WO2022131514A1 - Method for anodizing aluminum - Google Patents

Method for anodizing aluminum Download PDF

Info

Publication number
WO2022131514A1
WO2022131514A1 PCT/KR2021/014644 KR2021014644W WO2022131514A1 WO 2022131514 A1 WO2022131514 A1 WO 2022131514A1 KR 2021014644 W KR2021014644 W KR 2021014644W WO 2022131514 A1 WO2022131514 A1 WO 2022131514A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
anodizing
aluminum substrate
bolt
grooves
Prior art date
Application number
PCT/KR2021/014644
Other languages
French (fr)
Korean (ko)
Inventor
이경환
고영덕
김광주
김진주
황인혜
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210025357A external-priority patent/KR20220087341A/en
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of WO2022131514A1 publication Critical patent/WO2022131514A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls

Definitions

  • the disclosed invention relates to a method of anodizing aluminum.
  • Anodizing treatment also called anodizing method, is one of the surface treatment methods for light metals such as aluminum and magnesium which are widely used in industry.
  • anodized aluminum alloy In the case of aluminum alloys used in an atmospheric environment, most of them are anodized and then sealed to suppress corrosion. Applications of anodized aluminum alloy include building materials such as aluminum sashes, semiconductor equipment bodies and parts, automobile parts/body, aircraft bodies, machine parts, and kitchenware. Leisure goods, cell phone cases and electronic equipment cases, etc. are very diverse.
  • the present invention is to provide an aluminum anodizing method capable of preventing the occurrence of defects such as burning or color deviation by firmly fastening an aluminum substrate with a jig.
  • Aluminum anodizing method processing a plurality of grooves in which a thread is formed on the surface of an aluminum substrate; fastening nuts and bolts to the plurality of grooves; connecting an anodizing fixture to the bolt; and performing anodizing on the aluminum substrate connected to the jig through the bolt.
  • the method may further include; determining the number and radius of the bolts and nuts so that the limit energization amount of the bolts and nuts is greater than the required amount of current applied during anodizing.
  • the bolt and the nut may be made of an aluminum alloy.
  • the nut may have a circular cross-section.
  • performing the anodizing may include performing anodizing such that the applied current density per surface area of the nut in contact with the aluminum substrate is 1A/mm 2 when the surface area of the aluminum substrate is 1 m 2 or more. .
  • performing the anodizing when the surface area of the aluminum substrate is less than 1 m 2 Anodizing is performed so that the current density applied per surface area of the nut in contact with the aluminum substrate is 1.5A/mm 2 It may include performing have.
  • the fastening of the nut and the bolt to the plurality of grooves may include fastening a bolt provided in a head having a threaded groove to the plurality of grooves.
  • connecting the anodizing jig to the bolt may include connecting the anodizing jig to the bolt by fastening the fastening bolt to the groove of the bolt.
  • the fastening bolt may be made of a titanium alloy.
  • the machining of the plurality of grooves in which the threads are formed on the surface of the aluminum substrate may include processing an even number of grooves to form a symmetry on the surface of the aluminum substrate.
  • the machining of the plurality of grooves in which the threads are formed on the surface of the aluminum substrate may include processing the plurality of grooves at positions spaced apart by 100 mm from the edge of the aluminum substrate.
  • the machining of the plurality of grooves in which the threads are formed on the surface of the aluminum substrate may include processing the plurality of grooves having a diameter of 2.0 to 3.0 mm on the surface of the aluminum substrate.
  • an aluminum anodizing method capable of preventing the occurrence of defects such as burning or color deviation by firmly fastening the aluminum substrate to the jig.
  • an aluminum anodizing method capable of preventing the occurrence of defects such as burning or color deviation by firmly fastening an aluminum substrate to a jig.
  • FIG. 1 is a flowchart illustrating an aluminum anodizing method according to an embodiment of the present invention.
  • FIG. 2 is a view showing a longitudinal cross-section of a bolt and a nut according to an embodiment of the present invention.
  • FIG 3 is a perspective view of a bolt and a nut according to an embodiment of the present invention.
  • FIG. 4 is a perspective view illustrating a groove, a bolt, and a nut of an aluminum substrate according to an embodiment of the present invention.
  • FIG. 5 is a view illustrating a longitudinal cross-section in a state in which a bolt and a nut are fastened to an aluminum substrate according to an embodiment of the present invention.
  • FIG. 6 is a perspective view illustrating a state in which a bolt and a nut are fastened to an aluminum substrate according to an embodiment of the present invention.
  • FIG. 7 is a perspective view showing a part of the state in which the aluminum substrate and the jig are fastened according to an embodiment of the present invention.
  • FIG. 8 is a perspective view illustrating a state in which an aluminum substrate and a jig are fastened according to an embodiment of the present invention.
  • Aluminum anodizing method processing a plurality of grooves in which a thread is formed on the surface of an aluminum substrate; fastening nuts and bolts to the plurality of grooves; connecting an anodizing fixture to the bolt; and performing anodizing on the aluminum substrate connected to the jig through the bolt.
  • a part when a part is "connected" to another part, it includes not only a direct connection but also an indirect connection, and the indirect connection includes connection through a wireless communication network. do.
  • the identification code is used for convenience of description, and the identification code does not describe the order of each step, and each step may be performed differently from the specified order unless a specific order is clearly stated in the context. have.
  • FIG. 1 is a flowchart illustrating an aluminum anodizing method according to an embodiment of the present invention.
  • a uniform and thick oxide film is formed on the metal surface by immersing a metal such as aluminum in a liquid electrolyte and then applying an electric current using the metal as the anode and the auxiliary electrode as the cathode. It is an electrochemical process.
  • the anode means an electrode where oxidation reaction takes place, and is an electrode opposite to the cathode where the reduction reaction takes place.
  • Oxidation refers to the chemical bonding of metal elements with oxygen. Therefore, electrochemically growing an oxide film using an oxidation reaction occurring on the surface with a metal as an anode in a solution is called anodic oxidation, that is, anodizing.
  • the stable phase is an oxide
  • the metal is not a stable phase but a metastable phase.
  • the corrosion resistance of metals depends on how dense and chemically stable the natural oxide film formed on the metal surface.
  • Anodizing is an electrochemical process that artificially grows the thickness of the surface oxide film to protect the metal when the natural oxide film is thin and does not exhibit sufficient corrosion resistance.
  • the anodizing method connects the aluminum substrate 100 to the anodizing jig 130 (200 to 220), and performs anodizing on the aluminum substrate 100 connected to the jig 130 to do (230).
  • a structure and a connection method for connecting the aluminum substrate 100 to the jig 130 will be described later, and a process of performing anodizing treatment on the aluminum substrate 100 connected to the jig 130 will be first described.
  • the anodizing treatment for the aluminum substrate 100 is performed by immersing the aluminum substrate 100 that has undergone the first reforming process 10 for treating the surface of the aluminum substrate 100 and the first reforming process 10 in a sulfuric acid solution and applying a voltage
  • the aluminum alloy manufactured according to the aluminum anodizing method according to the disclosed embodiment may be applied to various products including refrigerators.
  • the first reforming process 10 includes degreasing, water washing, etching, water washing, primary desmut, water washing, chemical polishing, water washing, secondary desmut, and water washing processes.
  • the degreasing process is a process for removing organic impurities present on the surface of the aluminum substrate 100 .
  • organic impurities are removed by immersing the aluminum substrate 100 in 5 vol% of a neutral degreasing agent having a pH of 6 to 8 for 1 minute or more.
  • the water washing process is a process of washing the degreasing solution by immersing the aluminum substrate 100 that has undergone the degreasing process in industrial water for 30 seconds or more, and various known water washing processes may be employed.
  • impurities such as Fe, Mg, Si are removed by immersing the aluminum substrate 100 in a 10 vol% sodium hydroxide (NaOH) aqueous solution at 50° C. for 20 seconds.
  • NaOH sodium hydroxide
  • the aluminum substrate 100 that has undergone the etching process is subjected to the above-described water washing process.
  • a description of the water washing process is omitted since it is the same as the above-described water washing process.
  • the desmut process is a process of removing such smut generated on the surface of the aluminum substrate 100 that has undergone the etching process using nitric acid.
  • the aforementioned smut is removed by immersing the aluminum substrate 100 in 10 vol% nitric acid at 25° C. for 30 seconds.
  • the aluminum substrate 100 that has undergone the first desmut process is subjected to the above-described water washing process.
  • a description of the water washing process is omitted since it is the same as the above-described water washing process.
  • the chemical polishing process is a process of lowering the roughness of the surface of the aluminum substrate 100 to impart gloss to the surface of the substrate 100 .
  • the aluminum substrate 100 is deposited in a mixed acid of 80 vol% phosphoric acid and 20 vol% sulfuric acid at 100° C. for 10 seconds or more.
  • the aluminum substrate 100 that has undergone the chemical polishing process is subjected to the above-described water washing process.
  • a description of the water washing process is omitted since it is the same as the above-described water washing process.
  • the aluminum substrate 100 that has undergone the water washing process is subjected to a secondary desmut process to remove the smut formed on the surface after the chemical polishing process.
  • the secondary desmut process is the same as the above-described primary desmut process.
  • the aluminum substrate 100 that has undergone the secondary desmut process is subjected to the above-described water washing process.
  • a description of the water washing process is omitted since it is the same as the above-described water washing process.
  • the aluminum substrate 100 that has undergone the above-described first reforming process 10 is subjected to an anodization process 20 for forming a film on the surface of the aluminum substrate 100 and a coloring process for imparting a color to the substrate 100 Thereafter, a sealing process 40 of sealing the hole of the coating film of the substrate 100 is performed.
  • a general anodizing method implements a desired color on the substrate 100 by forming a porous aluminum oxide film on the surface of the aluminum substrate 100 through an anodizing process, and penetrating a dye into the porous film through a coloring process.
  • an anodizing process 20 of forming an aluminum oxide film on the surface of the aluminum substrate 100 that has undergone the above-described first reforming process 10 is performed.
  • aluminum ions are generated by an ionization reaction at the metal/oxide film interface and pass through the film without damage to the oxide film and move toward the surface of the film in contact with the solution.
  • anions containing oxygen are formed by the decomposition of water on the surface of the film and move toward the inside of the film.
  • aluminum ions moving toward the surface of the film and anions moving inward of the film meet, aluminum oxide is formed and the film grows.
  • the aluminum substrate 100 is immersed in 18 to 22 vol% sulfuric acid solution at 18 to 24° C. for 20 to 30 minutes, and a voltage of 13 to 17 V is applied to about 10 ⁇ m. A thick Al 2 O 3 film is formed.
  • the aluminum substrate 100 that has undergone the above-described anodization process is subjected to a second reforming process 30 .
  • the second reforming process 30 includes washing with water, coloring, and washing with water.
  • the water washing process performed after the anodization process is performed by immersing the aluminum substrate 100 in industrial water for at least 60 seconds to clean the film solution of the anodization process remaining on the substrate 100 .
  • the aluminum substrate 100 that has undergone the water washing process is subjected to a coloring process that imparts a color to the substrate 100 .
  • a coloring process that imparts a color to the substrate 100 .
  • 0.1 to 10 g/L of a dye having a weak negative charge is made into a solution of pH 5 to 6, and then deposited under 50° C. to impart a desired color to the aluminum substrate 100 .
  • a water washing process is performed to clean the surface of the aluminum substrate 100 that has undergone the coloring process.
  • the surface of the aluminum substrate 100 is cleaned by immersing the aluminum substrate 100 that has undergone the coloring process in industrial water for 30 seconds or more.
  • the aluminum anodizing method according to the disclosed embodiment performs a sealing process 40 for sealing the hole of the aluminum substrate 100 that has undergone the second reforming process 30 including the above-described water washing, coloring, and water washing processes.
  • the aluminum substrate 100 is immersed in 5 vol% nickel acetate at 85 to 95° C. for 20 to 30 minutes to seal the hole in the film.
  • a water washing process (70) of washing the surface by immersion in industrial water for 30 seconds or more, and a drying process (80) of leaving it in an environment of 70 ° C or higher for 5 minutes or more to remove moisture can be rough
  • a method of contacting a non-external surface of a product by processing a leaf spring steel having a tension of a certain level or more into a wedge shape is used. This method is applicable only when there is a structure or hole in the non-exterior surface of the product.
  • electricity may be applied by directly welding an aluminum or stainless wire rod to the non-external surface.
  • productivity or economic feasibility is lowered because burning defects may occur on the exterior surface due to the welding heat during welding work, and not only the welding cost but also the cost of removing the welded wire rod after anodizing occurs.
  • Burning defects commonly occurring in the above-described methods may occur when the contact area between the product and the jig is insufficient.
  • the amount of supplied current flows excessively beyond the limited current density that can be passed through the contact, and resistance heat is generated, which leads to a burning failure.
  • the contact area is insufficient, not only a burning defect but also a local color deviation defect may occur.
  • the embodiment disclosed herein provides an aluminum anodizing method capable of applying uniform electricity through a structure for effectively fastening a large-area aluminum plate having no structure to a non-exterior surface with a jig.
  • the aluminum anodizing method according to the disclosed embodiment can prevent the occurrence of a burning defect or a color deviation defect.
  • FIG. 2 is a view showing a longitudinal cross-section of the bolt and the nut 110 according to an embodiment of the present invention.
  • 3 is a perspective view of a bolt and a nut 110 according to an embodiment of the present invention.
  • 4 is a perspective view illustrating a groove, a bolt, and a nut of an aluminum substrate according to an embodiment of the present invention.
  • 5 is a view showing a longitudinal cross-section in a state in which the bolt and the nut 110 are fastened to the aluminum substrate 100 according to an embodiment of the present invention.
  • 6 is a perspective view of a state in which the bolt and the nut 110 are fastened to the aluminum substrate 100 according to an embodiment of the present invention.
  • FIG. 7 is a perspective view illustrating a part of the state in which the aluminum substrate 100 and the jig 130 are fastened according to an embodiment of the present invention.
  • 8 is a perspective view illustrating a state in which the aluminum substrate 100 and the jig 130 are fastened according to an embodiment of the present invention.
  • a plurality of grooves 101 in which threads are formed on the surface of an aluminum substrate 100 are processed (200), and a nut 110 and bolts 120 are formed in the plurality of processed grooves 101.
  • a nut 110 and bolts 120 are formed in the plurality of processed grooves 101.
  • a plurality of grooves 101 in which threads are formed on the surface of the aluminum substrate 100 are machined.
  • the surface of the aluminum substrate 100 on which the plurality of grooves 101 are formed is formed on a non-external surface rather than an exterior surface shown to a user.
  • an aluminum alloy of 5000 series or 6000 series may be used, and the thickness of the aluminum substrate 100 is 3.0 mm or more.
  • the groove 101 formed on the surface of the aluminum substrate 100 is formed to have a diameter of 2.0 to 3.0 mm, and the thread may be processed to form two or more threads.
  • the number of grooves 101 may be set to an even number in order to stably fasten with the jig 130 , and the arrangement of the grooves 101 may also be provided to be symmetrical for stable fastening with the jig 130 . Also, the groove 101 may be formed to be spaced apart from the edge of the aluminum substrate 100 by an interval of about 100 mm.
  • the bolt 120 and the nut 110 fastened to the groove 101 of the above-described aluminum substrate 100 may be made of a 1000 series or 6000 series aluminum alloy.
  • the diameter of the male screw 121 of the bolt 120 and the diameter of the female screw of the nut 110 may be manufactured to match the diameter of the aforementioned groove 101 (refer to FIG. 5 ).
  • the nut 110 may be formed to have a circular cross-section, so that marks generated on the non-appearance surface after anodizing have no directionality.
  • the bolt 120 is formed with a male screw 121 fastened to the groove 101 of the aluminum substrate 100 on one side, and the head portion on the opposite side is used to fasten the jig 130 later.
  • a female screw 123 into which the fastening bolt 140 is inserted is formed.
  • the length of the male screw 121 of the bolt 120 is such that a gap does not occur when the bolt 120 and the nut 110 are fastened to the groove 101 of the aluminum substrate 100 , the nut It may be determined to match the sum of the thickness of 110 and the depth of the groove 101 of the aluminum substrate 100 .
  • the length of the male screw 121 of the bolt 120 may be 5.0 mm
  • the thickness of the nut 110 is 3.0 mm
  • the depth of the groove 101 formed in the aluminum substrate 100 is 2.0 mm.
  • the number of bolts 120 and nuts 110 and the radius of the nut 110 in contact with the aluminum substrate 100 are compared with the limit energization amount of the bolt 120 and the nut 110 and the amount of current actually required during anodizing treatment. can be decided.
  • the number of bolts 120 and the nut 110 and the radius of the nut 110 may be determined so that the limit energization amount of the bolt 120 and the nut 110 is higher than the actual required current amount.
  • the actual required current may be determined as a value increased by 20% from the theoretical required current. This is considering that the actual required current is higher than the theoretical required current when considering the resistance value of the process equipment.
  • the limit energization amount of the bolt 120 and the nut 110 should be higher than the actual required current amount.
  • the limit energization amount may be calculated by multiplying the total contact area between the bolt 120 and the nut 110 and the aluminum substrate 100, the appropriate current density, and the energization efficiency.
  • the appropriate current density that can conduct electricity per unit area in the bolt 120 and the nut 110 is set to 1.0 A/mm 2 when the surface area of the aluminum substrate 100 is 1 m 2 or more, and 1.5 A/mm 2 when less than 1 m 2 is set to This is because the smaller the area, the higher the current efficiency and the higher the current density.
  • the total contact area which can be regarded as a variable in the calculation of the limiting current, is the product of the contact area between the bolt 120 and the nut 110 and the aluminum substrate 100 and the number of the bolt 120 and the nut 110 Since it is calculated as , it can be seen that the radius and number of the bolt 120 and the nut 110 that determine the contact area are factors that determine the limiting energization amount.
  • Table 1 shows whether defects occur according to the limiting current and required current of the bolt 120 and the nut 110 .
  • the number of bolts 120 and nuts 110 is preferably at least 8, and the number of corresponding grooves 101 is also preferably 8.
  • the bolt 120 and the nut 110 may be fastened to the groove 101 of the aluminum substrate 100 as shown in FIGS. 4 to 6 .
  • a hole may be provided in the jig 130 so that the fastening bolt 140 fastened to the female screw 123 formed in the head portion of the bolt 120 can be inserted. That is, the fastening bolt 140 for connecting the jig 130 to the aluminum substrate 100 is passed through the hole of the fastening nut 150 and the jig 130 and is fastened to the head portion female screw 123 of the bolt 120 . By doing so, the jig 130 may be connected to the aluminum substrate 100 .
  • FIG. 8 When the jig 130 is connected to the aluminum substrate 100 using the fastening bolt 140 and the fastening nut 150 in this way, a fastening structure as shown in FIG. 8 is formed.
  • the eight above-described fastening structures are shown on the non-external surface of the aluminum substrate 100 .
  • the fastening bolt 140 and the fastening nut 150 for fastening the jig 130 to the bolt 120 may be made of a titanium alloy.
  • the bolt 120 and the nut 110 are fastened to the groove 101 of the aluminum substrate 100 , and the jig 130 is fastened to the bolt 120 using the fastening bolt 140 and the fastening nut 150 .
  • the aluminum substrate 100 and the jig 130 may be firmly coupled. Accordingly, it is possible to prevent the problem of the aluminum substrate 100 falling off from the jig 130 during the anodizing process.
  • the aluminum plate manufactured according to the disclosed embodiment is firmly fastened during the process and an electric current can be applied uniformly, the jig 130 fastening marks, burning defects, and color deviation defects do not occur on the exterior. Accordingly, it is possible to manufacture a refrigerator door using an aluminum plate having a uniform appearance quality without local color deviation.
  • an aluminum anodizing method capable of preventing the occurrence of defects such as burning or color deviation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

