • Logic control module connection ;
  • the other end of the pull-up resistor is connected to the standby power supply; the other end of the controllable grounding switch is grounded;
  • control end of the controllable grounding switch is connected to the first end of the metal probe; when the second end of the metal probe is in contact with the third insertion depth of the power supply copper bar, The controllable grounding switch is driven to close; when the second end of the metal probe is suspended, the controllable grounding switch is turned off.
  • the power supply copper bar includes a power busbar and a ground busbar
  • the metal probe is installed on the chassis at a position corresponding to the power busbar, so that the power supply clip is inserted into the power supply.
  • the controllable grounding switch is an NMOS transistor .
  • the logic control module includes a CPLD on the mainboard of the sub-node.
  • the CPLD is connected to the power button of the sub-node, and the CPLD is also used for:
  • the main power supply and the standby power supply are sequentially turned off.
  • the logic control module further includes a BMC on the mainboard of the sub-node, and the BMC is used for:
  • the present application also discloses a method for protecting a sub-node from abnormal power failure in a server in a complete cabinet, wherein the server in the entire cabinet supplies power to each sub-node through a power supply copper bar; the method is applied to The logic control module connected to the node's main power supply and standby power supply, including:
  • the plugging trigger module Receives the detection signal sent by the plugging trigger module in real time; the plugging trigger module detects the contact state of the power supply clip of the sub-node and the power supply copper row at the second plugging depth through a metal probe, and converts to generate all the The detection signal; the second insertion depth is greater than the third insertion depth and not larger than the first insertion depth, and the first insertion depth and the third insertion depth correspond to the power supply copper bars respectively. at the maximum pluggable depth and at the shallow edge;
  • the main power supply and the standby power supply are sequentially turned off, so that the sub-node performs a normal shutdown and power-off logic. .
  • the plug-in trigger module includes the metal probe and a level conversion circuit connected to the first end of the metal probe;
  • the metal probe is installed in parallel with the power supply clip of the sub-node, and the protruding distance of the second end of the metal probe relative to the chassis is smaller than the power supply clip, so that the power supply clip is inserted into the power supply clip.
  • the second end of the metal probe is just in contact with the third insertion depth of the power supply copper bar.
  • the level conversion circuit includes a connected pull-up resistor and a controllable grounding switch, and a common terminal of the pull-up resistor and the controllable grounding switch is used as the output terminal of the level conversion circuit and the controllable grounding switch.
  • Logic control module connection ;
  • the other end of the pull-up resistor is connected to the standby power supply; the other end of the controllable grounding switch is grounded;
  • control end of the controllable grounding switch is connected to the first end of the metal probe; when the second end of the metal probe is in contact with the third insertion depth of the power supply copper bar, The controllable grounding switch is driven to close; when the second end of the metal probe is suspended, the controllable grounding switch is turned off.
  • the power supply copper bar includes a power busbar and a ground busbar
  • the metal probe is installed on the chassis at a position corresponding to the power busbar, so that the power supply clip is inserted into the power supply.
  • the controllable grounding switch is an NMOS transistor .
  • the logic control module includes a CPLD on the mainboard of the sub-node.
  • the CPLD is connected to the power button of the sub-node, and the method further includes:
  • the main power supply and the standby power supply are sequentially turned off.
  • the logic control module further includes a BMC on the mainboard of the sub-node, and the method further includes:
  • the present application also discloses an electronic device, comprising:
  • the processor is configured to execute the computer program to implement the steps of any of the foregoing methods for protecting a sub-node from abnormal power failure in a server in a complete cabinet.
  • the present application also discloses a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, is used to implement any one of the above-mentioned integrations.
  • the abnormal power failure protection system for a sub-node in a server in a complete cabinet includes a logic control module and a plug-in trigger module; the plug-in trigger module is used to detect the power supply clip and power supply of the sub-node through a metal probe The contact state of the copper bar at the second insertion depth is converted to generate a detection signal and sent to the logic control module; the second insertion depth is greater than the third insertion depth and not greater than the first insertion depth, the The first plugging depth and the third plugging depth respectively correspond to the maximum pluggable depth of the power supply copper bar and the shallow edge; the logic control module is used to determine the After the power supply clip is separated from the second insertion depth of the power supply copper bar, before the power supply clip is completely separated from the third insertion depth of the power supply copper bar, turn off the power supply of the sub-nodes in sequence. main power supply and standby power supply, so that the sub-nodes perform graceful shutdown power-down logic.
  • the system, method, electronic device, and computer-readable storage medium for abnormal power failure protection of a sub-node in an entire cabinet server provided by the present application have the following beneficial effects: when the sub-node server is pulled out by mistake, the present application can The probe detects the early stage of the separation process of the power supply clip and the power supply copper bar, and uses the time opportunity caused by the separation process to control the main power supply and the standby power supply successively before the power is completely cut off, so as to realize the normal shutdown and power-off logic. It effectively avoids the loss of system data, and prevents the reverse voltage generated by abnormal power failure from damaging the sensitive electronic components in the system, ensuring the safety of the system circuit.
  • FIG. 1 is a structural block diagram of an abnormal power-off protection system for a sub-node of a server in a complete cabinet disclosed in an embodiment of the present application;
  • FIG. 2 is a schematic diagram of the installation of a sub-node server disclosed in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a state of a power supply clip being inserted into a second insertion depth of a power supply copper bar disclosed in an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a state when the insertion depth of a power supply clip and a power supply copper bar disclosed in an embodiment of the application is less than a second insertion depth;
  • FIG. 5 is a circuit structure diagram of a level conversion circuit disclosed in an embodiment of the application.
  • FIG. 6 is a structural block diagram of another abnormal power-off protection system for a sub-node of a server in a complete cabinet disclosed in an embodiment of the present application;
  • FIG. 7 is a flowchart of an abnormal power-off protection method for a sub-node of a server in a complete cabinet disclosed in an embodiment of the present application;
  • FIG. 8 is a structural block diagram of an electronic device disclosed in an embodiment of this application.
  • the core of the present application is to provide an abnormal power-off protection system, method, electronic device and computer-readable storage medium for a sub-node of a server in a complete cabinet, so as to effectively cope with the abnormal power-off situation when the sub-node server system is pulled out under load , to prevent system data loss and damage to sensitive components.
  • the power supply of its sub-node servers usually depends on the power supply copper bars at the rear of the whole cabinet, and the power supply copper bars supply power to all the sub-nodes in the whole cabinet at the same time. Once the power supply clip of the child node leaves the power supply copper bar, the server system of the child node will be directly powered off. Therefore, the whole cabinet server cannot do a similar power supply 1+1 redundant power supply design imitating the single-node server.
  • the user will first press the power switch of the sub-node.
  • the main power supply network of the system will power down in an orderly manner according to the pre-designed sequence (the standby power will be turned off after waiting for the main power to be completely turned off), and
  • the orderly power-off process includes data storage and other operations, which can avoid server data loss.
  • the present application provides an abnormal power-off protection solution for a neutron node of a whole cabinet server, which can effectively solve the above technical problems.
  • an embodiment of the present application discloses an abnormal power-off protection system for a sub-node of a server in a complete cabinet.
