WO2022133878A1 - Search and cell scan procedure for positioning-cellular network interworking scenarios - Google Patents

Search and cell scan procedure for positioning-cellular network interworking scenarios Download PDF

Info

Publication number
WO2022133878A1
WO2022133878A1 PCT/CN2020/138914 CN2020138914W WO2022133878A1 WO 2022133878 A1 WO2022133878 A1 WO 2022133878A1 CN 2020138914 W CN2020138914 W CN 2020138914W WO 2022133878 A1 WO2022133878 A1 WO 2022133878A1
Authority
WO
WIPO (PCT)
Prior art keywords
operations
scanning
acquiring
positioning signal
motion
Prior art date
Application number
PCT/CN2020/138914
Other languages
French (fr)
Inventor
Prabhanjan Reddy Pingili
Muralidharan Murugan
Jun Deng
Baya Reddy L N
Subrahmanya Manikanta VEERAMALLU
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/138914 priority Critical patent/WO2022133878A1/en
Publication of WO2022133878A1 publication Critical patent/WO2022133878A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the following relates to wireless communications, including search and cell scan procedure for positioning-cellular network interworking scenarios.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • DFT-S-OFDM discrete Fourier transform spread orthogonal frequency division multiplexing
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a UE may support wireless connections with a global navigation system (e.g., global navigation satellite system (GNSS) ) and wireless connections with wireless wide area networks (WWANs) .
  • GNSS global navigation satellite system
  • WWANs wireless wide area networks
  • a user equipment may initiate scanning operations at the UE for establishing a connection with a cellular network, such as a wireless wide area network (WWAN) .
  • WWAN wireless wide area network
  • the UE may pause the set of scanning operations when initiating operations for acquiring a positioning signal at the UE, such as operations for acquiring a global navigation satellite system (GNSS) positioning signal.
  • GNSS global navigation satellite system
  • the UE may store a set of scanning parameters associated with the set of scanning operations, for example, based on pausing the set of scanning operations.
  • the UE may resume the scanning operations for establishing the connection with the cellular network using the stored set of scanning parameters.
  • the UE may reinitiate scanning operations for establishing a connection with the cellular network, using another set of scanning parameters (e.g., without using the stored set of scanning parameters) .
  • a method of wireless communication at a device may include initiating a set of scanning operations at the device for establishing a connection with a cellular network, initiating a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations, storing a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal, and selecting between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to initiate a set of scanning operations at the device for establishing a connection with a cellular network, initiate a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations, store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal, and select between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds,
  • the apparatus may include means for initiating a set of scanning operations at the device for establishing a connection with a cellular network, initiating a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations, storing a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal, and selecting between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
  • a non-transitory computer-readable medium storing code for wireless communication at a device is described.
  • the code may include instructions executable by a processor to initiate a set of scanning operations at the device for establishing a connection with a cellular network, initiate a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations, store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal, and select between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detecting the motion of the device using a set of sensors of the device, the set of sensors including at least an absolute motion detection (AMD) sensor and a significant motion detection (SMD) sensor, where the set of motion thresholds includes a first threshold associated with the AMD sensor and a second threshold associated with the SMD sensor.
  • AMD absolute motion detection
  • SMD significant motion detection
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for measuring a temporal period associated with completing the set of operations for acquiring the positioning signal at the device, where the selecting may be based on the measured temporal period satisfying a threshold.
  • the set of scanning operations may include a set of scanning operations respectively associated with a set of scan depths, and the selecting may be based on the set of scan depths.
  • the selecting may be based on a mobility type of the device, where the mobility type may be included in a set of mobility types associated with the set of motion thresholds.
  • the selecting may be based on completing or canceling the set of operations for acquiring the positioning signal.
  • establishing the connection with the cellular network may include operations, features, means, or instructions for establishing the connection with a WWAN.
  • acquiring the positioning signal may include operations, features, means, or instructions for acquiring a GNSS positioning signal.
  • FIG. 1 illustrates an example of a system for wireless communications that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • FIG. 3A illustrates an example that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • FIG. 3B illustrates an example of search and cell scan procedures in some systems.
  • FIGs. 4A and 4B illustrate example tables illustrating sensor event mappings that support search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates an example of a method that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • FIG. 6 illustrates an example of a method that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • FIGs. 7 and 8 show block diagrams of devices that support search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • FIG. 9 shows a block diagram of a communications manager that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • FIG. 10 shows a diagram of a system including a device that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • FIGs. 11 and 12 show flowcharts illustrating methods that support search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • a user equipment may perform a cell scan procedure (e.g., Public Land Mobile Network (PLMN) search) for establishing a connection with a cellular network, such as a wireless wide area network (WWAN) .
  • PLMN Public Land Mobile Network
  • WWAN wireless wide area network
  • the UE may perform a public land mobile network (PLMN) search including scanning a frequency spectrum for available PLMNs to communicate with.
  • PLMN public land mobile network
  • GNSS global navigation satellite system
  • the UE may interrupt (e.g., pause or terminate) the cell scan procedure.
  • the UE may refrain from initiating another cell scan procedure for a configurable duration (e.g., ranging from 8 seconds to 60 seconds) .
  • a configurable duration e.g., ranging from 8 seconds to 60 seconds
  • the UE may clear or erase any associated scanning parameters already determined during the scan.
  • the UE may again initiate a cell scan procedure for establishing a connection with the cellular network, but without consideration of the scanning parameters that were already determined.
  • a device may initiate scanning operations at the device for establishing a connection with a cellular network, such as a WWAN.
  • the device may pause the set of scanning operations when initiating operations for acquiring a positioning signal at the device, such as operations for acquiring a GNSS positioning signal.
  • the device may store a set of scanning parameters associated with the set of scanning operations, for example, based on pausing the set of scanning operations.
  • the device may resume the scanning operations for establishing the connection with the cellular network using the stored set of scanning parameters.
  • the device may initiate additional scanning operations for establishing a connection with the cellular network, using another set of scanning parameters (e.g., without using the stored set of scanning parameters) .
  • the device may select between resuming the scanning operations (e.g., using the stored set of scanning parameters) or initiating the additional scanning operations (e.g., without using the stored set of scanning parameters) based on criteria associated with motion of the device. For example, the device may select between resuming the scanning operations or initiating the additional scanning operations based on completion of the set of operations for acquiring the positioning signal. In some examples, the device may select between resuming the scanning operations or initiating the additional scanning operations based on motion of the device satisfying one or more motion thresholds associated with sensors of the device. In some examples, the device may determine the motion of the device using sensors such as an absolute motion detection (AMD) sensor or a significant motion detection (SMD) sensor, and the motion thresholds may be associated with each sensor.
  • AMD absolute motion detection
  • SMD significant motion detection
  • the motion thresholds may be associated with a mobility type of the device.
  • the device may be a device installed at a fixed location (e.g., a gas meter, smart lights) , a device moveable within a reduced area (e.g., a home automation device such as a smart speaker) , or a device moveable within a relatively larger area (e.g., a wearable device, a shipment tracker) .
  • the device may select between resuming the scanning operations (e.g., using the stored set of scanning parameters) or initiating the additional scanning operations (e.g., without using the stored set of scanning parameters) based on a temporal period or duration associated with the operations for acquiring the positioning signal at the device (also referred to herein as positioning activity or GNSS activity) .
  • the device may measure the temporal period for acquiring the positioning signal and determine whether the temporal period exceeds a threshold value (e.g., a threshold duration) .
  • the device may resume the scanning operations (e.g., using the stored set of scanning parameters) based on determining the temporal period for acquiring the positioning signal is below the threshold value (e.g., the threshold duration) .
  • the device may initiate the additional scanning operations (e.g., without using the stored set of scanning parameters) based on determining the temporal period for acquiring the positioning signal exceeds the threshold value (e.g., the threshold duration) .
  • resuming scanning operations for establishing a connection with a cellular network may increase power savings at the UE, for example, by reducing the amount of processing which would otherwise be involved in restarting cell scanning operations (e.g., without using stored scanning parameters) due to GNSS activity.
  • resuming scanning operations using the stored set of scanning parameters may improve cell scanning efficiency at the UE, for example, by reducing the amount of time which would otherwise be involved for establishing a connection with a cellular network.
  • aspects of the disclosure are initially described in the context of a wireless communications system. Examples of processes and signaling exchanges that support search and cell scan procedure for positioning-cellular network interworking scenarios are then described. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to search and cell scan procedure for positioning-cellular network interworking scenarios.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • a UE 115 may include or be referred to as a narrowband-IoT (NB-IoT) device configured for, for example, indoor coverage, low cost, long battery life, and high connection density.
  • NB-IoT devices may communicate over a single narrow-band of 200 kHz, using OFDM modulation for downlink communications and SC-FDMA for uplink communications.
  • a UE 115 may include or be referred to as a category M (Cat-M) device configured for low-power wide area (LPWAN) applications such as smart metering.
  • Cat-M devices also referred to as Cat-M1 devices
  • Cat-M1 devices may operate at a maximum system bandwidth of 1.4 MHz.
  • Cat-M devices may have a higher device complexity or cost, higher data rates (up to 1 Mbps) , lower latency, and more accurate device positioning capabilities compared to NB-IoT devices.
  • Cat-M devices may support voice calls and connected mode mobility.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to IP services 150 for one or more network operators.
  • the IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may include one or more satellites 155.
  • a satellite 155 may communicate with base stations 105 (also referred to as gateways in non-terrestrial networks (NTNs) ) and UEs 115 (or other high altitude or terrestrial communications devices) .
  • a satellite 155 may be any suitable type of communication satellite configured to relay communications between different end nodes in a wireless communications system (e.g., wireless communications system 100) .
  • a satellite 155 may be an example of a space satellite, a balloon, a dirigible, an airplane, a drone, an unmanned aerial vehicle, and/or the like.
  • a satellite 155 may be in a geosynchronous or geostationary earth orbit, a low earth orbit or a medium earth orbit.
  • a satellite 155 may be a multi-beam satellite configured to provide service for multiple service beam coverage areas in a predefined geographical service area.
  • a satellite 155 may support a first cell and a second cell, where a first beam of the satellite 155 supports the first cell and a second beam of the satellite 155 supports the second cell.
  • a satellite 155 may be any distance away from the surface of the earth.
  • a cell may be provided or established by a satellite 155 as part of a non-terrestrial network.
  • a satellite 155 may, in some cases, perform the functions of a base station 105, operate as a bent-pipe satellite, operate as a regenerative satellite, or a combination thereof.
  • a satellite 155 may be an example of a smart satellite, or a satellite with intelligence.
  • a smart satellite may be configured to perform a higher number of functions than a regenerative satellite (e.g., may be configured to perform a set of algorithms beyond those used in regenerative satellites) .
  • a bent-pipe transponder or satellite may be configured to receive signals from ground stations and transmit the received signals to different ground stations.
  • a bent-pipe transponder or satellite may amplify signals or shift from uplink frequencies to downlink frequencies.
  • a regenerative transponder or satellite may be configured to relay signals according to techniques similar to the bent-pipe transponder or satellite, but may also include on-board processing for performing additional functions. Examples of the additional functions may include demodulating a received signal, decoding a received signal, re-encoding a signal to be transmitted, modulating the signal to be transmitted, or a combination thereof.
  • a bent-pipe satellite e.g., satellite 155) may receive a signal from a base station 105 and may relay the signal to a UE 115 or another base station 105.
  • a bent-pipe satellite (e.g., satellite 155) may receive a signal from a UE 115 and may relay the signal to another UE 115 or a base station 105.
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a device may initiate scanning operations at the UE 115 for establishing a connection with a cellular network, such as a WWAN.
  • the UE 115 may pause the set of scanning operations when initiating operations for acquiring a positioning signal at the UE 115, such as operations for acquiring a GNSS positioning signal (e.g., from a satellite 155) .
  • the UE 115 may store a set of scanning parameters associated with the set of scanning operations, for example, based on pausing the set of scanning operations.
  • the UE 115 may resume the scanning operations for establishing the connection with the cellular network using the stored set of scanning parameters.
  • the UE 115 may initiate additional scanning operations (e.g., reinitiate scanning operations) for establishing a connection with the cellular network, using another set of scanning parameters (e.g., without using the stored set of scanning parameters) .
  • the UE 115 may select between resuming the scanning operations (e.g., using the stored set of scanning parameters) or initiating the additional scanning operations (e.g., without using the stored set of scanning parameters) based on criteria associated with motion of the UE 115. For example, the UE 115 may select between resuming the scanning operations or initiating the additional scanning operations based on completion of the set of operations for acquiring the positioning signal. In some examples, the UE 115 may select between resuming the scanning operations or initiating the additional scanning operations based on motion of the UE 115 satisfying one or more motion thresholds associated with sensors of the UE 115. In some examples, the UE 115 may determine the motion of the UE 115 using sensors such as an absolute motion detection (AMD) sensor or a significant motion detection (SMD) sensor, and the motion thresholds may respectively be associated with the sensors.
  • AMD absolute motion detection
  • SMD significant motion detection
  • the UE 115 may include one or more motion detection sensors based on which the UE 115 may determine motion of the UE 115.
  • the UE 115 may include an AMD sensor, an SMD sensor, or both.
  • the AMD sensor may include multiple motion states or motion events, such as a rest state and a motion state.
  • the rest state of the AMD sensor for example, may be an absolute stationary state in which the UE 115 (and accordingly, the AMD sensor) is on a surface (e.g., a table) and no motion or vibrations are detected (e.g., motion of the UE 115 is below a motion threshold) .
  • the motion state of the AMD sensor for example, may be a state triggered by motion exceeding the motion threshold.
  • motion which exceeds the motion threshold for the AMD sensor may include incidental vibrations occurring relatively near the UE 115 (and accordingly, the AMD sensor) , such as vibrations due to typing or tapping on the table surface on which the UE 115 is disposed, vibrations due to opening or closing of a door relatively near the UE 115, or engine vibration of a vehicle in which the UE 115 is located.
  • the SMD sensor may also include multiple motion states or motion events, such as a first motion state (e.g., non-significant motion state) and a second motion state (e.g., a significant motion state) .
  • the first motion state (e.g., non-significant motion state) of the SMD sensor may be motion state in which detected motion or vibrations associated with the UE 115 (and accordingly, the SMD sensor) are below a motion threshold.
  • the first motion state (e.g., non-significant motion state) of the SMD sensor for example, may be motion state in which a velocity at which the UE 115 (and accordingly, the SMD sensor) is traveling is below a motion threshold.
  • the first motion state may include a user operating the UE 115 in a fixed location (e.g., while sitting or standing) .
  • the second motion state (e.g., significant motion state) of the SMD sensor may be motion state in which detected motion or vibrations associated with the UE 115 (and accordingly, the SMD sensor) are above the motion threshold.
  • the second motion state (e.g., significant motion state) of the SMD sensor may be a motion state associated with a change in location (e.g., coordinates) of the UE 115 (e.g., while carried or worn by a user) .
  • the second motion state (e.g., significant motion state) may be a motion state in which the velocity at which the UE 115 (and accordingly, the SMD sensor) is traveling exceeds the motion threshold.
  • An example of motion which exceeds the motion threshold associated with the second motion state (e.g., significant motion state) of the SMD sensor includes a user walking at a rate greater than 0.7 steps/second (e.g., the UE 115 is carried or worn by a user walking quickly, jogging, or running) .
  • Another example of motion which exceeds the motion threshold associated with the second motion state (e.g., significant motion state) of the SMD sensor includes the UE 115 traveling at a velocity above 5 miles per hour (mph) (e.g., the UE 115 is carried or worn by a user riding in a moving vehicle) .
  • the motion state of the SMD sensor for example, may be a state triggered by motion exceeding the motion threshold.
  • the motion thresholds based on which the UE 115 may resume the scanning operations or initiate the additional scanning operations may be associated with a mobility type of the UE 115.
  • the mobility type of the UE 115 may also be referred to herein as a device type, and may be based on an amount of motion or mobility expected by or permitted for the UE 115.
  • a first mobility type e.g., ‘mobility type 1’
  • a fixed location e.g., a gas meter, smart lights
  • the first mobility type e.g., ‘mobility type 1’
  • the first mobility type may be considered a ‘fixed location’ type.
  • a UE 115 of the first mobility type may refrain from periodically reporting location coordinates of the UE 115 because the UE 115 is in a fixed location and orientation.
  • a UE 115 associated with the first mobility type may refrain from periodically performing operations for acquiring a GNSS positioning signal from the satellite 155 (e.g., refrain from GNSS activity) .
  • a second mobility type may be assigned to or associated with, for example, a UE 115 which is moveable within a fixed area (e.g., a home automation device such as a smart speaker) .
  • the second mobility type e.g., ‘mobility type 2’
  • the second mobility type may be considered a ‘reduced mobility’ type or ‘movable within a fixed area’ type.
  • a UE 115 of the second mobility type may refrain from periodically reporting location coordinates of the UE 115 to a base station 105 or network, or may report location infrequently.
  • a UE 115 associated with the second mobility type may refrain from periodically performing operations for acquiring a GNSS positioning signal from the satellite 155 (e.g., refrain from GNSS activity) , or may perform these operations infrequently.
  • a third mobility type (e.g., ‘mobility type 3’ ) may be assigned to or associated with, for example, a UE 115 (e.g., on an E-bike, a tracking device such as a shipment tracker, an activity device such as a wearable device) which is moveable or capable of moving within a relatively larger area compared to the second mobility type.
  • the third mobility type (e.g., ‘mobility type 3’ ) may be considered a ‘full mobility’ or ‘movable within a larger area’ type.
  • a UE 115 of the third mobility type (e.g., ‘mobility type 3’ ) may periodically report location coordinates of the UE 115 to a base station 105 or network.
  • a UE 115 associated with the third mobility type (e.g., ‘mobility type 3’ ) , may periodically perform operations for acquiring a GNSS positioning signal from the satellite 155.