One aspect of the present invention provides a method for anodizing aluminum, in which the occurrence of defects, such as burning or discoloration, can be prevented by firmly fastening an aluminum substrate to a rack. The method for anodizing aluminum according to an embodiment of the present invention comprises: processing a plurality of threaded holes in the surface of an aluminum substrate; fastening nuts and bolts to the plurality of holes; connecting an anodizing rack to the bolts; and anodizing the aluminum substrate connected to the rack by means of the bolts.

Description

알루미늄 아노다이징 방법How to anodize aluminum
개시된 발명은 알루미늄 아노다이징 방법에 관한 것이다.The disclosed invention relates to a method of anodizing aluminum.
아노다이징 방법으로 불리는 양극산화처리(anodic oxidation treatment)는 산업적으로 널리 사용되고 있는 알루미늄이나 마그네슘과 같은 경금속의 표면처리법 중 하나이다.Anodizing treatment, also called anodizing method, is one of the surface treatment methods for light metals such as aluminum and magnesium which are widely used in industry.
대기 환경 중에서 사용되고 있는 알루미늄 합금의 경우 부식을 억제하기 위하여 대부분 양극산화처리 후 봉공처리를 행하여 사용된다. 양극산화 처리된 알루미늄 합금의 용도는 알루미늄 샷시와 같은 건축자재, 반도체 장비 몸체나 부품, 자동차 부품/바디, 항공기 몸체, 기계부품, 주방용품. 레저용품, 휴대폰 케이스 및 전자장비 케이스 등 매우 다양하다.In the case of aluminum alloys used in an atmospheric environment, most of them are anodized and then sealed to suppress corrosion. Applications of anodized aluminum alloy include building materials such as aluminum sashes, semiconductor equipment bodies and parts, automobile parts/body, aircraft bodies, machine parts, and kitchenware. Leisure goods, cell phone cases and electronic equipment cases, etc. are very diverse.
한편, 아노다이징 처리는 전기를 인가해 주어야 되는데 알루미늄 기재를 아노다이징 치구(rack)에 접촉시켜 전기를 인가해 주는 것이 일반적이다. 그러나, 치구가 알루미늄 기재에 견고하게 접촉되어 있지 않을 경우, 공정 중 알루미늄 기재가 치구에서 탈락하거나 알루미늄 기재에 버닝(burning)불량 또는 색상 편차(discoloration) 불량 등이 발생할 수 있다.On the other hand, in the anodizing treatment, electricity must be applied, and it is common to apply electricity by bringing an aluminum substrate into contact with an anodizing rack. However, when the jig is not firmly in contact with the aluminum substrate, the aluminum substrate may fall off from the jig during the process, or the aluminum substrate may have poor burning or discoloration.
상술한 문제점을 해결하기 위해 본 발명은 알루미늄 기재를 치구와 견고하게 체결하여 버닝 또는 색상편차와 같은 불량의 발생을 방지할 수 있는 알루미늄 아노다이징 방법을 제공하고자 한다.In order to solve the above problems, the present invention is to provide an aluminum anodizing method capable of preventing the occurrence of defects such as burning or color deviation by firmly fastening an aluminum substrate with a jig.
본 발명의 일 실시예에 따른 알루미늄 아노다이징 방법은 알루미늄 기재의 표면에, 나사선이 형성된 복수의 홈을 가공하고; 상기 복수의 홈에 너트 및 볼트를 체결하고; 상기 볼트에 아노다이징 치구를 연결하고; 상기 볼트를 통해 치구에 연결된 상기 알루미늄 기재에 대해 아노다이징을 수행하는 것;을 포함한다.Aluminum anodizing method according to an embodiment of the present invention, processing a plurality of grooves in which a thread is formed on the surface of an aluminum substrate; fastening nuts and bolts to the plurality of grooves; connecting an anodizing fixture to the bolt; and performing anodizing on the aluminum substrate connected to the jig through the bolt.
또한, 상기 볼트 및 너트의 한계 통전량이 아노다이징 시 인가되는 필요 전류량보다 크도록 상기 볼트 및 너트의 개수와 반지름을 결정하는 것;을 더 포함할 수 있다.In addition, the method may further include; determining the number and radius of the bolts and nuts so that the limit energization amount of the bolts and nuts is greater than the required amount of current applied during anodizing.
또한, 상기 볼트 및 너트는 알루미늄 합금으로 이루어질 수 있다.In addition, the bolt and the nut may be made of an aluminum alloy.
또한, 상기 너트는 원형의 횡단면을 가질 수 있다.Also, the nut may have a circular cross-section.
또한, 상기 아노다이징을 수행하는 것은, 상기 알루미늄 기재의 표면적이 1m2이상일 경우 상기 알루미늄 기재와 접촉하는 상기 너트의 표면적 당 인가되는 전류밀도가 1A/mm2가 되도록 아노다이징을 수행하는 것을 포함할 수 있다.In addition, performing the anodizing may include performing anodizing such that the applied current density per surface area of the nut in contact with the aluminum substrate is 1A/mm 2 when the surface area of the aluminum substrate is 1 m 2 or more. .
또한, 상기 아노다이징을 수행하는 것은, 상기 알루미늄 기재의 표면적이 1m2미만일 경우 상기 알루미늄 기재와 접촉하는 상기 너트의 표면적 당 인가되는 전류밀도가 1.5A/mm2가 되도록 아노다이징을 수행하는 것을 포함할 수 있다.In addition, performing the anodizing, when the surface area of the aluminum substrate is less than 1 m 2 Anodizing is performed so that the current density applied per surface area of the nut in contact with the aluminum substrate is 1.5A/mm 2 It may include performing have.
또한, 상기 복수의 홈에 너트 및 볼트를 체결하는 것은, 나사선이 형성된 홈이 헤드에 마련된 볼트를 상기 복수의 홈에 체결하는 것을 포함할 수 있다.In addition, the fastening of the nut and the bolt to the plurality of grooves may include fastening a bolt provided in a head having a threaded groove to the plurality of grooves.
또한, 상기 볼트에 아노다이징 치구를 연결하는 것은, 체결볼트를 상기 볼트의 홈에 체결하여 상기 아노다이징 치구를 상기 볼트에 연결하는 것을 포함할 수 있다.In addition, connecting the anodizing jig to the bolt may include connecting the anodizing jig to the bolt by fastening the fastening bolt to the groove of the bolt.
또한, 상기 체결볼트는 티타늄 합금으로 이루어질 수 있다.In addition, the fastening bolt may be made of a titanium alloy.
또한, 알루미늄 기재의 표면에, 나사선이 형성된 복수의 홈을 가공하는 것은, 상기 알루미늄 기재의 표면에 짝수 개의 홈이 대칭을 이루도록 가공하는 것;을 포함할 수 있다.In addition, the machining of the plurality of grooves in which the threads are formed on the surface of the aluminum substrate may include processing an even number of grooves to form a symmetry on the surface of the aluminum substrate.
또한, 알루미늄 기재의 표면에, 나사선이 형성된 복수의 홈을 가공하는 것은, 상기 알루미늄 기재의 모서리로부터 100mm 이격된 위치에 상기 복수의 홈을 가공하는 것을 포함할 수 있다.In addition, the machining of the plurality of grooves in which the threads are formed on the surface of the aluminum substrate may include processing the plurality of grooves at positions spaced apart by 100 mm from the edge of the aluminum substrate.
또한, 알루미늄 기재의 표면에, 나사선이 형성된 복수의 홈을 가공하는 것은, 상기 알루미늄 기재의 표면에 2.0 내지 3.0mm의 직경을 갖는 상기 복수의 홈을 가공하는 것을 포함할 수 있다.In addition, the machining of the plurality of grooves in which the threads are formed on the surface of the aluminum substrate may include processing the plurality of grooves having a diameter of 2.0 to 3.0 mm on the surface of the aluminum substrate.
본 발명의 일 실시예에 따르면, 알루미늄 기재를 치구와 견고하게 체결하여 버닝 또는 색상편차와 같은 불량의 발생을 방지할 수 있는 알루미늄 아노다이징 방법을 제공할 수 있다.According to one embodiment of the present invention, it is possible to provide an aluminum anodizing method capable of preventing the occurrence of defects such as burning or color deviation by firmly fastening the aluminum substrate to the jig.
본 발명의 일 예에 따르면, 알루미늄 기재를 치구와 견고하게 체결하여 버닝 또는 색상편차와 같은 불량의 발생을 방지할 수 있는 알루미늄 아노다이징 방법을 제공할 수 있다.According to an example of the present invention, it is possible to provide an aluminum anodizing method capable of preventing the occurrence of defects such as burning or color deviation by firmly fastening an aluminum substrate to a jig.
도 1은 본 발명의 일 실시예에 따른 알루미늄 아노다이징 방법을 나타내는 흐름도이다.1 is a flowchart illustrating an aluminum anodizing method according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 볼트와 너트의 종단면을 도시한 도면이다. 2 is a view showing a longitudinal cross-section of a bolt and a nut according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 볼트와 너트의 사시도이다. 3 is a perspective view of a bolt and a nut according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 알루미늄 기재의 홈과 볼트와 너트를 도시한 사시도이다.4 is a perspective view illustrating a groove, a bolt, and a nut of an aluminum substrate according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 알루미늄 기재에 볼트와 너트가 체결된 상태의 종단면을 도시한 도면이다. 5 is a view illustrating a longitudinal cross-section in a state in which a bolt and a nut are fastened to an aluminum substrate according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 알루미늄 기재에 볼트와 너트가 체결된 상태의 사시도이다. 6 is a perspective view illustrating a state in which a bolt and a nut are fastened to an aluminum substrate according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따라 알루미늄 기재와 치구가 체결된 상태의 일부를 도시한 사시도이다. 7 is a perspective view showing a part of the state in which the aluminum substrate and the jig are fastened according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따라 알루미늄 기재와 치구가 체결된 상태를 도시한 사시도이다.8 is a perspective view illustrating a state in which an aluminum substrate and a jig are fastened according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 알루미늄 아노다이징 방법은 알루미늄 기재의 표면에, 나사선이 형성된 복수의 홈을 가공하고; 상기 복수의 홈에 너트 및 볼트를 체결하고; 상기 볼트에 아노다이징 치구를 연결하고; 상기 볼트를 통해 치구에 연결된 상기 알루미늄 기재에 대해 아노다이징을 수행하는 것;을 포함한다.Aluminum anodizing method according to an embodiment of the present invention, processing a plurality of grooves in which a thread is formed on the surface of an aluminum substrate; fastening nuts and bolts to the plurality of grooves; connecting an anodizing fixture to the bolt; and performing anodizing on the aluminum substrate connected to the jig through the bolt.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다. 본 명세서가 실시예들의 모든 요소들을 설명하는 것은 아니며, 본 발명이 속하는 기술분야에서 일반적인 내용 또는 실시예들 간에 중복되는 내용은 생략한다. 명세서에서 사용되는 '부, 모듈, 부재, 블록'이라는 용어는 소프트웨어 또는 하드웨어로 구현될 수 있으며, 실시예들에 따라 복수의 '부, 모듈, 부재, 블록'이 하나의 구성요소로 구현되거나, 하나의 '부, 모듈, 부재, 블록'이 복수의 구성요소들을 포함하는 것도 가능하다.Like reference numerals refer to like elements throughout. This specification does not describe all elements of the embodiments, and general content in the technical field to which the present invention pertains or content that overlaps between the embodiments is omitted. The term 'part, module, member, block' used in this specification may be implemented in software or hardware, and according to embodiments, a plurality of 'part, module, member, block' may be implemented as one component, It is also possible for one 'part, module, member, block' to include a plurality of components.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐 아니라, 간접적으로 연결되어 있는 경우를 포함하고, 간접적인 연결은 무선 통신망을 통해 연결되는 것을 포함한다.Throughout the specification, when a part is "connected" to another part, it includes not only a direct connection but also an indirect connection, and the indirect connection includes connection through a wireless communication network. do.
