WO2021253171A1 - Determining global navigation system timing with dual sim environment - Google Patents

Determining global navigation system timing with dual sim environment Download PDF

Info

Publication number
WO2021253171A1
WO2021253171A1 PCT/CN2020/096142 CN2020096142W WO2021253171A1 WO 2021253171 A1 WO2021253171 A1 WO 2021253171A1 CN 2020096142 W CN2020096142 W CN 2020096142W WO 2021253171 A1 WO2021253171 A1 WO 2021253171A1
Authority
WO
WIPO (PCT)
Prior art keywords
global navigation
time
subscription
synchronization signal
determining
Prior art date
Application number
PCT/CN2020/096142
Other languages
French (fr)
Inventor
Yi Qin
Cheol Hee Park
Jintao HOU
Xiaochen Chen
Haizhou LIU
Zengyu Hao
Hongjin GUO
Feng Chen
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/096142 priority Critical patent/WO2021253171A1/en
Publication of WO2021253171A1 publication Critical patent/WO2021253171A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others

Definitions

  • the following relates generally to wireless communications and more specifically to determining global navigation system timing with dual subscriber identity module (SIM) environment.
  • SIM subscriber identity module
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a dual-SIM UE may be able to support wireless connections with a global navigation system (e.g., global navigation satellite system) , as well as one or more additional wireless connections with wireless wide area networks (WWANs) (e.g., 4G, 5G) .
  • WWANs wireless wide area networks
  • the UE may be configured to determine a global navigation time associated with the global navigation system.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support determining global navigation system timing with dual subscriber identity module (SIM) environment.
  • SIM subscriber identity module
  • the described techniques provide for a dual-SIM user equipment (UE) determining global navigation times associated with a global navigation system based on synchronization signals received from base stations associated with two or more subscriptions (e.g., two or more wireless wide area networks (WWANs) ) .
  • WWANs wireless wide area networks
  • Such techniques may enable global navigation when the UE is out of coverage with respect to the global navigation system. Additionally, in cases where the UE goes out of coverage with respect to a first subscription, the UE may continue to determine global navigation times based on synchronization signals received from a second subscription.
  • synchronization signals associated with two or more subscriptions techniques described herein may enable more efficient and accurate determination of global navigation times.
  • a method of wireless communication at a UE may include receiving, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system, receiving, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription, determining a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time, receiving, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription, and determining a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system, receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription, determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time, receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription, and determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
  • the apparatus may include means for receiving, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system, receiving, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription, determining a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time, receiving, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription, and determining a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system, receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription, determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time, receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription, and determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription prior to receiving the second synchronization signal, where determining the third global navigation time may be based on receiving the third synchronization signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first base station associated with the first subscription, a third synchronization signal indicating a third time associated with the first subscription prior to receiving the first synchronization signal, where determining the second global navigation time may be based on receiving the third synchronization signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a difference between the first time and the third time, where determining the second global navigation time may be based on determining the difference.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a loss of coverage associated with the global navigation system, where determining the second global navigation time and determining the third global navigation time may be based on identifying the loss of coverage.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing one or more measurements on a first reference signal received from the first base station associated with the first subscription and a second reference signal received from the second base station associated with the second subscription based on identifying the loss of coverage, determining a first reference signal value associated with the first reference signal and a second reference signal value associated with the second reference signal based on performing the one or more measurements, and comparing the first reference signal value and the second reference signal value, where determining the second global navigation time using the first synchronization signal may be based on comparing the first reference signal value and the second reference signal value.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing one or more measurements on a third reference signal received from the first base station associated with the first subscription and a fourth reference signal received from the second base station associated with the second subscription based on identifying the loss of coverage, determining a third reference signal value associated with the third reference signal and a fourth reference signal value associated with the fourth reference signal based on performing the one or more measurements, and comparing the third reference signal value and the fourth reference signal value, where determining the third global navigation time using the second synchronization signal may be based on comparing the third reference signal value and the fourth reference signal value.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a third time associated with the second subscription based on receiving the first synchronization signal that indicates the first time associated with the first subscription, where determining the third global navigation time may be based on determining the third time associated with the second subscription.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a difference between the second time associated with the second synchronization signal and the third time associated with the second subscription, where determining the third global navigation time may be based on determining the difference.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing a unit conversion procedure to convert the difference to a unit associated with the second global navigation time, where determining the third global navigation time may be based on performing the unit conversion procedure.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a third time associated with the first subscription based on receiving the one or more synchronization signals indicating the first global navigation time, and determining a difference between the first time associated with the first subscription and the third time associated with the first subscription, where determining the second global navigation time may be based on determining the difference and the first global navigation time.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription, where the third synchronization signal may be received prior to the second synchronization signal, where determining the second global navigation time may be based on the first synchronization signal and the third synchronization signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a first interim time associated with the global navigation system based on the first synchronization signal, and determining a second interim time associated with the global navigation system based on the third synchronization signal, where the second global navigation time may be determined based on the first interim time and the second interim time.
  • the second global navigation time includes at least one of an average of the first interim time and the second interim time, or a weighted average of the first interim time and the second interim time.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first base station associated with the first subscription, a fourth synchronization signal indicating a fourth time associated with the first subscription, where the fourth synchronization signal may be received after the first synchronization signal, where determining the third global navigation time may be based on the second synchronization signal and the fourth synchronization signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing one or more measurements on the first synchronization signal and the third synchronization signal, determining a first received signal value associated with the first synchronization signal and a second received signal value associated with the third synchronization signal based on performing the one or more measurements, determining the first received signal value or the second received signal value satisfies a threshold value, and determining the second global navigation time based on the first synchronization signal or the third synchronization signal which does not satisfy the threshold value based on the first received signal value or the second received signal value satisfying the threshold value.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a temporal relationship between times associated with the first subscription and times associated with the second subscription based on the first synchronization signal indicating the first time associated with the first subscription and the second synchronization signal indicating the second time associated with the second subscription.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a loss of coverage associated with the first subscription after receiving the first synchronization signal, receiving, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription, and determining a fourth time associated with the first subscription based on the temporal relationship and receiving the third synchronization signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting at least one of an uplink signal or a first sidelink signal based on determining the second global navigation time, the third global navigation time, or both, and receiving at least one of a downlink signal or a second sidelink signal based on determining the second global navigation time, the third global navigation time, or both.
  • the global navigation system includes a global navigation satellite system (GNSS) or a GPS, and at least one of the first global navigation time or the second global navigation time includes a GNSS time.
  • GNSS global navigation satellite system
  • At least one of the first time or the second time includes a wide wireless area network time.
  • FIG. 1 illustrates an example of a system of a wireless communications system that supports determining global navigation system timing with dual subscriber identity module (SIM) environment in accordance with aspects of the present disclosure.
  • SIM subscriber identity module
  • FIG. 2 illustrates an example of a wireless communications system that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a timing diagram that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a process flow that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • FIGs. 5 and 6 show block diagrams of devices that support determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • FIG. 7 shows a block diagram of a communications manager that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • FIG. 8 shows a diagram of a system including a device that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • FIGs. 9 through 11 show flowcharts illustrating methods that support determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • a user equipment may establish a wireless connection with a global navigation system, such as a global navigation satellite system (GNSS) , as well as one or more additional wireless connections with wireless wide area networks (WWANs) , such as 4G or 5G.
  • a global navigation system such as a global navigation satellite system (GNSS)
  • WWANs wireless wide area networks
  • the UE may be configured to determine a global navigation time associated with the global navigation system (e.g., GNSS time) .
  • Synchronization signals received from the global navigation system may indicate the global navigation system times, and the UE may determine global navigation times associated with the global navigation system based on the received synchronization signals.
  • the UE may go out of coverage with respect to the global navigation system due to the movement of the UE, terrestrial obstructions, weather conditions, or the like. In such cases, the UE may rely on synchronization signals received from WWANs to determine global navigation times associated with the global navigation system.
  • determining global navigation times based on synchronization signals received from base stations associated with terrestrial networks may sometimes result in inaccurate determination of global navigation times, thereby leading to inefficient and unreliable wireless communications at the UE. For instance, if the UE determines global navigation times based on synchronization signals received from a terrestrial network, the UE may be unable to determine global navigation times when the UE also goes out of service with respect to the terrestrial network.
  • a dual subscriber identity module (SIM) UE may be configured to determine global navigation times associated with a global navigation system when the UE is out of coverage with respect to the global navigation system based on synchronization signals received from base stations associated with two or more subscriptions. For example, a dual-SIM UE may establish a first connection with a global navigation system, a second connection with a base station associated with a first subscription (e.g., first WWAN) , and a third connection with another base station associated with a second subscription (e.g., second WWAN) .
  • first WWAN first WWAN
  • second WWAN second WWAN
  • the UE may continue to determine global navigation times based on synchronization signals received from the first and second subscriptions. Furthermore, in cases where the UE goes out of coverage with respect to the first subscription, the UE may continue to determine global navigation times based on synchronization signals received from the second subscription.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are also described in the context of an example timing diagram and an example process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to recovering user equipment from call failure in new radio.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 155 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 155 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 155 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • the wireless communications system 100 includes base stations 105, UEs 115, satellites 120, and a core network 130.
  • the wireless communications system 100 may be an LTE network, an LTE-A network, an LTE-A Pro network, or a NR network.
  • wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
  • ultra-reliable e.g., mission critical
  • Wireless communications system 100 may also include one or more satellites 120.
  • Satellite 120 may communicate with base stations 105 (also referred to as gateways in NTNs) and UEs 115 (or other high altitude or terrestrial communications devices) .
  • Satellite 120 may be any suitable type of communication satellite configured to relay communications between different end nodes in a wireless communications system.
  • Satellite 120 may be an example of a space satellite, a balloon, a dirigible, an airplane, a drone, an unmanned aerial vehicle, and/or the like.
  • the satellite 120 may be in a geosynchronous or geostationary earth orbit, a low earth orbit or a medium earth orbit.
  • a satellite 120 may be a multi-beam satellite configured to provide service for multiple service beam coverage areas in a predefined geographical service area.
  • a satellite 120 may support a first cell and a second cell, where a first beam of the satellite 120 supports the first cell and a second beam of the satellite 120 supports the second cell.
  • the satellite 120 may be any distance away from the surface of the earth.
  • a cell may be provided or established by a satellite 120 as part of a non-terrestrial network.
  • a satellite 120 may, in some cases, perform the functions of a base station 105, act as a bent-pipe satellite, or may act as a regenerative satellite, or a combination thereof.
  • satellite 120 may be an example of a smart satellite, or a satellite with intelligence.
  • a smart satellite may be configured to perform more functions than a regenerative satellite (e.g., may be configured to perform particular algorithms beyond those used in regenerative satellites, to be reprogrammed, etc. ) .
  • a bent-pipe transponder or satellite may be configured to receive signals from ground stations and transmit those signals to different ground stations.
  • a bent-pipe transponder or satellite may amplify signals or shift from uplink frequencies to downlink frequencies.
  • a regenerative transponder or satellite may be configured to relay signals like the bent-pipe transponder or satellite, but may also use on-board processing to perform other functions. Examples of these other functions may include demodulating a received signal, decoding a received signal, re-encoding a signal to be transmitted, or modulating the signal to be transmitted, or a combination thereof.
  • a bent-pipe satellite e.g., satellite 120
  • the UEs 115, the base stations 105, and/or satellites 120 may support communications to enable improvements to determination of global navigation times associated with a global navigation system (e.g., GNSS) .
  • a dual-SIM UE 115 of the wireless communications system 100 may be configured to determine global navigation times associated with a global navigation system when the UE 115 is out of coverage with respect to the global navigation system based on synchronization signals received from base stations 105 associated with two or more subscriptions.
  • a dual-SIM UE 115 may establish a first connection with a global navigation system (e.g., via a satellite 120) , a second connection with a first base station 105-a associated with a first subscription, and a third connection with a second base station 105-b associated with a second subscription.
  • the UE 115 may continue to determine global navigation times based on synchronization signals received from the first and second subscriptions (e.g., base stations 105-a and 105-b) .
  • the UE 115 may continue to determine global navigation times based on synchronization signals received from the second subscription (e.g., second base station 105-b) .
  • the techniques described herein may enable more efficient and accurate determination of global navigation times in the wireless communications system 100.
  • the techniques described herein may enable a UE 115 to determine global navigation times despite going out of coverage with respect to the global navigation system and/or a subscription (e.g., WWAN) with which it is communicatively coupled, thereby improving the reliability of global navigation time determination.
  • a subscription e.g., WWAN
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100.
  • the wireless communications system 200 may include a UE 115-a, a first base station 105-a, a second base station 105 b, and a satellite 120-a, which may be examples of UEs 115, base stations 105, and satellites 120, as described with reference to FIG. 1.
  • the satellite 120-a may be associated with a global navigation system (e.g., GNSS or global positioning system (GPS) ) .
  • the satellite 120-a may be associated with a non-terrestrial network (NTN) .
  • the wireless communications system 200 may support transmissions between the UE 115-a and the satellite 120-a via a communication link 205-c.
  • UE 115-a may transmit uplink transmissions to the satellite 120-a via the communication link 205-c
  • the satellite 120-a may transmit downlink transmissions to the UE 115-a via communication link 205-c.
  • the satellite 120-a may be in an orbit, such as low earth orbit, medium earth orbit, geostationary earth orbit, or other non-geostationary earth orbit. In any of these examples, the satellite 120-a may be many thousands of kilometers from Earth, and therefore may be thousands of kilometers from the UE 115-a. Therefore, each transmission between the satellite 120-a and the UE 115-a may therefore travel from Earth the distance to the satellite 120-a and back to Earth.
  • an orbit such as low earth orbit, medium earth orbit, geostationary earth orbit, or other non-geostationary earth orbit.
  • the satellite 120-a may be many thousands of kilometers from Earth, and therefore may be thousands of kilometers from the UE 115-a. Therefore, each transmission between the satellite 120-a and the UE 115-a may therefore travel from Earth the distance to the satellite 120-a and back to Earth.
  • the UE 115-a may communicate with the first base station 105-a and the second base station 105-b using communication links 205-a and 205-b, respectively, which may be examples of wireless communications links (e.g., 3G, 4G, LTE, or 5G links) between the UE 115-a and the base stations 105-a and 105-b.
  • the communication links 205-a and 205-b may include examples of an access link (e.g., a Uu link) .
  • the communication links 205-a and 205-b may include bi-directional links that include both uplink and downlink communication.
  • the UE 115-a may transmit uplink signals, such as uplink control signals or uplink data signals, to the first base station 105-a using the first communication link 205-a and the first base station 105-a may transmit downlink signals, such as downlink control signals or downlink data signals, to the UE 115-a using the communication link 205-a.
  • the UE 115-a may transmit uplink signals, such as uplink control signals or uplink data signals, to the second base station 105-b using the second communication link 205-b and the second base station 105-b may transmit downlink signals, such as downlink control signals or downlink data signals, to the UE 115-a using the communication link 205-b.
  • the first base station 105-a and the second base station 105-b may, in some cases, be collocated. Moreover, in some aspects, the first base station 105-a and the second base station 105-b may be associated with one or more subscriptions supported by the UE 115-a.
  • the UE 115-a may include a dual-SIM or multi-SIM UE 115-a, which supports a first subscription and a second subscription.
  • the first base station 105-a may be associated with (e.g., support) the first subscription
  • the second base station 105-b may be associated with (e.g., support) the second subscription.
  • a UE may be configured to determine global navigation timing associated with a global navigation system (e.g., GNSS time) .
  • Synchronization signals received from satellites of the global navigation system may indicate global navigation system times, and the UE may determine global navigation times associated with the global navigation system based on the received synchronization signals.
  • the UE may be out of coverage with respect to the global navigation system due to the movement of the UE, movement of a satellite, terrestrial obstructions, weather conditions, or the like.
  • the UE may rely on synchronization signals received from WWANs (e.g., terrestrial wireless networks) to determine global navigation times associated with the global navigation system.
  • WWANs e.g., terrestrial wireless networks
  • determining global navigation times based on synchronization signals received from base stations associated with terrestrial networks may result in inaccurate determination of global navigation times, thereby leading to inefficient and unreliable wireless communications at the UE. For example, in cases where the UE goes out of coverage with respect to the terrestrial network, the UE may be unable to determine global navigation times.
  • the wireless communications system 200 may be configured to support transmissions between the UE 115-a, the base stations 105-a and 105-b, and the satellite 120-a in order to address these issues.
  • the dual-SIM UE 115-a may be configured to determine global navigation times associated with a global navigation system when the UE 115-a is out of coverage with respect to the global navigation system (e.g., the satellite 120-a) based on synchronization signals received from base stations 105-a and 105-b associated with two or more subscriptions.
  • the UE 115-a may include a dual-SIM or multi-SIM UE 115-a which is able to establish wireless connections associated with two or more subscriptions. Additionally, the UE 115-a may be configured to establish a connection with a global navigation system (e.g., GNSS, GPS) . In this example, the first base station 105-a may be associated with a first subscription, and the second base station 105-b may be associated with a second subscription. In some aspects, the UE 115-a may establish a first connection with a global navigation system via the satellite 120-a (e.g., establish a first connection with the satellite 120-a) . The UE 115-a may additionally establish a second connection with the first base station 105-a associated with the first subscription, and a third connection with the second base station 105-b associated with the second subscription.
  • a global navigation system e.g., GNSS, GPS
  • the UE 115-a may receive synchronization signals 210 from the satellite 120-a via the communication link 205-c, where the synchronization signals 210 indicate global navigation system times (e.g., GNSS times, GPS times) associated with the global navigation system (e.g., GNSS, GPS) . Accordingly, when the UE 115-a is in coverage with respect to the global navigation system (e.g., in coverage with respect to the satellite 120-a) , the UE 115-a may determine global navigation times associated with the global navigation network based on synchronization signals 210 received from the global navigation system (e.g., synchronization signals received from the satellite 120-a) . For example, the UE 115-a may receive the synchronization signal 210 from the satellite 120-a, and may determine a first global navigation time associated with the global navigation system based on the synchronization signal 210.
  • the synchronization signals 210 indicate global navigation system times (e.g., GNSS times, GPS times) associated with the global
  • the UE 115-a may determine a time associated with the first subscription and/or the second subscription based on receiving the synchronization signal 210 indicating the first global navigation time from the satellite 120-a. In this regard, the UE 115-a may determine a temporal relationship between global navigation times associated with the global navigation system and times associated with the first subscription, times associated with the second subscription, or both.
  • the UE 115-a may determine that it is out of coverage with respect to the global navigation system (e.g., out of coverage with respect to the satellite 120-a) .
  • the UE 115-a may go out of coverage with respect to the global navigation system based on the movement of the UE 115-a, the movement of the satellite 120-a, terrestrial obstructions, weather conditions, or the like.
  • the UE 115-a may determine global navigation times associated with the global navigation system based on synchronization signals 215 received from the first base station 105-a, the second base station 105-b, or both. In some cases, the UE 115-a may use synchronization signals from associated with the first base station 105-a, the second base station 105-b, or both, depending on the relative strengths, qualities, or other values associated with signals from each of the respective base stations 105-a and 105-b.
  • the UE 115-a may determine that the UE 115-a has gone out of coverage with respect to the global navigation system. The UE 115-a may then perform measurements based on signals (e.g., reference signals, synchronization signals) received from the first base station 105-a and the second base station 105-b. In this example, the UE 115-a may determine a first value (e.g., first reference signal value, first received signal value) associated with signals from the first base station 105-a and a second value (e.g., second reference signal value, second received signal value) associated with signals from the second base station 105-a based on the performed measurements.
  • signals e.g., reference signals, synchronization signals
  • the UE 115-a may determine a first value (e.g., first reference signal value, first received signal value) associated with signals from the first base station 105-a and a second value (e.g., second reference signal value, second received signal value) associated with signals from the second base station 105
  • the values may include a value associated with any signal parameter or measurement known in the art including, but not limited to, reference signal received power (RSRP) , reference signal received quality (RSRQ) , signal-to-noise ratio (SNR) , signal-to-interference-plus-noise ratio (SINR) , and the like.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • SNR signal-to-noise ratio
  • SINR signal-to-interference-plus-noise ratio
  • the UE 115-a may compare the first value (e.g., first reference signal value, first received signal value) associated with the first base station 105-a with the second value (e.g., second reference signal value, second received signal value) associated with the second base station 105-b and determine whether to use synchronization signals 215 from the first base station 105-a associated with the first subscription or synchronization signals 215 from the second base station 105-b associated with the second subscription to determine global navigation times based on the comparison.
