WO2022134359A1 - 新型电能表供电电路及电能表 - Google Patents

新型电能表供电电路及电能表 Download PDF

Info

Publication number
WO2022134359A1
WO2022134359A1 PCT/CN2021/084279 CN2021084279W WO2022134359A1 WO 2022134359 A1 WO2022134359 A1 WO 2022134359A1 CN 2021084279 W CN2021084279 W CN 2021084279W WO 2022134359 A1 WO2022134359 A1 WO 2022134359A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
unit
resistor
chip
supply module
Prior art date
Application number
PCT/CN2021/084279
Other languages
English (en)
French (fr)
Inventor
陈广
张宇
李军
王庆三
周弼
项云鹏
Original Assignee
威胜集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威胜集团有限公司 filed Critical 威胜集团有限公司
Publication of WO2022134359A1 publication Critical patent/WO2022134359A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the application relates to the field of equipment power supply, and in particular, to a novel power supply circuit for an electric energy meter and an electric energy meter.
  • the electric energy meter Most of the existing electric energy meters take electricity from the mains grid, and then obtain the required DC voltage through a series of rectification and step-down to supply power to the electric meter MCU and peripheral circuits.
  • the electric energy meter also uses a lithium sub-battery as a backup power supply, so that when the electric energy meter is powered off, the power supply terminal is switched to a lithium sub-battery, so as to ensure that the data and clock of the electric meter are not chaotic when the power is turned off, and at the same time prevent Stealing electricity.
  • the load capacity of the lithium sub-battery is limited, and it cannot support the work of modules with higher power (such as wireless modules and communication circuits), resulting in the inability of the electric energy meter to communicate with the terminal equipment when the mains power fails.
  • the life of the lithium sub-battery is generally about three years. When the power is exhausted, the lithium sub-battery needs to be replaced, which increases the material cost and labor cost.
  • the main purpose of the present application is to propose a new power supply circuit for an electric energy meter and an electric energy meter, which aims to solve the problem that the backup power supply of the electric energy meter in the prior art has a low load capacity and needs to be replaced when the electric energy is exhausted.
  • the present application provides a novel power supply circuit for an electric energy meter, the circuit includes a main power supply module and a backup power supply module, the first output end of the main power supply module is connected to the power supply end of the processing module of the electric energy meter, and the The second output terminal of the main power supply module is connected to the charging terminal of the standby power supply module, and the output terminal of the standby power supply module is connected to the power supply terminal of the processing module of the electric energy meter, wherein:
  • the main power supply module for supplying power to the processing module and the backup power supply module
  • the backup power supply module is configured to supply power to the processing module when the main power supply module is powered off.
  • the circuit further includes a step-down unit, the input end of the step-down unit is connected to the output end of the main power supply module and the output end of the backup power supply module, respectively, and the output end of the step-down unit is The output end is connected to the power supply end of the processing module, wherein:
  • the main power supply module is configured to convert the voltage of the commercial power into the operating voltage of the electric energy meter, and then output it to the step-down unit and the backup power supply module;
  • the backup power supply module configured to output an operating voltage to the step-down unit when the main power supply module is powered off;
  • the step-down unit is used to step down the operating voltage and output it to the power supply end of the processing module.
  • the main power supply module includes a switching power supply chip, a first resistor, a second resistor, a third resistor, a fourth resistor, a fifth resistor, a first capacitor, an energy storage inductor, a freewheeling sub-unit, a first a filtering subunit and a second filtering subunit;
  • the input end of the switching power supply chip is respectively connected to the commercial power supply and the first filter sub-unit, and the input end of the switching power supply chip is also connected to the enabling end of the switching power supply chip through the first resistor, so The enable terminal of the switching power supply chip is grounded through the second resistor; the capacitor terminal of the switching power supply chip is connected to the output terminal of the switching power supply chip through the third resistor and the first capacitor in sequence; the switch The output end of the power supply chip is respectively connected to the freewheeling subunit and the first end of the energy storage inductor; the second end of the energy storage inductor is the output end of the power supply unit, and the second end of the energy storage inductor is the output end of the power supply unit. The second end of the energy storage inductor is also connected to the feedback end of the switching power supply chip through the fifth resistor, and the feedback end of the switching power supply chip passes through the fourth resistor. ground.
  • the step-down unit includes: a step-down chip, a third filter subunit and a fourth filter subunit;
  • the input end of the step-down chip is the input end of the step-down unit, and the input end of the step-down chip is connected to the third filtering sub-unit; the output end of the step-down chip is the output end of the step-down unit. an output end, the output end of the step-down chip is connected to the fourth filtering subunit.
  • the backup power supply module includes a rechargeable battery, a charge management unit, a discharge management unit, and a switch unit; the input end of the charge management unit is the charge end of the backup power supply module, and the charge management unit The output end of the battery is connected to the rechargeable battery, the rechargeable battery is connected to the input end of the discharge management unit, the output end of the discharge management unit is connected to the input end of the step-down unit through the switch unit, and the The detection end of the switch unit is connected to the output end of the main power supply module, wherein:
  • the charging management unit configured to charge the rechargeable battery through the voltage output by the main power supply module
  • the switch unit configured to turn on the connection between the discharge management unit and the step-down unit when it is detected that the main power supply module is powered off;
  • the switch unit is configured to disconnect the connection between the discharge management unit and the step-down unit when it is detected that the main power supply module outputs an operating voltage.
  • the charge management unit includes a charge management chip, a light-emitting diode, a sixth resistor and a fifth filter subunit;
  • the input end of the charge management chip is the input end of the charge management unit, the input end of the charge management chip is respectively connected to the positive electrode of the light emitting diode and the fifth filter subunit, and the negative electrode of the light emitting diode is connected to The charging status indication terminal of the charging management chip; the output terminal of the charging management chip is the output terminal of the charging management unit; the charging current setting terminal of the charging management chip is grounded through the sixth resistor, and the charging The charging voltage setting terminal of the management chip is grounded; the ground terminal of the charging management chip is grounded.
  • the discharge management unit includes a discharge management chip, a seventh resistor, an eighth resistor and a second capacitor;
  • the positive output terminal of the discharge management chip is connected to the switch unit through the seventh resistor, and the positive output terminal of the discharge management chip is also connected to the positive terminal of the rechargeable battery through the seventh resistor.
  • the output positive terminal of the chip is also connected to the bypass terminal of the discharge management chip through the eighth resistor; the bypass terminal of the discharge management chip is also connected to the negative terminal of the rechargeable battery through the second capacitor; the The input negative terminal of the discharge management chip is connected to the negative terminal of the rechargeable battery; the output negative terminal of the discharge management chip is grounded.
