WO2022134267A1 - 一种解散斑激光电视屏幕及其制备方法 - Google Patents

一种解散斑激光电视屏幕及其制备方法 Download PDF

Info

Publication number
WO2022134267A1
WO2022134267A1 PCT/CN2021/074286 CN2021074286W WO2022134267A1 WO 2022134267 A1 WO2022134267 A1 WO 2022134267A1 CN 2021074286 W CN2021074286 W CN 2021074286W WO 2022134267 A1 WO2022134267 A1 WO 2022134267A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
screen
laser
prism
light
Prior art date
Application number
PCT/CN2021/074286
Other languages
English (en)
French (fr)
Inventor
李刚
张毅
夏寅
薛永富
陈建文
唐海江
张彦
Original Assignee
宁波激智科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波激智科技股份有限公司 filed Critical 宁波激智科技股份有限公司
Publication of WO2022134267A1 publication Critical patent/WO2022134267A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/602Lenticular screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • the invention relates to the field of laser television, in particular to a laser television screen, in particular to a speckle-dissolving laser television screen and a preparation method thereof.
  • Laser TV is a projection display device that uses a laser as a display light source, is equipped with a special optical screen and audio equipment, and can receive radio TV programs or Internet TV programs.
  • the laser has high intensity, which can meet the needs of high-brightness display systems.
  • the laser has excellent directivity and can achieve high resolution in scanning display systems.
  • the laser spectrum is line spectrum, and the color resolution is high. , the color saturation is high.
  • the laser light source has three characteristics of high brightness, good directionality and good monochromaticity, which is the basis for realizing high-fidelity image reproduction.
  • Speckle is a high-contrast bright and dark speckle pattern as small as sand formed in the display due to the high coherence of the laser light source. Its severity is represented by the speckle contrast. Generally, the higher the speckle contrast is, the more serious the speckle is. , the speckle is smaller. The existence of speckle will greatly affect the image display quality, and will seriously cause eye discomfort to the viewer and damage to health.
  • One way is to start with the laser light source, increase the spectral width of the laser light source, and reduce the coherence of the laser source, thereby reducing the speckle.
  • the advantage of this method is that the light source itself can be used. It is a good solution to the speckle problem, but the disadvantage is that the broadening of the spectral line reduces the monochromaticity of the laser source, which cannot make better use of the color display advantages of laser display, and at the same time, the cost is high.
  • Another way is to start with the display screen. Through reasonable design of the screen, the laser source can be fully scattered on the surface and space to reduce the interference between the laser sources and the speckle contrast, so as to improve the image quality and display quality. the goal of.
  • the present invention provides a speckle-free laser TV screen and a preparation method thereof.
  • the laser TV screen provided by the present invention can satisfy the speckle contrast ratio of R, G and B three colors all reduced to less than 4%.
  • the present invention provides the following technical solutions:
  • the present invention provides a speckle-dissolving laser TV screen, the screen includes a dimming layer, a prism layer, and a reflective layer in order from top to bottom.
  • the foregoing technical solutions include Examples 1-9.
  • the dimming layer includes a structured resin layer and a polymer film in sequence from top to bottom.
  • the light-adjusting layer includes a scattering and leveling valve and an upward leveling valve; the upward leveling valve is respectively provided on both sides of the scattering leveling valve, and the upward leveling valve is positively sandwiched with the horizontal direction of the screen. angle ⁇ .
  • the light-adjusting layer includes a scattering and homogenizing valve and an upward homogenizing valve;
  • the scattering and homogenizing valve includes a rectangular concave lens and a spindle-shaped concave lens, and the spindle-shaped concave lens is arranged on the concave surface of the rectangular concave lens;
  • the The upward homogenizing valve includes a semi-cylindrical lens and spherical particles, and the spherical particles are distributed on the surface of the semi-cylindrical lens; the semi-cylindrical lenses are respectively provided on both sides of the rectangular concave lens, and the semi-cylindrical lenses are in a positive direction with the horizontal direction of the screen.
  • the included angle ⁇ is a semi-cylindrical lens and spherical particles, and the spherical particles are distributed on the surface of the semi-cylindrical lens;
  • the semi-cylindrical lenses are respectively provided on both sides of the rectangular concave
  • the rectangular concave lens is a light guiding structure
  • the semi-cylindrical lens is a light guiding structure.
  • the spindle-shaped concave lens has an astigmatic structure.
  • the spherical particles have a spectroscopic structure.
  • the dimming layer includes a structured resin layer and a polymer film in sequence from top to bottom.
  • the structured resin layer includes a scattering and homogenizing valve and an upward homogenizing valve; the upward homogenizing valves are respectively provided on both sides of the scattering and homogenizing valve, and the upward homogenizing valve is in a positive direction with the horizontal direction of the screen.
  • the included angle ⁇ is a scattering and homogenizing valve and an upward homogenizing valve; the upward homogenizing valves are respectively provided on both sides of the scattering and homogenizing valve, and the upward homogenizing valve is in a positive direction with the horizontal direction of the screen. The included angle ⁇ .
  • the structured resin layer includes a scattering and homogenizing valve and an upward homogenizing valve;
  • the scattering and homogenizing valve includes a rectangular concave lens and a spindle-shaped concave lens, and the spindle-shaped concave lens is arranged on the concave surface of the rectangular concave lens;
  • the upward uniform light valve includes a semi-cylindrical lens and spherical particles, and the spherical particles are distributed on the surface of the semi-cylindrical lens; the semi-cylindrical lenses are respectively arranged on both sides of the rectangular concave lens, and the semi-cylindrical lens is positive with the horizontal direction of the screen. to the included angle ⁇ .
  • the prism layer includes a plurality of prism strips (also referred to as prism columns, referred to as prisms for short), and the prism strips are arc-shaped Fresnel structures.
  • the present invention also provides a method for preparing the speckle-dissolving laser TV screen, the method comprising the following steps:
  • a structured resin layer is prepared on one surface of the polymer film to form a dimming layer
  • a reflective layer is prepared on the surface of the prism layer on the side where the prism peaks are located.
  • the present invention provides a speckle-dissolving laser TV screen, the screen includes a volume astigmatism layer, a prism layer, and a reflective layer in order from top to bottom.
  • the foregoing technical solutions include Examples 11-19.
  • the bulk astigmatism layer includes a number of ellipsoids and a number of rectangular fiber divergent connecting units, two ends of the one rectangular fiber divergent connecting unit are respectively connected with two ellipsoids, and the long axis of the ellipsoid is where the broad side of the screen is located.
  • the directions are parallel, and the included angle between the rectangular fiber divergent connection unit and the line in the direction of the broad side of the screen is ⁇ .
  • the bulk astigmatism layer is a hollow three-dimensional structure.
  • the prism layer includes a plurality of prism strips (also referred to as prism columns, referred to as prisms for short), and the prism strips are arc-shaped Fresnel structures.
  • the present invention also provides a method for preparing the speckle-dissolving laser TV screen.
  • the method includes the following steps: firstly preparing a re-release base material, making a bulk astigmatism layer on the release surface of the base material, and placing a bulk light-scattering layer on the body astigmatism layer. Make a prism layer (the hollow micron-level hollow three-dimensional structure of the bulk astigmatism layer will not leak glue when making the prism layer), prepare a reflective layer on the surface of the prism layer on the side where the prism peaks are, and finally peel off the release film. Spot laser TV screen.
  • the present invention provides a speckle-dissolving laser TV screen, the screen includes a light adjustment layer, a bulk astigmatism layer, a prism layer, and a reflection layer in order from top to bottom.
