WO2022134365A1 - 车辆调度方法、装置、系统、设备及存储介质 - Google Patents

车辆调度方法、装置、系统、设备及存储介质 Download PDF

Info

Publication number
WO2022134365A1
WO2022134365A1 PCT/CN2021/084788 CN2021084788W WO2022134365A1 WO 2022134365 A1 WO2022134365 A1 WO 2022134365A1 CN 2021084788 W CN2021084788 W CN 2021084788W WO 2022134365 A1 WO2022134365 A1 WO 2022134365A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
scheduling control
trajectory
control task
mec server
Prior art date
Application number
PCT/CN2021/084788
Other languages
English (en)
French (fr)
Inventor
丁磊
储林波
Original Assignee
华人运通(上海)自动驾驶科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华人运通(上海)自动驾驶科技有限公司 filed Critical 华人运通(上海)自动驾驶科技有限公司
Publication of WO2022134365A1 publication Critical patent/WO2022134365A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096725Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096775Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
    • G08G1/096811Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed offboard
    • G08G1/096822Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed offboard where the segments of the route are transmitted to the vehicle at different locations and times

Definitions

  • the present application relates to the technical field of automatic driving, and in particular, to a vehicle scheduling method, device, system equipment and storage medium.
  • the automatic driving control of the vehicle is mainly that the vehicle obtains a high-precision map from the cloud server through the mobile communication network, and combines the road environment information and navigation information sensed by the vehicle sensor to generate the dispatching control command in real time. , the vehicle performs automatic driving control based on dispatch control instructions. Since the dispatching control instructions are generated in real time during the vehicle dispatching process, the generation speed of the dispatching control instructions is limited by the processing capability of the vehicle, so there is a problem of low dispatching control efficiency.
  • the embodiments of the present application provide a vehicle scheduling method, device, system equipment and storage medium to solve the problems existing in the related art, and the technical solutions are as follows:
  • an embodiment of the present application provides a vehicle scheduling method, which is applied to a first MEC server, where the first MEC server corresponds to a first service range, where the first service range includes a starting position of a vehicle, and the method includes :
  • the dispatch request includes the start position and destination position of the vehicle;
  • the driving trajectory is divided into a plurality of trajectory segments, and a scheduling control task for each trajectory segment is generated;
  • the dispatching control task of each trajectory segment is sent to the vehicle, so that the vehicle executes the dispatching control task of each trajectory segment.
  • the embodiment of the present application provides another vehicle scheduling method, which is applied to the second MEC server, and the method includes:
  • the adjusted dispatch control task is sent to the vehicle.
  • the embodiments of the present application provide another vehicle scheduling method, which is applied to vehicles, and the method includes:
  • the first MEC server obtains a dispatch request for the vehicle;
  • the dispatch request includes the starting position and the destination position of the vehicle;
  • the scheduling control tasks of each trajectory segment are executed sequentially.
  • an embodiment of the present application provides a vehicle scheduling apparatus, which is applied to a first MEC server, where the first MEC server corresponds to a first service range, and the first service range includes a starting position of a vehicle, and the apparatus includes :
  • a first obtaining module configured to obtain a scheduling request for the vehicle; the scheduling request includes the starting position and the destination position of the vehicle;
  • a determining module configured to determine the driving track and navigation data from the starting position to the destination position
  • a task generation module configured to divide the driving trajectory into a plurality of trajectory segments according to the navigation data, and generate scheduling control tasks for each of the trajectory segments;
  • the first sending module is used for sending the scheduling control task of each trajectory segment to the vehicle, so that the vehicle can execute the scheduling control task of each trajectory segment.
  • the embodiment of the present application provides another vehicle scheduling device, which is applied to the second MEC server, and the device includes:
  • a first receiving module configured to receive the scheduling control task of the vehicle on the second trajectory segment sent by the first MEC server; wherein the scheduling control task is generated according to the method of the above-mentioned embodiment
  • a second receiving module configured to receive a second execution result of the vehicle's scheduling control task on the second trajectory segment
  • a task adjustment module configured to adjust the scheduling control task of the vehicle on the second trajectory segment when the second execution result is an execution failure
  • the first sending module is used for sending the adjusted scheduling control task to the vehicle.
  • an embodiment of the present application provides another vehicle dispatching device, which is applied to a vehicle, and the device includes:
  • a communication connection establishment module configured to establish a connection with the first MEC server, so that the first MEC server obtains a dispatch request for the vehicle; the dispatch request includes the starting position and the destination position of the vehicle;
  • a first receiving module configured to receive the scheduling control task of each trajectory segment between the starting position and the destination position; the scheduling control task is generated by the method of any one of the above-mentioned embodiments;
  • the first execution module is used to execute the scheduling control task of each trajectory segment in sequence.
  • an embodiment of the present application provides a vehicle scheduling system, including:
  • the first MEC server includes the device provided in the fourth aspect
  • a second MEC server where the second MEC server includes the device provided in the fifth aspect
  • a vehicle comprising the device provided in the sixth aspect.
  • an embodiment of the present application provides an electronic device, the electronic device includes: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores instructions that can be executed by the at least one processor , so that at least one processor can execute the method in any one of the embodiments of the above aspects.
  • embodiments of the present application provide a computer-readable storage medium, where the computer-readable storage medium stores computer instructions, and when the computer instructions are executed on a computer, the method in any one of the implementation manners of the above aspects is executed.
  • the advantages or beneficial effects of the above technical solutions include at least: when the first MEC server receives a scheduling request for the vehicle, firstly determines the driving track and navigation data of the vehicle from the starting position to the destination position, and then according to the navigation data
  • the driving trajectory is divided into multiple trajectory segments, and then the scheduling control task of each trajectory segment is generated and sent to the vehicle to perform scheduling control on the vehicle, so that the vehicle can realize automatic driving.
  • generating the scheduling control task by the first MEC server can reduce the computing processing of the vehicle, so that the vehicle can perform the scheduling control task centrally, and improve the scheduling control efficiency of the vehicle.
  • the first MEC server pre-plans the dispatching control of the vehicle on the driving trajectory in advance, which can reduce the computation in the dispatching control process and improve the dispatching control efficiency.
  • Figure 1 shows a schematic diagram of the network architecture of the traditional Internet of Vehicles
  • FIG. 2 shows a schematic diagram of an application scenario according to an embodiment of the present application
  • FIG. 3 shows a schematic flow chart 1 of a vehicle scheduling method according to an embodiment of the present application
  • FIG. 4 is a schematic flowchart of step S302 in FIG. 3;
  • FIG. 5A is a schematic flowchart of step S303 in FIG. 3;
  • 5B is a schematic diagram of content included in a scheduling control task in an embodiment of the present application.
  • FIG. 6 shows a second schematic flowchart of a vehicle scheduling method according to an embodiment of the present application
  • FIG. 7 shows a third schematic flowchart of a vehicle scheduling method according to an embodiment of the present application.
  • FIG. 8 shows a schematic flowchart of a vehicle scheduling method according to another embodiment of the present application.
  • FIG. 9 shows a schematic flow chart 1 of a vehicle scheduling method according to still another embodiment of the present application.
  • FIG. 10 shows a second schematic flowchart of a vehicle scheduling method according to still another embodiment of the present application.
  • FIG. 11 shows a schematic flow chart 3 of a vehicle scheduling method according to still another embodiment of the present application.
  • FIG. 12 shows a structural block diagram of a vehicle scheduling apparatus according to an embodiment of the present application.
  • FIG. 13 shows a structural block diagram of a vehicle scheduling apparatus according to another embodiment of the present application.
  • FIG. 14 shows a structural block diagram of a vehicle scheduling apparatus according to yet another embodiment of the present application.
  • FIG. 15 shows a structural block diagram of a vehicle scheduling system according to an embodiment of the present application.
  • FIG. 16 is a block diagram of an electronic device used to implement the vehicle scheduling method according to the embodiment of the present application.
  • FIG. 1 shows a schematic diagram of the network architecture of the traditional Internet of Vehicles.
  • the vehicle 11 uses the base station 121 as a wireless access point to access the mobile communication network 12 , and communicates with the cloud through the base station 121 , the bearer network 122 and the core network 123 in the mobile communication network 12 .
  • the server 13 establishes a communication connection to download a high-precision electronic map from the cloud server 13 , and then generates scheduling control instructions in real time based on the high-precision electronic map, road condition information and positioning information collected by on-board sensors, and realizes the automatic driving control of the vehicle 11 . Since the dispatch control instruction is generated in real time during the dispatching process of the vehicle 11 , the generation speed of the dispatch control instruction is limited by the processing capability of the vehicle 11 , so there is a problem of low dispatch control efficiency.
  • FIG. 2 shows a schematic diagram of an application scenario according to an embodiment of the present application.
  • the MEC (Mobile Edge Computing) server 21 is deployed at the edge of the mobile communication network, and the service range 21A of the MEC server 21 is the serving cell corresponding to the MEC server 21 .
  • the deployment interval of the MEC server 21 may be 30km-100km to ensure the real-time nature of data transmission.
  • the vehicle 11 may communicate with the MEC server 21 through a base station 121 or a roadside unit 22 (Road Side Unit, RSU).
  • RSU Road Side Unit
  • the MEC server 21 can obtain the location information of the vehicle 11 from the base station 121 or the roadside equipment 22 to determine that the vehicle 11 enters the service area 21A, and then the MEC server 21 can obtain the location information of the vehicle 11 through the base station 121 or the roadside equipment 22 Data interaction with vehicle 11 .
  • the vehicle 11 can be a wire-controlled vehicle with steering, braking and accelerator wire control capabilities, and the wire-controlled vehicle is also equipped with a C-V2X (Carrier Vehicle To Everything) module and a T-BOX (Telematics BOX) module to communicate with the road. Side device or base station communication; wherein, the C-V2X module is a V2X module based on a cellular network.
  • C-V2X Carrier Vehicle To Everything
  • T-BOX Telematics BOX
  • the roadside equipment includes, but is not limited to, a camera, a radar, and the like, and the specific types of the roadside equipment are not limited in this embodiment of the present application.
  • the MEC server 21 may obtain the scheduling request of the vehicle 11 from the base station 121 or the roadside equipment 22, and determine the driving trajectory and the destination position from the starting position to the destination position according to the starting position and the destination position in the scheduling request. According to the navigation data, the driving trajectory is divided into a plurality of trajectory segments, and the scheduling control task of each trajectory segment is generated.
  • the arithmetic processing of the vehicle 11 can be reduced, and the efficiency of the vehicle 11 in executing the scheduling control task can be improved, so that the scheduling control of the vehicle 11 is not limited by the processing capability of the vehicle 11 , and before the scheduling control of the vehicle 11 is performed, the MEC server 21
  • the global planning of the dispatch control of the vehicle 11 on the driving trajectory can reduce the computation in the dispatch control process, thereby improving the dispatch control efficiency.
  • FIG. 3 shows a schematic flow chart 1 of a vehicle scheduling method according to an embodiment of the present application.
  • the vehicle scheduling method can be applied to a first MEC server, where the first MEC server corresponds to a first service range, and the first service range includes the starting position of the vehicle.
