WO2022131377A1 - Gas-permeable waterproof sheet - Google Patents

Gas-permeable waterproof sheet Download PDF

Info

Publication number
WO2022131377A1
WO2022131377A1 PCT/JP2021/046842 JP2021046842W WO2022131377A1 WO 2022131377 A1 WO2022131377 A1 WO 2022131377A1 JP 2021046842 W JP2021046842 W JP 2021046842W WO 2022131377 A1 WO2022131377 A1 WO 2022131377A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
sheet
breathable
fiber aggregate
waterproof sheet
Prior art date
Application number
PCT/JP2021/046842
Other languages
French (fr)
Japanese (ja)
Inventor
魏 呉
直人 木藤
浩義 曽田
Original Assignee
エム・テックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エム・テックス株式会社 filed Critical エム・テックス株式会社
Priority to JP2022507710A priority Critical patent/JPWO2022131377A1/ja
Publication of WO2022131377A1 publication Critical patent/WO2022131377A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • A01G13/02Protective coverings for plants; Coverings for the ground; Devices for laying-out or removing coverings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/03Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Definitions

  • the present invention relates to a breathable tarpaulin. More specifically, the present invention relates to a waterproof sheet through which a gas such as water vapor and air can permeate and water as a liquid cannot permeate.
  • plants such as vegetables and / or fruits are cultivated by soil arranged on a water retention sheet laid on cultivated land.
  • the water-retaining sheet does not allow liquid or gas to pass through, it has a high ability to retain the water supplied to the soil, but it may lead to problems such as damage to the roots of plants and / or rot.
  • a moisture-permeable waterproof sheet obtained by laminating a non-porous film made of a block copolymerized polyester having a hard segment and a soft segment and a polyester-based non-woven fabric having a predetermined fiber diameter and texture without using an adhesive is known. (See, for example, Patent Document 1). According to this, it is said that it is possible to provide a thin and lightweight moisture-permeable waterproof sheet having both excellent moisture permeability and waterproofness and excellent productivity.
  • a wooden structure obtained by applying a hot melt adhesive to a first non-woven sheet to form a moisture-permeable adhesive uncured film and then curing the hot melt adhesive by a step of laminating and crimping the second non-woven sheet.
  • Breathable waterproof sheets for houses are known (see, for example, Patent Document 2). According to this, it is said that a moisture-permeable waterproof sheet having high waterproofness and moisture permeability and excellent strength and durability can be manufactured inexpensively and quickly.
  • Non-Patent Document 1 a layer made of water-repellent sand obtained by applying a water-repellent coating to the surface of sand particles has waterproofness and moisture permeability.
  • the permeated water that has permeated the soil layer is collected and used as irrigation water, or by passing water vapor through the layer of water-repellent sand, seawater It is known that it can be used for desalination (see, for example, Non-Patent Document 2).
  • the moisture-permeable waterproof sheet having the above-mentioned laminated structure has a complicated manufacturing process, which may lead to problems such as a decrease in production efficiency and / or an increase in manufacturing cost.
  • particles having a water-repellent coating such as the above-mentioned water-repellent sand
  • a container such as a bag for accommodating the potting soil as described above with water-repellent sand.
  • a breathable waterproof sheet having a simple structure and easily manufactured that is, a sheet-like member that allows gas such as water vapor and air to pass through but does not allow water to pass through).
  • the present inventor has made a sheet made of a polymer material having an oil-friendly property and a fiber aggregate having a structure in which fine fibers having a predetermined fiber diameter are irregularly entangled with each other.
  • the breathable waterproof sheet according to the present invention (hereinafter, may be referred to as "the sheet of the present invention") is made of a first material which is a polymer material having lipophilicity and has a diameter of 300 nm or more. Moreover, it is a breathable waterproof sheet containing a fiber aggregate which is an aggregate of the first fiber which is a fiber having a fiber diameter of less than 5000 nm. In the fiber aggregate, the first fibers are irregularly entangled with each other.
  • the central fiber diameter which is the mode in the quantity distribution of the fiber diameter of the first fiber, is 800 nm or more and 3000 nm or less.
  • the coefficient of variation in the quantity distribution of the fiber diameter of the first fiber is 0.50 or more and 0.65 or less. More preferably, the bulk density of the fiber aggregate is 0.01 g / cm 3 or more and 0.10 g / cm 3 or less.
  • the sheet of the present invention contains a fiber aggregate which is an aggregate in which first fibers which are fine fibers having a predetermined fiber diameter and which are made of a polymer material having lipophilicity are irregularly entangled with each other.
  • the central fiber diameter which is the mode in the quantity distribution of the fiber diameter of the first fiber, is 800 nm or more and 3000 nm or less. More preferably, the coefficient of variation in the quantity distribution of the fiber diameter of the first fiber is 0.50 or more and 0.65 or less. More preferably, the bulk density of the fiber aggregate is 0.01 g / cm 3 or more and 0.10 g / cm 3 or less.
  • the sheet of the present invention allows gas such as water vapor and air to pass through, but does not allow water to pass through. That is, according to the sheet of the present invention, a breathable waterproof sheet having a simple structure and easily manufactured (that is, a sheet-like member that allows gas such as water vapor and air to pass through but does not allow water to pass through). Can be provided.
  • first sheet the breathable waterproof sheet according to the first embodiment of the present invention.
  • the first sheet comprises a fiber aggregate which is an aggregate of the first fiber which is a fiber having a fiber diameter of 300 nm or more and less than 5000 nm, which is made of the first material which is a polymer material having lipophilicity. It is a breathable waterproof sheet.
  • the first material is not particularly limited as long as it is a polymer material having lipophilicity and can withstand the usage environment and usage conditions as a breathable waterproof sheet.
  • Specific examples of the first material include polyolefins and the like.
  • the first material is at least one polymeric material selected from the group consisting of polyethylene, polypropylene and polybutylene.
  • the first material may be a combination of a plurality of different types of polymer materials having lipophilicity.
  • the first fiber may be a combination of fibers made of a plurality of different lipophilic polymer materials.
  • the fiber aggregate may contain a small amount of fibers made of a polymer material different from the first material, as long as the overall breathability and waterproofness of the fiber aggregate are not impaired.
  • the fiber diameter of the first fiber constituting the fiber aggregate can be measured, for example, by image analysis of the fiber aggregate taken by a scanning electron microscope (SEM). For example, the distribution of the number of imaging points with respect to the average value of the fiber diameters measured at each of the plurality of imaging points may be regarded as the quantity distribution of the fiber diameter.
  • the fiber diameter of the first fiber is 300 nm or more and less than 5000 nm.
  • the first fiber having a fiber diameter within this range is capable of stable production and can simultaneously achieve good air permeability and good waterproof property in the first sheet.
  • the first fibers are irregularly entangled with each other.
  • the state in which the first fibers are entangled irregularly means that the entanglement of the first fibers is not a simple entanglement due to, for example, twisting in a specific direction, but the first fibers are tertiary. It means a state of being intertwined in an original and complicated manner. Thereby, the first sheet can simultaneously achieve good breathability and good waterproofness.
  • FIG. 1 is a photograph showing an example of the appearance of the fiber aggregate constituting the first sheet
  • FIG. 2 is a scanning electron microscope (SEM) photograph showing an example of the structure of the fiber aggregate constituting the first sheet.
  • the fiber aggregates constituting the first sheet illustrated in FIG. 1 (a) have a substantially lumpy appearance, but the fiber aggregates actually contained in the first sheet are exemplified in FIG. 1 (b). It is formed into a sheet-like shape so as to be used.
  • FIGS. 1 and 2 as an example of the fiber aggregate constituting the first sheet, an external photograph and an SEM photograph of the fiber aggregate made of polypropylene fibers having a fiber diameter of 300 nm to 5000 nm are exemplified. ..
  • the first material is polypropylene
  • the first fiber is a polypropylene fiber having the above fiber diameter.
  • the first fibers are irregularly entangled with each other.
  • the fiber aggregate constituting the first sheet is made of the first material which is a lipophilic polymer material and has a fiber diameter of 300 nm or more and less than 5000 nm. Is entwined irregularly. As a result, according to the first sheet, good breathability and good waterproofness can be achieved at the same time.
  • the fiber aggregate constituting the first sheet shall be manufactured by applying a fine fiber manufacturing method widely adopted in the technical field, such as the so-called "melt blow method” and “dry spinning method”. Can be done. Since the details of the "melt blow method” and the “dry spinning method” are well known to those skilled in the art, the description thereof is omitted here. In these manufacturing methods, in the process of producing the first fiber, which is a fine fiber made of the first material, the first fibers are irregularly entangled with each other to obtain a fiber aggregate as described above. can.
  • the fiber aggregate constituting the first sheet is made of the first material which is a lipophilic polymer material and has a fiber diameter of 300 nm or more and less than 5000 nm. Is entwined irregularly.
  • the fiber aggregate constituting the first sheet shall be manufactured by applying a fine fiber manufacturing method widely adopted in the technical field, such as the so-called "melt blow method” and "dry spinning method”. Can be done. That is, according to the first sheet, a breathable waterproof sheet having a simple structure and easily manufactured (that is, a sheet-like member that allows gas such as water vapor and air to pass through but does not allow water to pass through). Can be provided.
  • Second Embodiment the breathable waterproof sheet (hereinafter, may be referred to as “second sheet”) according to the second embodiment of the present invention will be described.
  • the fiber aggregate constituting the first sheet is made of the first material which is a lipophilic polymer material and has a fiber diameter of 300 nm or more and less than 5000 nm. Is entwined irregularly. As a result, according to the first sheet, good breathability and good waterproofness can be achieved at the same time. As a result of further research, the present inventor has found that the above effect is more remarkably achieved when the mode value in the quantity distribution of the fiber diameter of the first fiber constituting the fiber aggregate is within a predetermined range. I found it.
  • the second sheet is the above-mentioned first sheet, and is a breathable waterproof sheet characterized in that the central fiber diameter of the first fiber constituting the fiber aggregate is 800 nm or more and 3000 nm or less.
  • the "central fiber diameter” is the mode in the quantity distribution of the fiber diameter of the first fiber constituting the fiber aggregate.
  • the "central fiber diameter” means the fiber diameter having the highest frequency of appearance in the quantity distribution of the fiber diameter of the first fiber.
  • FIG. 3 is a schematic graph showing two examples of the quantity distribution of the fiber diameters of the first fibers constituting the fiber aggregate of the second sheet.
  • a scanning electron microscope (SEM) photograph is taken at a plurality of points of the fiber aggregate, and the average value of the fiber diameters measured by image analysis for each point is calculated as the fiber diameter at each place. It can be obtained by graphing the relationship between the calculated fiber diameter and the frequency of appearance (number of imaging locations). That is, the horizontal axis and the vertical axis of the graph illustrated in FIG. 3 represent the appearance frequency (number of imaging locations) and the fiber diameter, respectively, and the graph shows the quantity distribution of the fiber diameter of the first fiber.
  • the first fiber having a central fiber diameter of 800 nm which is the fiber diameter having the highest frequency of appearance (number of imaging locations) (that is, the most frequent value in the quantity distribution of the fiber diameter of the first fiber).
  • the quantity distribution of the fiber diameter in the fiber aggregate composed of is shown.
  • FIG. 3B shows the quantity distribution of fiber diameters in the fiber aggregate composed of the first fibers having a central fiber diameter of 1500 nm.
  • the central fiber diameter that can be specified as described above is within the range of 800 nm or more and 3000 nm or less. Thereby, the second sheet can simultaneously achieve good breathability and good waterproofness at a higher level.
  • FIG. 4 is a schematic graph showing two examples of the quantity distribution of the fiber diameters of the fibers constituting the fiber aggregate of the breathable waterproof sheet which does not correspond to the present invention.
  • FIG. 4A shows the quantity distribution of the fiber diameter in the fiber aggregate composed of the first fiber having the central fiber diameter of 4500 nm.
  • FIG. 4B shows the quantity distribution of the fiber diameters of the fibers contained in the nonwoven fabric constituting the breathable waterproof sheet (hereinafter, may be referred to as “conventional sheet”) according to the prior art.
  • the non-woven fabric constituting the conventional sheet illustrated in FIG. 4B exhibits waterproofness by itself (that is, in a state where it is not laminated with a waterproof layer such as a non-porous film as described above). I can't.
  • the "center fiber diameter" of the first fiber is, for example, the temperature and discharge amount of the first liquid which is a liquid containing the first material and the first liquid contained in the discharged first liquid in the process of manufacturing the fiber aggregate. It can be changed by adjusting the manufacturing conditions such as the temperature and the flow velocity of the gas that conveys the material to the downstream side while stretching it in a thread shape.
  • the central fiber diameter of the first fiber constituting the fiber aggregate is 800 nm or more and 3000 nm or less.
  • third sheet the breathable waterproof sheet according to the third embodiment of the present invention.
  • the central fiber diameter of the first fiber constituting the fiber aggregate is 800 nm or more and 3000 nm or less.
  • the second sheet can simultaneously achieve good breathability and good waterproofness at a higher level.
  • the present inventor has found that the above effect is more reliably achieved when the degree of variation in the fiber diameter of the first fiber constituting the fiber aggregate is within a predetermined range where the degree of variation is large to some extent. rice field.