  • the foregoing technical solutions include Examples 21-29.
  • the light-adjusting layer is the light-adjusting layer of the present invention
  • the volume-scattering layer is the volume-scattering layer of the present invention.
  • the present invention provides a speckle-dissolving laser TV screen, the screen is composed of a dimming layer, a bulk astigmatism layer, a prism layer, and a reflective layer in order from top to bottom.
  • the screen includes four layers. From top to bottom, there is a dimming layer that performs sufficient surface scattering and scanning direction optimization of the laser light source scanned on the surface of the screen.
  • a bulk astigmatism layer that further scatters by multiple spatial refraction-reflection, a prism layer that enables the optics scattered by the bulk astigmatism layer to achieve geometric refraction/reflection and jitter scattering in a specific direction, and a reflective layer that reflects the incident laser source.
  • the dimming layer is composed of a structured resin layer and a polymer film, the dimming layer is divided into upper and lower surfaces, the upper surface is the structured resin layer facing the viewer, and the lower surface is the polymer film.
  • the structured resin layer in the dimming layer is an optical microstructure with a specific optical design, the microstructure is directly facing the viewer, the structured resin layer is formed on one surface of the polymer film, and the other side of the polymer film is formed. One surface acts as the lower surface of the dimming layer to connect with the optical functional layer behind the screen.
  • the main function of the dimming layer is to fully scatter the laser source scanned on the screen and optimize the distribution of the scanned laser source, so that the surface speckle contrast of the laser source on the screen is reduced, and the scanning can be reduced.
  • the surface laser source is optimized in the effective direction of viewing to improve the brightness and uniformity of the picture.
  • the main application sizes are 75, 80, 88, 90, 100, 110, 120, 150, 75-150 inches, and the length of the screen in the horizontal direction is between 1.66-3.321 meters.
  • the viewing angle experience in the horizontal direction of the screen is very important.
  • the transmission mode of the laser source of the laser TV is the transmission mode of full-screen projection from the bottom of the screen to the top of the screen, it is easier to meet the viewing angle of the viewer in the vertical direction of the screen.
  • the dimming layer provided by the present invention can well align the incident scanning laser source in the horizontal direction, and at the same time perform optical optimization in the vertical direction of the screen, reducing the center of the scanning light source due to the sufficient surface scattering of the dimming layer. Attenuation of brightness.
  • the structured resin layer in the dimming layer is a structured optical functional layer formed from an acrylic system UV light-curable resin raw material.
  • the uniform light valve is set along the horizontal direction of the screen to adjust the light scattering in the horizontal direction of the screen; one group is the upward uniform light valve, which forms a positive angle ⁇ with the horizontal direction of the screen, and the bottom of the upward uniform light valve is connected to Both sides of the diffuse diffuser valve.
  • the molding raw material of the structured resin layer in the light-adjusting layer is composed of a main resin, a viscosity-adjusting resin, a photoinitiator, an adhesion promoter, and a chain extender.
  • the components in the raw materials are, in parts by weight, 40-88 parts of the main resin, 10-32 parts of the viscosity adjusting resin, 0.05-5 parts of the photoinitiator, and 0.05-10 parts of the auxiliary resin.
  • Focus accelerator 0.001-1 part of chain extender.
  • the main resin is a hyperbranched resin
  • the hyperbranched resin is selected from one of Hypertherm resin HUP-103, Xibao Bio SeHBP-UV208, Perstorp Boltorn H40, and DSM Hybrane HV2680.
  • the viscosity adjusting resin is an acrylate monomer
  • the acrylate monomer is selected from isobutyl acrylate, trimethylolpropane triacrylate, dimethylaminoethyl methacrylate, tertiary methacrylate One of the butylaminoethyl esters.
  • the photoinitiator is selected from one of photoinitiator 1173, photoinitiator 184, or photoinitiator 907.
  • adhesion promoter is selected from one of Digao wet280, Baofeng TEGO-245, Deqian W-77, or Bayer Additive 3739.
  • the refractive index of the structured resin layer in the dimming layer is n1.
  • the refractive index of the polymer film in the light-adjusting layer is n2.
  • the refractive index n1 of the structured resin is smaller than the refractive index n2 of the polymer film.
  • the material of the polymer film in the dimming layer is selected from polymethyl methacrylate (PMMA), polycarbonate (PC), polyethylene terephthalate (PET), polyimide One of amine (PI), polyamide (PA), polyvinyl chloride (PVC), methyl methacrylate-styrene copolymer (MS), styrene (PS).
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PI polyimide One of amine
  • PA polyamide
  • PVC polyvinyl chloride
  • MS methyl methacrylate-styrene copolymer
  • PS styrene
  • the material of the polymer film in the dimming layer is selected from polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polyvinyl chloride, methyl methacrylate-styrene A kind of copolymer and styrene.
  • the material of the polymer film in the dimming layer is selected from polycarbonate, polyethylene terephthalate, polyvinyl chloride, and methyl methacrylate-styrene copolymer. .
  • the thickness of the polymer film is in the range of 25-650 ⁇ m.
  • the thickness of the polymer film is in the range of 50-450 ⁇ m.
  • the thickness of the polymer film is in the range of 75-350 ⁇ m.
  • the range of the forward included angle ⁇ between the upward uniform light valve and the horizontal direction of the screen is (0, 180).
  • the preferred range of the positive angle ⁇ between the upward uniform light valve and the horizontal direction of the screen is (0, 90) and (90, 180).
  • the preferred range of the positive angle ⁇ between the upward uniform light valve and the horizontal direction of the screen is 20-45 and 110-165.
  • the preferred range of the positive angle ⁇ between the upward uniform light valve and the horizontal direction of the screen is 30-40 and 110-130.
  • the scattering and homogenizing valve is composed of a light guiding structure and a light scattering structure, and the light scattering structure is arranged on the upper surface of the light guiding structure.
  • the light guide structure is composed of a rectangular concave lens, and the astigmatic structure is composed of a spindle-shaped concave lens.
  • the specific surface area ratio of the light-scattering structure and the light-guiding structure ranges from 0.1 to 1.5:1.
  • the specific surface area ratio of the light-scattering structure and the light-guiding structure ranges from 0.3 to 1:1.
  • the specific surface area ratio of the light-scattering structure and the light-guiding structure is in the range of 0.5-0.8:1.
  • the length of the rectangular concave lens is 5-70 ⁇ m, the depth is 1-50 ⁇ m, and the width is 1-30 ⁇ m.
  • the length of the rectangular concave lens is 13-40 ⁇ m, the depth is 3-30 ⁇ m, and the width is 5-20 ⁇ m.
  • the length of the rectangular concave lens is 16-20 ⁇ m, the depth is 5-18 ⁇ m, and the width is 10-18 ⁇ m.
  • the length of the spindle-shaped concave lens is 0.03-3 ⁇ m, the depth is 0.01-5 ⁇ m, and the width is 0.01-3 ⁇ m.
  • the length of the spindle-shaped concave lens is 0.3-2 ⁇ m, the depth is 0.03-3 ⁇ m, and the width is 0.06-2 ⁇ m.
  • the length of the spindle-shaped concave lens is 0.3-1.5 ⁇ m, the depth is 0.08-1 ⁇ m, and the width is 0.5-1.5 ⁇ m.
  • the upward uniform light valve is composed of a light guiding structure and a light splitting structure, and the light splitting structure is arranged on the surface of the light guiding structure.
  • the light guiding structure is a semi-cylindrical lens structure
  • the light splitting structure is a spherical particle structure.
  • the length of the light guiding structure is 1-20 ⁇ m
  • the height is 0.01-2 ⁇ m
  • the width is 0.5-15 ⁇ m.
  • the length of the light guiding structure is 5-15 ⁇ m
  • the height is 0.03-1.5 ⁇ m
  • the width is 1-10 ⁇ m.
  • the length of the light-guiding structure is 8-12 ⁇ m
  • the height is 0.08-1 ⁇ m
  • the width is 4-8 ⁇ m.
  • the diameter of spherical particles of the spectroscopic structure is in the range of 0.01-3 ⁇ m.
  • the diameter of spherical particles of the spectroscopic structure is in the range of 0.1-2 ⁇ m.
  • the diameter of spherical particles of the spectroscopic structure is in the range of 0.3-1.2 ⁇ m.