  • the server in the entire cabinet supplies power to each sub-node through a power supply copper bar, and the abnormal power-off protection system includes a logic control system.
  • the plug trigger module 102 is used to detect the contact state of the power supply clip of the sub-node and the power supply copper bar at the second plug depth through the metal probe, and convert to generate a detection signal and send it to the logic control module 101; wherein the second plug The depth is greater than the third plug depth and not greater than the first plug depth, and the first plug depth and the third plug depth correspond to the maximum pluggable depth of the power supply copper bar and the shallow edge respectively;
  • the logic control module 101 is configured to turn off the main power of the sub-nodes in sequence after determining that the power supply clip is separated from the second insertion depth of the power supply copper bar according to the detection signal, and before the power supply clip is separated from the third insertion depth of the power supply copper bar. Power and standby power for child nodes to perform graceful shutdown power-down logic.
  • the power supply clips (such as the commonly used "alligator clips") of the sub-nodes will be deeply inserted into the power supply copper bars during normal use to ensure sufficient contact.
  • the maximum pluggable depth D max of the power supply clip into the power supply copper bar is in the range of 20-30mm, that is, the power supply clip and the power supply copper bar have a contact depth of 20-30mm.
  • the logic control module 101 can take advantage of the time opportunity created by the above separation process to execute the normal shutdown and power-off logic before the system is completely powered off.
  • the plug-in trigger module 102 in the present application is specifically used to detect the contact state between the power supply clip of the sub-node and the power supply copper bar at the second insertion depth D2, that is, once the power supply clip of the sub-node leaves the power supply copper bar At the second plug depth, the plug trigger module 102 will convert and output the corresponding detection signal.
  • D 3 ⁇ D 2 ⁇ D 1 D max .
  • the logic control module 101 is respectively connected to the main power supply and the standby power supply on the main board of the sub-node. Once it is found that the power supply clip is disconnected from the second insertion depth of the power supply copper bar, the logic control module 101 can determine the power supply clip. The separation process from the power supply copper bar has just started, and the child node is being pulled out but has not been completely pulled out. Therefore, the main power of the child node can be controlled to turn off immediately, and the standby power can be controlled to turn off after the main power is turned off.
  • the normal shutdown power-down logic By controlling the main power supply to be turned off before the standby power supply, the normal shutdown power-down logic is implemented. In the design of the normal shutdown and power-off logic, the internal data of the system will be automatically saved, thus effectively avoiding the loss of system data. At the same time, the power supply network at all levels is powered down in an orderly manner, which avoids damage to the internal sensitive components due to undervoltage, and ensures the safety of the circuit.
  • the operation of turning off the main power supply by the logic control device only takes tens of milliseconds at most, far less than 1 second, and the two are not in the same order of magnitude. Therefore, from the actual operation level, the logic control device can completely turn off the main power supply and standby power supply of the sub-nodes in turn before the power supply clip is completely separated from the third insertion depth of the power supply copper bar. feasibility.
  • D 2 the size of the second plug depth D 2 within the range of (0, D max ]. According to the above-mentioned detection principle based on time opportunity, it can be known that the larger D 2 is, the greater the value of D 2 can be used to turn off successively. The more the total time margin of the main power supply and the standby power supply is, so D 2 should not be too small.
  • D 2 0.8 ⁇ D max .
  • the abnormal power failure protection system of the sub-node in the whole cabinet server provided by this application can detect the initial moment of the separation process of the power supply clip and the power supply copper bar based on the metal probe when the sub-node server is pulled out by mistake, and then Taking advantage of the time opportunity created by the separation process, the main power supply and the standby power supply are successively controlled to be turned off before the complete power failure, so as to realize the normal shutdown and power-off logic, thereby effectively avoiding the loss of system data and preventing the reaction caused by abnormal power-off.
  • the sensitive electronic components in the system are damaged by the voltage to ensure the safety of the system circuit.
  • the abnormal power-off protection system for the neutron node of the entire cabinet server provided by the embodiment of the present application is based on the above content, and the plug-in trigger module 102 includes a metal probe and a third connection with the metal probe. A level conversion circuit connected at one end;
  • the metal probe is installed in parallel with the power supply clip of the sub-node, and the protruding distance of the second end of the metal probe relative to the chassis is smaller than the power supply clip, so that when the power supply clip is inserted into the second insertion depth of the power supply copper bar, The second end of the metal probe is just in contact with the third insertion depth of the power supply copper bar.
  • FIG. 2 is a schematic diagram of the installation of a sub-node server disclosed in an embodiment of the application
  • FIG. 3 is a state in which a power supply clip disclosed in an embodiment of the application is inserted into the second insertion depth of the power supply copper bar Schematic diagram
  • FIG. 4 is a schematic diagram of a state in which a power supply clip disclosed by an embodiment of the application is inserted into a certain intermediate depth of a power supply copper bar.
  • 201 is the sub-node server
  • 202 is the power bus bar of the power supply copper bar
  • 203 is the ground bus bar of the power supply copper bar
  • 204 is the power supply clip of the sub-node server
  • 205 is the metal probe.
  • the power supply copper bars are installed vertically, including power busbars and grounding busbars.
  • Two crocodile clips namely power supply clips, are arranged at the rear of the sub-node server case, and the two crocodile clips can be respectively inserted into the power busbar and the ground busbar to obtain power.
  • the metal probe is installed at a position corresponding to the power supply copper bar near the power supply clip, but the length of the metal probe protruding from the chassis is small, when the alligator clip is inserted into the second insertion depth of the power supply copper bar , the metal probe can just be in contact with the third insertion depth of the power supply copper bar, as shown in FIG. 3 for details.
  • the output potential of the first end of the metal probe depends on the potential of the power supply copper bar that it contacts.
  • the metal probe contacts the power bus bar in the power supply copper bar, and the output potential is high. If the contact is with the ground bus bar in the power supply copper bar, the output potential is low level.
  • the metal probe When the alligator clip is not inserted into the second insertion depth of the power supply copper bar, but is less than a certain intermediate depth of the second insertion depth, the metal probe cannot touch the power supply copper bar and is in a floating state. See Figure 4 for details. At this time, the output potential of the first end of the metal probe is neither a high level nor a low level, but a high resistance state potential.
  • an embodiment of the present application further discloses a circuit structure of a level conversion circuit.
  • the abnormal power-off protection system for a sub-node in a server in a complete cabinet is based on the above content
  • the level conversion circuit includes a connected pull-up resistor Rs and a controllable grounding switch.
  • the common terminal of the pull-up resistor Rs and the controllable grounding switch Q is connected to the logic control module 101 as the output terminal of the level conversion circuit; the other end of the pull-up resistor Rs is connected to the standby power supply; the other end of the controllable grounding switch Q ground;
  • control end of the controllable grounding switch Q is connected to the first end of the metal probe, so that when the second end of the metal probe is in contact with the third insertion depth of the power supply copper bar, the controllable grounding switch Q is closed, When the second end of the metal probe is floating, the controllable grounding switch Q is disconnected.
  • a metal probe is specifically represented by an equivalent switch S in FIG. 5 . It is easy to understand that when the second end of the metal probe is floating, the controllable grounding switch Q is normally open, and the level state of the output end of the level conversion circuit is pulled to a high level by the pull-up resistor Rs; When the terminal is in contact with the third insertion depth of the power supply copper bar, the output potential of the metal probe controls the controllable grounding switch Q to close, and the level state of the output terminal of the level conversion circuit is pulled down to the low level by the controllable grounding switch Q .
