WO2022131501A1 - Method for transferring micro led chips - Google Patents

Method for transferring micro led chips Download PDF

Info

Publication number
WO2022131501A1
WO2022131501A1 PCT/KR2021/013793 KR2021013793W WO2022131501A1 WO 2022131501 A1 WO2022131501 A1 WO 2022131501A1 KR 2021013793 W KR2021013793 W KR 2021013793W WO 2022131501 A1 WO2022131501 A1 WO 2022131501A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro led
substrate
led chip
carrier substrate
backplane
Prior art date
Application number
PCT/KR2021/013793
Other languages
French (fr)
Korean (ko)
Inventor
조현민
한철종
유병욱
이승찬
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Publication of WO2022131501A1 publication Critical patent/WO2022131501A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/799Apparatus for disconnecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/89Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using at least one connector not provided for in any of the groups H01L24/81 - H01L24/86
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Definitions

  • the present invention relates to a micro LED display transfer technology, and more particularly, to a micro LED chip transfer method for transferring micro LED chips arranged on a carrier substrate to a backplane substrate.
  • the development of high-definition displays using LED chips is actively progressing.
  • the LED chip is directly mounted on the unit pixel electrode line of the backplane substrate provided with the driving circuit.
  • a micro LED chip having a size of 100 ⁇ m or less is used. For this reason, if a process of directly mounting the micro LED chip on the backplane substrate is selected using a general pick and place machine, the process time may be greatly increased and the occurrence rate of mounting errors may increase.
  • micro-LED chip mass transfer technologies are being developed in which a plurality of micro-LED chips are mounted at once on a backplane substrate.
  • Such mass transfer technology includes a method using an electrostatic force, a method using a magnetic force, and a method using an adhesive force.
  • the adhesion between the backplane substrate and the micro LED chip should be higher than the adhesion between the carrier substrate and the micro LED chip.
  • micro LED chips that are not transferred to the backplane substrate from among the micro LED chips of the carrier substrate are generated due to the influence of the Van der Waals force or the like. That is, there is a difficulty in increasing the yield of the transfer process by using the conventional adhesive force.
  • the present invention comprises the steps of forming a barrier rib for dividing a mounting area in which a micro LED chip is to be mounted on a backplane substrate; arranging a carrier substrate on which micro LED chips are arranged on a lower surface of the backplane substrate, and positioning the micro LED chips to correspond to a mounting area of the backplane substrate; adhering the micro LED chips on the plane substrate by pressing the backplane substrate and the carrier substrate; and moving the carrier substrate in a horizontal direction with respect to the backplane substrate to apply a shear force between the carrier substrate and the micro LED chip to separate the carrier substrate from the backplane substrate. do.
  • the compressive force acting between the backplane substrate and the carrier substrate may be removed.
  • an adhesive material to which the micro LED chip is to be adhered by compression is formed in each mounting area.
  • the height of the barrier rib is lower than the height of the micro LED chip.
  • the barrier ribs are formed of a plurality of square grids, each of which forms the mounting area.
  • the mounting area is larger than the area of the micro LED chip.
  • the partition wall is black, and may perform a BM (Black Matrix) function for distinguishing between pixels.
  • BM Black Matrix
  • the adhesion between the backplane substrate and the micro LED chip is higher than the adhesion between the carrier substrate and the micro LED chip.
  • the carrier substrate is pressed in a vertical direction toward the upper surface of the backplane substrate.
  • a shear force is applied in a direction horizontal to the vertical direction.
  • the present invention aligning the carrier substrate on which the micro LED chips are arranged on the lower surface on the backplane substrate on which the adhesive material is formed on the upper surface; adhering the micro LED chips on the backplane substrate by pressing the backplane substrate and the carrier substrate; and moving the carrier substrate in a horizontal direction with respect to the backplane substrate to apply a shear force between the carrier substrate and the micro LED chip to separate the carrier substrate from the backplane substrate.
  • the yield of the transfer process can be increased by using the difference in adhesive force and shear force. That is, the carrier substrate on which the micro LED chips are arranged is pressed onto the backplane substrate, and the micro LED chips are adhered to the backplane substrate by using the adhesive force of the adhesive material formed on the backplane substrate, and then the carrier substrate or the backplane substrate is turned sideways in the opposite direction to each other. By moving and applying a shear force, the micro LED chips of the carrier substrate can be transferred onto the backplane substrate.
  • the yield of the transfer process can be increased as compared to the conventional transfer method using only the adhesive force.
  • FIG. 1 is a flowchart according to a micro LED chip transfer method according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing each step according to the transfer method of FIG. 1,
  • FIG. 2 is a cross-sectional view showing a backplane substrate