  • the body astigmatism layer is a space scattering functional layer with a certain thickness composed of acrylic UV light-curable resin
  • the body astigmatism layer is centered at some points in the space in the body astigmatism layer, and the center points are mutually fibrous.
  • Divergent units are connected to form.
  • the fiber divergent units are arranged at a certain angle along the vertical direction of the screen. In the thickness direction of the bulk astigmatism layer, these central points interconnected by the fiber diffusing units are stacked on each other to form an integral bulk light-scattering layer.
  • the acrylic UV-curable resin in parts by weight, consists of 40-80 parts of main agent I, 20-90 parts of main agent II, 0.1-3 parts of photoinitiator, and 0.001-0.1 parts of carbon black composition.
  • main agent I is selected from the one in polyurethane methacrylate, cyclohexyl methacrylate, or isooctyl acrylate.
  • the range of parts by weight of the main agent I is 45-75 parts.
  • the range of parts by weight of the main agent I is 50-70 parts.
  • the main agent II is selected from N,N-diethylacrylamide, polyethylene glycol diacrylate, glycidyl methacrylate, or ethylene glycol dimercaptoacetate a kind of.
  • the range of parts by weight of the main agent II is 30-80 parts.
  • weight range of the main agent II is 45-75 parts.
  • the photoinitiator is selected from 1-hydroxycyclohexyl phenyl ketone (184), or 2-hydroxy-2-methyl-1-phenyl-1-acetone (1173) ) one of them.
  • the weight range of the photoinitiator is 0.3-2.5 parts.
  • the weight range of the photoinitiator is 0.8-1.5 parts.
  • carbon black is selected from one of N220, N660, or N990.
  • the weight range of the carbon black is 0.005-0.05.
  • the weight range of the carbon black is 0.008-0.05.
  • the volume astigmatism layer is composed of a certain point in the space of the volume astigmatism layer as a center point, the center point is an ellipsoid, and the ellipsoids are connected by fiber divergent units.
  • the fiber divergent units are arranged at a certain angle along the vertical direction of the screen.
  • the central points interconnected by the fiber diffusing units are stacked to form an integral bulk light scattering layer, and the thickness of the bulk light scattering layer ranges from 10 to 400 ⁇ m.
  • the thickness of the bulk light scattering layer is in the range of 50-300 ⁇ m.
  • the thickness of the bulk light scattering layer ranges from 80 to 200 ⁇ m.
  • the center point is an ellipsoid arranged along the direction of the broad side of the screen
  • the axial diameter of the ellipsoid along the direction of the broad side of the screen is 1-100 ⁇ m
  • the diameter range of the vertical ellipsoid in the axial direction is 1-50 ⁇ m.
  • the axial diameter of the ellipsoid along the direction of the broad side of the screen is in the range of 20-80 ⁇ m, and the diameter in the vertical axial direction is in the range of 10-40 ⁇ m.
  • the axial diameter of the ellipsoid along the direction of the broad side of the screen is in the range of 40-60 ⁇ m, and the diameter in the vertical axial direction is in the range of 20-30 ⁇ m.
  • the fiber diverging units of the volume astigmatism layer are rectangular fiber diverging units, and the rectangular fiber diverging units are distributed between the ellipsoids to connect different ellipsoids.
  • the rectangular length of the fiber diverging unit connected to the ellipsoid is 10-100 ⁇ m, the width is 0.1-5 ⁇ m, and the thickness is 0.001-0.1 ⁇ m.
  • the rectangular length of the fiber diverging unit connected to the ellipsoid is 20-80 ⁇ m, the width is 0.5-3 ⁇ m, and the thickness is 0.005-0.08 ⁇ m.
  • the rectangular length of the fiber diverging unit connected to the ellipsoid is 40-60 ⁇ m, the width is 1-2 ⁇ m, and the thickness is 0.01-0.05 ⁇ m.
  • the included angle ⁇ between the rectangular fiber divergent connection unit and the axis of the ellipsoid along the direction of the broad side of the screen is 0-80 degrees.
  • the included angle ⁇ between the rectangular fiber divergent connection unit and the axis of the ellipsoid along the direction of the broad side of the screen is in the range of 10-60 degrees.
  • the included angle ⁇ between the rectangular fiber divergent connecting unit and the axis of the ellipsoid along the direction of the broad side of the screen is in the range of 20-45 degrees.
  • the structure of the prism layer is an arc-shaped Fresnel structure, and the angle design of the Fresnel structure is determined by the required Fresnel aperture and design pitch, which can generally be performed according to some known materials. It is calculated that the angle of the Fresnel structure of the prism layer of the present invention is also designed by a known method, the difference is that in order to reduce the speckle contrast, the present invention introduces a prism dithering design into the Fresnel prism to further reduce the speckle purpose of contrast.
  • the jitter on the Fresnel prism of the prism layer is vertical jitter in the direction of the crest of the prism, the amplitude of the jitter is in the range of 0.2-10 ⁇ m, and the jitter period is in the range of 0.5-15 ⁇ m.
  • the amplitude range of the jitter is in the range of 1-7 ⁇ m, and the jitter period is in the range of 2-10 ⁇ m.
  • the amplitude range of the jitter is in the range of 3-5 ⁇ m, and the jitter period is in the range of 4-8 ⁇ m.
  • the thickness of the prism layer is in the range of 30-100 ⁇ m.
  • the prism layer includes prism and flesh thickness.
  • the thickness of the prism layer refers to the total thickness of the prism and the meat thickness.
  • the thickness of the prism layer is in the range of 35-80 ⁇ m.
  • the thickness of the prism layer is in the range of 40-60 ⁇ m.
  • the reflective layer is composed of a reflective unit and a coating resin, and the reflective unit can generally be selected from metal aluminum, nickel, chromium flakes, plexiglass, and phosphors, and the coating can generally be selected from ultraviolet light curing.
  • the thickness of the reflective layer is in the range of 0.5-50 ⁇ m.
  • the thickness of the reflective layer ranges from 1 to 30 ⁇ m.
  • the thickness of the reflective layer is in the range of 5-20 ⁇ m.
  • the present invention also provides a method for preparing the speckle-dissolving laser TV screen, the method comprising the following steps:
  • a structured resin layer is prepared on one surface of the polymer film to form a dimming layer
  • the bulk astigmatism layer is prepared on the other surface of the polymer film of the light-adjusting layer;
  • a reflective layer is prepared on the surface of the prism layer on the side where the prism peaks are located.
  • UV light-curing micro-replication in the preparation of the light-adjusting layer, one of UV light-curing micro-replication, hot-press molding micro-replication, and screen printing is used.
  • the prism layer is formed by UV light curing micro-replication method.
  • one of spray molding and gravure printing is used to make the reflective layer.
  • the speckle-dissolving laser TV screen provided by the present invention distributes the scanning laser source well to the horizontal upper direction of the screen through the functions of the light-guiding structure and the light-guiding layer structure in the dimming layer.
  • the light is dispersed by the light distribution direction of the light guide structure and the light guide structure, so that the laser source scanned to a single point on the screen is uniformly dispersed into a surface light source in the light distribution area that can be involved. Reduce the surface interference of the laser source, so that the surface speckle contrast is reduced.
  • the ellipsoid is the center of the volume astigmatism layer, which is formed by connecting and stacking fiber divergent bodies. After the source touches the fiber diffuser, it will scatter and refract at different angles along the horizontal direction of the screen.
  • the bulk astigmatism layer of a certain thickness can make the scattered beam of the laser source scattered and refracted in different paths for many times, and further make the laser source
  • the optical path difference of the scattered beam increases in space, which reduces the strong and weak interference phenomenon of the laser source and reduces the speckle contrast.
  • the dithering design on the Fresnel prism layer further causes the laser source reaching different positions on the same prism to undergo refraction-reflection in different directions, so that the laser source disperses the beam between the beams.
  • the optical path difference is further increased, the coherent interference is weakened, and the speckle contrast is reduced.
  • the speckle-removing laser TV screen provided by the present invention can reduce the speckle contrast of R, G and B three colors to less than 4%, which is the goal of improving the display image quality.