  • the switch unit includes a first switch tube and a second switch tube, a first diode and a ninth resistor;
  • the control end of the first switch tube is connected to the output end of the main power supply module through the ninth resistor, the output end of the first switch tube is connected to the input end of the step-down unit, and the first switch tube
  • the output end of the first diode is also connected to the cathode of the first diode, the anode of the first diode is connected to the output end of the main power supply module; the input end of the first switch tube is connected to the second switch tube
  • the control end of the second switch tube is connected to the output end of the main power supply module through the ninth resistor, and the output end of the second switch tube is connected to the output end of the discharge management unit.
  • the backup power supply module further includes a battery detection unit, and the battery detection unit includes a tenth resistor, an eleventh resistor and a sixth filter subunit;
  • the first end of the tenth resistor is connected to the positive electrode of the rechargeable battery, the second end of the tenth resistor is grounded through the eleventh resistor, and the second ends of the tenth resistor are also connected to the The sixth filtering subunit and the battery detection end of the processing module.
  • the present application also provides an electric energy meter
  • the electric energy meter includes a casing and a novel electric energy meter power supply circuit
  • the novel electric energy meter power supply circuit is arranged in the casing
  • the novel electric energy meter power supply circuit is Configured as a new energy meter power supply circuit as described above.
  • a novel electric energy meter power supply circuit and an electric energy meter proposed in this application includes a main power supply module and a backup power supply module, the first output end of the main power supply module is connected to the power supply end of the processing module of the electric energy meter, and the main power supply module is connected to the power supply end of the processing module of the electric energy meter.
  • the second output terminal of the power supply module is connected to the charging terminal of the standby power supply module, and the output terminal of the standby power supply module is connected to the power supply terminal of the processing module of the electric energy meter, wherein: the main power supply module is used to supply the power supply to the power supply module.
  • the processing module and the backup power supply module supply power; the backup power supply module is used to supply power to the processing module when the main power supply module is powered off.
  • the backup power supply module is powered by the external power supply.
  • the backup power supply module will not need to be replaced because the power is exhausted, which greatly prolongs the service life of the backup power supply and reduces the cost of power supply replacement.
  • FIG. 1 is a functional block diagram of an embodiment of a power supply circuit for a novel electric energy meter of the application
  • FIG. 2 is a circuit structure diagram of the application of the novel electric energy meter power supply circuit of the application in the embodiment of FIG. 1;
  • FIG. 3 is a schematic structural diagram of the main power supply module in the power supply circuit of the novel electric energy meter of the application when power is supplied;
  • FIG. 4 is a schematic structural diagram of the standby power supply module in the power supply circuit of the novel electric energy meter of the present application when supplying power.
  • FIG. 1 is a functional block diagram of an embodiment of the novel electric energy meter power supply circuit of the present application.
  • the circuit includes a main power supply module 100 and a backup power supply module 200.
  • the first output terminal of the main power supply module 100 is connected to the power supply terminal of the processing module 400 of the electric energy meter.
  • the two output terminals are connected to the charging terminal of the standby power supply module 200, and the output terminal of the standby power supply module 200 is connected to the power supply terminal of the processing module 400 of the electric energy meter, wherein:
  • the main power supply module 100 is used to charge the processing module 400 and supply power to the backup power supply module 200;
  • the backup power supply module 200 is configured to supply power to the processing module when the main power supply module 100 is powered off.
  • the main power supply module 100 is used to respectively supply power to the processing module after converting the grid voltage into the operating voltage of the electric energy meter, and to charge the backup power supply module 200 .
  • the main power supply module 100 generally includes an AC-DC circuit, a step-down circuit, and the like.
  • the backup power supply module 200 does not supply power to the processing module 400 when the main power supply module 100 supplies power, and only supplies power to the processing module 400 when the main power supply module 100 is powered off.
  • the processing module includes the control circuit and peripheral circuit of the electric energy meter. Please refer to FIG. 3 and FIG. 4 together.
  • the processing module 400 includes an MCU401, an RF (Radio Frequency, radio frequency) wireless module 402, an infrared communication circuit 403, a power theft detection circuit 404, Memory 405, liquid crystal display 406, metering unit 407, voltage and current sampling circuit 408, etc.
  • the RF wireless module 402 is used for wireless meter reading with the terminal device.
  • the infrared communication circuit is used to communicate with the terminal equipment.
  • the MCU 401 , the memory 405 , the metering unit 407 , the voltage and current sampling circuit 408 and the liquid crystal display 406 are used for the daily electricity metering operation of the electric energy meter, that is, human-computer interaction.
  • the electricity theft detection circuit 404 is used to prevent electricity theft.
  • the circuit further includes a step-down unit 300 , the input end of the step-down unit 300 is respectively connected with the output end of the main power supply module 100 and the output end of the backup power supply module 200 .
  • the output terminal of the step-down unit 300 is connected to the power supply terminal of the processing module 400, wherein:
  • the main power supply module 100 is configured to output the operating voltage to the step-down unit 300 and the backup power supply module 200 after converting the voltage of the commercial power into the operating voltage of the electric energy meter;
  • the backup power supply module 200 is configured to output the operating voltage to the step-down unit 300 when the main power supply module 100 is powered off;
  • the step-down unit 300 is configured to step down the operating voltage and output it to the power supply end of the processing module 400 .
  • the main power supply module 100 and the backup power supply module 200 Before the voltages output by the main power supply module 100 and the backup power supply module 200 are input to the processing module 400, they also need to be stepped down by the step-down unit 300, so that the voltage input to the processing module 400 conforms to the operation of each device and circuit in the processing module. Voltage.
  • the rechargeable backup power supply module 200 is used, so that when there is an external power supply, the backup power supply module 200 is powered by the external power supply.
  • the backup power supply module 200 is used to supply power to the processing module 400, so that the backup The power supply module 200 does not need to be replaced because the power is exhausted, which greatly prolongs the service life of the backup power supply and reduces the cost of power supply replacement.
  • the main power supply module 100 includes a switching power supply chip U1, a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, a fifth resistor R5, and a first capacitor.
  • the input end of the switching power supply chip U1 is respectively connected to the commercial power supply and the first filtering sub-unit 101, and the input end of the switching power supply chip U1 is also connected to the switching power supply chip U1 through the first resistor R1.
  • Enable terminal, the enable terminal of the switching power supply chip U1 is grounded through the second resistor R2; the capacitor terminal of the switching power supply chip U1 is connected to the first capacitor C1 through the third resistor R3 in turn.
  • the output end of the switching power supply chip U1; the output end of the switching power supply chip U1 is respectively connected to the freewheeling sub-unit 103 and the first end of the energy storage inductor L1; the second end of the energy storage inductor L1 is the The output end of the power supply unit, the second end of the energy storage inductor L1 is connected to the second filter sub-unit 102; the second end of the energy storage inductor L1 is also connected to the switching power supply through the fifth resistor R5
  • the feedback terminal of the chip U1, the feedback terminal of the switching power supply chip U1 is grounded through the fourth resistor R4.
