WO2022134081A1 - 用于肌电信号采集和处理的设备和方法 - Google Patents

用于肌电信号采集和处理的设备和方法 Download PDF

Info

Publication number
WO2022134081A1
WO2022134081A1 PCT/CN2020/139651 CN2020139651W WO2022134081A1 WO 2022134081 A1 WO2022134081 A1 WO 2022134081A1 CN 2020139651 W CN2020139651 W CN 2020139651W WO 2022134081 A1 WO2022134081 A1 WO 2022134081A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
module
electrodes
processing module
garment
Prior art date
Application number
PCT/CN2020/139651
Other languages
English (en)
French (fr)
Inventor
周鑫
苏雷
黎美琪
廖风云
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to PCT/CN2020/139651 priority Critical patent/WO2022134081A1/zh
Priority to KR1020237017155A priority patent/KR20230091980A/ko
Priority to CN202080102167.2A priority patent/CN115701278A/zh
Priority to JP2023530707A priority patent/JP2023550133A/ja
Priority to EP20966644.5A priority patent/EP4209175A4/en
Publication of WO2022134081A1 publication Critical patent/WO2022134081A1/zh
Priority to US18/192,793 priority patent/US20230240586A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • A61B5/397Analysis of electromyograms
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/12Surgeons' or patients' gowns or dresses
    • A41D13/1236Patients' garments
    • A41D13/1281Patients' garments with incorporated means for medical monitoring
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D1/00Garments
    • A41D1/002Garments adapted to accommodate electronic equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/252Means for maintaining electrode contact with the body by suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/256Wearable electrodes, e.g. having straps or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/26Bioelectric electrodes therefor maintaining contact between the body and the electrodes by the action of the subjects, e.g. by placing the body on the electrodes or by grasping the electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/271Arrangements of electrodes with cords, cables or leads, e.g. single leads or patient cord assemblies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/14Coupling media or elements to improve sensor contact with skin or tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/27Conductive fabrics or textiles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/305Common mode rejection