  • Fig. 1 is a vertical anatomical schematic diagram of a speckle-dissolving laser TV screen provided by the present invention
  • FIG. 2 is a schematic top view of a light-adjusting layer of a speckle-dissolving laser TV screen provided by the present invention
  • FIG. 3 is a schematic side view of a rectangular concave lens provided by the present invention.
  • FIG. 4 is an enlarged schematic view of two optical valves for dissolving speckle laser TV screen dimming layers provided by the present invention
  • FIG. 5 is a schematic side view of a spindle-shaped concave lens provided by the present invention.
  • FIG. 6 is a side view of a rod lens light guiding structure provided by the present invention.
  • FIG. 7 is a schematic plan view of the distribution of the light source after the laser source of the de-speckled laser TV screen provided by the present invention passes through the dimming layer;
  • FIG. 8 is a schematic top view of a volume astigmatism layer of a speckle-dissolving laser TV screen provided by the present invention.
  • FIG. 9 is a side view of a rectangular fiber divergent connection unit provided by the present invention.
  • FIG. 10 is an enlarged schematic diagram of the prism peak jitter of the prism layer of the de-spotted laser TV screen provided by the present invention.
  • FIG. 11 is a schematic top view of a Fresnel prism of the present invention.
  • FIG. 12 is a schematic plan view of a speckle of a comparative example provided by the present invention.
  • FIG. 13 is a schematic diagram of speckle of a speckle-dissolving laser TV screen provided by the present invention.
  • the speckle contrast of the speckle-dissolving laser TV screen provided by the present invention is measured by the ARTCAM-274KY-C CCD camera produced by Shanghai Tuxing Company, and the total number of pixels is 1600 ⁇ 1200.
  • C represents the speckle contrast
  • N is the total number of pixels
  • In is the light intensity at each pixel
  • I is the average light intensity
  • FIG. 1 is a vertical anatomical schematic diagram of a speckle-dissolving laser TV screen provided by the present invention, which are a light-adjusting layer 1, a polymer film layer 2, a bulk astigmatism layer 3, a prism layer 4, and a reflective layer 5.
  • the laser source scans from the light-adjusting layer It enters the screen, passes through the optical function layer (bulk astigmatism layer 3, prism layer 4) to the reflective layer 5, is reflected by the reflective layer 5, then reflects through the optical function layer, and passes through the dimming layer 1 to the viewing range of the viewer.
  • the structured resin layer includes a scattering and homogenizing valve and an upward homogenizing valve distributed on the surface of the polymer film.
  • the scattering and homogenizing valve is a light guide structure.
  • the scattering and homogenizing valve includes a rectangular concave lens 6 .
  • the upward uniform light valve is distributed at a positive angle ⁇ with the horizontal direction of the screen, and is connected to both sides of the scattering uniform light valve.
  • the upward uniform light valve includes a round rod lens 7, and the upward uniform light valve is a light guiding structure.
  • FIG 3 is a schematic side view of a rectangular concave lens provided by the present invention, which are respectively a length L1, a width W1 and a depth H1.
  • FIG. 4 is an enlarged schematic diagram of two types of optical valves of the light-adjusting layer of the laser TV screen for dispersing speckle provided by the present invention.
  • the spindle-shaped concave lens 8 distributed on the rectangular concave lens 6 has an astigmatic structure.
  • the spherical particles 9 distributed on the round rod-shaped lens 7, the spherical particles 9 have a light-splitting structure, and the positive angle ⁇ between the round rod-shaped lens 7 and the horizontal direction of the screen.
  • FIG. 5 is a schematic side view of the spindle-shaped concave lens provided by the present invention, which are respectively a length L2, a width W2, and a depth H2.
  • FIG. 6 is a side view of the rod lens provided by the present invention, which are respectively a length L3, a width W3, and a height H3.
  • FIG. 7 is a schematic diagram of the distribution of the light source after the laser source of the de-speckled laser TV screen provided by the present invention passes through the dimming layer; the light distribution is similar to a semi-elliptical shape formed by the optical guidance and scattering of the dimming layer, and the light distribution is on the upper plane astigmatism area 10.
  • FIG. 8 is a schematic side view of the volume astigmatism layer of the speckle-dissolving laser TV screen provided by the present invention; respectively are ellipsoids 11 distributed along the direction of the broad side of the screen, rectangular fiber divergent connecting units 12 connected to the ellipsoid, rectangular fibers The angle ⁇ between the divergent connection unit and the direction of the wide side of the screen.
  • the broad side refers to the sides of the left and right sides in FIG. 8 .
  • FIG. 9 is a side view of the rectangular fiber divergent connecting unit provided by the present invention, which are respectively a length L4, a width W4, and a thickness range H4.
  • FIG. 10 is an enlarged schematic diagram of the dithering of the prism peaks of the prism layer of the de-spotted laser TV screen provided by the present invention; the prism peaks 13 designed for dithering.
  • FIG. 11 is a schematic top view of the Fresnel prism of the present invention, the prism 14 .
  • FIG. 12 is a schematic plan view of the speckle of the comparative example provided by the present invention, the speckle particles are coarse and the contrast is obvious 15 .
  • FIG. 13 is a schematic diagram of speckle of the speckle-dissolving laser TV screen provided by the present invention, the speckle particles are fine and uniform, and the speckle 16 has low contrast.
  • the present invention provides a speckle-dissolving laser television screen, which comprises a light adjustment layer, a prism layer, and a reflective layer in sequence from top to bottom.
  • the dimming layer includes a structured resin layer and a polymer film in sequence from top to bottom.
  • the structured resin layer includes a scattering and homogenizing valve and an upward homogenizing valve;
  • the scattering and homogenizing valve includes a rectangular concave lens and a spindle-shaped concave lens, and the spindle-shaped concave lens is arranged on the concave surface of the rectangular concave lens;
  • the light valve includes a semi-cylindrical lens and spherical particles, the spherical particles are distributed on the surface of the semi-cylindrical lens; the semi-cylindrical lenses are respectively arranged on both sides of the rectangular concave lens, and the semi-cylindrical lens forms a positive angle with the horizontal direction of the screen theta.
  • the present invention provides a speckle-dissolving laser television screen, which comprises a volume astigmatism layer, a prism layer, and a reflective layer in sequence from top to bottom.
  • the bulk astigmatism layer includes a number of ellipsoids and a number of rectangular fiber divergent connecting units, two ends of the one rectangular fiber divergent connecting unit are respectively connected with two ellipsoids, and the long axis of the ellipsoid is where the broad side of the screen is located.
  • the directions are parallel, and the included angle between the rectangular fiber divergent connection unit and the line in the direction of the broad side of the screen is ⁇ .
  • the bulk astigmatism layer is a hollow three-dimensional structure.
  • the prism layer includes a plurality of prism strips (also referred to as prism columns, referred to as prisms for short), and the prism strips are arc-shaped Fresnel structures.
  • Table 2-1 Please refer to Table 2-1, Table 2-2 and Table 2-3 for the technical parameters, and Table 2-4 for the main performance test data.
  • the present invention provides a speckle-dissolving laser television screen, which comprises a light adjustment layer, a bulk astigmatism layer, a prism layer, a reflection layer and a reflection layer in order from top to bottom.
  • the light-adjusting layer is the light-adjusting layer described in Embodiments 1-9, and the volume astigmatism layer is the volume-scattering layer described in Embodiments 11-19.
  • Table 3-1 Please refer to Table 3-1, Table 3-2, Table 3-3, Table 3-4 for the technical parameters, and Table 3-5 for the main performance test data.
  • Examples 1-9 are 4-9, and the most preferred examples are Examples 7-9, which have lower speckle contrast.
  • Examples 11-19 are 14-19, and the most preferred examples are Examples 17-19, which have lower speckle contrast.
  • Examples 21-29 are 24-29, and the most preferred examples are Examples 27-29, which have lower speckle contrast.
  • Examples 27-29 had the lowest speckle contrast.