  • the vehicle scheduling method may include:
  • S301 Obtain a scheduling request for a vehicle; the scheduling request includes a starting position and a destination position of the vehicle;
  • S303 according to the navigation data, divide the driving trajectory into a plurality of trajectory segments, and generate a scheduling control task for each trajectory segment;
  • S304 Send the scheduling control task of each track segment to the vehicle, so that the vehicle executes the scheduling control task of each track segment.
  • the scheduling request can be generated in one of the following ways:
  • the first generation method is generated based on the operation of inputting the destination location of the vehicle to the vehicle terminal; it is suitable for application scenarios where the vehicle is a shared taxi;
  • the second generation method is based on inputting the destination location of the vehicle to the input device of the first MEC server; it is suitable for application scenarios where the vehicle is an autonomous bus or a logistics vehicle;
  • the third generation method is generated based on the operation of inputting the destination location of the vehicle or inputting the dispatching intention of the vehicle to the mobile device terminal.
  • the mobile terminal device sends the dispatching request to the cloud server; wherein the dispatching intention is the place the user wants to go, such as , going home, going to the company, etc.; it is suitable for the application scenarios where the vehicle is a shared taxi or vehicle for automatic parking.
  • the starting position of the vehicle is the current position of the vehicle obtained in response to the input operation.
  • obtaining the scheduling request for the vehicle by the first MEC server includes one of the following ways:
  • the scheduling request when the on-board terminal sends the scheduling request to the base station within the first service range, the scheduling request is distributed to the first MEC server through the bearer network, so that the first MEC server receives the scheduling request;
  • the roadside equipment When sending the scheduling request to the roadside equipment within the first service range, the roadside equipment sends the scheduling request to the first MEC server, so that the first MEC server receives the scheduling request;
  • the first MEC server can directly receive the scheduling request input by the input device
  • the cloud server sends the scheduling request to the first MEC server through the core network and the bearer network, so that the first MEC server receives the scheduling request.
  • the method may further include: receiving the location information sent by the vehicle; and determining that the vehicle enters the first service range according to the location information of the vehicle.
  • the first MEC server can perform data interaction with the vehicle through the base station or the roadside device.
  • the first MEC server when the first MEC server receives the scheduling request for the vehicle, it first determines the driving trajectory and navigation data of the vehicle traveling from the starting position to the destination position, and then assigns the driving trajectory according to the navigation data. It is divided into multiple trajectory segments, and then the scheduling control task of each trajectory segment is generated and sent to the vehicle to perform scheduling control on the vehicle, so that the vehicle can realize automatic driving. In this way, on the one hand, generating the scheduling control task by the first MEC server can reduce the computing processing of the vehicle, so that the vehicle can perform the scheduling control task centrally, and improve the scheduling control efficiency of the vehicle. On the other hand, before the dispatching control of the vehicle is performed, the first MEC server pre-plans the dispatching control of the vehicle on the driving trajectory in advance, which can reduce the computation in the dispatching control process and improve the dispatching control efficiency.
  • the scheduling control task is generated in the first MEC server, the requirements for configurations such as the internal network of the vehicle and the performance of the processor can be reduced, so it is suitable for automatic driving control with low vehicle configuration.
  • step S302 may include:
  • the destination location may be located within the first service range, and in step S401, it may be determined that the target service range is the first service range.
  • the first MEC server obtains the electronic map of the first service area from the cache.
  • the driving track and navigation data of the vehicle are determined based on the electronic map of the first service area.
  • the destination location may be outside the first service range, then in step S401 it may be determined that the target service range is the first service range and the second service range located between the first target service range and the destination location Service range, wherein the second service range may include the destination location of the vehicle, or may be a service range located between the first service range and the destination location.
  • step S402 the first MEC server acquires the electronic map of the first service area from the cache, and acquires the electronic map of the second service area from the second MEC server corresponding to the second service area.
  • step S403 the driving track and navigation data of the vehicle are determined based on the electronic map of the first service area and the electronic map of the second service area.
  • the second service range may be one or multiple, which is not limited in this embodiment of the present application.
  • the second service range may be an adjacent service range of the first service range.
  • the multiple second service scopes may be regarded as being connected to the first service scope in sequence.
  • the electronic map of the first service area and the electronic map of the second service area can be high-precision electronic maps or other types of electronic maps, as long as they can be used to generate scheduling control tasks to perform scheduling control of vehicles, this
  • the application embodiments do not limit the types of electronic maps.
  • the electronic map of the first service range may be downloaded from the cloud server in advance by the first MEC server, and the electronic map of the second service range may also be downloaded by the second MEC server from the cloud server in advance.
  • the electronic map can be directly obtained from the first MEC server and/or the second MEC server, without downloading the corresponding electronic map from the cloud server, which can reduce the long-distance transmission of large data volume and prevent Due to the long return delay of the cloud server, the scheduling control task is rolled back, thereby improving the efficiency and reliability of the scheduling control.
  • the generation of the scheduling control task does not depend on the telecommunication wireless network, the data transmission cost of the vehicle scheduling control process can also be reduced, and the scheduling control cost of the automatic driving of the vehicle can be effectively reduced.
  • the navigation data includes a plurality of guide points
  • the driving trajectory is divided into a plurality of trajectory segments according to the navigation data, including:
  • the driving trajectory is divided into a plurality of trajectory segments, so that one guiding point is located on one trajectory segment.
  • the guide point can be used to indicate the point at which the vehicle needs to perform an action, and the action to be performed by the guide point includes at least one action, such as lane change control, steering control, start control, stop control, speed limit control, brake control, straight-forward control, etc. .
  • the guide point is usually set on the driving trajectory, then the driving trajectory can be divided from the guiding point according to the position information of the guiding point, so that the guiding point is located at the starting position of the corresponding trajectory segment, which is convenient for guiding the guiding point.
  • the point is used as the trigger point of the scheduling control information, so that the vehicle automatically executes the scheduling control information required to execute the corresponding trajectory segment according to the position information of the guidance point.
  • the scheduling control task of each trajectory segment is generated in step S303, including:
  • the operational design domain (Operational Design Domain, ODD) information is the applicable scope of the scheduling control information, that is, only when the driving conditions of the vehicle meet the conditions defined by the operational design domain information.
  • the vehicle can only execute the dispatch control information.
  • the operation design domain information may include driving within a preset driving range, driving on a motor vehicle-only highway with more than two lanes with a central isolation belt and guardrails, and driving at a speed lower than 60km/h.
  • the corresponding relationship between the guidance information of the guidance point and the operation design domain information may be preset, and then in step S501 , the corresponding operation design domain information may be determined based on the guidance information of the guidance point. In this way, the generation efficiency of the scheduling control task can be improved.
  • determining the corresponding operation design domain information in step S501 may include: setting the task number and name of the operation design domain information to identify the operation design domain information and form the basic information of scheduling tasks.
  • the guidance information of the guidance point may be used to indicate the information that the vehicle needs to perform an action
  • the dispatch control information may include multiple action sequences, wherein each action sequence includes an action ID (Identity document), an action name, a trigger Condition, Process Control, End Condition and Safe Exit.
  • Step S501 may include: determining an action sequence to be performed by the corresponding trajectory segment according to the guidance information of the guidance point; and setting the action sequence as scheduling control information.
  • the action sequence to be performed in the corresponding trajectory segment includes:
  • an action sequence can be defined by an associated signal, so that the action ID, action name, trigger condition, process control, end condition and safe exit in the action sequence are associated.
  • the associated signal can also be used to define the sequence of execution of the action sequence. For example, it is defined that the action sequence corresponding to the action ID 01 can be executed first, and the action sequences corresponding to the action IDs 02 and 03 can be executed in the action sequence corresponding to 01. Execute simultaneously after execution.
  • setting the action sequence as the scheduling control information may be setting the action sequence as a sequence list. For example, action sequences corresponding to action IDs 01 to 03 are set in the same sequence table.
  • the scheduling control information may further include track segment identification information
  • step S501 may further include: marking corresponding track segments to generate track segment identification information, so that the vehicle determines whether to drive to the corresponding track segment according to the track segment identification information.
  • marking the corresponding track segment may include marking the name, type, number, and track point sequence of the corresponding track segment.
  • the dispatch control information may also include guide point identification information
  • determining the dispatch control information that the vehicle needs to execute in the corresponding trajectory segment may also include: marking the position information of the guide point to generate the guide point identification information, so that the vehicle determines whether to drive to the guidance point according to the guidance point identification information.
  • marking the position information of the guide point may include marking the longitude, latitude, height, yaw angle, etc. of the guide point.
  • Step S502 may include: setting the VIN (Vehicle Identification Number, vehicle identification number) and T-BOX number of the target vehicle for the operation design domain information and scheduling control information of the corresponding trajectory segment to generate the target vehicle identification information.
  • VIN Vehicle Identification Number
  • T-BOX number T-BOX number of the target vehicle
  • the vehicle determines that the local VIN matches the VIN of the target vehicle
  • the local T-BOX number matches the T-BOX number of the target vehicle
  • the proposed conditions are matched, and the scheduling control information is executed in the case of judging the matching, which can improve the security of the scheduling control.
  • the target service range includes a first service range
  • the track segment includes a first track segment located in the first service range.
  • the method may further include:
  • the road condition information of the first track segment may be acquired from a roadside device located in the first track segment, or may be acquired from a vehicle-mounted camera device of the vehicle.
  • the target roadside device is determined from the roadside devices located in the first service range; the road condition information of the first track segment is acquired from the target roadside device.
  • the vehicle sends the road condition information of the first track segment captured by the vehicle-mounted camera device.
  • updating the scheduling control task of the first trajectory segment may be adjusting parameters in the scheduling control information.
  • the initial scheduling control information is turning rightward at a first preset angle
  • the updated scheduling control information is turning rightward at a second preset angle
  • the second preset angle is greater than the first preset angle.
  • the first MEC server updates the scheduling control task of the first trajectory segment based on the road condition information of the first trajectory segment, and sends the updated information to the vehicle when the first execution result is that the execution fails.
  • the scheduling control task can locally dynamically adjust and optimize the scheduling control task of the vehicle in the first trajectory segment, which is beneficial to improve the accuracy of the scheduling control.
  • the first MEC server since the first MEC server only locally updates the scheduling control tasks of the first trajectory segment, operations in the scheduling control process can be reduced, which is suitable for large-scale scheduling control application scenarios with a large number of vehicles.
  • the target service range includes a second service range
  • the second service range is a service range located between the first service range and the destination location, or the second service range is a service range where the destination location is located
  • the trajectory segment includes a second trajectory segment located in the second service range.
  • the method may further include:
  • the second MEC server can, according to the second execution result of the scheduling control task for the second trajectory by the vehicle and For the road condition information within the second service range, the local dynamic adjustment and optimization of the scheduling control task of the second trajectory is beneficial to improve the accuracy of the scheduling control.
  • FIG. 8 is a schematic flowchart of a vehicle scheduling method according to another embodiment of the present application.
  • the vehicle scheduling method may be applied to the second MEC server, and the vehicle scheduling method may include:
  • the first MEC server and the second MEC server may be respectively connected to the bearer network through optical fibers, so that the bearer network can offload the scheduling control task on the second trajectory segment generated by the first ECM server to the second MEC server, so that the first ECM server can
  • the second MEC server receives and pre-stores the scheduling control task on the second trajectory segment.
  • the vehicle executes the scheduling control task of the second trajectory segment, and sends the information on the second trajectory to the second MEC server through the base station or the roadside device in the second service area. Schedule the second execution result of the control task.