또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Also, when a part "includes" a component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.
명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout the specification, when a member is said to be located "on" another member, this includes not only a case in which a member is in contact with another member but also a case in which another member exists between the two members.
제 1, 제 2 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로, 구성요소가 전술된 용어들에 의해 제한되는 것은 아니다. Terms such as first, second, etc. are used to distinguish one component from another, and the component is not limited by the above-mentioned terms.
단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.The singular expression includes the plural expression unless the context clearly dictates otherwise.
각 단계들에 있어 식별 부호는 설명의 편의를 위하여 사용되는 것으로 식별 부호는 각 단계들의 순서를 설명하는 것이 아니며, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않는 이상 명기된 순서와 다르게 실시될 수 있다.In each step, the identification code is used for convenience of description, and the identification code does not describe the order of each step, and each step may be performed differently from the specified order unless a specific order is clearly stated in the context. have.
이하 첨부된 도면들을 참고하여 본 발명의 작용 원리 및 실시예에 대해 설명한다.Hereinafter, the working principle and embodiments of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 알루미늄 아노다이징 방법을 나타내는 흐름도이다.1 is a flowchart illustrating an aluminum anodizing method according to an embodiment of the present invention.
아노다이징 방법은 알루미늄과 같은 금속을 액상의 전해질 내에 침지 시킨 후 금속을 양극(anode)으로 그리고 보조전극을 음극(cathode)으로 하여 전류를 인가함으로써 금속 표면에 균일하고 두꺼운 산화피막(oxide film)을 형성시키는 전기화학 공정이다. In the anodizing method, a uniform and thick oxide film is formed on the metal surface by immersing a metal such as aluminum in a liquid electrolyte and then applying an electric current using the metal as the anode and the auxiliary electrode as the cathode. It is an electrochemical process.
양극(anode)이란 산화반응이 일어나는 전극을 의미하며, 환원반응이 일어나는 음극(cathode)과 반대되는 전극이다. 산화란 금속원소가 산소와 화학적으로 결합하는 것을 의미한다. 따라서 용액 내에서 금속을 양극으로 하여 표면에서 일어나는 산화반응을 이용하여 산화피막을 전기화학적으로 성장시키는 것을 양극산화(anodic oxidation)즉, 아노다이징이라 한다. The anode means an electrode where oxidation reaction takes place, and is an electrode opposite to the cathode where the reduction reaction takes place. Oxidation refers to the chemical bonding of metal elements with oxygen. Therefore, electrochemically growing an oxide film using an oxidation reaction occurring on the surface with a metal as an anode in a solution is called anodic oxidation, that is, anodizing.
금속은 대부분 자연계에서 산화물(oxide)로 존재한다. 즉 자연계에서 안정상(stable phase)은 산화물이며, 금속은 안정상이 아니라 준안정상(metastable phase)이다. Most metals exist as oxides in nature. That is, in nature, the stable phase is an oxide, and the metal is not a stable phase but a metastable phase.
준안정상인 금속이 안정되게 존재하기 위해서는 금속표면에 자연적으로 형성된 보호성 산화피막이 필요하다. 즉 반응성이 높은 알루미늄과 같은 금속이 대기 중에서 안정되게 사용될 수 있는 이유는 금속표면에 자연산화피막(native oxide film)이 형성되어 금속을 보호해주기 때문이다. In order for the metastable metal to exist stably, a protective oxide film naturally formed on the metal surface is required. That is, the reason why a highly reactive metal such as aluminum can be used stably in the atmosphere is that a native oxide film is formed on the metal surface to protect the metal.
일반적으로 금속의 내식성은 금속표면에서 형성된 자연산화피막이 얼마나 치밀하고 화학적으로 안정되는가에 달려있다. 양극산화처리는 자연산화피막의 두께가 얇아서 충분한 내식성을 나타내지 못할 경우 금속을 보호하고자 표면산화피막의 두께를 인위적으로 성장시켜 주는 전기화학 공정이라 할 수 있다.In general, the corrosion resistance of metals depends on how dense and chemically stable the natural oxide film formed on the metal surface. Anodizing is an electrochemical process that artificially grows the thickness of the surface oxide film to protect the metal when the natural oxide film is thin and does not exhibit sufficient corrosion resistance.
도 1에 도시된 것처럼, 개시된 실시예에 따른 아노다이징 방법은 알루미늄 기재(100)를 아노다이징 치구(130)에 연결하고(200 내지 220), 치구(130)에 연결된 알루미늄 기재(100)에 아노다이징을 수행하는 것(230)을 포함한다. 치구(130)에 알루미늄 기재(100)를 연결하기 위한 구조와 연결 방법에 대해서는 후술하고, 치구(130)에 연결된 알루미늄 기재(100)에 아노다이징 처리를 수행하는 과정에 대해 우선 설명한다.1, the anodizing method according to the disclosed embodiment connects the aluminum substrate 100 to the anodizing jig 130 (200 to 220), and performs anodizing on the aluminum substrate 100 connected to the jig 130 to do (230). A structure and a connection method for connecting the aluminum substrate 100 to the jig 130 will be described later, and a process of performing anodizing treatment on the aluminum substrate 100 connected to the jig 130 will be first described.
알루미늄 기재(100)에 대한 아노다이징 처리는 알루미늄 기재(100)의 표면을 처리하는 제1 개질 공정(10), 제1개질 공정(10)을 거친 알루미늄 기재(100)를 황산 용액에 침적하고 전압을 인가하여 피막을 형성하는 양극 산화 공정(20), 양극 산화 공정(20)을 거친 알루미늄 피막의 표면을 처리하는 제2 개질 공정(30), 제2 개질 공정(30)을 거친 알루미늄 기재(100)의 피막에 형성된 홀에 대한 실링(sealing)을 수행하는 봉공 공정(40)을 포함한다. 개시된 실시예에 따른 알루미늄 아노다이징 방법에 따라 제조된 알루미늄 합금은 냉장고를 포함하는 다양한 제품에 적용될 수 있다. The anodizing treatment for the aluminum substrate 100 is performed by immersing the aluminum substrate 100 that has undergone the first reforming process 10 for treating the surface of the aluminum substrate 100 and the first reforming process 10 in a sulfuric acid solution and applying a voltage The aluminum substrate 100 that has undergone an anodization process 20 for forming a film by applying a second reforming process 30 for treating the surface of the aluminum film that has undergone the anodization process 20, and a second reforming process 30 It includes a sealing process 40 for performing sealing (sealing) for the hole formed in the film. The aluminum alloy manufactured according to the aluminum anodizing method according to the disclosed embodiment may be applied to various products including refrigerators.
개시된 실시예에 따른 제1 개질 공정(10)은 탈지, 수세, 에칭, 수세, 1차 디스머트, 수세, 화학연마, 수세, 2차 디스머트, 수세 공정을 포함한다.The first reforming process 10 according to the disclosed embodiment includes degreasing, water washing, etching, water washing, primary desmut, water washing, chemical polishing, water washing, secondary desmut, and water washing processes.
탈지공정은 알루미늄 기재(100)의 표면에 존재하는 유기 불순물을 제거하기 위한 공정이다. 탈지 공정은 pH 6 내지 8의 5vol%의 중성 탈지제에 알루미늄 기재(100)를 1분 이상 침적하여 유기 불순물을 제거한다. The degreasing process is a process for removing organic impurities present on the surface of the aluminum substrate 100 . In the degreasing process, organic impurities are removed by immersing the aluminum substrate 100 in 5 vol% of a neutral degreasing agent having a pH of 6 to 8 for 1 minute or more.
수세공정은 탈지 공정을 거친 알루미늄 기재(100)를 공업용수에 30초 이상 침적하여 탈지액을 세정하는 공정으로, 공지된 다양한 수세 공정이 채용될 수 있다.The water washing process is a process of washing the degreasing solution by immersing the aluminum substrate 100 that has undergone the degreasing process in industrial water for 30 seconds or more, and various known water washing processes may be employed.
에칭공정은 알루미늄 기재(100)를 10vol%의 수산화나트륨(NaOH) 수용액에 50℃하에서 20초 동안 침적하여 Fe, Mg, Si 등의 불순물을 제거한다.In the etching process, impurities such as Fe, Mg, Si are removed by immersing the aluminum substrate 100 in a 10 vol% sodium hydroxide (NaOH) aqueous solution at 50° C. for 20 seconds.
에칭 공정을 거친 알루미늄 기재(100)는 전술한 수세공정을 거친다. 수세공정에 대한 설명은 전술한 수세공정과 동일하므로 생략한다.The aluminum substrate 100 that has undergone the etching process is subjected to the above-described water washing process. A description of the water washing process is omitted since it is the same as the above-described water washing process.
에칭 공정을 거친 알루미늄 기재(100)의 표면에는 합금 성분인 Mg, Cu, Si, Mn 등의 성분이 모재의 에칭속도와 차이가 나서 흑색의 스머트(smut)를 형성한다. 디스머트(desmut) 공정은 에칭 공정을 거친 알루미늄 기재(100) 표면에 발생한 이러한 스머트를 질산을 이용하여 제거하는 공정이다.On the surface of the aluminum substrate 100 that has undergone the etching process, components such as Mg, Cu, Si, and Mn, which are alloy components, are different from the etching rate of the base material to form black smut. The desmut process is a process of removing such smut generated on the surface of the aluminum substrate 100 that has undergone the etching process using nitric acid.