Definitions

  • the present application relates to the field of signal acquisition and processing, and in particular, to a device and method for electromyographic signal acquisition and processing.
  • Smart wearable devices With people's attention to scientific sports and physical health, smart wearable devices are developing greatly. Guidance and monitoring of smart wearables rely on sensors and electrodes. Smart wearable devices currently face a conflict between comfort and signal quality (stability and signal-to-noise ratio). Commonly used methods include but are not limited to the use of hydrogel electrodes, skin surface treatment, dry electrode materials and colloidal material fixation. These methods can help improve the quality of the collected signals, but they are faced with poor comfort and short service life. At least one problem in operational complexity.
  • the direct use of dry electrodes can solve the above-mentioned problems, but the electrode module and human skin are prone to the problem of non-fit, which may lead to the inability to collect signals and increase noise; in addition, the human body During movement, the contact position between the electrode and the human body may move relatively, and the movement of the electrode will lead to the acquisition of the target position signal, which will affect the signal quality and increase noise. Finally, the contact impedance between the dry electrode and the human skin is large, which is more likely to cause large fluctuations. , which affects the signal quality.
  • the present application provides a device for collecting and processing human EMG signals, which can significantly improve the quality of EMG signals collected by the electrode module at the human skin under the premise of comfort.
  • One of the embodiments of the present application provides a device for collecting and processing human EMG signals, the device includes: an electrode module configured to collect human EMG signals; the electrode module includes a base structure and at least two electrodes , the at least two electrodes are arranged at intervals and arranged on the surface of the base structure.
  • the at least two electrodes include a first electrode and a second electrode, and the first electrode and the second electrode are arranged side by side and disposed on the surface of the base structure.
  • the at least two electrodes further include a reference electrode, and the first electrode, the reference electrode and the second electrode are sequentially arranged side by side and disposed on the surface of the base structure.
  • the at least two electrodes further include a third electrode and a fourth electrode, the third electrode and the fourth electrode are arranged side by side and disposed on the surface of the base structure; wherein, the The first electrode and the third electrode are arranged side by side, and the second electrode and the fourth electrode are arranged side by side.
  • the electrode module includes a plurality of raised structures located on surfaces of the at least two electrodes or the base structure.
  • the protruding structures are arranged in an array or randomly distributed on the surface of the at least two electrodes or the base structure.
  • the protruding structure is hollow inside, and the hollow portion of the protruding structure is filled.
  • the height of the protruding structure is 0.5mm ⁇ 10mm.
  • the electrode module has a plurality of suction cup structures located on the surfaces of the at least two electrodes or the base structure.
  • the plurality of suction cup structures are arrayed or randomly distributed on the at least two electrodes or the surface of the base structure.
  • the plurality of suction cup structures are distributed on the surface of the base structure around the at least two electrodes.
  • the suction cup structure is a three-dimensional structure, and the suction cup structure includes a hollow portion, and the hollow portion has an opening at one end of the suction cup structure for contacting with human skin.
  • the suction cup structure further includes an intermediate structure, and the intermediate structure is located in a hollow part of the suction cup structure, wherein a part of the intermediate structure and a side wall of the suction cup structure where the hollow part is located connect.
  • the intermediate structure divides the hollow portion of the suction cup structure into a plurality of interconnected spatial regions.
  • the electrode module may further include a plurality of bump structures located on the surface of the base structure or the at least two electrodes.
  • the height of the plurality of bump structures is 10 ⁇ m ⁇ 80 ⁇ m.
  • the distribution density of the plurality of bump structures may be 2/2.25mm 2 to 10/2.25mm 2 .
  • the electrode module further includes a plurality of ventilation holes, and the plurality of ventilation holes are located on the electrode or/and the base structure.
  • An embodiment of the present application provides a wearable device, the device includes a top garment and a trousers garment, and the top garment and the trousers garment at least include an electromyography module for collecting human electromyography signals.
  • the upper garment includes at least: at least one upper body sensor module configured to collect upper body movement data; at least one upper garment data processing module configured to receive and process the upper body movement data; upper garment a base configured to carry the at least one upper garment sensor module and the at least one upper garment data processing module.
  • the at least one top clothing sensor module includes at least a first top clothing sensor module and a second top clothing sensor module, the first top clothing sensor module is located on the left side of the top clothing base, and the second top clothing sensor module The module is located on the right side of the upper garment base.
  • the first coat sensor module and the second coat sensor module include at least the myoelectric module, an electrocardiogram sensor, a respiration sensor, a temperature sensor, a humidity sensor, an inertial sensor, an acid-base sensor, a sound wave transducer.
  • the inertial sensor is located in the garment processing module.
  • the at least one top garment processing module includes at least a first top garment processing module and a second top garment processing module; wherein the first top garment processing module is located on the left shoulder of the top garment base, The first top clothing processing module is connected in communication with the first top clothing sensor module; the second top clothing processing module is located on the right shoulder of the top clothing base, and the second top clothing processing module is connected to the second top clothing processing module. Tops sensor module communication connection.
  • the first coat processing module and the second coat processing module are in a master-slave relationship or a parallel relationship.
  • the pants garment includes at least: at least one pants sensor module configured to collect lower body movement data; at least one pants data processing module configured to receive and process the lower body movement data; pants garments A base configured to carry the at least one pants sensor module and the at least one pants data processing module.
  • the at least one pant sensor module includes at least a first pant sensor module and a second pant sensor module, the first pant sensor module being located on the left side of the pant garment base, and the second pant sensor The module is located on the right side of the pant garment base.
  • the first trousers sensor module and the second trousers sensor module include at least the myoelectric module, an electrocardiogram sensor, a respiration sensor, a temperature sensor, a humidity sensor, an inertial sensor, an acid-base sensor, a sound wave transducer.
  • the at least one pants processing module includes at least a first pants processing module and a second pants processing module; wherein the first pants processing module is located on the left side of the left leg of the pants garment base, The first trousers processing module is in communication connection with the first trousers sensor module; the second trousers processing module is located on the right side of the right leg of the trousers garment base, and the second trousers processing module is in communication with the second trousers processing module. Pants sensor module communication connection.
  • the first pants processing module and the second pants processing module have a master-slave relationship or a parallel relationship.
  • FIG. 1 is a schematic structural diagram of an electrode module according to some embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of another electrode module according to some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of yet another electrode module according to some embodiments of the present application.
  • FIG. 4 is a parallel model of electrode impedance according to some embodiments of the present application.
  • FIG. 5 is a parallel model of electrode impedance of conductive silicon electrodes according to some embodiments of the present application.
  • FIG. 6 is a graph showing the relationship between the conductive silicon electrode and its thickness according to some embodiments of the present application.
  • FIG. 7A is a schematic structural diagram of an electrode according to some embodiments of the present application.
  • 7B is a parallel model of metal fabric conductive silicon composite electrodes according to some embodiments of the present application.
  • FIG. 8 is a schematic structural diagram of a suction cup structure according to some embodiments of the present application.
  • FIG. 9 is a cross-sectional view of another suction cup structure according to some embodiments of the present application.
  • FIG. 10 is a cross-sectional view of another suction cup structure according to some embodiments of the present application.
  • FIG. 11 is a cross-sectional view of another suction cup structure according to some embodiments of the present application.
  • FIG. 12 is a schematic structural diagram of an electrode module with a suction cup structure according to some embodiments of the present application.
  • FIG. 13 is a schematic structural diagram of another electrode module with a suction cup structure according to some embodiments of the present application.
  • FIG. 14 is a schematic diagram of an exemplary structure of a wearable device according to some embodiments of the present application.
  • FIG. 15 is an exemplary structural diagram of a wiring connection manner of a top-wearable device according to some embodiments of the present application.
  • 16A is an exemplary structural diagram of the elastic design of the underarm position of the top wearable device according to some embodiments of the present application.
  • FIG. 16B is an exemplary structural diagram of the elastic design of the position of the upper arm of the top wearable device according to some embodiments of the present application.
  • 17A is an exemplary structural diagram of the annular elastic design of the electrode module of the top wearable device according to some embodiments of the present application.
  • 17B is an exemplary structural diagram of a specific direction elastic design of an electrode module of a top wearable device according to some embodiments of the present application.
  • FIG. 18 is an exemplary structural diagram of a hollow design of a wearable device according to some embodiments of the present application.
  • 19A is an exemplary structural diagram of a blade electrode module according to some embodiments of the present application.
  • 19B is an exemplary cross-sectional view of a blade electrode module according to some embodiments of the present application.
  • system means for distinguishing different components, elements, parts, parts or assemblies at different levels.
  • device means for converting components, elements, parts, parts or assemblies to different levels.
  • EMG electromyographic signal
  • SEMG surface electromyographic signal
  • the electrode modules and smart wearable devices (for example, clothing, wristbands, shoulder straps, etc.) described in the embodiments of this application mainly involve the collection of electromyography signals on the skin surface (hereinafter collectively referred to as electromyography signals), which can be obtained from many parts of the human body.
  • electromyography signals can be obtained from many parts of the human body.
  • the EMG signals obtained from different parts carry the movement and function information of the corresponding parts.
  • the EMG signal on the leg reflects the posture and motion state of the leg, such as walking, running, squatting, etc. Therefore, EMG signals can be collected by smart wearable devices to meet people's requirements for exercise and fitness guidance.
  • the smart wearable device can be clothing. , neck, etc.) corresponding to the electrode module, can collect the EMG signals of various parts of the user's body when exercising.
  • the smart wearable device can directly analyze and process the collected EMG signals, or transmit the collected EMG signals to the processing terminal (for example, mobile terminal equipment, cloud server) in a wired or wireless manner. Perform analysis and processing to determine whether the user's movement is correct, and provide corresponding feedback to the user to correct the user's incorrect movement.
  • the smart wearable device can also formulate a scientific personal exercise plan for the user based on the collected EMG signals, and guide the user to exercise.
  • the electrode module can collect the EMG signal of better quality, and also needs to have flexibility, ultra-thin, tolerance, skin-friendly, etc. Features to avoid the discomfort brought by the electrodes to the user when the user wears the clothing for exercise and fitness.
  • the amplitude of the original EMG signal directly collected by the electrodes is very small and has a large amount of noise, which requires filtering, differential amplification and other processing before subsequent analysis or processing of the EMG signal is performed.
  • the noise in the original EMG signal mainly includes common mode noise
  • the common mode noise is mainly caused by the power frequency common mode signal. Therefore, in order to reduce the common mode noise, the differential circuit, the right leg drive circuit, Filter circuits, etc. can effectively suppress the power frequency common mode signal, thereby reducing or eliminating common mode noise.
  • a differential circuit and a right leg drive circuit can be used to effectively suppress the power frequency common mode signal.
  • the common mode noise is mainly caused by the power frequency
  • the frequency of the common mode noise is mainly concentrated in the vicinity of 50 Hz or 60 Hz (or its harmonics), and the frequency distribution of the main intensity of the EMG signal is 20 Hz.
  • common mode noise can be filtered out by one or more filters or notch filters.
  • a 50 Hz notch filter and a 140 Hz low pass filter may be used to filter out common mode noise.
  • a 50 Hz notch filter, a 100 Hz notch filter, a 150 Hz notch filter, and a 240 Hz low-pass filter can be used to filter out common mode noise.
  • a 50 Hz notch filter, a 150 Hz notch filter, and a 230 Hz low-pass filter can be used to filter out common mode noise.
  • the noise in the EMG raw signal may also include differential mode noise caused by the conversion of the common mode signal to the differential mode signal.
  • differential mode noise caused by the conversion of the common mode signal to the differential mode signal.
  • the fluctuation of the contact impedance between the electrodes and the skin will cause the contact impedance between the two electrodes corresponding to the differential circuit and the human skin to be inconsistent, so that the common-mode signal is converted into a differential Differential mode noise is caused by the mode signal, especially the differential amplifier circuit will amplify the differential mode signal. Therefore, the amount of conversion of common mode signals to differential mode signals can be reduced by reducing or avoiding contact impedance fluctuations. For example, by reducing the value of the contact impedance between the electrode and the skin, the contact impedance has a smaller fluctuation range, thereby reducing the differential mode noise caused by the fluctuation of the contact impedance.
  • the fluctuation of the contact impedance leads to inconsistent contact impedance between the two electrodes corresponding to the differential circuit and the skin, and also causes a voltage division problem, so that the collected EMG signal has a small amplitude and insufficient strength. Therefore, the problem of voltage division can be solved by increasing the input impedance of the circuit connected to the electrode (for example, a differential circuit), and when the difference between the input impedance and the contact impedance is large enough, the fluctuation of the contact impedance can be reduced or avoided. The effect of electrical signal strength.
  • the EMG signal quality can be improved by reducing noise by reducing the contact impedance.
  • the quality of the EMG signal can also be graded, so as to remove the EMG signal with poor quality, retain the EMG signal with high quality, or use an algorithm to process the EMG signal with poor quality as High-quality EMG signals.
  • a contact impedance evaluation circuit can be designed to connect with the electrodes, and the contact impedance evaluation circuit can be used to measure the size or abnormality of the electrode contact impedance. The size or abnormality of the electrode contact impedance will directly affect the quality of the collected EMG signal. , therefore, the coefficient used to measure the contact impedance can be used as an indicator of the quality of EMG signal acquisition, and this indicator is used to give the collected EMG signal weight, the greater the weight, the higher the quality of the EMG signal.
  • different numbers of electrodes may be correspondingly arranged in various parts of the human body, for example, for collecting the electromyographic signals of various parts of the human body.
  • a plurality of electrodes of the electromyographic signal of a certain part can be integrated into an electrode module, and the electrode module can be arranged in the central area of the muscle of the part and include at least two electrodes, and the at least two electrodes can be along the length direction of the muscle fibers of the part. Set in sequence.
  • FIG. 1 is a schematic structural diagram of an electrode module according to some embodiments of the present application.
  • the electrode module 100 may include a base structure 103 and two electrodes (also referred to as electrode units). The two electrodes are distributed on the surface of the base structure 103 at intervals.
  • the base structure 103 may be made of a flexible insulating material (eg, resin, soft PVC, silicone), and may be rectangular, circular, or other irregular shapes.
  • the electrodes can be fixedly connected to the base structure 103 by means of pasting, clipping, welding, etc., and the electrode module 100 can be fixed on the corresponding position of the wearable device through the base structure 103 .
  • the two electrodes may include a first electrode 101 and a second electrode 102.
  • the first electrode 101 and the second electrode 102 may be along the length of the muscle fiber. (x direction in Fig. 1) are set in sequence. Different positions in the length direction of the muscle fiber have different potentials, the position of the muscle fiber where the first electrode 101 is located has the first potential, the position of the muscle fiber where the second electrode 102 is located has the second potential, and the difference between the first potential and the second potential is There is a potential difference between them (the potential difference can be used to reflect the EMG signal).
  • the electrode module may further include a differential circuit, and the first electrode and the second electrode may be electrically connected to two input terminals of the differential circuit, respectively.
  • a differential circuit may refer to a circuit structure that amplifies differential mode signals and suppresses common mode signals.
  • FIG. 2 is a schematic structural diagram of another electrode module according to some embodiments of the present application.
  • the electrode module 200 may include a first electrode 201 , a third electrode 204 , and a second electrode 202 arranged on the surface of the base structure 203 at intervals along the length direction of the muscle fiber.
  • the position of the muscle fiber where the first electrode 201 is located has the first potential
  • the position of the muscle fiber where the second electrode 202 is located has the second potential
  • the position of the muscle fiber where the third electrode 204 is located has the third potential.
  • the first electrode 201 and the second electrode 202 are respectively connected to the input terminals of the differential circuit, and the third electrode 204 in the middle can be used as a reference electrode for recording the electrode module
  • MA motion artifacts
  • the MA noise frequency is related to motion and can be filtered out by a high pass filter.
  • the MA noise can have a multiplication effect with other sources, resulting in the superposition of frequencies.
  • a third electrode 204 may be disposed between the first electrode 201 and the second electrode 202 .
  • the third electrode 204 is located between the first electrode 201 and the second electrode 202.
  • the third electrode 204 has a reference meaning representing the electrode module 200, and can be measured separately to obtain relevant information of the third electrode 204, such as contact impedance , power frequency output, etc., the relevant information of the third electrode 204 can be introduced into the evaluation system as a quality supervision value for evaluating the electromyographic signal collected by the electrode module 200 .
  • the third electrode 204 is located between the first electrode 201 and the second electrode 202 , and the third electrode 204 changes as the state of the entire electrode module 200 changes.
  • the electrode module 200 includes only the first electrode 201 and the second electrode 202 .
  • the reference ground in the measurement circuit of the electrode module 200 is connected to the first electrode 201 or the second electrode 202 or a fixed source.
  • the measurement result of the electrode module is actually a difference between the first electrode 201 and the second electrode 202. enlarge.
  • the reference ground is the third electrode 204.
  • the result of the electrode module measurement is the potential difference between the first electrode 201 and the third electrode 204 and the potential difference between the second electrode 204 and the third electrode.
  • the difference is differentially amplified, and the potential measured by the third electrode 204 includes noise caused by MA and poor contact.
  • the measurement method of potential difference can effectively reduce the noise caused by MA and poor contact.
  • the third electrode 204 can be used as the output terminal of the right leg drive circuit.
  • the right leg drive circuit collects the common mode signal of the electrode module, and after the direction amplification is fed back to the human body through the third electrode 204, the common mode signal can be effectively suppressed from the source. Signal.
  • the third electrode 204 can be used as an electromyographic signal acquisition electrode similar to the first electrode 201 and the second electrode 202, which can help to realize the acquisition combination of different electrode pairs.
  • the first electrode 201 and the third electrode 204 can be To collect a group of EMG signals, the second electrode 202 and the third electrode 204 can collect another group of EMG signals, through the properties of these two groups of EMG signals (for example, within a certain range, the strength of the EMG signals is related to the value of the collection electrodes. The distance shows a proportional relationship) to extract the EMG signal and optimize the signal-to-noise ratio.
  • base structure 203 is the same as or similar to base structure 103 .
  • FIG. 3 is a schematic structural diagram of yet another electrode module according to some embodiments of the present application.
  • the electrode module 300 may include two groups of electrodes, the two groups of electrodes are arranged at intervals along the width direction (y direction) of the muscle fibers on the surface of the base structure 303 , and each group of electrodes The two electrodes are spaced apart along the length of the muscle fibers.
  • the two groups of electrodes are respectively a first group of electrodes 310 and a second group of electrodes 320, the first group of electrodes 310 includes a first electrode 301 and a second electrode 302, and the second group of electrodes 320 includes a third electrode 304 and a fourth electrode 305.
  • the position of the muscle fiber where the first electrode 301 is located has the first potential
  • the position of the muscle fiber where the second electrode 302 is located has the second potential
  • the position of the muscle fiber where the third electrode 304 is located has the third potential
  • the fourth electrode 305 is located at the position of the muscle fiber
  • the position of the muscle fiber has the fourth potential.
  • the first electrode 301 and the third electrode 304 are commonly connected to one input terminal of the differential circuit, and the larger, smaller or the average value of the first potential and the third potential can be used as the input of the input terminal, while the second electrode 302 and the fourth electrode 302 are connected to the other input end of the differential circuit, the larger, smaller or the average value of the second potential and the fourth potential can be used as the input of the other input end of the differential circuit, based on the differential
  • the electromyographic signal at the position of the electrode module 300 can be obtained by the input of the two input terminals of the circuit.
  • the first electrode 301 and the second electrode 302 may be respectively connected to two input terminals of a differential circuit
  • the third electrode 304 and the fourth electrode 305 may be respectively connected to two input terminals of another differential circuit , at this time, there is a first potential difference between the first potential and the second potential (ie the first differential signal or the first myoelectric signal), and there is a second potential difference between the third potential and the fourth potential (ie the second differential signal) or second EMG signal).
  • the EMG crosstalk influence information near the muscle fibers in the Y direction can be obtained.
  • the EMG signal interference of the muscles near the to-be-collected site can be eliminated through an algorithm. Collect more accurate EMG signals.
  • the electromyographic signal combination of multiple positions of the human body part corresponding to the electrode module can be extracted through the two sets of electrodes, so as to extract more accurate electromyographic signals.
  • Electrodes in the electrode module are only for illustrative purposes, and the number and distribution of electrodes in the electrode module are not limited to those shown in FIG. 1 , FIG. 2 and FIG. It can be arranged at intervals along the length direction of the muscle fibers, which will not be further described here.
  • the contact impedance will be formed when each electrode is in contact with the skin. Pressure, position, etc. will change to a certain extent, which will make the contact impedance fluctuate, thus affecting the accuracy of the EMG signal.
  • the This is achieved by reducing contact impedance fluctuations. Specifically, the contact impedance between the at least two electrodes and the skin can be reduced so that the contact impedance does not fluctuate in a large range, so that the difference in the contact impedance between the two ends of the electrodes is small or consistent.
  • the contact between the electrode and the skin can be equivalent to the parallel connection of a capacitor and a resistor, and the contact impedance can be calculated by formula (1):
  • the contact area between the electrode and the skin can be increased as much as possible.
  • the contact area is large.
  • the shape of the surface of the electrode in contact with the skin may be rectangular, wherein the surface of the electrode for contacting the skin may have a length of 1 cm-10 cm and a width of 1 cm-4 cm.
  • the dimensions of the surface may be 4 cm by 2 cm, or 3 cm by 1.5 cm, or 2 cm by 1 cm.
  • the shape of the electrode may also be other regular or irregular shapes such as circle, triangle, hexagon, etc. In practical applications, the shape of the electrode may depend on the shape of the muscle at the site where the EMG signal is to be collected.
  • the size of the surface of the electrode for contacting the skin is not limited to the above-mentioned size, and may be larger or smaller, which may be determined according to the measurement part.
  • the size and distribution of electrodes can be limited by muscle size and intermuscular crosstalk.
  • the electrodes may be distributed in the center of the muscle to be measured without extending beyond the muscle.
  • the electrode when the electrode is in a muscle-dense area, the electrode may be located in the center of the target muscle range and away from other muscles than the target muscle.
  • electrodes of different lengths may be selected according to the lengths of the muscle fibers in the length direction of the muscles when the electromyography signals are collected from different parts of the human body.
  • electrodes with a length of 4 cm can be used to collect EMG signals.
  • an electrode with a length of 10 cm can be used for collection.
  • the electrode module has a reference electrode (for example, the third electrode 204 in FIG. 2 )
  • the reference electrode may be smaller than the electrodes used for collecting EMG signals (for example, the first electrode 201 and the third electrode shown in FIG. 2 ).
  • the length of the two electrodes 202), for example, the latissimus dorsi muscle can be collected with an electrode with a length of 10 cm, and the length of the reference electrode can be 6 cm.
  • the electrodes may employ electrodes of relatively small size, such as 2 cm or 3 cm. It is understood that the length of the electrode refers to the length of the electrode in the direction perpendicular to the length of the muscle fibers (the y direction in FIG. 1 ).
  • the interval between two adjacent electrodes will affect the intensity of the measured electromyography signal.
  • the electrode module including two electrodes for example, the first electrode 101 and the second electrode 102 shown in FIG. 1 as an example
  • the strength of the EMG signal can be reflected by the potential difference between the two electrodes.
  • the direction of the muscle fibers (the x direction in Figure 1) is arranged at intervals. When the user is exercising, the muscles to be tested expand and contract, and there will be a potential difference along the direction of the muscle fibers. Arrange the two electrodes at intervals along the length of the muscle fibers to collect data. The potential difference of the muscle to be measured when the human body moves.
  • the two electrodes in the electrode module may be 1 mm ⁇ 10 cm.
  • the distance between the two electrodes in the electrode module may be 0.5 cm ⁇ 6 cm.
  • the distance between the two electrodes in the electrode module may be 0.8 cm ⁇ 4 cm.
  • the distance between two electrodes in the electrode module may be 1 cm-3 cm.
  • the distance between the two electrodes corresponding to each muscle region may be the same or different from the distance between the two electrodes corresponding to other muscle regions.
  • the electrode spacing in the electrode module and the width of the electrodes in the muscle fiber direction (ie, the x-direction) (ie, the electrode width) are limited by the range of EMG frequency collection and the EMG conduction velocity.
  • each muscle action of different individuals corresponds to different EMG frequency domain performances
  • different EMG frequency domains correspond to different EMG frequency collection ranges.
  • the EMG frequency domain acquisition range is in the range of 10 Hz to 200 Hz.
  • the distance between two electrodes receiving EMG signals is 1cm
  • the other electrode has point b
  • the distance between point a and point b is 1cm
  • the EMG signal transmission speed is 4m/s
  • the output from point a The 400Hz signal will propagate to point b and be in phase with the 400Hz signal at point a
  • the 400Hz signal will appear in the same phase at the two inputs of the differential circuit, and the strength will be suppressed by the common mode suppression in the circuit, resulting in the frequency
  • the signal strength is reduced and the time domain signal is distorted.
  • the center-to-center distance between two electrodes may be less than 3 cm, so that EMG signals within the EMG collection frequency range (eg, within 133 Hz) can be sufficiently preserved.
  • a larger center-to-center distance can be used. For example, when the center-to-center distance between two electrodes is 6 cm, more EMG signals within the EMG acquisition frequency range (for example, within 66.5 Hz) can be retained. .
  • the center-to-center spacing between two electrodes is the distance between the centers of the two electrodes, which can be expressed as half the width of one electrode, half the width of the other electrode, and the adjacent edges of the two electrodes are at x The sum of the spacing in the direction.
  • the electrode width may range from 1 mm to 5 cm.
  • the electrode width may range from 0.5 cm to 3 cm. More preferably, the electrode width is 1 cm, 1.5 cm or 2 cm.
  • the electrode and the skin have a larger contact area, so that the contact resistance between the electrode and the skin can be effectively reduced.
  • the electrode has a large size, the electrode can not completely fall off from the skin in the case of various movements or folds, so as to collect the EMG signal, and the collected EMG signal can be passed through the back-end circuit and algorithm, etc. Extract the effective EMG signal.
  • the effect of wrinkles on large-sized electrodes will be relatively less.
  • the contact impedance between the electrode and the skin, as well as the overall impedance of the electrode can also be effectively reduced by using electrodes of suitable materials and structures.
  • the electrodes may be electrodes composed of a single material, such as metal fabric electrodes, conductive silicon electrodes, hydrogel electrodes, metal electrodes, and the like.
  • the electrodes when the electrodes are used to be integrated on clothing to fit the skin, preferably, the electrodes may be metal fabric electrodes and conductive silicon electrodes. Further preferably, the electrode can be a metal fabric electrode, and the metal fabric electrode has a lower resistivity, and its impedance and contact impedance with the skin are also smaller.
  • the thickness of the metal fabric electrode when a metal fabric electrode is used to collect myoelectric signals, the thickness of the metal fabric electrode may be 10 ⁇ m ⁇ 5 mm. Preferably, the thickness of the metal fabric electrode may be 100 ⁇ m ⁇ 3 mm. Further preferably, the thickness of the metal fabric electrode may be 500 ⁇ m ⁇ 2 mm.
  • the electrode can also be an electrode formed by superimposing different materials, such as a metal fabric conductive silicon composite electrode composed of a metal fabric material and a conductive silicon material, which not only has a small contact resistance with the skin, but also has a small contact resistance with the skin.
  • the conductive silicon in contact has the advantages of skin-friendly, strong washing resistance, etc., which avoids the discomfort caused by the contact between the electrode and the skin.
  • R1 represents the longitudinal impedance of the electrode material
  • R2 represents the transverse impedance of the electrode material
  • R3 represents the transversal impedance of the skin surface
  • R4 represents the longitudinal impedance of the skin (for the convenience of explanation and description, the longitudinal impedance of the skin here includes the contact impedance)
  • R5 is the The transverse impedance of the dermis
  • EMG represents the source of the electromyographic signal
  • the measurement point is the lead-out point of the conductive wire on the electrode.
  • R1, R2 are related to the material (resistivity), structure and size of the electrode (thickness in the direction perpendicular to the skin surface and length in the direction parallel to the skin surface).
  • the electrode impedance parallel model can be optimized by changing the material, structure and size of the electrodes (for example, by changing the size of R1 and R2 to change the parallel path in the electrode impedance parallel model, so as to reduce the total impedance and the purpose of contact resistance), so that suitable materials can be selected for the electrodes and suitable structures can be designed.
  • the epidermis is the stratum corneum of human skin
  • the stratum corneum is relatively dry and has a high resistivity, therefore, R3 has a large value, so it can be regarded as an open circuit.
  • the situation of the signal source is basically the same, so only one EMG signal source can be considered.
  • the electrode parallel impedance models corresponding to electrodes of different materials are different, and the parallel path in the corresponding electrode impedance parallel model can be changed by changing the structure of the electrodes, so as to reduce the total electrode impedance and the difference between the electrode and the skin.
  • the purpose of contact resistance is different.
  • FIG. 5 is a parallel model of conductive silicon electrode impedance shown in accordance with some embodiments of the present application. Due to the high resistivity of conductive silicon, R1 and R2 cannot be ignored, and the R1 and R2 of electrodes with different structures and sizes will also vary greatly. Resistivity will have the same effect on R1 and R2, while thickness will have a different effect on R1 and R2. Among them, R2 is affected by the thickness, and the larger the thickness, the smaller R2, so R2 can be regarded as a parallel connection of a series of material lateral resistances r2 per unit thickness. As shown in Figure 5, R1 is also affected by the thickness. The greater the thickness, the greater the R1. Therefore, R1 can be regarded as a series of material longitudinal resistances r1 per unit thickness.
  • the relationship between the resistance value of the conductive silicon electrode and its thickness in FIG. 6 can be obtained. It can be seen from Fig. 6 that the larger the thickness of the conductive silicon electrode, the smaller the resistance.
  • the thickness of the electrode can be increased to reduce the lateral resistance R2 of the electrode, so that a larger area of the path can participate in the parallel model (for example, assuming that the resistance value of the parallel path is the minimum resistance More than 10 times of the path can be ignored, and a smaller electrode lateral resistance R2 can bring a larger area of the path to participate in parallel), and the total impedance and contact impedance can be greatly reduced in parallel.
  • the thickness of the conductive silicon electrode may be 0.01 mm-4 mm. Preferably, the thickness of the conductive silicon electrode may be 0.1 mm-3 mm. Further preferably, the thickness of the conductive silicon electrode may be 0.5mm-1mm. In some embodiments, the width of the conductive silicon electrode is 1 mm ⁇ 5 cm. Preferably, the length of the conductive silicon electrode is 0.5 cm ⁇ 3 cm. Further preferably, the width of the conductive silicon electrode is 1 cm, 1.5 cm or 2 cm. In some embodiments, the length of the surface of the conductive silicon electrode for contacting the skin may be 1 cm to 10 cm. It should be noted that the length of the conductive silicon electrode can be determined according to the measurement part.
  • a conductive silicon electrode with a length of 4 cm can be used to collect EMG signals.
  • a conductive silicon electrode with a length of 10 cm can be used for collection.
  • FIG. 7A is a schematic structural diagram of an electrode according to some embodiments of the present application.
  • 7B is a parallel model shown in FIG. 4 when R5 is much larger than R2 according to some embodiments of the present application.
  • the metal fabric conductive silicon composite material electrode may include a base structure 701 , a metal fabric electrode 720 and a conductive silicon electrode 710 which are sequentially arranged from top to bottom.
  • the lower surface of the conductive silicon electrode 710 is in contact with the skin, and the metal fabric electrode 720 is between the upper surface of the conductive silicon electrode and the base structure 701 made of lower conductivity material. Further, the metal fabric electrode has high electrical conductivity, which can be approximated as a material lateral resistance that shorts out the conductive silicon electrode 710 (for example, R2 in FIG. 4 and FIG.
  • the parallel loop in Figure 4 is twice R2 plus one R1, and the parallel loop in Figure 7B is one R2 plus R1), which allows more channels and larger areas to be paralleled, thereby greatly reducing the total impedance and contact impedance, and make the measurement results of the electrodes along the direction of the muscle fibers (ie, the collected EMG signals) consistent.
  • the metal fabric conductive silicon composite material electrode formed by the combination of the metal fabric electrode 720 and the conductive silicon electrode 710 greatly reduces the total impedance of the electrode.
  • the contact impedance between the electrode and the skin can also be effectively reduced, so that in the case of year-on-year fluctuations, the fluctuation of the contact impedance relative to the circuit input impedance can be reduced. value, thereby reducing the noise in the EMG signal.
  • the metal fabric conductive silicon composite material electrode when used to collect EMG signals, the conductive silicon electrode is in direct contact with human skin. discomfort to the human body.
  • the thickness of the metal fabric electrode in the metal fabric conductive silicon composite electrode may be 10 ⁇ m ⁇ 5 mm.
  • the thickness of the metal fabric electrode in the metal fabric conductive silicon composite material electrode may be 100 ⁇ m ⁇ 3 mm.
  • the thickness of the metal fabric electrode in the metal fabric conductive silicon composite material electrode may be 500 ⁇ m ⁇ 2 mm. In some embodiments, the thickness of the conductive silicon electrode in the metal fabric conductive silicon composite electrode may be 1 ⁇ m ⁇ 4 mm. Preferably, the thickness of the conductive silicon electrode in the metal fabric conductive silicon composite material electrode may be 10 ⁇ m ⁇ 2 mm. Further preferably, the thickness of the conductive silicon electrode in the metal fabric conductive silicon composite material electrode may be 0.1 mm ⁇ 1 mm. In some embodiments, the width of the metal fabric conductive silicon composite electrode is 1 mm ⁇ 5 cm. Preferably, the width of the metal fabric conductive silicon composite material electrode is 0.5 cm ⁇ 3 cm.
  • the width of the metal fabric conductive silicon composite material electrode is 1 cm, 1.5 cm or 2 cm.
  • the length of the surface of the metal fabric conductive silicon composite electrode for contacting the skin may be 1 cm to 10 cm.
  • the length of the combined electrode can be determined according to the measurement part. For example, for upper body muscles, a combined electrode with a length of 4 cm can be used to collect EMG signals. For another example, for a site with a larger range of muscles, such as the latissimus dorsi, a combined electrode with a length of 10 cm can be used for acquisition.
  • the size (eg, length and width) of the metal fabric electrode is larger than that of the conductive silicon electrode, eg, the width of the metal fabric electrode is 1 mm to 5 cm, and the width of the conductive silicon electrode is 0.8 cm to 4 cm.
  • the width of the metal fabric electrode is 0.5cm-3cm, and the width of the conductive silicon electrode is 0.4cm-2.8cm.
  • the width of the metal fabric electrode is 1 cm-2 cm, and the width of the conductive silicon electrode is 0.8 cm-1.6 cm.
  • the length of the metal fabric electrode in the combined electrode of the conductive silicon electrode and the metal fabric electrode may be 1 cm ⁇ 10 cm.
  • the length of the conductive silicon electrode in the electrode combined with the conductive silicon electrode and the metal fabric electrode may be 0.8cm ⁇ 8cm. It should be noted that the length of the conductive silicon electrode and the metal fabric electrode can be determined according to the measurement part. For example, for upper body muscles, a combined electrode with a length of 4cm can be used to collect EMG signals, and the length of the metal fabric electrode can be 4cm. , the length of the conductive silicon electrode can be 3.2 cm. For another example, for parts with a large range of muscles, such as the latissimus dorsi, a combined electrode with a length of 10 cm can be used for collection, the length of the metal fabric electrode can be 10 cm, and the length of the conductive silicon electrode can be 8 cm.
  • the movement of the limbs may cause the electrodes to have a certain displacement or folds relative to the skin or even fall off the skin, resulting in large fluctuations in contact impedance or even inability to collect EMG signals.
  • the position changes resulting in inaccurate EMG signals collected.
  • the possibility of electrode movement relative to the skin can be reduced by increasing the tightness of the fit between the electrode and the skin. Further, the close contact between the electrode and the skin can also shorten the distance between the electrode and the skin. According to formula (1), the contact impedance between the skin and the electrode can be reduced, which is beneficial to reduce the contact impedance and reduce the contact impedance. fluctuation.
  • the electrode module in order to achieve close and reliable contact between the electrode and the skin, may include a plurality of protruding structures, the protruding structures may be located between the electrodes and the base structure, and the protruding structures may make the surface of the electrode face toward the skin. bulge out.
  • the raised structures may be arranged in an array on the surface of the electrode or/and the surface of the base structure, or may be randomly distributed. Specifically, when a certain external pressure acts on the electrode module to make the electrode contact with human skin, the raised structure can make the electrode and human skin have a better adhesion force.
  • the pressure requirement on the body of the carrier (for example, clothing) where the electrode module is located can be reduced by arranging the protruding structure.
  • the electrode module with the protruding structure ensures that only the electrode part has high pressure, and the carrier does not exert much pressure on other parts of the body. , while ensuring that the electrodes have a fit force, the user has a better comfort.
  • the electrodes may be raised structures. For example, the central region of the electrode is higher than the edge region of the electrode.
  • the electrode may be a planar structure, and the electrode may protrude outward relative to the base structure of the electrode module to form a protruding structure of the electrode module.
  • the height of the raised structures is 1 mm ⁇ 10 mm.
  • the height of the raised structure is 2mm ⁇ 8mm. More preferably, the height of the raised structure is 2mm ⁇ 4mm.
  • the protruding structure here is the protruding structure with the highest middle and four sides gradually lowering, and the height of the protruding structure is the height of the part of the highest position in the middle of the protruding structure.
  • the protruding structure may also be a structure in which the end surface of the protruding structure in contact with the human body is approximately a plane, and the height of the protruding structure may be 0.5 mm to 5 mm.
  • the height of the protruding structure may be 1 mm ⁇ 4 mm. More preferably, the height of the raised structure may be 1 mm ⁇ 2 mm.
  • the protruding structures may also be located on the other side of the base structure, that is, the protruding structures and electrodes are distributed on different surfaces of the base structure.
  • the protruding structure may be made of an elastic material, for example, the protruding structure may be made of soft PVC, resin, silicone and other materials.
  • the protruding structure may be a hollow structure, and the protruding structure may include a filler, and the filler may be located in the hollow interior of the protruding structure.
  • the filler can be an elastic material with certain electrical conductivity.
  • the filler may contain absorbent sponge, silica gel, or the like. On the one hand, fillers can remove excess moisture from the skin surface and prevent short circuits between electrodes.
  • the deformation of the protruding structures at the two electrodes is different, which makes the contact impedance between the two electrodes and the skin different, thereby affecting the contact resistance between the two electrodes.
  • the consistency is different, so that the collected EMG signals are affected by noise.
  • the noise in the EMG signal can be reduced by reducing the contact impedance.
  • the contact impedance fluctuation range can also be controlled to reduce noise in the EMG signal.
  • contact impedance fluctuations may be within 1 M ohms.
  • the contact impedance fluctuation can be within 100K ohms.
  • the contact impedance fluctuations may be within 10K ohms.
  • the fluctuation range of the control contact impedance can be that the contact impedance range between the two electrodes and the skin is within a specific range (for example, within the above-mentioned 1M ohm, within 100K ohm, and then within 10K ohm), or the two electrodes and the skin are within a certain range.
  • the fluctuation value of the contact impedance between the skins is approximately the same.
  • noise can also be reduced by pairing the circuits connected to the electrodes, for example, the circuits connected to the electrodes may include differential architectures, notch filters, threshold filtering, right leg drive, and the like.
  • the problem of inconsistent contact impedance between the two electrodes and the skin can also be solved by adjusting the structure and height of the protruding structures.
  • the raised structure is a solid structure, and the end surface of the raised structure in contact with the skin is a flat surface.
  • the height of the protruding structure is 1 mm.
  • the electrode module may include a plurality of suction cup structures, and the suction cup structures can make the electrodes more closely fit on the skin, prevent the electrodes from moving when collecting EMG signals, and ensure the accuracy of the collected EMG signals sex.
  • 8 is a cross-sectional view of a suction cup structure according to some embodiments of the present application.
  • the suction cup structure 800 is a regular or irregular geometric structure, such as a three-dimensional structure such as a cylinder, a truncated cone, a cuboid, etc., wherein the suction cup structure 800 may include a hollow part 810 , the hollow part is at one end of the suction cup structure 800 .
  • the portion has an opening 811 .
  • the suction cup structure 800 may be made of elastic materials such as thermoplastic elastomer (TPE), polypropylene (PPE), urethane-acrylate based polymer (s-PUA), etc., so that the suction cup structure 800 can be Has the ability to deform.
  • TPE thermoplastic elastomer
  • PPE polypropylene
  • s-PUA urethane-acrylate based polymer
  • the opening 811 of the hollow part 810 in the suction cup structure 800 is in contact with the human skin, and under the action of external force, the suction cup structure 800 is deformed, so that part of the air inside the hollow part 810 is squeezed Press to the outside, so that the external air pressure is greater than the internal air pressure of the hollow part 810, forming a negative pressure space with the skin surface, so that the electrode module (or electrode) is adsorbed on the skin, and the effect of the electrode and the skin is closely attached.
  • the shape of the hollow portion 810 includes, without limitation, a sphere, an arch, a cylinder, a cube, a mutilated sphere, and other regular or irregular shapes.
  • the shape of the hollow portion of the suction cup structure shown in FIG. 8 is a cube.
  • the shape of the hollow portion of the suction cup structure shown in FIG. 9 is a broken spherical shape.
  • FIG. 10 is a cross-sectional view of another suction cup structure according to some embodiments of the present application.
  • the suction cup structure 1000 may include an intermediate structure 1020 located at the hollow portion 1010 of the suction cup structure 1000 , wherein a portion of the intermediate structure 1020 may be connected to a sidewall of the suction cup structure 1000 where the hollow portion 1010 is located .
  • the intermediate structure 1020 may be made of a material that is soft and easily deformable, and has a certain elasticity.