  • FIG. 3 is a cross-sectional view showing a step of forming a barrier rib on a backplane substrate
  • FIG. 4 is a cross-sectional view showing a step of aligning a carrier substrate on which micro LED chips are arranged on a backplane substrate;
  • FIG. 5 is a cross-sectional view showing the step of adhering micro LED chips on the backplane substrate by pressing the carrier substrate on the backplane substrate;
  • FIG. 6 is a cross-sectional view showing a state in which the pressing force applied to the carrier substrate is removed;
  • FIG. 7 is a cross-sectional view showing a step of applying a shear force by moving the carrier substrate in the X-axis direction with respect to the backplane substrate.
  • FIG. 1 is a flowchart according to a micro LED chip transfer method according to an embodiment of the present invention.
  • the micro LED chip transfer method includes aligning a carrier substrate on which micro LED chips are arranged on a lower surface on a backplane substrate on which an adhesive material is formed on the upper surface (S20), the backplane substrate and the Step of adhering the micro LED chips on the backplane substrate by pressing the carrier substrate (S30), and moving the carrier substrate in a horizontal direction with respect to the backplane substrate to apply a shear force between the carrier substrate and the micro LED chip to separate the carrier substrate from the backplane substrate and a step (S40).
  • the micro LED chip transfer method according to the present embodiment may further include a step (S10) of forming a barrier rib that separates a mounting area in which the micro LED chip is to be mounted on the backplane substrate, which is performed before step S20 is performed.
  • FIGS. 2 to 7 are views showing each step according to the transfer method of FIG. 1 .
  • the backplane substrate 10 is prepared.
  • An adhesive material 11 is formed on the upper surface of the backplane substrate 10 to correspond to an area in which the micro LED chip 30 is to be mounted.
  • a barrier rib 13 is formed on the backplane substrate 10 to separate a mounting area in which the micro LED chip 30 is to be mounted, in step S10 .
  • the partition wall 13 is formed of a plurality of square grids, and each of the plurality of square grids forms a mounting area therein.
  • the height of the barrier rib 13 is lower than the height of the micro LED chip 30 . This is to provide a pressing force to the micro LED chip 30 interposed between the backplane substrate 10 and the carrier substrate 20 in step S30 .
  • the mounting area is larger than the area of the micro LED chip 30 so that the micro LED chip 30 can be stably inserted therein to be mounted.
  • the barrier rib 13 may perform a BM (Black Matrix) function to distinguish between pixels.
  • BM Black Matrix
  • the carrier substrate 20 on which the micro LED chips 30 are arranged on the backplane substrate 10 is aligned in step S20 . That is, the carrier substrate 20 is aligned on the backplane substrate 10 so that the micro LED chips 30 can each correspond to the mounting area.
  • step S30 the carrier substrate 20 is pressed on the backplane substrate 10 to adhere the micro LED chips 30 to the backplane substrate 10 .
  • the height of the barrier rib 13 is lower than the height of the micro LED chip 30 .
  • sufficient compression force may be provided between the backplane substrate 10 and the carrier substrate 20 . Accordingly, the electrode bump 31 of the micro LED chip 30 may be adhered to the adhesive material 11 of the backplane substrate 10 .
  • the carrier substrate ( The micro LED chips 30 of 20) are transferred onto the backplane substrate 10 .
  • the compressive force applied between the backplane substrate 10 and the carrier substrate 20 may be removed. That is, a shear force may be applied in a state in which the compression force is applied between the backplane substrate 10 and the carrier substrate 20 , but the shear force may be more smoothly applied in a state in which the compression force is removed. Accordingly, by removing the compressive force acting between the backplane substrate 10 and the carrier substrate 20 , it is possible to provide an environment in which the shear force can easily act.
  • the carrier substrate 20 is separated from the backplane substrate 10 by moving the carrier substrate 20 in the X-axis direction with respect to the backplane substrate 10 to apply a shearing force.
  • a process of lifting the separated carrier substrate 20 in the Y-axis direction may be additionally performed.
  • a shear force is applied by moving the carrier substrate 20 in the X-axis direction with respect to the backplane substrate 10
  • a shear force may be applied by moving the backplane substrate 10 in the -X-axis or X-axis direction with respect to the carrier substrate 20 .
  • a shear force may be applied by moving the carrier substrate 20 and the backplane substrate 10 in opposite directions with respect to the X-axis.
  • the yield of the transfer process can be increased by using the difference in adhesive force and the shear force together. That is, by pressing the carrier substrate 20 on which the micro LED chips 30 are arranged on the backplane substrate 10 , the micro LED chips 30 are attached to the backplane by using the adhesive force of the adhesive material 11 formed on the backplane substrate 10 . After adhering to the substrate 10, by moving the carrier substrate 20 or the backplane substrate 10 sideways in opposite directions to apply a shear force, the micro LED chips 30 of the carrier substrate 20 are attached to the backplane substrate ( 10) Can be transcribed on top.
  • the yield of the transfer process can be increased compared to the conventional transfer method using only the adhesive force.
  • barrier rib 20 carrier substrate
  • micro LED chip 31 electrode bump