  • the third sheet is the above-mentioned second sheet, and the coefficient of variation in the quantity distribution of the fiber diameter of the first fiber constituting the fiber aggregate is 0.50 or more and 0.65 or less. It is a characteristic breathable tarpaulin.
  • the "coefficient of variation" referred to here is an index indicating the magnitude of variation in the quantity distribution of the fiber diameter of the first fiber, and as is well known to those skilled in the art, the standard deviation of the quantity distribution of the fiber diameter of the first fiber. Can be obtained by dividing by the average value of the fiber diameters of the first fibers.
  • FIG. 5 shows the fibers contained in the fiber aggregate constituting the breathable tarpaulin (third sheet) according to the third embodiment of the present invention and the non-woven fabric constituting the breathable tarpaulin (conventional sheet) according to the prior art. It is a schematic graph which shows the distribution of a fiber diameter.
  • FIG. 5A shows the distribution of the fiber diameter of the first fiber having a central fiber diameter of 1500 nm illustrated in FIG. 3B, and the coefficient of variation is 0.59.
  • FIG. 5 (b) shows the distribution of the fiber diameter of the fiber having a central fiber diameter of 20 ⁇ m contained in the nonwoven fabric constituting the conventional sheet exemplified in FIG. 4 (b), and the coefficient of variation is 0.18. be.
  • the coefficient of variation of the fiber diameter distribution in the fiber aggregate of the breathable waterproof sheet (sheet of the present invention) according to the present invention is the non-woven fabric of the conventional sheet. It is significantly larger than the coefficient of variation of the fiber diameter distribution in. As a result, the sheet of the present invention can more reliably achieve both good breathability and good waterproofness.
  • the above-mentioned “variation coefficient” is also the same as the above-mentioned "center fiber diameter" of the first fiber, and in the process of manufacturing the fiber aggregate, for example, the temperature and the discharge amount of the first liquid which is a liquid containing the first material. Further, the first material contained in the discharged first liquid can be changed by adjusting the production conditions such as the temperature and the flow velocity of the gas conveyed to the downstream side while stretching in a thread shape.
  • the coefficient of variation in the quantity distribution of the fiber diameter of the first fiber constituting the fiber aggregate is 0.50 or more and 0.65 or less. As a result, the third sheet can more reliably achieve both good breathability and good waterproofness.
  • the breathable waterproof sheet (hereinafter, may be referred to as “fourth sheet”) according to the fourth embodiment of the present invention will be described.
  • the coefficient of variation in the quantity distribution of the fiber diameter of the first fiber constituting the fiber aggregate is 0.50 or more and 0.65 or less.
  • the third sheet can more reliably achieve both good breathability and good waterproofness.
  • the present inventor has found that the above effect is more reliably achieved when the bulk density of the fiber aggregate is within a predetermined range.
  • the fourth sheet is the second sheet or the third sheet described above, and is characterized in that the bulk density of the fiber aggregate is 0.01 g / cm 3 or more and 0.10 g / cm 3 or less. It is a breathable waterproof sheet.
  • “bulk density” is a value obtained by dividing the mass of an object by the apparent volume.
  • the porosity which has a strong correlation with the waterproofness of the fourth sheet, is affected by, for example, the quantity distribution of the fiber diameters of the first fibers constituting the fiber aggregate and the degree of entanglement between the first fibers, and is affected by the above-mentioned “bulk”. It is roughly inversely proportional to "density”. That is, a low bulk density indicates a high porosity, and a high bulk density indicates a low porosity.
  • water repellency is a property that can contribute to waterproofness, and generally, the higher the water repellency, the higher the waterproofness.
  • the fiber aggregate When the bulk density of the fiber aggregate composed of the first fibers is 0.01 g / cm 3 or more, the fiber aggregate has high water repellency, so that, for example, water as a liquid comes into contact with the fiber aggregate. Even in such a case, it is difficult for water to permeate the inside of the fiber aggregate, and as a result, it is difficult for water to permeate the fiber aggregate. That is, when the bulk density of the fiber aggregate composed of the first fibers is 0.01 g / cm 3 or more, the fiber aggregate can exhibit good waterproofness.
  • the bulk density of the fiber aggregate contained in the fourth sheet is 0.10 g / cm 3 or less.
  • the bulk density of the fiber aggregate is 0.01 g / cm 3 or more and 0.10 g / cm 3 or less.
  • the bulk density of the fiber aggregate contained in the fourth sheet is 0.02 g / cm 3 or more and 0.05 g / cm 3 or less. More preferably, the bulk density of the fiber aggregate contained in the fourth sheet is 0.04 g / cm 3 or more and 0.05 g / cm 3 or less.
  • the breathable waterproof sheet (hereinafter, may be referred to as “fifth sheet”) according to the fifth embodiment of the present invention will be described.
  • the fiber aggregate has good air permeability and good waterproofing. It is possible to achieve both sex more reliably.
  • the fourth sheet exhibits a fourth to fifth grade wet state in the above-mentioned spray test.
  • the fifth sheet is the fourth sheet described above, and is characterized in that the fiber aggregate exhibits a fifth to fourth grade wet state in a water repellency test according to JIS L 1092: 2009. It is a breathable tarpaulin.
  • the water repellency test based on JIS L 1092: 2009 is also called “spray test", and 250 mL of water is applied to the test piece fixed to the holding frame from a predetermined nozzle for a period of 25 to 30 seconds. It is a test method to evaluate by the grades listed below according to the wet state of the test piece after spraying.
  • Grade 1 The one that shows wetness on the entire surface.
  • Grade 2 Wetness is shown on half of the surface, and small individual wettings permeate the cloth.
  • Grade 3 Shows small individual water droplet-like wetness on the surface.
  • Grade 4 Those that do not get wet on the surface but show the adhesion of small water droplets.
  • Grade 5 No wetness or water droplets on the surface.
  • Table 1 below shows the differences in water repellency when the bulk density of the fiber aggregate having a thickness of 2 mm and the central fiber diameter of the first fiber constituting the fiber aggregate are variously changed.
  • the water repellency data shown in Table 1 show the wet state grade specified in the water repellency test according to JIS L 1092: 2009 described above.
  • the wet state grade in the above-mentioned spray test varies depending on the combination of the central fiber diameter, which is the most frequent value in the quantity distribution of the fiber diameters constituting the fiber aggregate, and the bulk density of the fiber aggregate. do.
  • the wet state grade in the spray test can be graded 4 to 5 by appropriately selecting the combination of the central fiber diameter and the bulk density in the fiber aggregate. .. Since the fiber aggregate has high water repellency, it is difficult for water to permeate into the inside of the fiber aggregate even when water as a liquid is in contact with the fiber aggregate, and as a result, the fiber aggregate is not likely to permeate. Water does not easily permeate through the fiber aggregate, and good waterproofness can be exhibited.
  • the non-woven fabric of the conventional sheet made of fibers having a central fiber diameter of 20 ⁇ m has a high bulk density of 0.07 g / cm 3 , but the wet state grade in the above-mentioned spray test is second grade. It has become. That is, the non-woven fabric has poor water repellency, and the conventional sheet containing the non-woven fabric cannot exhibit sufficient waterproofness.
  • the wet state of the non-woven fabric constituting the conventional sheet is grade 2
  • the wet state of the fiber aggregate constituting the fifth sheet is grade 4 or 5. That is, the fiber aggregate constituting the fifth sheet has extremely high water repellency as compared with the non-woven fabric constituting the conventional sheet.
  • the fiber aggregate constituting the fifth sheet has high water repellency, water into the inside of the fiber aggregate constituting the fifth sheet even when the fifth sheet is in contact with water as a liquid, for example. It is difficult for water to permeate through the fifth sheet as a result. That is, according to the fifth sheet, even when the water is in contact with water as a liquid, the possibility that the water permeates the fifth sheet is low, and good waterproofness can be exhibited.
  • the breathable waterproof sheet (hereinafter, may be referred to as “sixth sheet”) according to the sixth embodiment of the present invention will be described.
  • the fiber aggregates constituting the breathable waterproof sheet (sheet of the present invention) according to the present invention have a fine fiber diameter that is irregularly entangled with each other. It is an aggregate made of fibers and can achieve good breathability and good waterproofness at the same time. Further, in the above-mentioned 4th sheet and 5th sheet, attention is paid to water repellency as one of the properties that can contribute to waterproofness, and the fiber aggregate has a bulk density in a suitable range in which the desired water repellency can be achieved. Has. As a result, according to the 4th sheet and the 5th sheet, even when the fiber is in contact with water as a liquid, it is difficult for water to permeate into the fiber aggregate, and good waterproofness is exhibited. Can be done.
  • the sheet of the present invention is applied, for example, it is assumed that water as a liquid is not only in contact with the fiber aggregate constituting the sheet of the present invention but also a certain amount of water pressure is applied. To. Needless to say, it is desirable that the breathable waterproof sheet can exhibit good waterproofness and good breathability even in such a situation where a certain amount of water pressure is applied to the fiber aggregate.
  • the present inventor has a breathability from the side of the sheet of the present invention that is not in contact with water to the side that is in contact with water in a situation where a predetermined water pressure is applied to the sheet of the present invention (hereinafter, "waterproof breathability").
  • a test was conducted to quantitatively evaluate). The contents of the test will be described in detail below.
  • FIG. 6 is a schematic perspective view showing an example of the configuration of the test device for evaluating the waterproof air permeability described above.
  • the test device 100 illustrated in FIG. 6 includes a lower chamber 110 and an upper chamber 120.
  • the lower chamber 110 is a container having a bottomed cylindrical shape, and an introduction pipe 111 for introducing air into the inside of the lower chamber 110 from a high-precision dispenser for pressurization (not shown) is provided on the side surface.
  • the chamber 120 is a container having a cylindrical shape, and the upper end thereof is open.
  • the inner diameters of the lower chamber 110 and the upper chamber 120 are both 60 mm, and the height of the upper chamber 120 is 135 mm (that is, the internal volume of the upper chamber 120 is about 380 cm 3 ).
  • Flange portions are formed at the upper end portion of the lower chamber 110 and the lower end portion of the upper chamber 120, respectively, and while sandwiching the fiber aggregate as the test piece 130 between the flange portions of both, the lower chamber 110 It is configured so that the upper end portion and the lower end portion of the upper chamber 120 can be connected via the test piece 130.
  • 200 cm 3 of water 140 is injected into the upper chamber.
  • FIG. 7 shows the thickness of the test piece 130 and the above-mentioned aeration start pressure, which are the thickness of the test piece 130 and the fiber aggregate having a bulk density of 0.05 g / cm 3 and consisting of the first fiber having a central fiber diameter of 800 nm, 1500 nm, 2000 nm and 4500 nm. It is a graph which shows the relationship with. As shown in FIG. 7, it can be seen that the aeration start pressure has a positive correlation with the thickness of the test piece, and the two are in a substantially proportional relationship.
  • test piece having a central fiber diameter of 800 nm and a thickness of 40 mm also exhibited a low aeration starting pressure of 3700 Pa, so that the sheet of the present invention is good. It can be seen that it has excellent breathability.
  • FIG. 8 is a graph showing the relationship between the bulk density and the aeration starting pressure of the test piece 130 made of the first fiber having the central fiber diameters of 800 nm, 1500 nm, 2000 nm and 4500 nm and made of the fiber aggregate having the thickness of 5 mm.
  • FIG. 9 shows 0.02 to 0.
  • the test piece 130 made of a first fiber having a central fiber diameter of 1500 nm and a fiber aggregate having a thickness of 5 mm (constituting the fourth sheet described above).
  • It is a graph which shows the relationship between the bulk density of 05 g / cm 3 and the aeration start pressure. As shown in FIGS.
  • the aeration start pressure has a positive correlation with the bulk density of the test piece, and the higher the bulk density, the larger the aeration start pressure (that is, the air permeability is the bulk of the test piece). It has a negative correlation with density, and the higher the bulk density, the lower the air permeability).
  • the aeration starting pressure is sufficiently low at about 400 Pa even at a bulk density of 0.05 g / cm 3 .
  • the numerical values shown in parentheses in the graph of FIG. 8 indicate the grade of water repellency in the above-mentioned spray test, and it can be seen that the higher the bulk density of the fiber aggregate, the higher the water repellency.
  • the bulk density of the fiber aggregate constituting the sheet of the present invention is 0.01 g / cm 3 or more.
  • the sixth sheet is any of the breathable waterproof sheets (sheets of the present invention) according to various embodiments of the present invention, including the above-mentioned first to fifth sheets, and is evaluated for waterproof breathability.
  • It is a breathable waterproof sheet characterized in that the ventilation start pressure measured by the test is 400 Pa or less.
  • the waterproof breathability evaluation test is a process of increasing the air pressure applied to the other side of the breathable waterproof sheet in a state where a water pressure of 71 mmH2O is applied to one side of the breathable waterproof sheet. It is a test to measure the pressure difference on both sides of the breathable waterproof sheet when air bubbles start to be generated on the side of.
  • the ventilation start pressure refers to the above-mentioned atmospheric pressure difference measured in the waterproof air permeability evaluation test.
  • the aeration start pressure measured by the above-mentioned waterproof air permeability evaluation test is the center which is the most frequent value in the quantity distribution of the fiber diameters constituting the fiber aggregate. It varies depending on the combination of the fiber diameter, the bulk density of the fiber aggregate, and the thickness of the fiber aggregate.