  • the intermediate structure 1020 may be made of soft PVC, silicone, sponge and other materials.
  • the shape of the intermediate structure 1020 may include, but is not limited to, spherical, cylindrical, cubic, and other regular or irregular shapes.
  • the intermediate structure 1020 may be a part of the suction cup structure 1000 , or may be provided separately from the suction cup structure 1000 .
  • the intermediate structure 1020 can divide the hollow portion 1010 into a plurality of interconnected spatial regions, thereby improving the applicability of the electrode module in a specific environment (eg, an environment with a lot of liquid on the skin surface).
  • a specific environment eg, an environment with a lot of liquid on the skin surface.
  • the intermediate structure 1020 is connected to the suction cup structure 1000, and the connection is indicated by a point a.
  • the intermediate structure 1000 When the intermediate structure is located in the hollow part 1010 of the suction cup structure 1000, other parts of the intermediate structure 1020 (eg, 10, the point b and point c) shown in FIG. 10 are in contact with the side wall of the suction cup structure 1000 where the hollow part 1010 is located instead of being connected. There is a squeezing force between the side walls of the .
  • the intermediate structure 1000 may divide the hollow part into a space area 1 , a space area 2 and a space area 3 .
  • the space area 1 and the space area 3 are formed by the limitation of the middle structure 1020 and the side wall of the suction cup structure 1000
  • the space area 3 is formed by the middle structure 1020 , the side wall of the suction cup structure 1000 and the limitation of human skin, wherein the space area 1.
  • the space area 2 and the space area 3 are connected to each other.
  • the suction cup structure 1000 when the suction cup structure 1000 is applied in an environment with a lot of liquid on the skin surface (for example, the part of the human body that is prone to sweating (armpit, chest, etc.)), under the action of no external force, liquid (sweat) exists In the space area 3, when an external force (for example, a force generated by muscle movement) acts on the suction cup structure 1000, for example, when the suction cup structure 1000 is squeezed, the suction cup structure 1000 and the intermediate structure 1020 will be deformed, and the space area The liquid in 3 will reach space area 1 and space area 2 through point b and point c.
  • an external force for example, a force generated by muscle movement
  • the suction cup structure 1000 and the intermediate structure 1020 return to their shapes, and part of the liquid in space area 3 will remain in space area 1 and space.
  • the liquid amount in the space area 3 will be greatly reduced compared to the liquid amount when not squeezed, so that a strong negative pressure adsorption force is generated between the suction cup structure 1000 and the human skin.
  • the body of the suction cup structure 1100 has a middle part 1110 , the middle part 1110 has an opening 1111 facing the skin, and there is a middle structure 1120 inside the middle part 1110 , due to the existence of the middle structure 1120 , the cavity may include an upper space 1112 and lower space 1113.
  • the suction cup structure 1100 can be made of an elastic material (eg, urethane-acrylate based polymer (s-PUA)), and the suction cup structure 1100 and its intermediate structure 1120 can be deformed under the action of an external force.
  • s-PUA urethane-acrylate based polymer
  • the electrode with the suction cup structure 1100 can be placed on the part of the human body where the EMG signal is to be collected, and then a pressure is applied to the suction cup structure 1100 to make the suction cup structure 1100 come into contact with the human skin.
  • the suction cup structure 1100 works.
  • the suction cup structure 1100 works, the upper space 1112 of the middle part 1110 of the suction cup structure 1100 will change, and the lower space 1113 will also change accordingly.
  • the middle structure 1120 inside the suction cup structure 1100 expands outward, and the outer sidewall shrinks inward at the same time, and part of the air in the upper space 1112 and the lower space 1113 is discharged to the outside, and the external air pressure is greater than the internal air pressure of the suction cup structure 1100, so that When a negative pressure space is formed, the electrodes can be tightly and reliably adsorbed on the skin under the action of the negative pressure adsorption force of the suction cup structure 1100 .
  • a certain PBS buffer can be loaded in the middle part 1110 of the suction cup structure 1100 to improve its adsorption capacity.
  • FIG. 12 is a schematic structural diagram of an electrode module with a suction cup structure according to some embodiments of the present application.
  • suction cup structures 1210 eg, suction cup structure 800 , suction cup structure 1100
  • the arrays are distributed around the electrodes (eg, electrode 1201 and electrode 1202 ).
  • a plurality of suction cup structures 1210 arrays are distributed around the electrodes, and the electrodes are located on the side of the base structure 1203 of the electrode module 1200 facing the skin, and the suction cup structures 1210 and the electrodes have the same or similar height or thickness, so that the electrode module passes through the suction cup structure.
  • the electrode While being tightly and reliably adsorbed on the skin, the electrode can fully contact the skin, so that the EMG signal can be accurately collected. It should be noted that a plurality of suction cup structures 1210 may also be randomly distributed around the electrode. In addition, when the suction cup structure 1210 is far away from the electrode, the height of the suction cup 1210 can be greater or less than the height of the electrode. When the suction cup is made of a soft and easily deformable material, the suction cup structure 1210 can also be close to the electrode while being higher than the electrode, and it is only necessary to ensure that the user After wearing the article with the electrode module (eg, clothes), the pressure of the article can make the deformation of the suction cup 1210 not affect the contact of the electrode with the skin.
  • the electrode module eg, clothes
  • the suction cup structures may be arranged on the electrodes in an array, or may be randomly distributed.
  • Fig. 13 is a schematic structural diagram of another electrode module with a suction cup structure according to some embodiments of the present application. As shown in FIG. 13 , a plurality of suction cup structures 1310 are evenly distributed on the side of the electrodes (eg, electrodes 1301 and 1302 ) that are used for contacting the skin. Since the electrodes and the skin are indirectly connected through the suction cup structures, in order to ensure that the electrodes can collect To the electromyographic signal, the material of the suction cup structure 1310 may be partially or entirely conductive material.
  • the conductive material may include conductive silicone, conductive resin, conductive plastic, and the like.
  • a plurality of suction cup structures 1310 in an array on or between the base structures 1303 of the electrode module 1300, and evenly arranging the plurality of suction cup structures on the electrodes, the electrodes can be more uniformly and firmly attached to the skin .
  • a plurality of suction cup structures 1310 may also be randomly arranged on the base structure 1303 of the electrode module 1300 or on the electrodes.
  • suction cup structure 1210 and the suction cup structure 1310 may include the suction cup structures shown in FIGS. 8-11 , which will not be described in detail here.
  • the electrodes can also be closely and reliably attached to the skin by sticking, clamping, or the like.
  • the electrode module may further include several bump structures (not shown in the figure), and the bump structures may increase the friction between the electrode module or the electrodes and the skin force, thereby increasing the anti-skid performance of the electrode module.
  • the bump structure may be located on the base structure or the electrode may refer to the surface in contact with human skin.
  • the bump structure can be of any shape, and can be arrayed or randomly distributed on the base structure of the electrode or the electrode module.
  • the shape of the bump structure may include regular or irregular structures such as cone, cylinder, cuboid, and hemisphere.
  • the height of the bump structure in order to improve the anti-skid performance of the electrode module, may be 5 ⁇ m ⁇ 200 ⁇ m. Preferably, the height of the bump structure may be 10 ⁇ m ⁇ 100 ⁇ m. Further preferably, the height of the bump structure may be 20 ⁇ m ⁇ 80 ⁇ m. More preferably, the height of the bump structure may be 20 ⁇ m ⁇ 50 ⁇ m. In some embodiments, in order to improve the anti-skid performance of the electrode module, the size (eg, length, width or radius, etc.) of the connection surface between the bump structure and the electrode or the base structure may be 10 ⁇ m ⁇ 1000 ⁇ m.
  • the size eg, length, width or radius, etc.
  • the size of the connection surface between the bump structure and the electrode or the base structure may be 50 ⁇ m ⁇ 800 ⁇ m. Further preferably, the size of the connection surface between the bump structure and the electrode or the base structure may be 100 ⁇ m ⁇ 600 ⁇ m.
  • the distribution density of the bump structures may be 1/2.25mm 2 to 10/2.25mm 2 .
  • the distribution density of the bump structures may be 3 pieces/2.25mm 2 to 8 pieces/2.25mm 2 . Further preferably, the distribution density of the bump structures may be 5 pieces/2.25mm 2 to 6 pieces/2.25mm 2 .
  • the bump structures can be randomly distributed on the conductive silicon electrode, the shape of which is conical, the height is 20-50 ⁇ m, the radius of the bottom of the cone is 100-600 ⁇ m, and the distribution density of the bump structures is 5 pieces/2.25mm
  • the conductive silicon electrode of 2 has good anti-skid performance.
  • the bump structure can also be disposed between the electrodes, which can block body surface liquids such as sweat between the electrodes and prevent the electrodes from short-circuiting.
  • the electrode module can also include a number of ventilation holes.
  • the ventilation holes can be located on the base structure of the electrode module or on the electrodes, so that the electrode module has certain ventilation performance, promotes the ventilation between the skin and the external environment, and reduces the amount of sweat in the electrode. Buildup between modules and human skin.
  • the shape of the ventilation hole may be a regular or irregular shape such as a circle, an ellipse, a rectangle, a square, and a hexagon.
  • several ventilation holes may be arranged in an array.
  • the diameter of the ventilation holes may range from 0.2 mm to 4 mm.
  • the diameter of the ventilation holes ranges from 0.5 mm to 3 mm.
  • the diameter of the ventilation holes ranges from 1 mm to 2 mm. More preferably, the diameter of the ventilation holes is 1 mm, 1.5 mm or 2 mm.
  • the total area of the vents does not exceed 90% of the electrode area.
  • the total area of the ventilation holes does not exceed 50% of the electrode area.
  • the total area of the ventilation holes does not exceed 20% of the electrode area.
  • the ventilation holes can be made by means of mechanical drilling.
  • the electrode modules provided by the embodiments of the present application can not only be integrated on clothing or other wearable devices to effectively collect the electromyographic signals of various parts of the user's body when exercising. It can also be used to collect the EMG signals of patients in medical rehabilitation projects, so as to make corresponding diagnosis or treatment for patients. Or in bionics, it is used to collect EMG signals for research on artificial limbs.
  • FIG. 14 is a schematic diagram of an exemplary structure of a wearable device according to some embodiments of the present application.
  • the wearable device 1400 may include a top garment 1410 and a pants garment 1420 .
  • the top garment 1410 may include a top garment base 14110, at least one top garment data processing module 14120, at least one top garment sensor module 14130, etc., wherein at least one top garment data processing module 14120 and at least one top garment sensor module 14130 are located on the top garment base
  • the area on the 14110 that fits with different parts of the human body.
  • the upper clothing base 14110 may refer to clothing worn on the upper body of the human body.
  • the upper garment substrate 14110 may comprise a short-sleeved T-shirt, a long-sleeved T-shirt, a shirt, a jacket, and the like.
  • at least one shirt data processing module 14120 may include a first shirt data processing module 14121 and a second shirt data processing module 14122.
  • the first top garment data processing module 14121 may be disposed on the left shoulder of the top garment base 14110
  • the second top garment data processing module 14122 may be disposed at the right shoulder position of the top garment base 14110 .
  • the first top garment data processing module 14121 and the second top garment data processing module 14122 may be symmetrically distributed along the center line of the top garment base 14110, or may be distributed asymmetrically along the center line of the top garment base 14110.
  • the at least one top clothing sensor module 14130 may include a first top clothing sensor module 14131 and a second top clothing sensor module 14132.
  • the first shirt sensor module 14131 may include one or more sensors of the same or different types, for example, an electromyography sensor (also referred to as an electromyography module), an electrocardiogram sensor, a respiration sensor, a temperature sensor, a humidity sensor, and the like.
  • the first upper garment sensor module 14131 may be disposed on the left muscle position of the upper garment base 14110 (eg, left arm biceps, left arm wrist extensor, left pectoralis major, etc.).
  • the second shirt sensor module 14132 may refer to one or more sensors of the same or different types, for example, an electromyography sensor, an electrocardiogram sensor, a respiration sensor, a temperature sensor, a humidity sensor, and the like.
  • the second top garment sensor module 14132 may be disposed on the right muscle position of the top garment base 14110 (eg, right arm biceps, right arm wrist extensor, right pectoralis major, etc.).
  • the first top clothing data processing module 14121 and the first top clothing sensor module 14131 can be connected by electrode wiring, and the second top clothing data processing module 14122 and the second top clothing sensor module 14132 can be connected by electrodes. line connection.
  • the first top clothing data processing module 14121 and the first top clothing sensor module 14131 can communicate with each other through wireless communication, and the second top clothing data processing module 14122 and the second top clothing sensor module 14132 can communicate with each other through wireless communication.
  • the communication method is used for communication connection.
  • the electromyographic signal of the human body collected by the electromyographic sensor of the first shirt sensor module 14131 can be transmitted to the first shirt data processing module 14121 in a wired or wireless manner.
  • the specific content of the myoelectric sensor (electrode module) here can refer to the descriptions in other places in this application (eg, FIGS. 1-3 , 7-13 ), and will not be repeated here.
  • a first top clothing data processing module 14121 is set on the left shoulder position of the top clothing base 14110, and the first top clothing data processing module 14121 is configured to receive sensors on the left side of the human body (eg, an electromyography sensor, an electrocardiogram sensor) , breathing sensor, etc.) upper body movement data.
  • the position of the right shoulder of the upper garment base 14110 is provided with a second upper garment data processing module 14122, and the second upper garment data processing module 14122 is configured to receive the right side sensor of the human body (for example, an electromyography sensor, an electrocardiogram sensor, a respiration sensor, etc.).
  • the above-mentioned first shirt data processing module 14121 located at the left shoulder position and the second shirt data processing module 14122 located at the right shoulder position can be symmetrically distributed on the center line of the upper clothing base 14110 .
  • the first shirt data processing module 14121 at the left shoulder position and the second shirt data processing module 14122 at the right shoulder position may be in a master-slave relationship.
  • the first top data processing module 14121 is the master data processing module
  • the second top data processing module 14122 is the slave data processing module.
  • the first top data processing module 14121 and the second top data processing module 14122 can pass through Wired or wireless means of communication connection.
  • the first top clothing data processing module 14121 receives the motion data of the left side of the human body
  • the second top clothing data processing module 14122 receives the motion data of the right side of the human body
  • the second top clothing data processing module 14122 can process the received motion data of the right side of the human body
  • the data is passed to the first shirt data processing module 14121 for processing.
  • the wiring between the first top data processing module 14121 and the second top data processing module 14122 may be the front wiring of the wearable device 1400 or the back wiring of the wearable device 1400 .
  • the first shirt data processing module 14121 may also transmit the left side motion data of the human body received by itself and the right side motion data of the human body received from the second top clothing data processing module 14122 to the peripheral terminal, and the external It is assumed that the terminal performs data processing on the received motion data.
  • the first shirt data processing module 14121 and the second shirt data processing module 14122 may also be in a parallel relationship.
  • the first top data processing module 14121 and the second top data processing module 14122 can respectively connect and communicate with the peripheral terminal.
  • the first shirt data processing module 14121 receives motion data from the left side of the human body, and transmits the received motion data on the left side of the human body to the peripheral terminal, and the peripheral terminal performs the received motion data on the left side of the human body.
  • the second shirt data processing module 14122 receives motion data from the right side of the human body, and transmits the received motion data on the right side of the human body to the peripheral terminal, and the peripheral terminal performs data processing on the received motion data on the right side of the human body.
  • the human body motion data received by the shirt data processing module 14120 may be processed in the shirt data processing module 14120 .
  • the left side movement data of the human body received by the first shirt data processing module 14121 is processed in the first shirt data processing module 14121, and the first shirt data processing module 14121 transmits the processed movement data to the peripheral terminal.
  • the human body motion data received by the shirt data processing module 14120 can also be processed in the peripheral terminal.
  • the second shirt data processing module 14122 directly transmits the received motion data on the right side of the human body to the peripheral terminal, and the peripheral terminal performs data processing on the received motion data on the right side of the human body.
  • the human body motion data received by the shirt data processing module 14120 may also perform a part of data processing in the shirt data processing module 14120 and another part of data processing in the peripheral terminal.
  • the movement data of the left side of the human body received by the first shirt data processing module 14121 is partially processed in the first shirt data processing module 14121, and the first shirt data processing module 14121 transmits the movement data after part of the data processing to the Peripheral terminal, the peripheral terminal then performs another part of data processing on the received motion data that has undergone a part of data processing.
  • the data processing module 14120 of the jacket and the peripheral device terminal may have two-way communication.
  • the first shirt data processing module 14121 (or the second shirt data processing module 14122) can transmit motion data to the peripheral terminal, and can also receive instructions from the peripheral terminal.
  • the instruction may be an instruction for controlling the operation of the electrode module, or an instruction for performing motion quality feedback according to user motion data.
  • the pants garment 1420 may include a pants garment base 14210, at least one pants data processing module 14220, at least one pants sensor module 14230, and the like.
  • at least one pants data processing module 14220 may include a first pants data processing module 14221 and a second pants data processing module 14222.
  • the first trousers data processing module 14221 can be arranged at the left crotch position of the trousers garment base 14210
  • the second trousers data processing module 14222 can be arranged at the right crotch position of the trousers garment base 14210 .
  • the at least one pants sensor module 14230 may include a first pants sensor module 14231 and a second pants sensor module 14232.
  • the first pants sensor module 14231 may include one or more sensors of different types, for example, an electromyography sensor, a temperature sensor, a humidity sensor, and the like.
  • the first pant sensor module 14231 may be disposed on the left leg muscles of the pant garment base 14210 (eg, left gluteus maximus, left vastus lateralis, left vastus medialis, left biceps femoris, etc.). In some embodiments, the first trousers sensor module 14231 may be disposed at the muscle position of the front of the left leg and the muscle of the rear of the left leg of the pants garment base 14210 .
  • the second pants sensor module 14232 may include one or more different types of sensors, for example, an electromyography sensor, a temperature sensor, a humidity sensor, and the like.
  • the second pant sensor module 14232 may be positioned on the right leg muscles of the pant garment base 14210 (eg, right gluteus maximus, right vastus lateralis, right vastus medialis, right biceps femoris, etc.). In some embodiments, the second pant sensor module 14232 may be disposed at the position of the front muscle of the right leg and the position of the back muscle of the right leg of the pant garment base 14210 . In some embodiments, the first trousers data processing module 14221 and the first trousers sensor module 14231 can be connected through electrode wiring, and the second trousers data processing module 14222 and the second trousers sensor module 14232 can be connected through electrodes. line connection.
  • At least one pants data processing module 14220 eg, first pants data processing module 14221 and second pants data processing module 14222
  • at least one pants sensor module 14230 can refer to the relevant content of the at least one shirt data processing module 14120 and the at least one shirt sensor module 14130, which will not be repeated here.
  • sensor modules may include, but are not limited to, myoelectric sensors, inertial sensors , ECG sensor, respiration sensor, temperature sensor, humidity sensor, acid-base sensor, sound wave transducer, etc.
  • the EMG sensor (also referred to as the electrode module) can be disposed at the position of the human muscle, and the EMG sensor and the data processing module (for example, the first shirt data processing module 14121, the second shirt data processing module 14122, Communication can be connected between the first pants data processing module 14221 and the second pants data processing module 14222).
  • the EMG sensor and the data processing module for example, the first shirt data processing module 14121, the second shirt data processing module 14122, Communication can be connected between the first pants data processing module 14221 and the second pants data processing module 14222).
  • the position of the human body muscles of the shirt may include but not limited to biceps brachii, triceps brachii, wrist extensors, wrist flexors, deltoid muscles (for example, anterior deltoid, middle deltoid, posterior deltoid), trapezius , latissimus dorsi, pectoralis major, external oblique muscle, rectus abdominis, etc.
  • Pants human muscle locations may include, but are not limited to, gluteus maximus, vastus lateralis, vastus medialis, rectus femoris, biceps femoris, tibialis anterior, gastrocnemius, and the like.
  • the myoelectric sensor may be configured to collect muscle information when the user is exercising, such as motion range, motion speed, motion force, and the like.
  • the EMG sensor set on the biceps (or triceps, deltoid, pectoralis major, etc.) , action strength, etc.), and transmit the collected muscle information to the data processing module.
  • the data processing module performs data processing on the received muscle information (or the data processing module transmits the received muscle information to the peripheral terminal, and the peripheral terminal performs data processing on the received muscle information), and determines whether the user is in the barbell bench press process.
  • the wearable device can alert the user through the feedback module.
  • the judgment standard here can be trained in the muscle data of professionals (eg, athletes, coaches, etc.) and a large number of ordinary people in the process of barbell bench press entered in the wearable device in advance, and adjusted and adapted according to the user's information. . Users can know in real time whether their barbell bench press muscle status (for example, movement range, movement speed, movement intensity, etc.) is standardized according to the warning of the feedback module, and adjust the exercise posture in time.
  • the inertial sensor may be integrated in the sensor module, in which case the inertial sensor may be separated from the data processing module, thereby causing practical problems. For example, washing issues, complexity issues (eg, separate fabrication, disassembly, etc.), power supply issues, charging issues, etc.
  • inertial sensors can also be disposed in the left data processing module and the right data processing module of the clothing base, and the inertial sensors can be configured to monitor the user's movement parameters (such as the number of steps, stride, stride frequency, etc. ).
  • the inertial sensors are arranged in the data processing module on the left and the data processing module on the right side of the clothing base.
  • the user's motion parameters such as the number of steps, stride length, and stride frequency
  • the problem that the inertial sensor is separated from the data processing module such as washing problem, power supply problem, etc.
  • the inertial sensors respectively provided in the first data processing module and the second data processing module can also monitor the movement coordination consistency and balance of the left and right sides of the user's body.
  • more inertial sensors may be designed in the data processing module and/or outside the data processing module to implement more complex motion recognition and other functions.
  • an acceleration sensor may be configured to capture the acceleration of the human body as it moves.
  • the acceleration measurement can be mainly used for step counting and calorie calculation during the user's exercise, and can also be used to monitor the acceleration of the body in the three axes of X, Y, and Z during the user's exercise.
  • the ECG sensor may be configured to collect ECG data during the user's movement. Communication can be connected between the electrocardiographic sensor and the data processing module (for example, the first shirt data processing module 14121 and the second shirt data processing module 14122). During exercise, the user's heart rate will change. For example, when the user is doing aerobic exercise or strength exercises, the length of the user's exercise time and/or the intensity of the exercise may affect the user's heart rate.
  • the ECG sensor can collect the ECG signal during the user's movement, and transmit the collected ECG signal to the data processing module.
  • the data processing module performs data processing on the received ECG signal (or the data processing module transmits the received ECG signal to the peripheral terminal, and the peripheral terminal performs data processing on the received ECG signal), and determines whether the user's heart rate is Within the judgment criteria, if the judgment criteria are exceeded, the wearable device may alert the user through the feedback module.
  • the judgment criteria here can be trained in advance by professionals (eg, athletes, coaches, etc.) entered in the wearable device and the ECG data during exercise of a large number of ordinary people, and at the same time adjusted and adapted according to the user's information. Users can know whether their ECG status is normal in real time according to the warning of the feedback module, and adjust the exercise time and/or exercise intensity in time.
  • the respiration sensor may be configured to collect respiration signals during the user's movement.
  • Communication can be connected between the respiration sensor and the data processing module (eg, the first shirt data processing module 14121 and the second shirt data processing module 1412).
  • the data processing module eg, the first shirt data processing module 14121 and the second shirt data processing module 1412.
  • the user's breathing speed and breathing rate will change. For example, during running, the user's breathing rate will gradually increase as the user's running time and/or running speed increases, and the breathing rate will increase as the user's running time and/or running speed increases and gradually increased.
  • the respiration sensor collects respiration signals (such as respiration speed, respiration frequency, etc.) during the user's movement, and transmits the collected respiration signals to the data processing module.
  • the data processing module performs data analysis on the received breathing signal (or the data processing module transmits the received breathing signal to the peripheral terminal, and the peripheral terminal performs data processing on the received breathing signal), and judges the breathing of the user during the running exercise. Whether the data is within the judgment criteria, and if it exceeds the judgment criteria, the wearable device can alert the user through the feedback module.
  • the judgment criteria here can be trained by professionals (eg, athletes, coaches, etc.) entered in the wearable device in advance and the breathing data of a large number of ordinary people during running, and adjusted and adapted according to the user's information.
  • the user can know in real time whether his running status (for example, running speed, running time, etc.) is normal according to the warning of the feedback module, and adjust the running time and/or running speed in time.
  • the temperature sensor may be configured to collect temperature signals during the user's movement.
  • the temperature sensor and the data processing modules eg, the first jacket data processing module 14121, the second jacket data processing module 14122, the first pants data processing module 14221, and the second pants data processing module 14222
  • the temperature sensor can collect the temperature signal during the user's movement, and transmit the collected temperature signal to the data processing module.
  • the data processing module performs data processing on the received temperature signal (or the data processing module transmits the received temperature signal to the peripheral terminal, and the peripheral terminal performs data processing on the received temperature signal), and judges whether the user's body temperature is within the judgment standard Inside, if the judgment standard is exceeded, the wearable device can alert the user through the feedback module.
  • the judgment criteria here can be trained in advance from the temperature data of professionals (eg, athletes, coaches, etc.) entered in the wearable device and a large number of ordinary people during exercise, and adjusted and adapted according to the user's information. Users can know whether their temperature status is normal in real time according to the warning of the feedback module, and adjust the exercise time and/or exercise intensity in time.
  • the humidity sensor may be configured to collect humidity signals during user movement.
  • the humidity sensor and the data processing modules eg, the first jacket data processing module 14121 , the second jacket data processing module 14122 , the first pants data processing module 14221 , and the second pants data processing module 14222 ) can be connected and communicated.
  • the humidity of the user's body will gradually increase. For example, when the user is doing aerobic exercise or strength exercises, the length of the user's exercise time and/or the intensity of the exercise may affect the user's body humidity.
  • the humidity sensor can collect the humidity signal during the user's movement, and transmit the collected humidity signal to the data processing module.
  • the data processing module performs data processing on the received humidity data (or the data processing module transmits the received humidity signal to the peripheral terminal, and the peripheral terminal performs data processing on the received humidity signal) to determine whether the user's body humidity is judging Within the standard, if the judgment standard is exceeded, the wearable device can alert the user through the feedback module.
  • the judgment criteria here can be trained in advance from the humidity data of professionals (eg, athletes, coaches, etc.) entered in the wearable device and a large number of ordinary people during exercise, and adjusted and adapted according to the user's information. Users can know whether their humidity status is normal in real time according to the warning of the feedback module, and adjust the exercise time and/or exercise intensity in time.
  • FIG. 15 is an exemplary structural diagram of a wiring connection manner of a top-wearable device according to some embodiments of the present application.
  • the top-wearable device 1500 may include a clothing substrate 1510, a first data processing module 1521, a second data processing module 1522, a first myoelectric sensor 1531, a second myoelectric sensor 1532, a temperature sensor 1541, a humidity sensor Sensor 1542, first ECG sensor 1551, second ECG sensor 1552, connecting line 1561 (or connecting line 1562, connecting line 1571, connecting line 1572, connecting line 1581, connecting line 1582, etc.) and the like.
  • the first myoelectric sensor 1531 is connected and communicated with the first data processing module 1521 through the connection line 1561 .
  • the second myoelectric sensor 1532 is connected and communicated with the second data processing module 1522 through the connection line 1562 .
  • the temperature sensor 1541 is connected and communicated with the first data processing module 1521 through the connection line 1571 .
  • the humidity sensor 1542 is connected and communicated with the second data processing module 1522 through the connection line 1572 .
  • the first ECG sensor 1551 is connected and communicated with the first data processing module 1521 through the connection line 1581.
  • the second ECG sensor 1552 is connected and communicated with the second data processing module 1522 through the connection line 1582 .
  • the left shoulder of the top-wearable device 1500 is provided with a first data processing module 1521
  • the right shoulder is provided with a second data processing module 1522 .
  • the first data processing module 1521 and the second data processing module 1522 are respectively configured to receive the motion data of the left and right sides of the user's body.
  • this design can effectively distribute the wiring and reasonably control a single data processing module (for example, the first data processing module).
  • the design of setting data processing modules on the left and right sides of the top wearable device 1500 is a symmetrical design, which can effectively solve the problem of user safety caused by the asymmetric design (for example, the balance control of squatting and other sports) ).
  • the design of setting data processing modules on the left and right sides of the top wearable device 1500 can effectively avoid electronic devices such as circuits (for example, batteries, Bluetooth, amplifiers, etc.) in the user's chest, near the heart and other major organs. The existence of , while improving the user's wearing comfort.
  • the design of data processing modules are respectively arranged on the left and right shoulders of the top wearable device 1500, which can reduce the difficulty of design and the weight of each data processing module, and can also effectively collect physiological signals near the chest (such as ECG signal, EMG signal of pectoralis major, etc.).
  • the above-mentioned wiring method can effectively separate the wiring arrangement, reduce wiring difficulty, and improve design space.
  • large-angle traces can be avoided.
  • the length of the trace in the wearable device will affect its signal-to-noise ratio. Specifically, the longer the trace length, the greater the noise interference. Referring to the wiring method in FIG. 15, the wiring length can be effectively shortened, thereby reducing the noise signal collected by the sensor module and reducing the interference of noise.
  • the sensor modules are all connected and communicated with the data processing module, the wiring in the wearable device is relatively dense, and the phenomenon of mutual interference occurs between the various channels. Referring to the routing method in FIG. 15 , the separation distance between each routing can be effectively increased, and the mutual interference between channels can be reduced.
  • FIG. 16A is an exemplary structural diagram of the elastic design of the underarm position of the upper garment wearable device according to some embodiments of the present application. As shown in FIG.
  • FIG. 16A is an exemplary structural diagram of the elastic design of the position of the upper arm of the upper garment wearable device according to some embodiments of the present application.
  • a third elastic design 1621 is provided at the position of the left arm of the garment base 1620
  • a fourth elastic design 1622 is provided at the position of the right arm of the garment base 1620 .
  • the third elastic design 1621 and the fourth elastic design 1622 are annular elastic designs of the boom.
  • the setting positions of the elastic design may include but are not limited to the underarm position and the upper arm position. This embodiment only describes the underarm position and the upper arm position. etc.) are not described in detail here.
  • elastic design may refer to the use of highly elastic stretchable materials.
  • the high elastic stretchable material may include, but is not limited to, elastic fiber fabric material, flexible polymer material, elastic rubber ring, and the like.
  • the material used for elastic design can be a single elastic material or a combination of multiple different elastic materials.
  • the garment substrate at the position of the upper arm of the wearable device eg, the third elastic design 1621 in FIG. 16B or the fourth elastic design 1622 in FIG. 16B
  • the highly elastic rubber material can be stretched, thereby effectively avoiding the displacement of the wearable device.
  • the garment substrate at the underarm region of the wearable device (eg, the first elastic design 1611 in FIG. 16A or the second elastic design 1612 in FIG. Stretch material) bonding material.
  • the combination material of the elastic fiber fabric insert and the nylon material or polyester stretch material
  • elastic design may also refer to structural design.
  • the wearable device can be designed with a wrinkled and undulating structure at the position of the arm near the shoulder of the human body (refer to the third elastic design 1621 and the fourth elastic design 1622 in FIG. 16B ).
  • the wrinkled and undulating structure protrudes annularly around the wearable device itself, and the magnitude of the protruding displacement can be determined according to the magnitude of the pulling force during movement.
  • the folded and undulating structure is pulled by the user's motion (for example, barbell bench press) at the position of the arm, it can stretch and stretch along the pulling direction, which can effectively alleviate the wearable device's displacement due to pulling, which affects the quality of signal acquisition. .
  • the periphery of the electrode module can be elastically designed according to the tensile force analysis near the electrodes.
  • FIG. 17A is an exemplary structural diagram of the annular elastic design of the electrode module of the top wearable device according to some embodiments of the present application.
  • a ring-shaped elastic design 1720 eg, high elastic stretchable material, wrinkle design, etc.
  • the electrode module 1710 on the chest and its vicinity will be pulled at multiple angles.
  • FIG. 17B is an exemplary structural diagram of a specific direction elastic design of an electrode module of a top wearable device according to some embodiments of the present application. As shown in FIG. 17B , arranging elastic designs 1740 in one or more directions of the electrode module 1730 (eg, using high elastic stretchable materials, pleated designs, etc.) can reduce the pulling in one or more directions.
  • the electrode module 1730 on the chest will be pulled by the side close to the direction of the ipsilateral arm.
  • arranging the elastic design 1740 in the direction of the chest electrode module 1730 close to the ipsilateral arm can effectively avoid the displacement of the electrode module 1730 caused by the user's pulling, and further It can effectively weaken the influence of user motion on the signal acquisition module.
  • FIG. 18 is an exemplary structural diagram of a hollow design of a wearable device according to some embodiments of the present application.
  • the partial garment base 1800 may include a first side end 1811, a second side end 1812, a third side end 1813, a fourth side end 1814, a hollow design garment base 1820 (shaded in FIG. 18), a conventional Garment base 1830 (the blank strip in FIG. 18 ), etc.
  • a portion of the garment substrate 1800 may be a structure of a portion of the garment, and the first side end 1811 , the second side end 513 , the third side end 1813 and the fourth side end 1814 may be connected to the garment, respectively.
  • the wearable device with hollow design can have better extensibility than conventional wearable devices sex.
  • the third side end 1813 and the fourth side end 1814 are disposed opposite to each other, and the third side end 1813 and the fourth side end 1814 are pulled along the direction of the third side end 1813 and the fourth side end 1814 , and the hollow structure becomes larger under the pulling, so that the hollow design is wearable.
  • the device may have better extensibility than conventional wearable devices.
  • the clothing on the chest of the user is displaced due to the pulling action.
  • a hollow structure is arranged around the chest of the wearable device, and the hollow structure can effectively weaken the displacement of the electrode relative to the skin caused by the user's action and pulling, thereby effectively improving the signal acquisition quality of the user's chest position.
  • the hollow design method shown in FIG. 18 on the one hand, clothing made of the same material can have better extensibility, and can also effectively enhance the stretchability of the clothing.
  • the garment can have better breathability and aesthetic advantages.
  • the hollow design can avoid the splicing of different materials, and can save costs more easily in the processing technology.
  • the hollow structure can be arranged at multiple positions on the clothing base, which is not limited in this application.
  • the shapes of the partial garment base 1800 and the hollow design garment base 1820 are not limited to the rectangular shape shown in FIG. 18 , but may also be regular and irregular shapes such as triangles, circles, parallelograms, and rhombus.
  • the side ends used for connecting with the garment are not limited to the above-mentioned first side end 1811 , second side end 1812 , third side end 1813 and fourth side end 1814 , and can be adapted according to the shape of part of the garment base 1800 Adjustment.
  • the garment substrate of the wearable device can be designed with additional elasticity.
  • This additional elastic design can be achieved through processes such as 3D printing, which can be strips of additional material attached to the clothing substrate, or material splicing and/or structural design of the clothing substrate itself. Relevant descriptions about clothing materials and structural design can be found in FIG. 16A , which will not be repeated in this embodiment.
  • local pressure is designed near the electrodes in the wearable device, which can effectively enhance the fit near the electrodes to the human body without increasing the pressure of the rest of the wearable device on the human body, and does not affect the wear of the user. comfort.
  • the compression design of the arm joint position of the wearable device the user's arm position is pulled when exercising, in this case, the compression design of the arm joint position can effectively reduce the displacement of the clothing base on the user's body .
  • local pressure is designed near the electrodes in the wearable device, which can also effectively enhance the consistency of the two electrodes on the electrode module.
  • the surface of the human body is an irregular curved surface, and the same electrode module disposed in the clothing base to fit the surface of the human body will also face different fitting pressures.
  • the local pressure design near the electrodes in the wearable device can effectively adjust the pressure balance between the two electrodes on the electrode module.
  • FIG. 19A is an exemplary structural diagram of a blade electrode according to some embodiments of the present application.
  • the blade electrode may include a first electrode part 1910 (corresponding to the hatched part in FIG. 19A ) and a second electrode part 1920 (corresponding to the blank part in FIG.
  • the first electrode part 1910 and the second electrode part 1920 Connection wherein, the first electrode part 1910 is used for contacting with human skin, and the second electrode part 1920 is used for switching the data line to transmit the electromyographic signal collected by the first electrode part 1910 .
  • the upper surface of the second electrode portion 1920 may not be in contact with the user's skin.
  • the first electrode part 1910 and the second electrode part 1920 have a certain height difference. When the first electrode part 1910 is in contact with the skin, there is a certain distance between the second electrode part 1920 and the human skin. Switching the data line at the part 1920 can prevent the second electrode part 1920 from interfering with the collection of the electromyographic signal of the first electrode part 1910 .
  • a portion of the upper surface of the second electrode portion 1920 may be in contact with the user's skin.
  • the lower surface of the first electrode part 1910 and the lower surface of the second electrode part 1920 may be on the same plane, and the thickness of the first electrode part 1910 is greater than the thickness of the second electrode part 1920, so that the first electrode part 1910 has a thickness
  • the lower surface of the first electrode part 1910 and the lower surface of the second electrode part 1920 may not be on the same plane.
  • the lower surface of the first electrode part 1910 is located above the lower surface of the second electrode part 1920 .
  • the lower surface of the second electrode part 1920 may be located above the first electrode part, but the upper surface of the second electrode part 1920 is below the upper surface of the first electrode part 1910, so that when the first electrode 1910 is in contact with the user's skin , there is a certain distance between the second electrode part 1920 in contact with the user's skin, but not in contact with the user's skin.
  • 19B is an exemplary cross-sectional view of a blade electrode according to some embodiments of the present application. As shown in FIG.
  • the blade-shaped electrode structure is applied to clothing only as an example, the lower surface of the first electrode part 1910 is connected to the first plane of the inner layer of the clothing, and the second electrode part 1920 The upper surface of the is connected to the first plane such that the second electrode part 1920 is located between the first plane and the second plane.
  • the first plane and the second plane here can be the inner and outer sides of the garment or other structures connected to the garment.
  • the first plane and the second plane are both insulating materials.
  • the insulating material may refer to polyester, cotton, rubber, aramid fiber, etc., which is not limited in this embodiment.
  • increasing the size of the electrode can effectively prevent the electrode from falling off due to the user's movement, and at the same time ensure that the sensor can collect signals as much as possible.
  • material and size of the blade electrode reference may be made to the description elsewhere in this application (eg, FIG. 3 ).
  • the second electrode portion 1920 in FIG. 19A may be a region where the conducting signal is transferred away from the first electrode portion 1910 .
  • the electrodes in wearable devices are mostly flat, and the flat electrodes are directly used for signal conduction after being cut, which will occupy a relatively large space and the resistance of the signal conduction line is large, which is not conducive to long-distance signal transmission.
  • the second electrode part 1920 can be switched (for example, conductive The wire is electrically connected to the second electrode 1920), so that the electrode can realize long-distance signal transmission.
  • the electrodes may be designed to be non-slip. During the user's exercise, the electrode will move and/or fall off due to the action and pulling, so the electrode needs to be fixed and anti-slip design.
  • the second electrode part 1920 passes through the vicinity of the first plane, and the second electrode part 1920 can be fixed for the first time. Before the signal transfer of the second electrode part 1920 times fixed.
  • the fixing method here may be physical connection such as bonding and welding, and the fixing position and fixing sequence may also be determined as required, which is not limited in this embodiment.
  • a localized compression design can be performed near the blade electrode structure.
  • Local pressure is designed near the blade-shaped electrode structure in the wearable device, which can effectively enhance the adhesion force near the blade-shaped electrode structure to the human body.
  • the compression design of the arm joint position of the wearable device the user's arm position is pulled when exercising, in this case, the compression design of the arm joint position can effectively reduce the displacement of the clothing base on the user's body , so that the sliding of the knife-shaped electrode structure disposed at the position of the human arm can be effectively avoided.
  • silica gel may be applied around the blade-shaped electrode structure to increase the friction between the blade-shaped electrode structure and the skin, thereby effectively avoiding the displacement of the blade-shaped electrode structure caused by the user's movement and pulling.
  • an elastic design may be performed near the blade-shaped electrode structure, and a detailed description of the elastic design can be found in FIG. 17A and FIG. 17B , which will not be repeated in this embodiment.
  • a hollow design may also be performed near the blade-shaped electrode structure, and a detailed description of the hollow design can be found in FIG. 18 , which will not be repeated in this embodiment.
  • adsorption design may also be performed near the blade-shaped electrode structure. The detailed description of the adsorption design can be found in FIG. 12 and FIG. 13 , which will not be repeated in this embodiment.
  • the electrode modules (for example, the electrode module 100, the electrode module 200, the electrode module 300, and the EMG module in the wearable device) in the above-mentioned embodiments can not only be applied to the collection of EMG signals, but also can release current stimulation Specific parts of the human body to achieve the corresponding prompt effect or massage relaxation effect.
  • the wearable device can determine whether the user's fitness action is standardized based on the human body motion data, and use the electrode module to release current to achieve the effect of prompting the user's exercise status.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Textile Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种对人体肌电信号的采集与处理设备,包括:电极模块(100,200,300),被配置为采集人体的肌电信号;电极模块包括基底结构(103,203,303)和至少两个电极(101,102,201,202,204,301,302,304,305),至少两个电极(101,102,201,202,204,301,302,304,305)间隔排布并设置于基底结构(103,203,303)的表面。