  • first value e.g., first reference signal value, first received signal value
  • second value e.g., second reference signal value, second received signal value
  • the UE 115-a may determine to use synchronization signals 215 from the first base station 105-a to determine global navigation times.
  • the UE 115-a may perform measurements on signals (e.g., reference signals, synchronization signals) at regular or irregular intervals to continuously monitor the relative signal strengths and qualities of the respective signals. In some cases, the UE 115-a may additionally compare the relative values (e.g., reference signal values, received signal values) at regular or irregular intervals in order to evaluate whether the UE 115-a should use synchronization signals 215 from the first base station 105-a associated with the first subscription, the second base station 105-b associated with the second subscription, or both, to determine global navigation times.
  • signals e.g., reference signals, synchronization signals
  • the UE 115-a may additionally compare the relative values (e.g., reference signal values, received signal values) at regular or irregular intervals in order to evaluate whether the UE 115-a should use synchronization signals 215 from the first base station 105-a associated with the first subscription, the second base station 105-b associated with the second subscription, or both, to determine global navigation times.
  • the UE 115-a may receive a first synchronization signal 215-a from the first base station 105-a. In some aspects, the UE 115-a may receive the first synchronization signal 215-a based on identifying the loss of coverage associated with the global navigation system.
  • the first synchronization signal 215-a may indicate a first time (e.g., first WWAN time) associated with the first subscription.
  • the UE 115-a may determine a second global navigation time associated with the global navigation system based on the first global navigation time and receiving the first synchronization signal which indicates the first time associated with the first subscription. In some aspects, the UE 115-a may determine the second global navigation time using synchronization signals 215 from the first base station 105-a based on identifying the loss of coverage associated with the global navigation system.
  • the UE 115-a may determine a second global navigation time associated with the global navigation system based on the first global navigation time, the first synchronization signal 215-a indicating the first time associated with the first subscription, a time associated with the first subscription which was determined based on synchronization signal 210, or any combination thereof.
  • the UE 115-a may determine a time (e.g., “initial” time) associated with the first subscription based on receiving the synchronization signal 210 indicating the first global navigation time from the satellite 120-a.
  • the initial time associated with the first subscription may be determined based on a temporal relationship between the global navigation system and the first subscription.
  • the UE 115-a may determine a difference between the initial time and the first time indicated by the first synchronization signal 215-a. Additionally, the UE 115-a may determine the second global navigation time based on the first global navigation time and the difference between the initial time and the first time associated with the first subscription.
  • the UE 115-a may receive a second synchronization signal 215-b from the first base station 105-a.
  • the second synchronization signal 215-b may indicate a second time (e.g., second WWAN time) associated with the first subscription.
  • the UE 115-a may determine a second global navigation time associated with the global navigation system based on the first global navigation time, the first synchronization signal 215-a, the second synchronization signal 215-b, or any combination thereof.
  • the UE 115-a may determine a difference between the first time associated with the first subscription indicated by the first synchronization signal 215-a, and the second time associated with the first subscription indicated by the second synchronization signal 215-a.
  • the UE 115-a may determine the second global navigation time based on the first global navigation time and determining the difference between the first time and the second time.
  • the UE 115-a may be configured to perform one or more unit conversion procedures to convert times (e.g., WWAN times) associated with the first subscription and/or the second subscription into units associated with global navigation times.
  • times e.g., WWAN times
  • the times associated with the first subscription and/or second subscription include units which are different from the units associated with global navigation times (e.g., GNSS times, GPS times)
  • the UE 115-a may perform one or more unit conversion procedures to convert times (e.g., WWAN times, differences in WWAN times) associated with the first subscription and/or second subscription into units associated with the global navigation times.
  • determining the second global navigation time may be based on performing the unit conversion procedures.
  • the UE 115-a may receive a first synchronization signal 215-c from the second base station 105-b. In some aspects, the UE 115-a may receive the first synchronization signal 215-c based on identifying the loss of coverage associated with the global navigation system.
  • the first synchronization signal 215-c may indicate a first time (e.g., first WWAN time) associated with the second subscription.
  • the UE 115-a may determine a third global navigation time associated with the global navigation system based on the first global navigation time, the second global navigation time, and/or receiving the first synchronization signal 215-c which indicates the first time associated with the second subscription. In some aspects, the UE 115-a may determine the third global navigation time using synchronization signals 215 from the second base station 105-b based on identifying the loss of coverage associated with the global navigation system.
  • the UE 115-a may receive the synchronization signal 215-c based on determining that signal values (e.g., reference signal values, received signal values) received from the second base station 105-b exhibit superior performance as compared to signal values (e.g., reference signal values, received signal values) received from the first base station 105-a.
  • signal values e.g., reference signal values, received signal values
  • the UE 115-a may receive a second synchronization signal 215-d from the second base station 105-b.
  • the second synchronization signal 215-d may indicate a second time (e.g., second WWAN time) associated with the second subscription.
  • the UE 115-a may determine the third global navigation time associated with the global navigation system based on the first global navigation time, the second global navigation time, the first synchronization signal 215-c, the second synchronization signal 215-d, or any combination thereof.
  • the UE 115-a may determine a difference between the first time associated with the second subscription indicated by the first synchronization signal 215-c, and the second time associated with the second subscription indicated by the second synchronization signal 215-d.
  • the UE 115-a may determine the third global navigation time based on the second global navigation time and determining the difference between the first time and the second time associated with the second subscription.
  • the UE 115-a may determine a third global navigation time associated with the global navigation system based on the first global navigation time, the first synchronization signal 215-c indicating the first time associated with the second subscription, a time associated with the second subscription which was determined based on synchronization signal 210, or any combination thereof.
  • the UE 115-a may determine a time (e.g., “initial” time) associated with the second subscription based on receiving the synchronization signal 210 indicating the first global navigation time from the satellite 120-a.
  • the initial time associated with the second subscription may be determined based on a temporal relationship between the global navigation system and the second subscription.
  • the UE 115-a may determine a difference between the initial time and the first time indicated by the first synchronization signal 215-c. Additionally, the UE 115-a may determine the third global navigation time based on the first global navigation time and the difference between the initial time and the first time associated with the second subscription.
  • the UE 115-a may determine the third global navigation time associated with the global navigation system based on the first global navigation time, the second global navigation time, the first synchronization signal 215-c indicating the first time associated with the second subscription, a time associated with the second subscription which was determined based on synchronization signals 215 received from the first subscription, or any combination thereof.
  • the UE 115-a may determine a time (e.g., “initial” time) associated with the second subscription based on receiving the first synchronization signal 215-a received from the first base station 105-a.
  • the initial time associated with the second subscription may be determined based on a temporal relationship between the first subscription and the second subscription.
  • the UE 115-a may determine a difference between the initial time and the first time associated with the second subscription indicated by the first synchronization signal 215-c. Additionally, the UE 115-a may determine the third global navigation time based on the first global navigation time and the difference between the initial time and the first time associated with the second subscription.
  • the UE 115-a may go out of coverage with respect to the first subscription (e.g., out of coverage with respect to the first base station 105-a) .
  • the UE 115-a may go out of coverage with respect to the first subscription based on the movement of the UE 115-a, terrestrial obstructions, weather conditions, or the like.
  • the UE 115-a may receive the synchronization signals 215-c and 215-d from the second base station 105-b based on identifying the loss of coverage associated with the first subscription.
  • the UE 115-a may determine that signal values (e.g., RSRP values, RSRQ values) associated with reference signals and/or synchronization signals 215 received from the second base station 105-a exhibit superior performance as compared to signal values (e.g., RSRP values, RSRQ values) associated with reference signals and/or synchronization signals 215 received from the first base station 105-a.
  • the UE 115-a may determine global navigation times based on synchronization signals associated with the first subscription, the second subscription, or both, dependent upon the relative strength or quality of signals received from each respective subscription.
  • the UE 115-a may perform one or more measurements on the first synchronization signal 215-a received from the first base station 105-a and the first synchronization signal 215-c received from the second base station.
  • the UE 115-a may determine a first received signal value associated with the first synchronization signal 215-a received from the first base station 105-a and a second received signal value associated with the first synchronization signal 215-c received from the second base station 105-b based on the one or more measurements.
  • the received signal values may include any value, metric, or characteristic including, but not limited to, RSRP values, RSRQ values, SNR values, SINR values, and the like.
  • the UE 115-a may determine the first received signal value or the second received signal value satisfies a threshold value.
  • the UE 115-a may further determine global navigation times associated with the global navigation system based on the synchronization signals of the first subscription, second subscription, or both, based on the first received signal value or the second received signal value satisfying the respective thresholds.
  • the UE 115-a determines an RSRP value associated with the first synchronization signal 215-a received from the first base station 105-a is less than an RSRP threshold (e.g., satisfies the RSRP threshold) , and an RSRP value associated with the first synchronization signal 215-c received from the second base station 105-b is greater than an RSRP threshold (e.g., does not satisfy the RSRP threshold)
  • the UE 115-a may determine global navigation times using the first synchronization signal 215-c received from the second base station 105-b.
  • the UE 115-a may determine global navigation times using synchronization signals received from both the first base station 105-a and the second base station 105-b. For example, the UE 115-a may determine a first interim time associated with the global navigation system based on the first synchronization signal 215-a received from the first base station 105-a. The UE 115-a may additionally determine a second interim time associated with the global navigation system based on the first synchronization signal 215-c received from the second base station 105-b. In this example, the UE 115-a may determine the second global navigation time associated with the global navigation system based on the first interim time and the second interim time. For instance, the UE 115-a may determine the second global navigation time based on an average of the first interim time and the second interim time, a weighted average of the first interim time and the second interim time, or the like.
  • the UE 115-a may transmit and receive signals based on global navigation times which are determined based on synchronization signals received from the satellite 120-a, the first base station 105-a, the second base station 105-c, or any combination thereof.
  • the UE 115-a may transmit at least one of a downlink signal or a sidelink signal based on determining the first global navigation time, the second global navigation time, the third global navigation time, or any combination thereof.
  • the UE 115-a may receive at least one of a downlink signal or a sidelink signal based on determining the first global navigation time, the second global navigation time, the third global navigation time, or any combination thereof.
  • the techniques described herein may enable more efficient and accurate determination of global navigation times in the wireless communications system 200.
  • the techniques described herein may enable the UE 115-a to determine global navigation times despite going out of coverage with respect to the global navigation system and/or a subscription (e.g., WWAN) with which it is communicatively coupled, thereby improving the reliability of global navigation time determination.
  • a subscription e.g., WWAN
  • FIG. 3 illustrates an example of a timing diagram 300 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • timing diagram 300 may implement aspects of wireless communications system 100 or 200.
  • the timing diagram 300 may illustrate determining global navigation times associated with a global navigation system based on synchronization signals received from a first base station associated with a first subscription and synchronization signals received from a second base station associated with a second subscription, as described with reference to FIGs. 1–2.
  • the timing diagram 300 may include a UE 115-b, a first base station 105-c, and a second base station 105-d, which may be examples of corresponding devices as described herein.
  • the UE 115-b illustrated in FIG. 3 may be an example of the UE 115-a illustrated in FIG. 2.
  • the first base station 105-c and the second base station 105-d illustrated in FIG. 3 may be examples of the base stations 105-a and 105-b, respectively, as illustrated in FIG. 2.
  • UE 115-b illustrated in FIG. 3 may include a dual-SIM or multi-SIM UE.
  • the first base station 105-c illustrated in FIG. 3 may be associated with a first subscription supported by the UE 115-b
  • the second UE 115-d illustrated in FIG. 3 may be associated with a second subscription supported by the UE 115-b.
  • time duration 305 may illustrate a time duration in which the UE 115-b is in coverage with respect to a global navigation system.
  • the UE 115-b may be in coverage with respect to one or more satellites associated with the global navigation system during the time duration 305.
  • time duration 310 may illustrate a time duration in which the UE 115-b is out of coverage with respect to the global navigation system.
  • the UE 115-b may go out of coverage with respect to all satellites associated with the global navigation system at a transition between time duration 305 and time duration 310 (e.g., at or around T3) .
  • the UE 115-b may receive one or more synchronization signals from a satellite associated with the global navigation system. Synchronization signals received from satellites associated with the global navigation system may indicate global navigation times associated with the global navigation system. For example, the UE 115-b may receive a synchronization signal (e.g., synchronization signal 210 illustrated in FIG. 2) during time duration 305, and may determine a first global navigation time associated with the global navigation system based on the synchronization signal received from the satellite.
  • a synchronization signal e.g., synchronization signal 210 illustrated in FIG. 2
  • the UE 115-b may determine a time associated with the first subscription (e.g., first base station 105-c) , a time associated with the second subscription (e.g., second base station 105-d) , or both, based on receiving the one or more synchronization signals from the satellite.
  • the UE 115-b may determine a temporal relationship between global navigation times associated with the global navigation system and times associated with the first subscription, the second subscription, or both.
  • the UE 115-b may determine a temporal relationship between the first subscription and the second subscription based on the synchronization signals received from the global navigation system, determined temporal relationships between the global navigation system and the first subscription and/or second subscription, or any combination thereof.
  • the term “temporal relationship” may be used to refer to any mapping, relationship, equation, algorithm, or the like, which is used to associate (e.g., equate) a time associated with one system (e.g., global navigation system, WWAN associated with the first subscription, WWAN associated with the second subscription) with another system.
  • a time associated with one system e.g., global navigation system, WWAN associated with the first subscription, WWAN associated with the second subscription
  • the UE 115-b may receive a synchronization signal 315-a from the first base station 105-c.
  • the UE 115-a may receive the synchronization signal 315-a at a time T1.
  • the propagation delay 320 may be defined as a time duration the synchronization signal 315-a spends propagating from the base station 105-c to the UE 115-b.
  • the synchronization signal 315-a may indicate a first time associated with the first subscription.
  • the UE 115-a may receive a synchronization signal 315-b from the second base station 105-d.
  • the UE 115-a may receive the synchronization signal 315-b at a time T2.
  • the synchronization signal 315-b may additionally exhibit a propagation delay between the time the synchronization signal 315-b was transmitted by the second base station 105-b, and the time the synchronization signal 315-b was received by the UE 115-b (e.g., T2) .
  • the synchronization signal 315-b may indicate a first time associated with the second subscription.
  • the UE 115-b may determine the temporal relationships between the global navigation time and the first subscription and/or the second subscription based on synchronization signals received from the satellite and the synchronization signals 315-a and 315-b received from the first base station 105-c and the second base station 105-d, respectively. For example, the UE 115-b may determine a temporal relationship between the global navigation system and the first subscription based on synchronization signals received from the satellite indicating global navigation times, and the first synchronization signal 315-a received from the first base station 105-b indicating the first time associated with the first subscription.
  • the UE 115-a may determine that the UE 115-a is out of coverage with respect to the global navigation system at T3.
  • the UE 115-b may perform measurements of signals (e.g., reference signals, synchronization signals 315) received from the first base station 105-a and the second base station 105-b to determine whether the UE 115-b should determine global navigation times based on synchronization signals 315 received from the first base station 105-a, the second base station 105-b, or both.
  • signals e.g., reference signals, synchronization signals 315
  • the UE 115-b may receive a synchronization signal 315-c from the first base station 105-c at T4.
  • the synchronization signal 315-c may indicate a second time associated with the second subscription.
  • the UE 115-b may determine a global navigation time associated with the global navigation system at T4 based on the global navigation time at T1, the first time associated with the first subscription at T1, the second time associated with the first subscription at T4, or any combination thereof.
  • the UE 115-b may determine a difference between the first time associated with the first subscription at T1 and the second time associated with the first subscription at T4.
  • the UE 115-b may determine the global navigation time associated with the global navigation system at T4 based on the global navigation time at T1 and the determined difference between the first time associated with the first subscription at T1 and the second time associated with the first subscription at T4.
  • the global navigation time at T4 may be determined according to Equation 1:
  • GNSS T4 GNSS T1 + ⁇ (WWAN T4 -WWAN T1 ) (1)
  • GNSS T1 is the global navigation time at T1
  • GNSS T4 is the global navigation time at T4
  • WWAN T1 is the first time associated with the first subscription at T1
  • WWAN T4 is the second time associated with the first subscription at T4
  • defines a coefficient or equation configured for a unit conversion procedure.
  • the UE 115-b may receive a synchronization signal 315-d from the second base station 105-d at T5.
  • the synchronization signal 315-d may indicate a second time associated with the second subscription.
  • the UE 115-b may determine a global navigation time associated with the global navigation system at T4 based on the global navigation time at T2, the first time associated with the second subscription at T2, the second time associated with the second subscription at T5, or any combination thereof.
  • the UE 115-b may determine a difference between the first time associated with the second subscription at T2 and the second time associated with the second subscription at T5.
  • the UE 115-b may determine the global navigation time associated with the global navigation system at T5 based on the global navigation time at T2 and the determined difference between the first time associated with the second subscription at T2 and the second time associated with the second subscription at T5.
  • the global navigation time at T5 may be determined according to Equation 2:
  • GNSS T5 GNSS T2 + ⁇ (WWAN T5 -WWAN T2 ) (2)
  • GNSS T2 is the global navigation time at T2
  • GNSS T5 is the global navigation time at T5
  • WWAN T2 is the first time associated with the second subscription at T2
  • WWAN T5 is the second time associated with the second subscription at T5
  • defines a coefficient or equation configured for a unit conversion procedure.
  • the UE 115-b may receive a synchronization signal 315-e from the first base station 105-c at T6.
  • the synchronization signal 315-e may indicate a third time associated with the first subscription.
  • the UE 115-b may determine a global navigation time associated with the global navigation system at T6 based on the synchronization signal 315-e, a previously-determined global navigation time, a previously-determined time associated with the first subscription, or any combination thereof.
  • the UE 115-b may go out of coverage with respect to the first subscription (e.g., out of coverage with respect to the first base station 105-c) during time duration 325.
  • the UE 115-b may be configured to determine that the UE 115-b is out of coverage with respect to the first subscription.
  • the UE 115-b may receive a synchronization signal 315-f from the second base station 105-d at T7. In some aspects, the UE 115-b may receive the synchronization signal 315-f based on identifying a loss of coverage with respect to the first subscription. The synchronization signal 315-f may indicate a third time associated with the second subscription. In some aspects, the UE 115-b may determine a global navigation time associated with the global navigation system at T7 based on the global navigation time at T2 and/or T4, the first time associated with the second subscription at T2, the second time associated with the second subscription at T5, or any combination thereof.
  • the UE 115-b may determine a difference between the third time associated with the second subscription at T7 and the second time associated with the second subscription at T5.
  • the UE 115-b may determine the global navigation time associated with the global navigation system at T7 based on the global navigation time at T5 and the determined difference between the third time associated with the second subscription at T7 and the second time associated with the second subscription at T5.
  • the global navigation time at T7 may be determined according to Equation 3:
  • GNSS T7 GNSS T5 + ⁇ (WWAN T7 -WWAN T5 ) (3)
  • GNSS T5 is the global navigation time at T5
  • GNSS T7 is the global navigation time at T7
  • WWAN T5 is the second time associated with the second subscription at T5
  • WWAN T7 is the third time associated with the second subscription at T7
  • defines a coefficient or equation configured for a unit conversion procedure.
  • the global navigation time at T7 may be determined according to Equation 4:
  • GNSS T7 GNSS T2 + ⁇ (WWAN T7 -WWAN T2 ) (4)
  • GNSS T2 is the global navigation time at T2
  • GNSS T7 is the global navigation time at T7
  • WWAN T2 is the first time associated with the second subscription at T2
  • WWAN T7 is the third time associated with the second subscription at T7
  • defines a coefficient or equation configured for a unit conversion procedure.
  • the UE 115-b may be configured to determine times associated with the second subscription based on synchronization signals 315 associated with the first subscription, and vis versa. For example, as shown in FIG. 3, the UE 115-b may determine a time associated with the second subscription (e.g., T8) based on receiving the synchronization signal 315-e from the first base station 105-c. In some aspects, the UE 115-b may determine the time associated with the second subscription (e.g., T8) using the synchronization signal 315-e based on a temporal relationship between times associated with the first subscription and times associated with the second subscription. In this regard, the UE 115-b may “query” the time associated with the second subscription (e.g., T8) based on receiving the synchronization signal 315-e.
  • T8 time associated with the second subscription
  • the UE 115-b may determine a time associated with the first subscription (e.g., T9) based on receiving the synchronization signal 315-d from the second base station 105-d. In some aspects, the UE 115-b may determine the time associated with the first subscription (e.g., T9) using the synchronization signal 315-d based on the temporal relationship between times associated with the first subscription and times associated with the second subscription. In this regard, the UE 115-b may “query” the time associated with the first subscription (e.g., T9) based on receiving the synchronization signal 315-d.
  • the UE 115-b may utilize the queried times (e.g., T8, T9) to determine global navigation times. For example, in cases where the UE 115-b determines a time associated with the second subscription (e.g., T8) using the synchronization signal 315-e, the UE 115-b may determine the global navigation time associated with the global navigation system at T7 based on Equation 5:
  • GNSS T7 GNSS T6 + ⁇ (WWAN T7 -WWAN T8 ) (4)
  • GNSS T6 is the global navigation time at T6
  • GNSS T7 is the global navigation time at T7
  • WWAN T7 is the time associated with the second subscription at T7
  • WWAN T8 is the time associated with the second subscription at T8
  • defines a coefficient or equation configured for a unit conversion procedure.
  • the UE 115-b may determine the global navigation time associated with the global navigation system at T6 based on Equation 6:
  • GNSS T6 GNSS T5 + ⁇ (WWAN T6 -WWAN T9 ) (6)
  • GNSS T5 is the global navigation time at T5
  • GNSS T6 is the global navigation time at T6
  • WWAN T9 is the time associated with the first subscription at T9
  • WWAN T6 is the time associated with the first subscription at T6
  • defines a coefficient or equation configured for a unit conversion procedure.
  • the UE 115-a may determine global navigation times using synchronization signals 315 received from both the first base station 105-c and the second base station 105-d. For example, as shown in FIG. 3, the UE 115-b may receive a synchronization signal 315-c from the first base station 105-c, and may receive a synchronization signal 315-g from the second base station 105-d. The synchronization signal 315-g received from the second base station 105-d may be received before, after, or at the same time as the synchronization signal 315-c. In some aspects, the UE 115-b may receive the synchronization signals 315-c and 315-g at approximately the same time.
  • the synchronization signal 315-c received from the first base station 105-c may indicate a time associated with the first subscription
  • the synchronization signal 315-g received from the second base station 105-g may indicate a time associated with the second subscription.