  • the switching power supply chip U1 adopts the LV2843 switching power supply chip U1 of TI;
  • the freewheeling subunit 103 includes a second diode D2, the anode of the second diode D2 is grounded, and the second diode D2 is grounded.
  • the cathode of the diode D2 is connected to the output end of the switching power supply chip U1.
  • the first filter subunit 101 includes a capacitor, and the input end of the switching power supply chip U1 is grounded through the capacitor;
  • the second filter subunit 102 includes an electrolytic capacitor and a ceramic chip capacitor, and the second end of the energy storage inductor L1
  • the positive electrode of the electrolytic capacitor is connected, the negative electrode of the electrolytic capacitor is grounded, and the ceramic chip capacitor is connected in parallel with the electrolytic capacitor; it should be noted that the capacitors in the first filter sub-unit 101 and the second filter sub-unit 102 can pass through multiple capacitors according to actual needs. Set the capacitance value in parallel.
  • the input end of the switching power supply chip U1 receives the 9V voltage obtained after the commercial power is rectified and stepped down by the AC-DC circuit, and the 9V voltage is stepped down by the switching power supply chip U1 to obtain a 5V voltage. Output to the step-down unit 300 and the backup power supply module 200 .
  • the step-down unit 300 includes: a step-down chip U4, a third filter sub-unit 301 and a fourth filter sub-unit 302;
  • the input end of the step-down chip U4 is the input end of the step-down unit 300, the input end of the step-down chip U4 is connected to the third filter sub-unit 301; the output end of the step-down chip U4 is the The output end of the step-down unit 300 is connected to the output end of the step-down chip U4 to the fourth filter sub-unit 302 .
  • the step-down chip U4 adopts the SGM2034 step-down chip U4 of Shengbang Micro Co.; Capacitor to ground. It should be noted that, the capacitances in the third filtering sub-unit 301 and the fourth filtering sub-unit 302 may be set in parallel with a plurality of capacitors according to actual needs.
  • the step-down unit 300 converts the received 5V voltage into a 3.3V voltage, and outputs the 3.3V voltage to the processing module 400 .
  • the backup power supply module 200 includes a rechargeable battery B1 , a charge management unit 210 , a discharge management unit 220 and a switch unit 230 , and the input terminal of the charge management unit 210 is for charging the backup power supply module 200 .
  • terminal, the output terminal of the charge management unit 210 is connected to the rechargeable battery B1
  • the rechargeable battery B1 is connected to the input terminal of the discharge management unit 220
  • the output terminal of the discharge management unit 220 is connected to the switch unit through the switch unit.
  • 230 is connected to the input end of the step-down unit 300, and the detection end of the switch unit 230 is connected to the output end of the main power supply module 100, wherein:
  • the charging management unit 210 is configured to charge the rechargeable battery B1 through the voltage output by the main power supply module 100;
  • the switch unit 230 is configured to turn on the connection between the discharge management unit 220 and the step-down unit 300 when it is detected that the main power supply module 100 is powered off;
  • the switch unit 230 is configured to disconnect the connection between the discharge management unit 220 and the step-down unit 300 when detecting that the main power supply module 100 outputs an operating voltage.
  • the rechargeable battery B1 in this embodiment is a rechargeable lithium battery.
  • the rechargeable lithium battery adopts IFR14500 battery.
  • the charging management unit 210 is used to manage the charging of the rechargeable battery B1, such as setting the charging cut-off voltage and charging current, indicating the charging state, and the like.
  • the discharge management unit 220 is used to manage the discharge of the rechargeable battery B1, such as setting the discharge cut-off voltage, discharge overcurrent protection, and the like.
  • the charging management unit 210 includes a charging management chip U2, a light-emitting diode LED1, a sixth resistor R6 and a fifth filtering sub-unit 211;
  • the input terminal of the charging management chip U2 is the input terminal of the charging management unit 210 , and the input terminal of the charging management chip U2 is respectively connected to the anode of the light emitting diode LED1 and the fifth filtering sub-unit 211 .
  • the negative pole of the light-emitting diode LED1 is connected to the charging status indication terminal of the charging management chip U2;
  • the output terminal of the charging management chip U2 is the output terminal of the charging management unit 210;
  • the charging current setting terminal of the charging management chip U2 is The sixth resistor R6 is grounded, the charging voltage setting terminal of the charging management chip U2 is grounded; the grounding terminal of the charging management chip U2 is grounded.
  • the charge management chip U2 adopts the SGM40560A charge management chip U2 of Shengbang Micro Company. Set the charge cut-off voltage to 3.65V; that is, stop charging when the voltage of the rechargeable battery B1 reaches 3.65V.
  • the maximum charging current can be adjusted by adjusting the resistance value of the sixth resistor R6. Specifically, the maximum charging current is 24000/the resistance value Ma of the sixth resistor R6.
  • the charging status indication terminal of the charging management chip U2 takes 1280ms as a cycle, and draws current intermittently for 1/8 time; after charging is completed, it continuously draws current for 40 indicating cycles, that is, 51.2s, and then enters a high-impedance state. That is, the light-emitting diode LED1 flashes during charging, and is always on after charging is completed.
  • the light emitting diode LED1 in this embodiment is a red light emitting diode LED1.
  • the fifth filtering sub-unit 211 includes a capacitor, and the input end of the charging management chip U2 is grounded through the capacitor. It should be noted that, the capacitance in the fifth filtering sub-unit 211 may be set by connecting multiple capacitors in parallel according to actual needs.
  • the discharge management unit 220 includes a discharge management chip U3, a seventh resistor R7, an eighth resistor R8 and a second capacitor C2;
  • the output positive terminal of the discharge management chip U3 is connected to the switch unit 230 through the seventh resistor R7, and the output positive terminal of the discharge management chip U3 is also connected to the rechargeable battery B1 through the seventh resistor R7.
  • Positive pole, the positive output terminal of the discharge management chip U3 is also connected to the bypass terminal of the discharge management chip U3 through the eighth resistor R8; the bypass terminal of the discharge management chip U3 also passes through the second capacitor C2 is connected to the negative terminal of the rechargeable battery B1; the input negative terminal of the discharge management chip U3 is connected to the negative terminal of the rechargeable battery B1; the output negative terminal of the discharge management chip U3 is grounded.
  • the discharge management chip U3 adopts the SGM41101 discharge management chip U3 of Shengbang Micro Company.
  • the discharge cut-off voltage can be set.
  • the discharge cut-off voltage is set to 3V, that is, charging is stopped when the voltage of the rechargeable battery B1 is less than or equal to 3V.