Abstract

一种解散斑激光电视屏幕及其制备方法。屏幕从上到下依次包括调光层(1)、棱镜层(4)、和反射层(5),调光层(1)包括散射匀光阀和向上匀光阀;散射匀光阀的两侧分别设置向上匀光阀,向上匀光阀与屏幕水平方向成正向夹角θ。可满足R、G、B三色的散斑对比度都降低至4%以下。

Description

一种解散斑激光电视屏幕及其制备方法 技术领域
本发明涉及激光电视领域,具体涉及一种激光电视屏幕,特别涉及一种解散斑激光电视屏幕及其制备方法。
背景技术
激光电视是采用激光作为显示光源,配备专用光学屏幕和音响设备,可接收广播电视节目或互联网电视节目的投影显示设备。
激光具有很高的强度,能够满足高亮度显示系统的需求,激光具有及其良好的方向性,在扫描式显示系统中可以实现很高的分辨率,激光光谱为线谱线,色彩分辨率高,色彩饱和度高。激光光源具有亮度高、方向性好、单色性好三大特点,是实现高保真图像再现的基础。
然而,由于激光光源高相干性的属性,在激光显示中,存在着较为普遍的显示散斑问题。散斑是因激光光源的高相干性在显示中形成的尺寸细小如沙的高对比度亮暗斑点图样,其严重程度由散斑对比度来表示,一般散斑对比度越高则散斑越严重,反之,散斑则越轻微。散斑的存在会极大的影响图像显示质量,严重的会给观看者带来眼部不适,损害健康。
散斑的解决一般有两种途径,一种途径是从激光光源入手,提高激光光源的谱宽,降低激光源的相干性,从而降低散斑,这种方式的优点是从光源本身着手,可以很好的解决散斑问题,缺点是谱线的加宽则降低了激光源的单色性,不能更好的发挥激光显示的色彩显示优点,同时成本高。另外一种途径是从显示屏幕着手,通过对屏幕进行合理的设计,在面及空间上对激光源进行充分的散射,降低激光源之间的干涉,降低散斑对比度,达到提升画质显示质量的目的。
发明内容
为了解决现有激光电视显示时散斑对比度高的问题,本发明提供一种解 散斑激光电视屏幕及其制备方法。本发明提供的激光电视屏幕,可满足R、G、B三色的散斑对比度都降低至4%以下。
为了解决以上技术问题,本发明提供如下技术方案:
第一方面,本发明提供一种解散斑激光电视屏幕,所述屏幕从上到下依次包括调光层、棱镜层、和反射层。前述技术方案包括实施例1-9。
所述调光层从上到下依次包括结构化树脂层和高分子薄膜。
进一步的,所述调光层包括散射匀光阀和向上匀光阀;所述散射匀光阀的两侧分别设置所述向上匀光阀,所述向上匀光阀与屏幕水平方向成正向夹角θ。
进一步的,所述调光层包括散射匀光阀和向上匀光阀;所述散射匀光阀包括矩形凹透镜和纺锤形凹透镜,所述纺锤形凹透镜设置在所述矩形凹透镜的凹面上;所述向上匀光阀包括半圆柱状透镜和球形颗粒,所述球形颗粒分布在半圆柱状透镜的表面;所述矩形凹透镜的两侧分别设置所述半圆柱状透镜,所述半圆柱状透镜与屏幕水平方向成正向夹角θ。
进一步的,所述矩形凹透镜为导光结构,所述半圆柱状透镜为引光结构。所述纺锤形凹透镜为散光结构。所述球形颗粒为分光结构。
所述调光层从上到下依次包括结构化树脂层和高分子薄膜。
进一步的,所述结构化树脂层包括散射匀光阀和向上匀光阀;所述散射匀光阀的两侧分别设置所述向上匀光阀,所述向上匀光阀与屏幕水平方向成正向夹角θ。
进一步的,所述结构化树脂层包括散射匀光阀和向上匀光阀;所述散射匀光阀包括矩形凹透镜和纺锤形凹透镜,所述纺锤形凹透镜设置在所述矩形凹透镜的凹面上;所述向上匀光阀包括半圆柱状透镜和球形颗粒,所述球形颗粒分布在半圆柱状透镜的表面;所述矩形凹透镜的两侧分别设置所述半圆柱状透镜,所述半圆柱状透镜与屏幕水平方向成正向夹角θ。
进一步的,所述棱镜层包括若干棱镜条(也称为棱镜柱,简称为棱镜), 所述棱镜条为圆弧型菲涅尔结构。
本发明还提供所述解散斑激光电视屏幕的制备方法,所述方法包括下述步骤:
(1)、制备调光层:在高分子薄膜的一个表面上制备结构化树脂层,形成调光层;
(2)、制备棱镜层:在调光层的高分子薄膜的另一个表面上制备棱镜层;
(3)、制备反射层:在棱镜层的棱镜峰所在一侧的表面制备反射层。
第二方面,本发明提供一种解散斑激光电视屏幕,所述屏幕从上到下依次包括体散光层、棱镜层、反射层。前述技术方案包括实施例11-19。
所述体散光层包括若干椭球体和若干矩形纤维发散连接单元,所述一个矩形纤维发散连接单元的两端分别与两个椭球体相连接,所述椭球体的长轴与屏幕的宽边所在方向平行,所述矩形纤维发散连接单元与屏幕的宽边所在方向直线的夹角为α。
进一步的,体散光层为中空三维结构。
进一步的,所述棱镜层包括若干棱镜条(也称为棱镜柱,简称为棱镜),所述棱镜条为圆弧型菲涅尔结构。
本发明还提供所述解散斑激光电视屏幕的制备方法,所述方法包括下述步骤:先准备一个重离型的基材,在基材的离型面制作体散光层,在体散光层上制作棱镜层(体散光层的镂空的微米级别的中空三维结构在制作棱镜层时不会漏胶水),在棱镜层的棱镜峰所在一侧的表面制备反射层,最后剥离离型膜,得到解散斑激光电视屏幕。
第三方面,本发明提供一种解散斑激光电视屏幕,所述屏幕从上到下依次包括调光层、体散光层、棱镜层、反射层。前述技术方案包括实施例21-29。
所述调光层为本发明所述的调光层,所述体散光层为本发明所述的体散光层。
进一步的,本发明提供一种解散斑激光电视屏幕,所述的屏幕从上到下 依次由调光层、体散光层、棱镜层、和反射层组成。
进一步的,所述屏幕包括四层,从上到下依次为将扫描到屏幕表面的激光源进行充分表面散射和扫面方向优化的调光层,将调光层散射和优化后的激光源进行多次空间折射-反射来进一步散射的体散光层,使体散光层散射出的光学实现特定方向几何折/反射、抖动散射的棱镜层,将入射激光源进行反射的反射层。
进一步的,所述调光层由结构化树脂层和高分子薄膜复合而成,所述调光层分为上、下表面,上表面为结构化树脂层面向观看者,下表面为高分子薄膜。所述调光层中的结构化树脂层是有特定光学设计的光学微结构,微结构是直接面向观看者,所述结构化树脂层成型在高分子薄膜一个表面上,而高分子薄膜的另外一个表面则作为调光层的下表面与屏幕后面的光学功能层进行连接。
进一步的,调光层的主要作用是将扫描在屏幕上的激光源进行充分表面散射和进行扫面激光源的分布优化,使得激光源在屏幕上的面散斑对比度降低的同时,能够将扫面激光源在观看的有效方向进行优化,提升画面的亮度和均匀度。一般的激光电视显示领域,其主要应用的尺寸为75、80、88、90、100、110、120、150,75-150寸,屏幕水平方向的长度在1.66-3.321米之间,对于观看者在屏幕水平方向的观看视角体验非常重要。由于激光电视激光源的传输方式是由屏幕底端到屏幕顶端全屏投射的传输方式,所以在屏幕垂直方向较容易满足观看者的视角观看需求。本发明提供的调光层,可将入射扫面激光源在水平方向进行很好的规整,同时在屏幕垂直方向进行光学优化,减少扫面光源由于在调光层进行充分面散射时而产生的中心亮度的衰减。
进一步的,调光层中的结构化树脂层是由丙烯酸体系的UV光固化树脂原料成型的结构化光学功能层,所述的结构包含两组光学调节阀,一组是散射匀光阀,散射匀光阀沿屏幕水平方向设置,用于调节屏幕水平方向的光散射;一组是向上匀光阀,向上匀光阀与屏幕水平方向成正向夹角θ,且向上匀 光阀的底部连接于散射匀光阀的两侧。
进一步的,所述调光层中的结构化树脂层的成型原料,由主树脂、粘度调节树脂、光引发剂、附着力促进剂、和扩链剂组成。
进一步的,所述原料中各组分以重量份数计,分别为40-88份的主树脂、10-32份的粘度调节树脂、0.05-5份的光引发剂、0.05-10份的附着力促进剂、0.001-1份的扩链剂。
进一步的,所述主树脂为超支化树脂,所述超支化树脂选自海博特树脂HUP-103、西宝生物SeHBP-UV208、柏斯托Boltorn H40、帝斯曼Hybrane HV2680中的一种。
进一步的,所述粘度调节树脂为丙烯酸酯单体,所述丙烯酸酯单体选自丙烯酸异丁酯、三羟甲基丙烷三丙烯酸酯、甲基丙烯酸酯二甲氨基乙酯、甲基丙烯酸叔丁基氨基乙酯中的一种。
进一步的,所述光引发剂选自光引发剂1173、光引发剂184、或光引发剂907中的一种。
进一步的,所述附着力促进剂选自迪高wet280、宝丰TEGO-245、德谦W-77、或拜耳Additive 3739中的一种。
进一步的,所述调光层中结构化树脂层的折射率为n1。
进一步的,所述调光层中高分子薄膜的折射率为n2。
进一步的,所述结构化树脂的折射率n1小于高分子薄膜的折射率n2。