  • the UE 115 may select between resuming the scanning operations (e.g., using the stored set of scanning parameters) or initiating the additional scanning operations (e.g., without using the stored set of scanning parameters) based on a temporal period or duration associated with the operations for acquiring the positioning signal at the UE 115 (also referred to herein as positioning activity or GNSS activity) .
  • the UE 115 may measure the temporal period associated with the UE 115 acquiring the positioning signal (e.g., for acquiring the positioning signal from a satellite 155) and determine whether the temporal period exceeds a threshold value (e.g., a threshold duration) .
  • a threshold value e.g., a threshold duration
  • the UE 115 may resume the scanning operations (e.g., using the stored set of scanning parameters) based on determining the temporal period for acquiring the positioning signal is below the threshold value (e.g., the threshold duration) .
  • the UE 115 may initiate the additional scanning operations (e.g., without using the stored set of scanning parameters) based on determining the temporal period for acquiring the positioning signal exceeds the threshold value (e.g., the threshold duration) .
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100.
  • Wireless communications system 200 may include a UE 115-a, a base station 105-a, and a satellite 155-a, which may be examples of a UE 115, a base station 105, and a satellite 155 as, respectively, described with reference to FIG. 1.
  • the base station 105-a and the UE 115-a may wirelessly communicate with one another over one or more carriers via a communication link 125-a.
  • Communication link 125-a may be an example of a communication link 125 described with reference to FIG. 1.
  • the satellite 155-a may be associated with a global navigation system (e.g., GNSS or global positioning system (GPS) ) .
  • the satellite 155-a may be associated with an NTN.
  • the wireless communications system 200 may support transmissions between the UE 115-a and the satellite 155-a via a communication link 205.
  • UE 115-a may transmit uplink transmissions to the satellite 155-a (and receive downlink transmissions from the satellite 155-a) via the communication link 205.
  • the satellite 155-a may be traveling in an orbit, such as low earth orbit, medium earth orbit, geostationary earth orbit, or some other non-geostationary earth orbit.
  • the UE 115-a may initiate scanning operations at the UE 115-a for establishing a connection with a cellular network (e.g., establishing a connection with the base station 105-a) .
  • the cellular network may be, for example, a WWAN (e.g., a public land mobile network (PLMN) ) .
  • the WWAN session 210 may be referred to herein as a temporal period during which the UE 115-a may initiate scanning operations at the UE 115-a for establishing a connection with the cellular network.
  • the scanning operations may include establishing a connection with the cellular network using reduced bandwidth technologies.
  • the UE 115-a may be a Cat-M device or an NB-IoT device, and the scanning operations may include establishing a connection with the cellular network using Cat-M or NB-IoT technologies.
  • the UE 115-a may initiate operations for acquiring a GNSS positioning signal (also referred to herein as GNSS activity) from the satellite 155-a, for example, while performing the scanning operations for establishing a connection with the cellular network.
  • the GNSS activity session 215 may be referred to herein as a temporal period during which the UE 115-a may initiate the operations for acquiring a GNSS positioning signal.
  • initiating the operations for acquiring the GNSS positioning signal may include pausing the scanning operations for establishing the connection with the cellular network.
  • the UE 115-a may store the existing scanning parameters associated with the scanning operations.
  • the UE 115-a may store the existing scanning parameters based on a temporal instance at which the UE 115-a pauses the set of scanning operations.
  • the UE 115-a may store the existing scanning parameters based on a temporal instance at which the UE 115-a initiates the operations for acquiring the GNSS positioning signal.
  • the temporal instance at which the UE 115-a pauses the set of scanning operations may be the same as or different from (e.g., based on an temporal offset) the temporal instance at which the UE 115-a initiates the operations for acquiring the GNSS positioning signal.
  • the UE 115-a may resume the scanning operations for establishing the connection with the cellular network, using the stored set of scanning parameters. For example, during WWAN session 220 (e.g., at a temporal instance during the WWAN session 220) , the UE 115-a may resume the scanning operations for establishing the connection with the cellular network, using the stored set of scanning parameters associated with WWAN session 210.
  • the UE 115-a may initiate additional scanning operations (e.g., reinitiate scanning operations) for establishing a connection with the cellular network, using another set of scanning parameters (e.g., without using the stored set of scanning parameters) .
  • the WWAN session 220 may be referred to herein as a temporal period during which the UE 115-a may resume the scanning operations from the WWAN session 210 or initiate additional scanning operations.
  • the UE 115-a may select between resuming the scanning operations (e.g., using the stored set of scanning parameters) or initiating the additional scanning operations (e.g., without using the stored set of scanning parameters) based on a determined set of parameters associated with the UE 115-a.
  • a first parameter may include mobility information of the UE 115-a (e.g., velocity or motion of the UE 115-a, determined from sensor data of UE 115-a) .
  • the UE 115-a may determine the mobility information (e.g., velocity, motion) of the UE 115-a with respect to one or more thresholds, using sensors such as an AMD sensor or an SMD sensor.
  • the mobility information may include a ‘sensor event’ (also referred to herein as a ‘motion event’ ) , example aspects of which are described herein with reference to FIG. 3, FIG. 4A, and FIG. 4B.
  • An example second parameter may include a mobility type of the UE 115-a.
  • the mobility type may indicate a level of mobility (e.g., fixed location, moveable within a reduced area, moveable within a relatively larger area) of the UE 115-a.
  • An example third parameter may include a GNSS activity duration (also referred to herein as positioning activity duration) associated with the UE 115-a.
  • the GNSS activity duration may be a temporal period associated with completing operations for acquiring the positioning signal at the UE 115-a.
  • the GNSS activity duration may be equal to the duration of the GNSS activity session 215 during which the UE 115-aperforms operations for acquiring a GNSS positioning signal.
  • the UE 115-a may select between resuming the scanning operations (e.g., using the stored set of scanning parameters) or initiating the additional scanning operations (e.g., without using the stored set of scanning parameters) .
  • the UE 115-a may select between resuming the scanning operations or initiating the additional scanning operations based on motion of the UE 115-a satisfying motion thresholds associated with sensor type or mobility type.
  • the UE 115-a may select between resuming the scanning operations or initiating the additional scanning operations based on completion of the set of operations for acquiring the positioning signal (e.g., the GNSS positioning signal) .
  • the positioning signal e.g., the GNSS positioning signal
  • the UE 115-a may select between resuming the scanning operations or initiating the additional scanning operations based on the GNSS activity duration. For example, the UE 115-a may measure the GNSS activity duration and determine whether the measured GNSS activity duration exceeds a threshold value (e.g., a threshold duration) .
  • a threshold value e.g., a threshold duration
  • the UE 115-a may resume the scanning operations (e.g., using the stored set of scanning parameters) based on determining the measured GNSS activity duration (e.g., GNSS activity session 215) is below the threshold value (e.g., the threshold duration) .
  • the UE 115-a may initiate the additional scanning operations (e.g., without using the stored set of scanning parameters) based on determining the measured GNSS activity duration (e.g., GNSS activity session 215) exceeds the threshold value (e.g., the threshold duration) .
  • the UE 115-a may select between resuming the scanning operations or initiating the additional scanning operations based on a subset of the first through third parameters. For example, the UE 115-a may determine whether to resume the scanning operations or initiate the additional scanning operations, based on the first parameter (e.g., mobility information of the UE 115-a) and the second parameter (e.g., a mobility type of the UE 115-a) .
  • the first parameter e.g., mobility information of the UE 115-a
  • the second parameter e.g., a mobility type of the UE 115-a
  • reliability of the third parameter may be variable based on mobility of the UE 115-a. In some other cases, reliability of the third parameter (e.g., GNSS activity duration) may be variable based on coordinates of the UE 115-a with respect to a coverage area (e.g., cell area) supported by the satellite 155-a. For example, the UE 115-a may experience different levels of signal quality (e.g., signal strength, channel quality) at different locations within the coverage area (e.g., at an edge of the cell, at a relative center of the cell) .
  • signal quality e.g., signal strength, channel quality
  • the UE 115-a may ignore the third parameter (e.g., GNSS activity duration) when determining whether to resume the scanning operations or initiate the additional scanning operations. In some aspects, the UE 115-a may determine whether to resume the scanning operations or initiate the additional scanning operations, based on the first parameter (e.g., mobility information of the UE 115-a) , the second parameter (e.g., a mobility type of the UE 115-a) , and the third parameter (e.g., GNSS activity duration) .
  • the first parameter e.g., mobility information of the UE 115-a
  • the second parameter e.g., a mobility type of the UE 115-a
  • the third parameter e.g., GNSS activity duration
  • Example aspects of the first parameter e.g., mobility information of the UE 115-a
  • the second parameter e.g., a mobility type of the UE 115-a
  • the third parameter e.g., GNSS activity duration
  • FIG. 3A illustrates an example 300 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • FIG. 3B illustrates an example 301 of search and cell scan procedure in some devices.
  • Example 300 may implement aspects of wireless communications system 100 or wireless communications system 200.
  • Example 300 is described with reference to UE 115-a, base station 105-a, and satellite 155-a of FIG. 2.
  • UE 115-a may be of the first mobility type (e.g., ‘mobility type 1’ , ‘fixed location’ type) , the second mobility type (e.g., ‘mobility type 2’ , ‘reduced mobility’ type, ‘movable within a fixed area’ type) , or the third mobility type (e.g., ‘mobility type 3’ , ‘full mobility’ type, ‘movable within a larger area’ type) .
  • the first mobility type e.g., ‘mobility type 1’ , ‘fixed location’ type
  • the second mobility type e.g., ‘mobility type 2’ , ‘reduced mobility’ type, ‘movable within a fixed area’ type
  • the third mobility type e.g., ‘mobility type 3’ , ‘full mobility’ type, ‘movable within a larger area’ type
  • FIG. 3A illustrates an example 300 of WWAN sessions 305 and GNSS activity sessions 310 that support search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • WWAN sessions 305 e.g., WWAN session 305-a through WWAN session 305-d
  • WWAN sessions 305 may be examples of aspects of WWAN session 210 and WWAN session 220 described with reference to FIG. 2.
  • the WWAN session 305-a may be referred to herein as a temporal period during which the UE 115-a may initiate operations for establishing a connection with a cellular network.
  • the WWAN session 305-b through WWAN session 305-d may be referred to herein respectively as temporal periods during which the UE 115-a may either resume the scanning operations from a previous WWAN session 305 (e.g., using a stored set of scanning parameters from the previous WWAN session 305) or initiate additional scanning operations (e.g., without using the stored set of scanning parameters, using another set of scanning parameters) .
  • GNSS activity sessions 310 e.g., GNSS activity session 310-a through GNSS activity session 310-c
  • the GNSS activity sessions 310 may be referred to herein as a temporal periods during which the UE 115-a may initiate operations for acquiring a GNSS positioning signal.
  • the UE 115-a may initiate scanning operations at the UE 115-a for establishing a connection with a cellular network (e.g., establishing a connection with the base station 105-a, establishing a connection with a WWAN) .
  • the scanning operations may include establishing a connection with the cellular network using reduced bandwidth technologies.
  • the UE 115-a may be a Cat-M device or an NB-IoT device, and the scanning operations may include establishing a connection with the cellular network using Cat-M or NB-IoT technologies.
  • the UE 115-a may initiate operations for acquiring a GNSS positioning signal (also referred to herein as GNSS activity) from the satellite 155-a, for example, while performing the scanning operations for establishing a connection with the cellular network.
  • initiating the operations for acquiring the GNSS positioning signal may include pausing the scanning operations for establishing the connection with the cellular network (e.g., pausing WWAN session 305-a) .
  • the UE 115-a may store (e.g., to a memory) the existing scanning parameters associated with the scanning operations.
  • the UE 115-a may determine (e.g., using a sensor of the UE 115, such as an AMD sensor or SMD sensor) that a sensor event or motion event of the UE 115-a indicates motion below a threshold (e.g., no motion, velocity below a threshold) .
  • a threshold e.g., no motion, velocity below a threshold
  • the UE 115-a may resume the scanning operations for establishing the connection with the cellular network.
  • the UE 115-a may resume the scanning operations for cases of motion below the threshold (e.g., no motion, velocity below the threshold) , regardless of mobility type of the UE 115-a(e.g., for any mobility type) .
  • the UE 115-a may resume the scanning operations for establishing the connection with the cellular network (e.g., resume the paused scanning operations of WWAN session 305-a) , using the stored set of scanning parameters associated with WWAN session 305-a.
  • the UE 115-a may initiate operations for acquiring a GNSS positioning signal (also referred to herein as GNSS activity) from the satellite 155-a, for example, while performing the scanning operations for establishing a connection with the cellular network.
  • initiating the operations for acquiring the GNSS positioning signal may include pausing the scanning operations for establishing the connection with the cellular network (e.g., pausing WWAN session 305-b) .
  • the UE 115-a may store the existing scanning parameters associated with WWAN session 305-b.
  • the UE 115-a may determine (e.g., using a sensor of the UE 115, such as an AMD sensor or SMD sensor) that a sensor event or motion event of the UE 115-a indicates motion of the UE 115-a above a threshold (e.g., significant motion above a threshold, velocity above a threshold) .
  • a threshold e.g., significant motion above a threshold, velocity above a threshold
  • the UE 115-a may initiate additional scanning operations (e.g., reinitiate scanning operations) for establishing a connection with the cellular network.
  • the UE 115-a may initiate the additional scanning operations for cases of motion above the threshold, for example, for cases in which the UE 115-a is of the second mobility type (e.g., ‘mobility type 2’ , ‘reduced mobility’ type, ‘movable within a fixed area’ type) or the third mobility type (e.g., ‘mobility type 3’ , ‘full mobility’ type, ‘movable within a larger area’ type) .
  • the second mobility type e.g., ‘mobility type 2’ , ‘reduced mobility’ type, ‘movable within a fixed area’ type
  • the third mobility type e.g., ‘mobility type 3’ , ‘full mobility’ type, ‘movable within a larger area’ type
  • the UE 115-a may initiate additional scanning operations (e.g., reinitiate scanning operations) for establishing a connection with the cellular network, using another set of scanning parameters (e.g., without using the stored set of scanning parameters associated with WWAN session 305-b) .
  • additional scanning operations e.g., reinitiate scanning operations
  • another set of scanning parameters e.g., without using the stored set of scanning parameters associated with WWAN session 305-b
  • the UE 115-a may initiate operations for acquiring a GNSS positioning signal (also referred to herein as GNSS activity) from the satellite 155-a, for example, while performing the scanning operations for establishing a connection with the cellular network.
  • initiating the operations for acquiring the GNSS positioning signal may include pausing the scanning operations for establishing the connection with the cellular network (e.g., pausing WWAN session 305-c) .
  • the UE 115-a may store the existing scanning parameters associated with WWAN session 305-c.
  • the UE 115-a may be unable to determine motion of the UE 115-a (e.g., UE 115-a may determine that motion of the UE 115-a is unknown) during the GNSS activity session 310-b.
  • the UE 115-a may determine that sensors of the UE 115 (e.g., AMD sensor, SMD sensor) are not configured.
  • the UE 115-a may initiate additional scanning operations (e.g., reinitiate scanning operations) for establishing a connection with the cellular network.
  • the UE 115-a may initiate the additional scanning operations for cases in which motion is unknown, for example, for cases in which the UE 115-a is of the second mobility type (e.g., ‘mobility type 2’ , ‘reduced mobility’ type, ‘movable within a fixed area’ type) or the third mobility type (e.g., ‘mobility type 3’ , ‘full mobility’ type, ‘movable within a larger area’ type) .
  • the second mobility type e.g., ‘mobility type 2’ , ‘reduced mobility’ type, ‘movable within a fixed area’ type
  • the third mobility type e.g., ‘mobility type 3’ , ‘full mobility’ type, ‘movable within a larger area’ type
  • the UE 115-a may initiate additional scanning operations (e.g., reinitiate scanning operations) for establishing a connection with the cellular network, using another set of scanning parameters (e.g., without using the stored set of scanning parameters associated with WWAN session 305-c) .
  • additional scanning operations e.g., reinitiate scanning operations
  • another set of scanning parameters e.g., without using the stored set of scanning parameters associated with WWAN session 305-c
  • Example 300 provides advantages over example 301 of FIG. 3B, which is an example of search and cell scan procedure in some other UEs 115.
  • Example 301 includes WWAN sessions 315 (e.g., WWAN session 315-a through WWAN session 315-d) and GNSS activity sessions 320 (e.g., GNSS activity session 320-a through GNSS activity session 320-d) .
  • WWAN sessions 315 e.g., WWAN session 315-a
  • GNSS activity sessions 320 e.g., GNSS activity session 320-a through GNSS activity session 320-d
  • some other UEs 115 may initiate scanning operations for establishing a connection with a cellular network (e.g., establishing a connection with a base station 105, establishing a connection with a WWAN) .
  • a cellular network e.g., establishing a connection with a base station 105, establishing a connection with a WWAN
  • some UEs 115 may initiate operations for acquiring a GNSS positioning signal from a satellite 155, for example, while performing the scanning operations for establishing a connection with the cellular network.
  • some UEs 115 may restart scanning operations for establishing a connection with the cellular network, without consideration of scanning parameters associated with the WWAN session 315 (e.g., WWAN session 315-a) .
  • some UEs 115 may initiate additional scanning operations (e.g., reinitiate scanning operations) for establishing a connection with the cellular network, using another set of scanning parameters (e.g., without consideration of scanning parameters associated with the previous WWAN session 315, for example, WWAN session 315-a) .
  • additional scanning operations e.g., reinitiate scanning operations
  • another set of scanning parameters e.g., without consideration of scanning parameters associated with the previous WWAN session 315, for example, WWAN session 315-a
  • FIG. 4A illustrates an example table 400 illustrating a sensor event mapping associated with an NB-IoT device (e.g., a UE 115, a UE 115-a) that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • FIG. 4B illustrates an example table 401 illustrating a sensor event mapping associated with a Cat-M device (e.g., a UE 115, a UE 115-a) that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • table 400 and table 401 may implement aspects of wireless communications system 100, wireless communications system 200, and example 300.
  • a ‘sensor event’ may also be referred to herein as a ‘motion event. ’
  • table 400 illustrates a sensor event mapping based on mobility type of a NB-IoT device (e.g., a UE 115, a UE 115-a) as described herein.
  • the sensor event mapping correlates sensor information (e.g., ‘Rest, ’ ‘Sig_motion, ’ and ‘Unknown’ at an AMD sensor, an SMD sensor, or both) at the NB-IoT device to scanning operations by the NB-IoT device for establishing a connection with a cellular network following a GNSS activity session at the NB-IoT device.
  • sensor information e.g., ‘Rest, ’ ‘Sig_motion, ’ and ‘Unknown’ at an AMD sensor, an SMD sensor, or both
  • the sensor events ‘Rest’ or ‘Motion’ may be associated with an AMD sensor.
  • the sensor event ‘Sig_motion’ (e.g., significant motion, motion above a threshold) may be associated with an SMD sensor.
  • the sensor event ‘Unknown’ may be associated with unknown motion at UE 115 (e.g., the AMD sensor or the SMD sensor are not configured) .
  • the scanning operations include resuming a previous scanning operation for establishing a connection with a cellular network (e.g., using a stored set of scanning parameters) or initiating additional scanning operations for establishing a connection with a cellular network (e.g., without using the stored set of scanning parameters) as described herein.
  • the sensor event mapping correlates the sensor information (e.g., motion events ‘Rest, ’ ‘Sig_motion, ’ and ‘Unknown’ determined by an AMD sensor, SMD sensor, or both) at the NB-IoT device to the scanning operations by the NB-IoT device (e.g., resuming scanning operations, initiating additional scanning operations) .
  • the sensor event mapping correlates the sensor information and the scanning operations based on device type (e.g., mobility type) and scan depths associated with a cell scan by the NB-IoT device.
  • the mobility type may include Type-1 (e.g., ‘mobility type 1’ or ‘fixed location’ type as described herein) , Type-2 (e.g., ‘mobility type 2’ or ‘moveable within a reduced area’ type as described herein) , or Type-3 (e.g., ‘mobility type 3’ or ‘moveable within a larger area’ type as described herein) .
  • Type-1 e.g., ‘mobility type 1’ or ‘fixed location’ type as described herein