  • the UE 115-b may determine a first interim time associated with the global navigation system at T4 based on the synchronization signal 315-a received from the first base station 105-c.
  • the UE 115-b may additionally determine a second interim time associated with the global navigation system at T4 based on the synchronization signal 315-g received from the second base station 105-d.
  • the UE 115-b may determine the global navigation time associated with the global navigation system at T4 based on the first interim time and the second interim time. For instance, the UE 115-b may determine the global navigation time at T4 based on an average of the first interim time and the second interim time, a weighted average of the first interim time and the second interim time, or the like.
  • the techniques described herein may enable more efficient and accurate determination of global navigation times in the wireless communications systems 100 and 200.
  • techniques described herein may enable the UE 115-b to accurately and efficiently determine global navigation times even in cases where the UE 115-b goes out of service with respect to the global navigation system and one or more subscriptions.
  • FIG. 4 illustrates an example of a process flow 400 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • process flow 400 may implement aspects of wireless communications systems 100 or 200, and timing diagram 300.
  • the process flow 400 may illustrate determining a first global navigation time based on synchronization signals received from a satellite of a global navigation system, determining a second global navigation time based on synchronization signals received from a first base station associated with a first subscription, and determining a third global navigation time based on synchronization signals received from a second base station associated with a second subscription, as described with reference to FIGs. 1–3.
  • process flow 400 may include a UE 115-c, a first base station 105-e, a second base station 105-f, and a satellite 120-b, which may be examples of corresponding devices as described herein.
  • the UE 115-c illustrated in FIG. 4 may be an example of the UEs 115-a and 115-b illustrated in FIGs. 2 and 3, respectively.
  • the first base station 105-e and the second base station 105-f illustrated in FIG. 4 may be examples of the base stations 105-a and 105-c and base stations 105-b and 105-d, respectively, as illustrated in FIGs. 2 and 3.
  • first base station 105-e illustrated in FIG. 4 may be associated with a first subscription supported by the UE 115-c
  • the second UE 115-f illustrated in FIG. 4 may be associated with a second subscription supported by the UE 115-c.
  • process flow 400 may be performed by hardware (e.g., including circuitry, processing blocks, logic components, and other components) , code (e.g., software or firmware) executed by a processor, or any combination thereof.
  • code e.g., software or firmware
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • the UE 115-e may receive a synchronization signal from the satellite 120-b associated with a global navigation system.
  • the synchronization signal may indicate a first global navigation time associated with the global navigation system.
  • the UE 115-e may determine a first global navigation time associated with the global navigation system. In some aspects, the UE 115-e may determine the first global navigation time based on the synchronization signal received from the satellite 120-b.
  • the UE 115-e may receive a synchronization signal from the first base station 105-e associated with the first subscription.
  • the synchronization signal may indicate a first time (e.g., first WWAN time) associated with the first subscription.
  • the UE 115-b may receive a synchronization signal 315-c from the first base station 105-c at T4, where the synchronization signal 315-c indicates a time associated with the first subscription at T4.
  • the UE 115-e may receive a synchronization signal from the second base station 105-f associated with the second subscription.
  • the synchronization signal may indicate a second time (e.g., second WWAN time) associated with the second subscription.
  • the UE 115-b may receive a synchronization signal 315-d from the second base station 105-d at T5, where the synchronization signal 315-d indicates a time associated with the second subscription at T5.
  • the UE 115-e may identify a loss of coverage with respect to the global navigation system. For example, the UE 115-e may identify a loss of coverage with respect to the satellite 120-b. In some aspects, the UE 115-e may go out of coverage with respect to the global navigation system based on the movement of the UE 115-e, the movement of the satellite 120-b, terrestrial obstructions (e.g., tunnels, buildings) , weather conditions, or the like. For instance, as shown in FIG. 3, the UE 115-b may determine a loss of coverage with respect to the global navigation system at T3.
  • the UE 115-b may determine a loss of coverage with respect to the global navigation system at T3.
  • the UE 115-e may receive a synchronization signal from the first base station 105-e associated with the first subscription.
  • the synchronization signal may indicate a third time (e.g., third WWAN time) associated with the first subscription.
  • the UE 115-b may receive a synchronization signal 315-e from the first base station 105-c at T6, where the synchronization signal 315-e indicates a time associated with the first subscription at T6.
  • the UE 115-e may determine a second global navigation time associated with the global navigation system.
  • the UE 115-e may determine the second global navigation time based on the first global navigation time determined at 410, the synchronization signal received from the first base station 105-e at 430, or any combination thereof.
  • the UE 115-b may determine a global navigation time at T6 based on the synchronization signal 315-c received at T4, the synchronization signal 315-d received at T5, the global navigation time at T4, T5, or T9, or any combination thereof.
  • the UE 115-e may identify a loss of coverage with respect to the first subscription (e.g., first WWAN) .
  • the UE 115-e may identify a loss of coverage with respect to the first base station 105-e.
  • the UE 115-e may go out of coverage with respect to the first subscription based on the movement of the UE 115-e, terrestrial obstructions (e.g., tunnels, buildings) , weather conditions, or the like.
  • the UE 115-b may identify a loss of coverage with respect to the first subscription during the time duration 325.
  • the UE 115-e may receive a synchronization signal from the second base station 105-f associated with the second subscription.
  • the synchronization signal may indicate a fourth time (e.g., fourth WWAN time) associated with the second subscription.
  • the UE 115-b may receive a synchronization signal 315-f from the second base station 105-d at T7, where the synchronization signal 315-f indicates a time associated with the second subscription at T7.
  • the UE 115-e may determine a third global navigation time associated with the global navigation system.
  • the UE 115-e may determine the third global navigation time based on the first global navigation time determined at 410, the second global navigation time determined at 435, the synchronization signal received from the second base station 105-f at 435, or any combination thereof.
  • the UE 115-b may determine a global navigation time at T7 based on the synchronization signal 315-d received at T5, the synchronization signal 315-e received at T6, the global navigation time at T5, T6, or T8, or any combination thereof.
  • the techniques described herein may enable more efficient and accurate determination of global navigation times in the wireless communications systems 100 and 200.
  • techniques described herein may enable the UE 115-c to accurately and efficiently determine global navigation times even in cases where the UE 115-c goes out of service with respect to the global navigation system and one or more subscriptions.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a UE 115 as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to determining global navigation system timing with dual SIM environment, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system, receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription, receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription, determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time, and determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
  • the communications manager 515 may be an example of aspects of the communications manager 810 described herein.
  • the actions performed by the communications manager 515 as described herein may be implemented to realize one or more potential advantages. For example, determining global navigation times associated with a global navigation system based on synchronization signals received from WWANs may enable determination of the global navigation times even when a UE is out of coverage with respect to the global navigation system. Similarly, by determining global navigation times based on synchronization signals received from WWANs associated with two or more subscriptions, techniques described herein may enable the UE to determine global navigation times even when a UE is out of coverage with respect to a single subscription.
  • the communications manager 515 may improve determination In particular, by preventing the UE 115 from firstly establishing a connection with a lower-priority radio access technology (e.g., LTE, 3G, 2G) , the communications manager 415 may enable more efficient and accurate determination of global navigation times, thereby improving wireless communications and leading to improved user experience with the UE 115.
  • a lower-priority radio access technology e.g., LTE, 3G, 2G
  • a processor of the UE 115 may reduce processing resources used for determination of global navigation times. For example, by improving the efficiency and reliability of determinations of global navigation times, the quantity of attempts to accurately determine global navigation times may be reduced. Subsequently, the processor of the UE 115 may reduce a quantity of signaling resources used by the UE 115 to determine global navigation times, correspondingly reducing a number of times the processor ramps up processing power and turns on processing units to handle uplink transmission and/or downlink reception.
  • the communications manager 515 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 515 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 515, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 515, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 520 may transmit signals generated by other components of the device 505.
  • the transmitter 520 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 520 may utilize a single antenna or a set of antennas.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505, or a UE 115 as described herein.
  • the device 605 may include a receiver 610, a communications manager 615, and a transmitter 635.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to determining global navigation system timing with dual SIM environment, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communications manager 615 may be an example of aspects of the communications manager 515 as described herein.
  • the communications manager 615 may include a satellite synchronization signal manager 620, a WWAN synchronization signal receiving manager 625, and a global navigation time manager 630.
  • the communications manager 615 may be an example of aspects of the communications manager 810 described herein.
  • the satellite synchronization signal manager 620 may receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system.
  • the WWAN synchronization signal receiving manager 625 may receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription and receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription.
  • the global navigation time manager 630 may determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time and determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
  • the transmitter 635 may transmit signals generated by other components of the device 605.
  • the transmitter 635 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 635 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 635 may utilize a single antenna or a set of antennas.
  • FIG. 7 shows a block diagram 700 of a communications manager 705 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • the communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein.
  • the communications manager 705 may include a satellite synchronization signal manager 710, a WWAN synchronization signal receiving manager 715, a global navigation time manager 720, a global navigation system manager 725, a reference signal manager 730, a WWAN time manager 735, a synchronization signal measurement manager 740, a WWAN coverage manager 745, a transmission manager 750, and a reception manager 755.
  • Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the satellite synchronization signal manager 710 may receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system.
  • the WWAN synchronization signal receiving manager 715 may receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription.
  • the WWAN synchronization signal receiving manager 715 may receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription.
  • the WWAN synchronization signal receiving manager 715 may receive, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription prior to receiving the second synchronization signal, where determining the third global navigation time is based on receiving the third synchronization signal. In some examples, the WWAN synchronization signal receiving manager 715 may receive, from the first base station associated with the first subscription, a third synchronization signal indicating a third time associated with the first subscription prior to receiving the first synchronization signal, where determining the second global navigation time is based on receiving the third synchronization signal.
  • the WWAN synchronization signal receiving manager 715 may receive, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription, where the third synchronization signal is received prior to the second synchronization signal, where determining the second global navigation time is based on the first synchronization signal and the third synchronization signal. In some examples, the WWAN synchronization signal receiving manager 715 may receive, from the first base station associated with the first subscription, a fourth synchronization signal indicating a fourth time associated with the first subscription, where the fourth synchronization signal is received after the first synchronization signal, where determining the third global navigation time is based on the second synchronization signal and the fourth synchronization signal. In some examples, the WWAN synchronization signal receiving manager 715 may receive, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription.
  • the global navigation time manager 720 may determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time. In some examples, the global navigation time manager 720 may determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both. In some examples, the global navigation time manager 720 may determine a difference between the first time and the third time, where determining the second global navigation time is based on determining the difference. In some examples, the global navigation time manager 720 may perform a unit conversion procedure to convert the difference to a unit associated with the second global navigation time, where determining the third global navigation time is based on performing the unit conversion procedure.
  • the global navigation time manager 720 may determine a first interim time associated with the global navigation system based on the first synchronization signal. In some examples, the global navigation time manager 720 may determine a second interim time associated with the global navigation system based on the third synchronization signal, where the second global navigation time is determined based on the first interim time and the second interim time. In some examples, the global navigation time manager 720 may determine the second global navigation time based on the first synchronization signal or the third synchronization signal which does not satisfy the threshold value based on the first received signal value or the second received signal value satisfying the threshold value. In some cases, the second global navigation time includes at least one of an average of the first interim time and the second interim time, or a weighted average of the first interim time and the second interim time.
  • At least one of the first global navigation time or the second global navigation time includes a GNSS time.
  • the global navigation system includes a global navigation satellite system (GNSS) or a GPS.
  • the global navigation system manager 725 may identify a loss of coverage associated with the global navigation system, where determining the second global navigation time and determining the third global navigation time is based on identifying the loss of coverage.
  • the reference signal manager 730 may perform one or more measurements on a first reference signal received from the first base station associated with the first subscription and a second reference signal received from the second base station associated with the second subscription based on identifying the loss of coverage. In some examples, the reference signal manager 730 may determine a first reference signal value associated with the first reference signal and a second reference signal value associated with the second reference signal based on performing the one or more measurements. In some examples, the reference signal manager 730 may compare the first reference signal value and the second reference signal value, where determining the second global navigation time using the first synchronization signal is based on comparing the first reference signal value and the second reference signal value.
  • the reference signal manager 730 may perform one or more measurements on a third reference signal received from the first base station associated with the first subscription and a fourth reference signal received from the second base station associated with the second subscription based on identifying the loss of coverage. In some examples, the reference signal manager 730 may determine a third reference signal value associated with the third reference signal and a fourth reference signal value associated with the fourth reference signal based on performing the one or more measurements. In some examples, the reference signal manager 730 may compare the third reference signal value and the fourth reference signal value, where determining the third global navigation time using the second synchronization signal is based on comparing the third reference signal value and the fourth reference signal value.
  • the WWAN time manager 735 may determine a third time associated with the second subscription based on receiving the first synchronization signal that indicates the first time associated with the first subscription, where determining the third global navigation time is based on determining the third time associated with the second subscription. In some examples, the WWAN time manager 735 may determine a difference between the second time associated with the second synchronization signal and the third time associated with the second subscription, where determining the third global navigation time is based on determining the difference. In some examples, the WWAN time manager 735 may determine a third time associated with the first subscription based on receiving the one or more synchronization signals indicating the first global navigation time. In some examples, the WWAN time manager 735 may determine a difference between the first time associated with the first subscription and the third time associated with the first subscription, where determining the second global navigation time is based on determining the difference and the first global navigation time.
  • the WWAN time manager 735 may determine a temporal relationship between times associated with the first subscription and times associated with the second subscription based on the first synchronization signal indicating the first time associated with the first subscription and the second synchronization signal indicating the second time associated with the second subscription. In some examples, the WWAN time manager 735 may determine a fourth time associated with the first subscription based on the temporal relationship and receiving the third synchronization signal. In some cases, at least one of the first time or the second time includes a wide wireless area network time.
  • the synchronization signal measurement manager 740 may perform one or more measurements on the first synchronization signal and the third synchronization signal. In some examples, the synchronization signal measurement manager 740 may determine a first received signal value associated with the first synchronization signal and a second received signal value associated with the third synchronization signal based on performing the one or more measurements. In some examples, the synchronization signal measurement manager 740 may determine the first received signal value or the second received signal value satisfies a threshold value. The WWAN coverage manager 745 may identify a loss of coverage associated with the first subscription after receiving the first synchronization signal.
  • the transmission manager 750 may transmit at least one of an uplink signal or a first sidelink signal based on determining the second global navigation time, the third global navigation time, or both.
  • the reception manager 755 may receive at least one of a downlink signal or a second sidelink signal based on determining the second global navigation time, the third global navigation time, or both.
  • FIG. 8 shows a diagram of a system 800 including a device 805 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • the device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
  • buses e.g., bus 845
  • the communications manager 810 may receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system, receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription, receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription, determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time, and determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
  • the I/O controller 815 may manage input and output signals for the device 805.
  • the I/O controller 815 may also manage peripherals not integrated into the device 805.
  • the I/O controller 815 may represent a physical connection or port to an external peripheral.
  • the I/O controller 815 may utilize an operating system such as or another known operating system.
  • the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 815 may be implemented as part of a processor.
  • a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
  • the transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 830 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 830 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 840.
  • the processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting determining global navigation system timing with dual SIM environment) .
  • the code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 9 shows a flowchart illustrating a method 900 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • the operations of method 900 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system.
  • the operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by a satellite synchronization signal manager as described with reference to FIGs. 5 through 8.
  • the UE may receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription.
  • the operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a WWAN synchronization signal receiving manager as described with reference to FIGs. 5 through 8.
  • the UE may determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time.
  • the operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a global navigation time manager as described with reference to FIGs. 5 through 8.
  • the UE may receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription.
  • the operations of 920 may be performed according to the methods described herein. In some examples, aspects of the operations of 920 may be performed by a WWAN synchronization signal receiving manager as described with reference to FIGs. 5 through 8.
  • the UE may determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
  • the operations of 925 may be performed according to the methods described herein. In some examples, aspects of the operations of 925 may be performed by a global navigation time manager as described with reference to FIGs. 5 through 8.
  • FIG. 10 shows a flowchart illustrating a method 1000 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • the operations of method 1000 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system.
  • the operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a satellite synchronization signal manager as described with reference to FIGs. 5 through 8.
  • the UE may identify a loss of coverage associated with the global navigation system.
  • the operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a global navigation system manager as described with reference to FIGs. 5 through 8.
  • the UE may receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription.
  • the operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a WWAN synchronization signal receiving manager as described with reference to FIGs. 5 through 8.
  • the UE may determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time, where determining the second global navigation time is based on identifying the loss of coverage.
  • the operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a global navigation time manager as described with reference to FIGs. 5 through 8.
  • the UE may receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription.
  • the operations of 1025 may be performed according to the methods described herein. In some examples, aspects of the operations of 1025 may be performed by a WWAN synchronization signal receiving manager as described with reference to FIGs. 5 through 8.
  • the UE may determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both, where determining the third global navigation time is based on identifying the loss of coverage.
  • the operations of 1030 may be performed according to the methods described herein. In some examples, aspects of the operations of 1030 may be performed by a global navigation time manager as described with reference to FIGs. 5 through 8.
  • FIG. 11 shows a flowchart illustrating a method 1100 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
  • the operations of method 1100 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system.
  • the operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a satellite synchronization signal manager as described with reference to FIGs. 5 through 8.
  • the UE may receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription.
  • the operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a WWAN synchronization signal receiving manager as described with reference to FIGs. 5 through 8.
  • the UE may determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time.
  • the operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a global navigation time manager as described with reference to FIGs. 5 through 8.
  • the UE may receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription.
  • the operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by a WWAN synchronization signal receiving manager as described with reference to FIGs. 5 through 8.
  • the UE may determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
  • the operations of 1125 may be performed according to the methods described herein. In some examples, aspects of the operations of 1125 may be performed by a global navigation time manager as described with reference to FIGs. 5 through 8.
  • the UE may determine a temporal relationship between times associated with the first subscription and times associated with the second subscription based on the first synchronization signal and the second synchronization signal.
  • the operations of 1130 may be performed according to the methods described herein. In some examples, aspects of the operations of 1130 may be performed by a WWAN time manager as described with reference to FIGs. 5 through 8.
  • the UE may identify a loss of coverage associated with the first subscription after receiving the first synchronization signal.
  • the operations of 1135 may be performed according to the methods described herein. In some examples, aspects of the operations of 1135 may be performed by a WWAN coverage manager as described with reference to FIGs. 5 through 8.
  • the UE may receive, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription.
  • the operations of 1140 may be performed according to the methods described herein. In some examples, aspects of the operations of 1140 may be performed by a WWAN synchronization signal receiving manager as described with reference to FIGs. 5 through 8.
  • the UE may determine a fourth time associated with the first subscription based on the temporal relationship and receiving the third synchronization signal.
  • the operations of 1145 may be performed according to the methods described herein. In some examples, aspects of the operations of 1145 may be performed by a WWAN time manager as described with reference to FIGs. 5 through 8.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive, from a satellite associated with a global navigation system, a synchronization signal indicating a first global navigation time associated with the global navigation system. The UE may receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription, and determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal. The UE may receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription, and determining a third global navigation time associated with the global navigation system based on receiving the second synchronization signal, the first global navigation time, the second global navigation time, or any combination thereof.

