WO2022134639A1 - Procédé de commande conjointe d'un aérogénérateur à deux rotors en tandem - Google Patents

Procédé de commande conjointe d'un aérogénérateur à deux rotors en tandem Download PDF

Info

Publication number
WO2022134639A1
WO2022134639A1 PCT/CN2021/114941 CN2021114941W WO2022134639A1 WO 2022134639 A1 WO2022134639 A1 WO 2022134639A1 CN 2021114941 W CN2021114941 W CN 2021114941W WO 2022134639 A1 WO2022134639 A1 WO 2022134639A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
wind turbine
rotor
speed
turbine
Prior art date
Application number
PCT/CN2021/114941
Other languages
English (en)
Chinese (zh)
Inventor
郭小江
李新凯
唐巍
叶昭良
闫姝
秦猛
劳文欣
付明志
Original Assignee
中国华能集团清洁能源技术研究院有限公司
华能海上风电科学技术研究有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 华能海上风电科学技术研究有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2022134639A1 publication Critical patent/WO2022134639A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0276Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention belongs to the technical field of wind power control, and in particular relates to a coordinated control method for a tandem double-wind turbine wind generator set.
  • the tandem double wind turbine structure is valued for its high efficiency and mature key core equipment.
  • existing dual wind turbine units use two wind turbines coaxially or connected to the main shaft through bevel gears.
  • the two wind rotors in the structure can only rotate at the same speed, and cannot realize the independent operation of the rotational speed and the coordinated control of the front and rear wind rotors, so that the two wind rotors cannot operate in their respective high-efficiency areas, resulting in a low overall efficiency of the unit. .
  • the purpose of the present invention is to provide a coordinated control method for a tandem double-wind turbine wind turbine, which can improve the utilization rate of wind energy and reduce the cost per kilowatt-hour of the wind turbine.
  • a collaborative control method for a tandem double-wind turbine wind turbine After dividing the operating interval of the front and rear wind turbines and determining the optimal output value, the overall output of the wind turbine is taken as the goal. The output of the front and rear wind rotors is controlled cooperatively.
  • the blade pitch angle of the front wind rotor is obtained from the feedback signal of the front wind rotor pitch system sensor, and the rear wind rotor blade pitch angle is obtained by the rear wind rotor pitch system.
  • the sensor feedback signal is obtained.
  • the rotational speed of the front wind rotor is obtained from the feedback signal of the outer rotor speed of the dual rotor generator, and the rotational speed of the rear wind rotor is obtained from the feedback signal of the inner rotor of the dual rotor generator.
  • the best tip speed ratio of the front wind rotor design determine the best rotation speed corresponding to different wind speeds before the rated wind speed, determine the best pitch angle corresponding to different wind speeds after the rated wind speed, and determine the front wind rotor according to the blade limit load.
  • Outlet wind speed According to the optimal tip speed ratio of the rear rotor design, determine the optimal rotation speed corresponding to different wind speeds before the rated wind speed of the rear rotor, determine the optimal pitch angle corresponding to different wind speeds after the rated wind speed, and determine the rear wind according to the ultimate load of the blade. Wheel cut out wind speed.
  • the respective rotational speeds of the front wind rotor and the rear wind rotor are adjusted by adjusting the current of the converter, and then the overall output of the tandem double wind turbine wind turbine can be maximized by adjusting the power of the double wind turbines.
  • dividing the operating interval of the front and rear wind rotors is to divide the operating intervals of the front and rear wind rotors according to the wind speed sections corresponding to the high-efficiency areas of the front and rear wind rotors, with the goal of the widest high-efficiency area of the unit.
  • the starting wind speed, rated wind speed and shutdown wind speed of the rear wind rotor are higher than those of the front wind rotor.
  • the output synergy is achieved by changing the rotational speed and pitch angle of the front and rear wind rotors to achieve the control objectives of the highest power and the lowest load.
  • the rear wind wheel is controlled to provide a reverse braking torque for the front wind wheel; when the voltage of the grid drops, the voltage of the two wind wheels is coordinated to make the rear wind wheel continue to continue. run.
  • the power curve of the front wind turbine is designed according to a conventional single wind turbine unit, and the power curve of the rear wind turbine has redundancy.
  • the present invention has the following beneficial technical effects:
  • the cooperative control method for a tandem double-wind turbine wind turbine disclosed in the present invention aims at the problem that the current tandem double-wind turbine cannot be decoupled in operation and the operation efficiency is low, and proposes a tandem with transmission decoupling.
  • the cooperative control strategy of the front and rear wind turbines of the double-wind turbine wind turbine after dividing the operating interval of the front and rear wind turbines and determining the optimal output value, the goal is to maximize the overall output of the wind turbine, rather than the output of a certain wind turbine.
  • the rotational speed and pitch angle of the front and rear wind rotors are used to coordinate the output of the front and rear wind rotors.
  • the invention realizes decoupling from the drive of the wind generator set, so that the independent control of the front and rear wind rotors can be realized, thereby providing the possibility for cooperative control in essence;
  • the cooperation of the front and rear wind turbines makes the unit more efficient, the high-efficiency area is wider, and the grid connection is more friendly, which can greatly reduce the kWh cost of the wind turbine and improve the grid connection characteristics of the unit.
