WO2021049709A1 - Titanium electrode for water treatment electrolysis and method for manufacturing same - Google Patents

Titanium electrode for water treatment electrolysis and method for manufacturing same Download PDF

Info

Publication number
WO2021049709A1
WO2021049709A1 PCT/KR2019/014341 KR2019014341W WO2021049709A1 WO 2021049709 A1 WO2021049709 A1 WO 2021049709A1 KR 2019014341 W KR2019014341 W KR 2019014341W WO 2021049709 A1 WO2021049709 A1 WO 2021049709A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
electrode
electrolysis
temperature
base
Prior art date
Application number
PCT/KR2019/014341
Other languages
French (fr)
Korean (ko)
Inventor
박규원
박석원
김성태
권경안
김대원
한희주
이진희
Original Assignee
(주) 테크로스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 테크로스 filed Critical (주) 테크로스
Publication of WO2021049709A1 publication Critical patent/WO2021049709A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a titanium electrode for water treatment electrolysis and a method of manufacturing the same, and more particularly, to a titanium electrode used for electrolysis for sterilizing an aqueous solution, and a method of manufacturing the titanium electrode.
  • the electrolysis method by generating a strong oxidizing substance, it is possible to decompose, sterilize, and disinfect non-degradable organic substances without being affected by conditions such as biotoxicity, temperature, and dissolved oxygen. In addition, a large amount of processing can be performed within a short time, and the processing device can be downsized. In addition, there is an advantage of generating strong oxidizing substances without using chemical additives that can generate secondary waste.
  • the electrolysis method is used for sterilization/sterilization of ballast water in ships.
  • the ship's ballast water When the ship's ballast water is injected or discharged, it passes through an electrolysis tank, and an electric current is applied to the electrode of the electrolysis tank to produce residual oxidizing agent from seawater to kill or sterilize marine life.
  • the basic operating principle of the electrolytic apparatus for such a use is to use an oxidation-reduction reaction occurring at the anode and cathode immersed in the aqueous solution to be treated.
  • Cl ⁇ is oxidized at the anode to generate chlorine gas and oxygen at the same time.
  • water is reduced at the cathode to generate hydrogen.
  • hypochlorous acid HClO
  • hypochlorous acid ions ClO -
  • HClO is an active chlorine and shows strong oxidizing power and disinfecting power.
  • the anode and/or cathode electrode used in such a general electrolysis device mainly uses a titanium substrate, and here, iridium (Ir), ruthenium (Ru ), platinum (Pt), palladium (Pd), and other platinum group metal oxides are coated to add a mixed metal coating layer (MMO coating).
  • Ir iridium
  • Ru ruthenium
  • Pt platinum
  • Pd palladium
  • MMO coating mixed metal coating layer
  • Korean Patent No. 10-1741401 name: a coating solution for an electrochemically insoluble electrode and a method of manufacturing an electrode
  • a first oxide layer and a second oxide layer are coated on a titanium substrate, respectively.
  • a process of applying a first coating solution containing tantalum chloride and hydrogen hexachloroiridate (IV) is required, and in order to form the second oxide layer, a process of applying an organic solvent including titanium dioxide, silicon dioxide, bismuth oxide, zirconium oxide, aluminum oxide, and mixtures thereof is additionally required.
  • the process of applying the oxide to the titanium substrate is performed twice, the manufacturing method is complicated and the material cost is doubled.
  • a material different from the material constituting the substrate on the titanium substrate is used. Since it is coated, there is a disadvantage that the durability of the coating is low.
  • the conventional electrode in which the coating layer is formed in this way is in the area where the adhesion of the coating layer is deteriorated, the area where mud-crack occurs, the area where the current density is concentrated, etc. during the electrolysis reaction in the aqueous electrolyte solution.
  • the coating layer can be easily peeled off. Where the coating layer is peeled off, titanium may be directly exposed to the aqueous solution. Then, the oxidation-reduction reaction may occur in the titanium itself on the electrode surface, resulting in damage to the electrode.
  • a reaction for generating Cl 2 and a reaction for generating H + occurs due to a water decomposition reaction, and these substances have very strong corrosive power to metals.
  • anodic oxidation reaction occurs on the surface of the exposed titanium, whereby a local insulating layer is generated on the titanium surface, and the insulating layer is continuously grown.
  • the insulating layer grows, the current density in the corresponding portion gradually increases, so that an overvoltage is applied, and thus the anode electrode may be more severely eroded or dissolved.
  • the titanium electrode for water treatment electrolysis according to the present invention for achieving the above object is for oxidizing or reducing the aqueous solution by applying a positive or negative potential while immersed in an aqueous solution to be subjected to electrolysis
  • the electrode for electrolysis includes: a base made of titanium or a titanium alloy; A titanium oxide layer formed by oxidizing at least a portion of titanium on the surface of the base portion; It is prepared to include an active layer made of any transition metal coating the titanium oxide layer.
  • the titanium oxide layer a first temperature included in the range of 400 to 800 °C by arranging the base portion of the electrode for electrolysis in a heating furnace, and supplying thermal energy to the base portion.
  • the first temperature is selected in the range of 500 to 700 °C
  • the first time is selected in the range of 90 to 150 minutes
  • the second time is 30 to The temperature of the base portion selected in the range of 90 minutes and heated may be kept constant at the first temperature during the second time period.
  • oxygen may be injected into the heating furnace.
  • the surface of the base may include irregularities formed by sand blasting or corrosion by corrosive substances.
  • the transition metal forming the active layer may include at least one of iridium, ruthenium, palladium, platinum, tantalum, titanium, and tin.
  • a method of manufacturing a titanium electrode for water treatment electrolysis comprises: preparing a base portion made of titanium or a titanium alloy; Forming a titanium oxide layer by oxidizing at least a portion of titanium on the surface of the base portion; And forming an active layer made of an arbitrary transition metal coating an upper portion of the titanium oxide layer, wherein the forming of the titanium oxide layer comprises: placing the base in a heating furnace, and Supplying thermal energy to increase the temperature of the base portion from room temperature to a first temperature in the range of 400 to 800° C. over a first time period; Maintaining the temperature of the base within the range for a second time; And stopping the supply of thermal energy to the base part to cool the base part to room temperature.
  • the first temperature is selected in the range of 500 to 700 °C
  • the first time is selected in the range of 90 to 150 minutes
  • the second time is selected in the range of 30 to 90 minutes
  • the temperature of the base portion heated to 1 temperature may be kept constant at the first temperature during the second time period.
  • it may further include injecting oxygen into the interior of the heating furnace.
  • the step of preparing the base may further include forming irregularities by sandblasting the surface of the base or corroding it with a corrosive material.
  • the transition metal forming the active layer may include at least one of iridium, ruthenium, palladium, platinum, tantalum, titanium, and tin.
  • the titanium electrode for water treatment electrolysis according to the present invention having the configuration as described above has high adhesion of the transition metal coating layer and is difficult to generate dry heat. Accordingly, damage to the electrode during electrolysis is suppressed, thereby improving the life of the electrode.
  • a titanium electrode for water treatment electrolysis having an improved life can be manufactured by a simple manufacturing method.
  • FIG. 1 is a diagram illustrating a cross section of a part of a titanium electrode according to the prior art and a process in which the titanium electrode is damaged during electrolysis.
  • FIG. 2 is a view showing a cross section of a portion of the titanium electrode for water treatment electrolysis according to the present invention.
  • FIG. 3 is a flowchart illustrating a method of manufacturing a titanium electrode for water treatment electrolysis according to the present invention.
  • FIG. 4 is a view showing the XRD analysis results of the titanium electrode for electrolysis manufactured according to various embodiments of the present invention.
  • FIG. 5 is a diagram showing the results of an electrokinetic positive polarization experiment of a titanium electrode for electrolysis manufactured according to various embodiments of the present invention.
  • the titanium electrode according to the present invention includes a base portion 110, a titanium oxide layer 120, and an active layer 130.
  • the titanium electrode for water treatment electrolysis disclosed in the present invention can be used as an electrode for oxidizing or reducing the aqueous solution by applying a positive or negative potential while immersed in an aqueous solution to be subjected to electrolysis. Is used.
  • the base portion 110 constitutes a basic shape of an electrode, and may be made of pure titanium or an alloy of titanium and other metals.
  • the titanium oxide layer 120 On the surface of the base portion 110 , a titanium oxide layer 120, which is a characteristic configuration of the present invention, is formed.
  • the titanium oxide layer 120 may be formed of titanium dioxide (TiO 2 ), and may be formed by oxidizing titanium on the surface of the base portion in the atmosphere or in an oxygen atmosphere.
  • the base portion 110 is placed in a heating furnace (or a sintering furnace), and the inside of the heating furnace is set to an air presence condition under atmospheric pressure or an oxygen dominant atmosphere or a pure oxygen atmosphere or an inert gas atmosphere, and the heating furnace is closed to heat it. Make sure that the inside of the furnace is sealed.
  • the configured system may be, for example, in a state in which the oxygen ratio is 15 to 30%.
  • the closed system in the heating furnace is heated (thermal energy is supplied) to raise the temperature of the base portion 110.
  • thermal energy is supplied to the internal system through the heated at least part of the wall surface to heat the internal system, and the base portion 110 is heated by the heated system.
  • the process of raising the temperature of the base 110 may be performed over 90 to 150 minutes, preferably over 120 minutes, and the temperature of the base 110 to a predetermined temperature in the range of 400 to 800 °C, preferably It includes raising the temperature to a temperature in the range of 500 to 700°C, more preferably to 600°C.
  • the process of heat-treating the base portion 110 by controlling the heating operation of the heating furnace, to keep the temperature of the heated base portion 110 heated for 30 to 90 minutes, preferably for 60 minutes in the heating furnace. Includes maintaining.
  • a titanium oxide layer 120 may be formed on the surface of the base portion 110 made of titanium through a series of such processes.
  • Corrosive substances may include, for example, sulfuric acid, hydrochloric acid, oxalic acid.
  • the amount of oxygen injected into the heating furnace or the pressure inside the heating furnace may be set differently according to the temperature, shape, size, and material of the base portion 110 or according to the thickness of the titanium oxide layer 120 to be formed. have.
  • the active layer 130 is formed by coating an upper portion of the titanium oxide layer 120 formed on the surface of the base portion 110 with an arbitrary transition metal.
  • the transition metal may be, for example, iridium, ruthenium, palladium, platinum, tantalum, titanium, or tin, and the active layer 130 may be formed by coating any one or two or more of them.
  • the method of manufacturing a titanium electrode according to the present invention includes the step of preparing a base portion 110 of a cathode electrode and/or an anode electrode made of titanium or a titanium alloy (S10), and by oxidizing titanium on the surface of the prepared base portion 110. And forming the titanium oxide layer 120 (S20), and forming the active layer 130 by coating the formed titanium oxide layer with an arbitrary transition metal (S30).
  • the step of preparing the base part 110 includes preparing the base part 110 (S11), forming fine irregularities by sand blasting the base part 110 or corrosion treatment with a corrosive substance. It may include a thing (S12).
  • fine irregularities in the base portion 110 other methods other than the above-described method may be applied. On the other hand, fine irregularities may not be formed on the base portion 110.
  • the prepared base portion 110 is placed in the heating furnace (S21), and the base portion ( 110) heating up to a first temperature over a first time period (S22), heat treatment by maintaining the heated temperature of the base portion 110 inside the heating furnace for a second time (S23), heat of the heating furnace It may include stopping the heating of the base part 110 by stopping the supply of energy and allowing the heating furnace and the base part 110 to be cooled to room temperature together with the base part 110 left inside the heating furnace (S24). have.
  • the first time may be selected from, for example, 90 minutes to 150 minutes, and preferably 120 minutes.
  • the first temperature may be selected in the range of 400 to 800°C, preferably 500 to 700°C, and more preferably 600°C.
  • the inside of the heating furnace may be at room temperature and atmospheric conditions as initial conditions.
  • the initial conditions may be set to a specific temperature, and may be an inert gas atmosphere, an oxygen dominant atmosphere, or a pure oxygen atmosphere.
  • the inside of the furnace is sealed or exposed to the atmosphere, or the atmosphere or a gas containing oxygen or oxygen is heated (or not heated). It may not be in a state) and can be injected or circulated.
  • the temperature of the heated base portion 110 may be varied in an arbitrary manner within the above-described temperature ranges that can be set as the first temperature. However, it is preferable to maintain the elevated first temperature as it is.
  • the heat-treated base part 110 is removed from the heating furnace and left to stand in the atmosphere at room temperature, or the sealing of the heating furnace is released and then left to free the outside air. It can be circulated, or it may be cooled by injecting or circulating an atmosphere of room temperature or an arbitrary temperature or a gas containing pure oxygen or oxygen into the inside of the heating furnace.
  • the transition metal is applied/sprayed on the upper portion of the titanium oxide layer 120 or the base portion 110 on which the titanium oxide layer 120 is formed is formed of a transition metal.
  • Coating the titanium oxide layer 120 with a transition metal by immersing in a solution containing this or exposing the base portion 110 on which the titanium oxide layer 120 is formed to an atmosphere of a transition metal (S31), coated transition metal It may include drying (S32), and firing the dried transition metal (S33).
  • various electrode samples are prepared while varying the heat treatment temperature, that is, the first temperature (or the heat treatment temperature), and under the conditions used as an electrolysis electrode for each of the prepared samples. Several properties were tested.
  • FIG. 4 is a view showing the XRD analysis results of the titanium electrode for electrolysis manufactured according to various embodiments of the present invention.
  • it shows the XRD analysis results of the electrode in which the titanium oxide layer was formed by performing the heat treatment temperature at 500°C, 600°C, and 700°C, respectively.
  • a rutile structure is known to be a structurally safer phase.
  • a sample prepared by performing heat treatment at 500° C. known as the phase change temperature of the rutile structure was used. Through the XRD characteristic peak analysis result of the prepared sample, it can be confirmed that only the rutile structure exists under the above temperature conditions.
  • FIG. 5 shows the results of performing an electrokinetic bipolarization experiment in order to observe the effect of the thickness of the TiO 2 layer on the chlorine generation efficiency.
  • the positive polarization current density of each electrode increased.
  • the electrode that did not undergo heat treatment showed the largest positive polarization current density at the same overvoltage, and the positive polarization current density decreased with the electrode with a higher heat treatment temperature.
  • the onset potential of chlorine generation was similar to about 1.62V regardless of the heat treatment. This means that although the TiO 2 layer produced through heat treatment has a kinetic effect on the positive polarization reaction, it does not have a thermodynamic effect.
  • Experiment 1 is a sample formed by coating only the active layer of transition metal in the conventional method (i.e., not applying the TiO 2 layer) and a sample coated with the active layer of transition metal after forming the TiO 2 layer according to the present invention. It was done using. A total of three experiments were conducted, and the initial voltage, effective operation time, and chlorine generation current efficiency were measured.
  • the titanium substrate was subjected to a sand blast treatment using an 80 mesh size diamond and pretreatment of etching for 15 minutes under 50% sulfuric acid conditions and a water temperature of 50°C.
  • the titanium substrate was heated to 600° C. for 2 hours in a heating furnace, heat-treated at 600° C. for about 1 hour, and then allowed to cool to room temperature in the heating furnace to form a TiO 2 layer.
  • RuCl 3 and TiCl 3 are mixed in a molar ratio of 7:3, and a solution dissolved in isopropyl alcohol at a concentration of 50 g/L of RuCl 3 is loaded onto a titanium substrate. It was coated by 10 g/cm 2 as a standard.
  • Each of the samples with or without the TiO 2 layer applied was operated under severe life test conditions, that is, a sulfuric acid 0.5M condition and a water temperature of 2°C, with a current density of 1A/cm 2.
  • the effective operation time was determined when the voltage of the electrode increased by 5 to 10 V or more from the start voltage of the experiment or when the final 20 V was monitored.
  • the current efficiency of chlorine generation was tested under the conditions of a flow rate of 1m/sec, a Cl - concentration of 18000mg/L, and a current density of 0.05A/cm 2 , and the current efficiency was calculated by the electrochemical equivalent of chlorine using the following equation. I did.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