  • the level conversion circuit provided in this embodiment, when the detection signal changes from a low level to a high level, that is, a rising edge occurs, it can be determined that the power supply clip of the sub-node server has been detached from the first power supply copper bar. Two insertion depth.
  • those skilled in the art can also add a filtering and anti-shake circuit, etc. on the basis of the above-mentioned level conversion circuit to further improve the accuracy of the signal, which is not limited in this application.
  • the abnormal power failure protection system for the neutron node of a server in the whole cabinet is based on the above content
  • the power supply copper bar includes a power busbar and a ground busbar
  • the metal probe At the corresponding position of the power supply busbar on the casing, when the power supply clip is inserted into the second insertion depth of the power supply copper bar, the second end of the metal probe is just at the third insertion depth of the power supply busbar. are in contact with each other; the controllable grounding switch Q is an NMOS tube.
  • this embodiment corresponds to A high-level active NMOS transistor is selected as the controllable grounding switch Q.
  • those skilled in the art can also install the metal probe corresponding to the grounding busbar.
  • the output potential of the metal probe is low level, so , when the PMOS transistor with active low level is selected as the controllable grounding switch Q correspondingly.
  • the abnormal power failure protection system for a sub-node in a server in a complete cabinet is based on the above content, and the logic control module 101 includes a CPLD (Complex Programmable Logic) Device, complex programmable logic device).
  • CPLD Complex Programmable Logic
  • CPLD is an important logic device commonly used on server motherboards. It has the advantages of flexible programming, high integration, and wide application range, and can realize large-scale circuit design, so it is widely used. Therefore, in this embodiment, the CPLD on the main board of the sub-node server can be specifically used as the logic control module 101 .
  • the abnormal power-off protection system of the sub-nodes in the whole cabinet server provided by the embodiment of the present application is based on the above content, the CPLD is connected to the power button of the sub-node, and the CPLD is also used for:
  • the abnormal power-off protection mechanism and the power-off mechanism of the normal shutdown operation do not conflict with each other. No matter after the user presses the power button, or after detecting that the user abnormally unplugs the sub-node server, the CPLD in this embodiment will turn off the main power supply and the standby power successively, so as to execute the normal shutdown and power-off logic to protect the system. Data security and component security.
  • the abnormal power-off protection system for a sub-node in a server in a complete cabinet is based on the above-mentioned content, and the logic control module 101 further includes the main board of the sub-node.
  • BMC Baseboard Management Controller, baseboard management controller
  • BMC is used for:
  • BMC is another important logic device commonly used on server motherboards. It can monitor the running status of the device through sensors, communicate with the system administrator through an independent connection line, and can monitor the system status, restart, re-power, power off, firmware upgrade, etc. of the machine when the machine is not turned on. Backplane control operation.
  • the plug triggering module 102 is also connected to the BMC.
  • the BMC can record the abnormal power failure in the log immediately after determining that the power supply clip is separated from the second insertion depth of the power supply copper bar.
  • an embodiment of the present application discloses a method for abnormal power failure protection of a sub-node in a server in a complete cabinet.
  • the server in the entire cabinet supplies power to each sub-node through a power supply copper bar; the method is applied to the connection with the sub-node.
  • the logic control module 101 connected to the main power supply and the standby power supply mainly includes:
  • S301 Receive the detection signal sent by the plug trigger module 102 in real time; the plug trigger module 102 detects the contact state of the power supply clip of the sub-node and the power supply copper bar at the second plug depth through the metal probe, and converts to generate the detection signal.
  • the second insertion depth is greater than the third insertion depth and not larger than the first insertion depth, and the first insertion depth and the third insertion depth correspond to the maximum insertion depth of the power supply copper bar and the shallow edge respectively. place.
  • S302 According to the detection signal, determine whether the power supply clip is separated from the second insertion depth of the power supply copper bar; if so, go to S303.
  • the abnormal power-off protection method for the sub-node of the whole cabinet server disclosed in the embodiment of the present application can detect the initial moment of the separation process of the power-supply clip and the power-supply copper bar based on the metal probe when the sub-node server is pulled out by mistake. , and use the time opportunity caused by the separation process to control the main power supply and the standby power supply successively before the complete power failure, so as to realize the normal shutdown power-off logic, thus effectively avoiding the loss of system data and preventing abnormal power-off.
  • the reverse voltage can damage the sensitive electronic components in the system and ensure the safety of the system circuit.
  • the method for protecting the abnormal power failure of the neutron node of the whole cabinet server disclosed in the embodiment of the present application is based on the above content, and the plug-in trigger module 102 includes a metal probe and a third connection with the metal probe. A level conversion circuit connected at one end;
  • the metal probe is installed in parallel with the power supply clip of the sub-node, and the protruding distance of the second end of the metal probe relative to the chassis is smaller than the power supply clip, so that when the power supply clip is inserted into the second insertion depth of the power supply copper bar, The second end of the metal probe is just in contact with the third insertion depth of the power supply copper bar.
  • the abnormal power-off protection method for a sub-node of a server in a complete cabinet disclosed in the embodiment of the present application is based on the above content, and the level conversion circuit includes a connected pull-up resistor and a controllable grounding switch.
  • the common terminal of the pull-up resistor and the controllable grounding switch is connected to the logic control module 101 as the output terminal of the level conversion circuit;
  • the other end of the pull-up resistor is connected to the standby power supply; the other end of the controllable grounding switch is grounded;
  • control end of the controllable grounding switch is connected with the first end of the metal probe, so that when the second end of the metal probe is in contact with the third insertion depth of the power supply copper bar, the controllable grounding switch is closed, and when the metal When the second end of the probe is floating, the controllable grounding switch is disconnected.
  • the method for protection against abnormal power failure of a sub-node in a server in a complete cabinet disclosed in the embodiment of the present application is based on the above content.
  • the controllable grounding switch is an NMOS tube.
  • the logic control module 101 includes a CPLD on the main board of the sub-node in the method for protecting a sub-node in an abnormal power-off of a server in a complete cabinet disclosed in the embodiment of the present application.
  • the method for protecting abnormal power failure of a sub-node in a server in a complete cabinet disclosed in the embodiment of the present application is based on the above content, the CPLD is connected to the power button of the sub-node, and the method further includes:
  • the abnormal power-off protection method for a sub-node in a server in a complete cabinet disclosed in the embodiment of the present application is based on the above content
  • the logic control module 101 further includes a BMC on the main board of the sub-node
  • the method further includes: include:
  • the BMC After determining according to the detection signal that the power supply clip is separated from the second insertion depth of the power supply copper bar, the BMC generates a log record for this abnormal power failure.
  • an embodiment of the present application discloses an electronic device, including:
  • memory 401 for storing computer programs
  • the processor 402 is configured to execute the computer program to implement the steps of any of the foregoing methods for protecting a sub-node during abnormal power failure in a server in a complete cabinet.
  • an embodiment of the present application also discloses a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and the computer program is used to implement any of the above when executed by a processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Sources (AREA)