进一步的,所述调光层中的高分子薄膜的材质选自聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、聚对苯二甲酸乙二醇酯(PET)、聚酰亚胺(PI)、聚酰胺(PA)、聚氯乙烯(PVC)、甲基丙烯酸甲酯-苯乙烯共聚物(MS)、苯乙烯(PS)当中的一种。
进一步的,所述调光层中的高分子薄膜的材质选自聚甲基丙烯酸甲酯、聚碳酸酯、聚对苯二甲酸乙二醇酯、聚氯乙烯、甲基丙烯酸甲酯-苯乙烯共聚物、苯乙烯当中的一种。
更进一步的,所述调光层中的高分子薄膜的材质选自聚碳酸酯、聚对苯二甲酸乙二醇酯、聚氯乙烯、甲基丙烯酸甲酯-苯乙烯共聚物当中的一种。
进一步的,所述高分子薄膜的厚度范围为25-650μm。
进一步的,所述高分子薄膜的厚度范围为50-450μm。
进一步的,所述高分子薄膜的厚度范围为75-350μm。
进一步的,所述正向夹角θ向上匀光阀与屏幕水平方向的正向夹角θ范围为(0,180)。
进一步的,所述向上匀光阀与屏幕水平方向的正向夹角θ范围优选范围为(0,90)和(90,180)。
进一步的,所述向上匀光阀与屏幕水平方向的正向夹角θ范围优选范围为20-45和110-165。
更进一步的,所述向上匀光阀与屏幕水平方向的正向夹角θ范围优选范围为30-40和110-130。
进一步的,所述散射匀光阀由导光结构和散光结构组成,所述散光结构设置在导光结构的上表面。所述导光结构由矩形凹透镜组成,所述散光结构由纺锤形凹透镜组成。
进一步的,所述散光结构和导光结构的比表面积比范围为0.1-1.5:1。
进一步的,所述散光结构和导光结构的比表面积比范围为0.3-1:1。
更进一步的,所述散光结构和导光结构的比表面积比范围为0.5-0.8:1。
进一步的,所述矩形凹透镜的长度范围是5-70μm,深度范围是1-50μm,宽度范围是1-30μm。
进一步的,所述矩形凹透镜的长度范围是13-40μm,深度范围是3-30μm,宽度范围是5-20μm。
更进一步的,所述矩形凹透镜的长度范围是16-20μm,深度范围是5-18μm,宽度范围是10-18μm。
进一步的,所述纺锤形凹透镜的长度范围是0.03-3μm,深度范围是 0.01-5μm,宽度范围是0.01-3μm。
进一步的,所述纺锤形凹透镜的长度范围是0.3-2μm,深度范围是0.03-3μm,宽度范围是0.06-2μm。
更进一步的,所述纺锤形凹透镜的长度范围是0.3-1.5μm,深度范围是0.08-1μm,宽度范围是0.5-1.5μm。
进一步的,所述向上匀光阀由引光结构和分光结构组成,所述分光结构设置在引光结构的表面。所述引光结构为半圆柱状透镜结构,所述分光结构为球形颗粒结构。
进一步的,所述引光结构的长度范围是1-20μm,高度范围是0.01-2μm,宽度范围是0.5-15μm。
进一步的,所述引光结构的长度范围是5-15μm,高度范围是0.03-1.5μm,宽度范围是1-10μm。
更进一步的,所述引光结构的长度范围是8-12μm,高度范围是0.08-1μm,宽度范围是4-8μm。
进一步的,所述分光结构的球形颗粒直径范围为0.01-3μm。
进一步的,所述分光结构的球形颗粒直径范围为0.1-2μm。
更进一步的,所述分光结构的球形颗粒直径范围为0.3-1.2μm。
进一步的,所述体散光层是由丙烯酸型UV光固化树脂组成的一定厚度的空间散射功能层,所述体散光层是以体散光层中空间某些点为中心点,中心点相互被纤维发散单元相连接组成。纤维发散单元沿屏幕垂直方向成一定角度排布。在体散光层厚度方向,这些被纤维发散单元相互连接的中心点相互堆叠形成整体体散光层。
进一步的,所述的丙烯酸型UV固化树脂,以重量份数计,由40-80份主剂I、20-90份主剂II,0.1-3份光引发剂、和0.001-0.1份炭黑组成。
进一步的,所述的丙烯酸型UV固化树脂,主剂I选自聚氨酯甲基丙烯酸酯、甲基丙烯酸环己酯、或丙烯酸异辛酯中的一种。
进一步的,所述主剂I的重量份数范围为45-75份。
更进一步的,所述主剂I的重量份数范围为50-70份。
进一步的,所述丙烯酸型UV固化树脂,主剂II选自N,N-二乙基丙烯酰胺、聚乙二醇二丙烯酸酯、甲基丙烯酸缩水甘油酯、或二巯基乙酸乙二醇酯中的一种。
进一步的,所述主剂II的重量份数范围为30-80份。
更进一步的,所述主剂II的重量份数范围为45-75份。
进一步的,所述的丙烯酸型UV固化树脂,光引发剂选自1-羟基环己基苯基甲酮(184)、或2-羟基-2-甲基-1-苯基-1-丙酮(1173)中的一种。
进一步的,所述光引发剂的重量份数范围为0.3-2.5份。
更进一步的,所述光引发剂的重量份数范围为0.8-1.5份。
进一步的,所述丙烯酸型UV固化树脂,炭黑选自N220、N660、或N990中的一种。
进一步的,所述炭黑的重量份数范围为0.005-0.05。
更进一步的,所述炭黑的重量份数范围为0.008-0.05。
进一步的,所述体散光层的是以体散光层中空间某些点为中心点,中心点为椭球体,椭球体之间被纤维发散单元相互连接组成。纤维发散单元沿屏幕垂直方向成一定角度排布。在体散光层厚度方向,这些被纤维发散单元相互连接的中心点相互堆叠形成整体体散光层,所述体散光层的厚度范围为10-400μm。
进一步的,所述体散光层的厚度范围为50-300μm。
更进一步的,所述体散光层的厚度范围为80-200μm。
进一步的,所述中心点是一个沿屏幕宽边所在方向排列的椭球体,所述椭球体沿屏幕宽边所在方向的轴向直径范围为1-100μm,垂直椭球体轴向方向的直径范围为1-50μm。
进一步的,所述椭球体沿屏幕宽边所在方向的轴向直径范围为20-80μm, 垂直轴向方向的直径范围为10-40μm。
更进一步的,所述椭球体沿屏幕宽边所在方向的轴向直径范围为40-60μm,垂直轴向方向的直径范围为20-30μm。
进一步的,所述的体散光层的纤维发散单元为矩形纤维发散单元,矩形纤维发散单元分布在椭球体之间,将不同的椭球体连接起来。
进一步的,所述的连接到椭球体上的纤维发散单元的矩形长度范围为10-100μm,宽度范围为0.1-5μm,厚度范围为0.001-0.1μm。
进一步的,所述的连接到椭球体上的纤维发散单元的矩形长度范围20-80μm,宽度范围为0.5-3μm,厚度范围为0.005-0.08μm。
更进一步的,所述的连接到椭球体上的纤维发散单元的矩形长度范围40-60μm,宽度范围为1-2μm,厚度范围为0.01-0.05μm。
进一步的,所述矩形纤维发散连接单元与椭球体沿屏幕宽边所在方向的轴的夹角α为0-80度。
进一步的,所述矩形纤维发散连接单元与椭球体沿屏幕宽边所在方向的轴的夹角α范围为10-60度。
更进一步的,所述矩形纤维发散连接单元与椭球体沿屏幕宽边所在方向的轴的夹角α范围为20-45度。
进一步的,所述棱镜层的结构为圆弧型菲涅尔结构,所述菲涅尔结构的角度设计依赖所需菲涅尔的口径以及设计节距决定,这个一般可根据公知的一些资料进行计算得出,本发明的棱镜层的菲涅尔结构的角度也是采用公知的方法进行设计,区别在于为了降低散斑对比度,本发明在菲涅尔棱镜中引入棱镜抖动设计来达到进一步降低散斑对比度的目的。
进一步的,所述的棱镜层的菲涅尔棱镜上的抖动为垂直棱镜波峰方向的垂直抖动,抖动的振幅范围在0.2-10μm范围,抖动周期在0.5-15μm范围。
进一步的,抖动的振幅范围在1-7μm范围,抖动周期在2-10μm范围。
更进一步的,抖动的振幅范围在3-5μm范围,抖动周期在4-8μm范围。
进一步的,所述的棱镜层的厚度范围为30-100μm。棱镜层包括棱镜和肉厚。棱镜层的厚度指棱镜和肉厚的总厚度。
进一步的,所述的棱镜层的厚度范围为35-80μm。
更进一步的,所述的棱镜层的厚度范围为40-60μm。
进一步的,所述的反射层由反射单元和涂料树脂组成,所述的反射单元一般可选自金属铝、镍、铬薄片、有机玻璃、荧光粉,所述的涂料一般可选自紫外光固化型丙烯酸树脂、单组份聚酯树脂、双组分聚氨酯树脂体系。
进一步的,所述的反射层的厚度范围为0.5-50μm。
进一步的,所述的反射层的厚度范围为1-30μm。
更进一步的,所述的反射层的厚度范围为5-20μm。
本发明还提供所述解散斑激光电视屏幕的制备方法,所述方法包括下述步骤:
(1)、制备调光层:在高分子薄膜的一个表面上制备结构化树脂层,形成调光层;
(2)、制备体散光层:体散光层在调光层的高分子薄膜的另一个表面上制备;
(3)、制备棱镜层:在体散光层上制备棱镜层;(体散光层的镂空的微米级别的中空三维结构在制作棱镜层时不会漏胶水)
(4)、制备反射层:在棱镜层的棱镜峰所在一侧的表面制备反射层。
进一步的,所述制备调光层时,采用在UV光固化微复制、热压成型微复制、丝网印刷中的一种。