A titanium electrode for water treatment electrolysis, according to the present invention, is for oxidizing or reducing an aqueous solution to be subjected to electrolysis by applying a positive or negative potential while immersed in the aqueous solution, and comprises: a base made of titanium or a titanium alloy; a titanium oxide layer formed by oxidizing at least a portion of the titanium on the surface of the base; and an active layer made of any transition metal and coating the titanium oxide layer.

Description

수처리 전기분해용 티타늄 전극 및 이의 제조 방법Titanium electrode for water treatment electrolysis and its manufacturing method
본 발명은 수처리 전기분해용 티타늄 전극 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는, 수용액을 살균 처리하기 위한 전기분해에 사용되는 티타늄 전극 및 이 티타늄 전극을 제조하는 방법에 관한 것이다. The present invention relates to a titanium electrode for water treatment electrolysis and a method of manufacturing the same, and more particularly, to a titanium electrode used for electrolysis for sterilizing an aqueous solution, and a method of manufacturing the titanium electrode.
최근, 해수로부터 얻어진 담수, 폐수, 하수, 정수 등에 포함된 오염물질을 제거하고 살균/소독 처리하기 위하여, 전기분해 방법이 이용되고 있다. In recent years, in order to remove pollutants contained in fresh water, wastewater, sewage, purified water, etc. obtained from seawater and to sterilize/disinfect them, an electrolysis method is used.
전기분해 방법은, 강력한 산화 물질을 발생시킴으로써, 생물 독성, 온도, 용존 산소 등의 조건에 영향을 받지 않으면서도 난분해성 유기물을 분해, 살균, 소독할 수 있다. 또한, 단시간 내에 다량의 처리가 가능하며, 처리 장치의 소형화가 가능하다. 또한, 2차 폐기물을 발생시킬 수 있는 화학첨가제를 사용하지 않으면서도 강력한 산화 물질을 생성시킬 수 있는 장점이 있다. In the electrolysis method, by generating a strong oxidizing substance, it is possible to decompose, sterilize, and disinfect non-degradable organic substances without being affected by conditions such as biotoxicity, temperature, and dissolved oxygen. In addition, a large amount of processing can be performed within a short time, and the processing device can be downsized. In addition, there is an advantage of generating strong oxidizing substances without using chemical additives that can generate secondary waste.
또한, 전기분해 방법은 선박 평형수의 살균/소독에 활용되고 있다. 선박 평형수를 주입 또는 배출할 때 전기분해조를 통과시키고, 전기분해조의 전극에 전류를 가하여 해수로부터 잔류 산화제를 생성시켜 해양 생물을 사멸시키거나 살균한다. In addition, the electrolysis method is used for sterilization/sterilization of ballast water in ships. When the ship's ballast water is injected or discharged, it passes through an electrolysis tank, and an electric current is applied to the electrode of the electrolysis tank to produce residual oxidizing agent from seawater to kill or sterilize marine life.
이와 같은 용도의 전기분해 장치의 기본 작동 원리는, 피처리 수용액 내에 침지된 양극과 음극에서 발생하는 산화-환원 반응을 이용하는 것이다. 예를 들어, 수용액 내에서 전해질 역할을 하는 Cl을 함유하는 물질이 피처리 수용액 내에 함유되어 있을 경우, 양극에서는 Cl-가 산화되어 염소 가스와 산소가 동시에 발생하게 된다. 또한, 음극에서는 물이 환원되어 수소가 발생하게 된다. 이러한 산화-환원의 반응식은 다음과 같다.The basic operating principle of the electrolytic apparatus for such a use is to use an oxidation-reduction reaction occurring at the anode and cathode immersed in the aqueous solution to be treated. For example, when a substance containing Cl serving as an electrolyte in the aqueous solution is contained in the aqueous solution to be treated, Cl is oxidized at the anode to generate chlorine gas and oxygen at the same time. In addition, water is reduced at the cathode to generate hydrogen. The reaction formula of this oxidation-reduction is as follows.
<양극><Anode>
2Cl- → Cl2 + 2e- 2Cl - → Cl 2 + 2e -
H2O → 0.5O2 + 2H+ + 2e- H 2 O → 0.5O 2 + 2H + + 2e -
<음극><cathode>
2H2O + 2e- → H2 + 2OH- 2H 2 O + 2e - → H 2 + 2OH -
한편, 산화 반응에 의해 발생된 염소 성분은 유리염소(free chlorine)로서, pH 6.5~8에서는 차아염소산(HClO)이나 차아염소산 이온(ClO-)의 형태로 존재하게 된다.On the other hand, the chlorine generated by the oxidation reaction as the free chlorine (free chlorine), in pH 6.5 ~ 8 hypochlorous acid (HClO) and hypochlorous acid ions (ClO -) are present in the form of.
Cl2 + H2O → H+ + Cl- + HClO (pH4.6, 25℃) Cl 2 + H 2 O → H + + Cl - + HClO (pH4.6, 25 ℃)
HClO ↔ H+ + ClO (pH7.5, 25℃)HClO ↔ H + + ClO (pH7.5, 25℃)
이러한 화합물 중 HClO는 활성염소(active chlorine)로서 강한 산화력과 소독력을 나타낸다.Among these compounds, HClO is an active chlorine and shows strong oxidizing power and disinfecting power.
한편, 이러한 일반적인 전기분해 장치에 사용되는 양극용 및/또는 음극용 전극은, 도 1에 도시된 바와 같이, 주로 티타늄 기판(Ti substrate)을 사용하며, 여기에, 이리듐(Ir), 루테늄(Ru), 백금(Pt), 팔라듐(Pd) 등의 백금족 금속 산화물을 코팅하여 혼합 금속 코팅층(MMO coating)을 추가하기도 한다.On the other hand, the anode and/or cathode electrode used in such a general electrolysis device, as shown in FIG. 1, mainly uses a titanium substrate, and here, iridium (Ir), ruthenium (Ru ), platinum (Pt), palladium (Pd), and other platinum group metal oxides are coated to add a mixed metal coating layer (MMO coating).
한국특허 제10-1741401호(명칭: 전기화학적 불용성 전극용 코팅용액 및 전극의 제조방법)(이하, "종래기술"이라 함)에서는, 티타늄 기판 위에 제1 산화물층과 제2 산화물층을 각각 코팅함으로써 전극의 성능 및 내구성을 높이는 방법을 개시하고 있다. In Korean Patent No. 10-1741401 (name: a coating solution for an electrochemically insoluble electrode and a method of manufacturing an electrode) (hereinafter referred to as "prior art"), a first oxide layer and a second oxide layer are coated on a titanium substrate, respectively. By doing so, a method of improving the performance and durability of an electrode is disclosed.
하지만, 종래기술에서는, 제1 산화층을 형성하기 위하여 탄탈륨 클로라이드(tantalum(Ⅴ) chloride) 및 하이드로겐 헥사클로로이리데이트(hydrogen hexachloroiridate(Ⅳ))를 포함하는 제1 코팅 용액을 도포하는 공정이 필요하고, 또한, 제2 산화물층을 형성하기 위하여 이산화티타늄, 이산화규소, 산화비스무스, 산화지르코늄, 산화알루미늄 및 이들의 혼합물을 포함하는 유기용매를 도포하는 공정이 추가로 필요하다. However, in the prior art, in order to form the first oxide layer, a process of applying a first coating solution containing tantalum chloride and hydrogen hexachloroiridate (IV) is required, and In addition, in order to form the second oxide layer, a process of applying an organic solvent including titanium dioxide, silicon dioxide, bismuth oxide, zirconium oxide, aluminum oxide, and mixtures thereof is additionally required.
따라서, 종래기술은, 티타늄 기판에 산화물을 도포하는 공정을 2회나 수행하게 되므로, 제조 방법이 복잡하고 재료 비용이 2배로 발생하며, 뿐만아니라 티타늄 기판 상에 기판을 구성하는 물질과는 다른 물질을 코팅하게 되므로 코팅의 내구성이 낮다는 단점이 있다. Therefore, in the prior art, since the process of applying the oxide to the titanium substrate is performed twice, the manufacturing method is complicated and the material cost is doubled. In addition, a material different from the material constituting the substrate on the titanium substrate is used. Since it is coated, there is a disadvantage that the durability of the coating is low.
더욱, 이렇게 코팅층이 형성된 종래의 전극은, 전해질 수용액 내에서 전기분해 반응시, 코팅층의 밀착력이 열화된 부분, 코팅층의 건열(mud-crack)이 발생한 부분, 전류 밀도가 집중되는 부분 등에서, 수용액 내에서 코팅층이 쉽게 벗겨질 수 있다. 코팅층이 벗겨진 부분에서는 티타늄이 수용액에 직접 노출될 수 있다. 그러면, 전극 표면의 티타늄 자체에서 산화-환원 반응이 일어날 수 있으며, 결과적으로 전극의 손상이 발생한다. In addition, the conventional electrode in which the coating layer is formed in this way is in the area where the adhesion of the coating layer is deteriorated, the area where mud-crack occurs, the area where the current density is concentrated, etc. during the electrolysis reaction in the aqueous electrolyte solution. The coating layer can be easily peeled off. Where the coating layer is peeled off, titanium may be directly exposed to the aqueous solution. Then, the oxidation-reduction reaction may occur in the titanium itself on the electrode surface, resulting in damage to the electrode.
특히, 양극 전극의 표면에서는 물 분해 반응에 의한 Cl2의 생성 반응과 H+의 생성 반응이 일어나게 되는데, 이 물질들은 금속에 대한 부식력이 매우 강하다. Particularly, on the surface of the anode electrode, a reaction for generating Cl 2 and a reaction for generating H + occurs due to a water decomposition reaction, and these substances have very strong corrosive power to metals.
또한, 이러한 물질들은, 전극의 표면에서 발생하여 전해질 수용액 내에서 농축될 경우, 전극의 코팅층의 손상된 부분 또는 취약한 부분을 통해 티타늄 기판으로 침투하게 된다.In addition, when these substances are generated on the surface of the electrode and concentrated in the aqueous electrolyte solution, they penetrate into the titanium substrate through the damaged or weak portions of the coating layer of the electrode.