Abstract

本申请公开了一种整机柜服务器中子节点的异常断电保护系统、方法、电子设备及计算机可读存储介质,该系统包括逻辑控制模块以及插拔触发模块;插拔触发模块用于通过金属探针检测子节点的供电夹子与供电铜排第二插接深度处的接触状态,转换生成检测信号并发送至逻辑控制模块;第二插接深度大于第三插接深度且不大于第一插接深度;逻辑控制模块用于在判定供电夹子脱离供电铜排的第二插接深度处之后、供电夹子脱离供电铜排的第三插接深度处之前,先后依次关闭子节点的主电电源和待机电源,以执行正常关机掉电逻辑。本申请可探测供电夹子与供电铜排分离的前期阶段,在完全断电前实现正常关机掉电逻辑,有效避免了系统数据丢失和敏感电子元器件损坏。

Description

整机柜服务器中子节点的异常断电保护系统、方法及设备
本申请要求在2020年12月22日提交中国专利局、申请号为202011532924.8、发明名称为“整机柜服务器中子节点的异常断电保护系统、方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,特别涉及一种整机柜服务器中子节点的异常断电保护系统、方法、电子设备及计算机可读存储介质。
背景技术
在服务器行业内,单节点服务器的供电通常为CRPS(Common Redundant Power Supplies,公共冗余电源)的1+1冗余设计,即,若其中一个CRPS电源发生故障或出现异常掉电,则另外一个CRPS电源可单独给整个服务器节点供电,以便保护服务器数据不受电源故障或异常掉电而丢失。
但是,在整机柜服务器中,其子节点服务器的供电通常依靠于整机柜后端的供电铜排,由供电铜排给整机柜内的所有子节点同时供电。子节点的供电夹子一旦离开供电铜排,该子节点服务器系统就会直接断电。因此,整机柜服务器无法仿照单节点服务器做类似的电源1+1冗余供电设计。
一般在正常关机操作下,用户会首先按压子节点的电源开关,此时系统主电供电网络会按照预先设计的时序有序掉电(在等待主电电源完全关闭后再关闭待机电源),而有序掉电的过程中包含了数据存储等操作,可避免服务器数据丢失。
然而,在整机柜服务器的机房中,维护工程师经常会在服务器正常工作时,未按压电源按钮就直接拔出子节点机箱,由此造成了异常断电。这使得子节点主板端的输入电源直接从正常工作电位掉至零电压,板端各级供电网络触发欠压保护而自动关闭,因此子节点的待机电源和系统主电电源将同时关闭,未遵守系统原定的关机掉电时序,进而导致子节点系统内的数据丢失。 同时,子节点内供电单元带载异常掉电也可能在短时间内产生反向电压,损坏系统内的敏感电子元器件。
鉴于此,提供一种解决上述技术问题的方案,已经是本领域技术人员所亟需关注的。
发明内容
本申请的目的在于提供一种整机柜服务器中子节点的异常断电保护系统、方法、电子设备及计算机可读存储介质,以便有效应对子节点服务器系统被带载拔出的异常断电情况,防止系统数据丢失和敏感元器件损坏。
为解决上述技术问题,一方面,本申请公开了一种整机柜服务器中子节点的异常断电保护系统,所述整机柜服务器通过供电铜排为各子节点供电;所述异常断电保护系统包括逻辑控制模块以及插拔触发模块;
所述插拔触发模块用于通过金属探针检测所述子节点的供电夹子与所述供电铜排在第二插接深度处的接触状态,转换生成检测信号并发送至所述逻辑控制模块;所述第二插接深度大于第三插接深度且不大于第一插接深度,所述第一插接深度和所述第三插接深度分别对应于所述供电铜排的最大可插接深度处和浅层边缘处;
所述逻辑控制模块用于在根据所述检测信号判定所述供电夹子脱离所述供电铜排的所述第二插接深度处之后,在所述供电夹子脱离所述供电铜排的所述第三插接深度处之前,先后依次关闭所述子节点的主电电源和待机电源,以便所述子节点执行正常关机掉电逻辑。
可选地,所述插拔触发模块包括所述金属探针以及与所述金属探针的第一端连接的电平转换电路;
所述金属探针与所述子节点的供电夹子平行安装,且所述金属探针第二端相对于机壳的凸出距离小于所述供电夹子,以使在所述供电夹子插入至所述供电铜排的所述第二插接深度处时,所述金属探针的第二端恰好与所述供电铜排的所述第三插接深度处相接触。
可选地,所述电平转换电路包括相连的上拉电阻和可控接地开关,所述上拉电阻与所述可控接地开关的公共端作为所述电平转换电路的输出端与所述逻辑控制模块连接;
所述上拉电阻的另一端与所述待机电源连接;所述可控接地开关的另一端接地;
所述可控接地开关的控制端与所述金属探针的第一端连接;当所述金属探针的第二端与所述供电铜排的所述第三插接深度处相接触时,驱使所述可控接地开关闭合;当所述金属探针的第二端悬空时,所述可控接地开关断开。
可选地,所述供电铜排包括电源母排和接地母排,所述金属探针安装在机壳上与所述电源母排的对应位置处,以便在所述供电夹子插入至所述供电铜排的所述第二插接深度处时,所述金属探针的第二端恰好与所述电源母排的所述第三插接深度处相接触;所述可控接地开关为NMOS管。
可选地,所述逻辑控制模块包括所述子节点的主板上的CPLD。
可选地,所述CPLD与所述子节点的电源按键连接,所述CPLD还用于:
在接收到来自所述电源按键的关机指令后,先后依次关闭所述主电电源和所述待机电源。
可选地,所述逻辑控制模块还包括所述子节点的主板上的BMC,所述BMC用于:
在根据所述检测信号判定所述供电夹子脱离所述供电铜排的所述第二插接深度处之后,生成针对本次异常断电的日志记录。
第二方面,本申请还公开了一种整机柜服务器中子节点的异常断电保护方法,所述整机柜服务器通过供电铜排为各子节点供电;所述方法应用于与所述子节点的主电电源和待机电源连接的逻辑控制模块,包括:
实时接收插拔触发模块发送的检测信号;所述插拔触发模块通过金属探针检测所述子节点的供电夹子与所述供电铜排在第二插接深度处的接触状态,并转换生成所述检测信号;所述第二插接深度大于第三插接深度且不大于第一插接深度,所述第一插接深度和所述第三插接深度分别对应于所述供电铜排的最大可插接深度处和浅层边缘处;
根据所述检测信号判断所述供电夹子是否脱离所述供电铜排的所述第二插接深度处;
若是,则在所述供电夹子脱离所述供电铜排的所述第三插接深度处之前,先后依次关闭所述主电电源和所述待机电源,以便所述子节点执行正常关机掉电逻辑。
可选地,所述插拔触发模块包括所述金属探针以及与所述金属探针的第一端连接的电平转换电路;
所述金属探针与所述子节点的供电夹子平行安装,且所述金属探针第二端相对于机壳的凸出距离小于所述供电夹子,以使在所述供电夹子插入至所述供电铜排的所述第二插接深度处时,所述金属探针的第二端恰好与所述供电铜排的所述第三插接深度处相接触。
可选地,所述电平转换电路包括相连的上拉电阻和可控接地开关,所述上拉电阻与所述可控接地开关的公共端作为所述电平转换电路的输出端与所述逻辑控制模块连接;
所述上拉电阻的另一端与所述待机电源连接;所述可控接地开关的另一端接地;
所述可控接地开关的控制端与所述金属探针的第一端连接;当所述金属探针的第二端与所述供电铜排的所述第三插接深度处相接触时,驱使所述可控接地开关闭合;当所述金属探针的第二端悬空时,所述可控接地开关断开。
可选地,所述供电铜排包括电源母排和接地母排,所述金属探针安装在机壳上与所述电源母排的对应位置处,以便在所述供电夹子插入至所述供电铜排的所述第二插接深度处时,所述金属探针的第二端恰好与所述电源母排的所述第三插接深度处相接触;所述可控接地开关为NMOS管。
可选地,所述逻辑控制模块包括所述子节点的主板上的CPLD。
可选地,所述CPLD与所述子节点的电源按键连接,所述方法还包括:
在接收到来自所述电源按键的关机指令后,先后依次关闭所述主电电源和所述待机电源。
可选地,所述逻辑控制模块还包括所述子节点的主板上的BMC,所述方法还包括:
所述BMC在根据所述检测信号判定所述供电夹子脱离所述供电铜排的所述第二插接深度处之后,生成针对本次异常断电的日志记录。
又一方面,本申请还公开了一种电子设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序以实现如上所述的任一种整机柜服务器中子节点的异常断电保护方法的步骤。
又一方面,本申请还公开了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时用以实现如上所述的任一种整机柜服务器中子节点的异常断电保护方法的步骤。
本申请所提供的整机柜服务器中子节点的异常断电保护系统包括逻辑控制模块以及插拔触发模块;所述插拔触发模块用于通过金属探针检测所述子节点的供电夹子与供电铜排在第二插接深度处的接触状态,转换生成检测信号并发送至所述逻辑控制模块;所述第二插接深度大于第三插接深度且不大于第一插接深度,所述第一插接深度和所述第三插接深度分别对应于所述供电铜排的最大可插接深度处和浅层边缘处;所述逻辑控制模块用于在根据所述检测信号判定所述供电夹子脱离所述供电铜排的所述第二插接深度处之后,在所述供电夹子完全脱离所述供电铜排的所述第三插接深度处之前,先后依次关闭所述子节点的主电电源和待机电源,以便所述子节点执行正常关机掉电逻辑。