Abstract

The present invention relates to a method for transferring micro LED chips, the method comprising the steps of: forming, on a backplane substrate, a partition wall for separating a mounting area in which micro LED chips are to be mounted; aligning a carrier substrate, having micro LED chips arranged on the lower surface thereof, on the backplane substrate, and thereby positioning the micro LED chips so as to correspond to the mounting area of the backplane substrate; adhering the micro LED chips onto a plane substrate by pressing the backplane substrate and the carrier substrate; and moving the carrier substrate in a horizontal direction with respect to the backplane substrate to apply shear force between the carrier substrate and the micro LED chips and thereby separate the carrier substrate from the backplane substrate.

Description

마이크로 LED 칩 전사 방법Micro LED Chip Transfer Method
본 발명은 마이크로 LED 디스플레이의 전사 기술에 관한 것으로, 더욱 상세하게는 캐리어 기판에 배열된 마이크로 LED 칩들을 백플레인 기판에 전사하는 마이크로 LED 칩 전사 방법에 관한 것이다.The present invention relates to a micro LED display transfer technology, and more particularly, to a micro LED chip transfer method for transferring micro LED chips arranged on a carrier substrate to a backplane substrate.
LED 칩을 이용한 고화질 디스플레이의 개발이 활발히 진행되고 있다. 구동 회로가 구비된 백플레인 기판의 단위 픽셀 전극 라인 위에 LED 칩을 직접 실장하게 된다.The development of high-definition displays using LED chips is actively progressing. The LED chip is directly mounted on the unit pixel electrode line of the backplane substrate provided with the driving circuit.
최근에는 고화소 디스플레이를 위한 단위 픽셀 크기가 감소됨에 따라서 크기가 100 ㎛ 이하로 매우 작은 마이크로 LED 칩이 사용되고 있다. 이로 인해 일반적인 픽 앤 플레이스 기구(pick and place machine)를 이용하여 백플레인 기판 위에 마이크로 LED 칩을 직접 실장하는 공정을 선택하는 경우, 공정 시간이 크게 늘어나고, 실장 오류 발생률이 높아질 수 있다.Recently, as the size of a unit pixel for a high-pixel display is reduced, a micro LED chip having a size of 100 μm or less is used. For this reason, if a process of directly mounting the micro LED chip on the backplane substrate is selected using a general pick and place machine, the process time may be greatly increased and the occurrence rate of mounting errors may increase.
이러한 문제점을 해소하기 위해서, 다수의 마이크로 LED 칩을 백플레인 기판에 한꺼번에 실장하는 마이크로 LED 칩의 대량 전사기술이 다양하게 개발되고 있다.In order to solve this problem, various micro-LED chip mass transfer technologies are being developed in which a plurality of micro-LED chips are mounted at once on a backplane substrate.
이러한 대량 전사 기술에는 정전기력을 이용한 방법, 자기력을 이용한 방법, 점착력을 이용한 방법이 있다.Such mass transfer technology includes a method using an electrostatic force, a method using a magnetic force, and a method using an adhesive force.
대량 전사 기술 중 점착력을 이용한 방법으로 캐리어 기판에 배열된 마이크로 LED 칩이 백플레인 기판으로 전사되기 위해서는, 캐리어 기판과 마이크로 LED 칩과의 점착력보다 백플레인 기판과 마이크로 LED 칩과의 점착력을 높게 해야 한다.In order to transfer the micro LED chips arranged on the carrier substrate to the backplane substrate by using the adhesive force among mass transfer technologies, the adhesion between the backplane substrate and the micro LED chip should be higher than the adhesion between the carrier substrate and the micro LED chip.
그러나 이러한 산술적인 점착력의 차이에도 불구하고, 반데르발스 힘(Van der Waals force) 등의 영향으로 캐리어 기판의 마이크로 LED 칩들 중에서 백플레인 기판으로 전사되지 않는 마이크로 LED 칩이 발생하고 있다. 즉 기존의 점착력을 이용한 방법으로는 전사 공정의 수율을 높이는 데 어려움이 있다.However, despite the difference in arithmetic adhesive force, micro LED chips that are not transferred to the backplane substrate from among the micro LED chips of the carrier substrate are generated due to the influence of the Van der Waals force or the like. That is, there is a difficulty in increasing the yield of the transfer process by using the conventional adhesive force.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
등록특허공보 제10-2158183호 (2020.09.21. 공고)Registered Patent Publication No. 10-2158183 (2020.09.21. Announcement)
따라서 본 발명의 목적은 전사 공정의 수율을 높일 수 있는 마이크로 LED 칩 전사 방법을 제공하는 데 있다.Accordingly, it is an object of the present invention to provide a micro LED chip transfer method capable of increasing the yield of the transfer process.
상기 목적을 달성하기 위하여, 본 발명은 백플레인 기판 위에 마이크로 LED 칩이 실장될 실장 영역을 구분하는 격벽을 형성하는 단계; 하부면에 마이크로 LED 칩들이 배열된 캐리어 기판을 상기 백플레인 기판 위에 정렬하여, 상기 백플레인 기판의 실장 영역에 대응되게 마이크로 LED 칩들을 위치시키는 단계; 상기 백플레인 기판과 상기 캐리어 기판을 압착하여 상기 플레인 기판 위에 상기 마이크로 LED 칩들을 점착시키는 단계; 및 상기 백플레인 기판에 대해서 상기 캐리어 기판을 수평 방향으로 이동시켜 상기 캐리어 기판과 상기 마이크로 LED 칩 간에 전단력을 작용하여 상기 백플레인 기판으로부터 상기 캐리어 기판을 분리하는 단계;를 포함하는 마이크로 LED 칩 전사 방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of forming a barrier rib for dividing a mounting area in which a micro LED chip is to be mounted on a backplane substrate; arranging a carrier substrate on which micro LED chips are arranged on a lower surface of the backplane substrate, and positioning the micro LED chips to correspond to a mounting area of the backplane substrate; adhering the micro LED chips on the plane substrate by pressing the backplane substrate and the carrier substrate; and moving the carrier substrate in a horizontal direction with respect to the backplane substrate to apply a shear force between the carrier substrate and the micro LED chip to separate the carrier substrate from the backplane substrate. do.