  • the ventilation start pressure measured by the waterproof air permeability evaluation test is set to a desired value (for example, by appropriately selecting the combination of the central fiber diameter, the bulk density and the thickness in the fiber aggregate. , 400 Pa or less).
  • the fiber aggregate constituting the sixth sheet exhibits a ventilation starting pressure of 400 Pa or less in the waterproof breathability evaluation test described above. That is, according to the sixth sheet, even when a predetermined water pressure is applied to the fiber aggregate, it is possible to exhibit good air permeability while exhibiting good waterproof property.
  • the breathability decreases as the thickness of the fiber aggregate increases.
  • the larger the thickness of the fiber aggregate the higher the waterproof property.
  • the thicker the fiber aggregate is, the more it is evaluated by, for example, a water resistance test based on JIS L 1092: 2009 A method (low water pressure method) and B method (high water pressure method). Increases water resistance.
  • the mechanical strength of the sheet of the present invention (for example, breaking strength, etc.) also increases as the thickness of the fiber aggregate increases.
  • these properties such as breathability, waterproofness, water resistance and mechanical strength are also influenced by the bulk density of the fiber aggregate. Therefore, depending on the performance as a breathable waterproof sheet required in the application in which the sheet of the present invention is used, the fiber diameter and distribution thereof of the first fiber constituting the fiber aggregate and the bulk density and thickness of the fiber aggregate are determined. It will be adjusted accordingly.
  • the thickness of the fiber aggregate constituting the sheet of the present invention is increased, for example, in a range that does not impair the performance required for the breathable waterproof sheet.
  • the water pressure resistance of the fiber aggregate itself may be increased.
  • a reinforcing layer (support layer) having at least breathability may be laminated on the fiber aggregate of the sheet of the present invention to increase the water pressure resistance of the sheet of the present invention as a whole.
  • the breathable waterproof sheet (hereinafter, may be referred to as “7th sheet”) according to the 7th embodiment of the present invention will be described.
  • the fiber aggregate constituting the breathable waterproof sheet (sheet of the present invention) according to the present invention is an aggregate composed of fine first fibers that are irregularly entangled with each other, thereby providing good breathability and good breathability. Good waterproofness can be achieved at the same time. Needless to say, in the application in which such a sheet of the present invention is used, it is not desirable that the first fiber loosened from the fiber aggregate falls off and leaks to the surroundings.
  • the 7th sheet is any of the breathable waterproof sheets (sheets of the present invention) according to various embodiments of the present invention, including the 1st to 6th sheets described above, and gas can pass therethrough.
  • a breathable waterproof sheet further comprising a cover sheet which is a sheet-like member having a plurality of gaps, and at least a part of the fiber aggregate is covered with the cover sheet so that the first fiber does not leak. Is.
  • the material constituting the cover sheet is not particularly limited as long as it can withstand the usage environment and usage conditions as a breathable waterproof sheet. Specific examples of such materials include resins such as polyolefins, polyesters, polyamides and various fluororesins. In this case, the material constituting the cover sheet may be the same as or different from the first material described above. Alternatively, the material constituting the cover sheet may be a metal such as stainless steel.
  • the fiber aggregate is covered with a cover sheet so that the 1st fiber does not leak. That is, even if a part of the first fiber constituting the fiber aggregate is unraveled, the entire fiber aggregate is covered with the cover sheet as long as the unraveled first fiber does not leak to the outside of the cover sheet.
  • a part of the fiber aggregate may be covered with a cover sheet.
  • the fiber aggregate may be housed inside the bag-shaped cover sheet, and the entire fiber aggregate may be covered with the cover sheet by closing the opening of the bag-shaped cover sheet. can.
  • the fiber aggregate is sandwiched between the pair of cover sheets, and the pair of cover sheets are adhered to each other at least partially via the fiber aggregate to form a part of the fiber aggregate. It can be covered with a cover sheet.
  • the form of the cover sheet is not particularly limited as long as it is a sheet-like member having a plurality of gaps through which gas can pass.
  • Specific examples of the form of the cover sheet include a porous sheet, a mesh, a non-woven fabric, and a woven fabric.
  • the cover sheet is a non-woven fabric or mesh made of fibers made of the above-mentioned materials.
  • the seventh sheet is a ventilated sheet including a fiber aggregate composed of irregularly entangled fine first fibers and a cover sheet which is a sheet-like member having a plurality of gaps through which a gas can pass. It is a sex tarpaulin. Further, in the 7th sheet, at least a part of the fiber aggregate is covered with a cover sheet so that the 1st fiber does not leak. As a result, according to the seventh sheet, even when the first fiber is unraveled from the fiber aggregate, the possibility that the first fiber leaks to the surroundings can be reduced.
  • test equipment 110 ... lower chamber, 111 ... introduction pipe, 120 ... upper chamber, 130 ... test piece, and 140 ... water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

This gas-permeable waterproof sheet is configured from an assembly of fine fibers which comprise a lipophilic material, have a fiber diameter in a prescribed range and are irregularly interwoven with one another. The center fiber diameter is preferably 1,000-3,000nm. The coefficient of variation in the fiber diameter quantity distribution is preferably 0.5-0.65. The bulk density of the assembly is preferably 0.01-0.10 g/cm3. At least part of the fiber assembly may be covered by a cover sheet through which a gas can pass. The cover sheet is preferably a nonwoven fabric or a mesh. As a result, the present invention provides an easily producible gas-permeable waterproof sheet which has a simple structure (in other words, a sheet-like member through which a gas such as air or water vapor passes, but through which water does not pass).

Description

通気性防水シートBreathable tarpaulin
 本発明は、通気性防水シートに関する。より具体的には、本発明は、水蒸気及び空気等の気体が透過することは可能であり且つ液体としての水が透過することは不可能である防水シートに関する。 The present invention relates to a breathable tarpaulin. More specifically, the present invention relates to a waterproof sheet through which a gas such as water vapor and air can permeate and water as a liquid cannot permeate.
 例えば家庭菜園等における所謂「袋栽培」においては、ポリエチレン等の樹脂製の袋からなる容器に収容された培養土により野菜及び/又は果物等の植物が栽培される。このような樹脂製の袋は一般的には水等の液体を通さないので、培養土に供給された水を保持する能力は高い。しかしながら、このような樹脂製の袋は十分な通気性を備えないため、例えば容器内への酸素の供給及び/又は植物から発生する気体(例えば、エチレンガス等)の容器外への排出が困難であり、結果として例えば植物の根の傷みや腐敗等の問題に繋がる虞がある。 For example, in the so-called "bag cultivation" in a vegetable garden or the like, plants such as vegetables and / or fruits are cultivated by the potting soil contained in a container made of a resin bag such as polyethylene. Since such a resin bag generally does not allow a liquid such as water to pass through, it has a high ability to hold water supplied to the potting soil. However, since such a resin bag does not have sufficient air permeability, it is difficult to supply oxygen into the container and / or discharge gas generated from plants (for example, ethylene gas) to the outside of the container. As a result, there is a risk of leading to problems such as damage to the roots of plants and rotting.
 また、例えば砂漠の緑化及び/又は農地における塩害の防止等の用途においては、耕作地に敷設された保水シート上に配設された作土により野菜及び/又は果物等の植物が栽培される。この場合においても、保水シートは液体も気体も通さないので、作土に供給された水を保持する能力は高いものの、例えば植物の根の傷み及び/又は腐敗等の問題に繋がる虞がある。 In addition, for example, for greening of deserts and / or prevention of salt damage in agricultural land, plants such as vegetables and / or fruits are cultivated by soil arranged on a water retention sheet laid on cultivated land. Even in this case, since the water-retaining sheet does not allow liquid or gas to pass through, it has a high ability to retain the water supplied to the soil, but it may lead to problems such as damage to the roots of plants and / or rot.
 一方、当該技術分野においては、様々な用途において、水蒸気等の気体は通すものの水等の液体は通さない部材が開発されている。例えば、ハードセグメントとソフトセグメントを有するブロック共重合ポリエステルよりなる無孔皮膜と所定の繊維径及び目付を有するポリエステル系不織布とを接着剤を介さずに積層することによって得られる透湿防水シートが知られている(例えば、特許文献1を参照)。これによれば、優れた透湿性と防水性とを兼備し生産性に優れた薄く軽量な透湿防水シートを提供することができるとされている。 On the other hand, in the technical field, members have been developed that allow gas such as water vapor to pass through but do not allow liquid such as water to pass through in various applications. For example, a moisture-permeable waterproof sheet obtained by laminating a non-porous film made of a block copolymerized polyester having a hard segment and a soft segment and a polyester-based non-woven fabric having a predetermined fiber diameter and texture without using an adhesive is known. (See, for example, Patent Document 1). According to this, it is said that it is possible to provide a thin and lightweight moisture-permeable waterproof sheet having both excellent moisture permeability and waterproofness and excellent productivity.
 また、ホットメルト接着剤を第1不織シートに塗布して透湿接着未硬化膜を形成した後に第2不織シートを積層及び圧着する工程によりホットメルト接着剤を硬化させることによって得られる木造家屋用の透湿防水シートが知られている(例えば、特許文献2を参照)。これによれば、高い防水性及び透湿性を有すると共に強度及び耐久性に優れた透湿防水シートを安価且つ速やかに製造することができるとされている。 Further, a wooden structure obtained by applying a hot melt adhesive to a first non-woven sheet to form a moisture-permeable adhesive uncured film and then curing the hot melt adhesive by a step of laminating and crimping the second non-woven sheet. Breathable waterproof sheets for houses are known (see, for example, Patent Document 2). According to this, it is said that a moisture-permeable waterproof sheet having high waterproofness and moisture permeability and excellent strength and durability can be manufactured inexpensively and quickly.
 更に、砂粒子の表面に撥水コーティングを施してなる撥水砂からなる層が防水性と透湿性とを具備することが知られている(例えば、非特許文献1を参照)。当該撥水砂の層を作土の下に敷設することにより作土層を透過した浸透水を収集して灌漑用水として利用したり、当該撥水砂の層に水蒸気を通過させることにより海水の淡水化に活用したりすることが可能であることが知られている(例えば、非特許文献2を参照)。 Further, it is known that a layer made of water-repellent sand obtained by applying a water-repellent coating to the surface of sand particles has waterproofness and moisture permeability (see, for example, Non-Patent Document 1). By laying the layer of water-repellent sand under the soil, the permeated water that has permeated the soil layer is collected and used as irrigation water, or by passing water vapor through the layer of water-repellent sand, seawater It is known that it can be used for desalination (see, for example, Non-Patent Document 2).
 しかしながら、上述したような積層構造を有する透湿防水シートは、その製造工程が複雑なものとなり、例えば生産効率の低下及び/又は製造コストの増大等の問題に繋がる虞がある。また、上述した撥水砂のような撥水コーティングが施された粒子については、対象となる作土が透湿防水層によって包み込まれるように当該粒子によって構成される層を適切に敷設する必要がある。従って、例えば敷設作業の複雑化及び/又は敷設コストの増大等の問題に繋がる虞がある。更に、上述した透湿防水シートのようなシート状の部材と比べると、前述したような培養土を収容する袋等の容器を撥水砂によって構成することは困難である。 However, the moisture-permeable waterproof sheet having the above-mentioned laminated structure has a complicated manufacturing process, which may lead to problems such as a decrease in production efficiency and / or an increase in manufacturing cost. Further, for particles having a water-repellent coating such as the above-mentioned water-repellent sand, it is necessary to appropriately lay a layer composed of the particles so that the target soil is surrounded by the moisture-permeable waterproof layer. be. Therefore, for example, it may lead to problems such as complicated laying work and / or an increase in laying cost. Further, as compared with the sheet-like member such as the moisture-permeable waterproof sheet described above, it is difficult to construct a container such as a bag for accommodating the potting soil as described above with water-repellent sand.
特開2002-337294号公報Japanese Unexamined Patent Publication No. 2002-337294 特開2020-69686号公報Japanese Unexamined Patent Publication No. 2020-6686
 上述したように、当該技術分野においては、単純な構造を有し且つ容易に製造することが可能な通気性防水シート(即ち、水蒸気及び空気等の気体は通すものの水は通さないシート状の部材)が求められている。 As described above, in the art, a breathable waterproof sheet having a simple structure and easily manufactured (that is, a sheet-like member that allows gas such as water vapor and air to pass through but does not allow water to pass through). ) Is required.
 上記課題に鑑み、本発明者は、鋭意研究の結果、親油性を有する高分子材料からなり且つ所定の繊維径を有する微細な繊維同士が不規則に絡み合った構造を有する繊維集積体からなるシート状部材により、上記課題を解決することに成功した。 In view of the above problems, as a result of diligent research, the present inventor has made a sheet made of a polymer material having an oil-friendly property and a fiber aggregate having a structure in which fine fibers having a predetermined fiber diameter are irregularly entangled with each other. We succeeded in solving the above-mentioned problems by using the shaped members.