本申请所提供的整机柜服务器中子节点的异常断电保护系统、方法、电子设备及计算机可读存储介质所具有的有益效果是:本申请在子节点服务器被误拔时,可基于金属探针探测到供电夹子与供电铜排分离过程的前期阶段,并利用该分离过程所造成的时间机会,在完全断电之前先后控制主电电源、待机电源关闭,实现正常关机掉电逻辑,从而有效避免了系统数据的丢失,并防止了异常掉电产生的反向电压损坏系统内的敏感电子元器件,保障了系统电路安全。
附图说明
为了更清楚地说明现有技术和本申请实施例中的技术方案,下面将对现有技术和本申请实施例描述中需要使用的附图作简要的介绍。当然,下面有关本申请实施例的附图描述的仅仅是本申请中的一部分实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图,所获得的其他附图也属于本申请的保护范围。
图1为本申请实施例公开的一种整机柜服务器中子节点的异常断电保护系统的结构框图;
图2为本申请实施例公开的一种子节点服务器的安装示意图;
图3为本申请实施例公开的一种供电夹子插入至供电铜排的第二插接深度处的状态示意图;
图4为本申请实施例公开的一种供电夹子与供电铜排的插接深度小于第二插接深度时的状态示意图;
图5为本申请实施例公开的一种电平转换电路的电路结构图;
图6为本申请实施例公开的又一种整机柜服务器中子节点的异常断电保护系统的结构框图;
图7为本申请实施例公开的一种整机柜服务器中子节点的异常断电保护方法的流程图;
图8为本申请实施例公开的一种电子设备的结构框图。
具体实施方式
本申请的核心在于提供一种整机柜服务器中子节点的异常断电保护系统、方法、电子设备及计算机可读存储介质,以便有效应对子节点服务器系统被带载拔出的异常断电情况,防止系统数据丢失和敏感元器件损坏。
为了对本申请实施例中的技术方案进行更加清楚、完整地描述,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行介绍。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在整机柜服务器中,其子节点服务器的供电通常依靠于整机柜后端的供电铜排,由供电铜排给整机柜内的所有子节点同时供电。子节点的供电夹子一旦离开供电铜排,该子节点服务器系统就会直接断电。因此,整机柜服务器无法仿照单节点服务器做类似的电源1+1冗余供电设计。
一般在正常关机操作下,用户会首先按压子节点的电源开关,此时系统主电供电网络会按照预先设计的时序有序掉电(在等待主电电源完全关闭后再关闭待机电源),而有序掉电的过程中包含了数据存储等操作,可避免服务器数据丢失。
然而,在整机柜服务器的机房中,维护工程师经常会在服务器正常工作时,未按压电源按钮就直接拔出子节点机箱,由此造成了异常断电。这使得 子节点主板端的输入电源直接从正常工作电位掉至零电压,板端各级供电网络触发欠压保护而自动关闭,因此子节点的待机电源和系统主电电源将同时关闭,未遵守系统原定的关机掉电时序,进而导致子节点系统内的数据丢失。同时,子节点内供电单元带载异常掉电也可能在短时间内产生反向电压,损坏系统内的敏感电子元器件。
鉴于此,本申请提供了一种整机柜服务器中子节点的异常断电保护方案,可有效解决上述技术问题。
参见图1所示,本申请实施例公开了一种整机柜服务器中子节点的异常断电保护系统,整机柜服务器通过供电铜排为各子节点供电,异常断电保护系统包括逻辑控制模块101以及插拔触发模块102;
插拔触发模块102用于通过金属探针检测子节点的供电夹子与供电铜排在第二插接深度处的接触状态,转换生成检测信号并发送至逻辑控制模块101;其中,第二插接深度大于第三插接深度且不大于第一插接深度,第一插接深度和第三插接深度分别对应于供电铜排的最大可插接深度处和浅层边缘处;
逻辑控制模块101用于在根据检测信号判定供电夹子脱离供电铜排的第二插接深度处之后,在供电夹子脱离供电铜排的第三插接深度处之前,先后依次关闭子节点的主电电源和待机电源,以便子节点执行正常关机掉电逻辑。
需要指出的是,申请人注意到,业内为保障供电的接触稳定,子节点的供电夹子(例如常用的“鳄鱼夹”)在正常使用时会深插入供电铜排以便保障充分接触。一般地,供电夹子插入供电铜排的最大可插接深度D max在20~30mm范围内,也就是说,供电夹子与供电铜排有20~30mm的接触深度。
因此,子节点服务器的完全拔出是有一定过程的:从供电夹子脱离供电铜排的最大可插接深度D max处,同时也是本申请中的第一插接深度D 1处,直至供电夹子脱离供电铜排的浅层边缘处,同时也是本申请中的第三插接深度D 3处。并且,申请人还发现,供电夹子与供电铜排的整个分离过程所持续的时间一般至少在几百毫秒以上,甚至是1秒以上。由此,申请人发现,可以利用上述分离过程所造成的时间机会,基于逻辑控制模块101抢在系统完全断电之前执行正常关机掉电逻辑。
具体的,本申请中的插拔触发模块102,具体是用于检测子节点供电夹子与供电铜排第二插接深度D 2处的接触状态,即,一旦子节点的供电夹子离开供电铜排的第二插接深度处,插拔触发模块102便会变换输出对应的检测信号。其中,0=D 3<D 2≤D 1=D max
同时,本申请中逻辑控制模块101分别与子节点主板上的主电电源和待机电源连接,一旦发现供电夹子与供电铜排的第二插接深度处脱离,逻辑控制模块101便可判定供电夹子与供电铜排的分离过程刚刚开始,子节点正在但还未完全被拔出,因此可立即控制子节点的主电电源关闭,并在主电电源关闭之后控制待机电源关闭。
通过控制主电电源先于待机电源关闭,即执行了正常关机掉电逻辑。在正常关机掉电逻辑的设计中,系统内部数据会自动得以保存,由此便可有效避免了系统数据丢失。同时,各级供电网络有序掉电,避免了因欠压而损坏内部的敏感元器件,保障了电路安全。
还需要说明的是,依据现代电子器件已达到的数据处理时钟频率水平,逻辑控制器件执行关闭主电电源的操作最多仅需几十毫秒,远小于1秒,两者不在同一个数量级。因此,从实际操作层面,逻辑控制器件完全可以做到在供电夹子完全脱离供电铜排的第三插接深度处之前,先后依次关闭子节点的主电电源和待机电源,即本方案具有充分的可行性。
需要说明的是,本领域技术人员需要在(0,D max]范围内合理设置第二插接深度D 2的大小。根据上述基于时间机会的检测原理可知:D 2越大,可用于先后关闭主电电源、待机电源的总时间裕量越多,因此D 2不宜过小。
在一个具体实施例中,第二插接深度可等于第一插接深度,即D 2=D 1=D max。此时,金属探针检测的便是供电夹子与供电铜排在最大可插接深度处的接触状态。如此虽然可获取最大的总时间裕量,但是容易出现误动作:例如,一旦子节点服务器因自然晃动导致供电夹子稍微位移而脱离了最大可插接深度,则此时金属探针便会误报。
为此,在另一个具体实施例中,第二插接深度略小于第一插接深度,例如,可令D 2=0.8·D max。如此,便可为供电夹子提供了(D 2,D max]范围内的误动作区间,当供电夹子在该插接深度范围内活动时,金属探针不会改变电位输出状态,从而避免了误报、提高了准确度。
可见,本申请所提供的整机柜服务器中子节点的异常断电保护系统,在子节点服务器被误拔时,可基于金属探针探测到供电夹子与供电铜排分离过程的初始时刻,并利用该分离过程所造成的时间机会,在完全断电之前先后控制主电电源、待机电源关闭,实现正常关机掉电逻辑,从而有效避免了系统数据的丢失,并防止了异常掉电产生的反向电压损坏系统内的敏感电子元器件,保障了系统电路安全。
作为一种具体实施例,本申请实施例所提供的整机柜服务器中子节点的异常断电保护系统在上述内容的基础上,插拔触发模块102包括金属探针以及与金属探针的第一端连接的电平转换电路;
金属探针与子节点的供电夹子平行安装,且金属探针第二端相对于机壳的凸出距离小于供电夹子,以使在供电夹子插入至供电铜排的第二插接深度处时,金属探针的第二端恰好与供电铜排的第三插接深度处相接触。
对照参见图2~4,图2为本申请实施例公开的一种子节点服务器的安装示意图;图3为本申请实施例公开的一种供电夹子插入至供电铜排第二插接深度处的状态示意图;图4为本申请实施例公开的一种供电夹子插入至供电铜排某一中间深度的状态示意图。图中,201为子节点服务器,202为供电铜排的电源母排,203为供电铜排的接地母排,204为子节点服务器的供电夹子,205为金属探针。
如图2所示,供电铜排竖直安装,包括电源母排和接地母排。子节点服务器的机壳后方设置有两个鳄鱼夹即供电夹子,两个鳄鱼夹可分别插入电源母排和接地母排而取电。
此外,金属探针安装在供电夹子附近对应于供电铜排的一个位置,但是,金属探针凸出于机壳的长度较小,当鳄鱼夹插入至供电铜排的第二插接深度处时,金属探针才刚好可与供电铜排的第三插接深度处相接触,具体可参见图3。
此时,金属探针第一端的输出电位取决于其所接触的供电铜排的电位。图3中金属探针所接触的是供电铜排中的电源母排,则输出电位为高电平。若所接触的是供电铜排中的接地母排,则输出电位为低电平。
而当鳄鱼夹并没有插入至供电铜排的第二插接深度处,而是小于第二插 接深度的某个中间深度处时,金属探针便无法接触到供电铜排而处于悬空状态,具体可参见图4。此时金属探针第一端的输出电位既不是高电平也不是低电平,而是为高阻态电位。