  • the switch unit 230 includes a first switch tube and a second switch tube, a first diode D1 and a ninth resistor R9;
  • the control end of the first switch tube is connected to the output end of the main power supply module 100 through the ninth resistor R9, the output end of the first switch tube is connected to the input end of the step-down unit 300, and the first switch tube is connected to the input end of the step-down unit 300.
  • the output end of a switch tube is also connected to the cathode of the first diode D1, the anode of the first diode D1 is connected to the output end of the main power supply module 100; the input end of the first switch tube is connected to The input end of the second switch tube; the control end of the second switch tube is connected to the output end of the main power supply module 100 through the ninth resistor R9, and the output end of the second switch tube is connected to the discharge end The output of the management unit 220.
  • the first switch transistor is a first MOS transistor Q1
  • the second switch transistor is a second MOS transistor Q2
  • the first MOS transistor Q1 and the second MOS transistor Q2 are both PMOS transistors. Since the voltage drop of the diode is too large and the voltage drop of the MOS transistor is small, PMOS transistors are used as the first MOS transistor Q1 and the second MOS transistor Q2.
  • the gates of the first MOS transistor Q1 and the second MOS transistor Q2 receive a high level, the first MOS transistor Q1 and the second MOS transistor Q2 are both turned off, and the voltage of the rechargeable battery B1 cannot be output for power supply .
  • the gates of the first MOS transistor Q1 and the second MOS transistor Q2 receive a low level, the first MOS transistor Q1 and the second MOS transistor Q2 are both turned on, and the voltage of the rechargeable battery B1 passes through The first MOS transistor Q1 and the second MOS transistor Q2 are output to the step-down unit 300 .
  • the first diode D1 is used to prevent backflow, and prevent device damage caused by the backflow of electricity from the rechargeable battery B1 when the main power supply module 100 is powered off, such as the main power supply module 100 .
  • the backup power supply module 200 further includes a battery detection unit 240, and the battery detection unit 240 includes a tenth resistor R10, an eleventh resistor R11 and a sixth filter subunit 241;
  • the first end of the tenth resistor R10 is connected to the positive electrode of the rechargeable battery B1, the second end of the tenth resistor R10 is grounded through the eleventh resistor R11, and the second end of the tenth resistor R10 It is also connected to the sixth filtering subunit 241 and the battery detection terminal of the processing module, respectively.
  • the battery detection unit 240 is used to detect the voltage of the rechargeable battery B1 and send it to the MCU in real time; when the MCU detects that the voltage of the rechargeable battery B1 is lower than the preset voltage threshold, an alarm operation is performed to remind the user that the electric energy meter is about to be Power off.
  • the present embodiment enables functions such as charge and discharge management of the rechargeable battery and low-voltage warning to be realized, thereby improving the reliability and stability of the electric energy meter.