 具体的には、本発明に係る通気性防水シート(以降、「本発明シート」と称呼される場合がある。)は、親油性を有する高分子材料である第1材料からなり300nm以上であり且つ5000nm未満である繊維径を有する繊維である第1繊維の集積体である繊維集積体を含んでなる通気性防水シートである。上記繊維集積体においては、第1繊維同士が不規則に絡み合っている。好ましくは、第1繊維の繊維径の数量分布における最頻値である中心繊維径が800nm以上であり且つ3000nm以下である。より好ましくは、第1繊維の繊維径の数量分布における変動係数が0.50以上であり且つ0.65以下である。更に好ましくは、繊維集積体の嵩密度が0.01g/cm以上であり且つ0.10g/cm以下である。 Specifically, the breathable waterproof sheet according to the present invention (hereinafter, may be referred to as "the sheet of the present invention") is made of a first material which is a polymer material having lipophilicity and has a diameter of 300 nm or more. Moreover, it is a breathable waterproof sheet containing a fiber aggregate which is an aggregate of the first fiber which is a fiber having a fiber diameter of less than 5000 nm. In the fiber aggregate, the first fibers are irregularly entangled with each other. Preferably, the central fiber diameter, which is the mode in the quantity distribution of the fiber diameter of the first fiber, is 800 nm or more and 3000 nm or less. More preferably, the coefficient of variation in the quantity distribution of the fiber diameter of the first fiber is 0.50 or more and 0.65 or less. More preferably, the bulk density of the fiber aggregate is 0.01 g / cm 3 or more and 0.10 g / cm 3 or less.
 上記のように、本発明シートは、親油性を有する高分子材料からなり所定の繊維径を有する微細な繊維である第1繊維同士が不規則に絡み合った集積体である繊維集積体を含んでなる。好ましくは、第1繊維の繊維径の数量分布における最頻値である中心繊維径が800nm以上であり且つ3000nm以下である。より好ましくは、第1繊維の繊維径の数量分布における変動係数が0.50以上であり且つ0.65以下である。更に好ましくは、繊維集積体の嵩密度が0.01g/cm以上であり且つ0.10g/cm以下である。その結果、本発明シートは、水蒸気及び空気等の気体は通すものの水は通さない。即ち、本発明シートによれば、単純な構造を有し且つ容易に製造することが可能な通気性防水シート(即ち、水蒸気及び空気等の気体は通すものの水は通さないシート状の部材)を提供することができる。 As described above, the sheet of the present invention contains a fiber aggregate which is an aggregate in which first fibers which are fine fibers having a predetermined fiber diameter and which are made of a polymer material having lipophilicity are irregularly entangled with each other. Become. Preferably, the central fiber diameter, which is the mode in the quantity distribution of the fiber diameter of the first fiber, is 800 nm or more and 3000 nm or less. More preferably, the coefficient of variation in the quantity distribution of the fiber diameter of the first fiber is 0.50 or more and 0.65 or less. More preferably, the bulk density of the fiber aggregate is 0.01 g / cm 3 or more and 0.10 g / cm 3 or less. As a result, the sheet of the present invention allows gas such as water vapor and air to pass through, but does not allow water to pass through. That is, according to the sheet of the present invention, a breathable waterproof sheet having a simple structure and easily manufactured (that is, a sheet-like member that allows gas such as water vapor and air to pass through but does not allow water to pass through). Can be provided.
本発明の第1実施形態に係る通気性防水シート(第1シート)を構成する繊維集積体の外観の一例を示す写真である。It is a photograph which shows an example of the appearance of the fiber aggregate which constitutes the breathable waterproof sheet (first sheet) which concerns on 1st Embodiment of this invention. 第1シートを構成する繊維集積体の構造の一例を示す走査型電子顕微鏡(SEM)写真である。6 is a scanning electron microscope (SEM) photograph showing an example of the structure of the fiber aggregate constituting the first sheet. 本発明の第2実施形態に係る通気性防水シート(第2シート)の繊維集積体を構成する第1繊維の繊維径の数量分布の2つの例を示す模式的なグラフである。It is a schematic graph which shows two examples of the quantity distribution of the fiber diameter of the 1st fiber which constitutes the fiber accumulation of the breathable waterproof sheet (the 2nd sheet) which concerns on the 2nd Embodiment of this invention. 本発明に該当しない通気性防水シートの繊維集積体を構成する繊維の繊維径の数量分布の2つの例を示す模式的なグラフである。It is a schematic graph which shows two examples of the quantity distribution of the fiber diameter of the fiber which constitutes the fiber accumulation of the breathable waterproof sheet which does not correspond to this invention. 本発明の第3実施形態に係る通気性防水シート(第3シート)を構成する繊維集積体及び従来技術に係る通気性防水シート(従来シート)を構成する不織布に含まれる繊維の繊維径の分布を示す模式的なグラフである。Distribution of fiber diameters of fibers contained in the fiber aggregate constituting the breathable waterproof sheet (third sheet) according to the third embodiment of the present invention and the non-woven fabric constituting the breathable waterproof sheet (conventional sheet) according to the prior art. It is a schematic graph showing. 本発明に係る通気性防水シート(本発明シート)の防水通気性を評価するための実験装置の構成の一例を示す模式的な斜視図である。It is a schematic perspective view which shows an example of the structure of the experimental apparatus for evaluating the waterproof breathability of the breathable waterproof sheet (the sheet of this invention) which concerns on this invention. 種々の中心繊維径を有する通気性防水シートを構成する繊維集積体からなる試験片の厚さと通気開始圧との関係を示すグラフである。It is a graph which shows the relationship between the thickness of the test piece which consists of the fiber aggregate constituting the breathable waterproof sheet which has various central fiber diameters, and the ventilation start pressure. 種々の中心繊維径を有する繊維集積体からなる試験片の嵩密度と通気開始圧との関係を示すグラフである。It is a graph which shows the relationship between the bulk density of the test piece which consists of the fiber aggregates having various central fiber diameters, and the aeration start pressure. 第4シートを構成する繊維集積体からなる試験片の嵩密度と通気開始圧との関係を示すグラフである。It is a graph which shows the relationship between the bulk density of the test piece which consists of a fiber aggregate constituting 4th sheet, and the aeration start pressure.
《第1実施形態》
 以下、本発明の第1実施形態に係る通気性防水シート(以降、「第1シート」と称呼される場合がある。)について説明する。
<< First Embodiment >>
Hereinafter, the breathable waterproof sheet (hereinafter, may be referred to as “first sheet”) according to the first embodiment of the present invention will be described.
〈構成〉
 第1シートは、親油性を有する高分子材料である第1材料からなり300nm以上であり且つ5000nm未満である繊維径を有する繊維である第1繊維の集積体である繊維集積体を含んでなる通気性防水シートである。第1材料は、親油性を有する高分子材料であり且つ通気性防水シートとしての使用環境及び使用条件に耐えることが可能である限り特に限定されない。第1材料の具体例としては、例えばポリオレフィン等を挙げることができる。典型的には、第1材料は、ポリエチレン、ポリプロピレン及びポリブチレンからなる群より選ばれる少なくとも1種の高分子材料である。また、第1材料は、異なる複数種の親油性を有する高分子材料の組み合わせであってもよい。更に、第1繊維は、異なる複数種の親油性を有する高分子材料からなる繊維の組み合わせであってもよい。加えて、繊維集積体の全体としての通気性及び防水性が損なわれない限りにおいて、第1材料とは異なる高分子材料からなる少量の繊維が繊維集積体に含まれていてもよい。
<Constitution>
The first sheet comprises a fiber aggregate which is an aggregate of the first fiber which is a fiber having a fiber diameter of 300 nm or more and less than 5000 nm, which is made of the first material which is a polymer material having lipophilicity. It is a breathable waterproof sheet. The first material is not particularly limited as long as it is a polymer material having lipophilicity and can withstand the usage environment and usage conditions as a breathable waterproof sheet. Specific examples of the first material include polyolefins and the like. Typically, the first material is at least one polymeric material selected from the group consisting of polyethylene, polypropylene and polybutylene. Further, the first material may be a combination of a plurality of different types of polymer materials having lipophilicity. Further, the first fiber may be a combination of fibers made of a plurality of different lipophilic polymer materials. In addition, the fiber aggregate may contain a small amount of fibers made of a polymer material different from the first material, as long as the overall breathability and waterproofness of the fiber aggregate are not impaired.
 尚、繊維集積体を構成する第1繊維の繊維径は、例えば走査型電子顕微鏡(SEM)によって撮影された繊維集積体の画像解析等によって測定することができる。例えば、複数の撮影箇所の各々において測定された繊維径の平均値に対する撮影箇所の数の分布を繊維径の数量分布とみなしてもよい。上述したように、第1繊維の繊維径は300nm以上であり且つ5000nm未満である。この範囲内にある繊維径を有する第1繊維は、安定的な生産が可能であり且つ第1シートにおいて良好な通気性及び良好な防水性を同時に達成することができる。 The fiber diameter of the first fiber constituting the fiber aggregate can be measured, for example, by image analysis of the fiber aggregate taken by a scanning electron microscope (SEM). For example, the distribution of the number of imaging points with respect to the average value of the fiber diameters measured at each of the plurality of imaging points may be regarded as the quantity distribution of the fiber diameter. As described above, the fiber diameter of the first fiber is 300 nm or more and less than 5000 nm. The first fiber having a fiber diameter within this range is capable of stable production and can simultaneously achieve good air permeability and good waterproof property in the first sheet.
 更に、繊維集積体においては、第1繊維同士が不規則に絡み合っている。本明細書において、「第1繊維同士が不規則に絡み合っている」状態とは、第1繊維同士の絡み合いが例えば特定の方向への捩れ等による単純な絡み合いではなく、第1繊維同士が三次元的且つ複雑に絡み合っている状態を意味する。これにより、第1シートは、良好な通気性及び良好な防水性を同時に達成することができる。 Furthermore, in the fiber aggregate, the first fibers are irregularly entangled with each other. In the present specification, the state in which the first fibers are entangled irregularly means that the entanglement of the first fibers is not a simple entanglement due to, for example, twisting in a specific direction, but the first fibers are tertiary. It means a state of being intertwined in an original and complicated manner. Thereby, the first sheet can simultaneously achieve good breathability and good waterproofness.
 図1は第1シートを構成する繊維集積体の外観の一例を示す写真であり、図2は第1シートを構成する繊維集積体の構造の一例を示す走査型電子顕微鏡(SEM)写真である。図1の(a)に例示する第1シートを構成する繊維集積体は略塊状の外観を有しているが、実際に第1シートに含まれる繊維集積体は図1の(b)に例示するようにシート状の形状に成形される。尚、図1及び図2においては、第1シートを構成する繊維集積体の一例として、300nm乃至5000nmの繊維径を有するポリプロピレン繊維からなる繊維集積体の外観写真及びSEM写真がそれぞれ例示されている。即ち、この例においては、第1材料はポリプロピレンであり、第1繊維は上記繊維径を有するポリプロピレン繊維である。図2から判るように、第1シートを構成する繊維集積体においては、第1繊維同士が不規則に絡み合っている。 FIG. 1 is a photograph showing an example of the appearance of the fiber aggregate constituting the first sheet, and FIG. 2 is a scanning electron microscope (SEM) photograph showing an example of the structure of the fiber aggregate constituting the first sheet. .. The fiber aggregates constituting the first sheet illustrated in FIG. 1 (a) have a substantially lumpy appearance, but the fiber aggregates actually contained in the first sheet are exemplified in FIG. 1 (b). It is formed into a sheet-like shape so as to be used. In FIGS. 1 and 2, as an example of the fiber aggregate constituting the first sheet, an external photograph and an SEM photograph of the fiber aggregate made of polypropylene fibers having a fiber diameter of 300 nm to 5000 nm are exemplified. .. That is, in this example, the first material is polypropylene, and the first fiber is a polypropylene fiber having the above fiber diameter. As can be seen from FIG. 2, in the fiber aggregate constituting the first sheet, the first fibers are irregularly entangled with each other.
 以上のように、第1シートを構成する繊維集積体は、親油性を有する高分子材料である第1材料からなり300nm以上であり且つ5000nm未満である繊維径を有する繊維である第1繊維同士が不規則に絡まっている。その結果、第1シートによれば、良好な通気性及び良好な防水性を同時に達成することができる。 As described above, the fiber aggregate constituting the first sheet is made of the first material which is a lipophilic polymer material and has a fiber diameter of 300 nm or more and less than 5000 nm. Is entwined irregularly. As a result, according to the first sheet, good breathability and good waterproofness can be achieved at the same time.
 尚、第1シートを構成する繊維集積体は、例えば所謂「メルトブロー法」及び「乾式紡糸法」等、当該技術分野において広く採用されている微細な繊維の製造方法を応用することによって製造することができる。「メルトブロー法」及び「乾式紡糸法」の詳細については当業者に周知であるので、ここでの説明は省略する。これらの製造方法において、第1材料からなる微細な繊維である第1繊維が生成される過程において、第1繊維同士を不規則に絡み合わせることにより、上述したような繊維集積体を得ることができる。 The fiber aggregate constituting the first sheet shall be manufactured by applying a fine fiber manufacturing method widely adopted in the technical field, such as the so-called "melt blow method" and "dry spinning method". Can be done. Since the details of the "melt blow method" and the "dry spinning method" are well known to those skilled in the art, the description thereof is omitted here. In these manufacturing methods, in the process of producing the first fiber, which is a fine fiber made of the first material, the first fibers are irregularly entangled with each other to obtain a fiber aggregate as described above. can.