Description

用于肌电信号采集和处理的设备和方法 技术领域
本申请涉及信号采集与处理领域,特别涉及一种用于肌电信号采集和处理的设备和方法。
背景技术
随着人们对科学运动和身体健康的关注,智能可穿戴设备正在极大的发展。智能可穿戴设备的指导和监测依赖于传感器和电极。目前智能可穿戴设备面临着舒适度和信号质量(稳定性和信噪比)之间的矛盾。常用的做法包含但不限采用水凝胶电极,皮肤表面处理,干电极材料和胶质材料固定等方法,这些方法可以帮助提升采集到的信号质量,却面临着舒适度差,使用寿命短,操作复杂中的至少一个问题。而直接使用干电极(金属织物电极,导电硅电极等),虽然可以解决以上提到的问题,但电极模块与人体皮肤容易面临不贴合的问题,可能导致无法采集信号增加噪音;另外,人体运动时,电极与人体的接触位置可能发生相对移动,电极的移动会导致采集不到目标位置信号,影响信号质量,增加噪音等;最后干电极与人体皮肤接触阻抗大,更易带来较大波动,影响信号质量。
因此,本申请提供一种对人体肌电信号的采集与处理设备,在舒适的前提下可以显著提高电极模块采集的人体皮肤处的肌电信号的质量。
发明内容
本申请实施例之一提供一种对人体肌电信号的采集与处理设备,所述设备包括:电极模块,被配置为采集人体的肌电信号;所述电极模块包括基底结构和至少两个电极,所述至少两个电极间隔排布并设置于所述基底结构的表面。
在一些实施例中,所述至少两个电极包括第一电极和第二电极,所述第一电极和所述第二电极并列排布并设置于所述基底结构的表面。
在一些实施例中,所述至少两个电极还包括参考电极,所述第一电极、所述参考电极和所述第二电极依次并列排布并设置于所述基底结构的表面。
在一些实施例中,所述至少两个电极还包括第三电极和第四电极,所述第三电极和所述第四电极并列排布并设置于所述基底结构的表面;其中,所述第一电极与所述第三电极并排设置,所述第二电极与所述第四电极并排设置。
在一些实施例中,所述电极模块包括多个凸起结构,所述多个凸起结构位于所述至少两个电极或所述基底结构的表面。
在一些实施例中,所述凸起结构于所述至少两个电极或所述基底结构的表面呈阵列排布或随机分布。
在一些实施例中,所述凸起结构内部中空,所述凸起结构的中空部分具有填充物。
在一些实施例中,所述凸起结构的高度为0.5mm~10mm。
在一些实施例中,所述电极模块多个吸盘结构,所述多个吸盘结构位于所述至少两个电极或所述基底结构的表面。
在一些实施例中,所述多个吸盘结构于所述至少两个电极上或所述基底结构的表面阵列排布或随机分布。
在一些实施例中,所述多个吸盘结构分布于所述至少两个电极四周的所述基底结构的表面。
在一些实施例中,所述吸盘结构为立体结构,所述吸盘结构包括中空部分,所述中空部分在所述吸盘结构一端的端部具有用于与人体皮肤接触的敞口。
在一些实施例中,所述吸盘结构还包括中间结构,所述中间结构位于所述吸盘结构的中空部分,其中,所述中间结构的局部与所述中空部分所在的所述吸盘结构的侧壁连接。
在一些实施例中,所述中间结构将所述吸盘结构的所述中空部分分隔成多个互相连通的空间区域。
在一些实施例中,所述电极模块还可以包括多个凸点结构,所述凸点结构 位于所述基底结构或所述至少两个电极的表面。
在一些实施例中,所述多个凸点结构的高度为10μm~80μm。
在一些实施例中,所述多个凸点结构的分布密度可以为2个/2.25mm 2~10个/2.25mm 2
在一些实施例中,所述电极模块还包括多个透气孔,所述多个透气孔位于所述电极或/和所述基底结构上。
本申请实施例提供一种可穿戴装置,所述装置包括上衣服装和裤子服装,所述上衣服装和所述裤子服装至少包括用于采集人体肌电信号的肌电模块。
在一些实施例中,所述上衣服装至少包括:至少一个上衣传感器模块,被配置为采集人体上身运动数据;至少一个上衣数据处理模块,被配置为接收并处理所述人体上身运动数据;上衣服装基底,被配置为承载所述至少一个上衣传感器模块和所述至少一个上衣数据处理模块。
在一些实施例中,所述至少一个上衣传感器模块至少包括第一上衣传感器模块和第二上衣传感器模块,所述第一上衣传感器模块位于所述上衣服装基底的左侧,所述第二上衣传感器模块位于所述上衣服装基底的右侧。
在一些实施例中,所述第一上衣传感器模块和所述第二上衣传感器模块至少包括所述肌电模块、心电传感器、呼吸传感器、温度传感器、湿度传感器、惯性传感器、酸碱传感器、声波换能器。
在一些实施例中,所述惯性传感器位于所述上衣处理模块中。
在一些实施例中,所述至少一个上衣处理模块至少包括第一上衣处理器模块和第二上衣处理模块;其中,所述第一上衣处理模块位于所述上衣服装基底的左侧肩部位置,所述第一上衣处理模块与所述第一上衣传感器模块通信连接;所述第二上衣处理模块位于所述上衣服装基底的右侧肩部位置,所述第二上衣处理模块与所述第二上衣传感器模块通信连接。
在一些实施例中,所述第一上衣处理器模块和所述第二上衣处理模块为主从关系或并行关系。
在一些实施例中,所述裤子服装至少包括:至少一个裤子传感器模块,被配置为采集人体下身运动数据;至少一个裤子数据处理模块,被配置为接收并处理所述人体下身运动数据;裤子服装基底,被配置为承载所述至少一个裤子传感器模块和所述至少一个裤子数据处理模块。
在一些实施例中,所述至少一个裤子传感器模块至少包括第一裤子传感器模块和第二裤子传感器模块,所述第一裤子传感器模块位于所述裤子服装基底的左侧,所述第二裤子传感器模块位于所述裤子服装基底的右侧。
在一些实施例中,所述第一裤子传感器模块和所述第二裤子传感器模块至少包括所述肌电模块、心电传感器、呼吸传感器、温度传感器、湿度传感器、惯性传感器、酸碱传感器、声波换能器。
在一些实施例中,所述至少一个裤子处理模块至少包括第一裤子处理器模块和第二裤子处理模块;其中,所述第一裤子处理模块位于所述裤子服装基底的左腿左侧位置,所述第一裤子处理模块与所述第一裤子传感器模块通信连接;所述第二裤子处理模块位于所述裤子服装基底的右腿右侧位置,所述第二裤子处理模块与所述第二裤子传感器模块通信连接。
在一些实施例中,所述第一裤子处理器模块和所述第二裤子处理模块为主从关系或并行关系。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请一些实施例所示的电极模块的结构示意图;
图2是根据本申请一些实施例所示的另一种电极模块的结构示意图;
图3是根据本申请一些实施例所示的又一种电极模块的结构示意图;
图4是根据本申请一些实施例所示的电极阻抗并联模型;
图5是根据本申请一些实施例所示的导电硅电极的电极阻抗并联模型;
图6是根据本申请一些实施例所示的导电硅电极与其厚度的关系图;
图7A是根据本申请一些实施例所示的电极的结构示意图;
图7B是根据本申请一些实施例所示的金属织物导电硅复合材料电极的并联模型;
图8是根据本申请一些实施例所示的吸盘结构的结构示意图;
图9是根据本申请一些实施例所示的另一种吸盘结构的剖面图;
图10是根据本申请一些实施例所示的另一种吸盘结构的剖面图;
图11是根据本申请一些实施例所示的另一种吸盘结构的剖面图;
图12是根据本申请一些实施例所示的具有吸盘结构的电极模块的结构示意图;
图13是根据本申请一些实施例所示的另一种具有吸盘结构的电极模块的结构示意图;
图14是根据本申请一些实施例所示的可穿戴装置的示例性结构示意图;
图15是根据本申请一些实施例所示的上衣可穿戴装置的走线连接方式的示例性结构图;
图16A是根据本申请一些实施例所示的上衣可穿戴装置的腋下位置弹性设计的示例性结构图;
图16B是根据本申请一些实施例所示的上衣可穿戴装置的大臂位置弹性设计的示例性结构图;
图17A是根据本申请一些实施例所示的上衣可穿戴装置电极模块环形弹性设计的示例性结构图;
图17B是根据本申请一些实施例所示的上衣可穿戴装置电极模块特定方向弹性设计的示例性结构图;
图18是根据本申请一些实施例所示的可穿戴装置镂空设计的示例性结构图;
图19A是根据本申请一些实施例所示的刀形电极模块的示例性结构图;以及
图19B是根据本申请一些实施例所示的刀形电极模块的示例性剖面图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
随着人们对科学运动和身体健康的关注,智能可穿戴设备正在极大的发展,其中,采集生物电信号的智能可穿戴设备主要依赖于电极。具体地,肌电信号作为生物电信号的一种,是产生肌肉动力的电信号根源,它是肌肉中很多运动单元的动作电位在时间和空间上的叠加,很大程度上上反应了神经、肌肉的运动状态。从肌电信号的采集方式来看,一般有两种,一种是通过针电极插入肌肉采 集,即针式肌电信号,其优点是干扰小,易辨识,但是会对人体造成伤害;另外一种通过电极片粘贴在人体皮肤上来采集人体皮肤表面的肌电信号,即表面肌电信号(SEMG),这种方法一般限于人体静止时进行采集,而当人体运动时,电极与人体之间发生相对移动,采集的肌电信号不准确。目前常用的做法包含但不限采用水凝胶电极,皮肤表面处理,干电极材料和胶质材料固定等方法,这些方法可以帮助提升采集到的信号质量,却面临着舒适度差,使用寿命短,操作复杂中的至少一个问题。
本申请实施例描述的电极模块和智能穿戴设备(例如,服装、护腕、肩带等)主要涉及皮肤表面肌电信号(下文统称为肌电信号)的采集,肌电信号可以从人体很多部位获取,比如小腿、大腿、臀部、腰、后背、胸部、肩部、颈部等,从不同部位获取的肌电信号携带着相应部位的运动和功能信息。例如,腿上的肌电信号反应腿部的姿势和运动状态,如行走、跑步、蹲下等。因此,可以通过智能可穿戴设备采集肌电信号来满足人们对运动健身指导的要求。为了在用户运动时多方位采集其身体的肌电信号,智能可穿戴设备可以是服装,通过在服装中设置与人体各个部位(例如,小腿、大腿、臀部、腰、后背、胸部、肩部、颈部等)对应的电极模块,可以采集到用户在运动时其身体各个部位的肌电信号。可选地,智能可穿戴设备可以直接对采集到的肌电信号进行分析和处理,或者将采集到的肌电信号通过有线或无线的方式传输到处理终端(例如,移动终端设备、云端服务器)进行分析和处理,以判断用户的运动是否正确,并向用户提供相应的反馈以纠正用户的不正确运动。进一步地,智能可穿戴设备还可以基于采集到的肌电信号为用户制定科学的个人运动计划,并指导用户进行运动。除此之外,将肌电信号用于研究人体运动状态还有着非常重要的价值,例如,在医疗康复工程中,肌电信号可以用于病人治疗,在仿生学中,肌电信号可以用于人工假肢的研究。
当服装作为智能可穿戴设备来采集用户运动时的肌电信号时,电极模块能够采集到质量较好的肌电信号之外,还需具有柔软性、超薄、耐受性、亲肤性 等特性,以避免用户在穿着该服装运动健身时电极给用户带来的不舒适感。
在一些实施例中,由电极直接采集到的肌电原始信号幅值非常小,并且有大量的噪声,需要进行滤波、差分放大等处理,才能对肌电信号进行后续分析或处理。
在一些实施例中,肌电原始信号中的噪声主要包括共模噪声,共模噪声主要由工频共模信号所引起,因此,为了减少共模噪声,可以通过差分电路、右腿驱动电路、滤波器电路等对工频共模信号进行有效地抑制,从而减少或消除共模噪声。优选地,可以采用差分电路、右腿驱动电路来对工频共模信号进行有效抑制。在一些实施例中,考虑到共模噪声主要由工频所引起,所以共模噪声的频率主要集中在50Hz或60Hz(或者其谐波)附近,而肌电信号的主要强度的频率分布为20~140Hz,因此可以通过一个或多个滤波器或陷波器来滤除共模噪声。例如在一些实施例中,可以使用50Hz的陷波器和140Hz的低通滤波器来滤除共模噪声。又例如,可以使用50Hz的陷波器、100Hz的陷波器、150Hz的陷波器以及240Hz低通滤波器来滤除共模噪声。再例如,可以使用50Hz的陷波器、150Hz的陷波器以及230Hz的低通滤波器来滤除共模噪声。
在一些实施例中,肌电原始信号中的噪声还可以包括由共模信号转变为差模信号所引起的差模噪声。例如,当采用差分电路来抑制共模噪声时,电极与皮肤之间接触阻抗的波动会引起差分电路所对应的两个电极与人体皮肤之间的接触阻抗不一致,从而使得共模信号转变为差模信号而引起差模噪声,尤其是差分放大电路会对差模信号进行放大。因此,可以通过减小或避免接触阻抗波动来减小共模信号转变为差模信号的量。例如,可以通过减小电极和皮肤之间接触阻抗的值,使得接触阻抗具有较小的波动范围,从而减小接触阻抗波动所引起的差模噪声。
在一些实施例中,接触阻抗波动导致差分电路对应的两个电极与皮肤接触阻抗不一致还会造成分压问题,使得采集到的肌电信号幅值较小,不具有足够的强度。因此,可以通过增大与电极连接的电路(例如,差分电路)的输入阻抗 来解决分压问题,当输入阻抗与接触阻抗之间的差值足够大时,可以降低或避免接触阻抗波动对肌电信号强度的影响。
在一些实施例中,通过降低接触阻抗可以减少噪声从而提高肌电信号质量。在一些实施例中,还可以对肌电信号质量进行分级,以便于将质量较差的肌电信号剔除掉,保留高质量的肌电信号,或者采用算法将质量较差的肌电信号处理为高质量的肌电信号。具体地,可以设计接触阻抗评价电路来与电极连接,接触阻抗评价电路可以用于对电极接触阻抗大小或是否异常进行衡量,电极接触阻抗的大小或是否异常会直接影响采集到的肌电信号质量,因此,用于衡量接触阻抗的系数可以作为肌电信号采集质量的指标,并用此指标赋予采集到的肌电信号权重,权重越大肌电信号质量就越高。
在一些实施例中,为了更加精准的测取人体各个部位的肌电信号,在采集人体各个部位的肌电信号时,可以在人体的各个部位对应地布置不同数量的电极,例如,用于采集某个部位的肌电信号的多个电极可以集成为一个电极模块,电极模块可以布置在该部位的肌肉中心区域并且包括至少两个电极,该至少两个电极可以沿该部位肌肉纤维的长度方向依次设置。
图1是根据本申请一些实施例所示的电极模块的结构示意图。在一些实施例中,如图1所示,电极模块100可以包括基底结构103和两个电极(也被称为电极单元)。其中,两个电极间隔分布于基底结构103的表面。在一些实施例中,基底结构103可以由柔性绝缘材料(例如,树脂、软PVC、硅胶)制成,形状可以为矩形、圆形或其他不规则的形状。电极可以通过粘贴、卡接、焊接等方式固定连接在基底结构103上,而电极模块100则可以通过基底结构103固定在可穿戴设备的相应位置。具体地,在一些实施例中,两个电极可以包括第一电极101和第二电极102,当使用电极模块100采集肌电信号时,第一电极101和第二电极102可以沿肌肉纤维长度方向(图1中的x方向)依次设置。肌肉纤维长度方向的不同位置具有不同的电势,第一电极101所在的肌肉纤维的位置具有第一电势,第二电极102所在的肌肉纤维的位置具有第二电势,第一电 势和第二电势之间具有电势差(该电势差可以用来反映肌电信号)。在一些实施例中,电极模块还可以包括差分电路,第一电极和第二电极可以分别与差分电路的两个输入端电连接。差分电路可以是指放大差模信号、抑制共模信号的电路结构。
图2是根据本申请一些实施例所示的另一电极模块的结构示意图。在一些实施例中,如图2所示,电极模块200可以包括沿肌肉纤维的长度方向间隔排布设置在基底结构203表面的第一电极201、第三电极204、第二电极202。其中,第一电极201所在的肌肉纤维的位置具有第一电势,第二电极202所在的肌肉纤维的位置具有第二电势,第三电极204所在的肌肉纤维的位置具有第三电势。进一步地,第一电势和第二电势之间具有电势差,第一电极201和第二电极202分别与差分电路的输入端连接,而中间的第三电极204可以作为参考电极,用于记录电极模块所采集到的肌电信号中的MA(motion artifacts)噪声、接触不良所引起的噪声,从而对其进行一定削弱。在这里,MA是指因为运动引起的噪音,比如运动引起了电极贴合或者位置的变化,导致输出信号中增加了噪音。在一些实施例中,MA噪声频率与运动有一定关系,可以通过高通滤波器进行滤除。但在一些情况下,MA噪声可以与其他源发生乘法效应导致频率的叠加,此时通过滤波器难以将MA噪声进行滤除。为了更好的处理MA噪声的问题,在一些实施例中,可以在第一电极201和第二电极202之间可以设置第三电极204。首先,第三电极204位于第一电极201和第二电极202之间,第三电极204具有代表电极模块200的参考意义,可以对其单独测量,得到第三电极204的相关信息,例如接触阻抗,工频输出等,可以将第三电极204相关信息引入到评估系统中,作为评判该电极模块200采集肌电信号的质量监督值。其次,第三电极204位于第一电极201和第二电极202之间,第三电极204会随着整个电极模块200的状态变化而变化。例如,第一电极201和第二电极202在测量肌电信号时引入了MA噪音或者电极与皮肤不贴合引入的其他噪音,在第三电极204上也会上有所体现。仅作为示例性说明,电极模块200只包括第一电极201和 第二电极202时。电极模块200的测量电路中的参考地连接的是第一电极201或第二电极202或者某个固定源,电极模块测量的结果其实是对第一电极201和第二电极202的差值进行差分放大。在电极模块200设置第三电极204时,参考地连接的是第三电极204电极模块测量的结果是对第一电极201与第三电极204的电势差和第二电极204和第三电极的电势差的差值进行差分放大,第三电极204测得的电势中包含了因MA和接触不良等带来的噪音,通过第一电极201与第三电极204的电势差和第二电极204和第三电极的电势差的测量方式可以有效减小MA和接触不良带来的噪音。再次,第三电极204可以作为右腿驱动电路的输出端,右腿驱动电路采集到了该电极模块的共模信号,进行方向放大后经过第三电极204反馈回人体,可以有效从源头抑制共模信号。除此之外,第三电极204可以作为类似第一电极201和第二电极202的肌电信号采集电极,可以帮助实现不同电极对的采集组合,例如,第一电极201和第三电极204可以采集一组肌电信号,第二电极202和第三电极204可以采集另一组肌电信号,通过这两组肌电信号的属性(例如,在一定范围内,肌电信号强度与采集电极的间距呈现正比关系)来提取肌电信号,优化信噪比。在一些实施例中,基底结构203与基底结构103相同或相似。
图3是根据本申请一些实施例所示的又一种电极模块的结构示意图。在一些实施例中,如图3所示,电极模块300可以包括两组电极,两组电极沿肌肉纤维的宽度方向(y方向)间隔排布设置在基底结构303的表面,而每组电极中的两个电极沿肌肉纤维的长度方向间隔排布。具体地,两组电极分别为第一组电极310和第二组电极320,第一组电极310包括第一电极301和第二电极302,第二组电极320包括第三电极304和第四电极305。第一电极301所在的肌肉纤维的位置具有第一电势,第二电极302所在的肌肉纤维的位置具有第二电势,第三电极304所在的肌肉纤维的位置具有第三电势,第四电极305所在的肌肉纤维的位置具有第四电势。在一些实施例中,第一电极301和第三电极304共同与差分电路的一个输入端连接,第一电势与第三电势中较大、较小或者二者的 均值可以作为该输入端的输入,而第二电极302和第四电极302与差分电路另一输入端连接,第二电势和第四电势中较大、较小或者二者的均值可以作为差分电路该另一输入端的输入,基于差分电路两个输入端的输入,可以获得电极模块300所在位置的肌电信号。在另一些实施例中,第一电极301和第二电极302可以分别与差分电路的两个输入端连接,第三电极304和第四电极305可以分别与另一个差分电路的两个输入端连接,此时,第一电势与第二电势之间具有第一电势差(即第一差分信号或第一肌电信号),第三电势与第四电势之间具有第二电势差(即第二差分信号或第二肌电信号)。基于第一肌电信号和第二肌电信号可以得到Y方向上肌肉纤维附近肌电串扰影响信息,从而基于肌肉串扰影响信息可以通过算法消除掉待采集部位附近的肌肉的肌电信号干扰,从而采集到更准确的肌电信号。在该实施例中,通过两组电极可以提取与电极模块对应的人体部位的多个位置的肌电信号组合,从而提取更加准确的肌电信号。
需要说明的是,上述实施例仅作为示例性说明,电极模块中电极的数量和分布并不限于图1、图2和图3的方式,只要满足电极模块中多个电极中的至少两个电极沿肌肉纤维的长度方向间隔排布即可,在此不做进一步赘述。
当电极模块的至少两个电极(例如,第一电极和第二电极)贴合在皮肤进行肌电信号采集时,每个电极与皮肤的接触时会形成接触阻抗,人体运动时电极与皮肤的压力、位置等会产生一定改变,使得接触阻抗发生波动,从而影响肌电信号的准确性。在一些实施例中,为了减少由于电极模块中至少两个电极(例如,第一电极和第二电极)与人体皮肤贴合时形成的接触阻抗的差异较大所引起的差模信号噪声,可以通过减小接触阻抗波动来实现。具体地,可以通过减小至少两个电极与皮肤之间的接触阻抗使得接触阻抗不会在较大范围内发生波动,从而使电极两端的接触阻抗的差异较小或一致。
为了方便理解和说明,电极贴合在皮肤进行肌电信号采集时,电极与皮肤的接触可以等效于一个电容和一个电阻的并联,而接触阻抗可以通过公式(1)计算得到:
Figure PCTCN2020139651-appb-000001
其中,|z|为接触阻抗,S是电极与皮肤的接触面积,d为电极与皮肤之间的距离,ρ和ε分别代表电极和皮肤之间的平均电阻率和电容介电系数,ω=2π·f,f为肌电信号频率。从公式(1)可以得出,电极面积越大、电极与皮肤之间的距离越小都有助于减小电极与皮肤之间的接触阻抗。
进一步地,为了使电极与皮肤之间的接触阻抗较小,可以尽可能增大电极与皮肤的接触面积,因此可以通过设计电极与皮肤接触的表面的形状和尺寸来保证电极与皮肤之间的接触面积较大。在一些实施例中,电极与皮肤接触的表面形状可以为矩形,其中,电极用于与皮肤接触的表面的长度可以为1cm~10cm,宽度可以1cm~4cm。例如,该表面的尺寸可以为4cm×2cm,或者3cm×1.5cm,或者2cm×1cm。在一些实施例中,电极的形状也可以为圆形、三角形、六边形等其他规则或不规则的形状,在实际应用中,电极的形状可以取决于肌电信号待采集部位的肌肉形状。
需要注意的是,电极用于与皮肤接触的表面尺寸并不限于上述的尺寸,还可以更大或者更小,具体可以根据测量部分进行确定。例如,电极的尺寸及分布情况会受到肌肉尺寸和肌间串扰的限制。在一些实施例中,电极可以分布在待测肌肉中央而不超出肌肉范围。在一些实施例中,电极在肌肉密集的区域时,电极可以位于目标肌肉范围的中央位置,并且远离目标肌肉以外的其他肌肉。仅作为示例性说明,在对人体不同部位的肌肉进行肌电信号采集时,可以根据肌肉纤维长度方向的长度选用不同长度的电极。例如,对于上身肌肉,可以采用长度为4cm的电极来采集肌电信号。又例如,对于具有较大范围的肌肉的部位,比如背阔肌可以采用长度为10cm的电极进行采集。又例如,电极模块中具有参考电极(例如,图2中的第三电极204)时,参考电极可以小于用于采集肌电信号的电极(例如,图2中所示的第一电极201和第二电极202)的长度,比如背阔肌可以采用长度为10cm的电极进行采集,参考电极的长度可以为6cm。再例如,对 于具有较小范围的肌肉的部位,电极可以采用相对较小尺寸的电极,比如2cm或3cm。可以理解的是,电极的长度指的是电极沿垂直肌肉纤维长度方向(图1中的y方向)的长度。
在一些实施例中,对于包括至少两个电极的电极模块,其相邻两个电极之间的间隔会影响到测量到的肌电信号的强度。以图1所示的包括了两个电极(例如,第一电极101和第二电极102)的电极模块为例,肌电信号的强度可以通过两个电极的电势差来反映,两个电极沿着肌肉纤维方向(图1中的x方向)间隔排列,当用户在运动时,待测肌肉发生伸缩,沿着肌肉纤维方向就会有电势差,将两个电极沿肌肉纤维的长度方向间隔排列可以采集到人体运动时待测肌肉的电势差。当两个电极之间的间距过小时会影响肌电信号的强度,而间距过大则容易超出肌肉范围,在一些实施例中,为了提高肌电信号的准确度,电极模块中两个电极(第一电极101和第二电极102)的间距可以为1mm~10cm。优选地,电极模块中两个电极的间距可以为0.5cm~6cm。进一步优选地,电极模块中两个电极的间距可以为0.8cm~4cm。更优选地,电极模块中两个电极的间距可以为1cm-3cm。对于不同的肌肉区域,每个肌肉区域对应的两个电极的间距可以和其它肌肉区域对应的两个电极的间距相同或不同。
结合图1,电极模块中电极间距以及电极在肌肉纤维方向(即x方向)的宽度(即电极宽度)会受到肌电频率采集范围和肌电传导速度的限制。具体地,在实际测量中,不同个人各个肌肉动作对应不同的肌电频域表现,不同的肌电频域对应不同的肌电频率采集范围。在一些实施例中,肌电频域采集范围是在10Hz~200Hz中。当电极的间距与肌电采集频率范围和肌电传导速度不对应时,肌电信号在体表传输会造成信号频域失真现象,例如,当两个接收肌电信号的电极间距为1cm,可以假设为两个电极中的一个电极中具有点a,另一个电极中具有点b,点a和点b之间距离为1cm,肌电信号传输速度为4m/s,那么从a点传出的400Hz信号将传播到b点处且与a点处的400Hz信号同相,那么这个400Hz信号将会同相的出现在差分电路的两个输入端,被电路中的共模抑制作用抑制 强度,造成该频率信号强度减小,时域信号失真。
结合实际肌电频率采集范围,在一些实施例中,两个电极之间的中心间距可以小于3cm,这样可以充分保留在肌电采集频率范围内(例如,133Hz内)的肌电信号。在一些实施例中,可以采用更大的中心间距,例如两个电极在中心间距为6cm的情况下,可以保留较多的在肌电采集频率范围内(例如,66.5Hz内)的肌电信号。在本说明书的实施例中,两个电极之间的中心间距是两个电极的中心之间的距离,可以表示为一个电极宽度的一半、另一个电极宽度的一半和两个电极相近边缘在x方向上的间距的总和。在一些实施例中,电极宽度范围可以为1mm~5cm。优选地,电极宽度范围可以为0.5cm~3cm。更优选地,电极宽度为1cm、1.5cm或2cm。
当电极具有较大尺寸时,电极与皮肤具有较大的接触面积,从而可以有效地减小电极与皮肤之间的接触阻抗。并且电极具有较大的尺寸,电极可以在各种运动或褶皱的情况下,不至于完全从皮肤上脱落,以此来采集肌电信号,采集到的肌电信号可以通过后端电路和算法等将有效的肌电信号提取出来。另外,具有较大尺寸的电极和具有小尺寸电极在发生同等褶皱的情况下,褶皱对于大尺寸电极的影响也会相对较少。