进一步的,制作体散光层时,采用数码打印、3D打印、凹版印刷成型中的一种。
进一步的,制作棱镜层采用UV光固化微复制的方法成型。
进一步的,制作反射层采用喷涂成型、凹版印刷成型中的一种。
本发明提供的解散斑激光电视屏幕,通过调光层中导光结构和引光层结 构的作用将扫描激光源很好的分布到屏幕水平偏上方向,同时纺锤形、球形散光分光结构承载在导光结构与引光结构上,借助导光结构和引光结构的光分布方向来进行光的分散,使扫描到屏幕上单点的激光源在可涉及的光分布区域均匀分散成面光源,降低激光源的表面干涉,使面散斑对比度降低。
当激光源经调光层作用后,经由椭球体为中心以纤维发散体相互连接堆叠而成的体散光层时,激光会在不同尺度的椭球体上发生不同角度的散射和折射,同时当激光源接触到纤维发散体后,会沿着屏幕水平方向发生不同角度的散射和折射,一定厚度的体散光层,可以让激光源分散束发生多次不同路径的散射和折射,进而进一步使激光源分散束在空间上光程差加大,降低激光源的强弱干涉现象,使散斑对比度降低。
当激光源经过体散光层到达棱镜层时,菲涅尔棱镜层上的抖动设计,进一步的使得到达相同棱镜上不同位置的激光源发生不同方向的折射-反射,使得激光源分散束之间的光程差进一步加大,减弱相干干涉,降低散斑对比度。本发明提供的解散斑激光电视屏幕,其R、G、B三色的散斑对比度可降至4%以下,提升显示画质的目标。
附图说明
图1为本发明提供的解散斑激光电视屏幕的垂直解剖示意图;
图2为本发明提供的解散斑激光电视屏幕调光层的俯视示意图;
图3为本发明提供的矩形凹透镜的侧视示意图;
图4为为本发明提供的解散斑激光电视屏幕调光层两种光学阀的放大示意图;
图5为本发明提供的纺锤型凹透镜的侧视示意图;
图6为本发明提供的圆棒状透镜引光结构的侧视图;
图7为本发明提供的解散斑激光电视屏幕激光源经过调光层后光源的分布平面示意图;
图8为本发明提供的解散斑激光电视屏幕的体散光层的俯视示意图;
图9为本发明提供的矩形纤维发散连接单元的侧视图;
图10为本发明提供的解散斑激光电视屏幕的棱镜层的棱镜峰抖动放大示意图;
图11为本发明菲涅尔棱镜的俯视示意图;
图12为本发明提供的对比例的散斑平面示意图;
图13为本发明提供的解散斑激光电视屏幕的散斑示意图。
具体实施方式
以下结合具体实施例对本发明作进一步详细描述,有必要指出的是本实施例只用于对本发明进行进一步的说明,不能理解为对本发明保护范围的限制。本领域技术人员可以根据上述发明的内容做出一些非本质的改进和调整。
(1)、本发明提供的解散斑激光电视屏幕的散斑对比度采用上海图星公司生产的ARTCAM-274KY-C型CCD相机进行光强参数测量,总像素数目为1600×1200。
(2)、采用如下公式进行散斑对比度计算
Figure PCTCN2021074286-appb-000001
式中C表示散斑对比度,N是总像素数,In各像素点处的光强,I是平均光强。
图1为本发明提供的解散斑激光电视屏幕的垂直解剖示意图,分别为调光层1,高分子薄膜层2,体散光层3,棱镜层4,反射层5,激光源从调光层扫描式进入屏幕,穿过光学功能层(体散光层3,棱镜层4)到达反射层5,经反射层5反射,再反射经过光学功能层,从调光层1穿出到达观看者观看范围。
图2为本发明提供的解散斑激光电视屏幕调光层的俯视示意图,结构化树脂层包括分布在高分子薄膜表面的散射匀光阀和向上匀光阀,散射匀光阀为导光结构,散射匀光阀包括矩形凹透镜6。向上匀光阀与屏幕水平方向成正 向夹角θ分布,且与散射匀光阀两侧相连接,向上匀光阀包括圆棒状透镜7,向上匀光阀为引光结构。
图3为本发明提供的矩形凹透镜的侧视示意图,分别为长度L1,宽度W1、深度H1。
图4为本发明提供的解散斑激光电视屏幕调光层两种光学阀的放大示意图。分布在矩形凹透镜6上的纺锤形凹透镜8,纺锤形凹透镜8为散光结构。分布在圆棒状透镜7上的球形颗粒9,球形颗粒9为分光结构,圆棒状透镜7与屏幕水平方向的正向夹角θ。
图5为本发明提供的纺锤型凹透镜的侧视示意图,分别为长度L2、宽度W2、深度H2。
图6为本发明提供的圆棒状透镜的侧视图,分别为长度L3、宽度W3,高度H3。
图7为本发明提供的解散斑激光电视屏幕激光源经过调光层后光源的分布平面示意图;经调光层的光学引导和散射作用形成的类似半椭圆形,光分布偏上的平面散光区域10。
图8为本发明提供的解散斑激光电视屏幕的体散光层的侧视示意图;分别为沿屏幕宽边所在方向分布的椭球体11,与椭球体相连接的矩形纤维发散连接单元12,矩形纤维发散连接单元与屏幕宽边所在方向夹角α。宽边指图8中的左右两侧的侧边。
图9为本发明提供的矩形纤维发散连接单元的侧视图,分别为长度L4、宽度W4、厚度范围H4。
图10为本发明提供的解散斑激光电视屏幕的棱镜层的棱镜峰抖动放大示意图;抖动设计的棱镜峰13。
图11为本发明菲涅尔棱镜的俯视结构示意图,棱镜14。
图12为本发明提供的对比例的散斑平面示意图,散斑颗粒粗大,对比度明显的散斑15。
图13为本发明提供的解散斑激光电视屏幕的散斑示意图,散斑颗粒细小均匀,对比度低的散斑16。
实施例1-9
本发明提供一种解散斑激光电视屏幕,所述屏幕从上到下依次包括调光层、棱镜层、和反射层。所述调光层从上到下依次包括结构化树脂层和高分子薄膜。所述结构化树脂层包括散射匀光阀和向上匀光阀;所述散射匀光阀包括矩形凹透镜和纺锤形凹透镜,所述纺锤形凹透镜设置在所述矩形凹透镜的凹面上;所述向上匀光阀包括半圆柱状透镜和球形颗粒,所述球形颗粒分布在半圆柱状透镜的表面;所述矩形凹透镜的两侧分别设置所述半圆柱状透镜,所述半圆柱状透镜与屏幕水平方向成正向夹角θ。
各项技术参数参见表1-1和表1-2,主要性能检测数据请参考表1-3。
实施例11-19
本发明提供一种解散斑激光电视屏幕,所述屏幕从上到下依次包括体散光层、棱镜层、和反射层。
所述体散光层包括若干椭球体和若干矩形纤维发散连接单元,所述一个矩形纤维发散连接单元的两端分别与两个椭球体相连接,所述椭球体的长轴与屏幕的宽边所在方向平行,所述矩形纤维发散连接单元与屏幕的宽边所在方向直线的夹角为α。
所述体散光层为中空三维结构。
进一步的,所述棱镜层包括若干棱镜条(也称为棱镜柱,简称为棱镜),所述棱镜条为圆弧型菲涅尔结构。
各项技术参数参见表2-1、表2-2和表2-3,主要性能检测数据请参考表2-4。
实施例21-29
本发明提供一种解散斑激光电视屏幕,所述屏幕从上到下依次包括调光层、体散光层、棱镜层、反射层和反射层。
所述调光层为实施例1-9中所述的调光层,所述体散光层为实施例11-19中所述的体散光层。
各项技术参数参见表3-1、表3-2和表3-3、表3-4,主要性能检测数据请参考表3-5。
对比例:产品型号为DNP100"LaserPanel,生产厂家是日本印刷株式会社(DNP)。
Figure PCTCN2021074286-appb-000002
Figure PCTCN2021074286-appb-000003
Figure PCTCN2021074286-appb-000004
Figure PCTCN2021074286-appb-000005
Figure PCTCN2021074286-appb-000006
Figure PCTCN2021074286-appb-000007
Figure PCTCN2021074286-appb-000008
Figure PCTCN2021074286-appb-000009
Figure PCTCN2021074286-appb-000010
Figure PCTCN2021074286-appb-000011
Figure PCTCN2021074286-appb-000012
Figure PCTCN2021074286-appb-000013
Figure PCTCN2021074286-appb-000014
表3-5 实施例21-29提供的技术方案的主要性能检测结果
Figure PCTCN2021074286-appb-000015
实施例1-9中的优选实施例为4-9,最优选的实施例为实施例7-9,其具有更低的散斑对比度。
实施例11-19中的优选实施例为为14-19,最优选的实施例为实施例17-19,其具有更低的散斑对比度。
实施例21-29中的优选实施例为24-29,最优选的实施例为实施例27-29,其具有更低的散斑对比度。
特别的,实施例27-29具有最低的散斑对比度。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡是根据本发明内容所做的均等变化与修饰,均涵盖在本发明的专利范围内。