  • Type-2 e.g., ‘mobility type 2’ or ‘moveable within a reduced area’ type as described herein
  • Type-3 e.g., ‘mobility type 3’ or ‘moveable within a larger area’ type as described herein
  • the scan depths may be associated with different detection depths (e.g., energy levels) in a cell selection scan by the NB-IoT.
  • the scan depths may be indicated by ‘SNR 0, ’ ‘SNR 1, ’ and ‘SNR 2, ’ where ‘SNR 0’ may be a relatively shallow scan and ‘SNR 2’ may be a relatively deep scan.
  • SNR may correspond to a signal-to-noise ratio.
  • significant motion may be relatively less likely for NB-IoT devices having a Type-1 (e.g., ‘mobility type 1’ or ‘fixed location’ type as described herein) or Type-2 (e.g., ‘mobility type 1’ or ‘moveable within a reduced area’ type as described herein) mobility type.
  • Type-1 e.g., ‘mobility type 1’ or ‘fixed location’ type as described herein
  • Type-2 e.g., ‘mobility type 1’ or ‘moveable within a reduced area’ type as described herein
  • NB-IoT devices having a Type-1 or Type-2 mobility type may restart scanning operations for establishing a connection with a cellular network for cases of the sensor event ‘Sig_motion’ (e.g., motion above a threshold) .
  • the sensor event ‘Sig_motion’ may also be referred to herein as ‘significant motion’ or ‘significant mobility’ ) .
  • table 401 illustrates a sensor event mapping based on mobility type of a Cat-M device (e.g., a UE 115, a UE 115-a) as described herein.
  • the sensor event mapping correlates sensor information (e.g., ‘Rest, ’ ‘Sig_motion, ’ and ‘Unknown’ ) at the Cat-M device (e.g., at an AMD sensor or an SMD sensor of the Cat-M device) to scanning operations by the Cat-M device following a GNSS activity session at the Cat-M device.
  • sensor information e.g., ‘Rest, ’ ‘Sig_motion, ’ and ‘Unknown’
  • a ‘sensor event’ may also be referred to herein as a ‘motion event. ’
  • the sensor events ‘Rest’ or ‘Motion’ may be associated with an AMD sensor.
  • the sensor event ‘Sig_motion’ (e.g., significant motion, motion above a threshold) may be associated with an SMD sensor.
  • the sensor event ‘Unknown’ may be associated with unknown motion at UE 115 (e.g., the AMD sensor or the SMD sensor are not configured) .
  • the scanning operations by the Cat-M device include resuming a previous scanning operation (e.g., using a stored set of scanning parameters) or initiating additional scanning operations (e.g., without using the stored set of scanning parameters) as described herein.
  • the sensor event mapping correlates the sensor information (e.g., ‘Rest, ’ ‘Sig_motion, ’ and ‘Unknown’ ) at the Cat-M device (e.g., AMD sensor, SMD sensor) to the scanning operations by the Cat-M device (e.g., resuming scanning operations, initiating additional scanning operations) , based on device type (e.g., mobility type) .
  • the sensor information e.g., ‘Rest, ’ ‘Sig_motion, ’ and ‘Unknown’
  • the Cat-M device e.g., AMD sensor, SMD sensor
  • the scanning operations by the Cat-M device e.g., resuming scanning operations, initiating additional scanning operations
  • device type e.g., mobility type
  • significant motion may be relatively less likely for Cat-M devices having a Type-1 (e.g., ‘mobility type 1’ or ‘fixed location’ type as described herein)
  • Type-2 e.g., ‘mobility type 1’ or ‘moveable within a reduced area’ type as described herein
  • Cat-M devices having a Type-1 or Type-2 mobility type may restart scanning operations for establishing a connection with a cellular network for cases of the sensor event ‘Sig_motion’ (e.g., significant motion, motion above a threshold) .
  • Sig_motion e.g., significant motion, motion above a threshold
  • FIG. 5 illustrates an example of a method 500 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • method 500 may implement aspects of wireless communications system 100 or wireless communications system 200.
  • the operations of method 500 may be implemented by a UE 115 or a UE 115-a as described herein with reference to FIG. 1 through FIG. 3.
  • a UE 115-a may trigger a WWAN unload based on GNSS activity. For example, during a GNSS activity session 310, the UE 115-a may initiate operations for acquiring a GNSS positioning signal (also referred to herein as GNSS activity) from a satellite 155-a. In some examples, initiating the operations for acquiring the GNSS positioning signal may include pausing the scanning operations for establishing the connection with the cellular network (e.g., pausing a WWAN session 305) .
  • GNSS positioning signal also referred to herein as GNSS activity
  • initiating the operations for acquiring the GNSS positioning signal may include pausing the scanning operations for establishing the connection with the cellular network (e.g., pausing a WWAN session 305) .
  • the UE 115-a may unload (e.g., remove or clear) settings or parameters associated with the WWAN from a memory of the UE 115-a (e.g., a memory buffer associated with a modem of the UE 115-a) .
  • the WWAN or the GNSS may be active or loaded in the memory of the UE 115-a, for example, based on memory specifications (e.g., memory size) of the UE 115-a.
  • the UE 115-a may save current WWAN search parameters (e.g., cell scanning parameters) .
  • the UE 115-a may store (e.g., to a memory) the current WWAN search parameters (e.g., cell scanning parameters) associated with the WWAN session 305.
  • the UE 115-a may complete GNSS activity, which may trigger a WWAN load at the UE 115-a.
  • the UE 115-a may determine whether to resume the scanning operations for establishing a connection with the WWAN or to initiate additional scanning operations.
  • the UE 115-a may resume WWAN search operations (e.g., cell scanning operations) at 525, using the saved parameters. For example, during a following WWAN session 305, the UE 115-a may resume the scanning operations for establishing the connection with the cellular network (e.g., resume the paused scanning operations of the previous WWAN session 305) , using the stored set of scanning parameters associated with the previous WWAN session 305.
  • WWAN search operations e.g., cell scanning operations
  • the UE 115-a may restart WWAN search operations (e.g., cell scanning operations) at 530, for example, without using any saved parameters. For example, during a following WWAN session 305, the UE 115-a may initiate additional scanning operations (e.g., reinitiate scanning operations) for establishing a connection with the cellular network, using another set of scanning parameters (e.g., without using the stored set of scanning parameters associated with the previous WWAN session 305) .
  • WWAN search operations e.g., cell scanning operations
  • the UE 115-a may initiate additional scanning operations (e.g., reinitiate scanning operations) for establishing a connection with the cellular network, using another set of scanning parameters (e.g., without using the stored set of scanning parameters associated with the previous WWAN session 305) .
  • FIG. 6 illustrates an example of a method 600 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • method 600 may implement aspects of wireless communications system 100 or wireless communications system 200.
  • the operations of method 600 may be implemented by a UE 115 or a UE 115-a as described herein with reference to FIG. 1 through FIG. 3.
  • a UE 115-a may trigger a WWAN load based on completion of GNSS activity. For example, after a GNSS activity session 310 (e.g., after the UE 115-a has completed operations for acquiring a positioning signal at the UE 115-a) , the UE 115-a may initiate operations for determining whether to resume WWAN search operations (e.g., using stored WWAN search parameters associated with a previous WWAN session 305) or restart WWAN search operations (e.g., without using any saved WWAN search parameters) .
  • WWAN search operations e.g., using stored WWAN search parameters associated with a previous WWAN session 305
  • restart WWAN search operations e.g., without using any saved WWAN search parameters
  • the UE 115-a may determine, for example, at 615 whether the GNSS activity (e.g., a duration of the GNSS activity for acquiring a positioning signal) is less than a threshold value.
  • the UE 115-a may restart WWAN search operations (e.g., cell scanning operations) at 640, for example, without using any saved WWAN search parameters.
  • the UE 115-a may identify, for example, at 620 a device type of the UE 115-a.
  • the UE 115-a may restart WWAN search operations (e.g., cell scanning operations) at 640, for example, without using any saved WWAN search parameters.
  • the UE 115-a may identify, for example, at 625 a motion event detected by a sensor (e.g., AMD sensor, SMD sensor) of the UE 115-a.
  • a sensor e.g., AMD sensor, SMD sensor
  • the UE 115-a may resume WWAN search operations (e.g., cell scanning operations) at 630, for example, using stored WWAN search parameters associated with a previous WWAN session 305.
  • WWAN search operations e.g., cell scanning operations
  • the UE 115-a may restart WWAN search operations (e.g., cell scanning operations) at 640, for example, without using any saved WWAN search parameters.
  • the UE 115-a may identify, for example, at 635 a motion event detected by a sensor (e.g., AMD sensor, SMD sensor) of the UE 115-a.
  • a sensor e.g., AMD sensor, SMD sensor
  • the UE 115-a may resume WWAN search operations (e.g., cell scanning operations) at 630, for example, using stored WWAN search parameters associated with a previous WWAN session 305.
  • the UE 115-a may restart WWAN search operations (e.g., cell scanning operations) at 640, for example, without using any saved WWAN search parameters.
  • WWAN search operations e.g., cell scanning operations
  • FIG. 7 shows a block diagram 700 of a device 705 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • the device 705 may be an example of aspects of a UE 115 as described herein.
  • the device 705 may include a receiver 710, a communications manager 715, and a transmitter 720.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to search and cell scan procedure for positioning-cellular network interworking scenarios, etc. ) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • the communications manager 715 may initiate a set of scanning operations at the device for establishing a connection with a cellular network, store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal, select between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both, and initiate a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations.
  • the communications manager 715 may be an example of aspects of the communications manager 1010 described herein.
  • the communications manager 715 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 715 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 715, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 715, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 720 may transmit signals generated by other components of the device 705.
  • the transmitter 720 may be collocated with a receiver 710 in a transceiver module.
  • the transmitter 720 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the transmitter 720 may utilize a single antenna or a set of antennas.
  • FIG. 8 shows a block diagram 800 of a device 805 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • the device 805 may be an example of aspects of a device 705, or a UE 115 as described herein.
  • the device 805 may include a receiver 810, a communications manager 815, and a transmitter 830.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to search and cell scan procedure for positioning-cellular network interworking scenarios, etc. ) . Information may be passed on to other components of the device 805.
  • the receiver 810 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the receiver 810 may utilize a single antenna or a set of antennas.
  • the communications manager 815 may be an example of aspects of the communications manager 715 as described herein.
  • the communications manager 815 may include a scanning component 820 and a positioning component 825.
  • the communications manager 815 may be an example of aspects of the communications manager 1010 described herein.
  • the scanning component 820 may initiate a set of scanning operations at the device for establishing a connection with a cellular network, store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal, and select between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
  • the positioning component 825 may initiate a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations.
  • the transmitter 830 may transmit signals generated by other components of the device 805.
  • the transmitter 830 may be collocated with a receiver 810 in a transceiver module.
  • the transmitter 830 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the transmitter 830 may utilize a single antenna or a set of antennas.
  • FIG. 9 shows a block diagram 900 of a communications manager 905 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • the communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein.
  • the communications manager 905 may include a scanning component 910, a positioning component 915, a motion component 920, and a connection component 925. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the scanning component 910 may initiate a set of scanning operations at the device for establishing a connection with a cellular network.
  • the scanning component 910 may store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal.
  • the scanning component 910 may select between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
  • the set of scanning operations includes a set of scanning operations respectively associated with a set of scan depths, and where the selecting is based on the set of scan depths. In some cases, the selecting is based on a mobility type of the device, where the mobility type is included in a set of mobility types associated with the set of motion thresholds. In some cases, the selecting is based on completing or canceling the set of operations for acquiring the positioning signal.
  • the positioning component 915 may initiate a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations. In some examples, the positioning component 915 may measure a temporal period associated with completing the set of operations for acquiring the positioning signal at the device, where the selecting is based on the measured temporal period satisfying a threshold. In some examples, acquiring the positioning signal includes acquiring a GNSS positioning signal.
  • the motion component 920 may detect the motion of the device using a set of sensors of the device, the set of sensors including at least an AMD sensor and an SMD sensor, where the set of motion thresholds includes a first threshold associated with the AMD sensor and a second threshold associated with the SMD sensor.
  • the connection component 925 may establish the connection with the cellular network includes establishing the connection with a WWAN.
  • FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of or include the components of device 705, device 805, or a UE 115 as described herein.
  • the device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, an I/O controller 1015, a transceiver 1020, an antenna 1025, memory 1030, and a processor 1040. These components may be in electronic communication via one or more buses (e.g., bus 1045) .
  • buses e.g., bus 1045
  • the communications manager 1010 may initiate a set of scanning operations at the device for establishing a connection with a cellular network, store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal, select between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both, and initiate a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations.
  • the I/O controller 1015 may manage input and output signals for the device 1005.
  • the I/O controller 1015 may also manage peripherals not integrated into the device 1005.
  • the I/O controller 1015 may represent a physical connection or port to an external peripheral.
  • the I/O controller 1015 may utilize an operating system such as or another known operating system.
  • the I/O controller 1015 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 1015 may be implemented as part of a processor.
  • a user may interact with the device 1005 via the I/O controller 1015 or via hardware components controlled by the I/O controller 1015.
  • the transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1025. However, in some cases the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1030 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 1030 may store computer-readable, computer-executable code 1035 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 1030 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1040 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1040.
  • the processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting search and cell scan procedure for positioning-cellular network interworking scenarios) .
  • the code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1035 may not be directly executable by the processor 1040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 11 shows a flowchart illustrating a method 1100 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • the operations of method 1100 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 7 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may initiate a set of scanning operations at the device for establishing a connection with a cellular network.
  • the operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a scanning component as described with reference to FIGs. 7 through 10.
  • the UE may initiate a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations.
  • the operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a positioning component as described with reference to FIGs. 7 through 10.
  • the UE may store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal.
  • the operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a scanning component as described with reference to FIGs. 7 through 10.
  • the UE may select between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
  • the operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by a scanning component as described with reference to FIGs. 7 through 10.
  • FIG. 12 shows a flowchart illustrating a method 1200 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
  • the operations of method 1200 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 7 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may initiate a set of scanning operations at the device for establishing a connection with a cellular network.
  • the operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a scanning component as described with reference to FIGs. 7 through 10.
  • the UE may initiate a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations.
  • the operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a positioning component as described with reference to FIGs. 7 through 10.
  • the UE may store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal.
  • the operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a scanning component as described with reference to FIGs. 7 through 10.
  • the UE may detect motion of the device using a set of sensors of the device, the set of sensors including at least an AMD sensor and an SMD sensor, where the set of motion thresholds includes a first threshold associated with the AMD sensor and a second threshold associated with the SMD sensor.
  • the operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by a motion component as described with reference to FIGs. 7 through 10.
  • the UE may select between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, the motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
  • the operations of 1225 may be performed according to the methods described herein. In some examples, aspects of the operations of 1225 may be performed by a scanning component as described with reference to FIGs. 7 through 10.
  • a method for wireless communication at a device comprising: initiating a set of scanning operations at the device for establishing a connection with a cellular network; initiating a set of operations for acquiring a positioning signal at the device, wherein initiating the set of operations for acquiring the positioning signal comprises pausing the set of scanning operations; storing a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, wherein the storing is based at least in part on initiating the set of operations for acquiring the positioning signal; and selecting between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, wherein the selecting is based at least in part on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
  • Aspect 2 The method of aspect 1, further comprising: detecting the motion of the device using a set of sensors of the device, the set of sensors comprising at least an AMD sensor and an SMD sensor, wherein the set of motion thresholds comprises a first threshold associated with the AMD sensor and a second threshold associated with the SMD sensor.
  • Aspect 3 The method of aspect 2, further comprising: measuring a temporal period associated with completing the set of operations for acquiring the positioning signal at the device, wherein the selecting is based at least in part on the measured temporal period satisfying a threshold.
  • Aspect 4 The method of any of aspects 1 through 3, wherein the set of scanning operations comprises a plurality of scanning operations respectively associated with a plurality of scan depths, and wherein the selecting is based at least in part on the plurality of scan depths.
  • Aspect 5 The method of any of aspects 1 through 4, wherein the selecting is based at least in part on a mobility type of the device, the mobility type is included in a set of mobility types associated with the set of motion thresholds.
  • Aspect 6 The method of any of aspects 1 through 5, wherein the selecting is based at least in part on completing or canceling the set of operations for acquiring the positioning signal.
  • Aspect 7 The method of any of aspects 1 through 6, wherein establishing the connection with the cellular network comprises establishing the connection with a WWAN.
  • Aspect 8 The method of any of aspects 1 through 7, wherein acquiring the positioning signal comprises acquiring a GNSS.
  • Aspect 9 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 1 through 8.
  • Aspect 10 An apparatus for wireless communication at a device, comprising at least one means for performing a method of any of aspects 1 through 8.
  • Aspect 11 A non-transitory computer-readable medium storing code for wireless communication at a device, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 8.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A device may initiate scanning operations at the device for establishing a connection with a cellular network, such as a wireless wide area network (WWAN). The device may pause the set of scanning operations when initiating operations for acquiring a positioning signal at the device. The device may store a set of scanning parameters associated with the set of scanning operations based on pausing the set of scanning operations. When the operations for acquiring the positioning signal are complete, the device may resume the scanning operations for establishing the connection with the cellular network using the stored set of scanning parameters. In some aspects, the device may initiate additional scanning operations for establishing a connection with the cellular network, without using the stored set of scanning parameters.