在一些实施例中,还可以通过采用合适的材料和结构的电极来有效地减小电极与皮肤之间的接触阻抗以及电极的总阻抗。在一些实施例中,电极可以是由单一材料组成的电极,例如金属织物电极、导电硅电极、水凝胶电极、金属电极等。在一些实施例中,当电极用于集成在服装上贴合皮肤时,优选地,电极可以为金属织物电极和导电硅电极。进一步优选地,电极可以为金属织物电极,金属织物电极电阻率更小,其阻抗以及与皮肤之间的接触阻抗也较小。其中,金属织物电极厚度越小,其阻抗以及与皮肤之间的接触阻抗也越小。在一些实施例中,在使用金属织物电极采集肌电信号时,金属织物电极的厚度可以为10μm~5mm。优选地,金属织物电极的厚度可以为100μm~3mm。进一步优选地,金属织物电极的厚度可以为500μm~2mm。在一些实施例中,电极还可以是不同材料叠加形 成的电极,例如金属织物材料与导电硅材料构成的金属织物导电硅复合材料电极,不仅其与皮肤之间的接触阻抗小,并且其中与皮肤接触的导电硅具有亲肤、耐洗强等优点,避免电极与皮肤接触给人体带来的不适感。
在实际应用中,电极的一端与皮肤相连,可以看作是一个面,而另一端与导线相连,只能看作是一个点,但在特定情况下(例如,电极材料具有良好导电性时)仍能看作一个面。因此,电极和皮肤的接触一般可以等效成如图4所示的电极阻抗并联模型,电极材料具有良好导电性时,相当于图4中的R1=0,R2=0。
在图4中,R1代表电极材料纵向阻抗,R2代表电极材料横向阻抗,R3代表皮表横向阻抗,R4代表皮肤纵向阻抗(为了方便解释和说明,这里的皮肤纵向阻抗包括接触阻抗),R5是真皮层的横向阻抗,EMG代表肌电信号源,测量点是电极上的导电线引出点。其中,R1、R2和电极的材料(电阻率)、结构和尺寸(垂直于皮肤表面方向为厚度、平行于皮肤表面方向为长度)相关,由于人体皮肤的电阻率属于生理特征,因此R3、R4可以是定值,但R5也会受影响于电极的长度。因此可以通过改变电极的材料、结构和尺寸来对电极阻抗并联模型进行优化(例如,通过改变R1、R2的大小来使电极阻抗并联模型中并联的路径发生改变,从而达到降低电极的总阻抗和接触阻抗的目的),从而可以为电极选择合适的材料并设计合适的结构。
在一些实施例中,由于皮表为人体皮肤的角质层,角质层比较干燥,电阻率较大,因此,R3具有较大的值,因此可视为断路。除此之外,因为对称性,信号源的情况基本相同,所以可以仅考虑一个EMG信号源。
在一些实施例中,不同材料的电极对应的电极并联阻抗模型不同,可以通过改变电极的结构来改变对应的电极阻抗并联模型中的并联路径,从而达到降低电极总阻抗和其与皮肤之间的接触阻抗的目的。
例如,图5是根据本申请一些实施例所示的导电硅电极阻抗并联模型。由于导电硅的电阻率大,R1和R2不可忽略,不同的结构和尺寸的电极的R1和R2也会相差较大。电阻率会对R1和R2有相同的影响,而厚度却会对R1和R2 有不同的影响。其中,R2受到厚度影响,厚度越大,R2越小,因此R2可以看作是一系列单位厚度的材料横向电阻r2的并联。如图5所示,R1也会受到厚度影响,厚度越大,R1也越大,因此R1可以看作是一系列单位厚度的材料纵向电阻r1的串联。
通过对图5所示的导电硅电极的电极阻抗模型可以得出图6中的导电硅电极阻值与其厚度的关系。从图6中可以看出,导电硅电极厚度越大,其阻值越小。对于较大电阻率材料的电极(例如导电硅电极),可以增大电极的厚度降低电极横向电阻R2,使得可以有更大面积的通路参与到并联模型(例如假设并联通路阻值是最小电阻通路的10倍以上忽略不计,更小的电极横向电阻R2可以带来更大面积的通路参与并联),并联可以极大的降低总阻抗和接触阻抗。在一些实施例中,导电硅电极的厚度可以为0.01mm-4mm。优选地,导电硅电极的厚度可以为0.1mm-3mm。进一步优选地,导电硅电极的厚度可以为0.5mm-1mm。在一些实施例中,导电硅电极的宽度为1mm~5cm。优选地,导电硅电极的长度0.5cm~3cm。进一步优选地,导电硅电极的宽度为1cm、1.5cm或2cm。在一些实施例中,导电硅电极用于与皮肤接触的表面的长度可以为1cm~10cm。需要注意的是,关于导电硅电极的长度可以根据测量部分进行确定,例如,对于上身肌肉,可以采用长度为4cm的导电硅电极来采集肌电信号。又例如,对于具有较大范围的肌肉的部位,比如背阔肌可以采用长度为10cm的导电硅电极进行采集。
在一些实施例中,可以将不同材质的电极进行结合,以降低电极总阻抗。仅作为示例性说明,现以金属织物导电硅复合材料电极为例进行描述。图7A是根据本申请一些实施例所示的电极的结构示意图。图7B是根据本申请一些实施例所示的图4中R5远大于R2时的并联模型。如图7A所示,金属织物导电硅复合材料电极可以包括由上至下依次设置的基底结构701、金属织物电极720和导电硅电极710。其中,导电硅电极710的下表面与皮肤接触,金属织物电极720在导电硅电极的上表面与由较低导电率的材料制成的基底结构701之间。进一 步地,金属织物电极具有高导电率,可以近似看做短路掉导电硅电极710的材料横向电阻(例如,图4和图7B中的R2),这有助于降低电极并联路的阻值(图4中的并联回路是两倍的R2加上一个R1,图7B中的并联回路是一个R2加上R1),可以实现更多通路更大面积的并联,从而极大降低了总阻抗和接触阻抗,并且使得电极在沿肌肉纤维方向的测量结果(即采集到的肌电信号)一致。通过金属织物电极720与导电硅电极710的结合形成的金属织物导电硅复合材料电极与单纯的导电硅电极相比,在极大程度上降低了电极的总阻抗。除此之外,由于实现了更多通路更大面积的并联,电极与皮肤之间的接触阻抗也能够被有效地降低,从而在同比波动的情况下,可以减少接触阻抗波动相对于电路输入阻抗的值,从而降低肌电信号中的噪音。并且金属织物导电硅复合材料电极用于采集肌电信号时,是导电硅电极与人体皮肤直接接触,导电硅具有亲肤、耐受性强的优点,可以避免在肌电信号采集电极与皮肤接触给人体带来的不适感。在一些实施例中,金属织物导电硅复合材料电极中金属织物电极的厚度可以为10μm~5mm。优选地,金属织物导电硅复合材料电极中金属织物电极的厚度可以为100μm~3mm。进一步优选地,金属织物导电硅复合材料电极中金属织物电极的厚度可以为500μm~2mm。在一些实施例中,金属织物导电硅复合材料电极中导电硅电极的厚度可以为1μm~4mm。优选地,金属织物导电硅复合材料电极中导电硅电极的厚度可以为10μm~2mm。进一步优选地,金属织物导电硅复合材料电极中导电硅电极的厚度可以为0.1mm~1mm。在一些实施例中,金属织物导电硅复合材料电极的宽度为1mm~5cm。优选地,金属织物导电硅复合材料电极宽度为0.5cm~3cm。进一步优选的,金属织物导电硅复合材料电极宽度为1cm、1.5cm或2cm。在一些实施例中,金属织物导电硅复合材料电极用于与皮肤接触的表面的长度可以为1cm~10cm。需要注意的是,关于结合电极的长度可以根据测量部分进行确定,例如,对于上身肌肉,可以采用长度为4cm的结合电极来采集肌电信号。又例如,对于具有较大范围的肌肉的部位,比如背阔肌可以采用长度为10cm的结合电极进行采集。
在一些实施例中,金属织物电极的尺寸(例如,长度和宽度)大于导电硅电极的尺寸,例如,金属织物电极的宽度为1mm~5cm,导电硅电极的宽度为0.8cm~4cm。优选地,金属织物电极的宽度为0.5cm~3cm,导电硅电极的宽度为0.4cm~2.8cm。进一步优选地,金属织物电极的宽度为1cm~2cm,导电硅电极的宽度为0.8cm~1.6cm。在一些实施例中,导电硅电极和金属织物电极结合的电极中金属织物电极的长度可以为1cm~10cm。导电硅电极和金属织物电极结合的电极中导电硅电极的长度可以为0.8cm~8cm。需要注意的是,关于导电硅电极和金属织物电极的长度可以根据测量部分进行确定,例如,对于上身肌肉,可以采用长度为4cm的结合电极来采集肌电信号,金属织物电极的长度可以为4cm,导电硅电极的长度可以为3.2cm。又例如,对于具有较大范围的肌肉的部位,比如背阔肌可以采用长度为10cm的结合电极进行采集,金属织物电极的长度可以为10cm,导电硅电极的长度可以为8cm。
肢体的运动可能会使电极相对于皮肤发生一定的位移或褶皱甚至从皮肤上脱落,从而产生较大的接触阻抗波动甚至无法采集到肌电信号,并且电极发生位移也会使采集肌电信号的位置发生变化,导致采集到的肌电信号并不准确。在一些实施例中,可以通过提高电极与皮肤之间贴合的紧密程度,减少电极相对皮肤移动的可能性。进一步地,电极与皮肤紧密贴合也可以缩短电极与皮肤之间的距离,根据公式(1),可以使得皮肤与电极之间的接触阻抗变小,有利于减小接触阻抗以及减少接触阻抗的波动。
在一些实施例中,为了能够实现电极与皮肤紧密可靠地贴合,电极模块可以包括若干凸起结构,该凸起结构可以位于电极与基底结构之间,该凸起结构可以使电极的表面向外凸出。在一些实施例中,该凸起结构可以在电极表面或/和基底结构的表面呈阵列排布,或者也可以是随机分布的。具体地,当外部一定压力作用于电极模块使电极与人体皮肤接触时,凸起结构可以使电极与人体皮肤具有更好的贴合力。另一方面,通过设置凸起结构可以减低电极模块所在载体(例如,服装)对身体的压力要求,具有凸起结构的电极模块保证了只有电极部 分压力大,载体对身体其他部分的压力不大,在保证电极具有贴合力的同时使用户具有较好的舒适感。在一些实施例中,电极可以为凸起结构。例如,电极的中部区域高于电极边缘区域。在一些实施例中,电极可以为平面结构,电极可以相对于电极模块的基底结构向外部凸出,形成电极模块的凸起结构。在一些实施例中,凸起结构的高度为1mm~10mm。优选地,凸起结构的高度为2mm~8mm。更优选地,凸起结构的高度为2mm~4mm。需要说明的是,这里的凸起结构为中间最高,四边渐低的凸起结构,凸起结构的高度是凸起结构中中间最高位置的部分的高度。在一些实施例中,凸起结构还可以是凸起结构中与人体接触的端面近似为平面的结构体,凸起结构的高度可以为0.5mm~5mm。优选凸起结构的高度可以为1mm~4mm。更优选凸起结构的高度可以为1mm~2mm。在一些实施例中,凸起结构还可以位于基底结构的另一侧,也就是说凸起结构和电极分布于基底结构的不同表面。在一些实施例中,凸起结构可以为具有弹性的材料制成,例如,凸起结构可以由软PVC、树脂、硅胶等材料制成。在一些实施例中,凸起结构可以为内部中空的结构体,凸起结构可以包括填充物,该填充物可以位于凸起结构中空的内部。该填充物可以为具有一定导电能力的弹性材料。例如,填充物可以为含有吸水海绵、硅胶等。填充物一方面可以去除皮肤表面多余的水分,防止电极间短路。
考虑到两个电极处的凸起结构所受到的压力不同,造成两个电极处的凸起结构发生的形变不同,使得两个电极与皮肤间的接触阻抗不同,从而影响两个电极之间的一致性不同,使采集到的肌电信号存在噪声的影响。在一些实施例中,可以通过降低接触阻抗来减少肌电信号中的噪声。在一些实施例中,还可以控制接触阻抗波动范围以降低肌电信号中的噪声。在一些实施例中,接触阻抗波动可以在1M欧姆之内。优选地,接触阻抗波动可以在100K欧姆之内。更优选地,接触阻抗波动可以在10K欧姆之内。控制接触阻抗波动范围可以是两个电极与皮肤之间的接触阻抗范围在特定范围内(例如,上述的1M欧姆之内、100K欧姆之内后10K欧姆之内),还可以是两个电极与皮肤之间的接触阻抗的波动值 大概相同。在一些实施例中,还可以通过对与电极连接的电路来减少噪声,例如与电极连接的电路可以包括差分架构、陷波器、门限式滤波、右腿驱动等。在一些实施例中,还可以通过调整凸起结构的结构和高度来解决两个电极与皮肤之间的接触阻抗不一致的问题。仅作为示例性说明,例如,凸起结构为实心结构,凸起结构与皮肤接触的端面为平面。又例如,凸起结构的高度为1mm。
在一些实施例中,电极模块可以包括多个吸盘结构,通过吸盘结构可以使电极更加紧密地贴合在皮肤上,防止电极在采集肌电信号时发生移动,保证采集到的肌电信号的准确性。图8是根据本申请一些实施例所示的吸盘结构的剖面图。如图8所示,吸盘结构800为规则或不规则几何体结构,例如圆柱体、圆台体、长方体等立体结构,其中,吸盘结构800可以包括中空部分810,该中空部分在吸盘结构800一端的端部具有敞口811。在一些实施例中,吸盘结构800的至少部分可以由热塑性弹性体(TPE)、聚丙乙烯(PPE)、聚氨酯-丙烯酸酯基聚合物(s-PUA)等弹性材料制成,使得吸盘结构800能够具有形变的能力。当电极模块贴合在皮肤上,吸盘结构800中的中空部分810的敞口811与人体皮肤接触,在外部作用力的作用下,吸盘结构800发生变形,使得中空部分810内部的部分空气被挤压至外部,使得外部气压大于中空部分810的内部气压,与皮肤表面形成负压空间,从而使得电极模块(或电极)吸附在皮肤上,实现电极与皮肤紧密贴合的效果。在一些实施例中,中空部分810的形状包含而不限于球形、拱门形、柱形、立方体形、残缺的球形以及其他规则或不规则形状。例如,图8所示的吸盘结构的中空部分的形状为立方体形。又例如,图9所示的吸盘结构的中空部分的形状为残缺的球形。
图10是根据本申请一些实施例所示的另一种吸盘结构的剖面图。在一些实施例中,吸盘结构1000可以包括中间结构1020,中间结构1020位于吸盘结构1000的中空部分1010处,其中,该中间结构1020的局部可以与中空部分1010所在的吸盘结构1000的侧壁连接。在一些实施例中,中间结构1020可以由质地柔软且易于形变的材料制成,并具有一定弹性,例如,中间结构1020可 以由软PVC、硅胶、海绵等材料制成。在一些实施例中,中间结构1020的形状可以包括但不限于球形、圆柱形、立方体形以及其他规则或不规则形状。在一些实施例中,中间结构1020可以是吸盘结构1000的一部分,也可以与吸盘结构1000分开设置。在一些实施例中,中间结构1020可以将中空部分1010分隔成多个相互连通的空间区域,从而提高电极模块在特定环境(例如,皮肤表面液体较多的环境)的适用性。仅作为示例性说明,如图10所示,中间结构1020与吸盘结构1000连接,该连接处用点a表示,当中间结构位于吸盘结构1000的中空部分1010时,中间结构1020的其他部分(例如,图10中所示的点b、点c)与中空部分1010所在的吸盘结构1000的侧壁相贴合而不是连接,这里的贴合是通过具有弹性的中间结构1020的弹性与吸盘结构1000的侧壁之间存在挤压力。中间结构1000可以将中空部分分隔成空间区域1、空间区域2以及空间区域3。具体地,空间区域1和空间区域3由中间结构1020与吸盘结构1000的侧壁限制所形成,空间区域3由中间结构1020、吸盘结构1000的侧壁以及人体皮肤限制所形成,其中,空间区域1、空间区域2和空间区域3相互连通。具体地,当吸盘结构1000应用于皮肤表面的液体较多的环境中(例如,人体易于出汗的部分(腋下、胸部等)),在无外界作用力的作用下,液体(汗液)存在于空间区域3中,当外界作用力(例如,肌肉运动产生的作用力)作用于吸盘结构1000时,例如对吸盘结构1000进行挤压时,吸盘结构1000和中间结构1020会发生变形,空间区域3中的液体会通过点b、点c到达空间区域1和空间区域2,在挤压结束后,吸盘结构1000和中间结构1020恢复形状,空间区域3的部分液体会存留在空间区域1和空间区域2中,而空间区域3中的液体量相对于未挤压时的液体量将会极大减少,从而使得吸盘结构1000与人体皮肤之间产生一个较强的负压吸附力。
图11是根据本申请一些实施例提供的吸盘结构的剖面图。如图11所示,吸盘结构1100的本体具有中间部分1110,中间部分1110具有朝向皮肤的开口1111,并且在中间部分1110内部具有中间结构1120,由于中间结构1120的存 在,空腔可以包括上部空间1112和下部空间1113。在一些实施例中,吸盘结构1100可以采用具有弹性的材料(比如,聚氨酯-丙烯酸酯基聚合物(s-PUA)),吸盘结构1100与其中间结构1120在外部作用力的作用下可以发生变形。在进行肌电信号采集时,可以先将具有吸盘结构1100的电极放置于待采集肌电信号的人体部位处,然后给吸盘结构1100施加一个压力,使吸盘结构1100与人体皮肤相接触,此时吸盘结构1100工作。当吸盘结构1100工作时,吸盘结构1100的中间部分1110的上部空间1112将会变化,下部空间1113也会发生相应的变化。例如,吸盘结构1100内部的中间结构1120向外扩张,外部的侧壁同时向内收缩,上部空间1112和下部空间1113中的部分空气被排出至外界,外部气压大于吸盘结构1100的内部气压,从而形成负压空间,电极便可以在吸盘结构1100的负压吸附力的作用下紧密可靠地吸附在皮肤上。在一些实施例中,吸盘结构1100的中间部分1110内可以加载一定PBS缓冲液,提高其吸附能力。
在一些实施例中,图12是根据本申请一些实施例所示的具有吸盘结构的电极模块的结构示意图。如图12所示,吸盘结构1210(例如,吸盘结构800、吸盘结构1100)可以设置在电极模块1200上,并且阵列分布在电极(例如,电极1201和电极1202)的四周。多个吸盘结构1210阵列分布在电极的四周,并与电极位于电极模块1200的基底结构1203朝向皮肤的一面上,并且吸盘结构1210与电极具有相同或近似的高度或厚度,使得电极模块通过吸盘结构紧密可靠地吸附在皮肤上的同时,电极能够与皮肤充分接触,从而能够准确地采集肌电信号。需要注意的是,多个吸盘结构1210还可以随机分布在电极的四周。另外,当吸盘结构1210远离电极时,吸盘1210的高度可以大于或小于电极的高度,当吸盘为柔软易于形变的材质时,吸盘结构1210还可以在靠近电极的同时高于电极,只需要保证用户佩戴具有电极模块的物品(例如,衣服)后,物品的压力使得吸盘1210形变后不影响电极接触皮肤即可。
在一些实施例中,吸盘结构可以阵列排布在电极上,或者也可以是随机分布的。图13是根据本申请一些实施例所示的另一种具有吸盘结构的电极模块的 结构示意图。如图13所示,多个吸盘结构1310均匀分布在电极(例如,电极1301和电极1302)用于与皮肤接触的一面上,由于电极与皮肤是间接通过吸盘结构连接的,为了保证电极能够采集到肌电信号,吸盘结构1310的材质可以部分或全部选用导电材料。在一些实施例中,导电材料可以包括导电硅胶、导电树脂、导电塑料等。在本实施例中,通过将多个吸盘结构1310阵列布置在电极模块1300的基底结构1303上或之间将多个吸盘结构均匀布置在电极上,可以使得电极更加均匀牢固地贴合在皮肤上。在一些实施例中,多个吸盘结构1310还可以随机布置在电极模块1300的基底结构1303上或电极上。
需要注意的是,吸盘结构1210和吸盘结构1310可以包括图8-11所示的吸盘结构,在此不做赘述。在其他实施例中,还可以通过粘贴、夹紧等方式将电极紧密可靠地贴合在皮肤上。
在一些实施例中,为了进一步防止电极在皮肤上发生相对位移,电极模块还可以包括若干凸点结构(图中未示出),凸点结构可以增大电极模块或电极与皮肤之间的摩擦力,从而增加电极模块的防滑性能。凸点结构可以位于基底结构或电极上可以是指与人体皮肤相接触的面。其中,凸点结构可以是任意形状,并且可以阵列或随机分布在电极或电极模块的基底结构上。在一些实施例中,该凸点结构的形状可以包括圆锥状、圆柱状、长方体状、半球状等规则或不规则结构。在一些实施例中,为了提高电极模块的防滑性能,凸点结构的高度可以为5μm~200μm。优选地,凸点结构的高度可以为10μm~100μm。进一步优选地,凸点结构的高度可以为20μm~80μm。更为优选地,凸点结构的高度可以为20μm~50μm。在一些实施例中,为了提高电极模块的防滑性能,凸点结构与电极或基底结构连接面的尺寸(例如,长度、宽度或半径等)可以为10μm~1000μm。优选地,凸点结构与电极或基底结构连接面的尺寸可以为50μm~800μm。进一步优选地,凸点结构与电极或基底结构连接面的尺寸可以为100μm~600μm。在一些实施例中,为了提高电极模块的防滑性能,凸点结构的分布密度可以为1个/2.25mm 2~10个/2.25mm 2。优选地,凸点结构的分布密度可以为3个 /2.25mm 2~8个/2.25mm 2。进一步优选地,凸点结构的分布密度可以为5个/2.25mm 2~6个/2.25mm 2。仅作为示例性说明,凸点结构可以随机分布在导电硅电极上,其形状为圆锥形、高度为20~50μm、圆锥底部半径为100~600μm、凸点结构的分布密度为5个/2.25mm 2的导电硅电极具有良好的防滑性能。在一些实施例中,凸点结构还可以设置在电极之间,可以阻隔电极之间的汗水等体表液体,防止电极发生短路。
由于肌电信号的采集通常需要在人们进行运动时来完成,在运动过程中,随着热量的消耗,人体排出的汗液积聚在电极与皮肤之间,由于汗液与人体皮肤的粘度以及汗液与电极的粘度,电极与皮肤将贴合的过于紧密,造成皮肤无法透气,也容易滋生细菌,另外汗液的积聚还会造成电极间短路的问题发生。为了防止上述问题的发生,电极模块还可以包括若干透气孔,该透气孔可以位于电极模块的基底结构或电极上使电极模块具备一定透气性能,促进皮肤与外界环境的透气,并减少汗液在电极模块与人体皮肤间积聚。在一些实施例中,透气孔的形状可以为圆形、椭圆形、长方形、正方形、六边形等规则或不规则形状。在一些实施例中,若干透气孔可以呈阵列排布。在一些实施例中,透气孔的直径范围可以为0.2mm-4mm。优选地,透气孔的直径范围为0.5mm~3mm。进一步优选地,透气孔的直径范围为1mm~2mm。更优选地,透气孔的直径为1mm、1.5mm或2mm。在一些实施例中,透气孔的总面积不超过电极面积的90%。优选地,透气孔的总面积不超过电极面积的50%。进一步优选地,透气孔的总面积不超过电极面积的20%。在一些实施例中,可以通过机械打孔的方式制作出透气孔。
本申请实施例提供的电极模块不仅能集成在服装上或其他可穿戴设备来有效地采集用户在运动时身体各部位的肌电信号。还可以在医疗康复工程中,用于采集病人的肌电信号,从而对病人做出相应的诊断或治疗。或在仿生学中,用于采集肌电信号来进行人工假肢的研究。
图14是根据本申请一些实施例所示的可穿戴装置的示例性结构示意图。如图14所示,可穿戴装置1400可以包括上衣服装1410和裤子服装1420。其 中,上衣服装1410可以包括上衣服装基底14110、至少一个上衣数据处理模块14120、至少一个上衣传感器模块14130等,其中,至少一个上衣数据处理模块14120和至少一个上衣传感器模块14130位于所述上衣服装基底14110上与人体不同部位贴合的区域。上衣服装基底14110可以是指穿戴于人体上身的衣物。在一些实施例中,上衣服装基底14110可以包括短袖T恤、长袖T恤、衬衫、外套等。参照图14,至少一个上衣数据处理模块14120可以包括第一上衣数据处理模块14121和第二上衣数据处理模块14122。具体地,第一上衣数据处理模块14121可以设置于上衣服装基底14110的左侧肩部位置,第二上衣数据处理模块14122可以设置于上衣服装基底14110的右侧肩部位置。需要说明的是,第一上衣数据处理模块14121和第二上衣数据处理模块14122可以以上衣服装基底14110的中线成对称分布,也可以以上衣服装基底14110的中线成非对称分布。至少一个上衣传感器模块14130可以包括第一上衣传感器模块14131和第二上衣传感器模块14132。其中,第一上衣传感器模块14131可以包括一个及以上相同或不同类型的传感器,例如,肌电传感器(也被称为肌电模块)、心电传感器、呼吸传感器、温度传感器、湿度传感器等。第一上衣传感器模块14131可以设置于上衣服装基底14110的左侧肌肉位置(例如,左侧手臂肱二头肌、左侧手臂腕伸肌、左侧胸大肌等)。第二上衣传感器模块14132可以是指一个及以上相同或不同类型的传感器,例如,肌电传感器、心电传感器、呼吸传感器、温度传感器、湿度传感器等。第二上衣传感器模块14132可以设置于上衣服装基底14110的右侧肌肉位置(例如,右侧手臂肱二头肌、右侧手臂腕伸肌、右侧胸大肌等)。在一些实施例中,第一上衣数据处理模块14121与第一上衣传感器模块14131之间可以通过电极走线方式连接,第二上衣数据处理模块14122与第二上衣传感器模块14132之间可以通过电极走线方式连接。在一些实施例中,第一上衣数据处理模块14121与第一上衣传感器模块14131之间可以通过无线通讯方式进行通信连接,第二上衣数据处理模块14122与第二上衣传感器模块14132之间可以通过无线通讯方式进行通信连接。例如,第一上衣传感器模块 14131的肌电传感器将采集到的人体肌电信号可以通过有线或无线方式传输至第一上衣数据处理模块14121。需要注意的是,这里的肌电传感器(电极模块)的具体内容可以参考本申请其他地方(例如,图1-图3、图7-图13)的描述,在此不做赘述。
在一些实施例中,上衣服装基底14110的左侧肩部位置设置第一上衣数据处理模块14121,第一上衣数据处理模块14121被配置为接收人体左侧传感器(例如,肌电传感器、心电传感器、呼吸传感器等)的上身运动数据。上衣服装基底14110的右侧肩部位置设置第二上衣数据处理模块14122,第二上衣数据处理模块14122被配置为接收人体右侧传感器(例如,肌电传感器、心电传感器、呼吸传感器等)的上身运动数据。上述所说的位于左侧肩部位置的第一上衣数据处理模块14121与位于右侧肩部位置的第二上衣数据处理模块14122可以以上衣服装基底14110的中线成对称分布。
在一些实施例中,左侧肩部位置的第一上衣数据处理模块14121与右侧肩部位置的第二上衣数据处理模块14122可以是主从关系。例如,第一上衣数据处理模块14121为主数据处理模块,第二上衣数据处理模块14122为从数据处理模块,此时,第一上衣数据处理模块14121与第二上衣数据处理模块14122之间可以通过有线或无线的方式通信连接。具体地,第一上衣数据处理模块14121接收人体左侧的运动数据,第二上衣数据处理模块14122接收人体右侧的运动数据,第二上衣数据处理模块14122可以将接收到的人体右侧的运动数据传递给第一上衣数据处理模块14121进行处理。在一些实施例中,第一上衣数据处理模块14121与第二上衣数据处理模块14122之间的走线方式可以是可穿戴装置1400前侧走线,也可以是可穿戴装置1400背后走线。在一些实施例中,第一上衣数据处理模块14121还可以将自身接收到的人体左侧运动数据与接收来自第二上衣数据处理模块14122的人体右侧运动数据一并传递给外设终端,外设终端对接收到的运动数据进行数据处理。
在一些实施例中,第一上衣数据处理模块14121与第二上衣数据处理模 块14122还可以是并行关系。第一上衣数据处理模块14121与第二上衣数据处理模块14122是并行关系时,第一上衣数据处理模块14121与第二上衣数据处理模块14122可以分别与外设终端连接通信。具体地,第一上衣数据处理模块14121接收来自人体左侧的运动数据,并将接收到的人体左侧的运动数据传递给外设终端,外设终端对接收到的人体左侧的运动数据进行数据处理。第二上衣数据处理模块14122接收来自人体右侧的运动数据,并将接收到的人体右侧的运动数据传递给外设终端,外设终端对接收到的人体右侧的运动数据进行数据处理。