1차 디스머트 공정은 10vol%의 질산에 25℃하에서 30초 동안 알루미늄 기재(100)를 침적시켜 전술한 스머트를 제거한다.In the first desmut process, the aforementioned smut is removed by immersing the aluminum substrate 100 in 10 vol% nitric acid at 25° C. for 30 seconds.
1차 디스머트 공정을 거친 알루미늄 기재(100)는 전술한 수세공정을 거친다. 수세공정에 대한 설명은 전술한 수세공정과 동일하므로 생략한다.The aluminum substrate 100 that has undergone the first desmut process is subjected to the above-described water washing process. A description of the water washing process is omitted since it is the same as the above-described water washing process.
화학연마 공정은 알루미늄 기재(100) 표면의 조도(roughness)를 낮추어 기재(100) 표면에 광택을 부여하는 공정이다. 화학연마 공정은 80vol%의 인산과 20vol%의 황산의 혼합산에 100℃ 하에서 10초 이상 알루미늄 기재(100)를 침적시킨다.The chemical polishing process is a process of lowering the roughness of the surface of the aluminum substrate 100 to impart gloss to the surface of the substrate 100 . In the chemical polishing process, the aluminum substrate 100 is deposited in a mixed acid of 80 vol% phosphoric acid and 20 vol% sulfuric acid at 100° C. for 10 seconds or more.
화학연마 공정을 거친 알루미늄 기재(100)는 전술한 수세공정을 거친다. 수세공정에 대한 설명은 전술한 수세공정과 동일하므로 생략한다.The aluminum substrate 100 that has undergone the chemical polishing process is subjected to the above-described water washing process. A description of the water washing process is omitted since it is the same as the above-described water washing process.
화학연마 공정 후 수세공정을 거친 알루미늄 기재(100)는 화학연마 공정 후 표면에 형성된 스머트를 제거하기 위한 2차 디스머트 공정을 거친다. 2차 디스머트 공정은 전술한 1차 디스머트 공정과 동일하다.After the chemical polishing process, the aluminum substrate 100 that has undergone the water washing process is subjected to a secondary desmut process to remove the smut formed on the surface after the chemical polishing process. The secondary desmut process is the same as the above-described primary desmut process.
2차 디스머트 공정을 거친 알루미늄 기재(100)는 전술한 수세공정을 거친다. 수세공정에 대한 설명은 전술한 수세공정과 동일하므로 생략한다.The aluminum substrate 100 that has undergone the secondary desmut process is subjected to the above-described water washing process. A description of the water washing process is omitted since it is the same as the above-described water washing process.
전술한 제1 개질 공정(10)을 거친 알루미늄 기재(100)는 알루미늄 기재(100) 표면에 피막을 형성하는 양극 산화 공정(20)을 거치고, 기재(100)에 색상을 부여하는 착색공정을 거친 후, 기재(100)의 피막의 홀에 대한 실링을 수행하는 봉공 공정(40)을 거친다.The aluminum substrate 100 that has undergone the above-described first reforming process 10 is subjected to an anodization process 20 for forming a film on the surface of the aluminum substrate 100 and a coloring process for imparting a color to the substrate 100 Thereafter, a sealing process 40 of sealing the hole of the coating film of the substrate 100 is performed.
일반적인 아노다이징 방법은 양극 산화 공정을 통해 알루미늄 기재(100)의 표면에 다공성 산화 알루미늄 피막을 형성하고, 착색공정을 통해 다공성 피막 내로 염료를 침투시켜 기재(100)에 원하는 색상을 구현한다.A general anodizing method implements a desired color on the substrate 100 by forming a porous aluminum oxide film on the surface of the aluminum substrate 100 through an anodizing process, and penetrating a dye into the porous film through a coloring process.
개시된 실시예에 따른 알루미늄 아노다이징 방법은 전술한 제1 개질 공정(10)을 거친 알루미늄 기재(100)의 표면에 산화 알루미늄 피막을 형성하는 양극 산화 공정(20)을 수행한다.In the aluminum anodizing method according to the disclosed embodiment, an anodizing process 20 of forming an aluminum oxide film on the surface of the aluminum substrate 100 that has undergone the above-described first reforming process 10 is performed.
양극 산화 공정(20)에서 알루미늄에 양극전압을 인가하였을 때 알루미늄 이온은 금속/산화피막 계면에서 이온화 반응에 의해 생성되어 산화피막의 파손 없이 피막을 통과하여 용액과 접하고 있는 피막의 표면쪽으로 이동한다. When an anodic voltage is applied to aluminum in the anodization process 20, aluminum ions are generated by an ionization reaction at the metal/oxide film interface and pass through the film without damage to the oxide film and move toward the surface of the film in contact with the solution.
그리고, 산소를 포함하고 있는 음이온들은 피막 표면에서 물의 분해에 의해 형성되어 피막 내부방향으로 이동한다. 피막의 표면쪽으로 이동하는 알루미늄 이온과 피막의 안쪽으로 이동하는 음이온이 만나면 산화 알루미늄을 형성함으로써 피막이 성장하게 된다.Then, anions containing oxygen are formed by the decomposition of water on the surface of the film and move toward the inside of the film. When aluminum ions moving toward the surface of the film and anions moving inward of the film meet, aluminum oxide is formed and the film grows.
개시된 실시예에 따른 양극 산화 공정(20)은 알루미늄 기재(100)를 18 내지 22vol%의 황산 용액에 18 내지 24℃하에서 20 내지 30분 동안 침적하면서, 13~17V의 전압을 인가하여 10㎛ 정도 두께의 Al2O3 피막을 형성한다.In the anodization process 20 according to the disclosed embodiment, the aluminum substrate 100 is immersed in 18 to 22 vol% sulfuric acid solution at 18 to 24° C. for 20 to 30 minutes, and a voltage of 13 to 17 V is applied to about 10 μm. A thick Al 2 O 3 film is formed.
전술한 양극 산화 공정을 거친 알루미늄 기재(100)는 제2 개질 공정(30)을 거친다. 제2 개질 공정(30)은 수세, 착색, 수세 공정을 포함한다.The aluminum substrate 100 that has undergone the above-described anodization process is subjected to a second reforming process 30 . The second reforming process 30 includes washing with water, coloring, and washing with water.
양극 산화 공정을 거친 후 수행되는 수세공정은 알루미늄 기재(100)를 공업용수에 60초 이상 침적하여 기재(100)에 남아있는 양극 산화 공정의 피막액을 세정한다.The water washing process performed after the anodization process is performed by immersing the aluminum substrate 100 in industrial water for at least 60 seconds to clean the film solution of the anodization process remaining on the substrate 100 .
수세공정을 거친 알루미늄 기재(100)는 기재(100)에 색상을 부여하는 착색공정을 거친다. 착색 공정은 약한 음전하를 띄는 염료 0.1 내지 10g/L를 pH 5 내지 6의 용액으로 만든 뒤, 50℃ 하에서 침적하여 원하는 색상을 알루미늄 기재(100)에 부여한다.The aluminum substrate 100 that has undergone the water washing process is subjected to a coloring process that imparts a color to the substrate 100 . In the coloring process, 0.1 to 10 g/L of a dye having a weak negative charge is made into a solution of pH 5 to 6, and then deposited under 50° C. to impart a desired color to the aluminum substrate 100 .
착색공정을 거친 알루미늄 기재(100)의 표면을 세정하기 위해 수세공정을 거친다. 수세공정은 착색공정을 거친 알루미늄 기재(100)를 공업용수에 30초이상 침적하여 알루미늄 기재(100)의 표면을 세정한다.A water washing process is performed to clean the surface of the aluminum substrate 100 that has undergone the coloring process. In the water washing process, the surface of the aluminum substrate 100 is cleaned by immersing the aluminum substrate 100 that has undergone the coloring process in industrial water for 30 seconds or more.
개시된 실시예에 따른 알루미늄 아노다이징 방법은 전술한 수세, 착색, 수세공정을 포함하는 제2 개질 공정(30)을 거친 알루미늄 기재(100)의 홀을 실링하기 위한 봉공 공정(40)을 수행한다.The aluminum anodizing method according to the disclosed embodiment performs a sealing process 40 for sealing the hole of the aluminum substrate 100 that has undergone the second reforming process 30 including the above-described water washing, coloring, and water washing processes.
봉공 공정(40)은 알루미늄 기재(100)를 5vol%의 아세트산 니켈에 85 내지 95℃하에서 20 내지 30분 동안 침적하여 피막의 홀에 대한 실링을 수행한다.In the sealing process 40, the aluminum substrate 100 is immersed in 5 vol% nickel acetate at 85 to 95° C. for 20 to 30 minutes to seal the hole in the film.
고온 봉공 공정(60) 공정을 거친 후, 공업용수에 30초 이상 침적하여 표면을 세정하는 수세공정(70)과 물기를 제거하기 위해 70℃ 이상의 환경에 5분 이상 방치하는 건조 공정(80)을 거칠 수 있다.After the high-temperature sealing process (60) process, a water washing process (70) of washing the surface by immersion in industrial water for 30 seconds or more, and a drying process (80) of leaving it in an environment of 70 ° C or higher for 5 minutes or more to remove moisture can be rough
한편, 전술한 것처럼, 아노다이징 처리를 수행하기 위해서는 전기를 인가해 주어야 되는데 추후 제품의 외관으로 사용될 면이 아닌 비외관면에 치구를 접촉시켜 인가해 주는 것이 일반적이다.On the other hand, as described above, electricity must be applied to perform the anodizing treatment, but it is common to apply the jig by contacting the non-exterior surface, not the surface to be used as the exterior of the product later.
일반적으로, 일정 수준 이상의 텐션을 가지는 판 스프링강을 쐐기 형상으로 가공하여 제품의 비외관면에 접촉하는 방법이 사용된다. 이러한 방식은 제품의 비외관면에 구조물이나 홀이 있어야 적용 가능하다. In general, a method of contacting a non-external surface of a product by processing a leaf spring steel having a tension of a certain level or more into a wedge shape is used. This method is applicable only when there is a structure or hole in the non-exterior surface of the product.
그러나, 대면적의 알루미늄 판재의 경우 평활한 판재인지라 비외관면에 거치할 수 있는 구조물이 없어 판재의 측면에 짚어서 고정하는 것이 일반적이다. 그러나 측면 또한 외관면인 제품의 경우 아노다이징 후 치구가 접촉한 자국이 외관면으로 나올 수 있는 문제가 있다. However, in the case of a large-area aluminum plate, since it is a smooth plate, there is no structure that can be mounted on the non-exterior surface, so it is common to fix it by pointing it on the side of the plate. However, in the case of a product whose side is also an exterior surface, there is a problem that the marks that the jig has contacted may come out on the exterior surface after anodizing.