〈効果〉
 以上のように、第1シートを構成する繊維集積体は、親油性を有する高分子材料である第1材料からなり300nm以上であり且つ5000nm未満である繊維径を有する繊維である第1繊維同士が不規則に絡まっている。その結果、第1シートによれば、良好な通気性及び良好な防水性を同時に達成することができる。また、第1シートを構成する繊維集積体は、例えば所謂「メルトブロー法」及び「乾式紡糸法」等、当該技術分野において広く採用されている微細な繊維の製造方法を応用することによって製造することができる。即ち、第1シートによれば、単純な構造を有し且つ容易に製造することが可能な通気性防水シート(即ち、水蒸気及び空気等の気体は通すものの水は通さないシート状の部材)を提供することができる。
<effect>
As described above, the fiber aggregate constituting the first sheet is made of the first material which is a lipophilic polymer material and has a fiber diameter of 300 nm or more and less than 5000 nm. Is entwined irregularly. As a result, according to the first sheet, good breathability and good waterproofness can be achieved at the same time. Further, the fiber aggregate constituting the first sheet shall be manufactured by applying a fine fiber manufacturing method widely adopted in the technical field, such as the so-called "melt blow method" and "dry spinning method". Can be done. That is, according to the first sheet, a breathable waterproof sheet having a simple structure and easily manufactured (that is, a sheet-like member that allows gas such as water vapor and air to pass through but does not allow water to pass through). Can be provided.
《第2実施形態》
 以下、本発明の第2実施形態に係る通気性防水シート(以降、「第2シート」と称呼される場合がある。)について説明する。
<< Second Embodiment >>
Hereinafter, the breathable waterproof sheet (hereinafter, may be referred to as “second sheet”) according to the second embodiment of the present invention will be described.
 上述したように、第1シートを構成する繊維集積体は、親油性を有する高分子材料である第1材料からなり300nm以上であり且つ5000nm未満である繊維径を有する繊維である第1繊維同士が不規則に絡まっている。その結果、第1シートによれば、良好な通気性及び良好な防水性を同時に達成することができる。本発明者は、更なる研究の結果、繊維集積体を構成する第1繊維の繊維径の数量分布における最頻値が所定の範囲内にある場合に上記効果がより顕著に達成されることを見出した。 As described above, the fiber aggregate constituting the first sheet is made of the first material which is a lipophilic polymer material and has a fiber diameter of 300 nm or more and less than 5000 nm. Is entwined irregularly. As a result, according to the first sheet, good breathability and good waterproofness can be achieved at the same time. As a result of further research, the present inventor has found that the above effect is more remarkably achieved when the mode value in the quantity distribution of the fiber diameter of the first fiber constituting the fiber aggregate is within a predetermined range. I found it.
〈構成〉
 第2シートは、上述した第1シートであって、繊維集積体を構成する第1繊維の中心繊維径が800nm以上であり且つ3000nm以下であることを特徴とする通気性防水シートである。ここで、「中心繊維径」は、繊維集積体を構成する第1繊維の繊維径の数量分布における最頻値である。換言すれば、「中心繊維径」は、第1繊維の繊維径の数量分布において出現頻度が最も高い繊維径を意味する。
<Constitution>
The second sheet is the above-mentioned first sheet, and is a breathable waterproof sheet characterized in that the central fiber diameter of the first fiber constituting the fiber aggregate is 800 nm or more and 3000 nm or less. Here, the "central fiber diameter" is the mode in the quantity distribution of the fiber diameter of the first fiber constituting the fiber aggregate. In other words, the "central fiber diameter" means the fiber diameter having the highest frequency of appearance in the quantity distribution of the fiber diameter of the first fiber.
 図3は、第2シートの繊維集積体を構成する第1繊維の繊維径の数量分布の2つの例を示す模式的なグラフである。このようなグラフは、繊維集積体の複数の箇所において走査型電子顕微鏡(SEM)写真を撮影し、個々の箇所について画像解析によって測定された繊維径の平均値を個々の箇所における繊維径として算出し、算出された繊維径と出現頻度(撮影箇所の数)との関係をグラフ化することによって得ることができる。即ち、図3に例示するグラフの横軸及び縦軸はそれぞれ出現頻度(撮影箇所の数)及び繊維径を表し、当該グラフは第1繊維の繊維径の数量分布を示す。 FIG. 3 is a schematic graph showing two examples of the quantity distribution of the fiber diameters of the first fibers constituting the fiber aggregate of the second sheet. In such a graph, a scanning electron microscope (SEM) photograph is taken at a plurality of points of the fiber aggregate, and the average value of the fiber diameters measured by image analysis for each point is calculated as the fiber diameter at each place. It can be obtained by graphing the relationship between the calculated fiber diameter and the frequency of appearance (number of imaging locations). That is, the horizontal axis and the vertical axis of the graph illustrated in FIG. 3 represent the appearance frequency (number of imaging locations) and the fiber diameter, respectively, and the graph shows the quantity distribution of the fiber diameter of the first fiber.
 図3の(a)は、出現頻度(撮影箇所の数)が最も多い繊維径(即ち、第1繊維の繊維径の数量分布における最頻値)である中心繊維径が800nmである第1繊維によって構成される繊維集積体における繊維径の数量分布を示す。図3の(b)は、中心繊維径が1500nmである第1繊維によって構成される繊維集積体における繊維径の数量分布を示す。第2シートを構成する繊維集積体においては、上記のようにして特定することができる中心繊維径が800nm以上であり且つ3000nm以下である範囲に入っている。これにより、第2シートは、良好な通気性及び良好な防水性をより高いレベルにて同時に達成することができる。 In FIG. 3A, the first fiber having a central fiber diameter of 800 nm, which is the fiber diameter having the highest frequency of appearance (number of imaging locations) (that is, the most frequent value in the quantity distribution of the fiber diameter of the first fiber). The quantity distribution of the fiber diameter in the fiber aggregate composed of is shown. FIG. 3B shows the quantity distribution of fiber diameters in the fiber aggregate composed of the first fibers having a central fiber diameter of 1500 nm. In the fiber aggregate constituting the second sheet, the central fiber diameter that can be specified as described above is within the range of 800 nm or more and 3000 nm or less. Thereby, the second sheet can simultaneously achieve good breathability and good waterproofness at a higher level.
 一方、図4は、本発明に該当しない通気性防水シートの繊維集積体を構成する繊維の繊維径の数量分布の2つの例を示す模式的なグラフである。図4の(a)は、中心繊維径が4500nmである第1繊維によって構成される繊維集積体における繊維径の数量分布を示す。図4の(b)は、従来技術に係る通気性防水シート(以降、「従来シート」と称呼される場合がある。)を構成する不織布に含まれる繊維の繊維径の数量分布を示す。図4の(b)に示すように、当該不織布は20μm(=20000nm)の中心繊維径を有する繊維によって構成されている。このように中心繊維径が上述した800nm以上であり且つ3000nm以下である範囲に入っていない繊維集積体においては、第2シートのような高いレベルにて良好な通気性及び良好な防水性を同時に達成することができない。特に、図4の(b)に例示した従来シートを構成する不織布は単独では(即ち、前述したような無孔皮膜等の防水層との積層を伴わない状態においては)防水性を発揮することができない。 On the other hand, FIG. 4 is a schematic graph showing two examples of the quantity distribution of the fiber diameters of the fibers constituting the fiber aggregate of the breathable waterproof sheet which does not correspond to the present invention. FIG. 4A shows the quantity distribution of the fiber diameter in the fiber aggregate composed of the first fiber having the central fiber diameter of 4500 nm. FIG. 4B shows the quantity distribution of the fiber diameters of the fibers contained in the nonwoven fabric constituting the breathable waterproof sheet (hereinafter, may be referred to as “conventional sheet”) according to the prior art. As shown in FIG. 4B, the nonwoven fabric is composed of fibers having a central fiber diameter of 20 μm (= 20000 nm). As described above, in the fiber aggregate having a central fiber diameter of 800 nm or more and not in the range of 3000 nm or less, good air permeability and good waterproofness are simultaneously achieved at a high level such as the second sheet. Cannot be achieved. In particular, the non-woven fabric constituting the conventional sheet illustrated in FIG. 4B exhibits waterproofness by itself (that is, in a state where it is not laminated with a waterproof layer such as a non-porous film as described above). I can't.
 尚、第1繊維の「中心繊維径」は、繊維集積体の製造過程において、例えば第1材料を含む液体である第1液の温度及び吐出量並びに吐出された第1液に含まれる第1材料を糸状に延伸しながら下流側へと搬送するガスの温度及び流速等の製造条件を調整することによって変化させることができる。 The "center fiber diameter" of the first fiber is, for example, the temperature and discharge amount of the first liquid which is a liquid containing the first material and the first liquid contained in the discharged first liquid in the process of manufacturing the fiber aggregate. It can be changed by adjusting the manufacturing conditions such as the temperature and the flow velocity of the gas that conveys the material to the downstream side while stretching it in a thread shape.
〈効果〉
 以上のように、第2シートにおいては、繊維集積体を構成する第1繊維の中心繊維径が800nm以上であり且つ3000nm以下である。その結果、第2シートによれば、良好な通気性及び良好な防水性をより高いレベルにて同時に達成することができる。
<effect>
As described above, in the second sheet, the central fiber diameter of the first fiber constituting the fiber aggregate is 800 nm or more and 3000 nm or less. As a result, according to the second sheet, good breathability and good waterproofness can be achieved at a higher level at the same time.
《第3実施形態》
 以下、本発明の第3実施形態に係る通気性防水シート(以降、「第3シート」と称呼される場合がある。)について説明する。
<< Third Embodiment >>
Hereinafter, the breathable waterproof sheet (hereinafter, may be referred to as “third sheet”) according to the third embodiment of the present invention will be described.
 上述したように、第2シートにおいては、繊維集積体を構成する第1繊維の中心繊維径が800nm以上であり且つ3000nm以下である。これにより、第2シートは、良好な通気性及び良好な防水性をより高いレベルにて同時に達成することができる。本発明者は、更なる研究の結果、繊維集積体を構成する第1繊維の繊維径のバラツキの度合いがある程度大きい所定の範囲内にある場合において上記効果がより確実に達成されることを見出した。 As described above, in the second sheet, the central fiber diameter of the first fiber constituting the fiber aggregate is 800 nm or more and 3000 nm or less. Thereby, the second sheet can simultaneously achieve good breathability and good waterproofness at a higher level. As a result of further research, the present inventor has found that the above effect is more reliably achieved when the degree of variation in the fiber diameter of the first fiber constituting the fiber aggregate is within a predetermined range where the degree of variation is large to some extent. rice field.
〈構成〉
 そこで、第3シートは、上述した第2シートであって、繊維集積体を構成する第1繊維の繊維径の数量分布における変動係数が0.50以上であり且つ0.65以下であることを特徴とする通気性防水シートである。ここで言う「変動係数」は、第1繊維の繊維径の数量分布におけるバラツキの大きさを示す指標であり、当業者に周知であるように、第1繊維の繊維径の数量分布の標準偏差を第1繊維の繊維径の平均値によって除算することによって得ることができる。
<Constitution>
Therefore, the third sheet is the above-mentioned second sheet, and the coefficient of variation in the quantity distribution of the fiber diameter of the first fiber constituting the fiber aggregate is 0.50 or more and 0.65 or less. It is a characteristic breathable tarpaulin. The "coefficient of variation" referred to here is an index indicating the magnitude of variation in the quantity distribution of the fiber diameter of the first fiber, and as is well known to those skilled in the art, the standard deviation of the quantity distribution of the fiber diameter of the first fiber. Can be obtained by dividing by the average value of the fiber diameters of the first fibers.
 図5は、本発明の第3実施形態に係る通気性防水シート(第3シート)を構成する繊維集積体及び従来技術に係る通気性防水シート(従来シート)を構成する不織布に含まれる繊維の繊維径の分布を示す模式的なグラフである。図5の(a)は、図3の(b)に例示した1500nmの中心繊維径を有する第1繊維の繊維径の分布を示し、変動係数は0.59である。一方、図5の(b)は図4の(b)に例示した従来シートを構成する不織布に含まれる20μmの中心繊維径を有する繊維の繊維径の分布を示し、変動係数は0.18である。図5の(a)と(b)との比較からも明らかであるように、本発明に係る通気性防水シート(本発明シート)の繊維集積体における繊維径分布の変動係数は従来シートの不織布における繊維径分布の変動係数に比べて大幅に大きい。その結果、本発明シートは、良好な通気性及び良好な防水性をより確実に両立させることができる。 FIG. 5 shows the fibers contained in the fiber aggregate constituting the breathable tarpaulin (third sheet) according to the third embodiment of the present invention and the non-woven fabric constituting the breathable tarpaulin (conventional sheet) according to the prior art. It is a schematic graph which shows the distribution of a fiber diameter. FIG. 5A shows the distribution of the fiber diameter of the first fiber having a central fiber diameter of 1500 nm illustrated in FIG. 3B, and the coefficient of variation is 0.59. On the other hand, FIG. 5 (b) shows the distribution of the fiber diameter of the fiber having a central fiber diameter of 20 μm contained in the nonwoven fabric constituting the conventional sheet exemplified in FIG. 4 (b), and the coefficient of variation is 0.18. be. As is clear from the comparison between (a) and (b) of FIG. 5, the coefficient of variation of the fiber diameter distribution in the fiber aggregate of the breathable waterproof sheet (sheet of the present invention) according to the present invention is the non-woven fabric of the conventional sheet. It is significantly larger than the coefficient of variation of the fiber diameter distribution in. As a result, the sheet of the present invention can more reliably achieve both good breathability and good waterproofness.