Description

SEARCH AND CELL SCAN PROCEDURE FOR POSITIONING-CELLULAR NETWORK INTERWORKING SCENARIOS
FIELD OF TECHNOLOGY
The following relates to wireless communications, including search and cell scan procedure for positioning-cellular network interworking scenarios.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) .
A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) . In some systems, a UE may support wireless connections with a global navigation system (e.g., global navigation satellite system (GNSS) ) and wireless connections with wireless wide area networks (WWANs) .
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support search and cell scan procedure for positioning-cellular network interworking scenarios. A user equipment (UE) may initiate scanning operations at the UE for establishing a connection with a cellular network, such as a wireless wide area network (WWAN) . In some cases, the UE may pause the set of scanning operations when initiating  operations for acquiring a positioning signal at the UE, such as operations for acquiring a global navigation satellite system (GNSS) positioning signal. The UE may store a set of scanning parameters associated with the set of scanning operations, for example, based on pausing the set of scanning operations. Accordingly, for example, when the operations for acquiring the positioning signal are complete (or canceled) , the UE may resume the scanning operations for establishing the connection with the cellular network using the stored set of scanning parameters. In some other cases, the UE may reinitiate scanning operations for establishing a connection with the cellular network, using another set of scanning parameters (e.g., without using the stored set of scanning parameters) .
A method of wireless communication at a device is described. The method may include initiating a set of scanning operations at the device for establishing a connection with a cellular network, initiating a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations, storing a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal, and selecting between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
An apparatus for wireless communication at a device is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to initiate a set of scanning operations at the device for establishing a connection with a cellular network, initiate a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations, store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal, and select between resuming the set of scanning operations for establishing the connection with the  cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
Another apparatus for wireless communication at a device is described. The apparatus may include means for initiating a set of scanning operations at the device for establishing a connection with a cellular network, initiating a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations, storing a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal, and selecting between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
A non-transitory computer-readable medium storing code for wireless communication at a device is described. The code may include instructions executable by a processor to initiate a set of scanning operations at the device for establishing a connection with a cellular network, initiate a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations, store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal, and select between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the  set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detecting the motion of the device using a set of sensors of the device, the set of sensors including at least an absolute motion detection (AMD) sensor and a significant motion detection (SMD) sensor, where the set of motion thresholds includes a first threshold associated with the AMD sensor and a second threshold associated with the SMD sensor.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for measuring a temporal period associated with completing the set of operations for acquiring the positioning signal at the device, where the selecting may be based on the measured temporal period satisfying a threshold.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of scanning operations may include a set of scanning operations respectively associated with a set of scan depths, and the selecting may be based on the set of scan depths.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the selecting may be based on a mobility type of the device, where the mobility type may be included in a set of mobility types associated with the set of motion thresholds.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the selecting may be based on completing or canceling the set of operations for acquiring the positioning signal.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, establishing the connection with the cellular network may include operations, features, means, or instructions for establishing the connection with a WWAN.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, acquiring the positioning signal may include operations, features, means, or instructions for acquiring a GNSS positioning signal.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
FIG. 3A illustrates an example that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure. FIG. 3B illustrates an example of search and cell scan procedures in some systems.
FIGs. 4A and 4B illustrate example tables illustrating sensor event mappings that support search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
FIG. 5 illustrates an example of a method that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
FIG. 6 illustrates an example of a method that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
FIGs. 7 and 8 show block diagrams of devices that support search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
FIG. 9 shows a block diagram of a communications manager that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
FIG. 10 shows a diagram of a system including a device that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
FIGs. 11 and 12 show flowcharts illustrating methods that support search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
In some systems, a user equipment (UE) may perform a cell scan procedure (e.g., Public Land Mobile Network (PLMN) search) for establishing a connection with a cellular network, such as a wireless wide area network (WWAN) . For example, the UE may perform a public land mobile network (PLMN) search including scanning a frequency spectrum for available PLMNs to communicate with. However, in some cases, global navigation satellite system (GNSS) activity at the device may result in interrupting (e.g., pausing) scanning operations associated with the cell scan procedure. For example, when the UE initiates operations for acquiring a positioning signal (e.g., a GNSS positioning signal) during an existing cell scan procedure, the UE may interrupt (e.g., pause or terminate) the cell scan procedure.
In some cases, due to the GNSS activity at the device (e.g., acquiring a GNSS positioning signal) , the UE may refrain from initiating another cell scan procedure for a configurable duration (e.g., ranging from 8 seconds to 60 seconds) . When interrupting (e.g., pausing or terminating) the cell scan procedure, the UE may clear or erase any associated scanning parameters already determined during the scan. Accordingly, when the GNSS activity is complete (e.g., the UE has completed or terminated operations for acquiring a positioning signal) , the UE may again initiate a cell scan procedure for establishing a connection with the cellular network, but without consideration of the scanning parameters that were already determined.
According to examples of aspects described herein, a device (e.g., a UE) may initiate scanning operations at the device for establishing a connection with a cellular network, such as a WWAN. In some cases, the device may pause the set of scanning operations when initiating operations for acquiring a positioning signal at the device, such as  operations for acquiring a GNSS positioning signal. The device may store a set of scanning parameters associated with the set of scanning operations, for example, based on pausing the set of scanning operations. Accordingly, for example, when the operations for acquiring the positioning signal are complete (e.g., the UE has completed or terminated operations for acquiring a positioning signal) or canceled, the device may resume the scanning operations for establishing the connection with the cellular network using the stored set of scanning parameters. In some other cases, the device may initiate additional scanning operations for establishing a connection with the cellular network, using another set of scanning parameters (e.g., without using the stored set of scanning parameters) .
The device may select between resuming the scanning operations (e.g., using the stored set of scanning parameters) or initiating the additional scanning operations (e.g., without using the stored set of scanning parameters) based on criteria associated with motion of the device. For example, the device may select between resuming the scanning operations or initiating the additional scanning operations based on completion of the set of operations for acquiring the positioning signal. In some examples, the device may select between resuming the scanning operations or initiating the additional scanning operations based on motion of the device satisfying one or more motion thresholds associated with sensors of the device. In some examples, the device may determine the motion of the device using sensors such as an absolute motion detection (AMD) sensor or a significant motion detection (SMD) sensor, and the motion thresholds may be associated with each sensor. In some cases, the motion thresholds may be associated with a mobility type of the device. For example, the device may be a device installed at a fixed location (e.g., a gas meter, smart lights) , a device moveable within a reduced area (e.g., a home automation device such as a smart speaker) , or a device moveable within a relatively larger area (e.g., a wearable device, a shipment tracker) .
In some examples, the device may select between resuming the scanning operations (e.g., using the stored set of scanning parameters) or initiating the additional scanning operations (e.g., without using the stored set of scanning parameters) based on a temporal period or duration associated with the operations for acquiring the positioning signal at the device (also referred to herein as positioning activity or GNSS activity) . For example, the device may measure the temporal period for acquiring the positioning signal and determine whether the temporal period exceeds a threshold value (e.g., a threshold duration) .  In some aspects, the device may resume the scanning operations (e.g., using the stored set of scanning parameters) based on determining the temporal period for acquiring the positioning signal is below the threshold value (e.g., the threshold duration) . In an alternative example, the device may initiate the additional scanning operations (e.g., without using the stored set of scanning parameters) based on determining the temporal period for acquiring the positioning signal exceeds the threshold value (e.g., the threshold duration) .
Aspects of the subject matter described herein may be implemented to realize one or more advantages. The described techniques may support improvements in spectral efficiency and reliability, among other advantages. In some aspects, resuming scanning operations for establishing a connection with a cellular network (and using a stored set of scanning parameters) may increase power savings at the UE, for example, by reducing the amount of processing which would otherwise be involved in restarting cell scanning operations (e.g., without using stored scanning parameters) due to GNSS activity. In some other aspects, resuming scanning operations using the stored set of scanning parameters may improve cell scanning efficiency at the UE, for example, by reducing the amount of time which would otherwise be involved for establishing a connection with a cellular network.
Aspects of the disclosure are initially described in the context of a wireless communications system. Examples of processes and signaling exchanges that support search and cell scan procedure for positioning-cellular network interworking scenarios are then described. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to search and cell scan procedure for positioning-cellular network interworking scenarios.
FIG. 1 illustrates an example of a wireless communications system 100 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission  critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable  terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
In some examples, a UE 115 may include or be referred to as a narrowband-IoT (NB-IoT) device configured for, for example, indoor coverage, low cost, long battery life, and high connection density. In some cases, NB-IoT devices may communicate over a single narrow-band of 200 kHz, using OFDM modulation for downlink communications and SC-FDMA for uplink communications. In some other examples, a UE 115 may include or be referred to as a category M (Cat-M) device configured for low-power wide area (LPWAN) applications such as smart metering. In some cases, Cat-M devices (also referred to as Cat-M1 devices) may operate at a maximum system bandwidth of 1.4 MHz. Cat-M devices may have a higher device complexity or cost, higher data rates (up to 1 Mbps) , lower latency, and more accurate device positioning capabilities compared to NB-IoT devices. Cat-M devices, for example, may support voice calls and connected mode mobility.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) ,  control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of  symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station  105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base  stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to IP services 150 for one or more network operators. The IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may include one or more satellites 155. A satellite 155 may communicate with base stations 105 (also referred to as gateways in non-terrestrial networks (NTNs) ) and UEs 115 (or other high altitude or terrestrial communications devices) . A satellite 155 may be any suitable type of communication satellite configured to relay communications between different end nodes in a wireless communications system (e.g., wireless communications system 100) . A satellite 155 may be an example of a space satellite, a balloon, a dirigible, an airplane, a drone, an unmanned aerial vehicle, and/or the like. In some examples, a satellite 155 may be in a geosynchronous or geostationary earth orbit, a low earth orbit or a medium earth orbit. A satellite 155 may be a multi-beam satellite configured to provide service for multiple service beam coverage areas in a predefined geographical service area. For example, a satellite 155 may support a first cell and a second cell, where a first beam of the satellite 155 supports the first cell and a second beam of the satellite 155 supports the second cell. A satellite 155 may be any distance away from the surface of the earth.
In some cases, a cell may be provided or established by a satellite 155 as part of a non-terrestrial network. A satellite 155 may, in some cases, perform the functions of a base station 105, operate as a bent-pipe satellite, operate as a regenerative satellite, or a  combination thereof. In other cases, a satellite 155 may be an example of a smart satellite, or a satellite with intelligence. For example, a smart satellite may be configured to perform a higher number of functions than a regenerative satellite (e.g., may be configured to perform a set of algorithms beyond those used in regenerative satellites) . A bent-pipe transponder or satellite may be configured to receive signals from ground stations and transmit the received signals to different ground stations. In some cases, a bent-pipe transponder or satellite may amplify signals or shift from uplink frequencies to downlink frequencies. A regenerative transponder or satellite may be configured to relay signals according to techniques similar to the bent-pipe transponder or satellite, but may also include on-board processing for performing additional functions. Examples of the additional functions may include demodulating a received signal, decoding a received signal, re-encoding a signal to be transmitted, modulating the signal to be transmitted, or a combination thereof. For example, a bent-pipe satellite (e.g., satellite 155) may receive a signal from a base station 105 and may relay the signal to a UE 115 or another base station 105. In an example, a bent-pipe satellite (e.g., satellite 155) may receive a signal from a UE 115 and may relay the signal to another UE 115 or a base station 105.
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for  collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
According to examples of aspects described herein, a device (e.g., UE 115) may initiate scanning operations at the UE 115 for establishing a connection with a cellular network, such as a WWAN. In some cases, the UE 115 may pause the set of scanning operations when initiating operations for acquiring a positioning signal at the UE 115, such as operations for acquiring a GNSS positioning signal (e.g., from a satellite 155) . The UE 115 may store a set of scanning parameters associated with the set of scanning operations, for example, based on pausing the set of scanning operations. Accordingly, for example, when the operations for acquiring the positioning signal are complete (or canceled) , the UE 115 may resume the scanning operations for establishing the connection with the cellular network using the stored set of scanning parameters. In some other cases, the UE 115 may initiate additional scanning operations (e.g., reinitiate scanning operations) for establishing a connection with the cellular network, using another set of scanning parameters (e.g., without using the stored set of scanning parameters) .
The UE 115 may select between resuming the scanning operations (e.g., using the stored set of scanning parameters) or initiating the additional scanning operations (e.g., without using the stored set of scanning parameters) based on criteria associated with motion of the UE 115. For example, the UE 115 may select between resuming the scanning operations or initiating the additional scanning operations based on completion of the set of operations for acquiring the positioning signal. In some examples, the UE 115 may select between resuming the scanning operations or initiating the additional scanning operations based on motion of the UE 115 satisfying one or more motion thresholds associated with sensors of the UE 115. In some examples, the UE 115 may determine the motion of the UE 115 using sensors such as an absolute motion detection (AMD) sensor or a significant motion detection (SMD) sensor, and the motion thresholds may respectively be associated with the sensors.
For example, the UE 115 may include one or more motion detection sensors based on which the UE 115 may determine motion of the UE 115. In an example, the UE 115 may include an AMD sensor, an SMD sensor, or both. The AMD sensor may include multiple motion states or motion events, such as a rest state and a motion state. The rest state of the AMD sensor, for example, may be an absolute stationary state in which the UE 115 (and accordingly, the AMD sensor) is on a surface (e.g., a table) and no motion or vibrations are detected (e.g., motion of the UE 115 is below a motion threshold) . The motion state of the  AMD sensor, for example, may be a state triggered by motion exceeding the motion threshold. In some examples, motion which exceeds the motion threshold for the AMD sensor may include incidental vibrations occurring relatively near the UE 115 (and accordingly, the AMD sensor) , such as vibrations due to typing or tapping on the table surface on which the UE 115 is disposed, vibrations due to opening or closing of a door relatively near the UE 115, or engine vibration of a vehicle in which the UE 115 is located.
The SMD sensor may also include multiple motion states or motion events, such as a first motion state (e.g., non-significant motion state) and a second motion state (e.g., a significant motion state) . The first motion state (e.g., non-significant motion state) of the SMD sensor, for example, may be motion state in which detected motion or vibrations associated with the UE 115 (and accordingly, the SMD sensor) are below a motion threshold. The first motion state (e.g., non-significant motion state) of the SMD sensor, for example, may be motion state in which a velocity at which the UE 115 (and accordingly, the SMD sensor) is traveling is below a motion threshold. For example, the first motion state (e.g., non-significant motion state) may include a user operating the UE 115 in a fixed location (e.g., while sitting or standing) . The second motion state (e.g., significant motion state) of the SMD sensor, for example, may be motion state in which detected motion or vibrations associated with the UE 115 (and accordingly, the SMD sensor) are above the motion threshold. In some examples, the second motion state (e.g., significant motion state) of the SMD sensor may be a motion state associated with a change in location (e.g., coordinates) of the UE 115 (e.g., while carried or worn by a user) .
In an example, the second motion state (e.g., significant motion state) may be a motion state in which the velocity at which the UE 115 (and accordingly, the SMD sensor) is traveling exceeds the motion threshold. An example of motion which exceeds the motion threshold associated with the second motion state (e.g., significant motion state) of the SMD sensor includes a user walking at a rate greater than 0.7 steps/second (e.g., the UE 115 is carried or worn by a user walking quickly, jogging, or running) . Another example of motion which exceeds the motion threshold associated with the second motion state (e.g., significant motion state) of the SMD sensor includes the UE 115 traveling at a velocity above 5 miles per hour (mph) (e.g., the UE 115 is carried or worn by a user riding in a moving vehicle) . The motion state of the SMD sensor, for example, may be a state triggered by motion exceeding the motion threshold.
In some cases, the motion thresholds based on which the UE 115 may resume the scanning operations or initiate the additional scanning operations may be associated with a mobility type of the UE 115. The mobility type of the UE 115 may also be referred to herein as a device type, and may be based on an amount of motion or mobility expected by or permitted for the UE 115. For example, a first mobility type (e.g., ‘mobility type 1’ ) , may be assigned to or associated with a UE 115 installed at a fixed location (e.g., a gas meter, smart lights) . For example, the first mobility type (e.g., ‘mobility type 1’ ) may be considered a ‘fixed location’ type. In some aspects, a UE 115 of the first mobility type (e.g., ‘mobility type 1’ ) may refrain from periodically reporting location coordinates of the UE 115 because the UE 115 is in a fixed location and orientation. In some examples, a UE 115 associated with the first mobility type (e.g., ‘mobility type 1’ ) may refrain from periodically performing operations for acquiring a GNSS positioning signal from the satellite 155 (e.g., refrain from GNSS activity) .
A second mobility type (e.g., ‘mobility type 2’ ) may be assigned to or associated with, for example, a UE 115 which is moveable within a fixed area (e.g., a home automation device such as a smart speaker) . For example, the second mobility type (e.g., ‘mobility type 2’ ) may be considered a ‘reduced mobility’ type or ‘movable within a fixed area’ type. In some aspects, a UE 115 of the second mobility type (e.g., ‘mobility type 2’ ) may refrain from periodically reporting location coordinates of the UE 115 to a base station 105 or network, or may report location infrequently. In some examples, a UE 115 associated with the second mobility type (e.g., ‘mobility type 2’ ) may refrain from periodically performing operations for acquiring a GNSS positioning signal from the satellite 155 (e.g., refrain from GNSS activity) , or may perform these operations infrequently.