Cl2 또는 H+가 티타늄 기판으로 침투하게 되면, 티타늄이 부식되기 시작하며, 부식된 부분을 덮고 있는 코팅층의 전도성 및 접착력이 더욱 약화되고, 손상이 확대되거나 코팅층이 박리되는 연쇄 반응이 일어날 수 있다. When Cl 2 or H + penetrates into the titanium substrate, titanium begins to corrode, the conductivity and adhesion of the coating layer covering the corroded area is further weakened, and damage may increase or a chain reaction may occur in which the coating layer is peeled off. .
또한, 양극 전극의 티타늄이 전해질 수용액에 직접 노출되면, 노출된 티타늄의 표면에서 양극 산화 반응이 일어나고, 이에 의해 티타늄 표면에 국부적인 절연층이 생기게 되고, 이 절연층은 지속적으로 성장하게 된다. 절연층이 성장함에 따라 해당 부분에서의 전류 밀도가 점점 증가하게 되어 과전압이 인가되게 되고, 이로써 양극 전극이 더욱 심각하게 침식되거나 용해될 수 있다. In addition, when the titanium of the anode electrode is directly exposed to the aqueous electrolyte solution, an anodic oxidation reaction occurs on the surface of the exposed titanium, whereby a local insulating layer is generated on the titanium surface, and the insulating layer is continuously grown. As the insulating layer grows, the current density in the corresponding portion gradually increases, so that an overvoltage is applied, and thus the anode electrode may be more severely eroded or dissolved.
상기한 바와 같은 일반적인 전기분해 장치의 전극, 특히 티타늄 전극의 표면에서 전이금속 코팅층의 밀착력을 높이고 코팅층의 건열을 방지함으로써, 전기분해시 전극의 손상을 방지하고자 한다. To prevent damage to the electrode during electrolysis by increasing the adhesion of the transition metal coating layer and preventing dry heat of the coating layer on the electrode of the general electrolysis device as described above, particularly on the surface of the titanium electrode.
상기한 바와 같은 목적을 달성하기 위한 본 발명에 따른 수처리 전기분해용 티타늄 전극은, 전기분해의 대상이 되는 수용액 속에 침지된 상태에서 양전위 또는 음전위가 인가됨으로써 상기 수용액을 산화 또는 환원시키기 위한 것으로서, 특히, 상기 전기분해용 전극은: 티타늄 또는 티타늄 합금으로 이루어진 기저부; 상기 기저부의 표면에서 티타늄 중 적어도 일부가 산화되어 형성된 산화티타늄층; 상기 산화티타늄층을 코팅하는, 임의의 전이금속으로 이루어진 활성층을 포함하도록 제조된다. The titanium electrode for water treatment electrolysis according to the present invention for achieving the above object is for oxidizing or reducing the aqueous solution by applying a positive or negative potential while immersed in an aqueous solution to be subjected to electrolysis, In particular, the electrode for electrolysis includes: a base made of titanium or a titanium alloy; A titanium oxide layer formed by oxidizing at least a portion of titanium on the surface of the base portion; It is prepared to include an active layer made of any transition metal coating the titanium oxide layer.
이때, 상기 산화티타늄층은: 상기 전기분해용 전극의 상기 기저부를 가열로 내에 배치하고, 상기 기저부에 열에너지를 공급하여 상기 기저부를 상온으로부터 400 내지 800℃의 범위에 포함되는 제1 온도까지 제1 시간에 걸쳐 승온시키는 가열 단계; 상기 기저부의 온도를 제2 시간 동안 상기 범위 내로 유지시키는 열처리 단계; 및 상기 기저부로의 열에너지의 공급을 중단하여 상기 기저부를 상온까지 냉각시키는 방냉 단계를 포함하는 티타늄산화 공정에 의하여 형성될 수 있다.At this time, the titanium oxide layer: a first temperature included in the range of 400 to 800 ℃ by arranging the base portion of the electrode for electrolysis in a heating furnace, and supplying thermal energy to the base portion. A heating step of raising the temperature over time; A heat treatment step of maintaining the temperature of the base portion within the range for a second time; And cooling the base to room temperature by stopping the supply of thermal energy to the base.
또한, 상기 가열 단계에서, 상기 제1 온도는 500 내지 700℃의 범위에서 선택되고 및 상기 제1 시간은 90 내지 150분의 범위에서 선택되고, 그리고 상기 열처리 단계에서, 상기 제2 시간은 30 내지 90분의 범위에서 선택되고 및 가열된 상기 기저부의 온도는 상기 제2 시간 동안 상기 제1 온도로 일정하게 유지될 수 있다.In addition, in the heating step, the first temperature is selected in the range of 500 to 700 °C, and the first time is selected in the range of 90 to 150 minutes, and in the heat treatment step, the second time is 30 to The temperature of the base portion selected in the range of 90 minutes and heated may be kept constant at the first temperature during the second time period.
또한, 상기 가열 단계, 상기 열처리 단계, 및 상기 방냉 단계의 적어도 하나를 수행하는 동안, 상기 가열로의 내부로 산소가 주입될 수 있다.In addition, while performing at least one of the heating step, the heat treatment step, and the cooling step, oxygen may be injected into the heating furnace.
여기서, 상기 기저부의 표면은, 샌드 블라스트 처리함으로써 또는 부식성 물질에 의해 부식시킴으로써 형성된 요철을 포함할 수 있다.Here, the surface of the base may include irregularities formed by sand blasting or corrosion by corrosive substances.
한편, 상기 활성층을 형성하는 상기 전이금속은, 이리듐, 루테늄, 팔라듐, 백금, 탄탈륨, 티타늄 및 주석 중 적어도 하나를 포함할 수 있다.Meanwhile, the transition metal forming the active layer may include at least one of iridium, ruthenium, palladium, platinum, tantalum, titanium, and tin.
본 발명의 또하나의 실시예에 따른 수처리 전기분해용 티타늄 전극의 제조 방법은, 티타늄 또는 티타늄 합금으로 이루어진 기저부를 준비하는 단계; 상기 기저부의 표면에 티타늄 중 적어도 일부를 산화시켜 산화티타늄층을 형성하는 단계; 및 상기 산화티타늄층의 상부를 코팅하는, 임의의 전이금속으로 이루어진 활성층을 형성하는 단계를 포함하고, 여기서, 상기 산화티타늄층을 형성하는 단계는: 상기 기저부를 가열로 내에 배치하고, 상기 기저부에 열에너지를 공급하여 상기 기저부를 상온으로부터 400 내지 800℃의 범위에 포함되는 제1 온도까지 제1 시간에 걸쳐 승온시키는 것; 상기 기저부의 온도를 제2 시간 동안 상기 범위 내로 유지시키는 것; 및 상기 기저부로의 열에너지의 공급을 중단하여 상기 기저부를 상온까지 냉각시키는 것을 더 포함한다.A method of manufacturing a titanium electrode for water treatment electrolysis according to another embodiment of the present invention comprises: preparing a base portion made of titanium or a titanium alloy; Forming a titanium oxide layer by oxidizing at least a portion of titanium on the surface of the base portion; And forming an active layer made of an arbitrary transition metal coating an upper portion of the titanium oxide layer, wherein the forming of the titanium oxide layer comprises: placing the base in a heating furnace, and Supplying thermal energy to increase the temperature of the base portion from room temperature to a first temperature in the range of 400 to 800° C. over a first time period; Maintaining the temperature of the base within the range for a second time; And stopping the supply of thermal energy to the base part to cool the base part to room temperature.
이때, 상기 제1 온도는 500 내지 700℃의 범위에서 선택되고 및 상기 제1 시간은 90 내지 150분의 범위에서 선택되고, 그리고 상기 제2 시간은 30 내지 90분의 범위에서 선택되고 및 상기 제1 온도까지 가열된 상기 기저부의 온도는 상기 제2 시간 동안 상기 제1 온도로 일정하게 유지될 수 있다.In this case, the first temperature is selected in the range of 500 to 700 °C, and the first time is selected in the range of 90 to 150 minutes, and the second time is selected in the range of 30 to 90 minutes, and The temperature of the base portion heated to 1 temperature may be kept constant at the first temperature during the second time period.
또한, 상기 산화티타늄층을 형성하는 단계를 수행하는 도중의 적어도 일부의 기간 동안, 상기 가열로의 내부로 산소를 주입하는 것을 더 포함할 수 있다.In addition, during at least a portion of the period in the middle of performing the step of forming the titanium oxide layer, it may further include injecting oxygen into the interior of the heating furnace.
또한, 상기 기저부를 준비하는 단계는, 상기 기저부의 표면을 샌드블라스트 처리함으로써 또는 부식성 물질에 의해 부식시킴으로써 요철을 형성하는 것을 더 포함할 수 있다. In addition, the step of preparing the base may further include forming irregularities by sandblasting the surface of the base or corroding it with a corrosive material.
또한, 상기 활성층을 형성하는 상기 전이금속은, 이리듐, 루테늄, 팔라듐, 백금, 탄탈륨, 티타늄 및 주석 중 적어도 하나를 포함할 수 있다.In addition, the transition metal forming the active layer may include at least one of iridium, ruthenium, palladium, platinum, tantalum, titanium, and tin.
상기한 바와 같은 구성의 본 발명에 따른 수처리 전기분해용 티타늄 전극은, 전이금속 코팅층의 밀착력이 높고 건열이 일어나기 어렵다. 따라서, 전기분해시의 전극 손상이 억제되므로, 전극의 수명이 향상된다. The titanium electrode for water treatment electrolysis according to the present invention having the configuration as described above has high adhesion of the transition metal coating layer and is difficult to generate dry heat. Accordingly, damage to the electrode during electrolysis is suppressed, thereby improving the life of the electrode.
한편, 상기한 바와 같이 수명이 향상된 수처리 전기분해용 티타늄 전극을, 간단한 제조 방법에 의해 제조할 수 있다.Meanwhile, as described above, a titanium electrode for water treatment electrolysis having an improved life can be manufactured by a simple manufacturing method.
도 1은 종래기술에 따른 티타늄 전극 중 일부의 단면과, 티타늄 전극이 전기분해시 손상되는 과정을 설명하는 도면이다. 1 is a diagram illustrating a cross section of a part of a titanium electrode according to the prior art and a process in which the titanium electrode is damaged during electrolysis.
도 2는 본 발명에 따른 수처리 전기분해용 티타늄 전극 중 일부의 단면을 도시하는 도면이다. 2 is a view showing a cross section of a portion of the titanium electrode for water treatment electrolysis according to the present invention.