 尚、上記「変動係数」もまた、上述した第1繊維の「中心繊維径」と同様に、繊維集積体の製造過程において、例えば第1材料を含む液体である第1液の温度及び吐出量並びに吐出された第1液に含まれる第1材料を糸状に延伸しながら下流側へと搬送するガスの温度及び流速等の製造条件を調整することによって変化させることができる。 The above-mentioned "variation coefficient" is also the same as the above-mentioned "center fiber diameter" of the first fiber, and in the process of manufacturing the fiber aggregate, for example, the temperature and the discharge amount of the first liquid which is a liquid containing the first material. Further, the first material contained in the discharged first liquid can be changed by adjusting the production conditions such as the temperature and the flow velocity of the gas conveyed to the downstream side while stretching in a thread shape.
〈効果〉
 以上のように、第3シートにおいては、繊維集積体を構成する第1繊維の繊維径の数量分布における変動係数が0.50以上であり且つ0.65以下である。これにより、第3シートは、良好な通気性及び良好な防水性をより確実に両立させることができる。
<effect>
As described above, in the third sheet, the coefficient of variation in the quantity distribution of the fiber diameter of the first fiber constituting the fiber aggregate is 0.50 or more and 0.65 or less. As a result, the third sheet can more reliably achieve both good breathability and good waterproofness.
《第4実施形態》
 以下、本発明の第4実施形態に係る通気性防水シート(以降、「第4シート」と称呼される場合がある。)について説明する。
<< Fourth Embodiment >>
Hereinafter, the breathable waterproof sheet (hereinafter, may be referred to as “fourth sheet”) according to the fourth embodiment of the present invention will be described.
 上述したように、第3シートにおいては、繊維集積体を構成する第1繊維の繊維径の数量分布における変動係数が0.50以上であり且つ0.65以下である。これにより、第3シートは、良好な通気性及び良好な防水性をより確実に両立させることができる。本発明者は、更なる研究の結果、繊維集積体の嵩密度が所定の範囲内にある場合に上記効果が更に確実に達成されることを見出した。 As described above, in the third sheet, the coefficient of variation in the quantity distribution of the fiber diameter of the first fiber constituting the fiber aggregate is 0.50 or more and 0.65 or less. As a result, the third sheet can more reliably achieve both good breathability and good waterproofness. As a result of further research, the present inventor has found that the above effect is more reliably achieved when the bulk density of the fiber aggregate is within a predetermined range.
〈構成〉
 そこで、第4シートは、上述した第2シート又は第3シートであって、繊維集積体の嵩密度が0.01g/cm以上であり且つ0.10g/cm以下であることを特徴とする通気性防水シートである。
<Constitution>
Therefore, the fourth sheet is the second sheet or the third sheet described above, and is characterized in that the bulk density of the fiber aggregate is 0.01 g / cm 3 or more and 0.10 g / cm 3 or less. It is a breathable waterproof sheet.
 当業者に周知であるように、「嵩密度」とは、物体の質量を見掛けの体積によって除算することによって得られる値である。第4シートの防水性との強い相関を有する空隙率は、例えば繊維集積体を構成する第1繊維の繊維径の数量分布及び第1繊維同士の絡み合いの程度等の影響を受け、上記「嵩密度」に概ね反比例する。即ち、嵩密度が低いことは空隙率が高いことを示し、嵩密度が高いことは空隙率が低いことを示す。撥水性と防水性とは異なる性質ではあるものの、撥水性は防水性に寄与し得る性質であり、一般に撥水性が高いほど防水性も高い傾向にあると言うことができる。 As is well known to those skilled in the art, "bulk density" is a value obtained by dividing the mass of an object by the apparent volume. The porosity, which has a strong correlation with the waterproofness of the fourth sheet, is affected by, for example, the quantity distribution of the fiber diameters of the first fibers constituting the fiber aggregate and the degree of entanglement between the first fibers, and is affected by the above-mentioned "bulk". It is roughly inversely proportional to "density". That is, a low bulk density indicates a high porosity, and a high bulk density indicates a low porosity. Although the properties are different from those of water repellency and waterproofness, it can be said that water repellency is a property that can contribute to waterproofness, and generally, the higher the water repellency, the higher the waterproofness.
 第1繊維によって構成される繊維集積体の嵩密度が0.01g/cm以上である場合、当該繊維集積体は高い撥水性を有するので、例えば液体としての水と当該繊維集積体が接触している場合等においても、当該繊維集積体の内部への水の浸透が起こり難く、結果として当該繊維集積体を水が透過し難い。即ち、第1繊維によって構成される繊維集積体の嵩密度が0.01g/cm以上である場合、当該繊維集積体は良好な防水性を発揮することができる。 When the bulk density of the fiber aggregate composed of the first fibers is 0.01 g / cm 3 or more, the fiber aggregate has high water repellency, so that, for example, water as a liquid comes into contact with the fiber aggregate. Even in such a case, it is difficult for water to permeate the inside of the fiber aggregate, and as a result, it is difficult for water to permeate the fiber aggregate. That is, when the bulk density of the fiber aggregate composed of the first fibers is 0.01 g / cm 3 or more, the fiber aggregate can exhibit good waterproofness.
 一方、上述したように、繊維集積体の嵩密度が高くなるほど空隙率が低くなるため、結果として当該繊維集積体の通気性も低くなる。従って、高い防水性と高い通気性とを両立する観点からは、必要とされる防水性が達成される限りにおいて繊維集積体の嵩密度を低く抑えることが望ましい。かかる観点から、第4シートに含まれる繊維集積体の嵩密度は0.10g/cm以下である。 On the other hand, as described above, the higher the bulk density of the fiber aggregate, the lower the porosity, and as a result, the air permeability of the fiber aggregate also decreases. Therefore, from the viewpoint of achieving both high waterproofness and high breathability, it is desirable to keep the bulk density of the fiber aggregate low as long as the required waterproofness is achieved. From this point of view, the bulk density of the fiber aggregate contained in the fourth sheet is 0.10 g / cm 3 or less.
〈効果〉
 以上のように、第4シートにおいては、繊維集積体の嵩密度が0.01g/cm以上であり且つ0.10g/cm以下である。その結果、第4シートによれば、良好な通気性及び良好な防水性を更に確実に両立させることができる。好ましくは、第4シートに含まれる繊維集積体の嵩密度は0.02g/cm以上であり且つ0.05g/cm以下である。より好ましくは、第4シートに含まれる繊維集積体の嵩密度は0.04g/cm以上であり且つ0.05g/cm以下である。
<effect>
As described above, in the fourth sheet, the bulk density of the fiber aggregate is 0.01 g / cm 3 or more and 0.10 g / cm 3 or less. As a result, according to the fourth sheet, both good breathability and good waterproofness can be more reliably achieved. Preferably, the bulk density of the fiber aggregate contained in the fourth sheet is 0.02 g / cm 3 or more and 0.05 g / cm 3 or less. More preferably, the bulk density of the fiber aggregate contained in the fourth sheet is 0.04 g / cm 3 or more and 0.05 g / cm 3 or less.
《第5実施形態》
 以下、本発明の第5実施形態に係る通気性防水シート(以降、「第5シート」と称呼される場合がある。)について説明する。
<< Fifth Embodiment >>
Hereinafter, the breathable waterproof sheet (hereinafter, may be referred to as “fifth sheet”) according to the fifth embodiment of the present invention will be described.
 上述したように、繊維集積体の嵩密度が0.01g/cm以上であり且つ0.10g/cm以下であることを特徴とする第4シートにおいては、良好な通気性及び良好な防水性を更に確実に両立させることができる。特に、撥水性については、第4シートは、上述したスプレー試験において第4級乃至第5級の湿潤状態を呈する。 As described above, in the fourth sheet characterized by having a bulk density of 0.01 g / cm 3 or more and 0.10 g / cm 3 or less, the fiber aggregate has good air permeability and good waterproofing. It is possible to achieve both sex more reliably. In particular, with respect to water repellency, the fourth sheet exhibits a fourth to fifth grade wet state in the above-mentioned spray test.
〈構成〉
 そこで、第5シートは、上述した第4シートであって、JIS L 1092:2009に準拠する撥水度試験において繊維集積体が第5級乃至第4級の湿潤状態を示すことを特徴とする通気性防水シートである。
<Constitution>
Therefore, the fifth sheet is the fourth sheet described above, and is characterized in that the fiber aggregate exhibits a fifth to fourth grade wet state in a water repellency test according to JIS L 1092: 2009. It is a breathable tarpaulin.
 JIS L 1092:2009に準拠する撥水度試験とは、「スプレー試験」とも称呼され、保持枠に固定された試験片に対して所定のノズルから250mLの水を25乃至30秒間の期間に亘って散布した後、試験片の湿潤状態に応じて以下に列挙する等級によって評価する試験法である。 The water repellency test based on JIS L 1092: 2009 is also called "spray test", and 250 mL of water is applied to the test piece fixed to the holding frame from a predetermined nozzle for a period of 25 to 30 seconds. It is a test method to evaluate by the grades listed below according to the wet state of the test piece after spraying.
 1級:表面全体に湿潤を示すもの。
 2級:表面の半分に湿潤を示し,小さな個々の湿潤が布を浸透する状態を示すもの。
 3級:表面に小さな個々の水滴状の湿潤を示すもの。
 4級:表面に湿潤しないが,小さな水滴の付着を示すもの。
 5級:表面に湿潤及び水滴の付着がないもの。
Grade 1: The one that shows wetness on the entire surface.
Grade 2: Wetness is shown on half of the surface, and small individual wettings permeate the cloth.
Grade 3: Shows small individual water droplet-like wetness on the surface.
Grade 4: Those that do not get wet on the surface but show the adhesion of small water droplets.
Grade 5: No wetness or water droplets on the surface.
 2mmの厚さを有する繊維集積体の嵩密度及び繊維集積体を構成する第1繊維の中心繊維径を様々に変化させた場合における撥水性の違いを以下に示す表1に列挙する。表1に示す撥水性のデータは、上述したJIS L 1092:2009に準拠する撥水度試験において規定される湿潤状態の等級を示す。尚、表1においては、比較のために、上述したように20μm(=20000nm)の中心繊維径を有する繊維によって構成された従来シートの不織布の撥水性についても併記する。 Table 1 below shows the differences in water repellency when the bulk density of the fiber aggregate having a thickness of 2 mm and the central fiber diameter of the first fiber constituting the fiber aggregate are variously changed. The water repellency data shown in Table 1 show the wet state grade specified in the water repellency test according to JIS L 1092: 2009 described above. In Table 1, for comparison, the water repellency of the non-woven fabric of the conventional sheet made of fibers having a central fiber diameter of 20 μm (= 20000 nm) as described above is also described.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、上述したスプレー試験における湿潤状態の等級は、繊維集積体を構成する繊維径の数量分布における最頻値である中心繊維径と繊維集積体の嵩密度との組み合わせによって変化する。換言すれば、第5シートにおいては、繊維集積体における中心繊維径と嵩密度との組み合わせを適宜選択することにより、スプレー試験における湿潤状態の等級を第4級乃至第5級とすることができる。当該繊維集積体は高い撥水性を有するので、例えば液体としての水と当該繊維集積体が接触している場合等においても、当該繊維集積体の内部への水の浸透が起こり難く、結果として当該繊維集積体を水が透過し難く、良好な防水性を発揮することができる。 As shown in Table 1, the wet state grade in the above-mentioned spray test varies depending on the combination of the central fiber diameter, which is the most frequent value in the quantity distribution of the fiber diameters constituting the fiber aggregate, and the bulk density of the fiber aggregate. do. In other words, in the fifth sheet, the wet state grade in the spray test can be graded 4 to 5 by appropriately selecting the combination of the central fiber diameter and the bulk density in the fiber aggregate. .. Since the fiber aggregate has high water repellency, it is difficult for water to permeate into the inside of the fiber aggregate even when water as a liquid is in contact with the fiber aggregate, and as a result, the fiber aggregate is not likely to permeate. Water does not easily permeate through the fiber aggregate, and good waterproofness can be exhibited.
 一方、20μmの中心繊維径を有する繊維によって構成された従来シートの不織布は、0.07g/cmという高い嵩密度を有するにも拘わらず、上述したスプレー試験における湿潤状態の等級が第2級となっている。即ち、当該不織布は撥水性に乏しく、当該不織布を含んでなる従来シートは十分な防水性を発揮することができない。 On the other hand, the non-woven fabric of the conventional sheet made of fibers having a central fiber diameter of 20 μm has a high bulk density of 0.07 g / cm 3 , but the wet state grade in the above-mentioned spray test is second grade. It has become. That is, the non-woven fabric has poor water repellency, and the conventional sheet containing the non-woven fabric cannot exhibit sufficient waterproofness.