  • the wind energy is absorbed by the front wind rotor after the fluid bypasses the front wind rotor, and the fluid velocity of the fluid flowing into the rear wind rotor is reduced, there is an operating interval difference between the front wind rotor and the rear wind rotor relative to the incoming wind speed.
  • the operating range of the front wind rotor is designed according to the conventional wind turbine, and the rear wind rotor has a higher starting wind speed, and the corresponding rated wind speed is higher, and the shutdown wind speed is also higher.
  • the two wind turbine coordination control stages provide reverse braking torque for the front wind rotor by controlling the rear wind rotor, and through the coordinated load reduction strategy, the unit load is minimized and the unit load is guaranteed.
  • Safety When the voltage of the power grid drops, by coordinating the voltages of the two wind turbines, the rear wind turbine continues to operate, maintains the voltage level of the generator, and increases the network source adjustability of the double wind turbine unit.
  • the power curve of the front wind turbine is designed according to the conventional single wind turbine unit, and the power curve of the rear wind turbine has redundancy, which can control the output of the two wind turbines through coordination, and finally make the double wind turbine unit generate higher power before the rated power. , which can adapt to a wider wind speed segment.
  • Fig. 1 is the logic diagram of the cooperative control method of the tandem double-wind turbine wind turbine of the present invention
  • Fig. 2 is the schematic diagram of the optimal operation interval division of the front and rear wind wheels of the present invention.
  • FIG. 3 is a schematic diagram of the power generation of the front and rear wind turbines of the present invention.
  • the logic diagram of the cooperative control method of the tandem dual-wind turbine wind turbine of the present invention is shown in Figure 1.
  • the system control strategy of the dual-wind turbine wind turbine includes: the operation interval of the dual-wind turbine and the optimal coordinated output of the front and rear wind turbines; the optimal front wind turbine Output setting, the output of the rear wind rotor is optimally set; the front wind rotor is controlled by variable speed and pitch, and the rear wind rotor is controlled by variable speed and pitch.
  • the pitch angle of the front wind rotor blade is obtained from the feedback signal of the front wind rotor pitch system sensor, and the rear wind rotor blade pitch angle is obtained from the sensor feedback signal of the rear wind rotor pitch system.
  • the rotational speed of the front rotor is obtained from the feedback signal of the outer rotor of the dual-rotor generator, and the rotational speed of the rear rotor is obtained from the feedback signal of the inner rotor of the dual-rotor generator.
  • Adjust the output of the front wind wheel by adjusting the rotational speed and pitch angle of the front wind wheel. Adjust the speed and pitch angle of the rear rotor, and adjust the output of the rear rotor. By adjusting the rotational speed and pitch angle of the front and rear rotors, the overall output of the unit is maximized and the load is minimized, rather than being limited to the front or rear rotor with the largest output. Further, by dividing the optimal operation interval of the rear wind turbine, it is obtained that the overall high efficiency area of the unit is wider.
  • the power curve of the front wind turbine is designed according to the conventional single wind turbine unit, and the rear wind turbine adopts a certain redundancy design. wider wind speed segment.
  • the optimal tip speed ratio of the front wind rotor design determine the optimal rotation speed corresponding to different wind speeds before the rated wind speed, determine the optimal pitch angle corresponding to different wind speeds after the rated wind speed, and determine the cut-out wind speed of the front wind rotor according to the limit load of the blade; Design the optimal tip speed ratio of the rear rotor, determine the optimal rotation speed corresponding to different wind speeds before the rated wind speed of the rear rotor, determine the optimal pitch angle corresponding to different wind speeds after the rated wind speed, and determine the cut-out wind speed of the rear rotor according to the limit load of the blade .
  • the starting wind speed of the front wind rotor is V1min
  • the rated wind speed is V1N
  • the optimal Cp1max operating range of the wind rotor is between V1min and V1N
  • V1max is the wind speed of the wind rotor, which is determined by the limit load of the unit.
  • the fluid velocity of the rear rotor will decrease, so the inflow velocity of the rear rotor is lower than the inflow velocity of the front rotor.
  • the starting wind speed of the rear rotor is V2min
  • the rated wind speed is V2N
  • the best Cp2max operation of the wind rotor is between V2min and V2N, and the starting wind speed and rated wind speed of the rear wind rotor are higher than those of the front wind rotor.
  • the high-efficiency area of the double wind turbine unit is wider than that of the single wind turbine unit of the same capacity.
  • the rear wind turbine adopts a certain redundancy design, and its rated power corresponds to a higher wind speed.
  • the rated power of the dual-wind turbine unit corresponds to a higher wind speed, and the unit can operate in a wider wind speed section. Maintain a high efficiency zone.
  • the two wind rotor coordination control stages provide reverse braking torque for the front wind rotor by controlling the rear wind rotor, and through the coordinated load reduction strategy, the unit load is minimized and the unit safety is ensured.
  • the voltage of the power grid drops, by coordinating the voltages of the two wind turbines, the rear wind turbine continues to operate, maintains the voltage level of the generator, and increases the network source adjustability of the double wind turbine unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