  • the present application also protects an electric energy meter, which includes a housing and a novel electric energy meter power supply circuit, the novel electric energy meter power supply circuit is arranged in the housing, and the novel electric energy meter power supply circuit is configured as the new type of electric energy meter as described above.
  • Electric energy meter power supply circuit As a matter of course, since the electric energy meter of this embodiment adopts the technical solution of the above-mentioned new electric energy meter power supply circuit, the electric energy meter has all the beneficial effects of the above-mentioned new electric energy meter power supply circuit.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提出一种新型电能表供电电路及电能表,电路包括主供电模块和备用供电模块,主供电模块的第一输出端连接电能表的处理模块的供电端,主供电模块的第二输出端连接备用供电模块的充电端,备用供电模块的输出端连接电能表的处理模块的供电端,其中:主供电模块,用于给处理模块供电和给备用供电模块充电;备用供电模块在主供电模块断电时,给处理模块供电。

Description

新型电能表供电电路及电能表
本申请要求于2020年12月25日提交中国专利局、申请号为202011574407.7、申请名称为“新型电能表供电电路及电能表”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
技术领域
本申请涉及设备供电领域,尤其涉及一种新型电能表供电电路及电能表。
背景技术
现有的电能表,大多从市电电网取电,再通过一系列的整流降压得到需要的直流电压给电表MCU及外围电路供电。为了防止市电掉电的情况,电能表内还采用锂亚电池作为备用电源,使电能表掉电时,供电端切换成锂亚电池,保证掉电时电表的数据和时钟不乱,同时防止窃电。然而,锂亚电池的带载能力有限,无法支持功率较大模块(如无线模块和通讯电路,)工作,导致电能表在市电掉电时无法与终端设备进行通讯。而且锂亚电池的寿命一般在三年左右,当电量耗尽时,需要更换锂亚电池,提高了物料成本和人工成本。
技术问题
本申请的主要目的在于提出一种新型电能表供电电路及电能表,旨在解决现有技术电能表备用电源带载能力低且电能耗尽时需要更换的问题。
技术解决方案
为实现上述目的,本申请提供一种新型电能表供电电路,所述电路包括主供电模块和备用供电模块,所述主供电模块的第一输出端连接电能表的处理模块的供电端,所述主供电模块的第二输出端连接所述备用供电模块的充电端,所述备用供电模块的输出端连接所述电能表的处理模块的供电端,其中:
所述主供电模块,用于给所述处理模块和所述备用供电模块供电;
所述备用供电模块,用于在所述主供电模块断电时,给所述处理模块供电。
在一实施例中,所述电路还包括降压单元,所述降压单元的输入端分别与所述主供电模块的输出端和所述备用供电模块的输出端连接,所述降压单元的输出端连接所述处理模块的供电端,其中:
所述主供电模块,用于将市电的电压转换为电能表的运行电压之后,输出至所述降压单元和所述备用供电模块;
所述备用供电模块,用于在所述主供电模块断电时,输出运行电压至所述降压单元;
所述降压单元,用于将所述运行电压降压,并输出至所述处理模块的供电端。
在一实施例中,所述主供电模块包括开关电源芯片、第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第一电容、储能电感、续流子单元、第一滤波子单元和第二滤波子单元;
所述开关电源芯片的输入端分别连接所述市电和所述第一滤波子单元,所述开关电源芯片的输入端还通过所述第一电阻连接所述开关电源芯片的使能端,所述开关电源芯片的使能端通过所述第二电阻接地;所述开关电源芯片的电容端依次通过所述第三电阻和所述第一电容连接所述开关电源芯片的输出端;所述开关电源芯片的输出端分别连接所述续流子单元和所述储能电感的第一端;所述储能电感的第二端为所述电源单元的输出端,所述储能电感的第二端连接所述第二滤波子单元;所述储能电感的第二端还通过所述第五电阻连接所述开关电源芯片的反馈端,所述开关电源芯片的反馈端通过所述第四电阻接地。
在一实施例中,所述降压单元包括:降压芯片、第三滤波子单元和第四滤波子单元;
所述降压芯片的输入端为所述降压单元的输入端,所述降压芯片的输入端连接所述第三滤波子单元;所述降压芯片的输出端为所述降压单元的输出端,所述降压芯片的输出端连接所述第四滤波子单元。
在一实施例中,所述备用供电模块包括可充电电池、充电管理单元、放电管理单元和开关单元;所述充电管理单元的输入端为所述备用供电模块的充电端,所述充电管理单元的输出端连接所述可充电电池,所述可充电电池连接所述放电管理单元的输入端,所述放电管理单元的输出端通过所述开关单元连接所述降压单元的输入端,所述开关单元的检测端连接所述主供电模块的输出端,其中:
所述充电管理单元,用于通过所述主供电模块输出的电压给所述可充电电池充电;
所述开关单元,用于在检测到所述主供电模块断电时,导通所述放电管理单元与所述降压单元之间的连接;
所述开关单元,用于在检测到所述主供电模块输出运行电压时,断开所述放电管理单元与所述降压单元之间的连接。
在一实施例中,所述充电管理单元包括充电管理芯片、发光二极管、第六电阻和第五滤波子单元;
所述充电管理芯片的输入端为所述充电管理单元的输入端,所述充电管理芯片的输入端分别连接所述发光二极管的正极和所述第五滤波子单元,所述发光二极管的负极连接所述充电管理芯片的充电状态指示端;所述充电管理芯片的输出端为所述充电管理单元的输出端;所述充电管理芯片的充电电流设置端通过所述第六电阻接地,所述充电管理芯片的充电电压设置端接地;所述充电管理芯片的接地端接地。
在一实施例中,所述放电管理单元包括放电管理芯片、第七电阻、第八电阻和第二电容;
所述放电管理芯片的输出正端通过所述第七电阻连接所述开关单元,所述放电管理芯片的输出正端还通过所述第七电阻连接所述可充电电池的正极,所述放电管理芯片的输出正端还通过所述第八电阻连接所述放电管理芯片的旁路端;所述放电管理芯片的旁路端还通过所述第二电容连接所述可充电电池的负极;所述放电管理芯片的输入负端连接所述可充电电池的负极;所述放电管理芯片的输出负端接地。
在一实施例中,所述开关单元包括第一开关管和第二开关管、第一二极管和第九电阻;
所述第一开关管的控制端通过所述第九电阻连接所述主供电模块的输出端,所述第一开关管的输出端连接所述降压单元的输入端,所述第一开关管的输出端还连接所述第一二极管的负极,所述第一二极管的正极连接所述主供电模块的输出端;所述第一开关管的输入端连接所述第二开关管的输入端;所述第二开关管的控制端通过所述第九电阻连接所述主供电模块的输出端,所述第二开关管的输出端连接所述放电管理单元的输出端。
在一实施例中,所述备用供电模块还包括电池检测单元,所述电池检测单元包括第十电阻、第十一电阻和第六滤波子单元;
所述第十电阻的第一端连接所述可充电电池的正极,所述第十电阻的第二端通过所述第十一电阻接地,所述第十电阻的第二端还分别连接所述第六滤波子单元和所述处理模块的电池检测端。
此外,为实现上述目的,本申请还提供一种电能表,所述电能表包括壳体和新型电能表供电电路,所述新型电能表供电电路设置于所述壳体内,新型电能表供电电路被配置为如上所述的新型电能表供电电路。
有益效果
本申请提出的一种新型电能表供电电路及电能表,所述电路包括主供电模块和备用供电模块,所述主供电模块的第一输出端连接电能表的处理模块的供电端,所述主供电模块的第二输出端连接所述备用供电模块的充电端,所述备用供电模块的输出端连接所述电能表的处理模块的供电端,其中:所述主供电模块,用于给所述处理模块和所述备用供电模块供电;所述备用供电模块,用于在所述主供电模块断电时,给所述处理模块供电。通过采用可充电的备用供电模块,在有外部电源供电时,通过外部电源给备用供电模块供电,在无外部电源时,采用备用供电模块给处理模块供电,使得电能表可实现停电时与终端设备进行通讯,同时备用供电模块不会因为电量耗尽而需要更换,极大地延长了备用电源的使用寿命,减少了电源更换的成本。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请新型电能表供电电路一实施例的功能模块图;