상기 캐리어 기판을 분리하는 단계에서, 상기 캐리어 기판과 상기 마이크로 LED 칩 간에 전단력을 작용하기 전에, 상기 백플레인 기판과 상기 캐리어 기판 사이에 작용하는 압착력을 제거할 수 있다.In the step of separating the carrier substrate, before the shear force is applied between the carrier substrate and the micro LED chip, the compressive force acting between the backplane substrate and the carrier substrate may be removed.
상기 백플레인 기판은, 각각의 실장 영역에 마이크로 LED 칩이 압착에 의해 점착될 점착 물질이 형성되어 있다.In the backplane substrate, an adhesive material to which the micro LED chip is to be adhered by compression is formed in each mounting area.
상기 격벽의 높이는 상기 마이크로 LED 칩의 높이보다는 낮다.The height of the barrier rib is lower than the height of the micro LED chip.
상기 격벽을 형성하는 단계에서, 상기 격벽은 복수의 사각 격자로 형성되며, 상기 복수의 사각 격자는 각각 상기 실장 영역을 형성한다.In the forming of the barrier ribs, the barrier ribs are formed of a plurality of square grids, each of which forms the mounting area.
상기 실장 영역은 상기 마이크로 LED 칩의 면적보다 크다.The mounting area is larger than the area of the micro LED chip.
상기 격벽은 검정색으로, 픽셀 간의 구분을 위한 BM(Black Matrix) 기능을 수행할 수 있다.The partition wall is black, and may perform a BM (Black Matrix) function for distinguishing between pixels.
상기 점착시키는 단계에서, 상기 캐리어 기판과 상기 마이크로 LED 칩과의 점착력보다 상기 백플레인 기판과 상기 마이크로 LED 칩과의 점착력이 높다.In the bonding step, the adhesion between the backplane substrate and the micro LED chip is higher than the adhesion between the carrier substrate and the micro LED chip.
상기 점착시키는 단계는 상기 백플레인 기판의 상부면을 향하여 수직 방향으로 상기 캐리어 기판을 압착한다.In the adhering step, the carrier substrate is pressed in a vertical direction toward the upper surface of the backplane substrate.
상기 분리하는 단계는 상기 수직 방향에 수평한 방향으로 전단력을 작용한다.In the separating step, a shear force is applied in a direction horizontal to the vertical direction.
그리고 본 발명은, 하부면에 마이크로 LED 칩들이 배열된 캐리어 기판을 상부면에 점착 물질이 형성된 백플레인 기판 위에 정렬하는 단계; 상기 백플레인 기판과 상기 캐리어 기판을 압착하여 상기 백플레인 기판 위에 상기 마이크로 LED 칩들을 점착시키는 단계; 및 상기 백플레인 기판에 대해서 상기 캐리어 기판을 수평 방향으로 이동시켜 상기 캐리어 기판과 상기 마이크로 LED 칩 간에 전단력을 작용하여 상기 백플레인 기판으로부터 상기 캐리어 기판을 분리하는 단계;를 포함하는 마이크로 LED 칩 전사 방법을 제공한다.And the present invention, aligning the carrier substrate on which the micro LED chips are arranged on the lower surface on the backplane substrate on which the adhesive material is formed on the upper surface; adhering the micro LED chips on the backplane substrate by pressing the backplane substrate and the carrier substrate; and moving the carrier substrate in a horizontal direction with respect to the backplane substrate to apply a shear force between the carrier substrate and the micro LED chip to separate the carrier substrate from the backplane substrate. do.
본 발명에 따르면, 마이크로 LED 칩을 전사할 때, 점착력의 차이와 전단력(shear force)를 이용함으로써, 전사 공정의 수율을 높일 수 있다. 즉 마이크로 LED 칩들이 배열된 캐리어 기판을 백플레인 기판 위에 압착하여, 백플레인 기판에 형성된 점착 물질의 점착력을 이용하여 마이크로 LED 칩들을 백플레인 기판에 점착한 후, 캐리어 기판 또는 백플레인 기판을 서로 반대 방향으로 옆으로 이동시켜 전단력을 작용함으로써, 캐리어 기판의 마이크로 LED 칩들을 백플레인 기판 위에 전사할 수 있다.According to the present invention, when transferring the micro LED chip, the yield of the transfer process can be increased by using the difference in adhesive force and shear force. That is, the carrier substrate on which the micro LED chips are arranged is pressed onto the backplane substrate, and the micro LED chips are adhered to the backplane substrate by using the adhesive force of the adhesive material formed on the backplane substrate, and then the carrier substrate or the backplane substrate is turned sideways in the opposite direction to each other. By moving and applying a shear force, the micro LED chips of the carrier substrate can be transferred onto the backplane substrate.
이와 같은 본 발명에 따른 전사 방법에 따르면, 점착력과 전단력을 함께 이용하기 때문에, 기존의 점착력만을 이용하는 전사 방법과 비교하여, 전사 공정의 수율을 높일 수 있다.According to the transfer method according to the present invention, since both the adhesive force and the shear force are used, the yield of the transfer process can be increased as compared to the conventional transfer method using only the adhesive force.
도 1은 본 발명의 실시예에 따른 마이크로 LED 칩 전사 방법에 따른 흐름도이다.1 is a flowchart according to a micro LED chip transfer method according to an embodiment of the present invention.
도 2 내지 도 7은 도 1의 전사 방법에 따른 각 단계를 보여주는 도면들로서,2 to 7 are views showing each step according to the transfer method of FIG. 1,
도 2는 백플레인 기판을 보여주는 단면도이고,2 is a cross-sectional view showing a backplane substrate,
도 3은 백플레인 기판 위에 격벽을 형성하는 단계를 보여주는 단면도이고,3 is a cross-sectional view showing a step of forming a barrier rib on a backplane substrate;
도 4는 백플레인 기판 위에 마이크로 LED 칩들이 배열된 캐리어 기판을 정렬하는 단계를 보여주는 단면도이고,4 is a cross-sectional view showing a step of aligning a carrier substrate on which micro LED chips are arranged on a backplane substrate;
도 5는 백플레인 기판 위에 캐리어 기판을 압착하여 마이크로 LED 칩들을 백플레인 기판 위에 점착하는 단계를 보여주는 단면도이고,5 is a cross-sectional view showing the step of adhering micro LED chips on the backplane substrate by pressing the carrier substrate on the backplane substrate;
도 6은 캐리어 기판에 작용했던 압착력을 제거한 상태를 보여주는 단면도이고,6 is a cross-sectional view showing a state in which the pressing force applied to the carrier substrate is removed;