Procédé de commande conjointe d'un aérogénérateur à deux rotors en tandem, comprenant : premièrement, la division des sections de fonctionnement de rotors avant et arrière et la détermination des valeurs de puissance de sortie optimales ; puis la commande conjointe de la puissance de sortie des rotors avant et arrière par réglage des vitesses de rotation et des angles de pas des rotors avant et arrière, afin de maximiser la puissance de sortie de l'ensemble de l'aérogénérateur. Afin de maximiser le rendement global du générateur et de minimiser la charge du générateur, les rotors avant et arrière fonctionnent conjointement l'un avec l'autre, de sorte que le générateur présente un rendement supérieur, une section à haut rendement plus large et une connexion au réseau plus conviviale, réduisant considérablement le coût actualisé de l'électricité de l'aérogénérateur, et améliorant les caractéristiques de connexion au réseau du générateur.
PCT/CN2021/114941 2020-12-22 2021-08-27 Procédé de commande conjointe d'un aérogénérateur à deux rotors en tandem WO2022134639A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011529919.1A CN112648141B (zh) 2020-12-22 2020-12-22 一种串列式双风轮风电机组协同控制方法
CN202011529919.1 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022134639A1 true WO2022134639A1 (fr) 2022-06-30

Family

ID=75359046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114941 WO2022134639A1 (fr) 2020-12-22 2021-08-27 Procédé de commande conjointe d'un aérogénérateur à deux rotors en tandem

Country Status (2)