图2为本申请新型电能表供电电路应用在图1实施例中的电路结构图;
图3为本申请新型电能表供电电路中主供电模块供电时的结构示意图;
图4为本申请新型电能表供电电路中备用供电模块供电时的结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
附图标号说明:
标号 名称 标号 名称
100 主供电模块 R1~R11 第一电阻~第十一电阻
101 第一滤波子单元 D1~D2 第一二极管~第二二极管
102 第二滤波子单元 C1~C2 第一电容~第二电容
103 续流子单元 U1 开关电源芯片
200 备用供电模块 U2 充电管理芯片
210 充电管理单元 U3 放电管理芯片
211 第五滤波子单元 U4 降压芯片
220 放电管理单元 L1 储能电感
230 开关单元 LED1 发光二极管
240 电池检测单元 Q1 第一MOS管
241 第六滤波子单元 Q2 第二MOS管
300 降压单元 B1 可充电电池
302 第四滤波子单元 301 第三滤波子单元
400 处理模块 401 MCU
402 RF无线模块 403 红外通讯电路
404 窃电检测电路 405 存储器
406 液晶显示 407 计量单元
408 电压及电流采样电路    
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后......)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提供一种新型电能表供电电路,应用于电能表中,请参见图1,图1为本申请新型电能表供电电路一实施例的功能模块图。在该实施例中,所述电路包括主供电模块100和备用供电模块200,所述主供电模块100的第一输出端连接电能表的处理模块400的供电端,所述主供电模块100的第二输出端连接所述备用供电模块200的充电端,所述备用供电模块200的输出端连接所述电能表的处理模块400的供电端,其中:
所述主供电模块100,用于给所述处理模块400充电和所述备用供电模块200供电;
所述备用供电模块200,用于在所述主供电模块100断电时,给所述处理模块供电。
主供电模块100用于将电网电压转换为电能表运行电压之后分别给处理模块供电,以及给备用供电模块200充电。主供电模块100通常包含AC-DC电路和降压电路等。
备用供电模块200在主供电模块100供电时不对处理模块400供电,在主供电模块100断电时,才给所述处理模块400供电。
处理模块包括电能表的控制电路和外围电路,请一并参见图3和图4,处理模块400包括MCU401、RF(Radio Frequency,射频)无线模块402、红外通讯电路403、窃电检测电路404、存储器405、液晶显示406、计量单元407和电压及电流采样电路408等。RF无线模块402用于与终端设备进行无线抄表。红外通讯电路用于与终端设备进行通讯。MCU401、存储器405、计量单元407、电压及电流采样电路408和液晶显示406用于电能表的日常计电操作即人机交互。窃电检测电路404用于防止窃电。
在一实施例中,参照附图2,所述电路还包括降压单元300,所述降压单元300的输入端分别与所述主供电模块100的输出端和所述备用供电模块200的输出端连接,所述降压单元300的输出端连接所述处理模块400的供电端,其中:
所述主供电模块100,用于将市电的电压转换为电能表的运行电压之后,输出所述运行电压至所述降压单元300和所述备用供电模块200;
所述备用供电模块200,用于在所述主供电模块100断电时,输出所述运行电压至所述降压单元300;
所述降压单元300,用于将所述运行电压降压后输出至所述处理模块400的供电端。
主供电模块100和备用供电模块200输出的电压在输入至处理模块400之前,还需要通过降压单元300进行降压,以使得输入至处理模块400的电压符合处理模块中各器件与电路的运行电压。
本实施例通过采用可充电的备用供电模块200,使得在有外部电源供电时,通过外部电源给备用供电模块200供电,在无外部电源时,采用备用供电模块200给处理模块400供电,使得备用供电模块200不会因为电量耗尽而需要更换,极大地延长了备用电源的使用寿命,减少了电源更换的成本。
在一实施例中,参见图2,所述主供电模块100包括开关电源芯片U1、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第一电容C1、储能电感L1、续流子单元103、第一滤波子单元101和第二滤波子单元102;
所述开关电源芯片U1的输入端分别连接所述市电和所述第一滤波子单元101,所述开关电源芯片U1的输入端还通过所述第一电阻R1连接所述开关电源芯片U1的使能端,所述开关电源芯片U1的使能端通过所述第二电阻R2接地;所述开关电源芯片U1的电容端依次通过所述第三电阻R3和所述第一电容C1连接所述开关电源芯片U1的输出端;所述开关电源芯片U1的输出端分别连接所述续流子单元103和所述储能电感L1的第一端;所述储能电感L1的第二端为所述电源单元的输出端,所述储能电感L1的第二端连接所述第二滤波子单元102;所述储能电感L1的第二端还通过所述第五电阻R5连接所述开关电源芯片U1的反馈端,所述开关电源芯片U1的反馈端通过所述第四电阻R4接地。
本实施例中,开关电源芯片U1采用TI公司的LV2843开关电源芯片U1;所述续流子单元103包括第二二极管D2,所述第二二极管D2的正极接地,所述第二二极管D2的负极连接所述开关电源芯片U1的输出端。
所述第一滤波子单元101包括电容,开关电源芯片U1的输入端通过该电容接地;所述第二滤波子单元102包括电解电容和陶瓷贴片电容,所述储能电感L1的第二端连接电解电容的正极,电解电容的负极接地,陶瓷贴片电容与电解电容并联;需要说明的是,第一滤波子单元101和第二滤波子单元102中的电容可以根据实际需要通过多个电容并联的方式进行容值的设置。
本实施例中,开关电源芯片U1的输入端接收市电经过AC-DC电路进行整流降压之后得到的9V电压,该9V电压经过开关电源芯片U1进行降压之后得到5V电压,将5V电压分别输出至降压单元300和备用供电模块200。
在一实施例中,所述降压单元300包括:降压芯片U4、第三滤波子单元301和第四滤波子单元302;
所述降压芯片U4的输入端为所述降压单元300的输入端,所述降压芯片U4的输入端连接所述第三滤波子单元301;所述降压芯片U4的输出端为所述降压单元300的输出端,所述降压芯片U4的输出端连接所述第四滤波子单元302。
本实施例中,降压芯片U4采用圣邦微公司的SGM2034降压芯片U4;第三滤波子单元301和第四滤波子单元302均包括电容,降压芯片U4的输入端和输出端分别通过电容接地。需要说明的是,第三滤波子单元301和第四滤波子单元302中的电容可以根据实际需要通过多个电容并联的方式进行容值的设置。
降压单元300通过将接收到的5V电压转换为3.3V电压,并将3.3V电压输出至处理模块400。
在一实施例中,所述备用供电模块200包括可充电电池B1、充电管理单元210、放电管理单元220和开关单元230,所述充电管理单元210的输入端为所述备用供电模块200的充电端,所述充电管理单元210的输出端连接所述可充电电池B1,所述可充电电池B1连接所述放电管理单元220的输入端,所述放电管理单元220的输出端通过所述开关单元230连接所述降压单元300的输入端,所述开关单元230的检测端连接所述主供电模块100的输出端,其中:
所述充电管理单元210,用于通过所述主供电模块100输出的电压给所述可充电电池B1充电;
所述开关单元230,用于在检测到所述主供电模块100断电时,导通所述放电管理单元220与所述降压单元300之间的连接;
所述开关单元230,用于在检测到所述主供电模块100输出运行电压时,断开所述放电管理单元220与所述降压单元300之间的连接。
本实施例中的可充电电池B1为可充电锂电池。可充电锂电池采用IFR14500电池。