도 7은 백플레인 기판에 대해서 캐리어 기판을 X축 방향으로 이동시켜 전단력을 작용하는 단계를 보여주는 단면도이다.7 is a cross-sectional view showing a step of applying a shear force by moving the carrier substrate in the X-axis direction with respect to the backplane substrate.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 벗어나지 않는 범위에서 생략될 것이라는 것을 유의하여야 한다.It should be noted that, in the following description, only parts necessary for understanding the embodiments of the present invention are described, and descriptions of other parts will be omitted without departing from the gist of the present invention.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms or words used in the present specification and claims described below should not be construed as being limited to their ordinary or dictionary meanings, and the inventors have appropriate concepts of terms to describe their invention in the best way. It should be interpreted as meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined in Accordingly, the embodiments described in this specification and the configurations shown in the drawings are only preferred embodiments of the present invention, and do not represent all of the technical spirit of the present invention, so various equivalents that can be substituted for them at the time of the present application It should be understood that there may be variations and variations.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 마이크로 LED 칩 전사 방법에 따른 흐름도이다.1 is a flowchart according to a micro LED chip transfer method according to an embodiment of the present invention.
도 1을 참조하면, 본 실시예에 따른 마이크로 LED 칩 전사 방법은, 하부면에 마이크로 LED 칩들이 배열된 캐리어 기판을 상부면에 점착 물질이 형성된 백플레인 기판 위에 정렬하는 단계(S20), 백플레인 기판과 캐리어 기판을 압착하여 백플레인 기판 위에 마이크로 LED 칩들을 점착시키는 단계(S30), 및 백플레인 기판에 대해서 캐리어 기판을 수평 방향으로 이동시켜 캐리어 기판과 마이크로 LED 칩 간에 전단력을 작용하여 백플레인 기판으로부터 캐리어 기판을 분리하는 단계(S40)를 포함한다.Referring to FIG. 1 , the micro LED chip transfer method according to this embodiment includes aligning a carrier substrate on which micro LED chips are arranged on a lower surface on a backplane substrate on which an adhesive material is formed on the upper surface (S20), the backplane substrate and the Step of adhering the micro LED chips on the backplane substrate by pressing the carrier substrate (S30), and moving the carrier substrate in a horizontal direction with respect to the backplane substrate to apply a shear force between the carrier substrate and the micro LED chip to separate the carrier substrate from the backplane substrate and a step (S40).
본 실시예에 따른 마이크로 LED 칩 전사 방법은, S20단계를 수행하기 전에 진행되는, 백플레인 기판 위에 마이크로 LED 칩이 실장될 실장 영역을 구분하는 격벽을 형성하는 단계(S10)를 더 포함할 수 있다.The micro LED chip transfer method according to the present embodiment may further include a step (S10) of forming a barrier rib that separates a mounting area in which the micro LED chip is to be mounted on the backplane substrate, which is performed before step S20 is performed.
이와 같은 본 실시예에 따른 마이크로 LED 칩 전사 방법에 대해서 도 1 내지 도 7을 참조하여 설명하면 다음과 같다. 여기서 도 2 내지 도 7은 도 1의 전사 방법에 따른 각 단계를 보여주는 도면들이다.The micro LED chip transfer method according to this embodiment will be described with reference to FIGS. 1 to 7 as follows. Here, FIGS. 2 to 7 are views showing each step according to the transfer method of FIG. 1 .
먼저 도 2에 도시된 바와 같이, 백플레인 기판(10)을 준비한다. 백플레인 기판(10)의 상부면에는 마이크로 LED 칩(30)이 실장될 영역에 대응되게 점착 물질(11)이 형성되어 있다.First, as shown in FIG. 2 , the backplane substrate 10 is prepared. An adhesive material 11 is formed on the upper surface of the backplane substrate 10 to correspond to an area in which the micro LED chip 30 is to be mounted.
다음으로 도 3에 도시된 바와 같이, S10단계에서 백플레인 기판(10) 위에 마이크로 LED 칩(30)이 실장될 실장 영역을 구분하는 격벽(13)을 형성한다. 격벽(13)은 복수의 사각 격자로 형성되며, 복수의 사각 격자는 각각 내부에 실장 영역을 형성한다.Next, as shown in FIG. 3 , a barrier rib 13 is formed on the backplane substrate 10 to separate a mounting area in which the micro LED chip 30 is to be mounted, in step S10 . The partition wall 13 is formed of a plurality of square grids, and each of the plurality of square grids forms a mounting area therein.
격벽(13)의 높이는 마이크로 LED 칩(30)의 높이보다는 낮다. S30단계에서 백플레인 기판(10)과 캐리어 기판(20) 사이에 개재된 마이크로 LED 칩(30)에 압착력을 제공하기 위해서이다.The height of the barrier rib 13 is lower than the height of the micro LED chip 30 . This is to provide a pressing force to the micro LED chip 30 interposed between the backplane substrate 10 and the carrier substrate 20 in step S30 .
실장 영역은 내부에 마이크로 LED 칩(30)을 안정적으로 삽입하여 실장할 수 있도록, 마이크로 LED 칩(30)의 면적보다 크다.The mounting area is larger than the area of the micro LED chip 30 so that the micro LED chip 30 can be stably inserted therein to be mounted.
이러한 격벽(13)이 검정색으로 형성되는 경우, 격벽(13)은 픽셀 간의 구분을 위한 BM(Black Matrix) 기능을 수행할 수 있다.When the barrier rib 13 is formed in black, the barrier rib 13 may perform a BM (Black Matrix) function to distinguish between pixels.
다음으로 도 4에 도시된 바와 같이, S20단계에서 백플레인 기판(10) 위에 마이크로 LED 칩(30)들이 배열된 캐리어 기판(20)을 정렬한다. 즉 마이크로 LED 칩(30)들을 각각 실장 영역에 대응될 수 있도록, 캐리어 기판(20)을 백플레인 기판(10) 위에 정렬한다.Next, as shown in FIG. 4 , the carrier substrate 20 on which the micro LED chips 30 are arranged on the backplane substrate 10 is aligned in step S20 . That is, the carrier substrate 20 is aligned on the backplane substrate 10 so that the micro LED chips 30 can each correspond to the mounting area.
이어서 도 5에 도시된 바와 같이, S30단계에서 백플레인 기판(10) 위에 캐리어 기판(20)을 압착하여 마이크로 LED 칩(30)들을 백플레인 기판(10) 위에 점착한다. 이때 격벽(13)의 높이가 마이크로 LED 칩(30)의 높이보다 낮기 때문에, 백플레인 기판(10)과 캐리어 기판(20) 간에 충분한 압착력을 제공할 수 있다. 이로 인해 백플레인 기판(10)의 점착 물질(11)에 마이크로 LED 칩(30)의 전극 범프(31)를 점착할 수 있다.Then, as shown in FIG. 5 , in step S30 , the carrier substrate 20 is pressed on the backplane substrate 10 to adhere the micro LED chips 30 to the backplane substrate 10 . At this time, since the height of the barrier rib 13 is lower than the height of the micro LED chip 30 , sufficient compression force may be provided between the backplane substrate 10 and the carrier substrate 20 . Accordingly, the electrode bump 31 of the micro LED chip 30 may be adhered to the adhesive material 11 of the backplane substrate 10 .