또한 아노다이징 공정 중에는 제품의 균일 품질을 위해 공기 교반을 실시해 주는데, 제품과 치구가 견고하게 접촉해 있지 않을 경우 공정 중 탈락이 발생할 수 있고, 이로 인해 정상적인 아노다이징 처리의 수행이 어렵고, 버닝불량이나 색상편차 불량 등이 발생할 수 있는 문제가 있다.In addition, during the anodizing process, air agitation is performed to ensure uniform quality of the product, but if the product and the jig are not in firm contact, dropout may occur during the process. There is a problem that may cause defects and the like.
다른 방법으로, 알루미늄 판재에 구멍을 뚫어 치구를 접촉하는 방법이 있으나 이 또한 앞서 설명한 방법과 동일한 문제가 발생할 수 있다.As another method, there is a method of making a hole in the aluminum plate and contacting the jig, but this may also cause the same problem as the method described above.
또 다른 방법으로, 알루미늄 또는 스테인레스 선재를 비외관면에 직접 용접하여 전기를 인가할 수도 있다. 다만 용접 작업 시 용접열에 의해 외관면에 버닝불량이 발생할 수도 있고, 용접 비용 뿐만 아니라 아노다이징 후 용접된 선재를 제거하는 비용도 발생하기에 생산성이나 경제성이 떨어지는 문제가 있다.As another method, electricity may be applied by directly welding an aluminum or stainless wire rod to the non-external surface. However, there is a problem in that productivity or economic feasibility is lowered because burning defects may occur on the exterior surface due to the welding heat during welding work, and not only the welding cost but also the cost of removing the welded wire rod after anodizing occurs.
전술한 방법들에서 공통적으로 발생하는 버닝 불량은 제품과 치구 간의 접촉 면적이 부족할 경우 발생할 수 있다. 공급되는 전류량이 접점을 통해 통전 가능한 한계 전류량(Limited current density) 이상으로 과다하게 흘러 저항열이 발생하게 되고 그로 인해 버닝 불량이 발생하게 된다. 그리고 접촉 면적이 부족할 경우 버닝 불량뿐만 아니라 국부적인 색상 편차 불량 또한 발생하기에 인가 전류밀도 대비 일정 면적 이상의 접촉 면적을 가져야 한다.Burning defects commonly occurring in the above-described methods may occur when the contact area between the product and the jig is insufficient. The amount of supplied current flows excessively beyond the limited current density that can be passed through the contact, and resistance heat is generated, which leads to a burning failure. In addition, if the contact area is insufficient, not only a burning defect but also a local color deviation defect may occur.
이에 개시된 실시예는 비외관면에 구조물이 없는 대면적 알루미늄 판재를 효과적으로 치구와 체결하는 구조를 통해 균일한 전기를 인가할 수 있는 알루미늄 아노다이징 방법을 제공한다. 이를 통해 개시된 실시예에 따른 알루미늄 아노다이징 방법은 버닝 불량 또는 색상 편차 불량의 발생을 방지할 수 있다.The embodiment disclosed herein provides an aluminum anodizing method capable of applying uniform electricity through a structure for effectively fastening a large-area aluminum plate having no structure to a non-exterior surface with a jig. Through this, the aluminum anodizing method according to the disclosed embodiment can prevent the occurrence of a burning defect or a color deviation defect.
이하 도 2 내지 도 7을 참조하여, 알루미늄 기재(100)와 치구(130)의 견고한 결합 구조를 구체적으로 설명한다.Hereinafter, with reference to FIGS. 2 to 7 , a solid coupling structure between the aluminum substrate 100 and the jig 130 will be described in detail.
도 2는 본 발명의 일 실시예에 따른 볼트와 너트(110)의 종단면을 도시한 도면이다. 도 3은 본 발명의 일 실시예에 따른 볼트와 너트(110)의 사시도이다. 도 4는 본 발명의 일 실시예에 따른 알루미늄 기재의 홈과 볼트와 너트를 도시한 사시도이다. 도 5는 본 발명의 일 실시예에 따른 알루미늄 기재(100)에 볼트와 너트(110)가 체결된 상태의 종단면을 도시한 도면이다. 도 6은 본 발명의 일 실시예에 따른 알루미늄 기재(100)에 볼트와 너트(110)가 체결된 상태의 사시도이다. 도 7은 본 발명의 일 실시예에 따라 알루미늄 기재(100)와 치구(130)가 체결된 상태의 일부를 도시한 사시도이다. 도 8은 본 발명의 일 실시예에 따라 알루미늄 기재(100)와 치구(130)가 체결된 상태를 도시한 사시도이다.2 is a view showing a longitudinal cross-section of the bolt and the nut 110 according to an embodiment of the present invention. 3 is a perspective view of a bolt and a nut 110 according to an embodiment of the present invention. 4 is a perspective view illustrating a groove, a bolt, and a nut of an aluminum substrate according to an embodiment of the present invention. 5 is a view showing a longitudinal cross-section in a state in which the bolt and the nut 110 are fastened to the aluminum substrate 100 according to an embodiment of the present invention. 6 is a perspective view of a state in which the bolt and the nut 110 are fastened to the aluminum substrate 100 according to an embodiment of the present invention. 7 is a perspective view illustrating a part of the state in which the aluminum substrate 100 and the jig 130 are fastened according to an embodiment of the present invention. 8 is a perspective view illustrating a state in which the aluminum substrate 100 and the jig 130 are fastened according to an embodiment of the present invention.
개시된 실시예에 따른 알루미늄 아노다이징 방법은 알루미늄 기재(100)의 표면에 나사선이 형성된 복수의 홈(101)을 가공하고(200), 가공된 복수의 홈(101)에 너트(110)와 볼트(120)를 체결하고(210), 볼트(120)의 헤드 부분에 형성된 암나사(123)에 체결볼트(140) 및 체결너트(150)를 체결하여 치구(130)를 알루미늄 기재(100)에 연결하는 것(220)을 포함한다. 이렇게 치구(130)가 연결된 알루미늄 기재(100)에 대해 전술한 아노다이징 처리를 수행한다(230).In the aluminum anodizing method according to the disclosed embodiment, a plurality of grooves 101 in which threads are formed on the surface of an aluminum substrate 100 are processed (200), and a nut 110 and bolts 120 are formed in the plurality of processed grooves 101. ) and connecting the jig 130 to the aluminum substrate 100 by fastening the 210, and the fastening bolt 140 and the fastening nut 150 to the female screw 123 formed in the head portion of the bolt 120. (220). The above-described anodizing treatment is performed on the aluminum substrate 100 to which the jig 130 is connected ( 230 ).
우선 치구(130)의 결합을 위해, 알루미늄 기재(100)의 표면에 나사선이 형성된 복수의 홈(101)을 가공한다. 복수의 홈(101)이 형성되는 알루미늄 기재(100)의 표면은 추후 알루미늄 기재(100)가 냉장고와 같은 제품에 적용될 경우 사용자에게 보여지는 외관면이 아닌 비외관면에 형성된다.First, for coupling of the jig 130 , a plurality of grooves 101 in which threads are formed on the surface of the aluminum substrate 100 are machined. When the aluminum substrate 100 is later applied to a product such as a refrigerator, the surface of the aluminum substrate 100 on which the plurality of grooves 101 are formed is formed on a non-external surface rather than an exterior surface shown to a user.
알루미늄 기재(100)로는 5000계 또는 6000계의 알루미늄 합금이 사용될 수 있으며, 알루미늄 기재(100)의 두께는 3.0mm 이상이다.As the aluminum substrate 100, an aluminum alloy of 5000 series or 6000 series may be used, and the thickness of the aluminum substrate 100 is 3.0 mm or more.
알루미늄 기재(100)의 표면에 형성되는 홈(101)은 2.0 내지 3.0mm의 지름을 갖도록 형성되고, 나사선은 2산 이상 형성되도록 가공될 수 있다.The groove 101 formed on the surface of the aluminum substrate 100 is formed to have a diameter of 2.0 to 3.0 mm, and the thread may be processed to form two or more threads.
홈(101)의 개수는 안정적으로 치구(130)와 체결하기 위해 짝수로 정해질 수 있고, 홈(101)의 배치 또한 치구(130)와의 안정적 체결을 위해 대칭이 되도록 마련될 수 있다. 또한, 홈(101)은 알루미늄 기재(100)의 모서리로부터 100mm 정도의 간격만큼 떨어지도록 형성될 수 있다.The number of grooves 101 may be set to an even number in order to stably fasten with the jig 130 , and the arrangement of the grooves 101 may also be provided to be symmetrical for stable fastening with the jig 130 . Also, the groove 101 may be formed to be spaced apart from the edge of the aluminum substrate 100 by an interval of about 100 mm.
전술한 알루미늄 기재(100)의 홈(101)에 체결되는 볼트(120)와 너트(110)는 1000계 또는 6000계 알루미늄 합금으로 제조될 수 있다. 볼트(120)의 수나사(121)의 지름과 너트(110)의 암나사의 지름은 전술한 홈(101)의 지름과 일치하도록 제조될 수 있다(도 5 참조). 도 3에 도시된 것처럼, 너트(110)는 그 횡단면이 원형이 되도록 형성될 수 있는데, 이는 아노다이징 후 비외관면에 발생하는 자국에 방향성이 없도록 하기 위함이다.The bolt 120 and the nut 110 fastened to the groove 101 of the above-described aluminum substrate 100 may be made of a 1000 series or 6000 series aluminum alloy. The diameter of the male screw 121 of the bolt 120 and the diameter of the female screw of the nut 110 may be manufactured to match the diameter of the aforementioned groove 101 (refer to FIG. 5 ). As shown in FIG. 3 , the nut 110 may be formed to have a circular cross-section, so that marks generated on the non-appearance surface after anodizing have no directionality.
도 2에 도시된 것처럼, 볼트(120)는 한쪽에는 알루미늄 기재(100)의 홈(101)에 체결되는 수나사(121)가 형성되고, 그 반대쪽 헤드 부분에는 추후 치구(130)를 체결하기 위해 사용되는 체결볼트(140)가 삽입되는 암나사(123)가 형성된다. As shown in Figure 2, the bolt 120 is formed with a male screw 121 fastened to the groove 101 of the aluminum substrate 100 on one side, and the head portion on the opposite side is used to fasten the jig 130 later. A female screw 123 into which the fastening bolt 140 is inserted is formed.
도 5에 도시된 것처럼, 볼트(120)의 수나사(121)의 길이는 볼트(120)와 너트(110)가 알루미늄 기재(100)의 홈(101)에 체결됐을 때 유격이 발생하지 않도록, 너트(110)의 두께와 알루미늄 기재(100)의 홈(101)의 깊이의 합과 일치하도록 결정될 수 있다. 예를 들어, 볼트(120)의 수나사(121)의 길이는 5.0mm일 수 있고, 너트(110)의 두께는 3.0mm이고, 알루미늄 기재(100)에 형성되는 홈(101)의 깊이는 2.0mm 일 수 있다.As shown in FIG. 5 , the length of the male screw 121 of the bolt 120 is such that a gap does not occur when the bolt 120 and the nut 110 are fastened to the groove 101 of the aluminum substrate 100 , the nut It may be determined to match the sum of the thickness of 110 and the depth of the groove 101 of the aluminum substrate 100 . For example, the length of the male screw 121 of the bolt 120 may be 5.0 mm, the thickness of the nut 110 is 3.0 mm, and the depth of the groove 101 formed in the aluminum substrate 100 is 2.0 mm. can be
볼트(120) 및 너트(110)의 개수와 알루미늄 기재(100)와 접촉하는 너트(110)의 반지름은 볼트(120) 및 너트(110)의 한계 통전량과 아노다이징 처리 시 실제 필요한 전류량을 비교하여 결정될 수 있다. The number of bolts 120 and nuts 110 and the radius of the nut 110 in contact with the aluminum substrate 100 are compared with the limit energization amount of the bolt 120 and the nut 110 and the amount of current actually required during anodizing treatment. can be decided.