  • the second MEC server may perform the following steps:
  • step S802 the second MEC server receives the second execution result of the scheduling control task of the vehicle on the second trajectory segment
  • step S803 if the second execution result is execution failure, the roadside device acquires the road condition information of the second trajectory segment, and then updates the scheduling control task of the second trajectory segment according to the road condition information of the second trajectory segment ;
  • step S804 the scheduling control task of the second trajectory segment is sent to the vehicle.
  • the second MEC server receives the scheduling control task of the vehicle on the second track segment sent by the first MEC server, so that when the vehicle performs the scheduling control task on the second track segment, the second MEC server can
  • the second execution result within the second service range is tracked, and the tracked second execution result is used to locally dynamically adjust and optimize the dispatching control task of the vehicle in the second trajectory segment, which is beneficial to improve the accuracy of dispatching control.
  • the second MEC server since the second MEC server only locally updates the scheduling control tasks of the second trajectory segment, the computation amount in the scheduling control process can also be reduced, which is suitable for large-scale scheduling control application scenarios with a large number of vehicles.
  • the method may further include: sending an electronic map of the second service range to the first MEC server.
  • the first MEC server when the first MEC server determines that the destination location of the vehicle is located in the second service area, it sends a map acquisition instruction to the corresponding second MEC server.
  • the second MEC server when the second MEC server receives the map acquisition instruction, it sends the electronic map of the second service area to the first MEC server.
  • the electronic map of the second service range may be downloaded by the second MEC server from the cloud server in advance.
  • the second MEC server can send the electronic map of the second service range to the first MEC server, so that the scheduling control task can be generated. It does not rely on the cloud server to transmit the electronic map through the mobile communication network, so as to avoid the cloud server with the characteristics of uncontrollable best-effort transmission, which makes the transmission network quality of vehicle dispatching control controllable, which is conducive to improving the remote dispatching control of vehicles. performance.
  • FIG. 9 shows a schematic flowchart of a vehicle scheduling method according to yet another embodiment of the present application.
  • the vehicle scheduling method can be applied to vehicles, and the method can include:
  • S901 establish a connection with the first MEC server, so that the first MEC server obtains a scheduling request for the vehicle;
  • the scheduling request includes the starting position and the destination position of the vehicle;
  • S903 Execute the scheduling control task of each trajectory segment in sequence.
  • the manner in which the first MEC server acquires the scheduling request in step S901 may refer to the same manner as in the acquiring manner in step S301, and details are not described herein again.
  • the vehicle may first receive the scheduling control tasks of all the trajectory segments, and then execute the scheduling control tasks of each trajectory segment in sequence. In this way, the amount of data transmission in the process of vehicle dispatching control can be reduced, the execution efficiency of dispatching control tasks can be improved, and the dispatching control efficiency can be further improved.
  • the scheduling control task includes operation design domain information and scheduling control information, wherein, for the content of the operation design domain information and the scheduling control information, and the execution process of the scheduling control task, reference may be made to the corresponding content in steps S501 to S502, It is not repeated here.
  • the trajectory segment includes a first trajectory segment located in the first service range.
  • the method may further include:
  • the updated scheduling control task is generated by the first MEC server based on the road condition information of the first track segment when the first execution result is an execution failure;
  • step S1001 there may be multiple first track segments, and if the first execution result of the scheduling control task for the current first track segment is sent to the first MEC server and the execution is successful, the vehicle continues to execute the next first track segment.
  • Scheduling control tasks if the first execution result of the scheduling control task for the current first trajectory segment is sent to the first MEC server as execution failure, the first MEC server updates the scheduling control task based on the road condition information of the current first trajectory segment.
  • step S1003 the updated scheduling control task is executed in the current first trajectory segment.
  • the vehicle can feed back the first execution result of the scheduling control task for the first trajectory segment to the first MEC server in real time, so that the first MEC server can track the first execution result in real time, and then based on the first execution result and the first execution result
  • the road condition information of a trajectory segment makes local dynamic adjustment to the scheduling control task of the first trajectory segment, so that the vehicle can flexibly adjust the driving trajectory for obstacle avoidance and congestion avoidance, which is conducive to improving the efficiency of automatic driving.
  • the trajectory segment includes a second trajectory segment located in the second service range.
  • the method may further include:
  • the adjusted scheduling control task is generated by the second MEC server based on the road condition information of the second trajectory segment when the second execution result is an execution failure;
  • step S1101 when the vehicle travels to the second service range, a communication connection with the second MEC server is established, so that the vehicle can send the second execution result of the scheduling control task for the second trajectory segment to the second MEC server.
  • step S1102 when the second execution result is an execution failure, the second MEC server can obtain the road condition information of the second trajectory segment from the corresponding roadside device based on the position of the second trajectory segment, and then according to the second trajectory segment The road condition information updates the scheduling control task of the second trajectory segment, and then sends the updated scheduling control task to the vehicle through the base station or the roadside device, so that the vehicle receives the updated scheduling control task.
  • the vehicle sends the second execution result of the scheduling control task for the second trajectory segment to the second MEC server, so that the second MEC server can track the second execution result in real time, so that based on the second execution result and the second execution result
  • the road condition information of the trajectory segment makes local dynamic adjustments to the scheduling control tasks of the second trajectory segment, so that the vehicle can flexibly adjust the driving trajectory for obstacle avoidance and congestion avoidance, which is conducive to improving the efficiency of automatic driving.
  • FIG. 12 shows a structural block diagram of a vehicle scheduling apparatus according to an embodiment of the present application.
  • the apparatus can be applied to a first MEC server, where the first MEC server corresponds to a first service range, and the first service range includes the starting position of the vehicle.
  • the apparatus may include:
  • the first obtaining module 1210 is used to obtain a scheduling request for the vehicle; the scheduling request includes the starting position and the destination position of the vehicle;
  • a determining module 1220 configured to determine the driving track and navigation data from the starting position to the destination position
  • the task generation module 1230 is used for dividing the driving trajectory into a plurality of trajectory segments according to the navigation data, and generating a scheduling control task for each trajectory segment;
  • the first sending module 1240 is configured to send the scheduling control task of each track segment to the vehicle, so that the vehicle executes the scheduling control task of each track segment.
  • the determining module 1220 may include:
  • a first determination sub-module used for determining the target service range that needs to be traveled from the starting position to the destination position
  • the second determination sub-module determines the driving track and navigation data of the vehicle based on the electronic map of the target service area.
  • the navigation data includes a plurality of guidance points
  • the task generation module 1230 may include:
  • the dividing sub-module is used for dividing the driving trajectory into a plurality of trajectory segments according to the positional relationship between the guiding point and the driving trajectory, so that one guiding point is located on one trajectory segment.
  • the task generation module 1230 may include:
  • the second determination sub-module is used for determining the operation design domain information and scheduling control information of the vehicle on the corresponding trajectory segment according to the guidance information of the guidance point on the corresponding trajectory segment;
  • the setting sub-module is used to set the operation design domain information and the scheduling control information as the scheduling control task of the corresponding trajectory segment.
  • the target service range includes a first service range
  • the track segment includes a first track segment located in the first service range
  • the apparatus may further include:
  • a receiving module configured to receive the first execution result of the scheduling control task of the vehicle on the first trajectory segment
  • a second acquiring module configured to acquire the road condition information of the first track segment when the first execution result is an execution failure
  • an update module configured to update the scheduling control task of the first trajectory segment according to the road condition information
  • the second sending module is used for sending the updated scheduling control task to the vehicle.
  • the target service area includes a second service area
  • the second service area is a service area located between the first service area and the destination location
  • the trajectory segment includes a second trajectory segment located in the second service area
  • the apparatus may also include:
  • the third sending module is configured to send the scheduling control task of the second trajectory segment to the second MEC server located in the second service range, so that the second MEC server can perform the scheduling control task on the second trajectory according to the second execution result of the vehicle and
  • the road condition information within the second service range is used to adjust the scheduling control tasks of the vehicle within the second service range.
  • FIG. 13 shows a structural block diagram of a vehicle scheduling apparatus according to another embodiment of the present application.
  • the apparatus may be applied to the second MEC server, and the apparatus may include:
  • the first receiving module 1310 is configured to receive the scheduling control task of the vehicle on the second track segment sent by the first MEC server; wherein the scheduling control task is generated according to the method of claim 6;
  • the second receiving module 1320 is configured to receive the second execution result of the scheduling control task of the vehicle on the second trajectory segment;
  • a task adjustment module 1330 configured to adjust the scheduling control task of the vehicle on the second trajectory segment when the second execution result is an execution failure
  • the first sending module 1340 is configured to send the adjusted scheduling control task to the vehicle.
  • the apparatus may further include:
  • the second sending module is configured to send the electronic map of the second service range to the first MEC server.
  • FIG. 14 shows a structural block diagram of a vehicle scheduling apparatus according to yet another embodiment of the present application.
  • the device can be applied to a vehicle, and the device can include:
  • the communication connection establishing module 1410 is used to establish a connection with the first MEC server, so that the first MEC server obtains a dispatch request for the vehicle; the dispatch request includes the starting position and the destination position of the vehicle;
  • the first receiving module 1420 is configured to receive the scheduling control task of each trajectory segment between the starting position and the destination position; the scheduling control task is generated according to the method of any one of claims 1 to 8;
  • the first execution module 1430 is configured to execute the scheduling control task of each trajectory segment in sequence.
  • the trajectory segment includes a first trajectory segment located in a first service area
  • the apparatus may further include:
  • a first sending module configured to send the first execution result of the scheduling control task for the first trajectory segment to the first MEC server
  • the second receiving module is configured to receive the updated scheduling control task;
  • the updated scheduling control task is generated by the first MEC server based on the road condition information of the first track segment when the first execution result is an execution failure;
  • the second execution module is configured to execute the updated scheduling control task in the first trajectory segment.
  • the trajectory segment includes a second trajectory segment located in the second service area
  • the apparatus may further include:
  • a second sending module configured to send the second execution result of the scheduling control task for the second trajectory segment to the second MEC server
  • a third receiving module configured to receive the adjusted scheduling control task;
  • the adjusted scheduling control task is generated by the second MEC server based on the road condition information of the second track segment when the second execution result is an execution failure;
  • the third execution module is configured to execute the adjusted scheduling control task in the second trajectory segment.
  • FIG. 15 shows a structural block diagram of a vehicle scheduling system according to an embodiment of the present application.
  • the vehicle dispatching system may include: a first MEC server 151, where the first MEC server 151 includes the device of the above-mentioned embodiment;
  • the second MEC server 152, the second MEC server 152 includes the apparatus of the above-mentioned another embodiment
  • a vehicle 153 comprising the apparatus of the further embodiment described above.
  • the first MEC server 151 corresponds to the first service area 151A.
  • the vehicle 153 communicates with the first MEC server through the base station 121A or the roadside device 154 located within the first service area 151A.
  • 151 Interactive Data
  • the second MEC server 152 corresponds to the second service area 152A.
  • the vehicle 153 communicates with the second service area 152A through the base station 121B or the roadside device 155 located in the second service area 152A.
  • the MEC server 152 exchanges data.
  • FIG. 16 shows a structural block diagram of an electronic device according to an embodiment of the present application.
  • the electronic device includes: a memory 1610 and a processor 1620 , and instructions that can be executed on the processor 1620 are stored in the memory 1610 .