그리고 도 6 및 도 7에 도시된 바와 같이, S40단계에서 캐리어 기판(20)과 마이크로 LED 칩(30) 간에 전단력을 작용하여 백플레인 기판(10)으로부터 캐리어 기판(20)을 분리함으로써, 캐리어 기판(20)의 마이크로 LED 칩(30)들을 백플레인 기판(10) 위에 전사한다.And as shown in FIGS. 6 and 7, by separating the carrier substrate 20 from the backplane substrate 10 by applying a shear force between the carrier substrate 20 and the micro LED chip 30 in step S40, the carrier substrate ( The micro LED chips 30 of 20) are transferred onto the backplane substrate 10 .
이때 도 6에 도시된 바와 같이, 전단력을 작용하기 전에, 백플레인 기판(10)과 캐리어 기판(20) 사이에 작용했던 압착력을 제거할 수 있다. 즉 백플레인 기판(10)과 캐리어 기판(20) 사이에 압착력이 작용하는 상태에서는 전단력을 작용할 수도 있지만, 압착력이 제거된 상태가 전단력을 보다 원활하게 작용할 수 있다. 따라서 백플레인 기판(10)과 캐리어 기판(20) 사이에 작용했던 압착력을 제거함으로써, 전단력이 쉽게 작용할 수 있는 환경을 제공할 수 있다.At this time, as shown in FIG. 6 , before the shear force is applied, the compressive force applied between the backplane substrate 10 and the carrier substrate 20 may be removed. That is, a shear force may be applied in a state in which the compression force is applied between the backplane substrate 10 and the carrier substrate 20 , but the shear force may be more smoothly applied in a state in which the compression force is removed. Accordingly, by removing the compressive force acting between the backplane substrate 10 and the carrier substrate 20 , it is possible to provide an environment in which the shear force can easily act.
이어서 도 7에 도시된 바와 같이, 백플레인 기판(10)에 대해서 캐리어 기판(20)을 X축 방향으로 이동시켜 전단력을 작용함으로써, 백플레인 기판(10)으로부터 캐리어 기판(20)을 분리한다.Next, as shown in FIG. 7 , the carrier substrate 20 is separated from the backplane substrate 10 by moving the carrier substrate 20 in the X-axis direction with respect to the backplane substrate 10 to apply a shearing force.
그리고 X축 방향으로 이동하여 백플레인 기판(10)으로부터 분리한 캐리어 기판(20)을 제거하기 위해서, 분리한 캐리어 기판(20)을 Y축 방향으로 들어 올리는 과정을 추가적으로 수행할 수 있다.In order to remove the carrier substrate 20 separated from the backplane substrate 10 by moving in the X-axis direction, a process of lifting the separated carrier substrate 20 in the Y-axis direction may be additionally performed.
본 실시예에서는 백플레인 기판(10)에 대해서 캐리어 기판(20)을 X축 방향으로 이동시켜 전단력을 작용하는 예를 개시하였지만 이것에 한정되는 것은 아니다. 예컨대 캐리어 기판(20)에 대해서 백플레인 기판(10)을 -X축 또는 X축 방향으로 이동시켜 전단력을 작용할 수 있다. 또는 캐리어 기판(20)과 백플레인 기판(10)을 X축에 대해서 서로 반대 방향으로 이동시켜 전단력을 작용할 수도 있다.In the present embodiment, an example in which a shear force is applied by moving the carrier substrate 20 in the X-axis direction with respect to the backplane substrate 10 is disclosed, but is not limited thereto. For example, a shear force may be applied by moving the backplane substrate 10 in the -X-axis or X-axis direction with respect to the carrier substrate 20 . Alternatively, a shear force may be applied by moving the carrier substrate 20 and the backplane substrate 10 in opposite directions with respect to the X-axis.
본 실시예에 따르면, 마이크로 LED 칩(30)을 전사할 때, 점착력의 차이와 전단력을 함께 이용함으로써, 전사 공정의 수율을 높일 수 있다. 즉 마이크로 LED 칩(30)들이 배열된 캐리어 기판(20)을 백플레인 기판(10) 위에 압착하여, 백플레인 기판(10)에 형성된 점착 물질(11)의 점착력을 이용하여 마이크로 LED 칩(30)들을 백플레인 기판(10)에 점착한 후, 캐리어 기판(20) 또는 백플레인 기판(10)을 서로 반대 방향으로 옆으로 이동시켜 전단력을 작용함으로써, 캐리어 기판(20)의 마이크로 LED 칩(30)들을 백플레인 기판(10) 위에 전사할 수 있다.According to the present embodiment, when the micro LED chip 30 is transferred, the yield of the transfer process can be increased by using the difference in adhesive force and the shear force together. That is, by pressing the carrier substrate 20 on which the micro LED chips 30 are arranged on the backplane substrate 10 , the micro LED chips 30 are attached to the backplane by using the adhesive force of the adhesive material 11 formed on the backplane substrate 10 . After adhering to the substrate 10, by moving the carrier substrate 20 or the backplane substrate 10 sideways in opposite directions to apply a shear force, the micro LED chips 30 of the carrier substrate 20 are attached to the backplane substrate ( 10) Can be transcribed on top.
이와 같은 본 실시예에 따른 전사 방법에 따르면, 점착력과 전단력을 함께 이용하기 때문에, 기존의 점착력만을 이용하는 전사 방법과 비교하여, 전사 공정의 수율을 높일 수 있다.According to the transfer method according to the present embodiment as described above, since both the adhesive force and the shear force are used, the yield of the transfer process can be increased compared to the conventional transfer method using only the adhesive force.
한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.On the other hand, the embodiments disclosed in the present specification and drawings are merely presented as specific examples to aid understanding, and are not intended to limit the scope of the present invention. It is apparent to those of ordinary skill in the art to which the present invention pertains that other modifications based on the technical spirit of the present invention can be implemented in addition to the embodiments disclosed herein.
[부호의 설명][Explanation of code]
10 : 백플레인 기판 11 : 점착 물질10: backplane substrate 11: adhesive material
13 : 격벽 20 : 캐리어 기판13: barrier rib 20: carrier substrate
30 : 마이크로 LED 칩 31 : 전극 범프30: micro LED chip 31: electrode bump