参见图5,本申请实施例还公开了一种电平转换电路的电路结构。
作为一种具体实施例,本申请实施例所提供的整机柜服务器中子节点的异常断电保护系统在上述内容的基础上,电平转换电路包括相连的上拉电阻Rs和可控接地开关Q,上拉电阻Rs与可控接地开关Q的公共端作为电平转换电路的输出端与逻辑控制模块101连接;上拉电阻Rs的另一端与待机电源连接;可控接地开关Q的另一端接地;
可控接地开关Q的控制端与金属探针的第一端连接,以使当金属探针的第二端与供电铜排的第三插接深度处相接触时,可控接地开关Q闭合,当金属探针的第二端悬空时,可控接地开关Q断开。
需要说明的是,为了便于理解,图5中具体以一个等效开关S来表示金属探针。容易理解的是,当金属探针第二端悬空时,可控接地开关Q为常开状态,电平转换电路输出端的电平状态被上拉电阻Rs拉至高电平;当金属探针第二端与供电铜排的第三插接深度处接触时,金属探针的输出电位控制可控接地开关Q闭合,电平转换电路输出端的电平状态被可控接地开关Q拉低至低电平。
由此,基于本实施例所提供的电平转换电路,当检测信号由低电平变为高电平即出现上升沿时,便可判定子节点服务器的供电夹子已脱离至供电铜排的第二插接深度处。此外,本领域技术人员还可在上述电平转换电路的基础上增加滤波防抖电路等以进一步提高信号准确性,本申请对此并不进行限定。
作为一种具体实施例,本申请实施例所提供的整机柜服务器中子节点的异常断电保护系统在上述内容的基础上,供电铜排包括电源母排和接地母排,金属探针安装在机壳上与电源母排的对应位置处,以便在供电夹子插入至供电铜排的第二插接深度处时,金属探针的第二端恰好与电源母排的第三插接深度处相接触;可控接地开关Q为NMOS管。
具体地,若金属探针与电源母排对应安装,则当金属探针与电源母排的第三插接深度处接触时,金属探针的输出电位为高电平,故此,本实施例对 应选择了高电平有效的NMOS管作为可控接地开关Q。
类似地,本领域技术人员也可以将金属探针与接地母排对应安装,当金属探针与接地母排的第三插接深度处接触时,金属探针的输出电位为低电平,因此,当对应选择低电平有效的PMOS管作为可控接地开关Q。
作为一种具体实施例,本申请实施例所提供的整机柜服务器中子节点的异常断电保护系统在上述内容的基础上,逻辑控制模块101包括子节点的主板上的CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
具体地,CPLD是服务器主板上普遍使用的一种重要逻辑器件。它具有编程灵活、集成度高、适用范围宽等优点,可实现较大规模的电路设计,因此被广泛应用。因此,本实施例中可具体利用子节点服务器主板上的CPLD来作为逻辑控制模块101。
作为一种具体实施例,本申请实施例所提供的整机柜服务器中子节点的异常断电保护系统在上述内容的基础上,CPLD与子节点的电源按键连接,CPLD还用于:
在接收到来自电源按键的关机指令后,先后依次关闭主电电源和待机电源。
具体地,异常断电保护机制与正常关机操作的断电机制彼此并不冲突。无论是在用户按下电源按键之后,还是在检测到用户异常误拔子节点服务器后,本实施例中的CPLD均会先后关闭主电电源和待机电源,以执行正常关机掉电逻辑,保护系统数据安全和元器件安全。
如图6,作为一种具体实施例,本申请实施例所提供的整机柜服务器中子节点的异常断电保护系统在上述内容的基础上,逻辑控制模块101还包括子节点的主板上的BMC(Baseboard Management Controller,基板管理控制器),BMC用于:
在根据检测信号判定供电夹子脱离供电铜排的第二插接深度处之后,生成针对本次异常断电的日志记录。
具体地,BMC是服务器主板上普遍使用的另一种重要逻辑器件。它可以通过传感器监控设备的运行状态,通过独立的连接线路和系统管理员进行通信,可以在机器未开机的状态下,对机器进行包括系统状态监视、重启、重新供电、断电、固件升级等底板控制操作。
本实例中,插拔触发模块102同样与BMC连接。为了便于后续故障分析,BMC可在判定供电夹子脱离供电铜排的第二插接深度处之后,立刻将本次异常断电记录在日志中。
参见图7所示,本申请实施例公开了一种整机柜服务器中子节点的异常断电保护方法,整机柜服务器通过供电铜排为各子节点供电;该方法应用于与子节点的主电电源和待机电源连接的逻辑控制模块101,主要包括:
S301:实时接收插拔触发模块102发送的检测信号;插拔触发模块102通过金属探针检测子节点的供电夹子与供电铜排在第二插接深度处的接触状态,并转换生成检测信号。
其中,第二插接深度大于第三插接深度且不大于第一插接深度,第一插接深度和第三插接深度分别对应于供电铜排的最大可插接深度处和浅层边缘处。
S302:根据检测信号判断供电夹子是否脱离供电铜排的第二插接深度处;若是,则进入S303。
S303:在供电夹子脱离供电铜排的第三插接深度处之前,先后依次关闭主电电源和待机电源,以便子节点执行正常关机掉电逻辑。
可见,本申请实施例所公开的整机柜服务器中子节点的异常断电保护方法,在子节点服务器被误拔时,可基于金属探针探测到供电夹子与供电铜排分离过程的初始时刻,并利用该分离过程所造成的时间机会,在完全断电之前先后控制主电电源、待机电源关闭,实现正常关机掉电逻辑,从而有效避免了系统数据的丢失,并防止了异常掉电产生的反向电压损坏系统内的敏感电子元器件,保障了系统电路安全。
关于上述整机柜服务器中子节点的异常断电保护方法的具体内容,可参考前述关于整机柜服务器中子节点的异常断电保护系统的详细介绍,这里就不再赘述。
作为一种具体实施例,本申请实施例所公开的整机柜服务器中子节点的异常断电保护方法在上述内容的基础上,插拔触发模块102包括金属探针以及与金属探针的第一端连接的电平转换电路;
金属探针与子节点的供电夹子平行安装,且金属探针第二端相对于机壳的凸出距离小于供电夹子,以使在供电夹子插入至供电铜排的第二插接深度处时,金属探针的第二端恰好与供电铜排的第三插接深度处相接触。
作为一种具体实施例,本申请实施例所公开的整机柜服务器中子节点的异常断电保护方法在上述内容的基础上,电平转换电路包括相连的上拉电阻和可控接地开关,上拉电阻与可控接地开关的公共端作为电平转换电路的输出端与逻辑控制模块101连接;
上拉电阻的另一端与待机电源连接;可控接地开关的另一端接地;
可控接地开关的控制端与金属探针的第一端连接,以使当金属探针的第二端与供电铜排的第三插接深度处相接触时,可控接地开关闭合,当金属探针的第二端悬空时,可控接地开关断开。
作为一种具体实施例,本申请实施例所公开的整机柜服务器中子节点的异常断电保护方法在上述内容的基础上,供电铜排包括电源母排和接地母排,金属探针安装在机壳上与电源母排的对应位置处,以便在供电夹子插入至供电铜排的第二插接深度处时,金属探针的第二端恰好与电源母排的第三插接深度处相接触;可控接地开关为NMOS管。
作为一种具体实施例,本申请实施例所公开的整机柜服务器中子节点的异常断电保护方法在上述内容的基础上,逻辑控制模块101包括子节点的主板上的CPLD。
作为一种具体实施例,本申请实施例所公开的整机柜服务器中子节点的异常断电保护方法在上述内容的基础上,CPLD与子节点的电源按键连接,方法还包括:
在接收到来自电源按键的关机指令后,先后依次关闭主电电源和待机电源。
作为一种具体实施例,本申请实施例所公开的整机柜服务器中子节点的异常断电保护方法在上述内容的基础上,逻辑控制模块101还包括子节点的主板上的BMC,方法还包括:
BMC在根据检测信号判定供电夹子脱离供电铜排的第二插接深度处之后,生成针对本次异常断电的日志记录。
参见图8所示,本申请实施例公开了一种电子设备,包括:
存储器401,用于存储计算机程序;
处理器402,用于执行所述计算机程序以实现如上所述的任一种整机柜服务器中子节点的异常断电保护方法的步骤。
进一步地,本申请实施例还公开了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时用以实现如上所述的任一种整机柜服务器中子节点的异常断电保护方法的步骤。
关于上述电子设备和计算机可读存储介质的具体内容,可参考前述关于整机柜服务器中子节点的异常断电保护系统的详细介绍,这里就不再赘述。
本申请中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的设备而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需说明的是,在本申请文件中,诸如“第一”和“第二”之类的关系术语,仅仅用来将一个实体或者操作与另一个实体或者操作区分开来,而不一定要求或者暗示这些实体或者操作之间存在任何这种实际的关系或者顺序。此外,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请所提供的技术方案进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请的保护范围内。