Description

DETERMINING GLOBAL NAVIGATION SYSTEM TIMING WITH DUAL SIM ENVIRONMENT
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to determining global navigation system timing with dual subscriber identity module (SIM) environment.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
In some systems, a dual-SIM UE may be able to support wireless connections with a global navigation system (e.g., global navigation satellite system) , as well as one or more additional wireless connections with wireless wide area networks (WWANs) (e.g., 4G, 5G) . To efficiently transmit and receive data via the various wireless connections, the UE may be configured to determine a global navigation time associated with the global navigation system.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support determining global navigation system timing with dual subscriber identity module (SIM) environment. Generally, the described techniques provide for a dual-SIM user equipment (UE) determining global navigation times associated with a global navigation system based on synchronization signals received from base stations associated with two or more subscriptions (e.g., two or more wireless wide area networks (WWANs) ) . Such techniques may enable global navigation when the UE is out of coverage with respect to the global navigation system. Additionally, in cases where the UE goes out of coverage with respect to a first subscription, the UE may continue to determine global navigation times based on synchronization signals received from a second subscription. By utilizing synchronization signals associated with two or more subscriptions, techniques described herein may enable more efficient and accurate determination of global navigation times.
A method of wireless communication at a UE is described. The method may include receiving, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system, receiving, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription, determining a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time, receiving, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription, and determining a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global  navigation system, receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription, determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time, receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription, and determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for receiving, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system, receiving, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription, determining a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time, receiving, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription, and determining a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system, receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription, determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time, receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second  subscription, and determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription prior to receiving the second synchronization signal, where determining the third global navigation time may be based on receiving the third synchronization signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first base station associated with the first subscription, a third synchronization signal indicating a third time associated with the first subscription prior to receiving the first synchronization signal, where determining the second global navigation time may be based on receiving the third synchronization signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a difference between the first time and the third time, where determining the second global navigation time may be based on determining the difference.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a loss of coverage associated with the global navigation system, where determining the second global navigation time and determining the third global navigation time may be based on identifying the loss of coverage.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing one or more measurements on a first reference signal received from the first base station associated with the first subscription and a second reference signal received from the second base station associated with the second subscription based on identifying the loss of coverage, determining a first reference signal value associated with the first reference signal and a second reference signal value associated with the second reference signal based on  performing the one or more measurements, and comparing the first reference signal value and the second reference signal value, where determining the second global navigation time using the first synchronization signal may be based on comparing the first reference signal value and the second reference signal value.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing one or more measurements on a third reference signal received from the first base station associated with the first subscription and a fourth reference signal received from the second base station associated with the second subscription based on identifying the loss of coverage, determining a third reference signal value associated with the third reference signal and a fourth reference signal value associated with the fourth reference signal based on performing the one or more measurements, and comparing the third reference signal value and the fourth reference signal value, where determining the third global navigation time using the second synchronization signal may be based on comparing the third reference signal value and the fourth reference signal value.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a third time associated with the second subscription based on receiving the first synchronization signal that indicates the first time associated with the first subscription, where determining the third global navigation time may be based on determining the third time associated with the second subscription.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a difference between the second time associated with the second synchronization signal and the third time associated with the second subscription, where determining the third global navigation time may be based on determining the difference.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing a unit conversion procedure to convert the difference to a unit associated with the second global navigation time, where determining the third global navigation time may be based on performing the unit conversion procedure.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a third time associated with the first subscription based on receiving the one or more synchronization signals indicating the first global navigation time, and determining a difference between the first time associated with the first subscription and the third time associated with the first subscription, where determining the second global navigation time may be based on determining the difference and the first global navigation time.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription, where the third synchronization signal may be received prior to the second synchronization signal, where determining the second global navigation time may be based on the first synchronization signal and the third synchronization signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a first interim time associated with the global navigation system based on the first synchronization signal, and determining a second interim time associated with the global navigation system based on the third synchronization signal, where the second global navigation time may be determined based on the first interim time and the second interim time.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second global navigation time includes at least one of an average of the first interim time and the second interim time, or a weighted average of the first interim time and the second interim time.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first base station associated with the first subscription, a fourth synchronization signal indicating a fourth time associated with the first subscription, where the fourth synchronization signal may be received after the first synchronization signal,  where determining the third global navigation time may be based on the second synchronization signal and the fourth synchronization signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing one or more measurements on the first synchronization signal and the third synchronization signal, determining a first received signal value associated with the first synchronization signal and a second received signal value associated with the third synchronization signal based on performing the one or more measurements, determining the first received signal value or the second received signal value satisfies a threshold value, and determining the second global navigation time based on the first synchronization signal or the third synchronization signal which does not satisfy the threshold value based on the first received signal value or the second received signal value satisfying the threshold value.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a temporal relationship between times associated with the first subscription and times associated with the second subscription based on the first synchronization signal indicating the first time associated with the first subscription and the second synchronization signal indicating the second time associated with the second subscription.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a loss of coverage associated with the first subscription after receiving the first synchronization signal, receiving, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription, and determining a fourth time associated with the first subscription based on the temporal relationship and receiving the third synchronization signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting at least one of an uplink signal or a first sidelink signal based on determining the second global navigation time, the third global navigation time, or both, and receiving at least one of a downlink signal or a second sidelink signal based on determining the second global navigation time, the third global navigation time, or both.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the global navigation system includes a global navigation satellite system (GNSS) or a GPS, and at least one of the first global navigation time or the second global navigation time includes a GNSS time.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, at least one of the first time or the second time includes a wide wireless area network time.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system of a wireless communications system that supports determining global navigation system timing with dual subscriber identity module (SIM) environment in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a timing diagram that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a process flow that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
FIGs. 5 and 6 show block diagrams of devices that support determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
FIG. 7 shows a block diagram of a communications manager that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
FIG. 8 shows a diagram of a system including a device that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
FIGs. 9 through 11 show flowcharts illustrating methods that support determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
In some wireless systems, a user equipment (UE) may establish a wireless connection with a global navigation system, such as a global navigation satellite system (GNSS) , as well as one or more additional wireless connections with wireless wide area networks (WWANs) , such as 4G or 5G. To efficiently transmit and receive data via the various wireless connections, the UE may be configured to determine a global navigation time associated with the global navigation system (e.g., GNSS time) . Synchronization signals received from the global navigation system may indicate the global navigation system times, and the UE may determine global navigation times associated with the global navigation system based on the received synchronization signals. In some cases, the UE may go out of coverage with respect to the global navigation system due to the movement of the UE, terrestrial obstructions, weather conditions, or the like. In such cases, the UE may rely on synchronization signals received from WWANs to determine global navigation times associated with the global navigation system. However, determining global navigation times based on synchronization signals received from base stations associated with terrestrial networks may sometimes result in inaccurate determination of global navigation times, thereby leading to inefficient and unreliable wireless communications at the UE. For instance, if the UE determines global navigation times based on synchronization signals received from a terrestrial network, the UE may be unable to determine global navigation times when the UE also goes out of service with respect to the terrestrial network.
To improve the determination of global navigation times, a dual subscriber identity module (SIM) UE may be configured to determine global navigation times associated with a global navigation system when the UE is out of coverage with respect to the global navigation system based on synchronization signals received from base stations associated with two or more subscriptions. For example, a dual-SIM UE may establish a first connection with a global navigation system, a second connection with a base station associated with a first subscription (e.g., first WWAN) , and a third connection with another base station associated with a second subscription (e.g., second WWAN) . In cases where the UE goes out  of coverage with respect to the global navigation system, the UE may continue to determine global navigation times based on synchronization signals received from the first and second subscriptions. Furthermore, in cases where the UE goes out of coverage with respect to the first subscription, the UE may continue to determine global navigation times based on synchronization signals received from the second subscription. By utilizing synchronization signals associated with two or more subscriptions, techniques described herein may enable more efficient and accurate determination of global navigation times.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are also described in the context of an example timing diagram and an example process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to recovering user equipment from call failure in new radio.
FIG. 1 illustrates an example of a wireless communications system 100 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 155 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 155 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 155 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations  105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s= 1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control  channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may  be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming  operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
The wireless communications system 100 includes base stations 105, UEs 115, satellites 120, and a core network 130. In some examples, the wireless communications system 100 may be an LTE network, an LTE-A network, an LTE-A Pro network, or a NR network. In some cases, wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
Wireless communications system 100 may also include one or more satellites 120. Satellite 120 may communicate with base stations 105 (also referred to as gateways in NTNs) and UEs 115 (or other high altitude or terrestrial communications devices) . Satellite 120 may be any suitable type of communication satellite configured to relay communications between different end nodes in a wireless communications system. Satellite 120 may be an example of a space satellite, a balloon, a dirigible, an airplane, a drone, an unmanned aerial vehicle, and/or the like. In some examples, the satellite 120 may be in a geosynchronous or geostationary earth orbit, a low earth orbit or a medium earth orbit. A satellite 120 may be a multi-beam satellite configured to provide service for multiple service beam coverage areas  in a predefined geographical service area. For example, a satellite 120 may support a first cell and a second cell, where a first beam of the satellite 120 supports the first cell and a second beam of the satellite 120 supports the second cell. The satellite 120 may be any distance away from the surface of the earth.
In some cases, a cell may be provided or established by a satellite 120 as part of a non-terrestrial network. A satellite 120 may, in some cases, perform the functions of a base station 105, act as a bent-pipe satellite, or may act as a regenerative satellite, or a combination thereof. In other cases, satellite 120 may be an example of a smart satellite, or a satellite with intelligence. For example, a smart satellite may be configured to perform more functions than a regenerative satellite (e.g., may be configured to perform particular algorithms beyond those used in regenerative satellites, to be reprogrammed, etc. ) . A bent-pipe transponder or satellite may be configured to receive signals from ground stations and transmit those signals to different ground stations. In some cases, a bent-pipe transponder or satellite may amplify signals or shift from uplink frequencies to downlink frequencies. A regenerative transponder or satellite may be configured to relay signals like the bent-pipe transponder or satellite, but may also use on-board processing to perform other functions. Examples of these other functions may include demodulating a received signal, decoding a received signal, re-encoding a signal to be transmitted, or modulating the signal to be transmitted, or a combination thereof. For example, a bent-pipe satellite (e.g., satellite 120) may receive a signal from a base station 105 and may relay the signal to a UE 115 or base station 105, or vice-versa.
The UEs 115, the base stations 105, and/or satellites 120 may support communications to enable improvements to determination of global navigation times associated with a global navigation system (e.g., GNSS) . In some aspects, a dual-SIM UE 115 of the wireless communications system 100 may be configured to determine global navigation times associated with a global navigation system when the UE 115 is out of coverage with respect to the global navigation system based on synchronization signals received from base stations 105 associated with two or more subscriptions. For example, a dual-SIM UE 115 may establish a first connection with a global navigation system (e.g., via a satellite 120) , a second connection with a first base station 105-a associated with a first subscription, and a third connection with a second base station 105-b associated with a second subscription. In cases where the UE 115 goes out of coverage with respect to the  global navigation system (e.g., out of coverage with respect to the satellite 120) , the UE 115 may continue to determine global navigation times based on synchronization signals received from the first and second subscriptions (e.g., base stations 105-a and 105-b) . Furthermore, in cases where the UE 115 goes out of coverage with respect to the first subscription (e.g., out of coverage with respect to the first base station 105-a) , the UE 115 may continue to determine global navigation times based on synchronization signals received from the second subscription (e.g., second base station 105-b) .
The techniques described herein may enable more efficient and accurate determination of global navigation times in the wireless communications system 100. In particular, the techniques described herein may enable a UE 115 to determine global navigation times despite going out of coverage with respect to the global navigation system and/or a subscription (e.g., WWAN) with which it is communicatively coupled, thereby improving the reliability of global navigation time determination.
FIG. 2 illustrates an example of a wireless communications system 200 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. The wireless communications system 200 may include a UE 115-a, a first base station 105-a, a second base station 105 b, and a satellite 120-a, which may be examples of UEs 115, base stations 105, and satellites 120, as described with reference to FIG. 1.
In some aspects, the satellite 120-a may be associated with a global navigation system (e.g., GNSS or global positioning system (GPS) ) . In this regard, the satellite 120-a may be associated with a non-terrestrial network (NTN) . The wireless communications system 200 may support transmissions between the UE 115-a and the satellite 120-a via a communication link 205-c. For example, UE 115-a may transmit uplink transmissions to the satellite 120-a via the communication link 205-c, and the satellite 120-a may transmit downlink transmissions to the UE 115-a via communication link 205-c. The satellite 120-a may be in an orbit, such as low earth orbit, medium earth orbit, geostationary earth orbit, or other non-geostationary earth orbit. In any of these examples, the satellite 120-a may be many thousands of kilometers from Earth, and therefore may be thousands of kilometers from the  UE 115-a. Therefore, each transmission between the satellite 120-a and the UE 115-a may therefore travel from Earth the distance to the satellite 120-a and back to Earth.
Similarly, the UE 115-a may communicate with the first base station 105-a and the second base station 105-b using communication links 205-a and 205-b, respectively, which may be examples of wireless communications links (e.g., 3G, 4G, LTE, or 5G links) between the UE 115-a and the base stations 105-a and 105-b. In some cases, the communication links 205-a and 205-b may include examples of an access link (e.g., a Uu link) . The communication links 205-a and 205-b may include bi-directional links that include both uplink and downlink communication. For example, the UE 115-a may transmit uplink signals, such as uplink control signals or uplink data signals, to the first base station 105-a using the first communication link 205-a and the first base station 105-a may transmit downlink signals, such as downlink control signals or downlink data signals, to the UE 115-a using the communication link 205-a. By way of another example, the UE 115-a may transmit uplink signals, such as uplink control signals or uplink data signals, to the second base station 105-b using the second communication link 205-b and the second base station 105-b may transmit downlink signals, such as downlink control signals or downlink data signals, to the UE 115-a using the communication link 205-b.
The first base station 105-a and the second base station 105-b may, in some cases, be collocated. Moreover, in some aspects, the first base station 105-a and the second base station 105-b may be associated with one or more subscriptions supported by the UE 115-a. For example, the UE 115-a may include a dual-SIM or multi-SIM UE 115-a, which supports a first subscription and a second subscription. In this example, the first base station 105-a may be associated with (e.g., support) the first subscription, and the second base station 105-b may be associated with (e.g., support) the second subscription.
To effectively transmit and receive data in some wireless communications systems, a UE may be configured to determine global navigation timing associated with a global navigation system (e.g., GNSS time) . Synchronization signals received from satellites of the global navigation system may indicate global navigation system times, and the UE may determine global navigation times associated with the global navigation system based on the received synchronization signals. In some cases, the UE may be out of coverage with respect to the global navigation system due to the movement of the UE, movement of a satellite,  terrestrial obstructions, weather conditions, or the like. In such cases, the UE may rely on synchronization signals received from WWANs (e.g., terrestrial wireless networks) to determine global navigation times associated with the global navigation system. However, determining global navigation times based on synchronization signals received from base stations associated with terrestrial networks may result in inaccurate determination of global navigation times, thereby leading to inefficient and unreliable wireless communications at the UE. For example, in cases where the UE goes out of coverage with respect to the terrestrial network, the UE may be unable to determine global navigation times.
Accordingly, the wireless communications system 200 may be configured to support transmissions between the UE 115-a, the base stations 105-a and 105-b, and the satellite 120-a in order to address these issues. In particular, the dual-SIM UE 115-a may be configured to determine global navigation times associated with a global navigation system when the UE 115-a is out of coverage with respect to the global navigation system (e.g., the satellite 120-a) based on synchronization signals received from base stations 105-a and 105-b associated with two or more subscriptions.
For example, the UE 115-a may include a dual-SIM or multi-SIM UE 115-a which is able to establish wireless connections associated with two or more subscriptions. Additionally, the UE 115-a may be configured to establish a connection with a global navigation system (e.g., GNSS, GPS) . In this example, the first base station 105-a may be associated with a first subscription, and the second base station 105-b may be associated with a second subscription. In some aspects, the UE 115-a may establish a first connection with a global navigation system via the satellite 120-a (e.g., establish a first connection with the satellite 120-a) . The UE 115-a may additionally establish a second connection with the first base station 105-a associated with the first subscription, and a third connection with the second base station 105-b associated with the second subscription.
The UE 115-a may receive synchronization signals 210 from the satellite 120-a via the communication link 205-c, where the synchronization signals 210 indicate global navigation system times (e.g., GNSS times, GPS times) associated with the global navigation system (e.g., GNSS, GPS) . Accordingly, when the UE 115-a is in coverage with respect to the global navigation system (e.g., in coverage with respect to the satellite 120-a) , the UE 115-a may determine global navigation times associated with the global navigation network  based on synchronization signals 210 received from the global navigation system (e.g., synchronization signals received from the satellite 120-a) . For example, the UE 115-a may receive the synchronization signal 210 from the satellite 120-a, and may determine a first global navigation time associated with the global navigation system based on the synchronization signal 210.
In some cases, the UE 115-a may determine a time associated with the first subscription and/or the second subscription based on receiving the synchronization signal 210 indicating the first global navigation time from the satellite 120-a. In this regard, the UE 115-a may determine a temporal relationship between global navigation times associated with the global navigation system and times associated with the first subscription, times associated with the second subscription, or both.
In some cases, the UE 115-a may determine that it is out of coverage with respect to the global navigation system (e.g., out of coverage with respect to the satellite 120-a) . The UE 115-a may go out of coverage with respect to the global navigation system based on the movement of the UE 115-a, the movement of the satellite 120-a, terrestrial obstructions, weather conditions, or the like.
In cases where the UE 115-a goes out of coverage with respect to the global navigation network (e.g., out of coverage with respect to the satellite 120-a and other satellites of the global navigation system) , the UE 115-a may determine global navigation times associated with the global navigation system based on synchronization signals 215 received from the first base station 105-a, the second base station 105-b, or both. In some cases, the UE 115-a may use synchronization signals from associated with the first base station 105-a, the second base station 105-b, or both, depending on the relative strengths, qualities, or other values associated with signals from each of the respective base stations 105-a and 105-b.
For example, the UE 115-a may determine that the UE 115-a has gone out of coverage with respect to the global navigation system. The UE 115-a may then perform measurements based on signals (e.g., reference signals, synchronization signals) received from the first base station 105-a and the second base station 105-b. In this example, the UE 115-a may determine a first value (e.g., first reference signal value, first received signal value) associated with signals from the first base station 105-a and a second value (e.g.,  second reference signal value, second received signal value) associated with signals from the second base station 105-a based on the performed measurements. The values (e.g., reference signal values, received signal values) may include a value associated with any signal parameter or measurement known in the art including, but not limited to, reference signal received power (RSRP) , reference signal received quality (RSRQ) , signal-to-noise ratio (SNR) , signal-to-interference-plus-noise ratio (SINR) , and the like. Subsequently, the UE 115-a may compare the first value (e.g., first reference signal value, first received signal value) associated with the first base station 105-a with the second value (e.g., second reference signal value, second received signal value) associated with the second base station 105-b and determine whether to use synchronization signals 215 from the first base station 105-a associated with the first subscription or synchronization signals 215 from the second base station 105-b associated with the second subscription to determine global navigation times based on the comparison. For instance, in cases where a first RSRP value associated with the first base station 105-a is greater than a second RSRP value associated with the second base station 105-b, the UE 115-a may determine to use synchronization signals 215 from the first base station 105-a to determine global navigation times.
In some cases, the UE 115-a may perform measurements on signals (e.g., reference signals, synchronization signals) at regular or irregular intervals to continuously monitor the relative signal strengths and qualities of the respective signals. In some cases, the UE 115-a may additionally compare the relative values (e.g., reference signal values, received signal values) at regular or irregular intervals in order to evaluate whether the UE 115-a should use synchronization signals 215 from the first base station 105-a associated with the first subscription, the second base station 105-b associated with the second subscription, or both, to determine global navigation times.