Country Link
CN (1) CN112648141B (fr)
WO (1) WO2022134639A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115977888A (zh) * 2022-11-24 2023-04-18 若光若盐(南京)科技有限公司 一种双风轮双增速箱风力发电机组
CN116292095A (zh) * 2023-03-27 2023-06-23 华北电力大学 一种串列式双风轮风电机组多场景协调运行方法
CN117108445A (zh) * 2023-07-25 2023-11-24 华北电力大学 一种串列式双风轮风电机组数字孪生仿真方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112648141B (zh) * 2020-12-22 2021-09-28 中国华能集团清洁能源技术研究院有限公司 一种串列式双风轮风电机组协同控制方法
CN113833603A (zh) * 2021-09-13 2021-12-24 华北电力大学 一种双风轮风力发电机组运行控制方法
CN115839307A (zh) * 2021-09-18 2023-03-24 中国华能集团清洁能源技术研究院有限公司 双风轮风能转换装置的控制方法、装置和电子设备
CN115839310A (zh) * 2021-09-18 2023-03-24 中国华能集团清洁能源技术研究院有限公司 双风轮风能转换装置的启动控制方法及装置
CN115839311A (zh) * 2021-09-18 2023-03-24 中国华能集团清洁能源技术研究院有限公司 双风轮风能转换装置工作状态的控制方法及装置
CN115839306A (zh) * 2021-09-18 2023-03-24 中国华能集团清洁能源技术研究院有限公司 一种双风轮风能转换装置的控制方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150219068A1 (en) * 2014-01-31 2015-08-06 Ryan Port Wind turbine having a plurality of airfoil rings and counter rotating generators
WO2016010450A1 (fr) * 2014-07-16 2016-01-21 Анатолий Георгиевич БАКАНОВ Installation éolienne à double rotor (variantes)
DE102015102541A1 (de) * 2015-02-23 2016-08-25 Jugendforschungszentrum Schwarzwald-Schönbuch e. V. Windkraftanlage und Verfahren zu ihrer Regelung
CN109751186A (zh) * 2017-11-02 2019-05-14 北京普华亿能风电技术有限公司 风力发电机的控制方法、及高功率风力发电机
CN112648141A (zh) * 2020-12-22 2021-04-13 中国华能集团清洁能源技术研究院有限公司 一种串列式双风轮风电机组协同控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10066597B2 (en) * 2016-12-14 2018-09-04 Thunderbird Power Corp Multiple-blade wind machine with shrouded rotors
US11231007B2 (en) * 2018-09-21 2022-01-25 University Of Louisiana At Lafayette Cascaded wind turbine
CN109441711A (zh) * 2018-12-21 2019-03-08 覃小鹏 一种顺逆双转动风力发电机
US20200231275A1 (en) * 2019-01-18 2020-07-23 Boaz Barry Groman Dual rotor system
CN111878300A (zh) * 2020-07-13 2020-11-03 沈阳工业大学 基于压缩气体传输的双风轮风力发电机组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150219068A1 (en) * 2014-01-31 2015-08-06 Ryan Port Wind turbine having a plurality of airfoil rings and counter rotating generators
WO2016010450A1 (fr) * 2014-07-16 2016-01-21 Анатолий Георгиевич БАКАНОВ Installation éolienne à double rotor (variantes)
DE102015102541A1 (de) * 2015-02-23 2016-08-25 Jugendforschungszentrum Schwarzwald-Schönbuch e. V. Windkraftanlage und Verfahren zu ihrer Regelung
CN109751186A (zh) * 2017-11-02 2019-05-14 北京普华亿能风电技术有限公司 风力发电机的控制方法、及高功率风力发电机
CN112648141A (zh) * 2020-12-22 2021-04-13 中国华能集团清洁能源技术研究院有限公司 一种串列式双风轮风电机组协同控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115977888A (zh) * 2022-11-24 2023-04-18 若光若盐(南京)科技有限公司 一种双风轮双增速箱风力发电机组
CN116292095A (zh) * 2023-03-27 2023-06-23 华北电力大学 一种串列式双风轮风电机组多场景协调运行方法
CN116292095B (zh) * 2023-03-27 2023-11-07 华北电力大学 一种串列式双风轮风电机组多场景协调运行方法
CN117108445A (zh) * 2023-07-25 2023-11-24 华北电力大学 一种串列式双风轮风电机组数字孪生仿真方法
CN117108445B (zh) * 2023-07-25 2024-05-03 华北电力大学 一种串列式双风轮风电机组数字孪生仿真方法

Also Published As

Publication number Publication date
CN112648141A (zh) 2021-04-13
CN112648141B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2022134639A1 (fr) Procédé de commande conjointe d'un aérogénérateur à deux rotors en tandem
CN112664390B (zh) 一种串列式双风轮风电机组四级分层递阶控制方法
CN102072094A (zh) 功率合成双风轮风力发电机
CN102916446B (zh) 一种异步风力发电机组电控系统
AU2010252496A1 (en) Direct-connection low-speed small mixed-flow hydroturbine for hydrodynamic energy-saving cooling tower
CN103195651B (zh) 一种基于pi调节的风力发电机优化控制系统及控制方法
CN104329281A (zh) 一种动叶可调式引风机变频节能系统
CN106150916A (zh) 一种双叶轮同步风力发电机组
CN104901332A (zh) 一种基于变桨距的低电压穿越控制系统及控制方法
CN102852726B (zh) 基于差速机构自适应调速复合传动的并网风力发电系统
CN109751186B (zh) 风力发电机的控制方法、及高功率风力发电机
CN104500328B (zh) 两端直驱风力发电机
CN103470720B (zh) 低速比液力变矩器及导叶调节方法
CN107327368B (zh) 一种全液压风-潮汐混合发电设备
CN204041129U (zh) 定膨胀比天然气向心透平膨胀发电机组
CN105041575A (zh) 一种多电机发电装置及风力发电机组
CN205618299U (zh) 随风变速双风轮风力发电机
CN207960694U (zh) 一种电机-小汽轮机变转速双驱动系统
CN202732233U (zh) 一种可变速比的风力发电机组
WO2019206102A1 (fr) Appareil de production d'énergie éolienne à haut rendement
CN206246284U (zh) 一种双叶轮同步风力发电机组
CN206860368U (zh) 混合型风力发电机组
CN204851538U (zh) 一种多电机发电装置及风力发电机组
CN202718814U (zh) 同步发电机直接并网的风力发电机组
CN114151273B (zh) 一种基于双输入差速轮系的轮毂双叶轮同向旋转风电机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908643

Country of ref document: EP

Kind code of ref document: A1