 以上のように、上述したスプレー試験において、従来シートを構成する不織布の湿潤状態が2級であるのに対し、第5シートを構成する繊維集積体の湿潤状態は4級又は5級である。即ち、第5シートを構成する繊維集積体は、従来シートを構成する不織に比べて、非常に高い撥水性を有する。 As described above, in the above-mentioned spray test, the wet state of the non-woven fabric constituting the conventional sheet is grade 2, whereas the wet state of the fiber aggregate constituting the fifth sheet is grade 4 or 5. That is, the fiber aggregate constituting the fifth sheet has extremely high water repellency as compared with the non-woven fabric constituting the conventional sheet.
〈効果〉
 第5シートを構成する繊維集積体は高い撥水性を有するので、例えば第5シートが液体としての水と接触している場合等においても、第5シートを構成する繊維集積体の内部への水の浸透が起こり難く、結果として第5シートを水が透過し難い。即ち、第5シートによれば、液体としての水と接触している場合等においても、当該水が第5シートを透過する可能性が低く、良好な防水性を発揮することができる。
<effect>
Since the fiber aggregate constituting the fifth sheet has high water repellency, water into the inside of the fiber aggregate constituting the fifth sheet even when the fifth sheet is in contact with water as a liquid, for example. It is difficult for water to permeate through the fifth sheet as a result. That is, according to the fifth sheet, even when the water is in contact with water as a liquid, the possibility that the water permeates the fifth sheet is low, and good waterproofness can be exhibited.
《第6実施形態》
 以下、本発明の第6実施形態に係る通気性防水シート(以降、「第6シート」と称呼される場合がある。)について説明する。
<< 6th Embodiment >>
Hereinafter, the breathable waterproof sheet (hereinafter, may be referred to as “sixth sheet”) according to the sixth embodiment of the present invention will be described.
 以上説明してきた第1シート乃至第5シートを始めとする本発明に係る通気性防水シート(本発明シート)を構成する繊維集積体は、互いに不規則に絡み合った微細な繊維径を有する第1繊維からなる集積体であり、良好な通気性及び良好な防水性を同時に達成することができる。また、上述した第4シート及び第5シートにおいては、防水性に寄与し得る性質の1つとして撥水性に着目し、所期の撥水性を達成し得る好適な範囲の嵩密度を繊維集積体が有する。その結果、第4シート及び第5シートによれば、液体としての水と接触している場合等においても、繊維集積体の内部への水の浸透が起こり難く、良好な防水性を発揮することができる。 The fiber aggregates constituting the breathable waterproof sheet (sheet of the present invention) according to the present invention, including the first to fifth sheets described above, have a fine fiber diameter that is irregularly entangled with each other. It is an aggregate made of fibers and can achieve good breathability and good waterproofness at the same time. Further, in the above-mentioned 4th sheet and 5th sheet, attention is paid to water repellency as one of the properties that can contribute to waterproofness, and the fiber aggregate has a bulk density in a suitable range in which the desired water repellency can be achieved. Has. As a result, according to the 4th sheet and the 5th sheet, even when the fiber is in contact with water as a liquid, it is difficult for water to permeate into the fiber aggregate, and good waterproofness is exhibited. Can be done.
 しかしながら、本発明シートが適用される用途によっては、例えば本発明シートを構成する繊維集積体に対して、液体としての水が単に接触するに留まらず、ある程度の水圧がかかるような状況も想定される。通気性防水シートとしては、このように繊維集積体にある程度の水圧がかかるような状況においても、良好な防水性及び良好な通気性を発揮することができることが望ましいことは言うまでもない。 However, depending on the application to which the sheet of the present invention is applied, for example, it is assumed that water as a liquid is not only in contact with the fiber aggregate constituting the sheet of the present invention but also a certain amount of water pressure is applied. To. Needless to say, it is desirable that the breathable waterproof sheet can exhibit good waterproofness and good breathability even in such a situation where a certain amount of water pressure is applied to the fiber aggregate.
 そこで、本発明者は、本発明シートに所定の水圧がかかっている状況において本発明シートの水と接触していない側から水と接触している側への通気性(以降、「防水通気性」と称呼される場合がある。)を定量的に評価する試験を行った。当該試験の内容につき、以下に詳細に説明する。 Therefore, the present inventor has a breathability from the side of the sheet of the present invention that is not in contact with water to the side that is in contact with water in a situation where a predetermined water pressure is applied to the sheet of the present invention (hereinafter, "waterproof breathability"). A test was conducted to quantitatively evaluate). The contents of the test will be described in detail below.
〈防水通気性評価試験〉
 図6は、上述した防水通気性を評価するための試験装置の構成の一例を示す模式的な斜視図である。図6に例示する試験装置100は、下部チャンバー110及び上部チャンバー120を備える。下部チャンバー110は有底筒状の形状を有する容器であり、図示しない加圧用の高精度ディスペンサーから下部チャンバー110の内部へ空気を導入するための導入管111が側面に設けられている。一方、上記チャンバー120は筒状の形状を有する容器であり、その上端部は開放されている。下部チャンバー110及び上部チャンバー120の内径は何れも60mmであり、上部チャンバー120の高さは135mmである(即ち、上部チャンバー120の内容積は約380cmである。)
<Waterproof breathability evaluation test>
FIG. 6 is a schematic perspective view showing an example of the configuration of the test device for evaluating the waterproof air permeability described above. The test device 100 illustrated in FIG. 6 includes a lower chamber 110 and an upper chamber 120. The lower chamber 110 is a container having a bottomed cylindrical shape, and an introduction pipe 111 for introducing air into the inside of the lower chamber 110 from a high-precision dispenser for pressurization (not shown) is provided on the side surface. On the other hand, the chamber 120 is a container having a cylindrical shape, and the upper end thereof is open. The inner diameters of the lower chamber 110 and the upper chamber 120 are both 60 mm, and the height of the upper chamber 120 is 135 mm (that is, the internal volume of the upper chamber 120 is about 380 cm 3 ).
 下部チャンバー110の上端部及び上部チャンバー120の下端部には図示しないフランジ部がそれぞれ形成されており、両者のフランジ部の間に試験片130としての繊維集積体を挟持しつつ、下部チャンバー110の上端部と上部チャンバー120の下端部とを試験片130を介して接続することができるように構成されている。このように下部チャンバー110と上部チャンバー120と試験片130とを固定した後、上部チャンバーの内部に200cmの水140を注入する。上述したように上部チャンバー120の内径は60mmであるので、注入された水140の高さは約7.1cm(=200cm/(3cm×3cm×π))である。即ち、試験片130としての繊維集積体にかかる水圧は約694Pa(=約71mmHO)である。 Flange portions (not shown) are formed at the upper end portion of the lower chamber 110 and the lower end portion of the upper chamber 120, respectively, and while sandwiching the fiber aggregate as the test piece 130 between the flange portions of both, the lower chamber 110 It is configured so that the upper end portion and the lower end portion of the upper chamber 120 can be connected via the test piece 130. After fixing the lower chamber 110, the upper chamber 120, and the test piece 130 in this way, 200 cm 3 of water 140 is injected into the upper chamber. As described above, since the inner diameter of the upper chamber 120 is 60 mm, the height of the injected water 140 is about 7.1 cm (= 200 cm 3 / (3 cm × 3 cm × π)). That is, the water pressure applied to the fiber aggregate as the test piece 130 is about 694 Pa (= about 71 mmH 2 O).
 上記状態において、下部チャンバー110の導入管111を通して高精度ディスペンサーから下部チャンバー110の内部へ空気を導入する。やがて上部チャンバー120に収容された水140の中に試験片130の表面から泡が生じ始めるときの下部チャンバー110の圧力と周囲圧力(大気圧)との圧力差を防水通気性の指標として記録する。当該圧力差(以降、「通気開始圧」と称呼される場合がある。)が小さいほど防水通気性が高い(良好である)ことを意味し、当該圧力差が大きいほど防水通気性が低い(良好ではない)ことを意味する。尚、図6においては、水140の中に試験片130の表面から泡が生じ始めた以降の空気の流れが白抜きの矢印によって表されている。 In the above state, air is introduced from the high-precision dispenser into the inside of the lower chamber 110 through the introduction pipe 111 of the lower chamber 110. The pressure difference between the pressure of the lower chamber 110 and the ambient pressure (atmospheric pressure) when bubbles start to be generated from the surface of the test piece 130 in the water 140 contained in the upper chamber 120 is recorded as an index of waterproof air permeability. .. The smaller the pressure difference (hereinafter, sometimes referred to as "ventilation start pressure"), the higher the waterproof air permeability (good), and the larger the pressure difference, the lower the waterproof air permeability (hereinafter, the better). Not good). In FIG. 6, the air flow after the bubbles start to be generated from the surface of the test piece 130 in the water 140 is represented by the white arrows.
〈防水通気性評価結果〉
 図7は、800nm、1500nm、2000nm及び4500nmの中心繊維径を有する第1繊維からなり且つ0.05g/cmの嵩密度を有する繊維集積体からなる試験片130の厚さと上述した通気開始圧との関係を示すグラフである。図7に示すように、通気開始圧は試験片の厚さに対して正の相関を有し、両者はほぼ比例関係にあることが判る。また、800nmの中心繊維径及び40mmの厚さを有する(上述した第4シートを構成する繊維集積体からなる)試験片においても3700Paという低い通気開始圧を呈したことから、本発明シートが良好な通気性を有することが判る。
<Waterproof breathability evaluation result>
FIG. 7 shows the thickness of the test piece 130 and the above-mentioned aeration start pressure, which are the thickness of the test piece 130 and the fiber aggregate having a bulk density of 0.05 g / cm 3 and consisting of the first fiber having a central fiber diameter of 800 nm, 1500 nm, 2000 nm and 4500 nm. It is a graph which shows the relationship with. As shown in FIG. 7, it can be seen that the aeration start pressure has a positive correlation with the thickness of the test piece, and the two are in a substantially proportional relationship. Further, the test piece having a central fiber diameter of 800 nm and a thickness of 40 mm (consisting of the fiber aggregate constituting the fourth sheet described above) also exhibited a low aeration starting pressure of 3700 Pa, so that the sheet of the present invention is good. It can be seen that it has excellent breathability.
 図8は、800nm、1500nm、2000nm及び4500nmの中心繊維径を有する第1繊維からなり且つ5mmの厚さを有する繊維集積体からなる試験片130の嵩密度と通気開始圧との関係を示すグラフである。また、図9は、1500nmの中心繊維径を有する第1繊維からなり且つ5mmの厚さを有する(上述した第4シートを構成する)繊維集積体からなる試験片130における0.02~0.05g/cmの嵩密度と通気開始圧との関係を示すグラフである。図8及び図9に示すように、通気開始圧は試験片の嵩密度に対して正の相関を有し、嵩密度が高くなるほど通気開始圧も大きくなる(即ち、通気性は試験片の嵩密度に対して負の相関を有し、嵩密度が高くなるほど通気性が低下する)。但し、そもそも繊維集積体の厚さが5mmであるため、0.05g/cmの嵩密度においても通気開始圧は約400Paと十分に低いことが判る。尚、図8のグラフ中に括弧書きにて示す数値は前述したスプレー試験における撥水性の等級を示し、繊維集積体の嵩密度が高くなるほど撥水性も高くなることが判る。 FIG. 8 is a graph showing the relationship between the bulk density and the aeration starting pressure of the test piece 130 made of the first fiber having the central fiber diameters of 800 nm, 1500 nm, 2000 nm and 4500 nm and made of the fiber aggregate having the thickness of 5 mm. Is. Further, FIG. 9 shows 0.02 to 0. In the test piece 130 made of a first fiber having a central fiber diameter of 1500 nm and a fiber aggregate having a thickness of 5 mm (constituting the fourth sheet described above). It is a graph which shows the relationship between the bulk density of 05 g / cm 3 and the aeration start pressure. As shown in FIGS. 8 and 9, the aeration start pressure has a positive correlation with the bulk density of the test piece, and the higher the bulk density, the larger the aeration start pressure (that is, the air permeability is the bulk of the test piece). It has a negative correlation with density, and the higher the bulk density, the lower the air permeability). However, since the thickness of the fiber aggregate is 5 mm in the first place, it can be seen that the aeration starting pressure is sufficiently low at about 400 Pa even at a bulk density of 0.05 g / cm 3 . The numerical values shown in parentheses in the graph of FIG. 8 indicate the grade of water repellency in the above-mentioned spray test, and it can be seen that the higher the bulk density of the fiber aggregate, the higher the water repellency.
 尚、0.01g/cm未満の嵩密度を有する繊維集積体においては、上部チャンバー120に200cmの水を注入すると水漏れが発生し、防水通気性を評価することはできなかった。即ち、上記試験条件においては、0.01g/cm未満の嵩密度を有する繊維集積体を含んでなる通気性防水シートの防水性は不十分であることが判った。かかる観点からも、本発明シートを構成する繊維集積体の嵩密度は0.01g/cm以上であることが望ましい。 In the fiber aggregate having a bulk density of less than 0.01 g / cm 3 , water leakage occurred when 200 cm 3 of water was injected into the upper chamber 120, and the waterproof air permeability could not be evaluated. That is, it was found that under the above test conditions, the waterproof property of the breathable waterproof sheet containing the fiber aggregate having a bulk density of less than 0.01 g / cm 3 was insufficient. From this point of view, it is desirable that the bulk density of the fiber aggregate constituting the sheet of the present invention is 0.01 g / cm 3 or more.