In some aspects, the UE 115-a may receive a first synchronization signal 215-a from the first base station 105-a. In some aspects, the UE 115-a may receive the first synchronization signal 215-a based on identifying the loss of coverage associated with the global navigation system. The first synchronization signal 215-a may indicate a first time (e.g., first WWAN time) associated with the first subscription. In some aspects, the UE 115-a may determine a second global navigation time associated with the global navigation system based on the first global navigation time and receiving the first synchronization signal which indicates the first time associated with the first subscription. In some aspects, the UE 115-a  may determine the second global navigation time using synchronization signals 215 from the first base station 105-a based on identifying the loss of coverage associated with the global navigation system.
In some aspects, the UE 115-a may determine a second global navigation time associated with the global navigation system based on the first global navigation time, the first synchronization signal 215-a indicating the first time associated with the first subscription, a time associated with the first subscription which was determined based on synchronization signal 210, or any combination thereof. For example, as noted previously herein, the UE 115-a may determine a time (e.g., “initial” time) associated with the first subscription based on receiving the synchronization signal 210 indicating the first global navigation time from the satellite 120-a. In this example, the initial time associated with the first subscription may be determined based on a temporal relationship between the global navigation system and the first subscription. In this example, the UE 115-a may determine a difference between the initial time and the first time indicated by the first synchronization signal 215-a. Additionally, the UE 115-a may determine the second global navigation time based on the first global navigation time and the difference between the initial time and the first time associated with the first subscription.
In additional aspects, the UE 115-a may receive a second synchronization signal 215-b from the first base station 105-a. The second synchronization signal 215-b may indicate a second time (e.g., second WWAN time) associated with the first subscription. In some aspects, the UE 115-a may determine a second global navigation time associated with the global navigation system based on the first global navigation time, the first synchronization signal 215-a, the second synchronization signal 215-b, or any combination thereof. For instance, the UE 115-a may determine a difference between the first time associated with the first subscription indicated by the first synchronization signal 215-a, and the second time associated with the first subscription indicated by the second synchronization signal 215-a. In this example, the UE 115-a may determine the second global navigation time based on the first global navigation time and determining the difference between the first time and the second time.
The UE 115-a may be configured to perform one or more unit conversion procedures to convert times (e.g., WWAN times) associated with the first subscription and/or  the second subscription into units associated with global navigation times. For example, in cases where the times associated with the first subscription and/or second subscription include units which are different from the units associated with global navigation times (e.g., GNSS times, GPS times) , the UE 115-a may perform one or more unit conversion procedures to convert times (e.g., WWAN times, differences in WWAN times) associated with the first subscription and/or second subscription into units associated with the global navigation times. In this regard, determining the second global navigation time may be based on performing the unit conversion procedures.
In some aspects, the UE 115-a may receive a first synchronization signal 215-c from the second base station 105-b. In some aspects, the UE 115-a may receive the first synchronization signal 215-c based on identifying the loss of coverage associated with the global navigation system. The first synchronization signal 215-c may indicate a first time (e.g., first WWAN time) associated with the second subscription. In some aspects, the UE 115-a may determine a third global navigation time associated with the global navigation system based on the first global navigation time, the second global navigation time, and/or receiving the first synchronization signal 215-c which indicates the first time associated with the second subscription. In some aspects, the UE 115-a may determine the third global navigation time using synchronization signals 215 from the second base station 105-b based on identifying the loss of coverage associated with the global navigation system.
In some cases, the UE 115-a may receive the synchronization signal 215-c based on determining that signal values (e.g., reference signal values, received signal values) received from the second base station 105-b exhibit superior performance as compared to signal values (e.g., reference signal values, received signal values) received from the first base station 105-a.
In additional aspects, the UE 115-a may receive a second synchronization signal 215-d from the second base station 105-b. The second synchronization signal 215-d may indicate a second time (e.g., second WWAN time) associated with the second subscription. In some aspects, the UE 115-a may determine the third global navigation time associated with the global navigation system based on the first global navigation time, the second global navigation time, the first synchronization signal 215-c, the second synchronization signal 215-d, or any combination thereof. For instance, the UE 115-a may determine a difference  between the first time associated with the second subscription indicated by the first synchronization signal 215-c, and the second time associated with the second subscription indicated by the second synchronization signal 215-d. In this example, the UE 115-a may determine the third global navigation time based on the second global navigation time and determining the difference between the first time and the second time associated with the second subscription.
In some aspects, the UE 115-a may determine a third global navigation time associated with the global navigation system based on the first global navigation time, the first synchronization signal 215-c indicating the first time associated with the second subscription, a time associated with the second subscription which was determined based on synchronization signal 210, or any combination thereof. For example, as noted previously herein, the UE 115-a may determine a time (e.g., “initial” time) associated with the second subscription based on receiving the synchronization signal 210 indicating the first global navigation time from the satellite 120-a. In this example, the initial time associated with the second subscription may be determined based on a temporal relationship between the global navigation system and the second subscription. In this example, the UE 115-a may determine a difference between the initial time and the first time indicated by the first synchronization signal 215-c. Additionally, the UE 115-a may determine the third global navigation time based on the first global navigation time and the difference between the initial time and the first time associated with the second subscription.
Additionally or alternatively, the UE 115-a may determine the third global navigation time associated with the global navigation system based on the first global navigation time, the second global navigation time, the first synchronization signal 215-c indicating the first time associated with the second subscription, a time associated with the second subscription which was determined based on synchronization signals 215 received from the first subscription, or any combination thereof. For example, the UE 115-a may determine a time (e.g., “initial” time) associated with the second subscription based on receiving the first synchronization signal 215-a received from the first base station 105-a. In this example, the initial time associated with the second subscription may be determined based on a temporal relationship between the first subscription and the second subscription. In this example, the UE 115-a may determine a difference between the initial time and the first time associated with the second subscription indicated by the first synchronization signal  215-c. Additionally, the UE 115-a may determine the third global navigation time based on the first global navigation time and the difference between the initial time and the first time associated with the second subscription.
In some cases, the UE 115-a may go out of coverage with respect to the first subscription (e.g., out of coverage with respect to the first base station 105-a) . The UE 115-a may go out of coverage with respect to the first subscription based on the movement of the UE 115-a, terrestrial obstructions, weather conditions, or the like. In cases where the UE 115-a goes out of coverage with respect to the first subscription, the UE 115-a may receive the synchronization signals 215-c and 215-d from the second base station 105-b based on identifying the loss of coverage associated with the first subscription.
Additionally or alternatively, the UE 115-a may determine that signal values (e.g., RSRP values, RSRQ values) associated with reference signals and/or synchronization signals 215 received from the second base station 105-a exhibit superior performance as compared to signal values (e.g., RSRP values, RSRQ values) associated with reference signals and/or synchronization signals 215 received from the first base station 105-a. In this regard, the UE 115-a may determine global navigation times based on synchronization signals associated with the first subscription, the second subscription, or both, dependent upon the relative strength or quality of signals received from each respective subscription.
For example, the UE 115-a may perform one or more measurements on the first synchronization signal 215-a received from the first base station 105-a and the first synchronization signal 215-c received from the second base station. In this example, the UE 115-a may determine a first received signal value associated with the first synchronization signal 215-a received from the first base station 105-a and a second received signal value associated with the first synchronization signal 215-c received from the second base station 105-b based on the one or more measurements. The received signal values may include any value, metric, or characteristic including, but not limited to, RSRP values, RSRQ values, SNR values, SINR values, and the like.
Continuing with the same example, the UE 115-a may determine the first received signal value or the second received signal value satisfies a threshold value. The UE 115-a may further determine global navigation times associated with the global navigation system based on the synchronization signals of the first subscription, second subscription, or both,  based on the first received signal value or the second received signal value satisfying the respective thresholds. For instance, if the UE 115-a determines an RSRP value associated with the first synchronization signal 215-a received from the first base station 105-a is less than an RSRP threshold (e.g., satisfies the RSRP threshold) , and an RSRP value associated with the first synchronization signal 215-c received from the second base station 105-b is greater than an RSRP threshold (e.g., does not satisfy the RSRP threshold) , the UE 115-a may determine global navigation times using the first synchronization signal 215-c received from the second base station 105-b.
Additionally or alternatively, the UE 115-a may determine global navigation times using synchronization signals received from both the first base station 105-a and the second base station 105-b. For example, the UE 115-a may determine a first interim time associated with the global navigation system based on the first synchronization signal 215-a received from the first base station 105-a. The UE 115-a may additionally determine a second interim time associated with the global navigation system based on the first synchronization signal 215-c received from the second base station 105-b. In this example, the UE 115-a may determine the second global navigation time associated with the global navigation system based on the first interim time and the second interim time. For instance, the UE 115-a may determine the second global navigation time based on an average of the first interim time and the second interim time, a weighted average of the first interim time and the second interim time, or the like.
In some aspects, the UE 115-a may transmit and receive signals based on global navigation times which are determined based on synchronization signals received from the satellite 120-a, the first base station 105-a, the second base station 105-c, or any combination thereof. For example, the UE 115-a ma transmit at least one of a downlink signal or a sidelink signal based on determining the first global navigation time, the second global navigation time, the third global navigation time, or any combination thereof. By way of another example, the UE 115-a may receive at least one of a downlink signal or a sidelink signal based on determining the first global navigation time, the second global navigation time, the third global navigation time, or any combination thereof.
The techniques described herein may enable more efficient and accurate determination of global navigation times in the wireless communications system 200. In  particular, the techniques described herein may enable the UE 115-a to determine global navigation times despite going out of coverage with respect to the global navigation system and/or a subscription (e.g., WWAN) with which it is communicatively coupled, thereby improving the reliability of global navigation time determination.
FIG. 3 illustrates an example of a timing diagram 300 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure. In some examples, timing diagram 300 may implement aspects of  wireless communications system  100 or 200. For example, the timing diagram 300 may illustrate determining global navigation times associated with a global navigation system based on synchronization signals received from a first base station associated with a first subscription and synchronization signals received from a second base station associated with a second subscription, as described with reference to FIGs. 1–2.
In some cases, the timing diagram 300 may include a UE 115-b, a first base station 105-c, and a second base station 105-d, which may be examples of corresponding devices as described herein. In particular, the UE 115-b illustrated in FIG. 3 may be an example of the UE 115-a illustrated in FIG. 2. Similarly, the first base station 105-c and the second base station 105-d illustrated in FIG. 3 may be examples of the base stations 105-a and 105-b, respectively, as illustrated in FIG. 2. Accordingly, in some cases, UE 115-b illustrated in FIG. 3 may include a dual-SIM or multi-SIM UE. Additionally, the first base station 105-c illustrated in FIG. 3 may be associated with a first subscription supported by the UE 115-b, and the second UE 115-d illustrated in FIG. 3 may be associated with a second subscription supported by the UE 115-b.
In some aspects, time duration 305 may illustrate a time duration in which the UE 115-b is in coverage with respect to a global navigation system. In this regard, the UE 115-b may be in coverage with respect to one or more satellites associated with the global navigation system during the time duration 305. Comparatively, time duration 310 may illustrate a time duration in which the UE 115-b is out of coverage with respect to the global navigation system. In this regard, the UE 115-b may go out of coverage with respect to all satellites associated with the global navigation system at a transition between time duration 305 and time duration 310 (e.g., at or around T3) .
While the UE 115-b is in coverage with respect to the global navigation system over time duration 305, the UE 115-b may receive one or more synchronization signals from a satellite associated with the global navigation system. Synchronization signals received from satellites associated with the global navigation system may indicate global navigation times associated with the global navigation system. For example, the UE 115-b may receive a synchronization signal (e.g., synchronization signal 210 illustrated in FIG. 2) during time duration 305, and may determine a first global navigation time associated with the global navigation system based on the synchronization signal received from the satellite.
The UE 115-b may determine a time associated with the first subscription (e.g., first base station 105-c) , a time associated with the second subscription (e.g., second base station 105-d) , or both, based on receiving the one or more synchronization signals from the satellite. In this regard, the UE 115-b may determine a temporal relationship between global navigation times associated with the global navigation system and times associated with the first subscription, the second subscription, or both. Moreover, the UE 115-b may determine a temporal relationship between the first subscription and the second subscription based on the synchronization signals received from the global navigation system, determined temporal relationships between the global navigation system and the first subscription and/or second subscription, or any combination thereof. As it is used herein, the term “temporal relationship” may be used to refer to any mapping, relationship, equation, algorithm, or the like, which is used to associate (e.g., equate) a time associated with one system (e.g., global navigation system, WWAN associated with the first subscription, WWAN associated with the second subscription) with another system.
In some aspects, the UE 115-b may receive a synchronization signal 315-a from the first base station 105-c. The UE 115-a may receive the synchronization signal 315-a at a time T1. In some aspects, there may be a propagation delay 320 between the time the synchronization signal 315-a was transmitted by the base station 105-c and the time the synchronization signal 315-a was received by the UE 115-b (e.g., T1) . Accordingly, in some cases, the propagation delay 320 may be defined as a time duration the synchronization signal 315-a spends propagating from the base station 105-c to the UE 115-b. The synchronization signal 315-a may indicate a first time associated with the first subscription.
Similarly, the UE 115-a may receive a synchronization signal 315-b from the second base station 105-d. The UE 115-a may receive the synchronization signal 315-b at a time T2. As shown in FIG. 3, the synchronization signal 315-b may additionally exhibit a propagation delay between the time the synchronization signal 315-b was transmitted by the second base station 105-b, and the time the synchronization signal 315-b was received by the UE 115-b (e.g., T2) . The synchronization signal 315-b may indicate a first time associated with the second subscription.
In some aspects, the UE 115-b may determine the temporal relationships between the global navigation time and the first subscription and/or the second subscription based on synchronization signals received from the satellite and the synchronization signals 315-a and 315-b received from the first base station 105-c and the second base station 105-d, respectively. For example, the UE 115-b may determine a temporal relationship between the global navigation system and the first subscription based on synchronization signals received from the satellite indicating global navigation times, and the first synchronization signal 315-a received from the first base station 105-b indicating the first time associated with the first subscription.
In some aspects, the UE 115-a may determine that the UE 115-a is out of coverage with respect to the global navigation system at T3. As noted previously herein, the UE 115-b may perform measurements of signals (e.g., reference signals, synchronization signals 315) received from the first base station 105-a and the second base station 105-b to determine whether the UE 115-b should determine global navigation times based on synchronization signals 315 received from the first base station 105-a, the second base station 105-b, or both.
While the UE 115-b is out of service with respect to the global navigation system, the UE 115-b may receive a synchronization signal 315-c from the first base station 105-c at T4. The synchronization signal 315-c may indicate a second time associated with the second subscription. In some aspects, the UE 115-b may determine a global navigation time associated with the global navigation system at T4 based on the global navigation time at T1, the first time associated with the first subscription at T1, the second time associated with the first subscription at T4, or any combination thereof.
For example, the UE 115-b may determine a difference between the first time associated with the first subscription at T1 and the second time associated with the first  subscription at T4. In this example, the UE 115-b may determine the global navigation time associated with the global navigation system at T4 based on the global navigation time at T1 and the determined difference between the first time associated with the first subscription at T1 and the second time associated with the first subscription at T4. In this example, the global navigation time at T4 may be determined according to Equation 1:
GNSS T4= GNSS T1+α (WWAN T4-WWAN T1)     (1)
where GNSS T1 is the global navigation time at T1, GNSS T4 is the global navigation time at T4, WWAN T1 is the first time associated with the first subscription at T1, WWAN T4 is the second time associated with the first subscription at T4, and α defines a coefficient or equation configured for a unit conversion procedure.
In some cases, the UE 115-b may receive a synchronization signal 315-d from the second base station 105-d at T5. The synchronization signal 315-d may indicate a second time associated with the second subscription. In some aspects, the UE 115-b may determine a global navigation time associated with the global navigation system at T4 based on the global navigation time at T2, the first time associated with the second subscription at T2, the second time associated with the second subscription at T5, or any combination thereof.
For example, the UE 115-b may determine a difference between the first time associated with the second subscription at T2 and the second time associated with the second subscription at T5. In this example, the UE 115-b may determine the global navigation time associated with the global navigation system at T5 based on the global navigation time at T2 and the determined difference between the first time associated with the second subscription at T2 and the second time associated with the second subscription at T5. In this example, the global navigation time at T5 may be determined according to Equation 2:
GNSS T5= GNSS T2+α (WWAN T5-WWAN T2)         (2)
where GNSS T2 is the global navigation time at T2, GNSS T5 is the global navigation time at T5, WWAN T2 is the first time associated with the second subscription at T2, WWAN T5 is the second time associated with the second subscription at T5, and α defines a coefficient or equation configured for a unit conversion procedure.
In some aspects, the UE 115-b may receive a synchronization signal 315-e from the first base station 105-c at T6. The synchronization signal 315-e may indicate a third time  associated with the first subscription. In some aspects, the UE 115-b may determine a global navigation time associated with the global navigation system at T6 based on the synchronization signal 315-e, a previously-determined global navigation time, a previously-determined time associated with the first subscription, or any combination thereof.
In some cases, the UE 115-b may go out of coverage with respect to the first subscription (e.g., out of coverage with respect to the first base station 105-c) during time duration 325. The UE 115-b may be configured to determine that the UE 115-b is out of coverage with respect to the first subscription.
In some cases, the UE 115-b may receive a synchronization signal 315-f from the second base station 105-d at T7. In some aspects, the UE 115-b may receive the synchronization signal 315-f based on identifying a loss of coverage with respect to the first subscription. The synchronization signal 315-f may indicate a third time associated with the second subscription. In some aspects, the UE 115-b may determine a global navigation time associated with the global navigation system at T7 based on the global navigation time at T2 and/or T4, the first time associated with the second subscription at T2, the second time associated with the second subscription at T5, or any combination thereof.
For example, the UE 115-b may determine a difference between the third time associated with the second subscription at T7 and the second time associated with the second subscription at T5. In this example, the UE 115-b may determine the global navigation time associated with the global navigation system at T7 based on the global navigation time at T5 and the determined difference between the third time associated with the second subscription at T7 and the second time associated with the second subscription at T5. In this example, the global navigation time at T7 may be determined according to Equation 3:
GNSS T7= GNSS T5+α (WWAN T7-WWAN T5)          (3)
where GNSS T5 is the global navigation time at T5, GNSS T7 is the global navigation time at T7, WWAN T5 is the second time associated with the second subscription at T5, WWAN T7 is the third time associated with the second subscription at T7, and α defines a coefficient or equation configured for a unit conversion procedure.
Similarly, the global navigation time at T7 may be determined according to Equation 4:
GNSS T7= GNSS T2+α (WWAN T7-WWAN T2)        (4)
where GNSS T2 is the global navigation time at T2, GNSS T7 is the global navigation time at T7, WWAN T2 is the first time associated with the second subscription at T2, WWAN T7 is the third time associated with the second subscription at T7, and α defines a coefficient or equation configured for a unit conversion procedure.
In some aspects, the UE 115-b may be configured to determine times associated with the second subscription based on synchronization signals 315 associated with the first subscription, and vis versa. For example, as shown in FIG. 3, the UE 115-b may determine a time associated with the second subscription (e.g., T8) based on receiving the synchronization signal 315-e from the first base station 105-c. In some aspects, the UE 115-b may determine the time associated with the second subscription (e.g., T8) using the synchronization signal 315-e based on a temporal relationship between times associated with the first subscription and times associated with the second subscription. In this regard, the UE 115-b may “query” the time associated with the second subscription (e.g., T8) based on receiving the synchronization signal 315-e.
Similarly, the UE 115-b may determine a time associated with the first subscription (e.g., T9) based on receiving the synchronization signal 315-d from the second base station 105-d. In some aspects, the UE 115-b may determine the time associated with the first subscription (e.g., T9) using the synchronization signal 315-d based on the temporal relationship between times associated with the first subscription and times associated with the second subscription. In this regard, the UE 115-b may “query” the time associated with the first subscription (e.g., T9) based on receiving the synchronization signal 315-d.
In cases where the UE 115-b determines times associated with the second subscription based on synchronization signals 315 associated with the first subscription, or vis versa, the UE 115-b may utilize the queried times (e.g., T8, T9) to determine global navigation times. For example, in cases where the UE 115-b determines a time associated with the second subscription (e.g., T8) using the synchronization signal 315-e, the UE 115-b may determine the global navigation time associated with the global navigation system at T7 based on Equation 5:
GNSS T7= GNSS T6+α (WWAN T7-WWAN T8)         (4)
where GNSS T6 is the global navigation time at T6, GNSS T7 is the global navigation time at T7, WWAN T7 is the time associated with the second subscription at T7, WWAN T8 is the time associated with the second subscription at T8, and α defines a coefficient or equation configured for a unit conversion procedure.
By way of another example, in cases where the UE 115-b determines a time associated with the first subscription (e.g., T9) using the synchronization signal 315-d, the UE 115-b may determine the global navigation time associated with the global navigation system at T6 based on Equation 6:
GNSS T6= GNSS T5+α (WWAN T6-WWAN T9)           (6)
where GNSS T5 is the global navigation time at T5, GNSS T6 is the global navigation time at T6, WWAN T9 is the time associated with the first subscription at T9, WWAN T6 is the time associated with the first subscription at T6, and α defines a coefficient or equation configured for a unit conversion procedure.
In some aspects, the UE 115-a may determine global navigation times using synchronization signals 315 received from both the first base station 105-c and the second base station 105-d. For example, as shown in FIG. 3, the UE 115-b may receive a synchronization signal 315-c from the first base station 105-c, and may receive a synchronization signal 315-g from the second base station 105-d. The synchronization signal 315-g received from the second base station 105-d may be received before, after, or at the same time as the synchronization signal 315-c. In some aspects, the UE 115-b may receive the synchronization signals 315-c and 315-g at approximately the same time. The synchronization signal 315-c received from the first base station 105-c may indicate a time associated with the first subscription, and the synchronization signal 315-g received from the second base station 105-g may indicate a time associated with the second subscription. In this example, the UE 115-b may determine a first interim time associated with the global navigation system at T4 based on the synchronization signal 315-a received from the first base station 105-c. The UE 115-b may additionally determine a second interim time associated with the global navigation system at T4 based on the synchronization signal 315-g received from the second base station 105-d. In this example, the UE 115-b may determine the global navigation time associated with the global navigation system at T4 based on the first interim time and the second interim time. For instance, the UE 115-b may determine the  global navigation time at T4 based on an average of the first interim time and the second interim time, a weighted average of the first interim time and the second interim time, or the like.