A third mobility type (e.g., ‘mobility type 3’ ) , may be assigned to or associated with, for example, a UE 115 (e.g., on an E-bike, a tracking device such as a shipment tracker, an activity device such as a wearable device) which is moveable or capable of moving within a relatively larger area compared to the second mobility type. For example, the third mobility type (e.g., ‘mobility type 3’ ) may be considered a ‘full mobility’ or ‘movable within a larger area’ type. In some aspects, a UE 115 of the third mobility type (e.g., ‘mobility type 3’ ) may periodically report location coordinates of the UE 115 to a base station 105 or network. In some examples, a UE 115 associated with the third mobility type (e.g., ‘mobility type 3’ ) ,  may periodically perform operations for acquiring a GNSS positioning signal from the satellite 155.
In some examples, the UE 115 may select between resuming the scanning operations (e.g., using the stored set of scanning parameters) or initiating the additional scanning operations (e.g., without using the stored set of scanning parameters) based on a temporal period or duration associated with the operations for acquiring the positioning signal at the UE 115 (also referred to herein as positioning activity or GNSS activity) . For example, the UE 115 may measure the temporal period associated with the UE 115 acquiring the positioning signal (e.g., for acquiring the positioning signal from a satellite 155) and determine whether the temporal period exceeds a threshold value (e.g., a threshold duration) . In some aspects, the UE 115 may resume the scanning operations (e.g., using the stored set of scanning parameters) based on determining the temporal period for acquiring the positioning signal is below the threshold value (e.g., the threshold duration) . In an alternative example, the UE 115 may initiate the additional scanning operations (e.g., without using the stored set of scanning parameters) based on determining the temporal period for acquiring the positioning signal exceeds the threshold value (e.g., the threshold duration) .
FIG. 2 illustrates an example of a wireless communications system 200 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. Wireless communications system 200 may include a UE 115-a, a base station 105-a, and a satellite 155-a, which may be examples of a UE 115, a base station 105, and a satellite 155 as, respectively, described with reference to FIG. 1. The base station 105-a and the UE 115-a may wirelessly communicate with one another over one or more carriers via a communication link 125-a. Communication link 125-a may be an example of a communication link 125 described with reference to FIG. 1.
In some aspects, the satellite 155-a may be associated with a global navigation system (e.g., GNSS or global positioning system (GPS) ) . For example, the satellite 155-a may be associated with an NTN. The wireless communications system 200 may support transmissions between the UE 115-a and the satellite 155-a via a communication link 205. For example, UE 115-a may transmit uplink transmissions to the satellite 155-a (and receive  downlink transmissions from the satellite 155-a) via the communication link 205. The satellite 155-a may be traveling in an orbit, such as low earth orbit, medium earth orbit, geostationary earth orbit, or some other non-geostationary earth orbit.
According to examples of aspects described herein, during a WWAN session 210 (e.g., at a temporal instance during the WWAN session 210) , the UE 115-a may initiate scanning operations at the UE 115-a for establishing a connection with a cellular network (e.g., establishing a connection with the base station 105-a) . The cellular network may be, for example, a WWAN (e.g., a public land mobile network (PLMN) ) . The WWAN session 210 may be referred to herein as a temporal period during which the UE 115-a may initiate scanning operations at the UE 115-a for establishing a connection with the cellular network. In some aspects, the scanning operations may include establishing a connection with the cellular network using reduced bandwidth technologies. For example, the UE 115-a may be a Cat-M device or an NB-IoT device, and the scanning operations may include establishing a connection with the cellular network using Cat-M or NB-IoT technologies.
In some aspects, during GNSS activity session 215 (e.g., at a temporal instance during the GNSS activity session 215) , the UE 115-a may initiate operations for acquiring a GNSS positioning signal (also referred to herein as GNSS activity) from the satellite 155-a, for example, while performing the scanning operations for establishing a connection with the cellular network. The GNSS activity session 215 may be referred to herein as a temporal period during which the UE 115-a may initiate the operations for acquiring a GNSS positioning signal. In some examples, initiating the operations for acquiring the GNSS positioning signal may include pausing the scanning operations for establishing the connection with the cellular network. In some aspects, based on initiating the operations for acquiring the GNSS positioning signal, the UE 115-a may store the existing scanning parameters associated with the scanning operations.
For example, the UE 115-a may store the existing scanning parameters based on a temporal instance at which the UE 115-a pauses the set of scanning operations. In some examples, the UE 115-a may store the existing scanning parameters based on a temporal instance at which the UE 115-a initiates the operations for acquiring the GNSS positioning signal. The temporal instance at which the UE 115-a pauses the set of scanning operations  may be the same as or different from (e.g., based on an temporal offset) the temporal instance at which the UE 115-a initiates the operations for acquiring the GNSS positioning signal.
In some aspects, when the operations for acquiring the positioning signal are complete (or canceled) , the UE 115-a may resume the scanning operations for establishing the connection with the cellular network, using the stored set of scanning parameters. For example, during WWAN session 220 (e.g., at a temporal instance during the WWAN session 220) , the UE 115-a may resume the scanning operations for establishing the connection with the cellular network, using the stored set of scanning parameters associated with WWAN session 210. In some other cases, during the WWAN session 220, the UE 115-a may initiate additional scanning operations (e.g., reinitiate scanning operations) for establishing a connection with the cellular network, using another set of scanning parameters (e.g., without using the stored set of scanning parameters) . The WWAN session 220 may be referred to herein as a temporal period during which the UE 115-a may resume the scanning operations from the WWAN session 210 or initiate additional scanning operations.
The UE 115-a may select between resuming the scanning operations (e.g., using the stored set of scanning parameters) or initiating the additional scanning operations (e.g., without using the stored set of scanning parameters) based on a determined set of parameters associated with the UE 115-a. In an example, a first parameter may include mobility information of the UE 115-a (e.g., velocity or motion of the UE 115-a, determined from sensor data of UE 115-a) . In some aspects, the UE 115-a may determine the mobility information (e.g., velocity, motion) of the UE 115-a with respect to one or more thresholds, using sensors such as an AMD sensor or an SMD sensor. The mobility information may include a ‘sensor event’ (also referred to herein as a ‘motion event’ ) , example aspects of which are described herein with reference to FIG. 3, FIG. 4A, and FIG. 4B.
An example second parameter may include a mobility type of the UE 115-a. In some aspects, the mobility type may indicate a level of mobility (e.g., fixed location, moveable within a reduced area, moveable within a relatively larger area) of the UE 115-a. An example third parameter may include a GNSS activity duration (also referred to herein as positioning activity duration) associated with the UE 115-a. In some aspects, the GNSS activity duration may be a temporal period associated with completing operations for acquiring the positioning signal at the UE 115-a. In an example, the GNSS activity duration  may be equal to the duration of the GNSS activity session 215 during which the UE 115-aperforms operations for acquiring a GNSS positioning signal.
According to examples of aspects described herein, based on the parameters, the UE 115-a may select between resuming the scanning operations (e.g., using the stored set of scanning parameters) or initiating the additional scanning operations (e.g., without using the stored set of scanning parameters) . In some examples, the UE 115-a may select between resuming the scanning operations or initiating the additional scanning operations based on motion of the UE 115-a satisfying motion thresholds associated with sensor type or mobility type. In some examples, the UE 115-a may select between resuming the scanning operations or initiating the additional scanning operations based on completion of the set of operations for acquiring the positioning signal (e.g., the GNSS positioning signal) . In an example, the UE 115-a may select between resuming the scanning operations or initiating the additional scanning operations based on the GNSS activity duration. For example, the UE 115-a may measure the GNSS activity duration and determine whether the measured GNSS activity duration exceeds a threshold value (e.g., a threshold duration) .
In an example, during the WWAN session 220, the UE 115-a may resume the scanning operations (e.g., using the stored set of scanning parameters) based on determining the measured GNSS activity duration (e.g., GNSS activity session 215) is below the threshold value (e.g., the threshold duration) . In an alternative example, during the WWAN session 220, the UE 115-a may initiate the additional scanning operations (e.g., without using the stored set of scanning parameters) based on determining the measured GNSS activity duration (e.g., GNSS activity session 215) exceeds the threshold value (e.g., the threshold duration) .
In some cases, the UE 115-a may select between resuming the scanning operations or initiating the additional scanning operations based on a subset of the first through third parameters. For example, the UE 115-a may determine whether to resume the scanning operations or initiate the additional scanning operations, based on the first parameter (e.g., mobility information of the UE 115-a) and the second parameter (e.g., a mobility type of the UE 115-a) .
In some cases, reliability of the third parameter (e.g., GNSS activity duration) may be variable based on mobility of the UE 115-a. In some other cases, reliability of the third  parameter (e.g., GNSS activity duration) may be variable based on coordinates of the UE 115-a with respect to a coverage area (e.g., cell area) supported by the satellite 155-a. For example, the UE 115-a may experience different levels of signal quality (e.g., signal strength, channel quality) at different locations within the coverage area (e.g., at an edge of the cell, at a relative center of the cell) . In some aspects, the UE 115-a may ignore the third parameter (e.g., GNSS activity duration) when determining whether to resume the scanning operations or initiate the additional scanning operations. In some aspects, the UE 115-a may determine whether to resume the scanning operations or initiate the additional scanning operations, based on the first parameter (e.g., mobility information of the UE 115-a) , the second parameter (e.g., a mobility type of the UE 115-a) , and the third parameter (e.g., GNSS activity duration) .
Examples of resuming the scanning operations or initiating additional scanning operations are described with reference to FIG. 3A. Example aspects of the first parameter (e.g., mobility information of the UE 115-a) , the second parameter (e.g., a mobility type of the UE 115-a) , and the third parameter (e.g., GNSS activity duration) are described with reference to FIG. 3A, FIG. 4A and FIG. 4B.
FIG. 3A illustrates an example 300 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure. FIG. 3B illustrates an example 301 of search and cell scan procedure in some devices. Example 300 may implement aspects of wireless communications system 100 or wireless communications system 200. Example 300 is described with reference to UE 115-a, base station 105-a, and satellite 155-a of FIG. 2. In example 300, UE 115-a may be of the first mobility type (e.g., ‘mobility type 1’ , ‘fixed location’ type) , the second mobility type (e.g., ‘mobility type 2’ , ‘reduced mobility’ type, ‘movable within a fixed area’ type) , or the third mobility type (e.g., ‘mobility type 3’ , ‘full mobility’ type, ‘movable within a larger area’ type) .
FIG. 3A illustrates an example 300 of WWAN sessions 305 and GNSS activity sessions 310 that support search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure. WWAN sessions 305 (e.g., WWAN session 305-a through WWAN session 305-d) may be examples of aspects of WWAN session 210 and WWAN session 220 described with reference to FIG. 2. For  example, the WWAN session 305-a may be referred to herein as a temporal period during which the UE 115-a may initiate operations for establishing a connection with a cellular network. In some examples, the WWAN session 305-b through WWAN session 305-d may be referred to herein respectively as temporal periods during which the UE 115-a may either resume the scanning operations from a previous WWAN session 305 (e.g., using a stored set of scanning parameters from the previous WWAN session 305) or initiate additional scanning operations (e.g., without using the stored set of scanning parameters, using another set of scanning parameters) . GNSS activity sessions 310 (e.g., GNSS activity session 310-a through GNSS activity session 310-c) may be examples of aspects of GNSS activity sessions 215 described with reference to FIG. 2. For example, the GNSS activity sessions 310 may be referred to herein as a temporal periods during which the UE 115-a may initiate operations for acquiring a GNSS positioning signal.
According to examples of aspects described herein, during the WWAN session 305-a (e.g., at a temporal instance during the WWAN session 305-a) , the UE 115-a may initiate scanning operations at the UE 115-a for establishing a connection with a cellular network (e.g., establishing a connection with the base station 105-a, establishing a connection with a WWAN) . The scanning operations may include establishing a connection with the cellular network using reduced bandwidth technologies. For example, the UE 115-a may be a Cat-M device or an NB-IoT device, and the scanning operations may include establishing a connection with the cellular network using Cat-M or NB-IoT technologies.
During GNSS activity session 310-a (e.g., at a temporal instance during the GNSS activity session 310-a) , the UE 115-a may initiate operations for acquiring a GNSS positioning signal (also referred to herein as GNSS activity) from the satellite 155-a, for example, while performing the scanning operations for establishing a connection with the cellular network. In some examples, initiating the operations for acquiring the GNSS positioning signal may include pausing the scanning operations for establishing the connection with the cellular network (e.g., pausing WWAN session 305-a) . In some aspects, based on initiating the operations for acquiring the GNSS positioning signal, the UE 115-a may store (e.g., to a memory) the existing scanning parameters associated with the scanning operations.
In an example, the UE 115-a may determine (e.g., using a sensor of the UE 115, such as an AMD sensor or SMD sensor) that a sensor event or motion event of the UE 115-a indicates motion below a threshold (e.g., no motion, velocity below a threshold) . In some aspects, after the GNSS activity session 310-a (e.g., after the UE 115-a has completed operations for acquiring a positioning signal at the UE 115-a) , the UE 115-a may resume the scanning operations for establishing the connection with the cellular network. In an example, the UE 115-a may resume the scanning operations for cases of motion below the threshold (e.g., no motion, velocity below the threshold) , regardless of mobility type of the UE 115-a(e.g., for any mobility type) .
For example, during WWAN session 305-b (e.g., at a temporal instance during the WWAN session 305-b) , the UE 115-a may resume the scanning operations for establishing the connection with the cellular network (e.g., resume the paused scanning operations of WWAN session 305-a) , using the stored set of scanning parameters associated with WWAN session 305-a.
During GNSS activity session 310-b (e.g., at a temporal instance during the GNSS activity session 310-b) , the UE 115-a may initiate operations for acquiring a GNSS positioning signal (also referred to herein as GNSS activity) from the satellite 155-a, for example, while performing the scanning operations for establishing a connection with the cellular network. In some examples, initiating the operations for acquiring the GNSS positioning signal may include pausing the scanning operations for establishing the connection with the cellular network (e.g., pausing WWAN session 305-b) . In some aspects, based on initiating the operations for acquiring the GNSS positioning signal, the UE 115-a may store the existing scanning parameters associated with WWAN session 305-b.
In an example, the UE 115-a may determine (e.g., using a sensor of the UE 115, such as an AMD sensor or SMD sensor) that a sensor event or motion event of the UE 115-a indicates motion of the UE 115-a above a threshold (e.g., significant motion above a threshold, velocity above a threshold) . In some aspects, after the GNSS activity session 310-b (e.g., after the UE 115-a has completed operations for acquiring a positioning signal at the UE 115-a) , the UE 115-a may initiate additional scanning operations (e.g., reinitiate scanning operations) for establishing a connection with the cellular network. In an example, the UE 115-a may initiate the additional scanning operations for cases of motion above the threshold,  for example, for cases in which the UE 115-a is of the second mobility type (e.g., ‘mobility type 2’ , ‘reduced mobility’ type, ‘movable within a fixed area’ type) or the third mobility type (e.g., ‘mobility type 3’ , ‘full mobility’ type, ‘movable within a larger area’ type) .
For example, during the WWAN session 305-c (e.g., at a temporal instance during the WWAN session 305-c) , the UE 115-a may initiate additional scanning operations (e.g., reinitiate scanning operations) for establishing a connection with the cellular network, using another set of scanning parameters (e.g., without using the stored set of scanning parameters associated with WWAN session 305-b) .
During GNSS activity session 310-c (e.g., at a temporal instance during the GNSS activity session 310-b) , the UE 115-a may initiate operations for acquiring a GNSS positioning signal (also referred to herein as GNSS activity) from the satellite 155-a, for example, while performing the scanning operations for establishing a connection with the cellular network. In some examples, initiating the operations for acquiring the GNSS positioning signal may include pausing the scanning operations for establishing the connection with the cellular network (e.g., pausing WWAN session 305-c) . In some aspects, based on initiating the operations for acquiring the GNSS positioning signal, the UE 115-a may store the existing scanning parameters associated with WWAN session 305-c.
In an example, the UE 115-a may be unable to determine motion of the UE 115-a (e.g., UE 115-a may determine that motion of the UE 115-a is unknown) during the GNSS activity session 310-b. For example, the UE 115-a may determine that sensors of the UE 115 (e.g., AMD sensor, SMD sensor) are not configured. In some aspects, after the GNSS activity session 310-c (e.g., after the UE 115-a has completed operations for acquiring a positioning signal at the UE 115-a) , the UE 115-a may initiate additional scanning operations (e.g., reinitiate scanning operations) for establishing a connection with the cellular network. In an example, the UE 115-a may initiate the additional scanning operations for cases in which motion is unknown, for example, for cases in which the UE 115-a is of the second mobility type (e.g., ‘mobility type 2’ , ‘reduced mobility’ type, ‘movable within a fixed area’ type) or the third mobility type (e.g., ‘mobility type 3’ , ‘full mobility’ type, ‘movable within a larger area’ type) .
For example, during the WWAN session 305-d (e.g., at a temporal instance during the WWAN session 305-d) , the UE 115-a may initiate additional scanning operations (e.g.,  reinitiate scanning operations) for establishing a connection with the cellular network, using another set of scanning parameters (e.g., without using the stored set of scanning parameters associated with WWAN session 305-c) .
Example 300 provides advantages over example 301 of FIG. 3B, which is an example of search and cell scan procedure in some other UEs 115. Example 301 includes WWAN sessions 315 (e.g., WWAN session 315-a through WWAN session 315-d) and GNSS activity sessions 320 (e.g., GNSS activity session 320-a through GNSS activity session 320-d) . During a WWAN session 315 (e.g., WWAN session 315-a) , some other UEs 115 may initiate scanning operations for establishing a connection with a cellular network (e.g., establishing a connection with a base station 105, establishing a connection with a WWAN) . During a GNSS activity session 320 (e.g., GNSS activity session 320-a) , some UEs 115 may initiate operations for acquiring a GNSS positioning signal from a satellite 155, for example, while performing the scanning operations for establishing a connection with the cellular network. In some cases, after the GNSS activity session 320 (e.g., GNSS activity session 320-a) , for example, after operations for acquiring a positioning signal at some UEs 115 have been completed, some UEs 115 may restart scanning operations for establishing a connection with the cellular network, without consideration of scanning parameters associated with the WWAN session 315 (e.g., WWAN session 315-a) . In some cases, for example, during a following WWAN session 315 (e.g., WWAN session 315-b) , some UEs 115 may initiate additional scanning operations (e.g., reinitiate scanning operations) for establishing a connection with the cellular network, using another set of scanning parameters (e.g., without consideration of scanning parameters associated with the previous WWAN session 315, for example, WWAN session 315-a) .
FIG. 4A illustrates an example table 400 illustrating a sensor event mapping associated with an NB-IoT device (e.g., a UE 115, a UE 115-a) that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure. FIG. 4B illustrates an example table 401 illustrating a sensor event mapping associated with a Cat-M device (e.g., a UE 115, a UE 115-a) that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure. In some examples, table 400 and table 401 may implement aspects of wireless communications system 100, wireless  communications system 200, and example 300. A ‘sensor event’ may also be referred to herein as a ‘motion event. ’
Referring to FIG. 4A, table 400 illustrates a sensor event mapping based on mobility type of a NB-IoT device (e.g., a UE 115, a UE 115-a) as described herein. Referring to table 400, the sensor event mapping correlates sensor information (e.g., ‘Rest, ’ ‘Sig_motion, ’ and ‘Unknown’ at an AMD sensor, an SMD sensor, or both) at the NB-IoT device to scanning operations by the NB-IoT device for establishing a connection with a cellular network following a GNSS activity session at the NB-IoT device.
The sensor events ‘Rest’ or ‘Motion’ may be associated with an AMD sensor. The sensor event ‘Sig_motion’ (e.g., significant motion, motion above a threshold) may be associated with an SMD sensor. The sensor event ‘Unknown’ may be associated with unknown motion at UE 115 (e.g., the AMD sensor or the SMD sensor are not configured) . The scanning operations include resuming a previous scanning operation for establishing a connection with a cellular network (e.g., using a stored set of scanning parameters) or initiating additional scanning operations for establishing a connection with a cellular network (e.g., without using the stored set of scanning parameters) as described herein.