  • the processor 1620 executes the instruction, the vehicle scheduling method in the above embodiment is implemented.
  • the number of the memory 1610 and the processor 1620 may be one or more.
  • the electronic device is intended to represent various forms of digital computers, such as laptop computers, desktop computers, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers.
  • Electronic devices may also represent various forms of mobile devices, such as personal digital processors, cellular phones, smart phones, wearable devices, and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions are by way of example only, and are not intended to limit implementations of the application described and/or claimed herein.
  • the electronic device may also include a communication interface 1630 for communicating with external devices to perform data interactive transmission.
  • the various devices are interconnected using different buses and can be mounted on a common motherboard or otherwise as desired.
  • the processor 1620 may process instructions executed within the electronic device, including instructions stored in or on memory to display graphical information of the GUI on external input/output devices, such as a display device coupled to the interface.
  • multiple processors and/or multiple buses may be used with multiple memories and multiple memories, if desired.
  • multiple electronic devices may be connected, each providing some of the necessary operations (eg, as a server array, a group of blade servers, or a multiprocessor system).
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of presentation, only one thick line is shown in FIG. 16, but it does not mean that there is only one bus or one type of bus.
  • the memory 1610, the processor 1620 and the communication interface 1630 are integrated on one chip, the memory 1610, the processor 1620 and the communication interface 1630 can communicate with each other through an internal interface.
  • processor may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. It is worth noting that the processor may be a processor supporting an advanced reduced instruction set machine (Advanced RISC Machines, ARM) architecture.
  • Advanced RISC Machines Advanced RISC Machines
  • Embodiments of the present application provide a computer-readable storage medium (such as the above-mentioned memory 1610 ), which stores computer instructions, and when the program is executed by a processor, implements the methods provided in the embodiments of the present application.
  • a computer-readable storage medium such as the above-mentioned memory 1610
  • the memory 1610 may include a stored program area and a stored data area, wherein the stored program area may store an operating system and an application program required by at least one function; created data, etc.
  • memory 1610 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the memory 1610 may optionally include memory located remotely from the processor 1620, and these remote memories may be connected to the electronics of the vehicle dispatch method via a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means two or more, unless otherwise expressly and specifically defined.
  • Any description of a process or method in a flowchart or otherwise described herein may be understood to represent a representation of executable instructions comprising one or more (two or more) steps for implementing a specified logical function or process.
  • a module, fragment or section of code may be understood to represent a representation of executable instructions comprising one or more (two or more) steps for implementing a specified logical function or process.
  • a module, fragment or section of code may be understood to represent a representation of executable instructions comprising one or more (two or more) steps for implementing a specified logical function or process.
  • a module, fragment or section of code A module, fragment or section of code.
  • the scope of the preferred embodiments of the present application includes alternative implementations in which the functions may be performed out of the order shown or discussed, including performing the functions substantially concurrently or in the reverse order depending upon the functions involved.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist physically alone, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. If the above-mentioned integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may also be stored in a computer-readable storage medium.
  • the storage medium may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车辆调度方法、装置、系统、设备及存储介质,其中,该方法包括获取针对车辆(11)的调度请求;调度请求包括车辆(11)的起始位置和目的地位置(S301);确定从起始位置行驶至目的地位置的行驶轨迹和导航数据(S302);根据导航数据,将行驶轨迹划分成多个轨迹段,并生成各轨迹段的调度控制任务(S303);向车辆(11)发送各轨迹段的调度控制任务,以使车辆(11)执行各轨迹段的调度控制任务(S304)。根据该方法可以有效提高车辆的调度控制效率。

Description

车辆调度方法、装置、系统、设备及存储介质
本申请要求于2020年12月22日提交中国专利局、申请号为202011535912.0、发明名称为“车辆调度方法、装置、系统、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及自动驾驶技术领域,尤其涉及一种车辆调度方法、装置、系统设备及存储介质。
背景技术
目前,在传统的车联网自动驾驶控制模式下,车辆的自动驾驶控制主要是车辆通过移动通信网络从云端服务器获取高精度地图,并结合车载传感器感知的道路环境信息和导航信息实时生成调度控制指令,车辆基于调度控制指令进行自动驾驶控制。由于调度控制指令在车辆调度的过程中实时生成,调度控制指令的生成速度受车辆的处理能力限制,因此存在调度控制效率低的问题。
发明内容
本申请实施例提供一种车辆调度方法、装置、系统设备及存储介质,以解决相关技术存在的问题,技术方案如下:
第一方面,本申请实施例提供了一种车辆调度方法,应用于第一MEC服务器,该第一MEC服务器对应于第一服务范围,该第一服务范围包括车辆的起始位置,该方法包括:
获取针对该车辆的调度请求;该调度请求包括该车辆的起始位置和目的地位置;
确定从该起始位置行驶至该目的地位置的行驶轨迹和导航数据;
根据该导航数据,将该行驶轨迹划分成多个轨迹段,并生成各该轨迹段的调度控制任务;
向该车辆发送各该轨迹段的调度控制任务,以使该车辆执行各该轨迹段的调度控制任务。
第二方面,本申请实施例提供了另一种车辆调度方法,应用于第二MEC服务器,该方法包括:
接收第一MEC服务器发送的车辆在第二轨迹段上的调度控制任务;其中,该调度控制任务为根据上述实施方式的方法生成;
接收该车辆对该第二轨迹段的调度控制任务的第二执行结果;
在该第二执行结果为执行失败的情况下,调整该车辆在该第二轨迹段上的调度控制任务;
向该车辆发送该调整后的调度控制任务。
第三方面,本申请实施例提供了又一种车辆调度方法,应用于车辆,该方法包括:
建立与第一MEC服务器之间的连接,以使该第一MEC服务器获取针对该车辆的调度请求;该调度请求包括该车辆的起始位置和目的地位置;
接收位于该起始位置和该目的地位置之间的各轨迹段的调度控制任务;该调度控制任务为根据上述任一种实施方式的方法生成;
依次执行各该轨迹段的调度控制任务。