在一些实施例中,上衣数据处理模块14120接收到的人体运动数据可以在上衣数据处理模块14120中进行数据处理。例如,第一上衣数据处理模块14121接收到的人体左侧运动数据在第一上衣数据处理模块14121中进行数据处理,第一上衣数据处理模块14121将处理过后的运动数据传递给外设终端。在一些实施例中,上衣数据处理模块14120接收到的人体运动数据也可以在外设终端中进行数据处理。例如,第二上衣数据处理模块14122将接收到的人体右侧运动数据直接传递给外设终端,外设终端对接收到的人体右侧运动数据进行数据处理。在一些实施例中,上衣数据处理模块14120接收到的人体运动数据还可以在上衣数据处理模块14120中进行一部分数据处理,在外设终端中进行另一部分数据处理。例如,第一上衣数据处理模块14121接收到的人体左侧运动数据在第一上衣数据处理模块14121中进行一部分数据处理,第一上衣数据处理模块14121将进行过一部分数据处理后的运动数据传递给外设终端,外设终端再对接收到的进行过一部分数据处理后的运动数据进行另一部分的数据处理。
在一些实施例中,上衣数据处理模块14120与外设终端之间可以是双向通信的。例如,第一上衣数据处理模块14121(或第二上衣数据处理模块14122)可以向外设终端传递运动数据,也可以接收来自外设终端的指令。例如,该指令可以是控制电极模块运行的指令,或者是根据用户运动数据进行运动质量反馈的指令。
继续参照图14,裤子服装1420可以包括裤子服装基底14210、至少一个裤子数据处理模块14220、至少一个裤子传感器模块14230等。其中,至少一个裤子数据处理模块14220可以包括第一裤子数据处理模块14221和第二裤子数据处理模块14222。具体地,第一裤子数据处理模块14221可以设置于裤子服装基底14210的左侧胯部位置,第二裤子数据处理模块14222可以设置于裤子服装基底14210的右侧胯部位置。需要说明的是,第一裤子数据处理模块14221和第二裤子数据处理模块14222可以以裤子服装基底14210的中线成对称分布,也可以以裤子服装基底14210的中线成非对称分布。至少一个裤子传感器模块14230可以包括第一裤子传感器模块14231和第二裤子传感器模块14232。其中,第一裤子传感器模块14231可以包括一个及以上不同类型的传感器,例如,肌电传感器、温度传感器、湿度传感器等。第一裤子传感器模块14231可以设置于裤子服装基底14210的左腿左侧肌肉位置(例如,左侧臀大肌,左侧股外侧肌、左侧股内侧肌、左侧股二头肌等)。在一些实施例中,第一裤子传感器模块14231可以设置于裤子服装基底14210的左腿前侧肌肉位置、左腿后侧肌肉位置。第二裤子传感器模块14232可以包括一个及以上不同类型的传感器,例如,肌电传感器、温度传感器、湿度传感器等。第二裤子传感器模块14232可以设置于裤子服装基底14210的右腿右侧肌肉位置(例如,右侧臀大肌,右侧股外侧肌、右侧股内侧肌、右侧股二头肌等)。在一些实施例中,第二裤子传感器模块14232可以设置于裤子服装基底14210的右腿前侧肌肉位置、右腿后侧肌肉位置。在一些实施例中,第一裤子数据处理模块14221与第一裤子传感器模块14231之间可以通过电极走线方式连接,第二裤子数据处理模块14222与第二裤子传感器模块14232之间可以通过电极走线方式连接。关于至少一个裤子数据处理模块14220(例如,第一裤子数据处理模块14221和第二裤子数据处理模块14222)、至少一个裤子传感器模块14230(例如,第一裤子传感器模块14231和第二裤子传感器模块14232)的内容可以参考至少一个上衣数据处理模块14120、至少一个上衣传感器模块14130的相关内容,在此不做赘述。
在一些实施例中,传感器模块(例如,第一上衣传感器模块14131、第二上衣传感器模块14132、第一裤子传感器模块14231、第二裤子传感器模块14232)可以包括但不限于肌电传感器、惯性传感器、心电传感器、呼吸传感器、温度传感器、湿度传感器、酸碱传感器、声波换能器等。
在一些实施例中,肌电传感器(也被称为电极模块)可以设置于人体肌肉位置,肌电传感器与数据处理模块(例如,第一上衣数据处理模块14121、第二上衣数据处理模块14122、第一裤子数据处理模块14221、第二裤子数据处理模块14222)之间可以连接通信。其中,上衣人体肌肉位置可以包括但不限于肱二头肌、肱三头肌、腕伸肌、腕屈肌、三角肌(例如三角肌前头、三角肌中头、三角肌后头)、斜方肌、背阔肌、胸大肌、腹外斜肌、腹直肌等。裤子人体肌肉位置可以包括但不限于臀大肌、股外侧肌、股内侧肌、股直肌、股二头肌、胫骨前肌、腓肠肌等。在一些实施例中,肌电传感器可以被配置为采集用户运动时的肌肉信息,例如动作幅度、动作速度、动作力度等。例如,用户在进行杠铃卧推时,设置在肱二头肌(或肱三头肌、三角肌、胸大肌等)的肌电传感器可以采集用户对应位置的肌肉信息(例如动作幅度、动作速度、动作力度等),并将采集到的肌肉信息传递给数据处理模块。数据处理模块对接收到的肌肉信息进行数据处理(或数据处理模块将接收到的肌肉信息传递给外设终端,外设终端对接收到的肌肉信息进行数据处理),判断用户在杠铃卧推过程中的肌肉数据是否在判断标准内,若超出判断标准,则可穿戴装置可以通过反馈模块警示用户。这里的判断标准可以是提前在可穿戴装置中录入的专业人士(例如,运动员、教练等)和大批量普通人在杠铃卧推过程中的肌肉数据训练出来,同时根据用户的信息进行调整适配。用户可以根据反馈模块的警示实时了解自身杠铃卧推肌肉状态(例如,动作幅度、动作速度、动作力度等)是否规范,并及时调整运动姿势。
在一些实施例中,惯性传感器可以集成在传感器模块中,此时,惯性传感器可以脱离数据处理模块,从而带来实际问题。例如,洗涤问题、复杂度问题(例如,单独制作、拆卸等)、供电问题、充电问题等。在一些实施例中,惯性传感 器还可以设置于服装基底的左侧数据处理模块和右侧数据处理模块中,惯性传感器可以被配置为监测用户的运动参数(例如步数、步幅、步频等)。具体地,惯性传感器设置于服装基底的左侧数据处理模块和右侧数据处理模块中,一方面,可以监测用户的运动参数,例如步数、步幅、步频等。另一方面,可以有效的解决惯性传感器脱离数据处理模块的问题(例如洗涤问题、供电问题等)。再一方面,第一数据处理模块和第二数据处理模块中分别设置的惯性传感器还可以监测用户身体左右两侧的运动协调一致性、平衡性等。
在一些实施例中,数据处理模块内和/或数据处理模块外可以设计更多的惯性传感器,实现更复杂的动作识别等功能。例如,加速度传感器可以被配置为采集人体运动时的加速度。具体地,加速度测量可以主要用于用户运动过程中的计步和卡路里计算,也可以用于监测用户运动过程中身体在X、Y、Z三个轴向的加速度。
在一些实施例中,心电传感器可以被配置为采集用户运动过程中的心电数据。心电传感器与数据处理模块(例如,第一上衣数据处理模块14121、第二上衣数据处理模块14122)之间可以连接通信。用户在进行运动过程中,其心率会发生改变。例如,用户在做有氧运动或力量练习时,用户运动时间的长短和/或运动强度的大小可以影响用户的心率。心电传感器可以采集用户运动过程中的心电信号,并将采集到的心电信号传递给数据处理模块。数据处理模块对接收到的心电信号进行数据处理(或数据处理模块将接收到的心电信号传递给外设终端,外设终端对接收到的心电信号进行数据处理),判断用户心率是否在判断标准内,若超出判断标准,则可穿戴装置可以通过反馈模块警示用户。这里的判断标准可以提前在可穿戴装置中录入的专业人士(例如,运动员、教练等)和大批量普通人运动过程中的心电数据训练出来,同时根据用户的信息进行调整适配。用户可以根据反馈模块的警示实时了解自身心电状态是否正常,并及时调整运动时间和/或运动强度。
在一些实施例中,呼吸传感器可以被配置为采集用户运动过程中的呼吸 信号。呼吸传感器与数据处理模块(例如,第一上衣数据处理模块14121、第二上衣数据处理模块1412)之间可以连接通信。用户在运动过程中,其呼吸速度、呼吸频率都会发生改变。例如,用户在跑步过程中,其呼吸速度会随着用户跑步时间的推移和/或跑步速度的增快而逐渐增快,呼吸频率会随着用户跑步时间的推移和/或跑步速度的增快而逐渐增大。呼吸传感器采集用户运动过程中的呼吸信号(例如呼吸速度、呼吸频率等),并将采集到的呼吸信号传递给数据处理模块。数据处理模块对接收到呼吸信号进行数据分析(或数据处理模块将接收到的呼吸信号传递给外设终端,外设终端对接收到的呼吸信号进行数据处理),判断用户跑步运动过程中的呼吸数据是否在判断标准内,若超出判断标准,则可穿戴装置可以通过反馈模块警示用户。这里的判断标准可以提前在可穿戴装置中录入的专业人士(例如,运动员、教练等)和大批量普通人跑步过程中的呼吸数据训练出来,同时根据用户的信息进行调整适配。用户可以根据反馈模块的警示实时了解自身跑步状态(例如,跑步速度、跑步时间等)是否规范,并及时调整跑步时间和/或跑步速度。
在一些实施例中,温度传感器可以被配置为采集用户运动过程中的温度信号。温度传感器与数据处理模块(例如,第一上衣数据处理模块14121、第二上衣数据处理模块14122、第一裤子数据处理模块14221、第二裤子数据处理模块14222)之间可以连接通信。用户在运动过程中,其身体温度会逐渐升高。例如,用户在做有氧运动或力量练习时,用户运动时间的长短和/或运动强度的大小可以影响用户的体温。温度传感器可以采集用户运动过程中的温度信号,并将采集到的温度信号传递给数据处理模块。数据处理模块对接收到的温度信号进行数据处理(或数据处理模块将接收到的温度信号传递给外设终端,外设终端对接收到的温度信号进行数据处理),判断用户体温是否在判断标准内,若超出判断标准,则可穿戴装置可以通过反馈模块警示用户。这里的判断标准可以提前在可穿戴装置中录入的专业人士(例如,运动员、教练等)和大批量普通人运动过程中的温度数据训练出来,同时根据用户的信息进行调整适配。用户可以根据反 馈模块的警示实时了解自身温度状态是否正常,并及时调整运动时间和/或运动强度。
在一些实施例中,湿度传感器可以被配置为采集用户运动过程中的湿度信号。湿度传感器与数据处理模块(例如,第一上衣数据处理模块14121、第二上衣数据处理模块14122、第一裤子数据处理模块14221、第二裤子数据处理模块14222)之间可以连接通信。用户在运动过程中,其身体湿度会逐渐变大。例如,用户在做有氧运动或力量练习时,用户运动时间的长短和/或运动强度的大小可以影响用户身体湿度。湿度传感器可以采集用户运动过程中的湿度信号,并将采集到的湿度信号传递给数据处理模块。数据处理模块对接收到的湿度数据进行数据处理(或数据处理模块将接收到的湿度信号传递给外设终端,外设终端对接收到的湿度信号进行数据处理),判断用户身体湿度是否在判断标准内,若超出判断标准,则可穿戴装置可以通过反馈模块警示用户。这里的判断标准可以提前在可穿戴装置中录入的专业人士(例如,运动员、教练等)和大批量普通人运动过程中的湿度数据训练出来,同时根据用户的信息进行调整适配。用户可以根据反馈模块的警示实时了解自身湿度状态是否正常,并及时调整运动时间和/或运动强度。
图15是根据本申请一些实施例所示的上衣可穿戴装置的走线连接方式的示例性结构图。如图15所示,上衣可穿戴装置1500可以包括服装基底1510、第一数据处理模块1521、第二数据处理模块1522、第一肌电传感器1531、第二肌电传感器1532、温度传感器1541、湿度传感器1542、第一心电传感器1551、第二心电传感器1552、连接线1561(或连接线1562、连接线1571、连接线1572、连接线1581、连接线1582等)等。具体地,第一肌电传感器1531通过连接线1561与第一数据处理模块1521连接通信。第二肌电传感器1532通过连接线1562与第二数据处理模块1522连接通信。温度传感器1541通过连接线1571与第一数据处理模块1521连接通信。湿度传感器1542通过连接线1572与第二数据处理模块1522连接通信。第一心电传感器1551通过连接线1581与第一数据 处理模块1521连接通信。第二心电传感器1552通过连接线1582与第二数据处理模块1522连接通信。
在一些实施例中,上衣可穿戴装置1500的左侧肩部设置第一数据处理模块1521,右侧肩部设置第二数据处理模块1522。第一数据处理模块1521和第二数据处理模块1522分别被配置为接收用户身体左右两侧的运动数据,这种设计一方面可以有效的分摊走线线路,合理控制单个数据处理模块(例如,第一数据处理模块1521、第二数据处理模块1522)的体积。另一方面,上衣可穿戴装置1500左右两侧分别设置数据处理模块的设计,是一种对称设计,可以有效的解决不对称设计带来的用户安全性问题(例如,深蹲等运动的平衡控制)。再一方面,上衣可穿戴装置1500左右两侧分别设置数据处理模块的设计,可以有效的规避在用户胸口、靠近心脏等主要器官的地方有电路等电子设备(例如,电池、蓝牙、放大器等)的存在,同时提升了用户的穿着舒适度。在一些实施例中,上衣可穿戴装置1500左右两侧肩部位置分别设置数据处理模块的设计,可以降低设计的难度以及每个数据处理模块的重量,还可以有效的采集胸口附近的生理信号(例如心电信号、胸大肌的肌电信号等)。
在一些实施例中,上衣可穿戴装置1500上的传感器模块较多时,上述走线方式一方面可以有效分开线路布置,降低走线难度,提升设计空间。另一方面,可以规避大角度走线。在一些实施例中,可穿戴装置中的走线长度会影响其信噪比,具体地,走线长度越长引入的噪音干扰越大。参考图15的走线方式可以有效的缩短走线长度,从而可以减少传感器模块采集到的噪音信号,降低噪音的干扰。在一些实施例中,传感器模块均与数据处理模块之间连接通信,可穿戴装置中的走线相对密集,各个通道之间会产生相互干扰的现象。参考图15的走线方式可以有效的提升各个走线之间的相隔距离,降低通道之间的互相干扰。
在一些实施例中,用户在运动的过程中,大部分运动(例如,杠铃卧推、哑铃推举、跑步、扩胸运动等)需要人体肢干的参与,双臂的运动可以带动可穿戴装置的位移,从而可以使得可穿戴装置中传感器模块产生位移,降低信号采集 质量(例如,胸大肌位置的肌电信号、心电信号等)。图16A是根据本申请一些实施例所示的上衣可穿戴装置的腋下位置弹性设计的示例性结构图。如图16A所示,服装基底1610的左侧腋下位置设置了第一弹性设计1611,服装基底1610的右侧腋下位置设置了第二弹性设计1612。图16B是根据本申请一些实施例所示的上衣可穿戴装置的大臂位置弹性设计的示例性结构图。如图16B所示,服装基底1620的左侧大臂位置设置了第三弹性设计1621,服装基底1620的右侧大臂位置设置了第四弹性设计1622。其中第三弹性设计1621和第四弹性设计1622是大臂环形弹性设计。需要说明的是,弹性设计的设置位置可以包括但不限于腋下位置和大臂位置,本实施例只对腋下位置和大臂位置进行描述,其他人体位置(例如手肘位置、肩部位置等)在此不做具体描述。
在一些实施例中,弹性设计可以是指采用高弹性可拉伸的材料。该高弹性可拉伸材料可以包括但不限于弹性纤维织物材料、柔性高分子材料、弹性橡胶圈等。此外,用于做弹性设计的材料可以是单一弹性材料,也可以是多种不同弹性材料的组合。例如,可穿戴装置的大臂位置(例如,图16B中第三弹性设计1621或图16B中第四弹性设计1622)处的服装基底可以由弹性橡胶材料制作,当用户大臂位置受到拉扯时,高弹性的橡胶材料可以伸展,从而有效的规避可穿戴装置的位移。再例如,可穿戴装置的腋下部位(例如,图16A中第一弹性设计1611或图16A中第二弹性设计1612)处的服装基底可以由弹性纤维织物嵌片与尼龙材料(或聚酯类伸展材料)的结合材料制作。具体地,用户进行手臂伸展动作时,可穿戴装置腋下部位受到拉扯,弹性纤维织物嵌片与尼龙材料(或聚酯类伸展材料)的结合材料具有较优的伸展率和回复率,可以有效的规避可穿戴装置的位移。
在一些实施例中,弹性设计还可以是指结构设计。具体地,可以将可穿戴装置靠近人体肩部的大臂位置处(可以参考图16B的第三弹性设计1621以及第四弹性设计1622)设计褶皱起伏状结构。该褶皱起伏状结构相对于可穿戴装置本身向四周环形立体突出,突出位移的大小可以根据运动中的拉扯力的大小确定。褶皱起伏状结构在大臂位置受到用户运动动作(例如,杠铃卧推)拉扯时, 可以沿着拉扯方向做延展性伸缩,从而可以有效的缓解可穿戴装置由于拉扯而产生位移,影响信号采集质量。
在一些实施例中,可以根据电极附近的拉力分析,对电极模块周边做弹性设计。图17A是根据本申请一些实施例所示的上衣可穿戴装置电极模块环形弹性设计的示例性结构图。如图17A所示,在电极模块1710外围设置环形弹性设计1720(例如,采用高弹性可拉伸材料、褶皱设计等),可以360度减弱用户在运动过程中对电极模块的拉扯。例如,穿戴运动装置的用户在进行手臂环绕拉伸的运动时,胸口及其附近位置的电极模块1710会受到多角度的拉扯。这种情况下,在电极模块1710外围设置环形弹性设计1720(例如,采用高弹性可拉伸材料、褶皱设计等)可以有效的规避电极模块1710由于用户拉扯而导致的位移,进一步地削弱用户运动对信号采集模块的影响。图17B是根据本申请一些实施例所示的上衣可穿戴装置电极模块特定方向弹性设计的示例性结构图。如图17B所示,在电极模块1730的特定一个及以上方向设置弹性设计1740(例如,采用高弹性可拉伸材料、褶皱设计等),可以减弱特定一个及以上方向的拉扯。例如,穿戴运动装置的用户在进行扩胸运动时,胸部的电极模块1730会受到靠近同侧手臂方向的一侧的拉扯。这种情况下,在胸部电极模块1730靠近同侧手臂方向设置弹性设计1740(例如,采用高弹性可拉伸材料、褶皱设计等)可以有效的规避电极模块1730由于用户拉扯而导致的位移,进一步地削弱用户运动对信号采集模块的影响。
图18是根据本申请一些实施例所示的可穿戴装置镂空设计的示例性结构图。如图18所示,部分服装基底1800可以包括第一侧端1811、第二侧端1812、第三侧端1813、第四侧端1814、镂空设计服装基底1820(图18中阴影部分)、常规服装基底1830(图18中空白长条状部分)等。这里,部分服装基底1800可以为服装部分区域的结构,第一侧端1811、第二侧端513、第三侧端1813以及第四侧端1814可以分别与服装连接。其中,第一侧端1811与第二侧端1812相对设置,沿着第一侧端1811和第二侧端1812方向拉扯,镂空设计的可穿戴 装置可以具有比常规可穿戴装置更优的可延展性。继续参照图18,其中第三侧端1813与第四侧端1814相对设置,沿着第三侧端1813和第四侧端1814方向拉扯,镂空结构在拉扯下变大,使得镂空设计的可穿戴装置可以具有比常规可穿戴装置更优的可延展性。在一些实施例中,穿着运动装置的用户在进行扩胸运动时,用户胸口位置的服装由于动作拉扯产生位移。在可穿戴装置胸口周围位置设置镂空结构,该镂空结构可以有效的削弱由于用户动作拉扯产生的电极相对皮肤的位移,从而可以有效的提高用户胸口位置的信号采集质量。参照图18所示的镂空设计方法,一方面,同样材料的服装可以具有更优的可延展性,还可以有效的增强服装的可拉伸能力。另一方面,可以使服装具备更优的透气性以及美学上的优势。再一方面,镂空设计可以规避不同材料的拼接,在加工工艺上可以更容易的实现节约成本。需要说明的是,镂空结构可以设置于服装基底的多处位置,本申请对此不做限制。部分服装基底1800和镂空设计服装基底1820的形状并不限于图18中所示的长方形状,其还可以为三角形、圆形、平行四边形、菱形等规则不规则的形状。另外,用于与服装连接的侧端并不限于上述的第一侧端1811、第二侧端1812、第三侧端1813和第四侧端1814,可以根据部分服装基底1800的形状进行适应性调整。
在一些实施例中,可穿戴装置的服装基底可以做额外弹性设计。这种额外弹性设计可以通过3D打印等工艺实现,可以是条状的额外材料附着在服装基底上,也可以是服装基底本身的材料拼接和/或结构设计等。关于服装材料以及结构设计的相关描述可以在图16A中找到,本实施例不再赘述。在一些实施例中,可穿戴装置中的电极附近设计局部加压,可以有效的增强电极附近对人体的贴合力,同时还可以不增加可穿戴装置其余部分对人体的压力,不影响用户的穿着舒适度。例如,在可穿戴装置的手臂关节位置进行加压设计,用户在运动时,其手臂位置受到拉扯,这种情况下,手臂关节位置的加压设计可以有效地减少服装基底在用户身体上的位移。在一些实施例中,可穿戴装置中的电极附近设计局部加压,还可以有效的增强电极模块上两电极的一致性。具体地,人体表面是一个 不规则曲面,同一个电极模块设置在服装基底中贴合人体表面也会面临不同的贴合压力。这种情况下,可穿戴装置中的电极附近局部加压设计可以有效的调整电极模块上两电极的贴合压力平衡。
在一些实施例中,人体曲面、人体动作等外界因素可以影响服装基底中的电极模块。为了有效的规避线路转接、柔转硬等操作对电极一致性的影响,本实施提供一种刀形电极。图19A是根据本申请一些实施例所示的刀形电极的示例性结构图。如图19A所示,刀形电极可以包括第一电极部分1910(对应图19A中阴影部分)和第二电极部分1920(对应图19A中空白部分),第一电极部分1910与第二电极部分1920连接,其中,第一电极部分1910用于与人体皮肤接触,第二电极部分1920用于转接数据线从而将第一电极部分1910采集的肌电信号进行传输。在一些实施例中,第二电极部分1920的上表面可以不与用户皮肤接触。进一步地,第一电极部分1910与第二电极部分1920具有一定的高度差,当第一电极部分1910与皮肤接触时,第二电极部分1920与人体皮肤之间具有一定间距,通过在第二电极部分1920处转接数据线可以防止第二电极部分1920干扰第一电极部分1910肌电信号的采集。在一些实施例中,第二电极部分1920的上表面的部分可以与用户皮肤接触。在一些实施例中,第一电极部分1910的下表面与第二电极部分1920的下表面可以在同一平面上,此时第一电极部分1910的厚度大于第二电极部分1920的厚度,使得第一电极1910与用户皮肤接触时,第二电极部分1920与用户皮肤接触之间存在一定间距,而不与用户皮肤接触。在一些实施例中,第一电极部分1910的下表面与第二电极部分1920的下表面可以不在同一平面上。例如,第一电极部分1910的下表面位于第二电极部分1920的下表面的上方。又例如,第二电极部分1920的下表面可以位于第一电极部分的上方,但第二电极部分1920的上表面在第一电极部分1910上表面的下方,使得第一电极1910与用户皮肤接触时,第二电极部分1920与用户皮肤接触之间存在一定间距,而不与用户皮肤接触。图19B是根据本申请一些实施例所示的刀形电极的示例性剖面图。如图19B所示,为了方便说明和描述, 仅作为示例性说明,将刀形电极结构应用于服装,第一电极部分1910的下表面与服装内层的第一平面连接,第二电极部分1920的上表面与第一平面连接,使得第二电极部分1920位于第一平面和第二平面之间。这里的第一平面和第二平面可以是衣服或与衣服连接的其他结构的内外两侧。其中,第一平面和第二平面均为绝缘材料。例如,绝缘材料可以是指涤纶、棉布、橡胶、芳纶纤维等,本实施例在此不做限定。
在一些实施例中,将电极尺寸做大,可以有效的规避由于用户运动而导致的电极脱落,同时尽可能的保证传感器可以采集信号。关于刀形电极的材料、尺寸可以参考本申请其他地方(例如,图3)的描述。
在一些实施例中,图19A中的第二电极部分1920可以是对传导信号远离第一电极部分1910后做转接处理的区域。可穿戴装置中的电极多为扁平状,该扁平状的电极裁剪后直接用于信号传导,会占用相对较大的空间以及信号传导线路的电阻较大,不利于长距离传输信号。这种情况下,通过刀形结构设计以及采用特殊材料(例如柔性材料、弹性材料等)、特殊加工工艺和特殊结构制作的导电线,可以在第二电极部分1920进行转接处理(例如,导电线与第二电极1920电连接),从而可以使得该电极实现长距离信号传输。
在一些实施例中,电极可以进行防滑设计。用户在运动过程中,电极会由于动作拉扯而产生移动和/或脱落,因此需要对电极进行固定以及防滑设计。参考图19B,第二电极部分1920穿过第一平面附近,可以对第二电极部分1920做第一次固定,第二电极部分1920进行信号转接前,可以对第二电极部分1920做第二次固定。需要说明的是,这里的固定方式可以是粘接、焊接等物理连接,固定位置以及固定顺序也可以根据需要而定,本实施例对此不做限制。在一些实施例中,可以对刀形电极结构附近进行局部加压设计。可穿戴装置中的刀形电极结构附近设计局部加压,可以有效的增强刀形电极结构附近对人体的贴合力。例如,在可穿戴装置的手臂关节位置进行加压设计,用户在运动时,其手臂位置受到拉扯,这种情况下,手臂关节位置的加压设计可以有效地减少服装基底在用户身体 上的位移,从而可以有效的规避设置在人体手臂位置的刀形电极结构的滑动。在一些实施例中,刀形电极结构的周围可以涂抹硅胶,增加刀形电极结构与皮肤之间的摩擦力,从而有效的规避刀形电极结构由于用户运动拉扯导致的位移。在一些实施例中,可以对刀形电极结构附近进行弹性设计,关于弹性设计的详细描述可以在图17A、图17B中找到,本实施例不再赘述。在一些实施例中,还可以对刀形电极结构附近进行镂空设计,关于镂空设计的详细描述可以在图18中找到,本实施例不再赘述。在一些实施例中,还可以对刀形电极结构附近进行吸附设计,关于吸附设计的详细描述可以在图12、图13中找到,本实施例不再赘述。
需要注意的是,上述实施例中的电极模块(例如,电极模块100、电极模块200、电极模块300以及穿戴设备中的肌电模块)不仅可以应用于肌电信号的采集,还可以释放电流刺激人体特定部分以达到相应的提示效果或按摩放松的效果。例如,用户在健身过程中,可穿戴设备可以基于人体运动数据判断用户健身动作是否规范,利用电极模块释放电流达到提示用户运动状况的效果。
需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组 合。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一 致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (30)