도 3는 본 발명에 따른 수처리 전기분해용 티타늄 전극의 제조 방법을 설명하는 흐름도이다.3 is a flowchart illustrating a method of manufacturing a titanium electrode for water treatment electrolysis according to the present invention.
도 4는 본 발명의 다양한 실시예에 의해 제조된 전기분해용 티타늄 전극의 XRD 분석 결과를 도시하는 도면이다. 4 is a view showing the XRD analysis results of the titanium electrode for electrolysis manufactured according to various embodiments of the present invention.
도 5는 본 발명의 다양한 실시예에 의해 제조된 전기분해용 티타늄 전극의 동전위 양분극실험 결과를 도시하는 도면이다.FIG. 5 is a diagram showing the results of an electrokinetic positive polarization experiment of a titanium electrode for electrolysis manufactured according to various embodiments of the present invention.
이하, 첨부된 도면을 참조하여 본 발명에 따른 수처리 전기분해용 티타늄 전극 및 수처리 전기분해용 티타늄 전극의 제조 방법의 바람직한 실시예를 설명한다. 참고로, 본 발명의 각 구성 요소를 지칭하는 용어들은 그 기능을 고려하여 예시적으로 명명된 것이므로, 용어 자체에 의하여 본 발명의 기술 내용을 예측하고 한정하여 이해해서는 안될 것이다.Hereinafter, a preferred embodiment of a method of manufacturing a titanium electrode for water treatment electrolysis and a titanium electrode for water treatment electrolysis according to the present invention will be described with reference to the accompanying drawings. For reference, the terms referring to each component of the present invention are exemplarily named in consideration of their functions, and thus the technical content of the present invention should not be predicted and limited by the term itself.
도 2는 본 발명에 따른 수처리 전기분해용 티타늄 전극 중 일부분을 절단한 단면을 도시한다. 본 발명에 따른 티타늄 전극은, 기저부(110)와 산화티타늄층(120)과 활성층(130)을 포함한다. 2 is a cross-sectional view of a portion of the titanium electrode for water treatment electrolysis according to the present invention. The titanium electrode according to the present invention includes a base portion 110, a titanium oxide layer 120, and an active layer 130.
본 발명에서 개시하는 수처리 전기분해용 티타늄 전극은, 전기분해의 대상이 되는 수용액 속에 침지된 상태에서 양전위 또는 음전위가 인가됨으로써 상기 수용액을 산화 또는 환원시키는 전극으로 사용될 수 있으며, 특히, 양극 전극으로 사용된다. The titanium electrode for water treatment electrolysis disclosed in the present invention can be used as an electrode for oxidizing or reducing the aqueous solution by applying a positive or negative potential while immersed in an aqueous solution to be subjected to electrolysis. Is used.
기저부(110)는, 전극의 기본 형태를 구성하는 것으로서, 순수 티타늄 또는 티타늄과 기타 금속의 합금으로 이루어질 수 있다. The base portion 110 constitutes a basic shape of an electrode, and may be made of pure titanium or an alloy of titanium and other metals.
이러한 기저부(110)의 표면에는, 본 발명의 특징적 구성인 산화티타늄층(120)이 형성된다. 산화티타늄층(120)은, 이산화티타늄(TiO2)으로 구성될 수 있으며, 기저부 표면의 티타늄이 대기 중에서 또는 산소 분위기에서 산화됨으로써 형성될 수 있다. 특히, 기저부(110)를, 가열로(또는, 소성로) 내에 배치하고, 가열로 내부를 대기압 하의 공기 존재 조건 또는 산소 우세 분위기 또는 순수 산소 분위기 또는 불활성 가스 분위기로 설정하고, 가열로를 폐쇄하여 가열로 내부가 밀폐된 계를 구성하도록 한다. 구성된 계는 예를 들면, 산소 비율이 15~30%인 상태일 수 있다. On the surface of the base portion 110, a titanium oxide layer 120, which is a characteristic configuration of the present invention, is formed. The titanium oxide layer 120 may be formed of titanium dioxide (TiO 2 ), and may be formed by oxidizing titanium on the surface of the base portion in the atmosphere or in an oxygen atmosphere. In particular, the base portion 110 is placed in a heating furnace (or a sintering furnace), and the inside of the heating furnace is set to an air presence condition under atmospheric pressure or an oxygen dominant atmosphere or a pure oxygen atmosphere or an inert gas atmosphere, and the heating furnace is closed to heat it. Make sure that the inside of the furnace is sealed. The configured system may be, for example, in a state in which the oxygen ratio is 15 to 30%.
이러한 상태에서, 가열로 내의 밀폐된 계를 가열하여(열 에너지를 공급함) 기저부(110)를 승온시킨다. 예를 들면, 가열로의 벽면의 적어도 일부를 가열함으로써, 가열된 적어도 일부의 벽면을 통해 열 에너지가 내부의 계로 공급되어 내부의 계가 가열되고, 가열된 계에 의해 기저부(110)가 승온된다. In this state, the closed system in the heating furnace is heated (thermal energy is supplied) to raise the temperature of the base portion 110. For example, by heating at least a portion of the wall surface of the heating furnace, thermal energy is supplied to the internal system through the heated at least part of the wall surface to heat the internal system, and the base portion 110 is heated by the heated system.
한편, 기저부(110)를 승온시키는 과정은, 90 내지 150분에 걸쳐서, 바람직하게는 120분에 걸쳐서 이루어질 수 있으며, 기저부(110)의 온도를 400 내지 800℃ 범위의 소정 온도까지, 바람직하게는 500 내지 700℃ 범위의 온도까지, 더욱 바람직하게는 600℃까지 승온시키는 것을 포함한다. 이어서, 기저부(110)를 열처리하는 과정은, 가열로의 가열 동작을 제어하여, 승온된 기저부(110)의 온도를 가열로 내에서 30 내지 90분 동안, 바람직하게는 60분 동안 가열된 상태로 유지시키는 것을 포함한다. 이어서, 열처리된 기저부(110)를 방냉하는 것은, 가열로에 의한 가열을 중지시키고(즉, 열 에너지의 공급을 중단함) 열처리된 기저부(110)를 가열로 내에 그대로 방치하여 가열로와 함께 상온까지 냉각시키는 것을 포함한다. 이러한 일련의 과정들에 의해서 티타늄으로 구성된 기저부(110)의 표면에 산화티타늄층(120)이 형성될 수 있다. On the other hand, the process of raising the temperature of the base 110 may be performed over 90 to 150 minutes, preferably over 120 minutes, and the temperature of the base 110 to a predetermined temperature in the range of 400 to 800 °C, preferably It includes raising the temperature to a temperature in the range of 500 to 700°C, more preferably to 600°C. Subsequently, the process of heat-treating the base portion 110, by controlling the heating operation of the heating furnace, to keep the temperature of the heated base portion 110 heated for 30 to 90 minutes, preferably for 60 minutes in the heating furnace. Includes maintaining. Subsequently, to cool the heat-treated base portion 110, the heating by the heating furnace is stopped (ie, the supply of thermal energy is stopped) and the heat-treated base portion 110 is left in the heating furnace at room temperature together with the heating furnace. It includes cooling to. A titanium oxide layer 120 may be formed on the surface of the base portion 110 made of titanium through a series of such processes.
여기서, 기저부(110)의 표면에는, 산화티타늄층(120)을 형성하기 전에 샌드블라스트 처리 또는 부식성 물질에 의한 부식 처리가 수행되어, 미세 요철이 형성되어 있을 수 있다. 부식성 물질은 예를 들면, 황산, 염산, 옥살산을 포함할 수 있다. Here, on the surface of the base portion 110, before forming the titanium oxide layer 120, a sandblast treatment or a corrosion treatment with a corrosive material may be performed, so that fine irregularities may be formed. Corrosive substances may include, for example, sulfuric acid, hydrochloric acid, oxalic acid.
한편, 기저부(110)를 가열로 내에서 가열하여 승온시키고 온도를 유지시켜 열처리한 다음 방냉하는 과정들의 적어도 일부에 있어서, 가열로 내부로 산소 또는, 산소를 함유하는 가스를 주입할 수 있다. 또한, 가열로 내에 주입하는 산소의 양 또는 가열로 내부의 압력은, 기저부(110)의 온도, 모양, 크기, 재질에 따라서 또는 형성하고자 하는 산화티타늄층(120)의 두께에 따라서 달리 설정될 수 있다. On the other hand, in at least some of the processes of heating the base portion 110 to raise the temperature in a heating furnace, heat treatment by maintaining the temperature, and then allow cooling, oxygen or a gas containing oxygen may be injected into the heating furnace. In addition, the amount of oxygen injected into the heating furnace or the pressure inside the heating furnace may be set differently according to the temperature, shape, size, and material of the base portion 110 or according to the thickness of the titanium oxide layer 120 to be formed. have.
활성층(130)은, 기저부(110)의 표면에 형성된 산화티타늄층(120)의 상부를 임의의 전이금속으로 코팅함으로서 형성된다. 전이금속은, 예를 들면, 이리듐, 루테늄, 팔라듐, 백금, 탄탈륨, 티타늄 또는 주석일 수 있으며, 이들 중 어느 하나 또는 2 이상을 혼합하여 코팅함으로써 활성층(130)이 형성될 수 있다. The active layer 130 is formed by coating an upper portion of the titanium oxide layer 120 formed on the surface of the base portion 110 with an arbitrary transition metal. The transition metal may be, for example, iridium, ruthenium, palladium, platinum, tantalum, titanium, or tin, and the active layer 130 may be formed by coating any one or two or more of them.
도 3은 본 발명에 따른 수처리 전기분해용 티타늄 전극의 제조 방법을 설명하는 흐름도이다. 본 발명에 따른 티타늄 전극의 제조 방법은, 티타늄 또는 티타늄 합금으로 이루어진 음극 전극 및/또는 양극 전극의 기저부(110)를 준비하는 단계(S10)와, 준비된 기저부(110)의 표면에서 티타늄을 산화시켜 산화티타늄층(120)을 형성하는 단계(S20)와, 형성된 산화티타늄층을 임의의 전이금속으로 코팅하여 활성층(130)을 형성하는 단계(S30)를 포함한다. 3 is a flowchart illustrating a method of manufacturing a titanium electrode for water treatment electrolysis according to the present invention. The method of manufacturing a titanium electrode according to the present invention includes the step of preparing a base portion 110 of a cathode electrode and/or an anode electrode made of titanium or a titanium alloy (S10), and by oxidizing titanium on the surface of the prepared base portion 110. And forming the titanium oxide layer 120 (S20), and forming the active layer 130 by coating the formed titanium oxide layer with an arbitrary transition metal (S30).