즉, 볼트(120)와 너트(110)의 한계 통전량이 실제 필요전류량보다 높도록 볼트(120) 및 너트(110)의 개수와 너트(110)의 반지름이 결정될 수 있다. 여기서 실제 필요 전류량은 이론 필요전류량보다 20%증가한 값으로 결정될 수 있다. 이는 공정 설비의 저항값을 고려하였을 때 실제 필요전류량이 이론 필요전류량보다 높은 것을 고려한 것이다.That is, the number of bolts 120 and the nut 110 and the radius of the nut 110 may be determined so that the limit energization amount of the bolt 120 and the nut 110 is higher than the actual required current amount. Here, the actual required current may be determined as a value increased by 20% from the theoretical required current. This is considering that the actual required current is higher than the theoretical required current when considering the resistance value of the process equipment.
실제 필요전류량보다 볼트(120) 및 너트(110)의 한계통전량이 낮으면, 저항열로 인해 버닝불량이나 색상편차 불량이 발생할 수 있다. 따라서, 볼트(120) 및 너트(110)의 한계통전량이 실제 필요전류량보다 높아야 한다. 한계통전량은 볼트(120) 및 너트(110)와 알루미늄 기재(100)의 총접촉면적, 적정 전류밀도 및 통전효율을 곱하여 산출될 수 있다. If the limiting current of the bolt 120 and the nut 110 is lower than the actual required current, poor burning or color deviation may occur due to resistance heat. Therefore, the limit energization amount of the bolt 120 and the nut 110 should be higher than the actual required current amount. The limit energization amount may be calculated by multiplying the total contact area between the bolt 120 and the nut 110 and the aluminum substrate 100, the appropriate current density, and the energization efficiency.
볼트(120)와 너트(110)에서 단위 면적당 통전할 수 있는 적정 전류밀도는 알루미늄 기재(100)의 표면적이 1m2 이상일 경우 1.0 A/mm2로 설정되고, 1m2 미만일 경우 1.5 A/mm2로 설정된다. 면적이 작으면 전류효율이 높아져 전류밀도가 높아지기 때문이다.The appropriate current density that can conduct electricity per unit area in the bolt 120 and the nut 110 is set to 1.0 A/mm 2 when the surface area of the aluminum substrate 100 is 1 m 2 or more, and 1.5 A/mm 2 when less than 1 m 2 is set to This is because the smaller the area, the higher the current efficiency and the higher the current density.
한계통전량의 산출에 있어서 변수에 해당한다고 볼 수 있는 총접촉면적은 볼트(120) 및 너트(110)와 알루미늄 기재(100)의 접촉면적에 볼트(120) 및 너트(110)의 개수의 곱으로 산출되므로, 접촉면적을 좌우하는 볼트(120) 및 너트(110)의 반지름과 그 개수가 한계통전량을 결정하는 요소라고 볼 수 있다.The total contact area, which can be regarded as a variable in the calculation of the limiting current, is the product of the contact area between the bolt 120 and the nut 110 and the aluminum substrate 100 and the number of the bolt 120 and the nut 110 Since it is calculated as , it can be seen that the radius and number of the bolt 120 and the nut 110 that determine the contact area are factors that determine the limiting energization amount.
하기 표의 필요전류량, 적정전류밀도, 볼트(120) 및 너트(110)의 개수 그리고 표면적의 관계는 하기 식(1)에 의해 결정될 수 있다.The relationship between the required current amount, the appropriate current density, the number of bolts 120 and nuts 110 and the surface area in the table below can be determined by the following formula (1).
(1) 표면적(㎟)=
Figure PCTKR2021014644-appb-img-000001
(1) Surface area (㎟) =
Figure PCTKR2021014644-appb-img-000001
하기 표 1은 볼트(120) 및 너트(110)의 한계통전량과 필요전류량에 따른 불량 발생 여부를 나타낸다.Table 1 below shows whether defects occur according to the limiting current and required current of the bolt 120 and the nut 110 .
실제 필요전류량Actual amount of current required 볼트/너트bolt/nut 외관
Exterior
소재Material 개수
(EA)
Count
(EA)
반지름
(mm)
radius
(mm)
접촉면적
(㎟/EA)
contact area
(㎟/EA)
적정전류밀도
(A/㎟)
Appropriate current density
(A/㎟)
통전효율
(%)
energization efficiency
(%)
한계통전량
(A)
limit current
(A)
비교예 1Comparative Example 1 739739 알루미늄aluminum 66 5.05.0 78.578.5 1.01.0 9090 424424 NG(버닝, 색상편차)NG (burning, color deviation)
비교예 2Comparative Example 2 739739 알루미늄aluminum 88 5.05.0 78.578.5 1.01.0 9090 565565 NG(버닝, 색상편차)NG (burning, color deviation)
실시예 1Example 1 739739 알루미늄aluminum 88 7.57.5 176.7176.7 1.01.0 9090 12721272 양호Good
표 1에 나타낸 것처럼, 실시예 1에 따라 볼트(120) 및 너트(110)의 반지름이 7.5mm이고, 개수가 8개인 경우, 한계통전량이 실제 필요전류량보다 크므로 외관에 버닝불량이나 색상편차 불량이 나타나지 않는 것을 알 수 있다. 그에 반해, 비교예 1 및 비교예 2에 따라 한계통전량이 실제 필요전류량보다 작은 경우, 외관에 버닝불량이나 색상편차 불량이 발생하는 것을 알 수 있다. 따라서, 볼트(120) 및 너트(110)의 개수는 적어도 8개인 것이 바람직하고, 그에 대응하는 홈(101)의 개수도 8개 인 것이 바람직하다.As shown in Table 1, according to Example 1, when the radius of the bolt 120 and the nut 110 is 7.5 mm and the number is 8, the limiting current is greater than the actual required current, so the appearance has poor burning or color deviation. It can be seen that no defects appear. On the other hand, it can be seen that in Comparative Examples 1 and 2, when the limiting current supply amount is smaller than the actual required current amount, there is a burning defect or a color deviation defect in the appearance. Accordingly, the number of bolts 120 and nuts 110 is preferably at least 8, and the number of corresponding grooves 101 is also preferably 8.
볼트(120)와 너트(110)는 도 4 내지 도 6에 도시된 것처럼, 알루미늄 기재(100)의 홈(101)에 체결될 수 있다.The bolt 120 and the nut 110 may be fastened to the groove 101 of the aluminum substrate 100 as shown in FIGS. 4 to 6 .
볼트(120)와 너트(110)가 알루미늄 기재(100)의 홈(101)에 체결되면, 도 7 및 도 8에 도시된 것처럼, 볼트(120)와 너트(110)가 체결된 알루미늄 기재(100)를 치구(130)에 체결한다.When the bolt 120 and the nut 110 are fastened to the groove 101 of the aluminum substrate 100, as shown in FIGS. 7 and 8, the aluminum substrate 100 to which the bolt 120 and the nut 110 are fastened. ) is fastened to the jig 130 .
치구(130)에는 볼트(120)의 헤드 부분에 형성된 암나사(123)에 체결되는 체결볼트(140)가 삽입될 수 있도록 홀이 마련될 수 있다. 즉, 치구(130)를 알루미늄 기재(100)에 연결시키기 위한 체결볼트(140)를 체결너트(150)와 치구(130)의 홀을 통과시켜 볼트(120)의 헤드부분 암나사(123)에 체결시킴으로써 치구(130)가 알루미늄 기재(100)에 연결될 수 있다. A hole may be provided in the jig 130 so that the fastening bolt 140 fastened to the female screw 123 formed in the head portion of the bolt 120 can be inserted. That is, the fastening bolt 140 for connecting the jig 130 to the aluminum substrate 100 is passed through the hole of the fastening nut 150 and the jig 130 and is fastened to the head portion female screw 123 of the bolt 120 . By doing so, the jig 130 may be connected to the aluminum substrate 100 .
이렇게 체결볼트(140)와 체결너트(150)를 이용하여 치구(130)를 알루미늄 기재(100)에 연결시키면 도 8에 도시된 것 같은 체결 구조가 형성된다. 도 8에는 알루미늄 기재(100)에 비외관면에 8개의 전술한 체결구조가 나타나 있다.When the jig 130 is connected to the aluminum substrate 100 using the fastening bolt 140 and the fastening nut 150 in this way, a fastening structure as shown in FIG. 8 is formed. In FIG. 8 , the eight above-described fastening structures are shown on the non-external surface of the aluminum substrate 100 .
치구(130)를 볼트(120)에 체결시키기 위한 체결볼트(140)와 체결너트(150)는 티타늄 합금으로 이루어질 수 있다.The fastening bolt 140 and the fastening nut 150 for fastening the jig 130 to the bolt 120 may be made of a titanium alloy.
전술한 것처럼, 볼트(120) 및 너트(110)를 알루미늄 기재(100)의 홈(101)에 체결시키고, 치구(130)를 체결볼트(140)와 체결너트(150)를 이용하여 볼트(120)에 체결시킴으로써 치구(130)와 알루미늄 기재(100)를 연결하면, 알루미늄 기재(100)와 치구(130)는 견고하게 결합될 수 있다. 따라서, 아노다이징 처리 중에 알루미늄 기재(100)가 치구(130)에서 탈락하는 문제를 방지할 수 있다.As described above, the bolt 120 and the nut 110 are fastened to the groove 101 of the aluminum substrate 100 , and the jig 130 is fastened to the bolt 120 using the fastening bolt 140 and the fastening nut 150 . ) by connecting the jig 130 and the aluminum substrate 100, the aluminum substrate 100 and the jig 130 may be firmly coupled. Accordingly, it is possible to prevent the problem of the aluminum substrate 100 falling off from the jig 130 during the anodizing process.
또한, 개시된 실시예에 따라 제조된 알루미늄 판재는 공정 중 견고하게 체결되고 균일하게 전류가 인가될 수 있으므로, 외관에 치구(130) 체결 자국이나 버닝 불량, 색상 편차 불량이 발생하지 않는다. 따라서, 국부적인 색상 편차 없이 균일한 외관 품질의 알루미늄 판재를 이용한 냉장고 도어를 제조할 수 있게 한다.In addition, since the aluminum plate manufactured according to the disclosed embodiment is firmly fastened during the process and an electric current can be applied uniformly, the jig 130 fastening marks, burning defects, and color deviation defects do not occur on the exterior. Accordingly, it is possible to manufacture a refrigerator door using an aluminum plate having a uniform appearance quality without local color deviation.
이상에서와 같이 첨부된 도면을 참조하여 개시된 실시예들을 설명하였다. 게시된 실시예가 속하는 기술분야에서 통상의 지식을 가진 자는 게시된 실시예의 기술적 사상이나 필수적인 특징을 변경하지 않고도, 개시된 실시예들과 다른 형태로 실시될 수 있음을 이해할 것이다. 개시된 실시예들은 예시적인 것이며, 한정적으로 해석되어서는 안 된다.The disclosed embodiments have been described with reference to the accompanying drawings as described above. A person of ordinary skill in the art to which the published embodiment belongs will understand that the disclosed embodiment may be implemented in a form different from the disclosed embodiment without changing the technical spirit or essential features of the published embodiment. The disclosed embodiments are illustrative and should not be construed as limiting.
본 발명에 따르면, 버닝 또는 색상편차와 같은 불량의 발생을 방지할 수 있는 알루미늄 아노다이징 방법을 제공할 수 있다.According to the present invention, it is possible to provide an aluminum anodizing method capable of preventing the occurrence of defects such as burning or color deviation.