The techniques described herein may enable more efficient and accurate determination of global navigation times in the  wireless communications systems  100 and 200. In particular, by enabling the UE 115-b to determine global navigation times based on synchronization signals received from a global navigation system, a first subscription, a second subscription, or any combination thereof, techniques described herein may enable the UE 115-b to accurately and efficiently determine global navigation times even in cases where the UE 115-b goes out of service with respect to the global navigation system and one or more subscriptions.
FIG. 4 illustrates an example of a process flow 400 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure. In some examples, process flow 400 may implement aspects of  wireless communications systems  100 or 200, and timing diagram 300. For example, the process flow 400 may illustrate determining a first global navigation time based on synchronization signals received from a satellite of a global navigation system, determining a second global navigation time based on synchronization signals received from a first base station associated with a first subscription, and determining a third global navigation time based on synchronization signals received from a second base station associated with a second subscription, as described with reference to FIGs. 1–3.
In some cases, process flow 400 may include a UE 115-c, a first base station 105-e, a second base station 105-f, and a satellite 120-b, which may be examples of corresponding devices as described herein. In particular, the UE 115-c illustrated in FIG. 4 may be an example of the UEs 115-a and 115-b illustrated in FIGs. 2 and 3, respectively. Similarly, the first base station 105-e and the second base station 105-f illustrated in FIG. 4 may be examples of the base stations 105-a and 105-c and base stations 105-b and 105-d, respectively, as illustrated in FIGs. 2 and 3. Accordingly, in some cases, UE 115-c illustrated in FIG. 4 may include a dual-SIM or multi-SIM UE. Additionally, the first base station 105-e illustrated in FIG. 4 may be associated with a first subscription supported by the UE 115-c,  and the second UE 115-f illustrated in FIG. 4 may be associated with a second subscription supported by the UE 115-c.
In some examples, the operations illustrated in process flow 400 may be performed by hardware (e.g., including circuitry, processing blocks, logic components, and other components) , code (e.g., software or firmware) executed by a processor, or any combination thereof. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
At 405, the UE 115-e may receive a synchronization signal from the satellite 120-b associated with a global navigation system. In some aspects, the synchronization signal may indicate a first global navigation time associated with the global navigation system.
At 410, the UE 115-e may determine a first global navigation time associated with the global navigation system. In some aspects, the UE 115-e may determine the first global navigation time based on the synchronization signal received from the satellite 120-b.
At 415, the UE 115-e may receive a synchronization signal from the first base station 105-e associated with the first subscription. In some aspects, the synchronization signal may indicate a first time (e.g., first WWAN time) associated with the first subscription. For example, as shown in FIG. 3, the UE 115-b may receive a synchronization signal 315-c from the first base station 105-c at T4, where the synchronization signal 315-c indicates a time associated with the first subscription at T4.
At 420, the UE 115-e may receive a synchronization signal from the second base station 105-f associated with the second subscription. In some aspects, the synchronization signal may indicate a second time (e.g., second WWAN time) associated with the second subscription. For example, as shown in FIG. 3, the UE 115-b may receive a synchronization signal 315-d from the second base station 105-d at T5, where the synchronization signal 315-d indicates a time associated with the second subscription at T5.
At 425, the UE 115-e may identify a loss of coverage with respect to the global navigation system. For example, the UE 115-e may identify a loss of coverage with respect to the satellite 120-b. In some aspects, the UE 115-e may go out of coverage with respect to the  global navigation system based on the movement of the UE 115-e, the movement of the satellite 120-b, terrestrial obstructions (e.g., tunnels, buildings) , weather conditions, or the like. For instance, as shown in FIG. 3, the UE 115-b may determine a loss of coverage with respect to the global navigation system at T3.
At 430, the UE 115-e may receive a synchronization signal from the first base station 105-e associated with the first subscription. In some aspects, the synchronization signal may indicate a third time (e.g., third WWAN time) associated with the first subscription. For example, as shown in FIG. 3, the UE 115-b may receive a synchronization signal 315-e from the first base station 105-c at T6, where the synchronization signal 315-e indicates a time associated with the first subscription at T6.
At 435, the UE 115-e may determine a second global navigation time associated with the global navigation system. In some aspects, the UE 115-e may determine the second global navigation time based on the first global navigation time determined at 410, the synchronization signal received from the first base station 105-e at 430, or any combination thereof. For example, as shown in FIG. 3, the UE 115-b may determine a global navigation time at T6 based on the synchronization signal 315-c received at T4, the synchronization signal 315-d received at T5, the global navigation time at T4, T5, or T9, or any combination thereof.
At 440, the UE 115-e may identify a loss of coverage with respect to the first subscription (e.g., first WWAN) . For example, the UE 115-e may identify a loss of coverage with respect to the first base station 105-e. In some aspects, the UE 115-e may go out of coverage with respect to the first subscription based on the movement of the UE 115-e, terrestrial obstructions (e.g., tunnels, buildings) , weather conditions, or the like. For instance, as shown in FIG. 3, the UE 115-b may identify a loss of coverage with respect to the first subscription during the time duration 325.
At 445, the UE 115-e may receive a synchronization signal from the second base station 105-f associated with the second subscription. In some aspects, the synchronization signal may indicate a fourth time (e.g., fourth WWAN time) associated with the second subscription. For example, as shown in FIG. 3, the UE 115-b may receive a synchronization signal 315-f from the second base station 105-d at T7, where the synchronization signal 315-f indicates a time associated with the second subscription at T7.
At 450, the UE 115-e may determine a third global navigation time associated with the global navigation system. In some aspects, the UE 115-e may determine the third global navigation time based on the first global navigation time determined at 410, the second global navigation time determined at 435, the synchronization signal received from the second base station 105-f at 435, or any combination thereof. For example, as shown in FIG. 3, the UE 115-b may determine a global navigation time at T7 based on the synchronization signal 315-d received at T5, the synchronization signal 315-e received at T6, the global navigation time at T5, T6, or T8, or any combination thereof.
The techniques described herein may enable more efficient and accurate determination of global navigation times in the  wireless communications systems  100 and 200. In particular, by enabling the UE 115-c to determine global navigation times based on synchronization signals received from a global navigation system, a first subscription, a second subscription, or any combination thereof, techniques described herein may enable the UE 115-c to accurately and efficiently determine global navigation times even in cases where the UE 115-c goes out of service with respect to the global navigation system and one or more subscriptions.
FIG. 5 shows a block diagram 500 of a device 505 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a UE 115 as described herein. The device 505 may include a receiver 510, a communications manager 515, and a transmitter 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to determining global navigation system timing with dual SIM environment, etc. ) . Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 510 may utilize a single antenna or a set of antennas.
The communications manager 515 may receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system, receive, from a first base  station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription, receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription, determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time, and determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both. The communications manager 515 may be an example of aspects of the communications manager 810 described herein.
The actions performed by the communications manager 515 as described herein may be implemented to realize one or more potential advantages. For example, determining global navigation times associated with a global navigation system based on synchronization signals received from WWANs may enable determination of the global navigation times even when a UE is out of coverage with respect to the global navigation system. Similarly, by determining global navigation times based on synchronization signals received from WWANs associated with two or more subscriptions, techniques described herein may enable the UE to determine global navigation times even when a UE is out of coverage with respect to a single subscription. Accordingly, the communications manager 515 may improve determination In particular, by preventing the UE 115 from firstly establishing a connection with a lower-priority radio access technology (e.g., LTE, 3G, 2G) , the communications manager 415 may enable more efficient and accurate determination of global navigation times, thereby improving wireless communications and leading to improved user experience with the UE 115.
Based on performing determining global navigation times based on synchronization signals received from WWANs, a processor of the UE 115 (e.g., a processor controlling the receiver 510, the communications manager 515, the transmitter 520, etc. ) may reduce processing resources used for determination of global navigation times. For example, by improving the efficiency and reliability of determinations of global navigation times, the quantity of attempts to accurately determine global navigation times may be reduced. Subsequently, the processor of the UE 115 may reduce a quantity of signaling resources used by the UE 115 to determine global navigation times, correspondingly reducing a number of  times the processor ramps up processing power and turns on processing units to handle uplink transmission and/or downlink reception.
The communications manager 515, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 515, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 515, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 515, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 520 may transmit signals generated by other components of the device 505. In some examples, the transmitter 520 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 520 may utilize a single antenna or a set of antennas.
FIG. 6 shows a block diagram 600 of a device 605 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a device 505, or a UE 115 as described herein. The device 605 may include a receiver 610, a communications manager 615, and a transmitter 635. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to determining global navigation system timing with dual SIM environment, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 610 may utilize a single antenna or a set of antennas.
The communications manager 615 may be an example of aspects of the communications manager 515 as described herein. The communications manager 615 may include a satellite synchronization signal manager 620, a WWAN synchronization signal receiving manager 625, and a global navigation time manager 630. The communications manager 615 may be an example of aspects of the communications manager 810 described herein.
The satellite synchronization signal manager 620 may receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system. The WWAN synchronization signal receiving manager 625 may receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription and receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription.
The global navigation time manager 630 may determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time and determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
The transmitter 635 may transmit signals generated by other components of the device 605. In some examples, the transmitter 635 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 635 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 635 may utilize a single antenna or a set of antennas.
FIG. 7 shows a block diagram 700 of a communications manager 705 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure. The communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein. The communications manager 705 may include a satellite synchronization signal manager 710, a WWAN synchronization signal receiving manager 715, a global navigation time manager 720, a global navigation system manager 725, a reference signal manager 730, a WWAN time manager 735, a synchronization signal measurement manager 740, a WWAN coverage manager 745, a transmission manager 750, and a reception manager 755. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The satellite synchronization signal manager 710 may receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system. The WWAN synchronization signal receiving manager 715 may receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription. In some examples, the WWAN synchronization signal receiving manager 715 may receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription.
In some examples, the WWAN synchronization signal receiving manager 715 may receive, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription prior to receiving the second synchronization signal, where determining the third global navigation time is based on receiving the third synchronization signal. In some examples, the WWAN synchronization signal receiving manager 715 may receive, from the first base station associated with the first subscription, a third synchronization signal indicating a third time associated with the first subscription prior to receiving the first synchronization signal, where determining the second global navigation time is based on receiving the third synchronization signal.
In some examples, the WWAN synchronization signal receiving manager 715 may receive, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription, where the third synchronization signal is received prior to the second synchronization signal, where determining the second global navigation time is based on the first synchronization signal and the third synchronization signal. In some examples, the WWAN synchronization signal receiving manager 715 may receive, from the first base station associated with the first subscription, a fourth synchronization signal indicating a fourth time associated with the first subscription, where the fourth synchronization signal is received after the first synchronization signal, where determining the third global navigation time is based on the second synchronization signal and the fourth synchronization signal. In some examples, the WWAN synchronization signal receiving manager 715 may receive, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription.
The global navigation time manager 720 may determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time. In some examples, the global navigation time manager 720 may determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both. In some examples, the global navigation time manager 720 may determine a difference between the first time and the third time, where determining the second global navigation time is based on determining the difference. In some examples, the global navigation time manager 720 may perform a unit conversion procedure to convert the difference to a unit associated with the second global navigation time, where determining the third global navigation time is based on performing the unit conversion procedure.
In some examples, the global navigation time manager 720 may determine a first interim time associated with the global navigation system based on the first synchronization signal. In some examples, the global navigation time manager 720 may determine a second interim time associated with the global navigation system based on the third synchronization signal, where the second global navigation time is determined based on the first interim time  and the second interim time. In some examples, the global navigation time manager 720 may determine the second global navigation time based on the first synchronization signal or the third synchronization signal which does not satisfy the threshold value based on the first received signal value or the second received signal value satisfying the threshold value. In some cases, the second global navigation time includes at least one of an average of the first interim time and the second interim time, or a weighted average of the first interim time and the second interim time.
In some cases, at least one of the first global navigation time or the second global navigation time includes a GNSS time. In some cases, the global navigation system includes a global navigation satellite system (GNSS) or a GPS. The global navigation system manager 725 may identify a loss of coverage associated with the global navigation system, where determining the second global navigation time and determining the third global navigation time is based on identifying the loss of coverage.
The reference signal manager 730 may perform one or more measurements on a first reference signal received from the first base station associated with the first subscription and a second reference signal received from the second base station associated with the second subscription based on identifying the loss of coverage. In some examples, the reference signal manager 730 may determine a first reference signal value associated with the first reference signal and a second reference signal value associated with the second reference signal based on performing the one or more measurements. In some examples, the reference signal manager 730 may compare the first reference signal value and the second reference signal value, where determining the second global navigation time using the first synchronization signal is based on comparing the first reference signal value and the second reference signal value. In some examples, the reference signal manager 730 may perform one or more measurements on a third reference signal received from the first base station associated with the first subscription and a fourth reference signal received from the second base station associated with the second subscription based on identifying the loss of coverage. In some examples, the reference signal manager 730 may determine a third reference signal value associated with the third reference signal and a fourth reference signal value associated with the fourth reference signal based on performing the one or more measurements. In some examples, the reference signal manager 730 may compare the third reference signal value and the fourth reference signal value, where determining the third global navigation time using  the second synchronization signal is based on comparing the third reference signal value and the fourth reference signal value.
The WWAN time manager 735 may determine a third time associated with the second subscription based on receiving the first synchronization signal that indicates the first time associated with the first subscription, where determining the third global navigation time is based on determining the third time associated with the second subscription. In some examples, the WWAN time manager 735 may determine a difference between the second time associated with the second synchronization signal and the third time associated with the second subscription, where determining the third global navigation time is based on determining the difference. In some examples, the WWAN time manager 735 may determine a third time associated with the first subscription based on receiving the one or more synchronization signals indicating the first global navigation time. In some examples, the WWAN time manager 735 may determine a difference between the first time associated with the first subscription and the third time associated with the first subscription, where determining the second global navigation time is based on determining the difference and the first global navigation time.
In some examples, the WWAN time manager 735 may determine a temporal relationship between times associated with the first subscription and times associated with the second subscription based on the first synchronization signal indicating the first time associated with the first subscription and the second synchronization signal indicating the second time associated with the second subscription. In some examples, the WWAN time manager 735 may determine a fourth time associated with the first subscription based on the temporal relationship and receiving the third synchronization signal. In some cases, at least one of the first time or the second time includes a wide wireless area network time.
The synchronization signal measurement manager 740 may perform one or more measurements on the first synchronization signal and the third synchronization signal. In some examples, the synchronization signal measurement manager 740 may determine a first received signal value associated with the first synchronization signal and a second received signal value associated with the third synchronization signal based on performing the one or more measurements. In some examples, the synchronization signal measurement manager 740 may determine the first received signal value or the second received signal value satisfies  a threshold value. The WWAN coverage manager 745 may identify a loss of coverage associated with the first subscription after receiving the first synchronization signal.
The transmission manager 750 may transmit at least one of an uplink signal or a first sidelink signal based on determining the second global navigation time, the third global navigation time, or both. The reception manager 755 may receive at least one of a downlink signal or a second sidelink signal based on determining the second global navigation time, the third global navigation time, or both.
FIG. 8 shows a diagram of a system 800 including a device 805 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure. The device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein. The device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
The communications manager 810 may receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system, receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription, receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription, determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time, and determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
The I/O controller 815 may manage input and output signals for the device 805. The I/O controller 815 may also manage peripherals not integrated into the device 805. In some cases, the I/O controller 815 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 815 may utilize an operating system such as 
Figure PCTCN2020096142-appb-000001
or another known operating system. In other cases, the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 815 may be implemented as part of a processor. In some cases, a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
The transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 830 may include random-access memory (RAM) and read-only memory (ROM) . The memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 830 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 840 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 840. The processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting determining global navigation system timing with dual SIM environment) .
The code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 9 shows a flowchart illustrating a method 900 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure. The operations of method 900 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 905, the UE may receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system. The operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by a satellite synchronization signal manager as described with reference to FIGs. 5 through 8.
At 910, the UE may receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription. The operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a WWAN synchronization signal receiving manager as described with reference to FIGs. 5 through 8.
At 915, the UE may determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time. The operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a global navigation time manager as described with reference to FIGs. 5 through 8.
At 920, the UE may receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription. The operations of 920 may be performed according to the methods described herein. In some examples, aspects of the operations of 920 may be performed by a WWAN synchronization signal receiving manager as described with reference to FIGs. 5 through 8.
At 925, the UE may determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both. The operations of 925 may be performed according to the methods described herein. In some examples, aspects of the operations of 925 may be performed by a global navigation time manager as described with reference to FIGs. 5 through 8.
FIG. 10 shows a flowchart illustrating a method 1000 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure. The operations of method 1000 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1005, the UE may receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system. The operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a satellite synchronization signal manager as described with reference to FIGs. 5 through 8.
At 1010, the UE may identify a loss of coverage associated with the global navigation system. The operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a global navigation system manager as described with reference to FIGs. 5 through 8.
At 1015, the UE may receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription. The operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a WWAN synchronization signal receiving manager as described with reference to FIGs. 5 through 8.
At 1020, the UE may determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time, where determining the second global navigation time is based on identifying the loss of coverage. The operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a global navigation time manager as described with reference to FIGs. 5 through 8.
At 1025, the UE may receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription. The operations of 1025 may be performed according to the methods described herein. In some examples, aspects of the operations of 1025 may be performed by a WWAN synchronization signal receiving manager as described with reference to FIGs. 5 through 8.
At 1030, the UE may determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both, where determining the third global navigation time is based on identifying the loss of coverage. The operations of 1030 may be performed according to the methods described herein. In some examples, aspects of the operations of 1030 may be performed by a global navigation time manager as described with reference to FIGs. 5 through 8.
FIG. 11 shows a flowchart illustrating a method 1100 that supports determining global navigation system timing with dual SIM environment in accordance with aspects of the present disclosure. The operations of method 1100 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of  the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1105, the UE may receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system. The operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a satellite synchronization signal manager as described with reference to FIGs. 5 through 8.
At 1110, the UE may receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription. The operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a WWAN synchronization signal receiving manager as described with reference to FIGs. 5 through 8.
At 1115, the UE may determine a second global navigation time associated with the global navigation system based on receiving the first synchronization signal that indicates the first time and the first global navigation time. The operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a global navigation time manager as described with reference to FIGs. 5 through 8.
At 1120, the UE may receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription. The operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by a WWAN synchronization signal receiving manager as described with reference to FIGs. 5 through 8.
At 1125, the UE may determine a third global navigation time associated with the global navigation system based on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both. The operations of 1125 may be performed according to the methods described herein. In some examples, aspects of the operations of 1125 may be performed by a global navigation time manager as described with reference to FIGs. 5 through 8.
At 1130, the UE may determine a temporal relationship between times associated with the first subscription and times associated with the second subscription based on the first synchronization signal and the second synchronization signal. The operations of 1130 may be performed according to the methods described herein. In some examples, aspects of the operations of 1130 may be performed by a WWAN time manager as described with reference to FIGs. 5 through 8.
At 1135, the UE may identify a loss of coverage associated with the first subscription after receiving the first synchronization signal. The operations of 1135 may be performed according to the methods described herein. In some examples, aspects of the operations of 1135 may be performed by a WWAN coverage manager as described with reference to FIGs. 5 through 8.
At 1140, the UE may receive, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription. The operations of 1140 may be performed according to the methods described herein. In some examples, aspects of the operations of 1140 may be performed by a WWAN synchronization signal receiving manager as described with reference to FIGs. 5 through 8.
At 1145, the UE may determine a fourth time associated with the first subscription based on the temporal relationship and receiving the third synchronization signal. The operations of 1145 may be performed according to the methods described herein. In some examples, aspects of the operations of 1145 may be performed by a WWAN time manager as described with reference to FIGs. 5 through 8.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) ,  Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of  example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (44)