  1. 一种对人体肌电信号的采集与处理设备,其特征在于,所述设备包括:
    电极模块,被配置为采集人体的肌电信号;
    所述电极模块包括基底结构和至少两个电极,所述至少两个电极间隔排布并设置于所述基底结构的表面。
  2. 根据权利要求1所述的一种对人体肌电信号的采集与处理设备,其特征在于,所述至少两个电极包括第一电极和第二电极,所述第一电极和所述第二电极并列排布并设置于所述基底结构的表面。
  3. 根据权利要求2所述的一种对人体肌电信号的采集与处理设备,其特征在于,所述至少两个电极还包括参考电极,所述第一电极、所述参考电极和所述第二电极依次并列排布并设置于所述基底结构的表面。
  4. 根据权利要求2所述的一种对人体肌电信号的采集与处理设备,其特征在于,所述至少两个电极还包括第三电极和第四电极,所述第三电极和所述第四电极并列排布并设置于所述基底结构的表面;
    其中,所述第一电极与所述第三电极并排设置,所述第二电极与所述第四电极并排设置。
  5. 根据权利要求1所述的一种对人体肌电信号的采集与处理设备,其特征在于,所述电极模块包括多个凸起结构,所述多个凸起结构位于所述至少两个电极或所述基底结构的表面。
  6. 根据权利要求5所述的一种对人体肌电信号的采集与处理设备,其特征在于,所述凸起结构于所述至少两个电极或所述基底结构的表面呈阵列排布或 随机分布。
  7. 根据权利要求5所述的一种对人体肌电信号的采集与处理设备,其特征在于,所述凸起结构内部中空,所述凸起结构的中空部分具有填充物。
  8. 根据权利要求5所述的一种对人体肌电信号的采集与处理设备,其特征在于,所述凸起结构的高度为0.5mm~10mm。
  9. 根据权利要求1所述的一种对人体肌电信号的采集与处理设备,其特征在于,所述电极模块多个吸盘结构,所述多个吸盘结构位于所述至少两个电极或所述基底结构的表面。
  10. 根据权利要求1所述的一种对人体肌电信号的采集与处理设备,其特征在于,所述多个吸盘结构于所述至少两个电极上或所述基底结构的表面阵列排布或随机分布。
  11. 根据权利要求1所述的一种对人体肌电信号的采集与处理设备,其特征在于,所述多个吸盘结构分布于所述至少两个电极四周的所述基底结构的表面。
  12. 根据权利要求9所述的一种对人体肌电信号的采集与处理设备,其特征在于,所述吸盘结构为立体结构,所述吸盘结构包括中空部分,所述中空部分在所述吸盘结构一端的端部具有用于与人体皮肤接触的敞口。
  13. 根据权利要求12所述的一种对人体肌电信号的采集与处理设备,其特征在于,所述吸盘结构还包括中间结构,所述中间结构位于所述吸盘结构的中空部分,其中,所述中间结构的局部与所述中空部分所在的所述吸盘结构的侧壁连接。
  14. 根据权利要求13所述的一种对人体肌电信号的采集与处理设备,其特征在于,所述中间结构将所述吸盘结构的所述中空部分分隔成多个互相连通的空间区域。
  15. 根据权利要求1所述的一种对人体肌电信号的采集与处理设备,其特征在于,所述电极模块还可以包括多个凸点结构,所述凸点结构位于所述基底结构或所述至少两个电极的表面。
  16. 根据权利要求15所述的一种对人体肌电信号的采集与处理设备,其特征在于,所述多个凸点结构的高度为10μm~80μm。
  17. 根据权利要求16所述的一种对人体肌电信号的采集与处理设备,其特征在于,所述多个凸点结构的分布密度可以为2个/2.25mm 2~10个/2.25mm 2
  18. 根据权利要求1所述的一种对人体肌电信号的采集与处理设备,其特征在于,所述电极模块还包括多个透气孔,所述多个透气孔位于所述电极或/和所述基底结构上。
  19. 一种可穿戴装置,其特征在于,所述装置包括上衣服装和裤子服装,所述上衣服装和所述裤子服装至少包括用于采集人体肌电信号的肌电模块。
  20. 根据权利要求19所述的可穿戴装置,其特征在于,所述上衣服装至少包括:
    至少一个上衣传感器模块,被配置为采集人体上身运动数据;
    至少一个上衣数据处理模块,被配置为接收并处理所述人体上身运动数据;
    上衣服装基底,被配置为承载所述至少一个上衣传感器模块和所述至少一 个上衣数据处理模块。
  21. 根据权利要求20所述的可穿戴装置,其特征在于,所述至少一个上衣传感器模块至少包括第一上衣传感器模块和第二上衣传感器模块,所述第一上衣传感器模块位于所述上衣服装基底的左侧,所述第二上衣传感器模块位于所述上衣服装基底的右侧。
  22. 根据权利要求21所述的可穿戴装置,其特征在于,所述第一上衣传感器模块和所述第二上衣传感器模块至少包括所述肌电模块、心电传感器、呼吸传感器、温度传感器、湿度传感器、惯性传感器、酸碱传感器、声波换能器。
  23. 根据权利要求22所述的可穿戴装置,其特征在于,所述惯性传感器位于所述上衣处理模块中。
  24. 根据权利要求21所述的可穿戴装置,其特征在于,所述至少一个上衣处理模块至少包括第一上衣处理器模块和第二上衣处理模块;其中,
    所述第一上衣处理模块位于所述上衣服装基底的左侧肩部位置,所述第一上衣处理模块与所述第一上衣传感器模块通信连接;
    所述第二上衣处理模块位于所述上衣服装基底的右侧肩部位置,所述第二上衣处理模块与所述第二上衣传感器模块通信连接。
  25. 根据权利要求24所述的可穿戴装置,其特征在于,所述第一上衣处理器模块和所述第二上衣处理模块为主从关系或并行关系。
  26. 根据权利要求19所述的可穿戴装置,其特征在于,所述裤子服装至少包括:
    至少一个裤子传感器模块,被配置为采集人体下身运动数据;
    至少一个裤子数据处理模块,被配置为接收并处理所述人体下身运动数据;
    裤子服装基底,被配置为承载所述至少一个裤子传感器模块和所述至少一个裤子数据处理模块。
  27. 根据权利要求26所述的可穿戴装置,其特征在于,所述至少一个裤子传感器模块至少包括第一裤子传感器模块和第二裤子传感器模块,所述第一裤子传感器模块位于所述裤子服装基底的左侧,所述第二裤子传感器模块位于所述裤子服装基底的右侧。
  28. 根据权利要求27所述的可穿戴装置,其特征在于,所述第一裤子传感器模块和所述第二裤子传感器模块至少包括所述肌电模块、心电传感器、呼吸传感器、温度传感器、湿度传感器、惯性传感器、酸碱传感器、声波换能器。
  29. 根据权利要求27所述的可穿戴装置,其特征在于,所述至少一个裤子处理模块至少包括第一裤子处理器模块和第二裤子处理模块;其中,
    所述第一裤子处理模块位于所述裤子服装基底的左腿左侧位置,所述第一裤子处理模块与所述第一裤子传感器模块通信连接;
    所述第二裤子处理模块位于所述裤子服装基底的右腿右侧位置,所述第二裤子处理模块与所述第二裤子传感器模块通信连接。
  30. 根据权利要求29所述的可穿戴装置,其特征在于,所述第一裤子处理器模块和所述第二裤子处理模块为主从关系或并行关系。
PCT/CN2020/139651 2020-12-25 2020-12-25 用于肌电信号采集和处理的设备和方法 WO2022134081A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2020/139651 WO2022134081A1 (zh) 2020-12-25 2020-12-25 用于肌电信号采集和处理的设备和方法
KR1020237017155A KR20230091980A (ko) 2020-12-25 2020-12-25 근전신호를 수집하고 처리하는 장치 및 방법
CN202080102167.2A CN115701278A (zh) 2020-12-25 2020-12-25 用于肌电信号采集和处理的设备和方法
JP2023530707A JP2023550133A (ja) 2020-12-25 2020-12-25 筋電信号の収集処理装置及び方法
EP20966644.5A EP4209175A4 (en) 2020-12-25 2020-12-25 SYSTEM AND METHOD FOR COLLECTION AND PROCESSING OF ELECTROMYOGRAPHIC SIGNAL
US18/192,793 US20230240586A1 (en) 2020-12-25 2023-03-30 Device and method for collecting and processing electromyography signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139651 WO2022134081A1 (zh) 2020-12-25 2020-12-25 用于肌电信号采集和处理的设备和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/192,793 Continuation US20230240586A1 (en) 2020-12-25 2023-03-30 Device and method for collecting and processing electromyography signal