第四方面,本申请实施例提供了一种车辆调度装置,应用于第一MEC服务器,该第一MEC服务器对应于第一服务范围,该第一服务范围包括车辆的起始位置,该装置包括:
第一获取模块,用于获取针对该车辆的调度请求;该调度请求包括该车辆的起始位置和目的地位置;
确定模块,用于确定从该起始位置行驶至该目的地位置的行驶轨迹和导航数据;
任务生成模块,用于根据该导航数据,将该行驶轨迹划分成多个轨迹段,并生成各该轨迹段的调度控制任务;
第一发送模块,用于向该车辆发送各该轨迹段的调度控制任务,以使该车辆执行各该轨迹段的调度控制任务。
第五方面,本申请实施例提供了另一种车辆调度装置,应用于第二MEC服务器,该装置包括:
第一接收模块,用于接收第一MEC服务器发送的车辆在第二轨迹段上的调度控制任务;其中,该调度控制任务为根据上述实施方式的方法生成;
第二接收模块,用于接收该车辆对该第二轨迹段的调度控制任务的第二执行结果;
任务调整模块,用于在该第二执行结果为执行失败的情况下,调整该车辆在该第二轨迹段上的调度控制任务;
第一发送模块,用于向该车辆发送该调整后的调度控制任务。
第六方面,本申请实施例提供了又一种车辆调度装置,应用于车辆,该装置包括:
通信连接建立模块,用于建立与第一MEC服务器之间的连接,以使该第一MEC服务器获取针对该车辆的调度请求;该调度请求包括该车辆的起始位置和目的地位置;
第一接收模块,用于接收位于该起始位置和该目的地位置之间的各轨迹段的调度控制任务;该调度控制任务为上述任一种实施方式的方法生成;
第一执行模块,用于依次执行各该轨迹段的调度控制任务。
第七方面,本申请实施例提供了一种车辆调度系统,包括:
第一MEC服务器,该第一MEC服务器包括上述第四方面提供的装置;
第二MEC服务器,该第二MEC服务器包括上述第五方面提供的装置;
车辆,该车辆包括上述第六方面提供的装置。
第八方面,本申请实施例提供了一种电子设备,该电子设备包括:至少一个处理器;以及与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,以使至少一个处理器能够执行上述各方面任一种实施方式中的方法。
第九方面,本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质存储计算机指令,当计算机指令在计算机上运行时,上述各方面任一种实施方式中的方法被执行。
上述技术方案中的优点或有益效果至少包括:第一MEC服务器在接收到针对车辆的调度请求时,首先确定车辆从起始位置行驶至目的地位置的行驶轨迹和导航数据,再根据导航数据将行驶轨迹划分成多个轨迹段,进而生成各轨迹段的调度控制任务并发送至车辆,以对车辆进行调度控制,使得车辆实现自动驾驶。这样,一方面,通过第一MEC服务器生成调度控制任务,可以减少车辆的运算处理,使得车辆可以集中执行调度控制任务,提高车辆的调度控制效率。另一方面,在对车辆进行调度控制之前,通过第一MEC服务器预先对车辆在行驶轨迹上的调度控制进行全局规划,可以减少调度控制过程中的运算,也可以提高调度控制效率。
上述概述仅仅是为了说明书的目的,并不意图以任何方式进行限制。除上述描述的示意性的方面、实施方式和特征之外,通过参考附图和以下的详细描述,本申请进一步的方面、实施方式和特征将会是容易明白的。
附图说明
在附图中,除非另外规定,否则贯穿多个附图相同的附图标记表示相同或相似的部件或元素。这些附图不一定是按照比例绘制的。应该理解,这些附图仅描绘了根据本申请公开的一些实施方式,而不应将其视为是对本申请范围的限制。
图1示出传统车联网的网络架构示意图;
图2示出根据本申请实施例的一种应用场景示意图;
图3示出根据本申请实施例的车辆调度方法的流程示意图一;
图4为图3中步骤S302的一种流程示意图;
图5A为图3中步骤S303的一种流程示意图;
图5B为本申请实施例中调度控制任务所包含内容的示意图;
图6示出根据本申请实施例的车辆调度方法的流程示意图二;
图7示出根据本申请实施例的车辆调度方法的流程示意图三;
图8示出根据本申请另一实施例的车辆调度方法的流程示意图;
图9示出根据本申请又一实施例的车辆调度方法的流程示意图一;
图10示出根据本申请又一实施例的车辆调度方法的流程示意图二;
图11示出根据本申请又一实施例的车辆调度方法的流程示意图三;
图12示出根据本申请一实施例的车辆调度装置的结构框图;
图13示出根据本申请另一实施例的车辆调度装置的结构框图;
图14示出根据本申请又一实施例的车辆调度装置的结构框图;
图15示出根据本申请一实施例的车辆调度系统的结构框图;
图16是用来实现本申请实施例的车辆调度方法的电子设备的框图。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本申请的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
图1示出传统车联网的网络架构示意图。如图1所示,在传统的车联网中,车辆11将基站121作为无线接入点接入移动通信网络12中,通过移动通信网络12中的基站121、承载网122和核心网123与云端服务器13建立通信连接,以从云端服务器13下载高精度电子地图,进而基于高精度电子地图、车载传感器采集的路况信息和定位信息,实时生成调度控制指令,实现车辆11的自动驾驶控制。由于调度控制指令在车辆11调度过程中实时生成,调度控制指令的生成速度受车辆11的处理能力限制,因此存在调度控制效率低的问题。
图2示出根据本申请实施例的一种应用场景示意图。如图2所示,在该应用场景中将MEC(Mobile Edge Computing)服务器21部署于在移动通信网络的边缘,MEC服务器21的服务范围21A即为MEC服务器21对应的服务小区。其中,MEC服务器21的部署间隔可以为30km~100km,以保证数据传输的实时性。
车辆11可以通过基站121或路侧设备22(Road Side Unit,RSU)与MEC服务器21进行通信连接。当车辆11进入服务范围21A时,MEC服务器21可以从基站121或路侧设备22获取车辆11的位置信息,以确定车辆11进入服务范围21A,进而MEC服务器21可以通过基站121或路侧设备22与车辆11进行数据交互。
其中,车辆11可以为具有转向、刹车和油门线控能力的线控车辆,该线控车辆还配置有C-V2X(Carrier Vehicle To Everything)模块和T-BOX(Telematics BOX)模块,以与路侧设备或基站通信;其中,C-V2X模块为基于蜂窝网的V2X模块。
路侧设备包括但不限于摄像头、雷达等,本申请实施例对路侧设备的具体类型不作限制。
进一步地,MEC服务器21可以从基站121或路侧设备22中获取车辆11的调度请求,根据调度请求中的起始位置和目的地位置,确定从起始位置行驶至目的地位置的行驶轨迹和导航数据,从而根据导航数据将行驶轨迹划分成多个轨迹段,并生成各轨迹段的调度控制任务。如此,可以减少车辆11的运算处理,提高车辆11执行调度控制任务的效率,使得车辆11的调度控制不受车辆11的处理能力限制,并且在对车辆11进行调度控制之前,通过MEC服务器21预先对车辆11在行驶轨迹上的调度控制进行全局规划,可以减少调 度控制过程中的运算,进而提高调度控制效率。
下面以具体地实施例对本申请的技术方案进行详细说明。
图3示出根据本申请实施例的车辆调度方法的流程示意图一。该车辆调度方法可以应用于第一MEC服务器,第一MEC服务器对应于第一服务范围,第一服务范围包括车辆的起始位置。如图3所示,该车辆调度方法可以包括:
S301、获取针对车辆的调度请求;调度请求包括车辆的起始位置和目的地位置;
S302、确定从起始位置行驶至目的地位置的行驶轨迹和导航数据;
S303、根据导航数据,将行驶轨迹划分成多个轨迹段,并生成各轨迹段的调度控制任务;
S304、向车辆发送各轨迹段的调度控制任务,以使车辆执行各轨迹段的调度控制任务。
其中,调度请求可以通过如下方式之一生成:
第一种生成方式为基于对车载终端输入车辆的目的地位置操作所生成;适用于车辆为共享出租车的应用场景;
第二种生成方式为基于对第一MEC服务器的输入设备输入车辆的目的地位置;适用于车辆为自动驾驶公交车或物流车的应用场景;
第三种生成方式为基于对移动设备终端输入车辆的目的地位置或输入车辆的调度意图操作所生成,移动终端设备将调度请求发送至云端服务器;其中,调度意图为用户想去的地方,例如,回家、去公司等;适用于车辆为共享出租车或车辆进行自动泊车的应用场景。
在上述调度请求的生成方式中,车辆的起始位置为响应于输入操作所获取到的车辆的当前位置。
相应地,第一MEC服务器获取针对车辆的调度请求包括如下方式之一:
对应第一种生成方式,当车载终端将调度请求发送至第一服务范围内的基站时,则调度请求通过承载网分流至第一MEC服务器,以使第一MEC服务器接收调度请求;当车载终端将调度请求发送至第一服务范围内的路侧设备时,则路侧设备向第一MEC服务器发送调度请求,以使第一MEC服务器接收调度请求;
对应第二种生成方式,第一MEC服务器可以直接接收输入设备输入的调度请求;
对应第三种生成方式,云端服务器通过核心网和承载网将调度请求发送至第一MEC服务器,以使第一MEC服务器接收调度请求。
在步骤S101之前,还可以包括:接收车辆发送的位置信息;根据车辆的位置信息确定车辆进入第一服务范围。这样第一MEC服务器可以通过基站或路侧设备与车辆进行数据交互。
根据本申请实施例的调度控制方法,第一MEC服务器在接收到针对车辆的调度请求时,首先确定车辆从起始位置行驶至目的地位置的行驶轨迹和导航数据,再根据导航数据将行驶轨迹划分成多个轨迹段,进而生成各轨迹段的调度控制任务并发送至车辆,以对车辆进行调度控制,使得车辆实现自动驾驶。这样,一方面,通过第一MEC服务器生成调度控制任务,可以减少车辆的运算处理,使得车辆可以集中执行调度控制任务,提高车辆的调度控制效率。另一方面,在对车辆进行调度控制之前,通过第一MEC服务器预先对车辆在行驶轨迹上的调度控制进行全局规划,可以减少调度控制过程中的运算,也可以提高调度控制效率。
进一步地,由于调度控制任务在第一MEC服务器中生成,可以降低对车辆内部网络和处理器性能等配置的要求,因此适于车辆配置较低的自动驾驶控制。
在一种实施方式中,如图4所示,步骤S302可以包括:
S401、确定从起始位置行驶至目的地位置需途经的目标服务范围;
S402、获取目标服务范围的电子地图;
S403、基于目标服务范围的电子地图,确定车辆的行驶轨迹和导航数据。
在一种应用场景中,目的地位置可以位于第一服务范围内,则步骤S401中可以确定出目标服务范围为第一服务范围。在步骤S402中,第一MEC服务器从缓存中获取第一服务范围的电子地图。在步骤S403中基于第一服务范围的电子地图,确定车辆的行驶轨迹和导航数据。
在另一种应用场景中,目的地位置可以位于第一服务范围外,则步骤S401中可以确定出目标服务范围为第一服务范围以及位于第一目标服务范围与目的地位置之间的第二服务范围,其中,第二服务范围可以包括车辆的目的地位置,也可以是位于第一服务范围与目的地位置之间的服务范围。
在步骤S402中,第一MEC服务器从缓存中获取第一服务范围的电子地图,并从第二服务范围对应的第二MEC服务器中获取第二服务范围的电子地图。
在步骤S403中,基于第一服务范围的电子地图和第二服务范围的电子地图,确定车辆的行驶轨迹和导航数据。
其中,第二服务范围可以为一个,也可以为多个,本申请实施例对此不作限制。当第二服务范围为一个时,则第二服务范围可以为第一服务范围的相邻服务范围。当第二服务范围为多个时,则多个第二服务范围可以看作顺次与第一服务范围连接。
第一服务范围的电子地图和第二服务范围的电子地图可以为高精度电子地图,也可以为其他类型的电子地图,只要能够用于生成调度控制任务,以对车辆进行调度控制即可,本申请实施例对电子地图的类型不作限制。
第一服务范围的电子地图可以是第一MEC服务器预先从云端服务器下载得到,第二服务范围的电子地图也可以是第二MEC服务器预先从云端服务器下载得到。
基于此,在调度控制任务的生成过程中,可以直接从第一MEC服务器和/或第二MEC服务器获取电子地图,无需从云端服务器下载相应的电子地图,可以减少大数据量的远程传输,防止因云端服务器回传时延较长而导致调度控制任务回退,从而提高调度控制的效率和可靠性。此外,由于调度控制任务的生成不依赖电信无线网络,因此还能减少车辆调度控制过程的数据传输费用费,可以有效降低车辆自动驾驶的调度控制成本。
在一种实施方式中,导航数据包括多个引导点,步骤S303中根据导航数据,将行驶轨迹划分成多个轨迹段,包括:
根据引导点与行驶轨迹之间的位置关系,将行驶轨迹划分成多个轨迹段,以使一个引导点位于一个轨迹段上。
其中,引导点可以用于表示车辆需执行动作的点,引导点所需执行的动作至少包括一个,例如变道控制、转向控制、启动控制、停止控制、限速控制、刹车控制、直行控制等。
在一个示例中,引导点通常设置在行驶轨迹上,则可以根据引导点的位置信息,从引导点处对行驶轨迹进行划分,使得引导点位于相应轨迹段的起始位置处,这样便于将引导点作为调度控制信息的触发点,使得车辆根据引导点的位置信息自动执行相应的轨迹段所需执行的调度控制信息。
在一种实施方式中,如图5A所示,步骤S303中生成各轨迹段的调度控制任务,包括:
S501、根据相应轨迹段上的引导点的引导信息,确定车辆在相应轨迹段上的运行设计域信息和调度控制信息;
S502、将运行设计域信息和调度控制信息设置成相应轨迹段的调度控制任务。
其中,如图5A和图5B所示,运行设计域(Operational Design Domain,ODD)信息为调度控制信息的适用范围,也就是说,只有当车辆的行驶条件满足运行设计域信息所限定出条件的情况下,车辆才能执行调度控制信息。例如,运行设计域信息可以包括行驶在预先设置的行驶范围内,行驶在带有中央隔离带和护栏的两车道以上的机动车专用公路上,行驶速度低于60km/h等。