특히, 상기 기저부(110)를 준비하는 단계(S10)는, 기저부(110)를 준비하는 것(S11), 기저부(110)에 샌드 블라스트 처리 또는 부식성 물질에 의한 부식 처리에 의해 미세 요철을 형성하는 것(S12)을 포함할 수 있다. In particular, the step of preparing the base part 110 (S10) includes preparing the base part 110 (S11), forming fine irregularities by sand blasting the base part 110 or corrosion treatment with a corrosive substance. It may include a thing (S12).
한편, 기저부(110)에 미세 요철을 형성하는 방법으로서 상기한 방법 외에 다른 방법이 적용될 수도 있다. 반면에, 기저부(110)에 미세 요철을 형성하지 않을 수도 있을 것이다. On the other hand, as a method of forming fine irregularities in the base portion 110, other methods other than the above-described method may be applied. On the other hand, fine irregularities may not be formed on the base portion 110.
상기 산화티타늄층(120)을 형성하는 단계(S20)는, 준비된 기저부(110)를 가열로 내에 배치하는 것(S21), 가열로 내부를 밀폐시킨 후 가열로 내부로 열 에너지를 공급함으로써 기저부(110)를 제1 시간 동안에 걸쳐 제1 온도까지 승온시키는 것(S22), 가열로 내부에서 기저부(110)의 승온된 온도를 제2 시간 동안 유지시켜 열처리하는 것(S23), 가열로로의 열 에너지의 공급을 중단시킴으로써 기저부(110)의 가열을 중지하고 기저부(110)를 가열로 내부에 방치한 상태에서 가열로와 기저부(110)가 함께 상온까지 냉각되도록 하는 것(S24)을 포함할 수 있다. In the step of forming the titanium oxide layer 120 (S20), the prepared base portion 110 is placed in the heating furnace (S21), and the base portion ( 110) heating up to a first temperature over a first time period (S22), heat treatment by maintaining the heated temperature of the base portion 110 inside the heating furnace for a second time (S23), heat of the heating furnace It may include stopping the heating of the base part 110 by stopping the supply of energy and allowing the heating furnace and the base part 110 to be cooled to room temperature together with the base part 110 left inside the heating furnace (S24). have.
더욱 상세하게는, 과정(S22)에 있어서, 제1 시간은 예를 들면 90분 내지 150분의 범위에서 선택될 수 있으며, 바람직하게는 120분일 수 있다. 한편, 제1 온도는 400 내지 800℃의 범위에서 선택될 수 있고, 바람직하게는 500 내지 700℃의 범위일 수 있으며, 더욱 바람직하게는 600℃일 수 있다. More specifically, in the process (S22), the first time may be selected from, for example, 90 minutes to 150 minutes, and preferably 120 minutes. Meanwhile, the first temperature may be selected in the range of 400 to 800°C, preferably 500 to 700°C, and more preferably 600°C.
이 과정에서, 가열로 내부는, 초기 조건으로서, 상온 및 대기 조건일 수 있다. 또는, 초기 조건은, 특정의 온도로 설정될 수도 있으며, 불활성 가스 분위기 또는 산소 우세 분위기 또는 순수 산소 분위기일 수도 있다.In this process, the inside of the heating furnace may be at room temperature and atmospheric conditions as initial conditions. Alternatively, the initial conditions may be set to a specific temperature, and may be an inert gas atmosphere, an oxygen dominant atmosphere, or a pure oxygen atmosphere.
이어서, 가열로 내부를 가열하고 및/또는 기저부(110)를 열처리하는 동안에는, 가열로 내부를 밀폐하거나 대기에 노출시키거나, 대기 또는 산소 또는 산소를 포함하는 가스를 가열된 상태로(또는 가열되지 않은 상태일 수도 있음) 주입 또는 순환시킬 수 있다. Subsequently, while the inside of the furnace is heated and/or the base portion 110 is heat treated, the inside of the furnace is sealed or exposed to the atmosphere, or the atmosphere or a gas containing oxygen or oxygen is heated (or not heated). It may not be in a state) and can be injected or circulated.
한편, 승온된 기저부(110)를 열처리하는 과정(S23)에 있어서, 승온된 기저부(110)의 온도는, 제1 온도로서 설정될 수 있는 상기한 온도 범위들 내에서 임의의 방식으로 변동시킬 수도 있으나, 승온된 제1 온도를 그대로 유지시키는 것이 바람직하다. Meanwhile, in the process (S23) of heat-treating the heated base portion 110, the temperature of the heated base portion 110 may be varied in an arbitrary manner within the above-described temperature ranges that can be set as the first temperature. However, it is preferable to maintain the elevated first temperature as it is.
그리고, 열처리된 기저부(110)를 방냉하는 과정(S24)에 있어서, 열처리된 기저부(110)를 가열로에서 빼내어 상온의 대기 중에 방치하거나, 가열로의 밀폐를 해제시킨 후 방치하여 외부 공기가 자유롭게 순환될 수 있도록 하거나, 가열로 내부로 상온 또는 임의 온도의 대기 또는 순수 산소 또는 산소를 포함하는 가스를 주입 또는 순환시킴으로써 냉각시킬 수도 있다. And, in the process of cooling the heat-treated base part 110 (S24), the heat-treated base part 110 is removed from the heating furnace and left to stand in the atmosphere at room temperature, or the sealing of the heating furnace is released and then left to free the outside air. It can be circulated, or it may be cooled by injecting or circulating an atmosphere of room temperature or an arbitrary temperature or a gas containing pure oxygen or oxygen into the inside of the heating furnace.
상기 전이금속으로 이루어진 활성층(130)을 형성하는 단계(S30)는, 전이금속을 산화티타늄층(120)의 상부에 도포/분사하거나 또는 산화티타늄층(120)이 형성된 기저부(110)를 전이금속이 포함된 용액에 침지시키거나 또는 산화티타늄층(120)이 형성된 기저부(110)를 전이금속의 분위기에 노출시킴으로써 산화티타늄층(120)을 전이금속으로 코팅하는 것(S31), 코팅된 전이금속을 건조시키는 것(S32), 그리고 건조된 전이금속을 소성하는 것(S33)을 포함할 수 있다. In the step of forming the active layer 130 made of the transition metal (S30), the transition metal is applied/sprayed on the upper portion of the titanium oxide layer 120 or the base portion 110 on which the titanium oxide layer 120 is formed is formed of a transition metal. Coating the titanium oxide layer 120 with a transition metal by immersing in a solution containing this or exposing the base portion 110 on which the titanium oxide layer 120 is formed to an atmosphere of a transition metal (S31), coated transition metal It may include drying (S32), and firing the dried transition metal (S33).
이러한 방법으로 제조된 본 발명에 따른 수처리 전기분해용 티타늄 전극의 특성에 대해서, 도 4 및 도 5를 참조하여 설명한다. The characteristics of the titanium electrode for water treatment electrolysis according to the present invention manufactured in this way will be described with reference to FIGS. 4 and 5.
상술한 바와 같은 제조 방법에 있어서, 열처리 온도, 즉, 제1 온도(또는, 열처리 온도)를 다양하게 변경시키면서 다양한 전극 샘플을 제조하고, 제조된 각 샘플에 대하여 전기분해 전극으로 사용되는 조건에서의 여러 가지 특성을 실험하였다. In the manufacturing method as described above, various electrode samples are prepared while varying the heat treatment temperature, that is, the first temperature (or the heat treatment temperature), and under the conditions used as an electrolysis electrode for each of the prepared samples. Several properties were tested.
도 4는 본 발명의 다양한 실시예에 의해 제조된 전기분해용 티타늄 전극의 XRD 분석 결과를 도시하는 도면이다. 특히, 열처리 온도를 각각 500℃, 600℃, 700℃로 수행하여 산화티타늄층을 형성한 전극의 XRD 분석 결과를 보여준다.4 is a view showing the XRD analysis results of the titanium electrode for electrolysis manufactured according to various embodiments of the present invention. In particular, it shows the XRD analysis results of the electrode in which the titanium oxide layer was formed by performing the heat treatment temperature at 500°C, 600°C, and 700°C, respectively.
루틸 구조(Rutile)와 아나타스 구조(anatase)의 두가지 TiO2 상(phase) 중에서, 루틸 구조가 구조적으로 더 안전한 상이라고 알려져 있다. 본 분석에서는, 루틸 구조의 상변화 온도라고 알려진 500℃에서 열처리를 진행하여 제작된 샘플을 사용하였다. 제작된 샘플의 XRD 특성 피크 분석 결과를 통해서, 상기 온도 조건에서는 루틸 구조만 존재한다는 것을 확인할 수 있다. Among the two TiO 2 phases of a rutile structure and an anatase structure, a rutile structure is known to be a structurally safer phase. In this analysis, a sample prepared by performing heat treatment at 500° C. known as the phase change temperature of the rutile structure was used. Through the XRD characteristic peak analysis result of the prepared sample, it can be confirmed that only the rutile structure exists under the above temperature conditions.
염산 에칭 처리만 수행되고 열처리는 수행되지 않은 티타늄 기판(열처리되지 않은 기판)에서는 티타늄 피크만 관찰되었다. 한편, 500℃로 열처리가 수행된 기판에서는 2Θ 값이 26.98°인 위치에서 루틸 구조의 (110)면 피크가 관찰되었다. Only the titanium peak was observed in the titanium substrate (substrate that was not heat-treated) in which only the hydrochloric acid etching treatment was performed and no heat treatment was performed. On the other hand, in the substrate subjected to heat treatment at 500°C, a (110) plane peak of the rutile structure was observed at a position where the 2Θ value was 26.98°.