所述充电管理单元210用于管理可充电电池B1的充电,如设置充电截止电压和充电电流、指示充电状态等。所述放电管理单元220用于管理可充电电池B1的放电,如设置放电截止电压、放电过流保护等。
在一实施例中,所述充电管理单元210包括充电管理芯片U2、发光二极管LED1、第六电阻R6和第五滤波子单元211;
所述充电管理芯片U2的输入端为所述充电管理单元210的输入端,所述充电管理芯片U2的输入端分别连接所述发光二极管LED1的正极和所述第五滤波子单元211,所述发光二极管LED1的负极连接所述充电管理芯片U2的充电状态指示端;所述充电管理芯片U2的输出端为所述充电管理单元210的输出端;所述充电管理芯片U2的充电电流设置端通过所述第六电阻R6接地,所述充电管理芯片U2的充电电压设置端接地;所述充电管理芯片U2的接地端接地。
本实施例中,充电管理芯片U2采用圣邦微公司的SGM40560A充电管理芯片U2。设置充电截止电压为3.65V;即在可充电电池B1的电压达到3.65V时停止充电。通过调整第六电阻R6的阻值可以调整最大充电电流,具体地,最大充电电流为24000/第六电阻R6阻值Ma。
充电管理芯片U2的充电状态指示端在充电时,以1280ms为周期,1/8时间间歇吸入电流;充电完成后,持续吸入电流40个指示周期,即51.2s,然后进入高阻态。即发光二极管LED1在充电时闪烁,在充电完成后常亮。本实施例中的发光二极管LED1为红色发光二极管LED1。第五滤波子单元211包括电容,充电管理芯片U2的输入端通过电容接地。需要说明的是,第五滤波子单元211中的电容可以根据实际需要通过多个电容并联的方式进行容值的设置。
在一实施例中,所述放电管理单元220包括放电管理芯片U3、第七电阻R7、第八电阻R8和第二电容C2;
所述放电管理芯片U3的输出正端通过所述第七电阻R7连接所述开关单元230,所述放电管理芯片U3的输出正端还通过所述第七电阻R7连接所述可充电电池B1的正极,所述放电管理芯片U3的输出正端还通过所述第八电阻R8连接所述放电管理芯片U3的旁路端;所述放电管理芯片U3的旁路端还还通过所述第二电容C2连接所述可充电电池B1的负极;所述放电管理芯片U3的输入负端连接所述可充电电池B1的负极;所述放电管理芯片U3的输出负端接地。
本实施例中,放电管理芯片U3采用圣邦微公司的SGM41101放电管理芯片U3。可设置放电截止电压,本实施例中,放电截止电压设置为3V,即在可充电电池B1电压小于或等于3V时停止充电。
在一实施例中,所述开关单元230包括第一开关管和第二开关管、第一二极管D1和第九电阻R9;
所述第一开关管的控制端通过所述第九电阻R9连接所述主供电模块100的输出端,所述第一开关管的输出端连接所述降压单元300的输入端,所述第一开关管的输出端还连接所述第一二极管D1的负极,所述第一二极管D1的正极连接所述主供电模块100的输出端;所述第一开关管的输入端连接所述第二开关管的输入端;所述第二开关管的控制端通过所述第九电阻R9连接所述主供电模块100的输出端,所述第二开关管的输出端连接所述放电管理单元220的输出端。
本实施例中所述第一开关管为第一MOS管Q1,所述第二开关管为第二MOS管Q2;所述第一MOS管Q1和第二MOS管Q2均为PMOS管。由于二极管压降太大,而MOS管导通压降小,因此采用PMOS管作为第一MOS管Q1和第二MOS管Q2。
在主供电模块100供电时,第一MOS管Q1和第二MOS管Q2的栅极接收高电平,第一MOS管Q1和第二MOS管Q2均截止,可充电电池B1的电压无法输出供电。
在主供电模块100断电时,第一MOS管Q1和第二MOS管Q2的栅极接收低电平,第一MOS管Q1和第二MOS管Q2均导通,可充电电池B1的电压通过第一MOS管Q1和第二MOS管Q2输出至降压单元300。
所述第一二极管D1用于防倒灌,防止在主供电模块100断电时可充电电池B1的电倒灌如主供电模块100造成器件损伤。
在一实施例中,所述备用供电模块200还包括电池检测单元240,所述电池检测单元240包括第十电阻R10、第十一电阻R11和第六滤波子单元241;
所述第十电阻R10的第一端连接所述可充电电池B1的正极,所述第十电阻R10的第二端通过所述第十一电阻R11接地,所述第十电阻R10的第二端还分别连接所述第六滤波子单元241和所述处理模块的电池检测端。
所述电池检测单元240用于检测可充电电池B1的电压,并实时发送至MCU;当MCU检测到可充电电池B1的电压低于预设电压阈值时,进行报警操作,以提醒用户电能表即将断电。
本实施例通过以上具体的电路结构,使得能够实现对可充电电池的充放电管理以及低压预警等功能,提升了电能表的可靠性以及稳定性。
本申请还保护一种电能表,该电能表包括壳体和新型电能表供电电路,所述新型电能表供电电路设置于所述壳体内,该新型电能表供电电路被配置为如上所述的新型电能表供电电路。理所应当地,由于本实施例的电能表采用了上述新型电能表供电电路的技术方案,因此该电能表具有上述新型电能表供电电路所有的有益效果。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种新型电能表供电电路,其中,所述电路包括主供电模块和备用供电模块,所述主供电模块的第一输出端连接电能表的处理模块的供电端,所述主供电模块的第二输出端连接所述备用供电模块的充电端,所述备用供电模块的输出端连接所述电能表的处理模块的供电端,其中:
    所述主供电模块,用于给所述处理模块供电和给所述备用供电模块充电;
    所述备用供电模块,用于在所述主供电模块断电时,给所述处理模块供电。
  2. 如权利要求1所述的新型电能表供电电路,其中,所述电路还包括降压单元,所述降压单元的输入端分别与所述主供电模块的输出端和所述备用供电模块的输出端连接,所述降压单元的输出端连接所述处理模块的供电端,其中:
    所述主供电模块,用于将市电的电压转换为电能表的运行电压之后,输出所述运行电压至所述降压单元和所述备用供电模块;
    所述备用供电模块,用于在所述主供电模块断电时,输出所述运行电压至所述降压单元;
    所述降压单元,用于将所述运行电压降压,并输出至所述处理模块的供电端。
  3. 如权利要求2所述的新型电能表供电电路,其中,所述主供电模块包括开关电源芯片、第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第一电容、储能电感、续流子单元、第一滤波子单元和第二滤波子单元;
    所述开关电源芯片的输入端分别连接所述市电和所述第一滤波子单元,所述开关电源芯片的输入端还通过所述第一电阻连接所述开关电源芯片的使能端,所述开关电源芯片的使能端通过所述第二电阻接地;所述开关电源芯片的电容端依次通过所述第三电阻和所述第一电容连接所述开关电源芯片的输出端;所述开关电源芯片的输出端分别连接所述续流子单元和所述储能电感的第一端;所述储能电感的第二端为所述电源单元的输出端,所述储能电感的第二端连接所述第二滤波子单元;所述储能电感的第二端还通过所述第五电阻连接所述开关电源芯片的反馈端,所述开关电源芯片的反馈端通过所述第四电阻接地。
  4. 如权利要求2所述的新型电能表供电电路,其中,所述降压单元包括:降压芯片、第三滤波子单元和第四滤波子单元;
    所述降压芯片的输入端为所述降压单元的输入端,所述降压芯片的输入端连接所述第三滤波子单元;所述降压芯片的输出端为所述降压单元的输出端,所述降压芯片的输出端连接所述第四滤波子单元。
  5. 如权利要求2所述的新型电能表供电电路,其中,所述备用供电模块包括可充电电池、充电管理单元、放电管理单元和开关单元;所述充电管理单元的输入端为所述备用供电模块的充电端,所述充电管理单元的输出端连接所述可充电电池,所述可充电电池连接所述放电管理单元的输入端,所述放电管理单元的输出端通过所述开关单元连接所述降压单元的输入端,所述开关单元的检测端连接所述主供电模块的输出端,其中:
    所述充电管理单元,用于通过所述主供电模块输出的电压给所述可充电电池充电;
    所述开关单元,用于在检测到所述主供电模块断电时,导通所述放电管理单元与所述降压单元之间的连接;
    所述开关单元,用于在检测到所述主供电模块输出运行电压时,断开所述放电管理单元与所述降压单元之间的连接。
  6. 如权利要求5所述的新型电能表供电电路,其中,所述充电管理单元包括充电管理芯片、发光二极管、第六电阻和第五滤波子单元;