在一个示例中,可以预先设置引导点的引导信息与运行设计域信息之间的对应关系,进而在步骤S501中可基于引导点的引导信息,确定相应的运行设计域信息。如此,可以提高调度控制任务的生成效率。
进一步地,步骤S501中确定相应的运行设计域信息可以包括:设置运行设计域信息的任务编号和名称,以对运行设计域信息进行标识,形成调度任务基础信息。
需要说明的是,运行设计域信息的具体内容以及引导点的引导信息与运行设计域信息之间的对应关系,可以根据实际的需要进行选择和调整,本申请实施例对此不做限制。
在另一个示例中,引导点的引导信息可以用于指示车辆需执行动作的信息,调度控制信息可以包括多个动作序列,其中,每个动作序列包括动作ID(Identity document)、动作名称、触发条件、过程控制、结束条件和安全退出。步骤S501可以包括:根据引导点的引导信息,确定相应轨迹段所需执行的动作序列;将动作序列设置成调度控制信息。
举例来说,当引导点的引导信息为向右变道时,则可以确定在相应轨迹段所需执行的动作序列包括:
01、打开右转向灯、行驶至引导点、控制右转向灯闪烁预设次数、达到预设次数时关闭、安全退出;
02、减速、行驶至引导点、增加刹车片的刹车值、车速降低至预设的车速时结束、安全退出;
03、向右转向、行驶至引导点、控制方向盘向右旋转预设角度、车身的预设部位位于右侧车道内时结束、安全退出。
其中,可以采用关联信号定义动作序列,使得动作序列中的动作ID、动作名称、触发条件、过程控制、结束条件和安全退出之间具有关联关系。此外,还可以采用关联信号定义动作序列执行的先后顺序,例如,定义动作ID为01所对应的动作序列可优先执行,动作ID为02和03所对应的动作序列可以在01所对应的动作序列执行后同时执行。
其中,将动作序列设置成调度控制信息可以为将动作序列设置成序列表。例如,将动作ID为01~03所对应的动作序列设置在同一序列表中。
进一步地,调度控制信息还可以包括轨迹段标识信息,步骤S501中还可以包括:对相应轨迹段进行标记,以生成轨迹段标识信息,使得车辆根据轨迹段标识信息确定是否行驶至相应轨迹段。其中,对相应轨迹段进行标记可以包括对相应轨迹段标记名称、类型、编号、轨迹点序列。
又进一步地,调度控制信息还可以包括引导点标识信息,步骤S501中确定车辆在相应轨迹段所需执行的调度控制信息,还可以包括:对引导点的位置信息进行标记,以生成引导点标识信息,使得车辆根据引导点标识信息确定是否行驶至引导点。其中,对引导点的位置信息进行标记可以包括标记引导点的经度、维度、高度、偏航角等。
步骤S502中可以包括:针对相应轨迹段的运行设计域信息和调度控制信息,设置目标车辆的VIN(Vehicle Identification Number,车辆识别码)和T-BOX编号,以生成目标车辆标识信息。如此,当车辆确定本地VIN与目标车辆的VIN匹配,以及本地T-BOX编号与目标车辆的T-BOX编号匹配时,才能判断车辆的行驶条件是否与调度任务基础信息中运行设计域信息所限定出的条件相匹配,并在判断匹配的情况下执行调度控制信息,可提高调度控制的安全性。
在一种实施方式中,目标服务范围包括第一服务范围,轨迹段包括位于第一服务范围的第一轨迹段,如图6所示,该方法还可以包括:
S601、接收车辆对第一轨迹段的调度控制任务的第一执行结果;
S602、在第一执行结果为执行失败的情况下,获取第一轨迹段的路况信息;
S603、根据路况信息,更新第一轨迹段的调度控制任务;
S604、向车辆发送更新后的调度控制任务。
在步骤S602中,第一轨迹段的路况信息可以从位于第一轨迹段的路侧设备中获取,也可以从车辆的车载摄像设备中获取。
具体地,根据第一轨迹段的位置信息,从位于第一服务范围中的路侧设备中确定目标路侧设备;从目标路侧设备中获取第一轨迹段的路况信息。或者,通过向车辆发送获取指令,使得车辆发送车载摄像设备拍摄的第一轨迹段的路况信息。
在步骤S603中,更新第一轨迹段的调度控制任务,可以为调整调度控制信息中的参数。例如,初始调度控制信息为向右转向第一预设角度,更新后的调度控制信息为向右转向第二预设角度,第二预设角度大于第一预设角度。
在本实施方式中,第一MEC服务器在跟踪到第一执行结果为执行失败的情况下,基于第一轨迹段的路况信息,更新第一轨迹段的调度控制任务,并向车辆发送更新后的调度控制任务,可以对车辆在第一轨迹段的调度控制任务进行局部的动态调整和优化,有利于提高调度控制的准确性。再者,由于第一MEC服务器仅对第一轨迹段的调度控制任务进行局部更新,因此,可以减少调度控制过程中的运算,适于车辆数量较多的大规模调度控制应用场景。
在一种实施方式中,目标服务范围包括第二服务范围,第二服务范围为位于第一服务范围与目的地位置之间的服务范围,或者,第二服务范围为目的地位置所在的服务范围,轨迹段包括位于第二服务范围的第二轨迹段,如图7所示,该方法还可以包括:
S701、向位于第二服务范围的第二MEC服务器发送第二轨迹段的调度控制任务,以使第二MEC服务器根据车辆对第二轨迹的调度控制任务的第二执行结果以及第二服务范围内的路况信息,调整车辆在第二服务范围内的调度控制任务。
在本实施方式中,通过向位于第二服务范围的第二MEC服务器发送第二轨迹段的调度控制任务,使得第二MEC服务器可以根据车辆对第二轨迹的调度控制任务的第二执行结果以及第二服务范围内的路况信息,对第二轨迹的调度控制任务进行局部的动态调整和优化,有利于提高调度控制的准确性。
图8示根据本申请另一实施例的车辆调度方法的流程示意图。该车辆调度方法可以应用于第二MEC服务器,该车辆调度方法可以包括:
S801、接收第一MEC服务器发送的车辆在第二轨迹段上的调度控制任务;其中,调度控制任务为根据上述实施方式的方法生成;
S802、接收车辆对第二轨迹段的调度控制任务的第二执行结果;
S803、在第二执行结果为执行失败的情况下,调整车辆在第二轨迹段上的调度控制任务;
S804、向车辆发送调整后的调度控制任务。
其中,第一MEC服务器和第二MEC服务器可以分别通过光纤与承载网连接,使得承载网可以将第一ECM服务器生成的第二轨迹段上的调度控制任务分流至第二MEC服务器,以使第二MEC服务器接收并预存第二轨迹段上的调度控制任务。
在一个示例中,当车辆行驶至第二服务范围时,车辆执行第二轨迹段的调度控制任务,并通过第二服务范围内的基站或路侧设备向第二MEC服务器发送对第二轨迹的调度控制任务的第二执行结果。
相应地,第二MEC服务器可以执行如下步骤:
在步骤S802中,第二MEC服务器接收车辆对第二轨迹段的调度控制任务的第二执行结果;
在步骤S803中,在第二执行结果为执行失败的情况下,则通过路侧设备获取第二轨迹段的路况信息,进而根据第二轨迹段的路况信息,更新第二轨迹段的调度控制任务;
在步骤S804中,向车辆发送第二轨迹段的调度控制任务。
基于此,第二MEC服务器通过接收第一MEC服务器发送的车辆在第二轨迹段上的调 度控制任务,使得当车辆在第二轨迹段执行调度控制任务时,第二MEC服务器可以对车辆在第二服务范围内的第二执行结果进行跟踪,并利用跟踪到的第二执行结果,对车辆在第二轨迹段的调度控制任务进行局部的动态调整和优化,有利于提高调度控制的准确性。再者,由于第二MEC服务器仅对第二轨迹段的调度控制任务进行局部更新,因此,也可以减少调度控制过程中的运算量,适于车辆数量较多的大规模调度控制应用场景。
在一种实施方式中,在步骤S801之前,还可以包括:向第一MEC服务器发送第二服务范围的电子地图。
在一个示例中,当第一MEC服务器确定车辆的目的地位置位于第二服务范围时,则向相应的第二MEC服务器发送地图获取指令。
相应地,当第二MEC服务器接收到地图获取指令时,则向第一MEC服务器发送第二服务范围的电子地图。其中,第二服务范围的电子地图可以是第二MEC服务器预先从云端服务器中下载得到。
基于此,通过将第二服务范围的电子地图预先分流并预存至第二MEC服务器中,使得第二MEC服务器可以向第一MEC服务器发送第二服务范围的电子地图,这样调度控制任务的生成可以不依赖云端服务器通过移动通信网络对电子地图的传输,进而可以避开不可控的尽力而为传输特点的云端服务器,使得车辆调度控制的传输网络质量具有可控性,有利于改善车辆远程调度控制的性能。
图9示出根据本申请又一实施例的车辆调度方法的流程示意图。该车辆调度方法可以应用于车辆,该方法可以包括:
S901、建立与第一MEC服务器之间的连接,以使第一MEC服务器获取针对车辆的调度请求;调度请求包括车辆的起始位置和目的地位置;
S902、接收位于起始位置和目的地位置之间的各轨迹段的调度控制任务;调度控制任务为上述任一种实施方式的方法生成;
S903、依次执行各轨迹段的调度控制任务。
步骤S901中第一MEC服务器获取调度请求的方式可参考步骤S301中的获取方式相同,在此不再赘述。
在一个示例中,车辆可以先接收全部轨迹段的调度控制任务后,再依次执行各轨迹段的调度控制任务。这样可以减少车辆调度控制过程中的数据传输量,提升调度控制任务的执行效率,进而提高调度控制效率。
在一个示例中,调度控制任务包括运行设计域信息和调度控制信息,其中,运行设计域信息和调度控制信息的内容,以及调度控制任务的执行过程可以参考步骤S501~步骤S502中相应的内容,在此不再赘述。
在一种实施方式中,轨迹段包括位于第一服务范围的第一轨迹段,如图10所示,该方法还可以包括:
S1001、向第一MEC服务器发送对第一轨迹段的调度控制任务的第一执行结果;
S1002、接收更新后的调度控制任务;更新后的调度控制任务为第一MEC服务器在第一执行结果为执行失败的情况下,基于第一轨迹段的路况信息生成;
S1003、在第一轨迹段执行更新后的调度控制任务。
步骤S1001中,第一轨迹段可以为多个,若向第一MEC服务器发送对当前第一轨迹段的调度控制任务的第一执行结果为执行成功,则车辆继续执行下一第一轨迹段的调度控制任务;若向第一MEC服务器发送对当前第一轨迹段的调度控制任务的第一执行结果为执行失败,则第一MEC服务器基于当前第一轨迹段的路况信息更新调度控制任务。
步骤S1003中,在当前第一轨迹段执行更新后的调度控制任务。
基于此,车辆可以向第一MEC服务器实时反馈对第一轨迹段的调度控制任务的第一执行结果,以使第一MEC服务器对第一执行结果进行实时跟踪,进而基于第一执行结果 和第一轨迹段的路况信息,对第一轨迹段的调度控制任务进行局部的动态调整,使得车辆灵活调整行驶轨迹,以便进行避障和避开拥堵等,有利于提高自动驾驶效率。
在一种实施方式中,轨迹段包括位于第二服务范围的第二轨迹段,如图11所示,该方法还可以包括:
S1101、向第二MEC服务器发送对第二轨迹段的调度控制任务的第二执行结果;
S1102、接收调整后的调度控制任务;调整后的调度控制任务为第二MEC服务器在第二执行结果为执行失败的情况下,基于第二轨迹段的路况信息生成;
S1103、在第二轨迹段执行调整后的调度控制任务。
步骤S1101中,当车辆行驶至第二服务范围时,则建立与第二MEC服务器的通信连接,使得车辆可以向第二MEC服务器发送对第二轨迹段的调度控制任务的第二执行结果。
步骤S1102中,第二MEC服务器在第二执行结果为执行失败的情况下,可以基于第二轨迹段的位置从相应路侧设备中获取第二轨迹段的路况信息,进而根据第二轨迹段的路况信息更新第二轨迹段的调度控制任务,再将更新后的调度控制任务通过基站或路侧设备发送至车辆,以使车辆接收更新后的调度控制任务。
基于此,车辆通过向第二MEC服务器发送对第二轨迹段的调度控制任务的第二执行结果,可以使第二MEC服务器对第二执行结果进行实时跟踪,以便基于第二执行结果和第二轨迹段的路况信息,对第二轨迹段的调度控制任务进行局部的动态调整,使得车辆灵活调整行驶轨迹,以便进行避障和避开拥堵等,有利于提高自动驾驶效率。
图12示出根据本申请一实施例的车辆调度装置的结构框图。该装置可以应用于第一MEC服务器,第一MEC服务器对应于第一服务范围,第一服务范围包括车辆的起始位置,如图12所示,该装置可以包括:
第一获取模块1210,用于获取针对车辆的调度请求;调度请求包括车辆的起始位置和目的地位置;
确定模块1220,用于确定从起始位置行驶至目的地位置的行驶轨迹和导航数据;
任务生成模块1230,用于根据导航数据,将行驶轨迹划分成多个轨迹段,并生成各轨迹段的调度控制任务;
第一发送模块1240,用于向车辆发送各轨迹段的调度控制任务,以使车辆执行各轨迹段的调度控制任务。
在一种实施方式中,确定模块1220可以包括:
第一确定子模块,用于确定从起始位置行驶至目的地位置需途经的目标服务范围;
获取子模块,用于获取目标服务范围的电子地图;
第二确定子模块,基于目标服务范围的电子地图,确定车辆的行驶轨迹和导航数据。
在一种实施方式中,导航数据包括多个引导点,任务生成模块1230可以包括:
划分子模块,用于根据引导点与行驶轨迹之间的位置关系,将行驶轨迹划分成多个轨迹段,以使一个引导点位于一个轨迹段上。
在一种实施方式中,任务生成模块1230可以包括:
第二确定子模块,用于根据相应轨迹段上的引导点的引导信息,确定车辆在相应轨迹段上的运行设计域信息和调度控制信息;
设置子模块,用于将运行设计域信息和调度控制信息设置成相应轨迹段的调度控制任务。
在一种实施方式中,目标服务范围包括第一服务范围,轨迹段包括位于第一服务范围的第一轨迹段,该装置还可以包括:
接收模块,用于接收车辆对第一轨迹段的调度控制任务的第一执行结果;
第二获取模块,用于在第一执行结果为执行失败的情况下,获取第一轨迹段的路况信息;
更新模块,用于根据路况信息,更新第一轨迹段的调度控制任务;
第二发送模块,用于向车辆发送更新后的调度控制任务。
在一种实施方式中,目标服务范围包括第二服务范围,第二服务范围为位于第一服务范围与目的地位置之间的服务范围,轨迹段包括位于第二服务范围的第二轨迹段,该装置还可以包括:
第三发送模块,用于向位于第二服务范围的第二MEC服务器发送第二轨迹段的调度控制任务,以使第二MEC服务器根据车辆对第二轨迹的调度控制任务的第二执行结果以及第二服务范围内的路况信息,调整车辆在第二服务范围内的调度控制任务。
图13示出根据本申请另一实施例的车辆调度装置的结构框图。该装置可以应用于第二MEC服务器,该装置可以包括:
第一接收模块1310,用于接收第一MEC服务器发送的车辆在第二轨迹段上的调度控制任务;其中,调度控制任务为根据权利要求6的方法生成;
第二接收模块1320,用于接收车辆对第二轨迹段的调度控制任务的第二执行结果;
任务调整模块1330,用于在第二执行结果为执行失败的情况下,调整车辆在第二轨迹段上的调度控制任务;
第一发送模块1340,用于向车辆发送调整后的调度控制任务。
在一种实施方式中,该装置还可以包括:
第二发送模块,用于向第一MEC服务器发送第二服务范围的电子地图。
图14示出根据本申请又一实施例的车辆调度装置的结构框图。该装置可以应用于车辆,该装置可以包括:
通信连接建立模块1410,用于建立与第一MEC服务器之间的连接,以使第一MEC服务器获取针对车辆的调度请求;调度请求包括车辆的起始位置和目的地位置;
第一接收模块1420,用于接收位于起始位置和目的地位置之间的各轨迹段的调度控制任务;调度控制任务为根据权利要求1至8任一项的方法生成;
第一执行模块1430,用于依次执行各轨迹段的调度控制任务。
在一种实施方式中,轨迹段包括位于第一服务范围的第一轨迹段,该装置还可以包括:
第一发送模块,用于向第一MEC服务器发送对第一轨迹段的调度控制任务的第一执行结果;
第二接收模块,用于接收更新后的调度控制任务;更新后的调度控制任务为第一MEC服务器在第一执行结果为执行失败的情况下,基于第一轨迹段的路况信息生成;
第二执行模块,用于在第一轨迹段执行更新后的调度控制任务。
在一种实施方式中,轨迹段包括位于第二服务范围的第二轨迹段,该装置还可以包括:
第二发送模块,用于向第二MEC服务器发送对第二轨迹段的调度控制任务的第二执行结果;
第三接收模块,用于接收调整后的调度控制任务;调整后的调度控制任务为第二MEC服务器在第二执行结果为执行失败的情况下,基于第二轨迹段的路况信息生成;
第三执行模块,用于在第二轨迹段执行调整后的调度控制任务。
图15示出根据本申请一实施例的车辆调度系统的结构框图。如图15所示,该车辆调度系统,可以包括:第一MEC服务器151,该第一MEC服务器151包括上述一实施例的装置;
第二MEC服务器152,该第二MEC服务器152包括上述另一实施例的装置;
车辆153,该车辆153包括上述又一实施例的的装置。
其中,第一MEC服务器151对应第一服务范围151A,当车辆153位于第一服务范围151A内时,则车辆153通过位于第一服务范围151A内的基站121A或路侧设备154与第一MEC服务器151交互数据。
可以理解的,第二MEC服务器152对应第二服务范围152A,当车辆153位于第二服务范围152A内时,则车辆153通过位于第二服务范围152A内的基站121B或路侧设备155与第二MEC服务器152交互数据。
本申请实施例各装置中的各模块的功能可以参见上述方法中的对应描述,在此不再赘述。
图16示出根据本申请一实施例的电子设备的结构框图。如图16所示,该电子设备包括:存储器1610和处理器1620,存储器1610内存储有可在处理器1620上运行的指令。处理器1620执行该指令时实现上述实施例中的车辆调度方法。存储器1610和处理器1620的数量可以为一个或多个。该电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。
该电子设备还可以包括通信接口1630,用于与外界设备进行通信,进行数据交互传输。各个设备利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器1620可以对在电子设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个电子设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
可选的,在具体实现上,如果存储器1610、处理器1620及通信接口1630集成在一块芯片上,则存储器1610、处理器1620及通信接口1630可以通过内部接口完成相互间的通信。
应理解的是,上述处理器可以是中央处理器(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者是任何常规的处理器等。值得说明的是,处理器可以是支持进阶精简指令集机器(Advanced RISC Machines,ARM)架构的处理器。
本申请实施例提供了一种计算机可读存储介质(如上述的存储器1610),其存储有计算机指令,该程序被处理器执行时实现本申请实施例中提供的方法。
可选的,存储器1610可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据车辆调度方法的电子设备的使用所创建的数据等。此外,存储器1610可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。在一些实施例中,存储器1610可选包括相对于处理器1620远程设置的存储器,这些远程存储器可以通过网络连接至车辆调度方法的电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包括于本申请的至少一个实施例或示例中。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本 领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或多个(两个或两个以上)用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分。并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。
应理解的是,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。上述实施例方法的全部或部分步骤是可以通过程序来指令相关的硬件完成,该程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。上述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读存储介质中。该存储介质可以是只读存储器,磁盘或光盘等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到其各种变化或替换,这些都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (25)

  1. 一种车辆调度方法,其特征在于,应用于第一MEC服务器,所述第一MEC服务器对应于第一服务范围,所述第一服务范围包括车辆的起始位置,所述方法包括:
    获取针对所述车辆的调度请求;所述调度请求包括所述车辆的起始位置和目的地位置;
    确定从所述起始位置行驶至所述目的地位置的行驶轨迹和导航数据;
    根据所述导航数据,将所述行驶轨迹划分成多个轨迹段,并生成各所述轨迹段的调度控制任务;
    向所述车辆发送各所述轨迹段的调度控制任务,以使所述车辆执行各所述轨迹段的调度控制任务。
  2. 根据权利要求1所述的方法,其特征在于,确定从所述起始位置行驶至所述目的地位置的行驶轨迹和导航数据,包括:
    确定从所述起始位置行驶至所述目的地位置需途经的目标服务范围;
    获取所述目标服务范围的电子地图;
    基于所述目标服务范围的电子地图,确定所述车辆的行驶轨迹和导航数据。
  3. 根据权利要求1所述的方法,其特征在于,所述导航数据包括多个引导点,根据所述导航数据,将所述行驶轨迹划分成多个轨迹段,包括:
    根据所述引导点与所述行驶轨迹之间的位置关系,将所述行驶轨迹划分成多个轨迹段,以使一个所述引导点位于一个所述轨迹段上。
  4. 根据权利要求3所述的方法,其特征在于,生成各所述轨迹段的调度控制任务,包括:
    根据相应轨迹段上的引导点的引导信息,确定所述车辆在所述相应轨迹段上的运行设计域信息和调度控制信息;
    将所述运行设计域信息和所述调度控制信息设置成所述相应轨迹段的调度控制任务。
  5. 根据权利要求2所述的方法,其特征在于,所述目标服务范围包括所述第一服务范围,所述轨迹段包括位于所述第一服务范围的第一轨迹段,所述方法还包括:
    接收所述车辆对所述第一轨迹段的调度控制任务的第一执行结果;
    在所述第一执行结果为执行失败的情况下,获取所述第一轨迹段的路况信息;
    根据所述路况信息,更新所述第一轨迹段的调度控制任务;
    向所述车辆发送更新后的调度控制任务。
  6. 根据权利要求2所述的方法,其特征在于,所述目标服务范围包括第二服务范围,所述第二服务范围为位于所述第一服务范围与所述目的地位置之间的服务范围,所述轨迹段包括位于所述第二服务范围的第二轨迹段,所述方法还包括:
    向位于所述第二服务范围的第二MEC服务器发送所述第二轨迹段的调度控制任务,以使所述第二MEC服务器根据所述车辆对所述第二轨迹的调度控制任务的第二执行结果以及所述第二服务范围内的路况信息,调整所述车辆在第二服务范围内的调度控制任务。
  7. 一种车辆调度方法,其特征在于,应用于第二MEC服务器,所述方法包括:
    接收第一MEC服务器发送的车辆在第二轨迹段上的调度控制任务;其中,所述调度控制任务为根据权利要求6所述的方法生成;
    接收所述车辆对所述第二轨迹段的调度控制任务的第二执行结果;
    在所述第二执行结果为执行失败的情况下,调整所述车辆在所述第二轨迹段上的调度控制任务;
    向所述车辆发送所述调整后的调度控制任务。
  8. 根据权利要求7所述的方法,其特征在于,在接收第一MEC服务器发送的所述车辆在第二轨迹段上的调度控制任务之前,还包括:
    向所述第一MEC服务器发送第二服务范围的电子地图。
  9. 一种车辆调度方法,其特征在于,应用于车辆,所述方法包括:
    建立与第一MEC服务器之间的连接,以使所述第一MEC服务器获取针对所述车辆的调度请求;所述调度请求包括所述车辆的起始位置和目的地位置;
    接收位于所述起始位置和所述目的地位置之间的各轨迹段的调度控制任务;所述调度控制任务为根据权利要求1至8任一项所述的方法生成;
    依次执行各所述轨迹段的调度控制任务。
  10. 根据权利要求9所述的方法,其特征在于,所述轨迹段包括位于第一服务范围的第一轨迹段,所述方法还包括:
    向第一MEC服务器发送对所述第一轨迹段的调度控制任务的第一执行结果;
    接收更新后的调度控制任务;所述更新后的调度控制任务为所述第一MEC服务器在所述第一执行结果为执行失败的情况下,基于所述第一轨迹段的路况信息生成;
    在所述第一轨迹段执行更新后的调度控制任务。
  11. 根据权利要求9所述的方法,其特征在于,所述轨迹段包括位于第二服务范围的第二轨迹段,所述方法还包括:
    向第二MEC服务器发送对所述第二轨迹段的调度控制任务的第二执行结果;
    接收调整后的调度控制任务;所述调整后的调度控制任务为所述第二MEC服务器在所述第二执行结果为执行失败的情况下,基于所述第二轨迹段的路况信息生成;
    在所述第二轨迹段执行所述调整后的调度控制任务。
  12. 一种车辆调度装置,其特征在于,应用于第一MEC服务器,所述第一MEC服务器对应于第一服务范围,所述第一服务范围包括车辆的起始位置,所述装置包括:
    第一获取模块,用于获取针对所述车辆的调度请求;所述调度请求包括所述车辆的起始位置和目的地位置;
    确定模块,用于确定从所述起始位置行驶至所述目的地位置的行驶轨迹和导航数据;
    任务生成模块,用于根据所述导航数据,将所述行驶轨迹划分成多个轨迹段,并生成各所述轨迹段的调度控制任务;
    第一发送模块,用于向所述车辆发送各所述轨迹段的调度控制任务,以使所述车辆执行各所述轨迹段的调度控制任务。
  13. 根据权利要求12所述的装置,其特征在于,所述确定模块包括:
    第一确定子模块,用于确定从所述起始位置行驶至所述目的地位置需途经的目标服务范围;
    获取子模块,用于获取所述目标服务范围的电子地图;
    第二确定子模块,基于所述目标服务范围的电子地图,确定所述车辆的行驶轨迹和导航数据。
  14. 根据权利要求12所述的装置,其特征在于,所述导航数据包括多个引导点,所述任务生成模块包括:
    划分子模块,用于根据所述引导点与所述行驶轨迹之间的位置关系,将所述行驶轨迹划分成多个轨迹段,以使一个所述引导点位于一个所述轨迹段上。
  15. 根据权利要求14所述的装置,其特征在于,所述任务生成模块包括:
    第二确定子模块,用于根据相应轨迹段上的引导点的引导信息,确定所述车辆在所述相应轨迹段上的运行设计域信息和调度控制信息;
    设置子模块,用于将所述运行设计域信息和所述调度控制信息设置成所述相应轨迹段的调度控制任务。
  16. 根据权利要求13所述的装置,其特征在于,所述目标服务范围包括所述第一服务范围,所述轨迹段包括位于所述第一服务范围的第一轨迹段,所述装置还包括:
    接收模块,用于接收所述车辆对所述第一轨迹段的调度控制任务的第一执行结果;
    第二获取模块,用于在所述第一执行结果为执行失败的情况下,获取所述第一轨迹段的路况信息;
    更新模块,用于根据所述路况信息,更新所述第一轨迹段的调度控制任务;