  1. A method for wireless communication at a user equipment (UE) , comprising:
    receiving, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system;
    receiving, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription;
    determining a second global navigation time associated with the global navigation system based at least in part on receiving the first synchronization signal that indicates the first time and the first global navigation time;
    receiving, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription; and
    determining a third global navigation time associated with the global navigation system based at least in part on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
  2. The method of claim 1, further comprising:
    receiving, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription prior to receiving the second synchronization signal, wherein determining the third global navigation time is based at least in part on receiving the third synchronization signal.
  3. The method of claim 1, further comprising:
    receiving, from the first base station associated with the first subscription, a third synchronization signal indicating a third time associated with the first subscription prior to receiving the first synchronization signal, wherein determining the second global navigation time is based at least in part on receiving the third synchronization signal.
  4. The method of claim 3, further comprising:
    determining a difference between the first time and the third time, wherein determining the second global navigation time is based at least in part on determining the difference.
  5. The method of claim 1, further comprising:
    identifying a loss of coverage associated with the global navigation system, wherein determining the second global navigation time and determining the third global navigation time is based at least in part on identifying the loss of coverage.
  6. The method of claim 5, further comprising:
    performing one or more measurements on a first reference signal received from the first base station associated with the first subscription and a second reference signal received from the second base station associated with the second subscription based at least in part on identifying the loss of coverage;
    determining a first reference signal value associated with the first reference signal and a second reference signal value associated with the second reference signal based at least in part on performing the one or more measurements; and
    comparing the first reference signal value and the second reference signal value, wherein determining the second global navigation time using the first synchronization signal is based at least in part on comparing the first reference signal value and the second reference signal value.
  7. The method of claim 5, further comprising:
    performing one or more measurements on a third reference signal received from the first base station associated with the first subscription and a fourth reference signal received from the second base station associated with the second subscription based at least in part on identifying the loss of coverage;
    determining a third reference signal value associated with the third reference signal and a fourth reference signal value associated with the fourth reference signal based at least in part on performing the one or more measurements; and
    comparing the third reference signal value and the fourth reference signal value, wherein determining the third global navigation time using the second synchronization  signal is based at least in part on comparing the third reference signal value and the fourth reference signal value.
  8. The method of claim 1, further comprising:
    determining a third time associated with the second subscription based at least in part on receiving the first synchronization signal that indicates the first time associated with the first subscription, wherein determining the third global navigation time is based at least in part on determining the third time associated with the second subscription.
  9. The method of claim 8, further comprising:
    determining a difference between the second time associated with the second synchronization signal and the third time associated with the second subscription, wherein determining the third global navigation time is based at least in part on determining the difference.
  10. The method of claim 9, further comprising:
    performing a unit conversion procedure to convert the difference to a unit associated with the second global navigation time, wherein determining the third global navigation time is based at least in part on performing the unit conversion procedure.
  11. The method of claim 1, further comprising:
    determining a third time associated with the first subscription based at least in part on receiving the one or more synchronization signals indicating the first global navigation time; and
    determining a difference between the first time associated with the first subscription and the third time associated with the first subscription, wherein determining the second global navigation time is based at least in part on determining the difference and the first global navigation time.
  12. The method of claim 1, further comprising:
    receiving, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription, wherein the third synchronization signal is received prior to the second synchronization signal, wherein determining the second global navigation time is based at least in part on the first synchronization signal and the third synchronization signal.
  13. The method of claim 12, further comprising:
    determining a first interim time associated with the global navigation system based at least in part on the first synchronization signal; and
    determining a second interim time associated with the global navigation system based at least in part on the third synchronization signal, wherein the second global navigation time is determined based at least in part on the first interim time and the second interim time.
  14. The method of claim 13, wherein the second global navigation time comprises at least one of an average of the first interim time and the second interim time, or a weighted average of the first interim time and the second interim time.
  15. The method of claim 12, further comprising:
    receiving, from the first base station associated with the first subscription, a fourth synchronization signal indicating a fourth time associated with the first subscription, wherein the fourth synchronization signal is received after the first synchronization signal, wherein determining the third global navigation time is based at least in part on the second synchronization signal and the fourth synchronization signal.
  16. The method of claim 12, further comprising:
    performing one or more measurements on the first synchronization signal and the third synchronization signal;
    determining a first received signal value associated with the first synchronization signal and a second received signal value associated with the third synchronization signal based at least in part on performing the one or more measurements;
    determining the first received signal value or the second received signal value satisfies a threshold value; and
    determining the second global navigation time based on the first synchronization signal or the third synchronization signal which does not satisfy the threshold value based at least in part on the first received signal value or the second received signal value satisfying the threshold value.
  17. The method of claim 1, further comprising:
    determining a temporal relationship between times associated with the first subscription and times associated with the second subscription based at least in part on the first synchronization signal indicating the first time associated with the first subscription and the second synchronization signal indicating the second time associated with the second subscription.
  18. The method of claim 17, further comprising:
    identifying a loss of coverage associated with the first subscription after receiving the first synchronization signal;
    receiving, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription; and
    determining a fourth time associated with the first subscription based at least in part on the temporal relationship and receiving the third synchronization signal.
  19. The method of claim 1, further comprising:
    transmitting at least one of an uplink signal or a first sidelink signal based at least in part on determining the second global navigation time, the third global navigation time, or both; and
    receiving at least one of a downlink signal or a second sidelink signal based at least in part on determining the second global navigation time, the third global navigation time, or both.
  20. The method of claim 1, wherein:
    the global navigation system comprises a global navigation satellite system (GNSS) or a global positioning system (GPS) ; and
    at least one of the first global navigation time or the second global navigation time comprises a GNSS time.
  21. The method of claim 1, wherein at least one of the first time or the second time comprises a wide wireless area network time.
  22. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system;
    receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription;
    determine a second global navigation time associated with the global navigation system based at least in part on receiving the first synchronization signal that indicates the first time and the first global navigation time;
    receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription; and
    determine a third global navigation time associated with the global navigation system based at least in part on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
  23. The apparatus of claim 22, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription prior to receiving the second synchronization signal, wherein determining the third global navigation time is based at least in part on receiving the third synchronization signal.
  24. The apparatus of claim 22, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the first base station associated with the first subscription, a third synchronization signal indicating a third time associated with the first subscription prior to receiving the first synchronization signal, wherein determining the second global navigation time is based at least in part on receiving the third synchronization signal.
  25. The apparatus of claim 24, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a difference between the first time and the third time, wherein determining the second global navigation time is based at least in part on determining the difference.
  26. The apparatus of claim 22, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify a loss of coverage associated with the global navigation system, wherein determining the second global navigation time and determining the third global navigation time is based at least in part on identifying the loss of coverage.
  27. The apparatus of claim 26, wherein the instructions are further executable by the processor to cause the apparatus to:
    perform one or more measurements on a first reference signal received from the first base station associated with the first subscription and a second reference signal received from the second base station associated with the second subscription based at least in part on identifying the loss of coverage;
    determine a first reference signal value associated with the first reference signal and a second reference signal value associated with the second reference signal based at least in part on performing the one or more measurements; and
    compare the first reference signal value and the second reference signal value, wherein determining the second global navigation time using the first synchronization signal is based at least in part on comparing the first reference signal value and the second reference signal value.
  28. The apparatus of claim 26, wherein the instructions are further executable by the processor to cause the apparatus to:
    perform one or more measurements on a third reference signal received from the first base station associated with the first subscription and a fourth reference signal received from the second base station associated with the second subscription based at least in part on identifying the loss of coverage;
    determine a third reference signal value associated with the third reference signal and a fourth reference signal value associated with the fourth reference signal based at least in part on performing the one or more measurements; and
    compare the third reference signal value and the fourth reference signal value, wherein determining the third global navigation time using the second synchronization signal is based at least in part on comparing the third reference signal value and the fourth reference signal value.
  29. The apparatus of claim 22, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a third time associated with the second subscription based at least in part on receiving the first synchronization signal that indicates the first time associated with the first subscription, wherein determining the third global navigation time is based at least in part on determining the third time associated with the second subscription.
  30. The apparatus of claim 29, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a difference between the second time associated with the second synchronization signal and the third time associated with the second subscription, wherein determining the third global navigation time is based at least in part on determining the difference.
  31. The apparatus of claim 30, wherein the instructions are further executable by the processor to cause the apparatus to:
    perform a unit conversion procedure to convert the difference to a unit associated with the second global navigation time, wherein determining the third global navigation time is based at least in part on performing the unit conversion procedure.
  32. The apparatus of claim 22, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a third time associated with the first subscription based at least in part on receiving the one or more synchronization signals indicating the first global navigation time; and
    determine a difference between the first time associated with the first subscription and the third time associated with the first subscription, wherein determining the second global navigation time is based at least in part on determining the difference and the first global navigation time.
  33. The apparatus of claim 22, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription, wherein the third synchronization signal is received prior to the second synchronization signal, wherein determining the second global navigation time is based at least in part on the first synchronization signal and the third synchronization signal.
  34. The apparatus of claim 33, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a first interim time associated with the global navigation system based at least in part on the first synchronization signal; and
    determine a second interim time associated with the global navigation system based at least in part on the third synchronization signal, wherein the second global navigation time is determined based at least in part on the first interim time and the second interim time.
  35. The apparatus of claim 34, wherein the second global navigation time comprises at least one of an average of the first interim time and the second interim time, or a weighted average of the first interim time and the second interim time.
  36. The apparatus of claim 33, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the first base station associated with the first subscription, a fourth synchronization signal indicating a fourth time associated with the first subscription, wherein the fourth synchronization signal is received after the first synchronization signal, wherein determining the third global navigation time is based at least in part on the second synchronization signal and the fourth synchronization signal.
  37. The apparatus of claim 33, wherein the instructions are further executable by the processor to cause the apparatus to:
    perform one or more measurements on the first synchronization signal and the third synchronization signal;
    determine a first received signal value associated with the first synchronization signal and a second received signal value associated with the third synchronization signal based at least in part on performing the one or more measurements;
    determine the first received signal value or the second received signal value satisfies a threshold value; and
    determine the second global navigation time based on the first synchronization signal or the third synchronization signal which does not satisfy the threshold value based at least in part on the first received signal value or the second received signal value satisfying the threshold value.
  38. The apparatus of claim 22, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a temporal relationship between times associated with the first subscription and times associated with the second subscription based at least in part on the first synchronization signal indicating the first time associated with the first subscription and the second synchronization signal indicating the second time associated with the second subscription.
  39. The apparatus of claim 38, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify a loss of coverage associated with the first subscription after receiving the first synchronization signal;
    receive, from the second base station associated with the second subscription, a third synchronization signal indicating a third time associated with the second subscription; and
    determine a fourth time associated with the first subscription based at least in part on the temporal relationship and receiving the third synchronization signal.
  40. The apparatus of claim 22, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit at least one of an uplink signal or a first sidelink signal based at least in part on determining the second global navigation time, the third global navigation time, or both; and
    receive at least one of a downlink signal or a second sidelink signal based at least in part on determining the second global navigation time, the third global navigation time, or both.
  41. The apparatus of claim 22, wherein:
    the global navigation system comprises a global navigation satellite system (GNSS) or a global positioning system (GPS) ; and
    at least one of the first global navigation time or the second global navigation time comprises a GNSS time.
  42. The apparatus of claim 22, wherein at least one of the first time or the second time comprises a wide wireless area network time.
  43. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for receiving, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system;
    means for receiving, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription;
    means for determining a second global navigation time associated with the global navigation system based at least in part on receiving the first synchronization signal that indicates the first time and the first global navigation time;
    means for receiving, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription; and
    means for determining a third global navigation time associated with the global navigation system based at least in part on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
  44. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by a processor to:
    receive, from a satellite associated with a global navigation system, one or more synchronization signals indicating a first global navigation time associated with the global navigation system;
    receive, from a first base station associated with a first subscription, a first synchronization signal indicating a first time associated with the first subscription;
    determine a second global navigation time associated with the global navigation system based at least in part on receiving the first synchronization signal that indicates the first time and the first global navigation time;
    receive, from a second base station associated with a second subscription, a second synchronization signal indicating a second time associated with the second subscription; and
    determine a third global navigation time associated with the global navigation system based at least in part on receiving the second synchronization signal that indicates the second time and the first global navigation time, the second global navigation time, or both.
PCT/CN2020/096142 2020-06-15 2020-06-15 Determining global navigation system timing with dual sim environment WO2021253171A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096142 WO2021253171A1 (en) 2020-06-15 2020-06-15 Determining global navigation system timing with dual sim environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096142 WO2021253171A1 (en) 2020-06-15 2020-06-15 Determining global navigation system timing with dual sim environment