Claims (12)

  1. 알루미늄 기재의 표면에, 나사선이 형성된 복수의 홈을 가공하고;processing a plurality of grooves in which threads are formed on the surface of the aluminum substrate;
    상기 복수의 홈에 너트 및 볼트를 체결하고;fastening nuts and bolts to the plurality of grooves;
    상기 볼트에 아노다이징 치구를 연결하고;connecting an anodizing fixture to the bolt;
    상기 볼트를 통해 치구에 연결된 상기 알루미늄 기재에 대해 아노다이징을 수행하는 것;을 포함하는 알루미늄 아노다이징 방법.Aluminum anodizing method comprising; performing anodizing on the aluminum substrate connected to the jig through the bolt.
  2. 제1항에 있어서,According to claim 1,
    상기 볼트 및 너트의 한계 통전량이 아노다이징 시 인가되는 필요 전류량보다 크도록 상기 볼트 및 너트의 개수와 반지름을 결정하는 것;을 더 포함하는 알루미늄 아노다이징 방법.Determining the number and radius of the bolts and nuts so that the limit energization amount of the bolts and nuts is greater than the required amount of current applied during anodizing; aluminum anodizing method further comprising.
  3. 제1항에 있어서,According to claim 1,
    상기 볼트 및 너트는 알루미늄 합금으로 이루어지는 알루미늄 아노다이징 방법.The bolt and nut is an aluminum anodizing method made of an aluminum alloy.
  4. 제1항에 있어서,According to claim 1,
    상기 너트는 원형의 횡단면을 갖는 알루미늄 아노다이징 방법.The nut is an aluminum anodizing method having a circular cross-section.
  5. 제1항에 있어서,The method of claim 1,
    상기 아노다이징을 수행하는 것은,Performing the anodizing is,
    상기 알루미늄 기재의 표면적이 1m2이상일 경우 상기 알루미늄 기재와 접촉하는 상기 너트의 표면적 당 인가되는 전류밀도가 1A/mm2가 되도록 아노다이징을 수행하는 것;을 포함하는 알루미늄 아노다이징 방법.When the surface area of the aluminum substrate is 1 m 2 or more, performing anodizing so that the current density applied per surface area of the nut in contact with the aluminum substrate is 1 A/mm 2 ; Aluminum anodizing method comprising a.
  6. 제1항에 있어서,According to claim 1,
    상기 아노다이징을 수행하는 것은,Performing the anodizing is,
    상기 알루미늄 기재의 표면적이 1m2미만일 경우 상기 알루미늄 기재와 접촉하는 상기 너트의 표면적 당 인가되는 전류밀도가 1.5A/mm2가 되도록 아노다이징을 수행하는 것;을 포함하는 알루미늄 아노다이징 방법.When the surface area of the aluminum substrate is less than 1 m 2 , performing anodizing so that the current density applied per surface area of the nut in contact with the aluminum substrate is 1.5 A/mm 2 ; Aluminum anodizing method comprising a.
  7. 제1항에 있어서,According to claim 1,
    상기 복수의 홈에 너트 및 볼트를 체결하는 것은,Fastening the nuts and bolts to the plurality of grooves,
    나사선이 형성된 홈이 헤드에 마련된 볼트를 상기 복수의 홈에 체결하는 것;을 포함하는 알루미늄 아노다이징 방법.An aluminum anodizing method comprising; fastening a bolt provided in a head having a threaded groove to the plurality of grooves.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 볼트에 아노다이징 치구를 연결하는 것은,Connecting the anodizing jig to the bolt is,
    체결볼트를 상기 볼트의 홈에 체결하여 상기 아노다이징 치구를 상기 볼트에 연결하는 것;을 포함하는 알루미늄 아노다이징 방법.An aluminum anodizing method comprising a; fastening a fastening bolt to the groove of the bolt to connect the anodizing jig to the bolt.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 체결볼트는 티타늄 합금으로 이루어지는 알루미늄 아노다이징 방법.The fastening bolt is an aluminum anodizing method made of a titanium alloy.
  10. 제1항에 있어서,According to claim 1,
    알루미늄 기재의 표면에, 나사선이 형성된 복수의 홈을 가공하는 것은,Processing a plurality of grooves in which threads are formed on the surface of the aluminum substrate,
    상기 알루미늄 기재의 표면에 짝수 개의 홈이 대칭을 이루도록 가공하는 것;을 포함하는 알루미늄 아노다이징 방법.Aluminum anodizing method comprising; processing an even number of grooves to form a symmetry on the surface of the aluminum substrate.
  11. 제1항에 있어서,According to claim 1,
    알루미늄 기재의 표면에, 나사선이 형성된 복수의 홈을 가공하는 것은,Processing a plurality of grooves in which threads are formed on the surface of the aluminum substrate,
    상기 알루미늄 기재의 모서리로부터 100mm 이격된 위치에 상기 복수의 홈을 가공하는 것;을 포함하는 알루미늄 아노다이징 방법.Aluminum anodizing method comprising; processing the plurality of grooves at a position spaced 100 mm from the edge of the aluminum substrate.
  12. 제1항에 있어서,According to claim 1,
    알루미늄 기재의 표면에, 나사선이 형성된 복수의 홈을 가공하는 것은,Processing a plurality of grooves in which threads are formed on the surface of the aluminum substrate,
    상기 알루미늄 기재의 표면에 2.0 내지 3.0mm의 직경을 갖는 상기 복수의 홈을 가공하는 것;을 포함하는 알루미늄 아노다이징 방법.Aluminum anodizing method comprising; processing the plurality of grooves having a diameter of 2.0 to 3.0 mm on the surface of the aluminum substrate.
PCT/KR2021/014644 2020-12-17 2021-10-20 Method for anodizing aluminum WO2022131514A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200177574 2020-12-17
KR10-2020-0177574 2020-12-17
KR10-2021-0025357 2021-02-25
KR1020210025357A KR20220087341A (en) 2020-12-17 2021-02-25 Aluminum anodizing method