열처리 온도가 더 높은 샘플들에서는 (110) 피크의 강도가 증가하였으며, 2Θ 값이 35.80°, 53.60°, 64.52°, 69.33°인 위치에서 각각 (011), (121), (221), (112)면 피크가 관찰되었다. 이를 통해, 열처리 온도가 높아짐에 따라 티타늄 기판에서 루틸 구조의 TiO2층의 두께가 증가한다는 것을 확인할 수 있다.In the samples with higher heat treatment temperatures, the intensity of the (110) peak increased, and at positions where 2Θ values were 35.80°, 53.60°, 64.52°, and 69.33°, respectively (011), (121), (221), (112) ) Side peak was observed. Through this, it can be seen that the thickness of the rutile TiO 2 layer in the titanium substrate increases as the heat treatment temperature increases.
도 5는, TiO2층의 두께가 염소 발생 효율에 미치는 영향을 관찰하기 위해서, 동전위 양분극 실험을 수행한 결과를 보여준다. 각각의 전극은 과전압이 증가할수록 양분극 전류 밀도가 증가하는데, 열처리를 거치지 않은 전극은 동일한 과전압에서 가장 큰 양분극 전류 밀도를 나타내었고, 열처리 온도가 높은 전극일수록 양분극 전류 밀도가 감소하였다. 하지만, 염소 발생 개시 전위(onset potential)는, 열처리 유무에 관계없이, 약 1.62V로 비슷하였다. 이는, 열처리를 통해 생성된 TiO2층이 양분극 반응에 속도론적 영향을 미치기는 하지만, 열역학적 영향을 미치지는 않음을 의미한다. FIG. 5 shows the results of performing an electrokinetic bipolarization experiment in order to observe the effect of the thickness of the TiO 2 layer on the chlorine generation efficiency. As the overvoltage increased, the positive polarization current density of each electrode increased.The electrode that did not undergo heat treatment showed the largest positive polarization current density at the same overvoltage, and the positive polarization current density decreased with the electrode with a higher heat treatment temperature. However, the onset potential of chlorine generation was similar to about 1.62V regardless of the heat treatment. This means that although the TiO 2 layer produced through heat treatment has a kinetic effect on the positive polarization reaction, it does not have a thermodynamic effect.
한편, 분극 곡선 실험을 수행할 때에는, 염소 발생 반응 이외에도 산소 발생 반응과 같은 부반응이 수반될 수 있다. 따라서, 열처리된 전극의 성능을 비교할 때 이러한 부반응에 의한 영향을 제거하기 위하여, 추가적인 정전위 분극 실험을 수행하였다. 추가 실험에서는 잔류 염소 농도의 측정값과 이론값을 비교함으로써 염소 발생 성능을 측정하였다.On the other hand, when performing the polarization curve experiment, in addition to the chlorine generation reaction, a side reaction such as an oxygen generation reaction may be accompanied. Therefore, when comparing the performance of the heat-treated electrode, in order to eliminate the effect of this side reaction, an additional electrostatic potential polarization experiment was performed. In a further experiment, the chlorine generation performance was measured by comparing the measured value of the residual chlorine concentration with the theoretical value.
실험 1은, 기존의 방식(즉, TiO2층을 적용하지 않음)으로 전이금속의 활성층만을 코팅하여 형성한 샘플과 본 발명에 따라 TiO2층을 형성한 이후에 전이금속의 활성층을 코팅한 샘플을 이용하여 이루어졌다. 총 3차례의 실험을 수행하였으며, 가동 초기 전압과 유효 가동 시간과 염소 발생 전류 효율을 측정하였다. Experiment 1 is a sample formed by coating only the active layer of transition metal in the conventional method (i.e., not applying the TiO 2 layer) and a sample coated with the active layer of transition metal after forming the TiO 2 layer according to the present invention. It was done using. A total of three experiments were conducted, and the initial voltage, effective operation time, and chlorine generation current efficiency were measured.
티타늄 기판에는, 80mesh 사이즈의 금강석을 이용한 샌드 블라스트 처리와 황산 50% 조건 및 수온 50℃ 조건에서 15분간 에칭하는 전처리가 이루어졌다. The titanium substrate was subjected to a sand blast treatment using an 80 mesh size diamond and pretreatment of etching for 15 minutes under 50% sulfuric acid conditions and a water temperature of 50°C.
티타늄 기판을 가열로 내에서 2시간 동안 600℃까지 승온시키고, 600℃ 조건에서 약 1시간 동안 열처리한 다음, 가열로 내에서 상온까지 방냉함으로써, TiO2층을 형성하였다.The titanium substrate was heated to 600° C. for 2 hours in a heating furnace, heat-treated at 600° C. for about 1 hour, and then allowed to cool to room temperature in the heating furnace to form a TiO 2 layer.
전극의 상부를 코팅하는 활성층은, RuCl3와 TiCl3를 몰비율 7:3의 조성으로 혼합하고, 이를 RuCl3 50g/L의 농도로 이소프로필 알코올에 용해한 용액을 티타늄 기판에 로딩하되, 루테늄 금속 기준으로 10g/cm2 만큼 코팅하였다. In the active layer coating the upper part of the electrode, RuCl 3 and TiCl 3 are mixed in a molar ratio of 7:3, and a solution dissolved in isopropyl alcohol at a concentration of 50 g/L of RuCl 3 is loaded onto a titanium substrate. It was coated by 10 g/cm 2 as a standard.
TiO2층을 적용하거나 적용하지 않은 각각의 샘플들은, 가혹 수명 시험 조건, 즉, 황산 0.5M 조건 및 수온 2℃ 조건에서 전류 밀도 1A/cm2인 조건으로 운전되었다. 그리고 전극의 전압이 실험 시작 전압보다 5~10V 이상 증가한 전압 또는 최종 20V가 모니터링되는 시점을 유효 가동 시간이라고 판단하였다. Each of the samples with or without the TiO 2 layer applied was operated under severe life test conditions, that is, a sulfuric acid 0.5M condition and a water temperature of 2°C, with a current density of 1A/cm 2. In addition, the effective operation time was determined when the voltage of the electrode increased by 5 to 10 V or more from the start voltage of the experiment or when the final 20 V was monitored.
염소 발생 전류 효율은, 유속 1m/sec 조건, Cl- 농도 18000mg/L 조건, 전류 밀도 0.05A/cm2 조건으로 시험하였으며, 하기의 수학식을 이용하여 염소의 전기화학적 당량에 의해 전류 효율을 계산하였다.The current efficiency of chlorine generation was tested under the conditions of a flow rate of 1m/sec, a Cl - concentration of 18000mg/L, and a current density of 0.05A/cm 2 , and the current efficiency was calculated by the electrochemical equivalent of chlorine using the following equation. I did.
Figure PCTKR2019014341-appb-M000001
Figure PCTKR2019014341-appb-M000001
[표 1]을 통해 확인할 수 있는 바와 같이, 3차례의 실험에서, TiO2층을 적용한 경우에 전극의 내구성이 15~50% 정도 상승한 것을 확인할 수 있다. 여기서, 각 샘플들이 동일한 전이금속을 활성층으로 사용하였기 때문에 전류 효율은 유사하였다. As can be seen from [Table 1], in three experiments, when the TiO 2 layer was applied, the durability of the electrode was increased by about 15-50%. Here, since each of the samples used the same transition metal as the active layer, the current efficiency was similar.
<전류 밀도 1A/cm2 조건에서의 실험 결과><Experiment result under the condition of current density 1A/cm 2>
샘플Sample 가동 초기 전압Initial voltage 가동 시간Uptime 전류 효율Current efficiency
1차 실험1st experiment 기존 코팅 방식Conventional coating method 15V15V 58.6시간58.6 hours 96.3%96.3%
TiO2층 적용TiO 2 layer applied 15.1V15.1V 67시간67 hours 96.8%96.8%
2차 실험2nd experiment 기존 코팅 방식Conventional coating method 15V15V 46.9시간46.9 hours 95.2%95.2%
TiO2층 적용TiO 2 layer applied 15.2V15.2V 84.8시간84.8 hours 96.4%96.4%
3차 실험3rd experiment 기존 코팅 방식Conventional coating method 15.9V15.9V 43.5시간43.5 hours 96%96%
TiO2층 적용TiO 2 layer applied 14.9V14.9V 66시간66 hours 95.4%95.4%
실험 2는, 실험 1에서 사용된 것과 동일한 샘플들을 이용하였고, 다만 전류 밀도를 낮추어 실험하였다. [표 2]를 통해 확인할 수 있는 바와 같이, TiO2층을 적용한 경우에 유효 가동 시간(즉, 전극의 수명과 관련됨)이, TiO2층을 적용하지 않은 경우에 비하여 약 2배 증가한 것을 확인할 수 있다.In Experiment 2, the same samples as those used in Experiment 1 were used, but the current density was lowered. [Table 2] As can be seen through, the effective operating time (i.e., being associated with the electrode life) in the case of applying the TiO 2 layer is confirmed that increase of about 2 times as compared with the case without applying the TiO 2 layer have.
<전류 밀도 0.05A/cm2 조건에서의 내구성 실험 결과><Results of durability test under the condition of current density 0.05A/cm 2>
샘플Sample 가동 초기 전압Initial voltage 가동 시간Uptime 가동 시간 증가율Uptime growth rate
1차 실험1st experiment 기존 코팅 방식Conventional coating method 8.8V8.8V 230시간230 hours 172%172%
TiO2층 적용TiO 2 layer applied 9.2V9.2V 397시간397 hours
2차 실험2nd experiment 기존 코팅 방식Conventional coating method 9.8V9.8V 167시간167 hours 226%226%
TiO2층 적용TiO 2 layer applied 10V10V 379시간379 hours
3차 실험3rd experiment 기존 코팅 방식Conventional coating method 9.2V9.2V 406시간406 hours 200%200%
TiO2층 적용TiO 2 layer applied 10.5V10.5V 812시간812 hours
이상에서 설명된 본 발명의 실시예들은 본 발명의 기술 사상을 예시적으로 보여준 것에 불과하며, 본 발명의 보호 범위는 이하 특허청구범위에 의하여 해석되어야 마땅할 것이다. 또한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것인 바, 본 발명과 균등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The embodiments of the present invention described above are merely illustrative of the technical idea of the present invention, and the protection scope of the present invention should be interpreted by the following claims. In addition, a person of ordinary skill in the technical field to which the present invention pertains will be able to make various modifications and variations without departing from the essential characteristics of the present invention, and all technical ideas within the scope equivalent to the present invention are the present invention. It should be construed as being included in the scope of rights of