In an example, the sensor event mapping correlates the sensor information (e.g., motion events ‘Rest, ’ ‘Sig_motion, ’ and ‘Unknown’ determined by an AMD sensor, SMD sensor, or both) at the NB-IoT device to the scanning operations by the NB-IoT device (e.g., resuming scanning operations, initiating additional scanning operations) . In the example of table 400, the sensor event mapping correlates the sensor information and the scanning operations based on device type (e.g., mobility type) and scan depths associated with a cell scan by the NB-IoT device. For example, the mobility type may include Type-1 (e.g., ‘mobility type 1’ or ‘fixed location’ type as described herein) , Type-2 (e.g., ‘mobility type 2’ or ‘moveable within a reduced area’ type as described herein) , or Type-3 (e.g., ‘mobility type 3’ or ‘moveable within a larger area’ type as described herein) . In some examples, the scan depths may be associated with different detection depths (e.g., energy levels) in a cell selection scan by the NB-IoT. The scan depths may be indicated by ‘SNR 0, ’ ‘SNR 1, ’ and ‘SNR 2, ’ where ‘SNR 0’ may be a relatively shallow scan and ‘SNR 2’ may be a relatively deep scan. The term ‘SNR’ may correspond to a signal-to-noise ratio.
In some aspects, significant motion (e.g., above a relatively larger motion threshold) may be relatively less likely for NB-IoT devices having a Type-1 (e.g., ‘mobility type 1’ or ‘fixed location’ type as described herein) or Type-2 (e.g., ‘mobility type 1’ or ‘moveable within a reduced area’ type as described herein) mobility type. In an example, referring to the table 400, NB-IoT devices having a Type-1 or Type-2 mobility type may restart scanning operations for establishing a connection with a cellular network for cases of the sensor event ‘Sig_motion’ (e.g., motion above a threshold) . The sensor event ‘Sig_motion’ may also be referred to herein as ‘significant motion’ or ‘significant mobility’ ) .
Referring to FIG. 4B, table 401 illustrates a sensor event mapping based on mobility type of a Cat-M device (e.g., a UE 115, a UE 115-a) as described herein. Referring to table 401, the sensor event mapping correlates sensor information (e.g., ‘Rest, ’ ‘Sig_motion, ’ and ‘Unknown’ ) at the Cat-M device (e.g., at an AMD sensor or an SMD sensor of the Cat-M device) to scanning operations by the Cat-M device following a GNSS activity session at the Cat-M device. A ‘sensor event’ may also be referred to herein as a ‘motion event. ’
The sensor events ‘Rest’ or ‘Motion’ may be associated with an AMD sensor. The sensor event ‘Sig_motion’ (e.g., significant motion, motion above a threshold) may be associated with an SMD sensor. The sensor event ‘Unknown’ may be associated with unknown motion at UE 115 (e.g., the AMD sensor or the SMD sensor are not configured) . The scanning operations by the Cat-M device include resuming a previous scanning operation (e.g., using a stored set of scanning parameters) or initiating additional scanning operations (e.g., without using the stored set of scanning parameters) as described herein.
In an example, the sensor event mapping correlates the sensor information (e.g., ‘Rest, ’ ‘Sig_motion, ’ and ‘Unknown’ ) at the Cat-M device (e.g., AMD sensor, SMD sensor) to the scanning operations by the Cat-M device (e.g., resuming scanning operations, initiating additional scanning operations) , based on device type (e.g., mobility type) . For example, the mobility type may include Type-1 (e.g., ‘mobility type 1’ or ‘fixed location’ type as described herein) , Type-2 (e.g., ‘mobility type 1’ or ‘moveable within a reduced area’ type as described herein) , or Type-3 (e.g., ‘mobility type 3’ or ‘moveable within a larger area’ type as described herein) .
In some aspects, significant motion (e.g., above a relatively larger motion threshold) may be relatively less likely for Cat-M devices having a Type-1 (e.g., ‘mobility type 1’ or ‘fixed location’ type as described herein) Type-2 (e.g., ‘mobility type 1’ or ‘moveable within a reduced area’ type as described herein) mobility type. In an example, referring to the table 401, Cat-M devices having a Type-1 or Type-2 mobility type may restart scanning operations for establishing a connection with a cellular network for cases of the sensor event ‘Sig_motion’ (e.g., significant motion, motion above a threshold) .
FIG. 5 illustrates an example of a method 500 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure. In some examples, method 500 may implement aspects of wireless communications system 100 or wireless communications system 200. The operations of method 500 may be implemented by a UE 115 or a UE 115-a as described herein with reference to FIG. 1 through FIG. 3.
At 505, a UE 115-a may trigger a WWAN unload based on GNSS activity. For example, during a GNSS activity session 310, the UE 115-a may initiate operations for acquiring a GNSS positioning signal (also referred to herein as GNSS activity) from a satellite 155-a. In some examples, initiating the operations for acquiring the GNSS positioning signal may include pausing the scanning operations for establishing the connection with the cellular network (e.g., pausing a WWAN session 305) . In some aspects, the UE 115-a may unload (e.g., remove or clear) settings or parameters associated with the WWAN from a memory of the UE 115-a (e.g., a memory buffer associated with a modem of the UE 115-a) . In some examples in which the UE 115-a is an NB-IoT device, the WWAN or the GNSS (but not both) may be active or loaded in the memory of the UE 115-a, for example, based on memory specifications (e.g., memory size) of the UE 115-a.
At 510, the UE 115-a may save current WWAN search parameters (e.g., cell scanning parameters) . In some aspects, the UE 115-a may store (e.g., to a memory) the current WWAN search parameters (e.g., cell scanning parameters) associated with the WWAN session 305.
At 515, the UE 115-a may complete GNSS activity, which may trigger a WWAN load at the UE 115-a. For example, after the GNSS activity session 310 (e.g., after the UE 115-a has completed operations for acquiring a positioning signal at the UE 115-a) , the UE  115-a may determine whether to resume the scanning operations for establishing a connection with the WWAN or to initiate additional scanning operations.
At 520, if the UE 115-a has saved WWAN search parameters (e.g., cell scanning parameters) , the UE 115-a may resume WWAN search operations (e.g., cell scanning operations) at 525, using the saved parameters. For example, during a following WWAN session 305, the UE 115-a may resume the scanning operations for establishing the connection with the cellular network (e.g., resume the paused scanning operations of the previous WWAN session 305) , using the stored set of scanning parameters associated with the previous WWAN session 305.
Alternatively at 520, if the UE 115-a has not saved WWAN search parameters (e.g., cell scanning parameters) , the UE 115-a may restart WWAN search operations (e.g., cell scanning operations) at 530, for example, without using any saved parameters. For example, during a following WWAN session 305, the UE 115-a may initiate additional scanning operations (e.g., reinitiate scanning operations) for establishing a connection with the cellular network, using another set of scanning parameters (e.g., without using the stored set of scanning parameters associated with the previous WWAN session 305) .
FIG. 6 illustrates an example of a method 600 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure. In some examples, method 600 may implement aspects of wireless communications system 100 or wireless communications system 200. The operations of method 600 may be implemented by a UE 115 or a UE 115-a as described herein with reference to FIG. 1 through FIG. 3.
At 605, a UE 115-a may trigger a WWAN load based on completion of GNSS activity. For example, after a GNSS activity session 310 (e.g., after the UE 115-a has completed operations for acquiring a positioning signal at the UE 115-a) , the UE 115-a may initiate operations for determining whether to resume WWAN search operations (e.g., using stored WWAN search parameters associated with a previous WWAN session 305) or restart WWAN search operations (e.g., without using any saved WWAN search parameters) .
At 610, if the UE 115-a has saved WWAN search parameters (e.g., cell scanning parameters) , the UE 115-a may determine, for example, at 615 whether the GNSS activity (e.g., a duration of the GNSS activity for acquiring a positioning signal) is less than a  threshold value. Alternatively at 610, if the UE 115-a has not saved WWAN search parameters (e.g., cell scanning parameters) , the UE 115-a may restart WWAN search operations (e.g., cell scanning operations) at 640, for example, without using any saved WWAN search parameters.
At 615, if the UE 115-a determines the GNSS activity (e.g., the duration of the GNSS activity for acquiring a positioning signal) is less than the threshold value, the UE 115-a may identify, for example, at 620 a device type of the UE 115-a. Alternatively at 615, if the UE 115-a determines the GNSS activity (e.g., the duration of the GNSS activity for acquiring a positioning signal) is greater than the threshold value, the UE 115-a may restart WWAN search operations (e.g., cell scanning operations) at 640, for example, without using any saved WWAN search parameters.
At 620, if the UE 115-a is a Type-1 device (e.g., ‘mobility type 1’ or ‘fixed location’ type as described herein) or Type-2 device (e.g., ‘mobility type 2’ or ‘moveable within a reduced area’ type as described herein) , the UE 115-a may identify, for example, at 625 a motion event detected by a sensor (e.g., AMD sensor, SMD sensor) of the UE 115-a. At 625, if the motion event is ‘Rest’ (e.g., no mobility) or ‘Unknown, ’ the UE 115-a may resume WWAN search operations (e.g., cell scanning operations) at 630, for example, using stored WWAN search parameters associated with a previous WWAN session 305. Alternatively at 625, if the motion event is ‘significant mobility, ’ the UE 115-a may restart WWAN search operations (e.g., cell scanning operations) at 640, for example, without using any saved WWAN search parameters.
Alternatively at 620, if the UE 115-a is a Type-3 device (e.g., ‘mobility type 3’ or ‘moveable within a larger area’ type as described herein) , the UE 115-a may identify, for example, at 635 a motion event detected by a sensor (e.g., AMD sensor, SMD sensor) of the UE 115-a. At 635, if the motion event is ‘Rest’ (e.g., no mobility) , the UE 115-a may resume WWAN search operations (e.g., cell scanning operations) at 630, for example, using stored WWAN search parameters associated with a previous WWAN session 305. Alternatively at 625, if the motion event is ‘Significant mobility’ or ‘Unknown, ’ the UE 115-a may restart WWAN search operations (e.g., cell scanning operations) at 640, for example, without using any saved WWAN search parameters.
FIG. 7 shows a block diagram 700 of a device 705 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure. The device 705 may be an example of aspects of a UE 115 as described herein. The device 705 may include a receiver 710, a communications manager 715, and a transmitter 720. The device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to search and cell scan procedure for positioning-cellular network interworking scenarios, etc. ) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The receiver 710 may utilize a single antenna or a set of antennas.
The communications manager 715 may initiate a set of scanning operations at the device for establishing a connection with a cellular network, store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal, select between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both, and initiate a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations. The communications manager 715 may be an example of aspects of the communications manager 1010 described herein.
The communications manager 715, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a  digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 715, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 715, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 715, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 720 may transmit signals generated by other components of the device 705. In some examples, the transmitter 720 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 720 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The transmitter 720 may utilize a single antenna or a set of antennas.
FIG. 8 shows a block diagram 800 of a device 805 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure. The device 805 may be an example of aspects of a device 705, or a UE 115 as described herein. The device 805 may include a receiver 810, a communications manager 815, and a transmitter 830. The device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to search and cell scan procedure for positioning-cellular network interworking scenarios, etc. ) . Information may be passed on to other components of the device 805. The receiver 810 may be an example of aspects of the transceiver 1020  described with reference to FIG. 10. The receiver 810 may utilize a single antenna or a set of antennas.
The communications manager 815 may be an example of aspects of the communications manager 715 as described herein. The communications manager 815 may include a scanning component 820 and a positioning component 825. The communications manager 815 may be an example of aspects of the communications manager 1010 described herein.
The scanning component 820 may initiate a set of scanning operations at the device for establishing a connection with a cellular network, store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal, and select between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
The positioning component 825 may initiate a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations.
The transmitter 830 may transmit signals generated by other components of the device 805. In some examples, the transmitter 830 may be collocated with a receiver 810 in a transceiver module. For example, the transmitter 830 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The transmitter 830 may utilize a single antenna or a set of antennas.
FIG. 9 shows a block diagram 900 of a communications manager 905 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure. The communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein. The communications manager 905 may include a scanning component 910, a positioning component 915, a motion  component 920, and a connection component 925. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The scanning component 910 may initiate a set of scanning operations at the device for establishing a connection with a cellular network. In some examples, the scanning component 910 may store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal. In some examples, the scanning component 910 may select between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
In some examples, the set of scanning operations includes a set of scanning operations respectively associated with a set of scan depths, and where the selecting is based on the set of scan depths. In some cases, the selecting is based on a mobility type of the device, where the mobility type is included in a set of mobility types associated with the set of motion thresholds. In some cases, the selecting is based on completing or canceling the set of operations for acquiring the positioning signal.
The positioning component 915 may initiate a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations. In some examples, the positioning component 915 may measure a temporal period associated with completing the set of operations for acquiring the positioning signal at the device, where the selecting is based on the measured temporal period satisfying a threshold. In some examples, acquiring the positioning signal includes acquiring a GNSS positioning signal. The motion component 920 may detect the motion of the device using a set of sensors of the device, the set of sensors including at least an AMD sensor and an SMD sensor, where the set of motion thresholds includes a first threshold associated with the AMD sensor and a second threshold associated  with the SMD sensor. The connection component 925 may establish the connection with the cellular network includes establishing the connection with a WWAN.
FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure. The device 1005 may be an example of or include the components of device 705, device 805, or a UE 115 as described herein. The device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, an I/O controller 1015, a transceiver 1020, an antenna 1025, memory 1030, and a processor 1040. These components may be in electronic communication via one or more buses (e.g., bus 1045) .
The communications manager 1010 may initiate a set of scanning operations at the device for establishing a connection with a cellular network, store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal, select between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both, and initiate a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations.
The I/O controller 1015 may manage input and output signals for the device 1005. The I/O controller 1015 may also manage peripherals not integrated into the device 1005. In some cases, the I/O controller 1015 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 1015 may utilize an operating system such as 
Figure PCTCN2020138914-appb-000001
or another known operating system. In other cases, the I/O controller 1015 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the  I/O controller 1015 may be implemented as part of a processor. In some cases, a user may interact with the device 1005 via the I/O controller 1015 or via hardware components controlled by the I/O controller 1015.
The transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1025. However, in some cases the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1030 may include random-access memory (RAM) and read-only memory (ROM) . The memory 1030 may store computer-readable, computer-executable code 1035 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 1030 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1040 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1040. The processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting search and cell scan procedure for positioning-cellular network interworking scenarios) .
The code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1035 may not be directly executable by the processor 1040  but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 11 shows a flowchart illustrating a method 1100 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure. The operations of method 1100 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 7 through 10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1105, the UE may initiate a set of scanning operations at the device for establishing a connection with a cellular network. The operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a scanning component as described with reference to FIGs. 7 through 10.
At 1110, the UE may initiate a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations. The operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a positioning component as described with reference to FIGs. 7 through 10.
At 1115, the UE may store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal. The operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a scanning component as described with reference to FIGs. 7 through 10.
At 1120, the UE may select between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection  with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both. The operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by a scanning component as described with reference to FIGs. 7 through 10.
FIG. 12 shows a flowchart illustrating a method 1200 that supports search and cell scan procedure for positioning-cellular network interworking scenarios in accordance with aspects of the present disclosure. The operations of method 1200 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 7 through 10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1205, the UE may initiate a set of scanning operations at the device for establishing a connection with a cellular network. The operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a scanning component as described with reference to FIGs. 7 through 10.
At 1210, the UE may initiate a set of operations for acquiring a positioning signal at the device, where initiating the set of operations for acquiring the positioning signal includes pausing the set of scanning operations. The operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a positioning component as described with reference to FIGs. 7 through 10.
At 1215, the UE may store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, where the storing is based on initiating the set of operations for acquiring the positioning signal. The operations of 1215 may be performed according to the methods described herein. In some  examples, aspects of the operations of 1215 may be performed by a scanning component as described with reference to FIGs. 7 through 10.
At 1220, the UE may detect motion of the device using a set of sensors of the device, the set of sensors including at least an AMD sensor and an SMD sensor, where the set of motion thresholds includes a first threshold associated with the AMD sensor and a second threshold associated with the SMD sensor. The operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by a motion component as described with reference to FIGs. 7 through 10.
At 1225, the UE may select between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, where the selecting is based on completion of the set of operations for acquiring the positioning signal, the motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both. The operations of 1225 may be performed according to the methods described herein. In some examples, aspects of the operations of 1225 may be performed by a scanning component as described with reference to FIGs. 7 through 10.
The following provides an overview of aspects of the present disclosure:
Aspect 1: A method for wireless communication at a device, comprising: initiating a set of scanning operations at the device for establishing a connection with a cellular network; initiating a set of operations for acquiring a positioning signal at the device, wherein initiating the set of operations for acquiring the positioning signal comprises pausing the set of scanning operations; storing a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, wherein the storing is based at least in part on initiating the set of operations for acquiring the positioning signal; and selecting between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, wherein the selecting is based at least in part on completion of the set of operations for acquiring the positioning signal,  motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
Aspect 2: The method of aspect 1, further comprising: detecting the motion of the device using a set of sensors of the device, the set of sensors comprising at least an AMD sensor and an SMD sensor, wherein the set of motion thresholds comprises a first threshold associated with the AMD sensor and a second threshold associated with the SMD sensor.
Aspect 3: The method of aspect 2, further comprising: measuring a temporal period associated with completing the set of operations for acquiring the positioning signal at the device, wherein the selecting is based at least in part on the measured temporal period satisfying a threshold.
Aspect 4: The method of any of aspects 1 through 3, wherein the set of scanning operations comprises a plurality of scanning operations respectively associated with a plurality of scan depths, and wherein the selecting is based at least in part on the plurality of scan depths.
Aspect 5: The method of any of aspects 1 through 4, wherein the selecting is based at least in part on a mobility type of the device, the mobility type is included in a set of mobility types associated with the set of motion thresholds.
Aspect 6: The method of any of aspects 1 through 5, wherein the selecting is based at least in part on completing or canceling the set of operations for acquiring the positioning signal.
Aspect 7: The method of any of aspects 1 through 6, wherein establishing the connection with the cellular network comprises establishing the connection with a WWAN.
Aspect 8: The method of any of aspects 1 through 7, wherein acquiring the positioning signal comprises acquiring a GNSS.
Aspect 9: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 1 through 8.
Aspect 10: An apparatus for wireless communication at a device, comprising at least one means for performing a method of any of aspects 1 through 8.
Aspect 11: A non-transitory computer-readable medium storing code for wireless communication at a device, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 8.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple  microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (32)