Publications (1)

Publication Number Publication Date
WO2022131514A1 true WO2022131514A1 (en) 2022-06-23

Family

ID=82059620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014644 WO2022131514A1 (en) 2020-12-17 2021-10-20 Method for anodizing aluminum

Country Status (1)

Country Link
WO (1) WO2022131514A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641963Y2 (en) * 1983-11-30 1989-01-18
JP2002332596A (en) * 2001-05-10 2002-11-22 Hara Mekki Kogyo Kk Tool for anodic oxidation treatment
KR200430129Y1 (en) * 2006-08-04 2006-11-02 장관섭 Anodizing jig
KR101145111B1 (en) * 2011-09-15 2012-05-14 영신미다스 주식회사 Rack apparatus for surface treating of beam shaped objects
CN212103043U (en) * 2020-04-01 2020-12-08 江门市安诺特炊具制造有限公司 Clamp for thick film anodic oxidation of aluminum alloy cooker with hole

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641963Y2 (en) * 1983-11-30 1989-01-18
JP2002332596A (en) * 2001-05-10 2002-11-22 Hara Mekki Kogyo Kk Tool for anodic oxidation treatment
KR200430129Y1 (en) * 2006-08-04 2006-11-02 장관섭 Anodizing jig
KR101145111B1 (en) * 2011-09-15 2012-05-14 영신미다스 주식회사 Rack apparatus for surface treating of beam shaped objects
CN212103043U (en) * 2020-04-01 2020-12-08 江门市安诺特炊具制造有限公司 Clamp for thick film anodic oxidation of aluminum alloy cooker with hole

Similar Documents

Publication Publication Date Title
EP0759482A1 (en) Electroplating process
CN101161866B (en) Method for preparing magnesium and magnesium alloy surface coating
WO2011028004A2 (en) Copper foil for an embedded pattern for forming a microcircuit
WO2018088642A1 (en) Electrolytic copper foil for secondary battery and method for producing same
WO2022131514A1 (en) Method for anodizing aluminum
CN110607549A (en) Anti-static hard anodic oxidation process
US20160002811A1 (en) High purity aluminum top coat on substrate
WO2018062662A1 (en) Method for manufacturing and processing antenna contact terminal thin film sheet having excellent bonding property with aluminum and aluminum alloy
EP3078032B1 (en) System for insulating high current busbars
CN1356185A (en) High-precision ultra-thin very-wide cold-rolled steel band, chrome-plated steel band for shield of optical fibre cable and technology thereof
KR20190106515A (en) Method for anodizing preventing static eletricity
WO2022131515A1 (en) Aluminum anodizing method
KR20220087341A (en) Aluminum anodizing method
JP4068742B2 (en) Method for producing anodized film-coated member for semiconductor production equipment having excellent heat cracking resistance and corrosion resistance
CN110965099A (en) Aluminum alloy mirror surface anodic oxidation method
WO2021049709A1 (en) Titanium electrode for water treatment electrolysis and method for manufacturing same
WO2020060037A1 (en) Method for manufacturing camera module diaphragm by using press blanking
WO2021085846A1 (en) Electropolishing apparatus
WO2021096226A1 (en) Method for improving implementation of vivid color on superhydrophilic surface of aluminum alloy
WO2022255681A1 (en) Surface treatment method of aluminum material
KR102174256B1 (en) the roof rack for the vehicles and surface processing method of the aluminium alloy
WO2019117414A1 (en) Method for manufacturing anodized aluminum or aluminum alloy member having excellent corrosion resistance and insulation characteristics, and surface-treated semiconductor device
US4737245A (en) Method for uniformly electrolytically coloring anodized aluminum or aluminum alloys
JP2971366B2 (en) Nickel-plated steel sheet subjected to adhesion prevention treatment during annealing and its manufacturing method
CN1685087B (en) Method for electrolytic coating of materials with aluminium, magnesium or aluminium and magnesium alloys

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906819

Country of ref document: EP

Kind code of ref document: A1