    第二发送模块,用于向所述车辆发送更新后的调度控制任务。
  17. 根据权利要求13所述的装置,其特征在于,所述目标服务范围包括第二服务范围,所述第二服务范围为位于所述第一服务范围与所述目的地位置之间的服务范围,所述轨迹段包括位于所述第二服务范围的第二轨迹段,所述装置还包括:
    第三发送模块,用于向位于所述第二服务范围的第二MEC服务器发送所述第二轨迹段的调度控制任务,以使所述第二MEC服务器根据所述车辆对所述第二轨迹的调度控制任务的第二执行结果以及所述第二服务范围内的路况信息,调整所述车辆在第二服务范围内的调度控制任务。
  18. 一种车辆调度装置,其特征在于,应用于第二MEC服务器,所述装置包括:
    第一接收模块,用于接收第一MEC服务器发送的车辆在第二轨迹段上的调度控制任务;其中,所述调度控制任务为根据权利要求6所述的方法生成;
    第二接收模块,用于接收所述车辆对所述第二轨迹段的调度控制任务的第二执行结果;
    任务调整模块,用于在所述第二执行结果为执行失败的情况下,调整所述车辆在所述第二轨迹段上的调度控制任务;
    第一发送模块,用于向所述车辆发送所述调整后的调度控制任务。
  19. 根据权利要求18所述的装置,其特征在于,所述装置还包括:
    第二发送模块,用于向所述第一MEC服务器发送第二服务范围的电子地图。
  20. 一种车辆调度装置,其特征在于,应用于车辆,所述装置包括:
    通信连接建立模块,用于建立与第一MEC服务器之间的连接,以使所述第一MEC服务器获取针对所述车辆的调度请求;所述调度请求包括所述车辆的起始位置和目的地位置;
    第一接收模块,用于接收位于所述起始位置和所述目的地位置之间的各轨迹段的调度控制任务;所述调度控制任务为根据权利要求1至8任一项所述的方法生成;
    第一执行模块,用于依次执行各所述轨迹段的调度控制任务。
  21. 根据权利要求20所述的装置,其特征在于,所述轨迹段包括位于第一服务范围的第一轨迹段,所述装置还包括:
    发送模块,用于向第一MEC服务器发送对所述第一轨迹段的调度控制任务的第一执行结果;
    第二接收模块,用于接收更新后的调度控制任务;所述更新后的调度控制任务为所述第一MEC服务器在所述第一执行结果为执行失败的情况下,基于所述第一轨迹段的路况信息生成;
    第二执行模块,用于在所述第一轨迹段执行更新后的调度控制任务。
  22. 根据权利要求20所述的装置,其特征在于,所述轨迹段包括位于第二服务范围的第二轨迹段,所述装置还包括:
    第三发送模块,用于向第二MEC服务器发送对所述第二轨迹段的调度控制任务的第二执行结果;
    第三接收模块,用于接收调整后的调度控制任务;所述调整后的调度控制任务为所述第二MEC服务器在所述第二执行结果为执行失败的情况下,基于所述第二轨迹段的路况信息生成;
    第三执行模块,用于在所述第二轨迹段执行所述调整后的调度控制任务。
  23. 一种车辆调度系统,其特征在于,包括:
    第一MEC服务器,所述第一MEC服务器包括如权利要求12-17中任一项所述的装置;
    第二MEC服务器,所述第二MEC服务器包括如权利要求18-19中任一项所述的装置;
    车辆,所述车辆包括如权利要求20-22所述的装置。
  24. 一种电子设备,其特征在于,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-11中任一项所述的方法。
  25. 一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机指令,所述计算机指令被处理器执行时实现如权利要求1-11中任一项所述的方法。
PCT/CN2021/084788 2020-12-22 2021-03-31 车辆调度方法、装置、系统、设备及存储介质 WO2022134365A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011535912.0 2020-12-22
CN202011535912.0A CN112735162A (zh) 2020-12-22 2020-12-22 车辆调度方法、装置、系统、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022134365A1 true WO2022134365A1 (zh) 2022-06-30

Family

ID=75604768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084788 WO2022134365A1 (zh) 2020-12-22 2021-03-31 车辆调度方法、装置、系统、设备及存储介质

Country Status (2)

Country Link
CN (1) CN112735162A (zh)
WO (1) WO2022134365A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117376984A (zh) * 2023-12-08 2024-01-09 华芯(武汉)智能装备有限公司 一种天车调度数据的传输方法及可读存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113470354A (zh) * 2021-06-24 2021-10-01 上海智能网联汽车技术中心有限公司 全天候路测感知系统
CN113784315A (zh) * 2021-09-10 2021-12-10 中国联合网络通信集团有限公司 小区间车辆调度方法及调度系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108694844A (zh) * 2018-05-11 2018-10-23 中国联合网络通信集团有限公司 自动驾驶车辆控制方法、装置及存储介质
CN109299822A (zh) * 2018-09-21 2019-02-01 中国联合网络通信集团有限公司 车辆调度方法、装置、系统及存储介质
CN109788515A (zh) * 2017-11-13 2019-05-21 中国移动通信有限公司研究院 一种数据协同方法、mec设备以及服务器
US20200007661A1 (en) * 2019-07-31 2020-01-02 Lg Electronics Inc. Method and apparatus for setting connection between vehicle and server in automated vehicle & highway systems
CN111831764A (zh) * 2020-01-20 2020-10-27 北京嘀嘀无限科技发展有限公司 一种停留站点的确定方法、装置、电子设备和介质
CN112068566A (zh) * 2020-09-15 2020-12-11 北京百度网讯科技有限公司 引导路径确定方法及车辆的行驶控制方法、装置、设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109788515A (zh) * 2017-11-13 2019-05-21 中国移动通信有限公司研究院 一种数据协同方法、mec设备以及服务器
CN108694844A (zh) * 2018-05-11 2018-10-23 中国联合网络通信集团有限公司 自动驾驶车辆控制方法、装置及存储介质
CN109299822A (zh) * 2018-09-21 2019-02-01 中国联合网络通信集团有限公司 车辆调度方法、装置、系统及存储介质
US20200007661A1 (en) * 2019-07-31 2020-01-02 Lg Electronics Inc. Method and apparatus for setting connection between vehicle and server in automated vehicle & highway systems
CN111831764A (zh) * 2020-01-20 2020-10-27 北京嘀嘀无限科技发展有限公司 一种停留站点的确定方法、装置、电子设备和介质
CN112068566A (zh) * 2020-09-15 2020-12-11 北京百度网讯科技有限公司 引导路径确定方法及车辆的行驶控制方法、装置、设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117376984A (zh) * 2023-12-08 2024-01-09 华芯(武汉)智能装备有限公司 一种天车调度数据的传输方法及可读存储介质
CN117376984B (zh) * 2023-12-08 2024-03-08 华芯(武汉)智能装备有限公司 一种天车调度数据的传输方法及可读存储介质

Also Published As

Publication number Publication date
CN112735162A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2022134365A1 (zh) 车辆调度方法、装置、系统、设备及存储介质
US11222389B2 (en) Coordinating on-demand transportation with autonomous vehicles
US20200371773A1 (en) Software updating device, server device, and software updating method
US11143513B2 (en) Labeling scheme for labeling and generating high-definition map based on trajectories driven by vehicles
US11073831B2 (en) Autonomous driving using a standard navigation map and lane configuration determined based on prior trajectories of vehicles
US11550623B2 (en) Distributed system task management using a simulated clock
US10999719B1 (en) Peer-to-peer autonomous vehicle communication
WO2019225268A1 (ja) 走行計画生成装置、走行計画生成方法、及び制御プログラム
US11480964B2 (en) Distributed system execution using a serial timeline
US11397610B2 (en) Architecture for simulation clock-based simulation of distributed systems
US20200209856A1 (en) Autonomous driving computing and storage expansion device with flexible host and client configuration
WO2020119578A1 (zh) 打车订单处理
CN111337045A (zh) 车辆导航方法和装置
US20220244725A1 (en) Autonomous trailing logistical support vehicle
CN112305499B (zh) 一种根据光源进行定位的方法及装置
EP3961153A1 (en) Navigation system with high definition mapping mechanism and method of operation thereof
CN110942651B (zh) 一种车辆失效处理方法、车载设备及存储介质
CN111063214A (zh) 一种车辆的定位方法、车载设备及存储介质
US12007786B2 (en) System and method for real-time lane validation
US20240237091A9 (en) Systems and methods for efficiently establishing peer-to-peer connections
US11985532B2 (en) Communication system, vehicle, server, method for controlling vehicle, and non-transitory storage medium
JP7357017B2 (ja) 地図更新システム
US20240025453A1 (en) Allocating resources for a vehicle
US20240083452A1 (en) Autonomous driving vehicle as data center infrastructure
EP4170283A1 (en) Navigation system with map data update mechanism and method of operation thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/11/2023)