Publications (1)

Publication Number Publication Date
WO2022134081A1 true WO2022134081A1 (zh) 2022-06-30

Family

ID=82158722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139651 WO2022134081A1 (zh) 2020-12-25 2020-12-25 用于肌电信号采集和处理的设备和方法

Country Status (6)

Country Link
US (1) US20230240586A1 (zh)
EP (1) EP4209175A4 (zh)
JP (1) JP2023550133A (zh)
KR (1) KR20230091980A (zh)
CN (1) CN115701278A (zh)
WO (1) WO2022134081A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140070949A1 (en) * 2012-09-11 2014-03-13 Paul Chen Muscle activity training facility for lower body of user
CN104720787A (zh) * 2015-04-01 2015-06-24 深圳柔微传感科技有限公司 一种实现疲劳实时监测的方法和智能服装
CN105232036A (zh) * 2015-11-04 2016-01-13 中国科学院深圳先进技术研究院 医用传感器及其制备方法
CN105748071A (zh) * 2016-04-15 2016-07-13 李宁体育(上海)有限公司 肌电采集服装及其制作方法、和用该服装进行采集的肌电采集系统
CN106821365A (zh) * 2017-01-25 2017-06-13 杭州三目科技有限公司 一种具有精确采集能力的薄型柔性生物电信号传感器
CN108553102A (zh) * 2018-03-14 2018-09-21 浙江大学 一种柔性可拉伸多通道凸形表面肌电极及其制备方法
CN108670244A (zh) * 2018-05-29 2018-10-19 浙江大学 一种柔性组合式可穿戴生理及心理状态监测装置
CN109998542A (zh) * 2019-04-29 2019-07-12 东北大学 基于织物电极的多通道手部肌电采集腕带

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013075270A1 (zh) * 2011-11-25 2013-05-30 Yang Chang-Ming 一种侦测心跳或电极接触良好与否的物品、方法及系统
GB201908818D0 (en) * 2019-06-20 2019-08-07 Kymira Ltd Electrode and garment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140070949A1 (en) * 2012-09-11 2014-03-13 Paul Chen Muscle activity training facility for lower body of user
CN104720787A (zh) * 2015-04-01 2015-06-24 深圳柔微传感科技有限公司 一种实现疲劳实时监测的方法和智能服装
CN105232036A (zh) * 2015-11-04 2016-01-13 中国科学院深圳先进技术研究院 医用传感器及其制备方法
CN105748071A (zh) * 2016-04-15 2016-07-13 李宁体育(上海)有限公司 肌电采集服装及其制作方法、和用该服装进行采集的肌电采集系统
CN106821365A (zh) * 2017-01-25 2017-06-13 杭州三目科技有限公司 一种具有精确采集能力的薄型柔性生物电信号传感器
CN108553102A (zh) * 2018-03-14 2018-09-21 浙江大学 一种柔性可拉伸多通道凸形表面肌电极及其制备方法
CN108670244A (zh) * 2018-05-29 2018-10-19 浙江大学 一种柔性组合式可穿戴生理及心理状态监测装置
CN109998542A (zh) * 2019-04-29 2019-07-12 东北大学 基于织物电极的多通道手部肌电采集腕带

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4209175A4 *

Also Published As

Publication number Publication date
US20230240586A1 (en) 2023-08-03
KR20230091980A (ko) 2023-06-23
CN115701278A (zh) 2023-02-07
JP2023550133A (ja) 2023-11-30
EP4209175A1 (en) 2023-07-12
EP4209175A4 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
US11832950B2 (en) Muscle activity monitoring
Yokus et al. Fabric-based wearable dry electrodes for body surface biopotential recording
US20180184735A1 (en) Physiological monitoring garments with enhanced sensor stabilization
Paradiso et al. WEALTHY-a wearable healthcare system: new frontier on e-textile
JP6169592B2 (ja) 心拍を検出する物品
KR102582824B1 (ko) 사용자의 근전도 신호 측정용 휴대용 장치, 시스템 및 방법
KR101384761B1 (ko) 호흡과 심전도의 동시 측정이 가능한 스포츠 브라
EP3634206A1 (en) Multifunctional device for remote monitoring of a patient's condition
CN209611126U (zh) 儿童专用多功能健康监护贴
CN205849452U (zh) 一种肌电检测服
WO2018056811A1 (en) Wearable device, method and system for monitoring one or more vital signs of a human body
CN205994970U (zh) 一种肌电反馈呼吸训练服
WO2022134081A1 (zh) 用于肌电信号采集和处理的设备和方法
CN108553099A (zh) 一种无线型心电监测服装
Trindade et al. Fully integrated embroidery process for smart textiles
Hanic et al. BIO-monitoring system with conductive textile electrodes integrated into t-shirt
Cömert The Assessment and Reduction of Motion Artifact in Dry Contact Biopotential Electrodes
WO2024103547A1 (zh) 一种可穿戴设备
CN220778334U (zh) 一种可穿戴设备
TWI766287B (zh) 紡織型多通道高敏度傳感乾式電極片
Catarino et al. Biosignal monitoring implemented in a swimsuit for athlete performance evaluation
Culjak et al. Textile-Based Solutions for Electrical Stimulation and Electrophysiological Monitoring Systems
YIN Design of Screen-Printed Electrodes on Infant Garment for Electrocardiogram Measurement.
CN118078295A (zh) 一种可穿戴设备及心脏监控系统
CN111053545A (zh) 监测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020966644

Country of ref document: EP

Effective date: 20230404

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023007694

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237017155

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023530707

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 112023007694

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230424

NENP Non-entry into the national phase

Ref country code: DE