  1. A method for wireless communication at a device, comprising:
    initiating a set of scanning operations at the device for establishing a connection with a cellular network;
    initiating a set of operations for acquiring a positioning signal at the device, wherein initiating the set of operations for acquiring the positioning signal comprises pausing the set of scanning operations;
    storing a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, wherein the storing is based at least in part on initiating the set of operations for acquiring the positioning signal; and
    selecting between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, wherein the selecting is based at least in part on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
  2. The method of claim 1, further comprising:
    detecting the motion of the device using a set of sensors of the device, the set of sensors comprising at least an absolute motion detection (AMD) sensor and a significant motion detection (SMD) sensor, wherein the set of motion thresholds comprises a first threshold associated with the AMD sensor and a second threshold associated with the SMD sensor.
  3. The method of claim 2, further comprising:
    measuring a temporal period associated with completing the set of operations for acquiring the positioning signal at the device, wherein the selecting is based at least in part on the measured temporal period satisfying a threshold.
  4. The method of claim 1, wherein the set of scanning operations comprises a plurality of scanning operations respectively associated with a plurality of scan depths, and wherein the selecting is based at least in part on the plurality of scan depths.
  5. The method of claim 1, wherein the selecting is based at least in part on a mobility type of the device, wherein the mobility type is included in a set of mobility types associated with the set of motion thresholds.
  6. The method of claim 1, wherein the selecting is based at least in part on completing or canceling the set of operations for acquiring the positioning signal.
  7. The method of claim 1, wherein:
    establishing the connection with the cellular network comprises establishing the connection with a wireless wide area network (WWAN) .
  8. The method of claim 1, wherein:
    acquiring the positioning signal comprises acquiring a global navigation satellite system (GNSS) positioning signal.
  9. An apparatus for wireless communication at a device, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    initiate a set of scanning operations at the device for establishing a connection with a cellular network;
    initiate a set of operations for acquiring a positioning signal at the device, wherein initiating the set of operations for acquiring the positioning signal comprises pausing the set of scanning operations;
    store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, wherein the storing is based at least in part on initiating the set of operations for acquiring the positioning signal; and
    select between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, wherein the selecting is based at least in part on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
  10. The apparatus of claim 9, wherein the instructions are further executable by the processor to cause the apparatus to:
    detect the motion of the device using a set of sensors of the device, the set of sensors comprising at least an absolute motion detection (AMD) sensor and a significant motion detection (SMD) sensor, wherein the set of motion thresholds comprises a first threshold associated with the AMD sensor and a second threshold associated with the SMD sensor.
  11. The apparatus of claim 10, wherein the instructions are further executable by the processor to cause the apparatus to:
    measure a temporal period associated with completing the set of operations for acquiring the positioning signal at the device, wherein the selecting is based at least in part on the measured temporal period satisfying a threshold.
  12. The apparatus of claim 9, wherein the set of scanning operations comprises a plurality of scanning operations respectively associated with a plurality of scan depths, and wherein the selecting is based at least in part on the plurality of scan depths.
  13. The apparatus of claim 9, wherein the selecting is based at least in part on a mobility type of the device, wherein the mobility type is included in a set of mobility types associated with the set of motion thresholds.
  14. The apparatus of claim 9, wherein the selecting is based at least in part on completing or canceling the set of operations for acquiring the positioning signal.
  15. The apparatus of claim 9, wherein the instructions to establish the connection with the cellular network are executable by the processor to cause the apparatus to establish the connection with a wireless wide area network (WWAN) .
  16. The apparatus of claim 9, wherein the instructions to acquire the positioning signal are executable by the processor to cause the apparatus to acquire a global navigation satellite system (GNSS) positioning signal.
  17. An apparatus for wireless communication at a device, comprising:
    means for initiating a set of scanning operations at the device for establishing a connection with a cellular network;
    means for initiating a set of operations for acquiring a positioning signal at the device, wherein initiating the set of operations for acquiring the positioning signal comprises pausing the set of scanning operations;
    means for storing a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, wherein the storing is based at least in part on initiating the set of operations for acquiring the positioning signal; and
    means for selecting between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, wherein the selecting is based at least in part on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
  18. The apparatus of claim 17, further comprising:
    means for detecting the motion of the device using a set of sensors of the device, the set of sensors comprising at least an absolute motion detection (AMD) sensor and a significant motion detection (SMD) sensor, wherein the set of motion thresholds comprises a first threshold associated with the AMD sensor and a second threshold associated with the SMD sensor.
  19. The apparatus of claim 18, further comprising:
    means for measuring a temporal period associated with completing the set of operations for acquiring the positioning signal at the device, wherein the selecting is based at least in part on the measured temporal period satisfying a threshold.
  20. The apparatus of claim 17, wherein the set of scanning operations comprises a plurality of scanning operations respectively associated with a plurality of scan depths, and wherein the selecting is based at least in part on the plurality of scan depths.
  21. The apparatus of claim 17, wherein the selecting is based at least in part on a mobility type of the device, wherein the mobility type is included in a set of mobility types associated with the set of motion thresholds.
  22. The apparatus of claim 17, wherein the selecting is based at least in part on completing or canceling the set of operations for acquiring the positioning signal.
  23. The apparatus of claim 17, wherein the means for establishing the connection with the cellular network comprises means for establishing the connection with a wireless wide area network (WWAN) .
  24. The apparatus of claim 17, wherein the means for initiating the set of operations for acquiring the positioning signal comprises means for acquiring a global navigation satellite system (GNSS) positioning signal.
  25. A non-transitory computer-readable medium storing code for wireless communication at a device, the code comprising instructions executable by a processor to:
    initiate a set of scanning operations at the device for establishing a connection with a cellular network;
    initiate a set of operations for acquiring a positioning signal at the device, wherein initiating the set of operations for acquiring the positioning signal comprises pausing the set of scanning operations;
    store a set of scanning parameters associated with the set of scanning operations for establishing the connection with the cellular network, wherein the storing is based at least in part on initiating the set of operations for acquiring the positioning signal; and
    select between resuming the set of scanning operations for establishing the connection with the cellular network using the set of scanning parameters or initiating a second set of scanning operations at the device for establishing the connection with the cellular network using a second set of scanning parameters, wherein the selecting is based at least in part on completion of the set of operations for acquiring the positioning signal, motion of the device satisfying one or more motion thresholds of a set of motion thresholds, or both.
  26. The non-transitory computer-readable medium of claim 25, wherein the instructions are further executable to:
    detect the motion of the device using a set of sensors of the device, the set of sensors comprising at least an absolute motion detection (AMD) sensor and a significant motion detection (SMD) sensor, wherein the set of motion thresholds comprises a first threshold associated with the AMD sensor and a second threshold associated with the SMD sensor.
  27. The non-transitory computer-readable medium of claim 26, wherein the instructions are further executable to:
    measure a temporal period associated with completing the set of operations for acquiring the positioning signal at the device, wherein the selecting is based at least in part on the measured temporal period satisfying a threshold.
  28. The non-transitory computer-readable medium of claim 25, wherein the set of scanning operations comprises a plurality of scanning operations respectively associated with a plurality of scan depths, and wherein the selecting is based at least in part on the plurality of scan depths.
  29. The non-transitory computer-readable medium of claim 25, wherein the selecting is based at least in part on a mobility type of the device, wherein the mobility type is included in a set of mobility types associated with the set of motion thresholds.
  30. The non-transitory computer-readable medium of claim 25, wherein the selecting is based at least in part on completing or canceling the set of operations for acquiring the positioning signal.
  31. The non-transitory computer-readable medium of claim 25, wherein the instructions to establish the connection with the cellular network are executable by the processor to cause the device to establish the connection with a wireless wide area network (WWAN) .
  32. The non-transitory computer-readable medium of claim 25, wherein the instructions to acquire the positioning signal are executable by the processor to cause the device to acquire a global navigation satellite system (GNSS) positioning signal.
PCT/CN2020/138914 2020-12-24 2020-12-24 Search and cell scan procedure for positioning-cellular network interworking scenarios WO2022133878A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138914 WO2022133878A1 (en) 2020-12-24 2020-12-24 Search and cell scan procedure for positioning-cellular network interworking scenarios