Claims (11)

  1. 백플레인 기판 위에 마이크로 LED 칩이 실장될 실장 영역을 구분하는 격벽을 형성하는 단계;forming a barrier rib on the backplane substrate to divide a mounting area in which the micro LED chip is to be mounted;
    하부면에 마이크로 LED 칩들이 배열된 캐리어 기판을 상기 백플레인 기판 위에 정렬하여, 상기 백플레인 기판의 실장 영역에 대응되게 마이크로 LED 칩들을 위치시키는 단계;arranging a carrier substrate on which micro LED chips are arranged on a lower surface of the backplane substrate, and positioning the micro LED chips to correspond to a mounting area of the backplane substrate;
    상기 백플레인 기판과 상기 캐리어 기판을 압착하여 상기 플레인 기판 위에 상기 마이크로 LED 칩들을 점착시키는 단계; 및adhering the micro LED chips on the plane substrate by pressing the backplane substrate and the carrier substrate; and
    상기 백플레인 기판에 대해서 상기 캐리어 기판을 수평 방향으로 이동시켜 상기 캐리어 기판과 상기 마이크로 LED 칩 간에 전단력을 작용하여 상기 백플레인 기판으로부터 상기 캐리어 기판을 분리하는 단계;separating the carrier substrate from the backplane substrate by moving the carrier substrate in a horizontal direction with respect to the backplane substrate to apply a shear force between the carrier substrate and the micro LED chip;
    를 포함하는 마이크로 LED 칩 전사 방법.Micro LED chip transfer method comprising a.
  2. 제1항에 있어서, 상기 캐리어 기판을 분리하는 단계에서,According to claim 1, In the step of separating the carrier substrate,
    상기 캐리어 기판과 상기 마이크로 LED 칩 간에 전단력을 작용하기 전에, 상기 백플레인 기판과 상기 캐리어 기판 사이에 작용하는 압착력을 제거하는 것을 특징으로 하는 마이크로 LED 칩 전사 방법.Before the shear force is applied between the carrier substrate and the micro LED chip, the micro LED chip transfer method, characterized in that the pressing force acting between the backplane substrate and the carrier substrate is removed.
  3. 제1항에 있어서, 상기 백플레인 기판은,According to claim 1, wherein the backplane substrate,
    각각의 실장 영역에 마이크로 LED 칩이 압착에 의해 점착될 점착 물질이 형성되어 있는 것을 특징으로 하는 마이크로 LED 칩 전사 방법.A micro LED chip transfer method, characterized in that an adhesive material to which the micro LED chip is to be adhered by compression is formed in each mounting area.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 격벽의 높이는 상기 마이크로 LED 칩의 높이보다는 낮은 것을 특징으로 하는 마이크로 LED 칩 전사 방법.The height of the barrier rib is a micro LED chip transfer method, characterized in that lower than the height of the micro LED chip.
  5. 제4항에 있어서, 상기 격벽을 형성하는 단계에서,The method of claim 4, wherein in the step of forming the partition wall,
    상기 격벽은 복수의 사각 격자로 형성되며, 상기 복수의 사각 격자는 각각 상기 실장 영역을 형성하는 것을 특징으로 하는 마이크로 LED 칩 전사 방법.The barrier rib is formed of a plurality of square grids, and each of the plurality of square grids forms the mounting area.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 실장 영역은 상기 마이크로 LED 칩의 면적보다 큰 것을 특징으로 하는 마이크로 LED 칩 전사 방법.The micro LED chip transfer method, characterized in that the mounting area is larger than the area of the micro LED chip.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 격벽은 검정색으로, 픽셀 간의 구분을 위한 BM(Black Matrix) 기능을 하는 것을 특징으로 하는 마이크로 LED 칩 전사 방법.The barrier rib is black, and the micro LED chip transfer method, characterized in that it functions as a BM (Black Matrix) for distinguishing between pixels.
  8. 제1항에 있어서, 상기 점착시키는 단계에서,According to claim 1, In the step of adhering,
    상기 캐리어 기판과 상기 마이크로 LED 칩과의 점착력보다 상기 백플레인 기판과 상기 마이크로 LED 칩과의 점착력이 높은 것을 특징으로 하는 마이크로 LED 칩 전사 방법.The micro LED chip transfer method, characterized in that the adhesion between the backplane substrate and the micro LED chip is higher than the adhesion between the carrier substrate and the micro LED chip.
  9. 제1항에 있어서,According to claim 1,
    상기 점착시키는 단계는 상기 백플레인 기판의 상부면을 향하여 수직 방향으로 상기 캐리어 기판을 압착하고,The adhering includes pressing the carrier substrate in a vertical direction toward the upper surface of the backplane substrate,
    상기 분리하는 단계는 상기 수직 방향에 수평한 방향으로 전단력을 작용하는 것을 특징으로 하는 마이크로 LED 칩 전사 방법.The separating step is a micro LED chip transfer method, characterized in that the shear force is applied in a horizontal direction to the vertical direction.
  10. 하부면에 마이크로 LED 칩들이 배열된 캐리어 기판을 상부면에 점착 물질이 형성된 백플레인 기판 위에 정렬하는 단계;aligning the carrier substrate on which the micro LED chips are arranged on the lower surface on the backplane substrate on which the adhesive material is formed on the upper surface;
    상기 백플레인 기판과 상기 캐리어 기판을 압착하여 상기 백플레인 기판 위에 상기 마이크로 LED 칩들을 점착시키는 단계; 및adhering the micro LED chips on the backplane substrate by pressing the backplane substrate and the carrier substrate; and
    상기 백플레인 기판에 대해서 상기 캐리어 기판을 수평 방향으로 이동시켜 상기 캐리어 기판과 상기 마이크로 LED 칩 간에 전단력을 작용하여 상기 백플레인 기판으로부터 상기 캐리어 기판을 분리하는 단계;separating the carrier substrate from the backplane substrate by moving the carrier substrate in a horizontal direction with respect to the backplane substrate to apply a shear force between the carrier substrate and the micro LED chip;
    를 포함하는 마이크로 LED 칩 전사 방법.Micro LED chip transfer method comprising a.
  11. 제10항에 있어서, 상기 캐리어 기판을 분리하는 단계에서,The method of claim 10, wherein in the step of separating the carrier substrate,
    상기 캐리어 기판과 상기 마이크로 LED 칩 간에 전단력을 작용하기 전에, 상기 백플레인 기판과 상기 캐리어 기판 사이에 작용하는 압착력을 제거하는 것을 특징으로 하는 마이크로 LED 칩 전사 방법.Before the shear force is applied between the carrier substrate and the micro LED chip, the micro LED chip transfer method, characterized in that the pressing force acting between the backplane substrate and the carrier substrate is removed.
PCT/KR2021/013793 2020-12-15 2021-10-07 Method for transferring micro led chips WO2022131501A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0175117 2020-12-15
KR1020200175117A KR102559426B1 (en) 2020-12-15 2020-12-15 Micro LED chip transfer method