    所述充电管理芯片的输入端为所述充电管理单元的输入端,所述充电管理芯片的输入端分别连接所述发光二极管的正极和所述第五滤波子单元,所述发光二极管的负极连接所述充电管理芯片的充电状态指示端;所述充电管理芯片的输出端为所述充电管理单元的输出端;所述充电管理芯片的充电电流设置端通过所述第六电阻接地,所述充电管理芯片的充电电压设置端接地;所述充电管理芯片的接地端接地。
  7. 如权利要求5所述的新型电能表供电电路,其中,所述放电管理单元包括放电管理芯片、第七电阻、第八电阻和第二电容;
    所述放电管理芯片的输出正端通过所述第七电阻连接所述开关单元,所述放电管理芯片的输出正端还通过所述第七电阻连接所述可充电电池的正极,所述放电管理芯片的输出正端还通过所述第八电阻连接所述放电管理芯片的旁路端;所述放电管理芯片的旁路端还通过所述第二电容连接所述可充电电池的负极;所述放电管理芯片的输入负端连接所述可充电电池的负极;所述放电管理芯片的输出负端接地。
  8. 如权利要求5所述的新型电能表供电电路,其中,所述开关单元包括第一开关管和第二开关管、第一二极管和第九电阻;
    所述第一开关管的控制端通过所述第九电阻连接所述主供电模块的输出端,所述第一开关管的输出端连接所述降压单元的输入端,所述第一开关管的输出端还连接所述第一二极管的负极,所述第一二极管的正极连接所述主供电模块的输出端;所述第一开关管的输入端连接所述第二开关管的输入端;所述第二开关管的控制端通过所述第九电阻连接所述主供电模块的输出端,所述第二开关管的输出端连接所述放电管理单元的输出端。
  9. 如权利要求5所述的新型电能表供电电路,其中,所述备用供电模块还包括电池检测单元,所述电池检测单元包括第十电阻、第十一电阻和第六滤波子单元;
    所述第十电阻的第一端连接所述可充电电池的正极,所述第十电阻的第二端通过所述第十一电阻接地,所述第十电阻的第二端还分别连接所述第六滤波子单元和所述处理模块的电池检测端。
  10. 一种电能表,其中,所述电能表包括壳体和新型电能表供电电路,所述新型电能表供电电路设置于所述壳体内,新型电能表供电电路被配置为如权利要求1~9中任一项所述的新型电能表供电电路。
PCT/CN2021/084279 2020-12-25 2021-03-31 新型电能表供电电路及电能表 WO2022134359A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011574407.7A CN112636454A (zh) 2020-12-25 2020-12-25 新型电能表供电电路及电能表
CN202011574407.7 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022134359A1 true WO2022134359A1 (zh) 2022-06-30

Family

ID=75326024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084279 WO2022134359A1 (zh) 2020-12-25 2021-03-31 新型电能表供电电路及电能表

Country Status (2)

Country Link
CN (1) CN112636454A (zh)
WO (1) WO2022134359A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116707121A (zh) * 2023-08-10 2023-09-05 青岛鼎信通讯股份有限公司 一种电能表时钟看护方法、装置及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202512170U (zh) * 2012-04-19 2012-10-31 上海大亚科技有限公司 具有断电保护功能的智能电表通信模块电路结构
CN104734328A (zh) * 2013-12-20 2015-06-24 国家电网公司 用电监测设备
CN104734329A (zh) * 2013-12-20 2015-06-24 国家电网公司 用电监测设备的供电系统
CN207408485U (zh) * 2017-10-30 2018-05-25 威胜集团有限公司 新型智能单相电能表
CN211351812U (zh) * 2019-12-24 2020-08-25 西安建筑科技大学 一种电源模块控制电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202512170U (zh) * 2012-04-19 2012-10-31 上海大亚科技有限公司 具有断电保护功能的智能电表通信模块电路结构
CN104734328A (zh) * 2013-12-20 2015-06-24 国家电网公司 用电监测设备
CN104734329A (zh) * 2013-12-20 2015-06-24 国家电网公司 用电监测设备的供电系统
CN207408485U (zh) * 2017-10-30 2018-05-25 威胜集团有限公司 新型智能单相电能表
CN211351812U (zh) * 2019-12-24 2020-08-25 西安建筑科技大学 一种电源模块控制电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116707121A (zh) * 2023-08-10 2023-09-05 青岛鼎信通讯股份有限公司 一种电能表时钟看护方法、装置及介质
CN116707121B (zh) * 2023-08-10 2023-11-14 青岛鼎信通讯股份有限公司 一种电能表时钟看护方法、装置及介质

Also Published As

Publication number Publication date
CN112636454A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
CN106558980B (zh) 一种使能控制电路
WO2024087737A1 (zh) 掉电检测和供电保持功能电路及电子设备
CN106849329A (zh) 一种电能表供电电路
CN206362841U (zh) 基于超级电容和纽扣式锂锰电池的长寿命智能电能表
WO2022134359A1 (zh) 新型电能表供电电路及电能表
CN108879892B (zh) 一种双电池组自动切换供电系统
CN205846852U (zh) 一种ups电源装置
CN207743753U (zh) 一种锂离子电池应用大型ups电源的自启动装置
CN206894301U (zh) 一种双辅助电源及基于双辅助电源的储能系统
CN215681902U (zh) 新型电能表供电电路及电能表
CN213817282U (zh) 一种电池管理系统以及电池包
CN205864052U (zh) 一种ups电源装置
CN211655760U (zh) 一种基于硬件控制的锂电池动态充放电管理电路
CN209673953U (zh) 一种电源ic产品的测试电路
CN207251471U (zh) 一种防止电流浪涌电路
CN102832680A (zh) 一种超级电容作为储能介质的物机
CN207664657U (zh) 基于锂电池的无线卷发器控制电路
CN220732395U (zh) 一种储能电源装置
CN218415895U (zh) 一种备用电池控制电路
CN101470503A (zh) Cmos芯片供电装置
CN207637156U (zh) 一种低耗电的身份证阅读机
CN106849281A (zh) 一种安全蓄电池储能管理系统
CN216056425U (zh) 一种分断负极方案bms的充电电压唤醒电路
CN217692702U (zh) Rtc模块供电电路、rtc电路及电子设备
CN220570337U (zh) 一种供电切换电路、功耗调整电路以及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908371

Country of ref document: EP

Kind code of ref document: A1