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138914 WO2022133878A1 (en) 2020-12-24 2020-12-24 Search and cell scan procedure for positioning-cellular network interworking scenarios

Publications (1)

Publication Number Publication Date
WO2022133878A1 true WO2022133878A1 (en) 2022-06-30

Family

ID=82158624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138914 WO2022133878A1 (en) 2020-12-24 2020-12-24 Search and cell scan procedure for positioning-cellular network interworking scenarios

Country Status (1)

Country Link
WO (1) WO2022133878A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040210891A1 (en) * 2003-04-17 2004-10-21 Ntt Docomo, Inc. Update system and method for updating a scanning subsystem in a mobile communication framework
CN1666552A (en) * 2002-05-13 2005-09-07 高通股份有限公司 Subscriber station with dynamic multi-mode service acquisition capability
WO2012123616A1 (en) * 2011-03-11 2012-09-20 Nokia Corporation Configuring cellular connectivity
US20120282942A1 (en) * 2011-05-02 2012-11-08 Nokia Siemens Networks Oy Methods, apparatuses and computer program products for configuring frequency aggregation
WO2019169359A1 (en) * 2018-03-02 2019-09-06 Futurewei Technologies, Inc. System and method for hierarchical paging, cell selection and cell reselection
CN110574430A (en) * 2017-05-04 2019-12-13 苹果公司 Radio link monitoring and cell search techniques for high mobile speeds

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1666552A (en) * 2002-05-13 2005-09-07 高通股份有限公司 Subscriber station with dynamic multi-mode service acquisition capability
US20040210891A1 (en) * 2003-04-17 2004-10-21 Ntt Docomo, Inc. Update system and method for updating a scanning subsystem in a mobile communication framework
WO2012123616A1 (en) * 2011-03-11 2012-09-20 Nokia Corporation Configuring cellular connectivity
US20120282942A1 (en) * 2011-05-02 2012-11-08 Nokia Siemens Networks Oy Methods, apparatuses and computer program products for configuring frequency aggregation
CN110574430A (en) * 2017-05-04 2019-12-13 苹果公司 Radio link monitoring and cell search techniques for high mobile speeds
WO2019169359A1 (en) * 2018-03-02 2019-09-06 Futurewei Technologies, Inc. System and method for hierarchical paging, cell selection and cell reselection

Similar Documents

Publication Publication Date Title
US11290147B2 (en) Frequency hopping with slot bundling
US11632735B2 (en) Change of tracking area code for wireless networks
US11308810B2 (en) Sidelink based vehicle-to-pedestrian system
EP4104310A1 (en) Beam management in a wireless communications network
WO2023009260A1 (en) Power saving mode for satellite access
WO2022211971A1 (en) Dedicated unicast transmission of satellite location information
CN115517008A (en) System information block acquisition for wireless networks
KR20220098737A (en) Reporting of channel state information through discontinuous reception operations
US11653402B2 (en) User equipment (UE) assisted termination selection for non-standalone or dual connectivity
US11706709B2 (en) Micro sleep techniques in star topology sidelink communications
US20220046456A1 (en) Early measurements for logged minimization of drive test
US20220104223A1 (en) Techniques for reference signal patterns
US20230319716A1 (en) Radio frequency band scanning for multiple subscriber identification modules
US11991656B2 (en) Synchronization signal selection across multiple transceiver nodes
WO2022133878A1 (en) Search and cell scan procedure for positioning-cellular network interworking scenarios
WO2021253171A1 (en) Determining global navigation system timing with dual sim environment
WO2023024010A1 (en) Base station assistance for user equipment discovery
US11989104B2 (en) Techniques for fault detection in wireless communications systems
US20230309019A1 (en) Iterative wake up signaling for power saving
US20230403586A1 (en) Techniques for performing non-terrestrial cell measurements
US20230121634A1 (en) Techniques for communicating satellite revisit time in a non-terrestrial network
WO2022077416A1 (en) Device-to-device discontinuous reception latency enhancement
WO2023220849A1 (en) Energy harvesting activity timeouts
US20230094902A1 (en) Techniques for global navigation satellite system positioning
WO2023212854A1 (en) Source based synchronization for wireless devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966451

Country of ref document: EP

Kind code of ref document: A1