Publications (1)

Publication Number Publication Date
WO2021253171A1 true WO2021253171A1 (en) 2021-12-23

Family

ID=79268946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096142 WO2021253171A1 (en) 2020-06-15 2020-06-15 Determining global navigation system timing with dual sim environment

Country Status (1)

Country Link
WO (1) WO2021253171A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120315896A1 (en) * 2010-02-22 2012-12-13 Nokia Corporation Accurate gnss time handling in dual/multi-sim terminals
WO2018144140A1 (en) * 2017-02-02 2018-08-09 Qualcomm Incorporated Location determination using user equipment preconfigured with positioning reference signal information
CN108828633A (en) * 2017-04-17 2018-11-16 联发科技股份有限公司 Capture method, user equipment and its memory of received global navigation satellite system signal
CN110361692A (en) * 2018-03-26 2019-10-22 上海华为技术有限公司 A kind of fusion and positioning method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120315896A1 (en) * 2010-02-22 2012-12-13 Nokia Corporation Accurate gnss time handling in dual/multi-sim terminals
WO2018144140A1 (en) * 2017-02-02 2018-08-09 Qualcomm Incorporated Location determination using user equipment preconfigured with positioning reference signal information
CN108828633A (en) * 2017-04-17 2018-11-16 联发科技股份有限公司 Capture method, user equipment and its memory of received global navigation satellite system signal
CN110361692A (en) * 2018-03-26 2019-10-22 上海华为技术有限公司 A kind of fusion and positioning method and device

Similar Documents

Publication Publication Date Title
US20220006600A1 (en) Bandwidth part switching by activation and signaling
US11632735B2 (en) Change of tracking area code for wireless networks
US20210258898A1 (en) Beam management in a wireless communications network
KR20240036011A (en) Power saving mode for satellite access
US11751109B2 (en) System information block acquisition for wireless networks
US11902002B2 (en) Beam measurement reporting
WO2022000409A1 (en) Managing beam coverage area representations in wireless communications systems
WO2022000418A1 (en) Bandwidth part configuration for communication networks
US20220104223A1 (en) Techniques for reference signal patterns
US20220038169A1 (en) Beam measurement timing in a wireless communications system
US11909502B2 (en) Timing configuration management for network entities
WO2021253171A1 (en) Determining global navigation system timing with dual sim environment
WO2022133878A1 (en) Search and cell scan procedure for positioning-cellular network interworking scenarios
US20230198610A1 (en) Techniques for sequential uplink transmissions-based positioning for nonterrestrial networks
WO2023024010A1 (en) Base station assistance for user equipment discovery
WO2022047718A1 (en) Techniques for sidelink synchronization signal transmission with multi-transmission and receive point (trp) user equipment (ues)
US20230262687A1 (en) Uplink timing management in communications systems
US20230121634A1 (en) Techniques for communicating satellite revisit time in a non-terrestrial network
WO2023240519A1 (en) Beam management procedure for a user equipment group
US20220140965A1 (en) Reference signal sequence generation
WO2021232408A1 (en) Connection recovery in dual subscriber service

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940662

Country of ref document: EP

Kind code of ref document: A1