Claims (11)

  1. 전기분해의 대상이 되는 수용액 속에 침지된 상태에서 양전위 또는 음전위가 인가됨으로써 상기 수용액을 산화 또는 환원시키는 전기분해용 전극으로서,An electrode for electrolysis that oxidizes or reduces the aqueous solution by applying a positive or negative potential while immersed in an aqueous solution to be subjected to electrolysis,
    상기 전기분해용 전극은:The electrode for electrolysis is:
    티타늄 또는 티타늄 합금으로 이루어진 기저부;A base made of titanium or a titanium alloy;
    상기 기저부의 표면에서 티타늄 중 적어도 일부가 산화되어 형성된 산화티타늄층; 및A titanium oxide layer formed by oxidizing at least a portion of titanium on the surface of the base portion; And
    상기 산화티타늄층을 코팅하는, 임의의 전이금속으로 이루어진 활성층을 포함하는, 수처리 전기분해용 티타늄 전극.A titanium electrode for water treatment electrolysis comprising an active layer made of any transition metal, which coats the titanium oxide layer.
  2. 제1항에 있어서,The method of claim 1,
    상기 산화티타늄층은:The titanium oxide layer is:
    상기 전기분해용 전극의 상기 기저부를 가열로 내에 배치하고, 상기 기저부에 열에너지를 공급하여 상기 기저부를 상온으로부터 400 내지 800℃의 범위에 포함되는 제1 온도까지 제1 시간에 걸쳐 승온시키는 가열 단계;A heating step of disposing the base of the electrode for electrolysis in a heating furnace and supplying thermal energy to the base to raise the temperature of the base from room temperature to a first temperature in the range of 400 to 800°C over a first time period;
    상기 기저부의 온도를 제2 시간 동안 상기 범위 내로 유지시키는 열처리 단계; 및A heat treatment step of maintaining the temperature of the base portion within the range for a second time; And
    상기 기저부로의 열에너지의 공급을 중단하여 상기 기저부를 상온까지 냉각시키는 방냉 단계를 포함하는 티타늄산화 공정에 의하여 형성되는 것을 특징으로 하는, 수처리 전기분해용 티타늄 전극.A titanium electrode for water treatment electrolysis, characterized in that it is formed by a titanium oxidation process comprising a cooling step of cooling the base to room temperature by stopping supply of thermal energy to the base.
  3. 제2항에 있어서, The method of claim 2,
    상기 가열 단계에서, 상기 제1 온도는 500 내지 700℃의 범위에서 선택되고 및 상기 제1 시간은 90 내지 150분의 범위에서 선택되고, 그리고 In the heating step, the first temperature is selected in the range of 500 to 700°C, and the first time is selected in the range of 90 to 150 minutes, and
    상기 열처리 단계에서, 상기 제2 시간은 30 내지 90분의 범위에서 선택되고 및 가열된 상기 기저부의 온도는 상기 제2 시간 동안 상기 제1 온도로 일정하게 유지되는 것을 특징으로 하는, 수처리 전기분해용 티타늄 전극.In the heat treatment step, the second time is selected in the range of 30 to 90 minutes, and the heated base portion temperature is maintained constant at the first temperature for the second time, for water treatment electrolysis Titanium electrode.
  4. 제1항에 있어서, The method of claim 1,
    상기 기저부의 표면은,The surface of the base portion,
    샌드 블라스트 처리함으로써 또는 부식성 물질에 의해 부식시킴으로써 형성된 요철을 포함하는 것을 특징으로 하는, 수처리 전기분해용 티타늄 전극.A titanium electrode for water treatment electrolysis, characterized in that it contains irregularities formed by sand blasting or corrosion by corrosive substances.
  5. 제1항에 있어서,The method of claim 1,
    상기 활성층을 형성하는 상기 전이금속은,The transition metal forming the active layer,
    이리듐, 루테늄, 팔라듐, 백금, 탄탈륨, 티타늄 및 주석 중 적어도 하나를 포함하는 것을 특징으로 하는, 수처리 전기분해용 티타늄 전극.Iridium, ruthenium, palladium, platinum, tantalum, titanium and titanium electrode for water treatment, characterized in that it comprises at least one of tin and tin.
  6. 전기분해의 대상이 되는 수용액 속에 침지된 상태에서 양전위 또는 음전위가 인가됨으로써 상기 수용액을 산화 또는 환원시키는 전기분해용 전극을 제조하는 방법으로서:As a method of manufacturing an electrode for electrolysis that oxidizes or reduces the aqueous solution by applying a positive or negative potential while immersed in an aqueous solution to be subjected to electrolysis:
    티타늄 또는 티타늄 합금으로 이루어진 기저부를 준비하는 단계;Preparing a base made of titanium or a titanium alloy;
    상기 기저부의 표면에 티타늄 중 적어도 일부를 산화시켜 산화티타늄층을 형성하는 단계; 및Forming a titanium oxide layer by oxidizing at least a portion of titanium on the surface of the base portion; And
    상기 산화티타늄층의 상부를 코팅하는, 임의의 전이금속으로 이루어진 활성층을 형성하는 단계를 포함하는, 수처리 전기분해용 티타늄 전극의 제조 방법.A method of manufacturing a titanium electrode for water treatment electrolysis, comprising the step of forming an active layer made of any transition metal, which coats an upper portion of the titanium oxide layer.
  7. 제6항에 있어서,The method of claim 6,
    상기 산화티타늄층을 형성하는 단계는:The step of forming the titanium oxide layer is:
    가열로 내에 상기 기저부를 배치하고, 상기 기저부에 열에너지를 공급하여 상기 기저부를 상온으로부터 400 내지 800℃의 범위에 포함되는 제1 온도까지 제1 시간에 걸쳐 승온시키는 것;Disposing the base in a heating furnace, and supplying thermal energy to the base to increase the temperature of the base from room temperature to a first temperature in the range of 400 to 800°C over a first time period;
    상기 기저부의 온도를 제2 시간 동안 상기 범위 내로 유지시키는 것; 및Maintaining the temperature of the base within the range for a second time; And
    상기 기저부로의 열에너지의 공급을 중단하여 상기 기저부를 상온까지 냉각시키는 것을 더 포함하는, 수처리 전기분해용 티타늄 전극의 제조 방법.The method of manufacturing a titanium electrode for water treatment electrolysis, further comprising cooling the base part to room temperature by stopping supply of thermal energy to the base part.
  8. 제7항에 있어서, The method of claim 7,
    상기 제1 온도는 500 내지 700℃의 범위에서 선택되고 및 상기 제1 시간은 90 내지 150분의 범위에서 선택되고, 그리고The first temperature is selected in the range of 500 to 700 °C, and the first time is selected in the range of 90 to 150 minutes, and
    상기 제2 시간은 30 내지 90분의 범위에서 선택되고 및 상기 제1 온도까지 가열된 상기 기저부의 온도는 상기 제2 시간 동안 상기 제1 온도로 일정하게 유지되는 것을 특징으로 하는, 수처리 전기분해용 티타늄 전극의 제조 방법.The second time is selected in the range of 30 to 90 minutes, and the temperature of the base portion heated to the first temperature is kept constant at the first temperature during the second time, for water treatment electrolysis Method of manufacturing a titanium electrode.
  9. 제6항 내지 제8항 중 어느 한 항에 있어서,The method according to any one of claims 6 to 8,
    상기 산화티타늄층을 형성하는 단계를 수행하는 도중의 적어도 일부의 기간 동안, 상기 가열로의 내부로 산소를 주입하는 것을 더 포함하는, 수처리 전기분해용 티타늄 전극의 제조 방법.The method of manufacturing a titanium electrode for water treatment electrolysis, further comprising injecting oxygen into the heating furnace during at least a portion of the period in the middle of performing the step of forming the titanium oxide layer.
  10. 제6항에 있어서, The method of claim 6,
    상기 기저부를 준비하는 단계는,Preparing the base portion,
    상기 기저부의 표면을 샌드블라스트 처리함으로써 또는 부식성 물질에 의해 부식시킴으로써 요철을 형성하는 것을 더 포함하는, 수처리 전기분해용 티타늄 전극의 제조 방법.A method of manufacturing a titanium electrode for water treatment electrolysis, further comprising forming irregularities by sandblasting the surface of the base portion or corroding by a corrosive substance.
  11. 제6항에 있어서,The method of claim 6,
    상기 활성층을 형성하는 상기 전이금속은,The transition metal forming the active layer,
    이리듐, 루테늄, 팔라듐, 백금, 탄탈륨, 티타늄 및 주석 중 적어도 하나를 포함하는 것을 특징으로 하는, 수처리 전기분해용 티타늄 전극의 제조 방법.Iridium, ruthenium, palladium, platinum, tantalum, titanium and tin, characterized in that it comprises at least one of, a method of manufacturing a titanium electrode for water treatment electrolysis.
PCT/KR2019/014341 2019-09-09 2019-10-29 Titanium electrode for water treatment electrolysis and method for manufacturing same WO2021049709A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0111456 2019-09-09
KR1020190111456A KR20210030033A (en) 2019-09-09 2019-09-09 Titanium electrode for water treating electrolysis and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2021049709A1 true WO2021049709A1 (en) 2021-03-18