Claims (10)

  1. 一种整机柜服务器中子节点的异常断电保护系统,所述整机柜服务器通过供电铜排为各子节点供电;其特征在于,所述异常断电保护系统包括逻辑控制模块以及插拔触发模块;
    所述插拔触发模块用于通过金属探针检测所述子节点的供电夹子与所述供电铜排在第二插接深度处的接触状态,转换生成检测信号并发送至所述逻辑控制模块;所述第二插接深度大于第三插接深度且不大于第一插接深度,所述第一插接深度和所述第三插接深度分别对应于所述供电铜排的最大可插接深度处和浅层边缘处;
    所述逻辑控制模块用于在根据所述检测信号判定所述供电夹子脱离所述供电铜排的所述第二插接深度处之后,在所述供电夹子脱离所述供电铜排的所述第三插接深度处之前,先后依次关闭所述子节点的主电电源和待机电源,以便所述子节点执行正常关机掉电逻辑。
  2. 根据权利要求1所述的整机柜服务器中子节点的异常断电保护系统,其特征在于,所述插拔触发模块包括所述金属探针以及与所述金属探针的第一端连接的电平转换电路;
    所述金属探针与所述子节点的供电夹子平行安装,且所述金属探针第二端相对于机壳的凸出距离小于所述供电夹子,以使在所述供电夹子插入至所述供电铜排的所述第二插接深度处时,所述金属探针的第二端恰好与所述供电铜排的所述第三插接深度处相接触。
  3. 根据权利要求2所述的整机柜服务器中子节点的异常断电保护系统,其特征在于,所述电平转换电路包括相连的上拉电阻和可控接地开关,所述上拉电阻与所述可控接地开关的公共端作为所述电平转换电路的输出端与所述逻辑控制模块连接;
    所述上拉电阻的另一端与所述待机电源连接;所述可控接地开关的另一端接地;
    所述可控接地开关的控制端与所述金属探针的第一端连接;当所述金属探针的第二端与所述供电铜排的所述第三插接深度处相接触时,驱使所述可控接地开关闭合;当所述金属探针的第二端悬空时,所述可控接地开关断开。
  4. 根据权利要求3所述的整机柜服务器中子节点的异常断电保护系统, 其特征在于,所述供电铜排包括电源母排和接地母排,所述金属探针安装在机壳上与所述电源母排的对应位置处,以便在所述供电夹子插入至所述供电铜排的所述第二插接深度处时,所述金属探针的第二端恰好与所述电源母排的所述第三插接深度处相接触;所述可控接地开关为NMOS管。
  5. 根据权利要求1至4任一项所述的整机柜服务器中子节点的异常断电保护系统,其特征在于,所述逻辑控制模块包括所述子节点的主板上的CPLD。
  6. 根据权利要求5所述的整机柜服务器中子节点的异常断电保护系统,其特征在于,所述CPLD与所述子节点的电源按键连接,所述CPLD还用于:
    在接收到来自所述电源按键的关机指令后,先后依次关闭所述主电电源和所述待机电源。
  7. 根据权利要求5所述的整机柜服务器中子节点的异常断电保护系统,其特征在于,所述逻辑控制模块还包括所述子节点的主板上的BMC,所述BMC用于:
    在根据所述检测信号判定所述供电夹子脱离所述供电铜排的所述第二插接深度处之后,生成针对本次异常断电的日志记录。
  8. 一种整机柜服务器中子节点的异常断电保护方法,所述整机柜服务器通过供电铜排为各子节点供电;其特征在于,所述方法应用于与所述子节点的主电电源和待机电源连接的逻辑控制模块,包括:
    实时接收插拔触发模块发送的检测信号;所述插拔触发模块通过金属探针检测所述子节点的供电夹子与所述供电铜排在第二插接深度处的接触状态,并转换生成所述检测信号;所述第二插接深度大于第三插接深度且不大于第一插接深度,所述第一插接深度和所述第三插接深度分别对应于所述供电铜排的最大可插接深度处和浅层边缘处;
    根据所述检测信号判断所述供电夹子是否脱离所述供电铜排的所述第二插接深度处;
    若是,则在所述供电夹子脱离所述供电铜排的所述第三插接深度处之前,先后依次关闭所述主电电源和所述待机电源,以便所述子节点执行正常关机掉电逻辑。
  9. 一种电子设备,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序以实现如权利要求8所述的整机柜服务器中子节点的异常断电保护方法的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时用以实现如权利要求8所述的整机柜服务器中子节点的异常断电保护方法的步骤。
PCT/CN2021/121424 2020-12-22 2021-09-28 整机柜服务器中子节点的异常断电保护系统、方法及设备 WO2022134715A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/250,948 US12019491B2 (en) 2020-12-22 2021-09-28 Protection system and method for abnormal power down of child node in rack-scale server, and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011532924.8A CN112612357B (zh) 2020-12-22 2020-12-22 整机柜服务器中子节点的异常断电保护系统、方法及设备
CN202011532924.8 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022134715A1 true WO2022134715A1 (zh) 2022-06-30