Claims (10)

  1. 一种解散斑激光电视屏幕,其特征在于,所述屏幕从上到下依次包括调光层、棱镜层、和反射层。
  2. 根据权利要求1所述解散斑激光电视屏幕,其特征在于,所述调光层从上到下依次包括结构化树脂层和高分子薄膜。
  3. 根据权利要求1所述解散斑激光电视屏幕,其特征在于,所述调光层包括散射匀光阀和向上匀光阀;所述散射匀光阀的两侧分别设置所述向上匀光阀,所述向上匀光阀与屏幕水平方向成正向夹角θ。
  4. 根据权利要求1所述解散斑激光电视屏幕,其特征在于,所述调光层包括散射匀光阀和向上匀光阀;所述散射匀光阀包括矩形凹透镜和纺锤形凹透镜,所述纺锤形凹透镜设置在所述矩形凹透镜的凹面上;所述向上匀光阀包括半圆柱状透镜和球形颗粒,所述球形颗粒分布在半圆柱状透镜的表面;所述矩形凹透镜的两侧分别设置所述半圆柱状透镜,所述半圆柱状透镜与屏幕水平方向成正向夹角θ。
  5. 根据权利要求2所述解散斑激光电视屏幕,其特征在于,所述结构化树脂层包括散射匀光阀和向上匀光阀;所述散射匀光阀的两侧分别设置所述向上匀光阀,所述向上匀光阀与屏幕水平方向成正向夹角θ。
  6. 根据权利要求2所述解散斑激光电视屏幕,其特征在于,所述结构化树脂层包括散射匀光阀和向上匀光阀;所述散射匀光阀包括矩形凹透镜和纺锤形凹透镜,所述纺锤形凹透镜设置在所述矩形凹透镜的凹面上;所述向上匀光阀包括半圆柱状透镜和球形颗粒,所述球形颗粒分布在半圆柱状透镜的表面;所述矩形凹透镜的两侧分别设置所述半圆柱状透镜,所述半圆柱状透镜与屏幕水平方向成正向夹角θ。
  7. 根据权利要求1所述解散斑激光电视屏幕,其特征在于,所述棱镜层包括若干棱镜条,所述棱镜条为圆弧型菲涅尔结构。
  8. 一种解散斑激光电视屏幕,其特征在于,所述屏幕从上到下依次包括调 光层、体散光层、棱镜层、反射层;所述调光层为权利要求1-7中任一项所述的调光层。
  9. 根据权利要求8所述的解散斑激光电视屏幕,其特征在于,所述体散光层包括若干椭球体和若干矩形纤维发散连接单元,所述一个矩形纤维发散连接单元的两端分别与两个椭球体相连接,所述椭球体的长轴与屏幕的宽边所在方向平行,所述矩形纤维发散连接单元与屏幕的宽边所在方向直线的夹角为α。
  10. 一种权利要求8或9所述的解散斑激光电视屏幕的制备方法,其特征在于,所述方法包括下述步骤:
    (1)、制备调光层:在高分子薄膜的一个表面上制备结构化树脂层,形成调光层;
    (2)、制备体散光层:体散光层在调光层的高分子薄膜的另一个表面上制备;
    (3)、制备棱镜层:在体散光层上制备棱镜层;
    (4)、制备反射层:在棱镜层的棱镜峰所在一侧的表面制备反射层。
PCT/CN2021/074286 2020-12-22 2021-01-29 一种解散斑激光电视屏幕及其制备方法 WO2022134267A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011533307.XA CN114660885B (zh) 2020-12-22 2020-12-22 一种解散斑激光电视屏幕及其制备方法
CN202011533307.X 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022134267A1 true WO2022134267A1 (zh) 2022-06-30

Family

ID=82024991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074286 WO2022134267A1 (zh) 2020-12-22 2021-01-29 一种解散斑激光电视屏幕及其制备方法

Country Status (2)

Country Link
CN (1) CN114660885B (zh)
WO (1) WO2022134267A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018170A1 (de) * 2004-08-10 2006-02-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Bildwand mit reduziertem speckle-effekt
CN106125492A (zh) * 2016-08-31 2016-11-16 海信集团有限公司 投影屏幕和具有该投影屏幕的超短焦投影系统
WO2016190137A1 (ja) * 2015-05-27 2016-12-01 Jxエネルギー株式会社 透明積層体、それを備えた透明スクリーン、およびそれを備えた映像投影システム
CN109021528A (zh) * 2018-05-24 2018-12-18 四川大学 一种提高各向异性光散射材料短轴散射方向散射角的方法
CN111427229A (zh) * 2018-12-20 2020-07-17 青岛海信激光显示股份有限公司 一种投影屏幕和投影系统
CN111538204A (zh) * 2020-06-22 2020-08-14 成都菲斯特科技有限公司 一种反射型投影屏幕及投影系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5048160B2 (ja) * 2012-01-05 2012-10-17 三菱電機株式会社 透過型スクリーン及び投写型表示装置
CN108153102A (zh) * 2016-12-05 2018-06-12 深圳市光峰光电技术有限公司 投影屏幕及其制造方法
CN109976081B (zh) * 2017-12-14 2021-10-22 深圳光峰科技股份有限公司 屏幕和吸光膜的制备方法
CN209297097U (zh) * 2018-12-14 2019-08-23 烟台市谛源光科有限公司 用于超短焦投影系统的菲涅尔抗光投影屏幕
CN109445242A (zh) * 2018-12-14 2019-03-08 烟台市谛源光科有限公司 用于超短焦投影系统的菲涅尔抗光投影屏幕

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018170A1 (de) * 2004-08-10 2006-02-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Bildwand mit reduziertem speckle-effekt
WO2016190137A1 (ja) * 2015-05-27 2016-12-01 Jxエネルギー株式会社 透明積層体、それを備えた透明スクリーン、およびそれを備えた映像投影システム
CN106125492A (zh) * 2016-08-31 2016-11-16 海信集团有限公司 投影屏幕和具有该投影屏幕的超短焦投影系统
CN109021528A (zh) * 2018-05-24 2018-12-18 四川大学 一种提高各向异性光散射材料短轴散射方向散射角的方法
CN111427229A (zh) * 2018-12-20 2020-07-17 青岛海信激光显示股份有限公司 一种投影屏幕和投影系统
CN111538204A (zh) * 2020-06-22 2020-08-14 成都菲斯特科技有限公司 一种反射型投影屏幕及投影系统

Also Published As

Publication number Publication date
CN114660885B (zh) 2023-05-23
CN114660885A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
TWI226495B (en) Light source device
US20100079701A1 (en) Lens sheet, surface light source device, and liquid crystal display device
TW583422B (en) Optical deflection elements and light source device
CN101512393B (zh) 透镜片、面光源装置以及液晶显示装置
US10386567B2 (en) Optical sheet for liquid crystal display device, backlight unit for liquid crystal display device and production method of optical sheet for liquid crystal display device
CN101946206A (zh) 用于改善显示器照度均匀度的增亮膜和基于薄膜的扩散片
JP2006318886A (ja) 照明装置およびこれに使用する光制御部材並びにこれらを用いた表示装置
US8289639B2 (en) Optical films
US7864266B2 (en) Diffuser plate, backlight and display having the same
KR20160031033A (ko) 광 확산 소자, 광 확산 소자가 형성된 편광판 및 이들을 사용한 액정 표시 장치
JP2000330210A (ja) 透過型スクリーン
CN101563630A (zh) 透镜片、面光源装置以及液晶显示装置
WO2022134267A1 (zh) 一种解散斑激光电视屏幕及其制备方法
CN209297097U (zh) 用于超短焦投影系统的菲涅尔抗光投影屏幕
JP6806911B2 (ja) バックライトユニットおよび液晶表示装置
CN114660882B (zh) 一种解散斑激光电视屏幕及其制备方法
CN203688833U (zh) 一种扩散片、直下式液晶模组及液晶显示器
JP2001154004A (ja) 光学シート及びこれを用いたバックライトユニット
KR101173131B1 (ko) 통합형 광학시트를 구비한 백라이트유닛
CN101191846A (zh) 光学板
JP2892808B2 (ja) レンチキュラーレンズのシート
JP2001356206A (ja) 光拡散シート及びこれを用いたバックライトユニット
TW202411066A (zh) 顯示器
CN103645524B (zh) 一种扩散片、直下式液晶模组及液晶显示器
JP4246781B1 (ja) 液晶テレビ用直下型バックライトの光源装置、及び該光源装置を組み込んだ液晶テレビ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908283

Country of ref document: EP

Kind code of ref document: A1