Publications (1)

Publication Number Publication Date
WO2022131501A1 true WO2022131501A1 (en) 2022-06-23

Family

ID=82059598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013793 WO2022131501A1 (en) 2020-12-15 2021-10-07 Method for transferring micro led chips

Country Status (2)

Country Link
KR (1) KR102559426B1 (en)
WO (1) WO2022131501A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014568A1 (en) * 2022-07-12 2024-01-18 엘지전자 주식회사 Display device using light-emitting element, and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761026B2 (en) * 2005-06-03 2011-08-31 ソニー株式会社 Element transfer device, element transfer method, and display device manufacturing method
KR20140007306A (en) * 2013-11-29 2014-01-17 서울반도체 주식회사 Multi-chip led package
KR20170135651A (en) * 2016-05-31 2017-12-08 엘지전자 주식회사 Display device using semiconductor light emitting device and method for manufacturing
JP2020043188A (en) * 2018-09-10 2020-03-19 東レエンジニアリング株式会社 Manufacturing method for packaging substrate and packaging substrate
US20200294976A1 (en) * 2019-03-15 2020-09-17 Lumens Co., Ltd. Method for constructing micro-led display module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160008382A (en) * 2014-07-14 2016-01-22 서울대학교산학협력단 Semiconductor thin film structure, method and apparatus for separating nitride semiconductor using the same
KR101800367B1 (en) * 2016-08-24 2017-11-28 한국기계연구원 Method of transferring a micro-device and Micro-device substrate manufactured by the same
KR102311727B1 (en) * 2019-05-29 2021-10-13 서울대학교산학협력단 Electronic device and method of transferring electronic element using stamping and magnetic field alignment
KR102233158B1 (en) * 2019-07-23 2021-03-29 엘지전자 주식회사 Method for manufacturing display device using semiconductor light emitting diode
KR102158183B1 (en) 2019-09-16 2020-09-21 한국전자기술연구원 LED mounted display and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761026B2 (en) * 2005-06-03 2011-08-31 ソニー株式会社 Element transfer device, element transfer method, and display device manufacturing method
KR20140007306A (en) * 2013-11-29 2014-01-17 서울반도체 주식회사 Multi-chip led package
KR20170135651A (en) * 2016-05-31 2017-12-08 엘지전자 주식회사 Display device using semiconductor light emitting device and method for manufacturing
JP2020043188A (en) * 2018-09-10 2020-03-19 東レエンジニアリング株式会社 Manufacturing method for packaging substrate and packaging substrate
US20200294976A1 (en) * 2019-03-15 2020-09-17 Lumens Co., Ltd. Method for constructing micro-led display module

Also Published As

Publication number Publication date
KR20220085862A (en) 2022-06-23
KR102559426B1 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
WO2018124507A1 (en) Tiling multi-display and manufacturing method therefor
WO2022131501A1 (en) Method for transferring micro led chips
WO2019006826A1 (en) Flexible display panel and preparation method therefor, and flexible display apparatus
WO2019080241A1 (en) Display panel motherboard and method for cutting display panel motherboard
WO2021125775A1 (en) Micro-led transfer method and micro-led transfer apparatus
WO2012128468A2 (en) Device for attaching film for display panel and method for attaching film using same
WO2020196996A1 (en) Display device
WO2020130399A1 (en) Pressure jig apparatus for bringing electrode lead into close contact with bus bar and battery module manufacturing system including same
WO2019240534A1 (en) Backlight unit manufacturing method using mini led
WO2021002653A1 (en) Method and apparatus for manufacturing led panel
KR20190083026A (en) Display device
EP3857601A1 (en) Display apparatus
WO2020080612A1 (en) Display device
KR100809031B1 (en) Apparatus and method for separating sticks
WO2020256266A1 (en) Panel conveying tray and panel conveying method using same
WO2020122536A1 (en) Liquid crystal panel and liquid crystal panel etching method
WO2020159150A1 (en) Display panel and display device having the same
WO2012165691A1 (en) Stereoscopic image sensor package and method for manufacturing same
WO2017159952A1 (en) Label feeder, label pickup device and label pickup method
WO2022030721A1 (en) Apparatus for separating window glasses and method therefor
WO2019078404A1 (en) Method for forming side pattern of display panel
WO2020213790A1 (en) Display device
WO2021118027A1 (en) Led-mounted display and manufacturing method thereof
WO2017007214A1 (en) Display device
WO2018012865A1 (en) Curved display and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906806

Country of ref document: EP

Kind code of ref document: A1