Family

ID=75244401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121424 WO2022134715A1 (zh) 2020-12-22 2021-09-28 整机柜服务器中子节点的异常断电保护系统、方法及设备

Country Status (3)

Country Link
US (1) US12019491B2 (zh)
CN (1) CN112612357B (zh)
WO (1) WO2022134715A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117033063A (zh) * 2023-10-08 2023-11-10 浪潮(山东)计算机科技有限公司 一种服务器漏液处理方法、系统、装置、电子设备及介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112612357B (zh) 2020-12-22 2022-11-18 山东海量信息技术研究院 整机柜服务器中子节点的异常断电保护系统、方法及设备
CN114020130B (zh) * 2021-10-22 2023-07-18 苏州浪潮智能科技有限公司 一种防止子节点服务器输入端烧板的供电管理系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170093148A1 (en) * 2015-09-30 2017-03-30 Ching-Sung Wang Safety power socket device and safety power socket device with remote monitor management
CN111258403A (zh) * 2020-02-10 2020-06-09 苏州浪潮智能科技有限公司 一种服务器集中供电的控制装置
CN111722000A (zh) * 2020-06-04 2020-09-29 广西金步电力科技有限公司 一种大电流连接器检测系统及连接检测方法
CN112612357A (zh) * 2020-12-22 2021-04-06 山东海量信息技术研究院 整机柜服务器中子节点的异常断电保护系统、方法及设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2914223B2 (ja) * 1995-04-28 1999-06-28 住友電装株式会社 キャップ型リテーナを備える二重係止コネクタ
WO2005006363A2 (en) * 2003-07-09 2005-01-20 Isra-Juk Electronics Ltd System, apparatus and method for detection of electrical faults
US8441151B2 (en) * 2009-11-24 2013-05-14 Delta Electronics, Inc. Power supply with arc flash protection mechanism and data-processing system employing same
US9274166B2 (en) * 2013-08-26 2016-03-01 Fujitsu Limited Pin verification device and method
US10508807B2 (en) * 2014-05-02 2019-12-17 Air Products And Chemicals, Inc. Remote burner monitoring system and method
CN205643942U (zh) * 2016-05-24 2016-10-12 合肥京东方光电科技有限公司 电路板结构及显示装置
CN106654737B (zh) * 2016-11-16 2019-06-11 北京小米移动软件有限公司 排插的通电方法及装置
EP3616361B1 (en) * 2017-04-24 2020-08-19 Signify Holding B.V. Power management device for immediate start-up during power negotiation
US20180375258A1 (en) * 2017-06-21 2018-12-27 Dynawave Incorporated Self-aligning cable mating connector
CN107683020A (zh) * 2017-10-17 2018-02-09 京东方科技集团股份有限公司 一种显示面板、其检测方法、柔性电路板及显示装置
WO2019159242A1 (ja) * 2018-02-14 2019-08-22 パナソニックIpマネジメント株式会社 電力制御方法および電力制御システム
WO2020099164A1 (en) * 2018-11-13 2020-05-22 Signify Holding B.V. Dc-power supply device
CN109669905B (zh) * 2018-12-17 2023-05-12 广东浪潮大数据研究有限公司 一种pcie设备的热移除方法、系统及相关装置
CN111625079B (zh) * 2020-05-28 2022-04-22 浪潮电子信息产业股份有限公司 一种整机柜服务器及其复用型电源模块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170093148A1 (en) * 2015-09-30 2017-03-30 Ching-Sung Wang Safety power socket device and safety power socket device with remote monitor management
CN111258403A (zh) * 2020-02-10 2020-06-09 苏州浪潮智能科技有限公司 一种服务器集中供电的控制装置
CN111722000A (zh) * 2020-06-04 2020-09-29 广西金步电力科技有限公司 一种大电流连接器检测系统及连接检测方法
CN112612357A (zh) * 2020-12-22 2021-04-06 山东海量信息技术研究院 整机柜服务器中子节点的异常断电保护系统、方法及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117033063A (zh) * 2023-10-08 2023-11-10 浪潮(山东)计算机科技有限公司 一种服务器漏液处理方法、系统、装置、电子设备及介质
CN117033063B (zh) * 2023-10-08 2024-02-09 浪潮(山东)计算机科技有限公司 一种服务器漏液处理方法、系统、装置、电子设备及介质

Also Published As

Publication number Publication date
US20230384850A1 (en) 2023-11-30
CN112612357B (zh) 2022-11-18
US12019491B2 (en) 2024-06-25
CN112612357A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2022134715A1 (zh) 整机柜服务器中子节点的异常断电保护系统、方法及设备
CN111258403B (zh) 一种服务器集中供电的控制装置
CN102882267B (zh) 供电装置、电子设备和供电方法
US8020049B2 (en) Detection of and recovery from an electrical fast transient/burst (EFT/B) on a universal serial bus (USB) device
US20150033058A1 (en) Server cluster and control mechanism thereof
CN111831498A (zh) 一种断电测试方法、装置及设备
CN103176885A (zh) 网卡故障提示系统
CN104102290A (zh) 服务器
US20180254626A1 (en) Multi-node system fault management
WO2022048366A1 (zh) 一种电位差预警电路以及系统
US7490252B2 (en) Abnormal power interruption internal circuitry protection method and system for computer platform
TWI749728B (zh) 可攜式電子裝置
CN112526898B (zh) 一种串口线插拔检测电路和嵌入式设备
CN101459531A (zh) 基板管理控制器供电装置及方法
CN102591407B (zh) 主板
CN110389643B (zh) 服务器及其远端控制方法
CN101441505B (zh) 带节能控制的计算机电源装置
WO2021169476A1 (zh) 一种服务器扩充系统及其电源控制方法
TWI501075B (zh) 伺服器
CN112115000B (zh) 系统部件电源的远端重置方法、系统及bmc远端设备
CN111597594A (zh) 一种ops模块插拔保护装置及电子设备
CN214756295U (zh) 一种防止通信总线系统误下电的电路
CN115114092B (zh) 总线挂死的恢复方法、系统、装置及计算机可读存储介质
CN113328740B (zh) 一种防误触发开关机系统和方法
CN113721747B (zh) 一种服务器及其防烧板电路和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908716

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21908716

Country of ref document: EP

Kind code of ref document: A1