Family

ID=74867263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014341 WO2021049709A1 (en) 2019-09-09 2019-10-29 Titanium electrode for water treatment electrolysis and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20210030033A (en)
WO (1) WO2021049709A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220135924A (en) 2021-03-31 2022-10-07 서울대학교산학협력단 decontamination device
KR20240033993A (en) * 2022-09-06 2024-03-13 서울대학교산학협력단 Electrode for generating chlorine and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890003164A (en) * 1987-07-14 1989-04-13 안시환 Absence answering device using modem
KR100790767B1 (en) * 2003-05-15 2008-01-03 페르메렉덴꾜꾸가부시끼가이샤 Electrolytic electrode and process of producing the same
KR20160056433A (en) * 2014-11-11 2016-05-20 (주) 나노팩 Coating solution for electrochemical insoluble electrode and preparation method thereof
KR20160133936A (en) * 2015-05-14 2016-11-23 (주) 시온텍 Insoluble titanium oxide composite electrode and method of producing thereof
KR101681537B1 (en) * 2015-11-13 2016-12-13 한국생산기술연구원 Manufacturing method for dimensionally stable electrode and dimensionally stable electrode manufactured by the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890003164A (en) * 1987-07-14 1989-04-13 안시환 Absence answering device using modem
KR100790767B1 (en) * 2003-05-15 2008-01-03 페르메렉덴꾜꾸가부시끼가이샤 Electrolytic electrode and process of producing the same
KR20160056433A (en) * 2014-11-11 2016-05-20 (주) 나노팩 Coating solution for electrochemical insoluble electrode and preparation method thereof
KR20160133936A (en) * 2015-05-14 2016-11-23 (주) 시온텍 Insoluble titanium oxide composite electrode and method of producing thereof
KR101681537B1 (en) * 2015-11-13 2016-12-13 한국생산기술연구원 Manufacturing method for dimensionally stable electrode and dimensionally stable electrode manufactured by the same

Also Published As

Publication number Publication date
KR20210030033A (en) 2021-03-17

Similar Documents

Publication Publication Date Title
FI68670B (en) ELEKTROD MED ELEKTROKATALYTISK YTA OCH FOERFARANDE FOER DESS FRAMSTAELLNING
FI56859C (en) FOERFARANDE FOER FRAMSTAELLNING AV EN ELEKTROD FOER ANVAENDNING VID ELEKTROLYS
KR101201689B1 (en) Anode for oxygen evolution
Shao et al. An improved stable Ti/Sb–SnO 2 electrode with high performance in electrochemical oxidation processes
WO2021049709A1 (en) Titanium electrode for water treatment electrolysis and method for manufacturing same
WO2012150738A1 (en) Method for heavy metal elimination or precious metal recovery using microbial fuel cell
KR20050083767A (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
KR102433461B1 (en) Electrode with two layer coating, method of use, and preparation thereof
JP3455035B2 (en) Electrolytic ionic water generation device and semiconductor manufacturing device
WO2019050079A1 (en) Water treatment apparatus for simultaneously generating hydrogen peroxide and hypochlorite ion
ES2255639T3 (en) ELECTRODES FOR ELECTROLYSIS IN ACID MEDIA.
Auguste et al. Electrochemical oxidation of amoxicillin in its commercial formulation on thermally prepared RuO 2/Ti
KR20220142468A (en) Polarity reversible electrode and use thereof
JPS6145714B2 (en)
CN113061926A (en) Titanium dioxide anode diffusion layer for PEM water electrolysis cell and preparation method and application thereof
KR101182112B1 (en) Electrolytic cell for generating complex oxidation and reduction materials
EP0063545A1 (en) Electrocatalytic protective coating on lead or lead alloy electrodes
KR20190067354A (en) method for manufacturing graphene complex electrolysis electrodes for wastewater processing and sterilization
KR20070117523A (en) Electrolysis cell for ozone water and hypo-chlorite water generation by top water electrolysis and mixed oxidant electrode
CA2317800C (en) Non-carbon metal-based anodes for aluminium production cells
KR100406142B1 (en) Dimensionally stable electrode for treating hard-resoluble waster water
Panić et al. Electrocatalytic properties and stability of titanium anodes activated by the inorganic sol-gel procedure
WO2020032312A1 (en) Method for treating nitrate nitrogen in water
JP3722537B2 (en) Organic sludge oxidation treatment method and equipment
RU2302482C2 (en) Method for minimizing carbon transfer in electrolytic cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944863

Country of ref document: EP

Kind code of ref document: A1