〈構成〉
 以上から、第6シートは、上述した第1シート乃至第5シートを始めとする本発明の種々の実施形態に係る通気性防水シート(本発明シート)の何れかであって、防水通気性評価試験によって計測される通気開始圧が400Pa以下であることを特徴とする通気性防水シートである。防水通気性評価試験とは、上述したように、通気性防水シートの一方の側に71mmHOの水圧がかかる状態において通気性防水シートの他方の側にかかる気圧を高めていく過程において上記一方の側に気泡が生じ始めるときの通気性防水シートの両側における気圧差を計測する試験である。また、通気開始圧とは、防水通気性評価試験において計測される上記気圧差を指す。
<Constitution>
From the above, the sixth sheet is any of the breathable waterproof sheets (sheets of the present invention) according to various embodiments of the present invention, including the above-mentioned first to fifth sheets, and is evaluated for waterproof breathability. It is a breathable waterproof sheet characterized in that the ventilation start pressure measured by the test is 400 Pa or less. As described above, the waterproof breathability evaluation test is a process of increasing the air pressure applied to the other side of the breathable waterproof sheet in a state where a water pressure of 71 mmH2O is applied to one side of the breathable waterproof sheet. It is a test to measure the pressure difference on both sides of the breathable waterproof sheet when air bubbles start to be generated on the side of. The ventilation start pressure refers to the above-mentioned atmospheric pressure difference measured in the waterproof air permeability evaluation test.
 図7乃至図9に例示した結果から明らかであるように、上述した防水通気性評価試験によって測定される通気開始圧は、繊維集積体を構成する繊維径の数量分布における最頻値である中心繊維径と繊維集積体の嵩密度と繊維集積体の厚さとの組み合わせによって変化する。換言すれば、第6シートにおいては、繊維集積体における中心繊維径と嵩密度と厚さとの組み合わせを適宜選択することにより、防水通気性評価試験によって測定される通気開始圧を所望の値(例えば、400Pa以下)とすることができる。 As is clear from the results exemplified in FIGS. 7 to 9, the aeration start pressure measured by the above-mentioned waterproof air permeability evaluation test is the center which is the most frequent value in the quantity distribution of the fiber diameters constituting the fiber aggregate. It varies depending on the combination of the fiber diameter, the bulk density of the fiber aggregate, and the thickness of the fiber aggregate. In other words, in the sixth sheet, the ventilation start pressure measured by the waterproof air permeability evaluation test is set to a desired value (for example, by appropriately selecting the combination of the central fiber diameter, the bulk density and the thickness in the fiber aggregate. , 400 Pa or less).
〈効果〉
 上記のように、第6シートを構成する繊維集積体は、上述した防水通気性評価試験において400Pa以下の通気開始圧を呈する。即ち、第6シートによれば、繊維集積体に所定の水圧がかかるような場合においても、良好な防水性を発揮しつつ、良好な通気性を発揮することができる。
<effect>
As described above, the fiber aggregate constituting the sixth sheet exhibits a ventilation starting pressure of 400 Pa or less in the waterproof breathability evaluation test described above. That is, according to the sixth sheet, even when a predetermined water pressure is applied to the fiber aggregate, it is possible to exhibit good air permeability while exhibiting good waterproof property.
 尚、図7を参照しながら説明したように、本発明に係る通気性防水シート(本発明シート)においては、繊維集積体の厚さが大きくなるほど通気性が低下する。一方では、繊維集積体の厚さが大きくなるほど防水性は高まる。また、一般的には、繊維集積体の厚さが大きくなるほど、例えばJIS L 1092:2009のA法(低水圧法)及びB法(高水圧法)に準拠する耐水度試験等によって評価される耐水性が高まる。更に、本発明シートの機械的強度(例えば、破断強度等)もまた、繊維集積体の厚さが大きくなるほど高まる。加えて、これらの通気性、防水性、耐水性及び機械的強度等の特性は、繊維集積体の嵩密度によっても左右される。従って、本発明シートが使用される用途において求められる通気性防水シートとしての性能に応じて、繊維集積体を構成する第1繊維の繊維径及びその分布並びに繊維集積体の嵩密度及び厚さは適宜調整される。 As described with reference to FIG. 7, in the breathable waterproof sheet (sheet of the present invention) according to the present invention, the breathability decreases as the thickness of the fiber aggregate increases. On the other hand, the larger the thickness of the fiber aggregate, the higher the waterproof property. Further, in general, the thicker the fiber aggregate is, the more it is evaluated by, for example, a water resistance test based on JIS L 1092: 2009 A method (low water pressure method) and B method (high water pressure method). Increases water resistance. Further, the mechanical strength of the sheet of the present invention (for example, breaking strength, etc.) also increases as the thickness of the fiber aggregate increases. In addition, these properties such as breathability, waterproofness, water resistance and mechanical strength are also influenced by the bulk density of the fiber aggregate. Therefore, depending on the performance as a breathable waterproof sheet required in the application in which the sheet of the present invention is used, the fiber diameter and distribution thereof of the first fiber constituting the fiber aggregate and the bulk density and thickness of the fiber aggregate are determined. It will be adjusted accordingly.
 例えば、高い耐水圧及び/又は機械的強度が求められる用途においては、通気性防水シートとして必要とされる性能を損ねない範疇において、例えば、本発明シートを構成する繊維集積体の厚みを増大させて繊維集積体自体の耐水圧を高めてもよい。或いは、例えば、少なくとも通気性を有する補強層(支持層)を本発明シートの繊維集積体に積層して本発明シート全体としての耐水圧を高めたりしてもよい。 For example, in applications where high water pressure resistance and / or mechanical strength is required, the thickness of the fiber aggregate constituting the sheet of the present invention is increased, for example, in a range that does not impair the performance required for the breathable waterproof sheet. The water pressure resistance of the fiber aggregate itself may be increased. Alternatively, for example, a reinforcing layer (support layer) having at least breathability may be laminated on the fiber aggregate of the sheet of the present invention to increase the water pressure resistance of the sheet of the present invention as a whole.
《第7実施形態》
 以下、本発明の第7実施形態に係る通気性防水シート(以降、「第7シート」と称呼される場合がある。)について説明する。
<< 7th Embodiment >>
Hereinafter, the breathable waterproof sheet (hereinafter, may be referred to as “7th sheet”) according to the 7th embodiment of the present invention will be described.
 前述したように、本発明に係る通気性防水シート(本発明シート)を構成する繊維集積体は互いに不規則に絡み合った微細な第1繊維からなる集積体であり、これにより良好な通気性及び良好な防水性を同時に達成することができる。このような本発明シートが使用される用途において、繊維集積体から解れた第1繊維が脱落して周囲に漏出することが望ましくないことは言うまでも無い。 As described above, the fiber aggregate constituting the breathable waterproof sheet (sheet of the present invention) according to the present invention is an aggregate composed of fine first fibers that are irregularly entangled with each other, thereby providing good breathability and good breathability. Good waterproofness can be achieved at the same time. Needless to say, in the application in which such a sheet of the present invention is used, it is not desirable that the first fiber loosened from the fiber aggregate falls off and leaks to the surroundings.
〈構成〉
 そこで、第7シートは、上述した第1シート乃至第6シートを始めとする本発明の種々の実施形態に係る通気性防水シート(本発明シート)の何れかであって、気体が通過し得る複数の間隙を備えるシート状の部材であるカバーシートを更に含み、第1繊維が漏出しないように繊維集積体の少なくとも一部が上記カバーシートによって覆われていることを特徴とする通気性防水シートである。
<Constitution>
Therefore, the 7th sheet is any of the breathable waterproof sheets (sheets of the present invention) according to various embodiments of the present invention, including the 1st to 6th sheets described above, and gas can pass therethrough. A breathable waterproof sheet further comprising a cover sheet which is a sheet-like member having a plurality of gaps, and at least a part of the fiber aggregate is covered with the cover sheet so that the first fiber does not leak. Is.
 上記カバーシートを構成する材料は、通気性防水シートとしての使用環境及び使用条件に耐えることが可能である限り特に限定されない。このような材料の具体例としては、例えばポリオレフィン、ポリエステル、ポリアミド及び各種フッ素樹脂等の樹脂を挙げることができる。この場合、上記カバーシートを構成する材料は、上述した第1材料と同じであっても異なっていてもよい。或いは、上記カバーシートを構成する材料は、例えばステンレス鋼等の金属であってもよい。 The material constituting the cover sheet is not particularly limited as long as it can withstand the usage environment and usage conditions as a breathable waterproof sheet. Specific examples of such materials include resins such as polyolefins, polyesters, polyamides and various fluororesins. In this case, the material constituting the cover sheet may be the same as or different from the first material described above. Alternatively, the material constituting the cover sheet may be a metal such as stainless steel.
 更に、第7シートにおいては、第1繊維が漏出しないように繊維集積体の少なくとも一部がカバーシートによって覆われている。即ち、繊維集積体を構成する第1繊維の一部が解れた場合であっても解れた第1繊維がカバーシートの外部に漏出しない限り、繊維集積体の全部がカバーシートによって覆われていてもよく、或いは繊維集積体の一部がカバーシートによって覆われていてもよい。前者の場合、例えば、袋状に加工されたカバーシートの内部に繊維集積体を収容し、当該袋状のカバーシートの開口部を閉じることにより、繊維集積体の全部をカバーシートによって覆うことができる。一方、後者の場合は、例えば、一対のカバーシートの間に繊維集積体を挟み、繊維集積体を介して一対のカバーシートを少なくとも部分的に互いに接着させることにより、繊維集積体の一部をカバーシートによって覆うことができる。 Further, in the 7th sheet, at least a part of the fiber aggregate is covered with a cover sheet so that the 1st fiber does not leak. That is, even if a part of the first fiber constituting the fiber aggregate is unraveled, the entire fiber aggregate is covered with the cover sheet as long as the unraveled first fiber does not leak to the outside of the cover sheet. Alternatively, a part of the fiber aggregate may be covered with a cover sheet. In the former case, for example, the fiber aggregate may be housed inside the bag-shaped cover sheet, and the entire fiber aggregate may be covered with the cover sheet by closing the opening of the bag-shaped cover sheet. can. On the other hand, in the latter case, for example, the fiber aggregate is sandwiched between the pair of cover sheets, and the pair of cover sheets are adhered to each other at least partially via the fiber aggregate to form a part of the fiber aggregate. It can be covered with a cover sheet.
 尚、カバーシートの形態は、気体が通過し得る複数の間隙を備えるシート状の部材である限り、特に限定されない。カバーシートの形態の具体例としては、例えば、多孔質シート、メッシュ、不織布及び織物等を挙げることができる。好ましくは、カバーシートは、上述したような材料からなる繊維によって構成された不織布又はメッシュである。 The form of the cover sheet is not particularly limited as long as it is a sheet-like member having a plurality of gaps through which gas can pass. Specific examples of the form of the cover sheet include a porous sheet, a mesh, a non-woven fabric, and a woven fabric. Preferably, the cover sheet is a non-woven fabric or mesh made of fibers made of the above-mentioned materials.
〈効果〉
 上記のように、第7シートは、不規則に絡み合った微細な第1繊維からなる繊維集積体と、気体が通過し得る複数の間隙を備えるシート状の部材であるカバーシートと、を含む通気性防水シートである。更に、第7シートにおいては、第1繊維が漏出しないように繊維集積体の少なくとも一部がカバーシートによって覆われている。その結果、第7シートによれば、繊維集積体から第1繊維が解れた場合においても、当該第1繊維が周囲に漏出する可能性を低減することができる。
<effect>
As described above, the seventh sheet is a ventilated sheet including a fiber aggregate composed of irregularly entangled fine first fibers and a cover sheet which is a sheet-like member having a plurality of gaps through which a gas can pass. It is a sex tarpaulin. Further, in the 7th sheet, at least a part of the fiber aggregate is covered with a cover sheet so that the 1st fiber does not leak. As a result, according to the seventh sheet, even when the first fiber is unraveled from the fiber aggregate, the possibility that the first fiber leaks to the surroundings can be reduced.
 以上、本発明を説明することを目的として、特定の構成を有する幾つかの実施形態につき、時に添付図面を参照しながら説明してきたが、本発明の範囲は、これらの例示的な実施形態に限定されると解釈されるべきではなく、特許請求の範囲及び明細書に記載された事項の範囲内で、適宜修正を加えることが可能であることは言うまでも無い。 As described above, for the purpose of explaining the present invention, some embodiments having a specific configuration have been described with reference to the accompanying drawings at times, but the scope of the present invention is limited to these exemplary embodiments. It should not be construed as being limited, and it goes without saying that amendments can be made as appropriate within the scope of the claims and the matters described in the specification.
 100…試験装置、110…下部チャンバー、111…導入管、120…上部チャンバー、130…試験片、及び140…水。 100 ... test equipment, 110 ... lower chamber, 111 ... introduction pipe, 120 ... upper chamber, 130 ... test piece, and 140 ... water.

Claims (10)

  1.  親油性を有する高分子材料である第1材料からなり300nm以上であり且つ5000nm未満である繊維径を有する繊維である第1繊維の集積体である繊維集積体を含んでなる通気性防水シートであって、
     前記繊維集積体においては、前記第1繊維同士が不規則に絡み合っている、
    ことを特徴とする、通気性防水シート。
    A breathable waterproof sheet comprising a fiber aggregate, which is an aggregate of the first fiber, which is a fiber having a fiber diameter of 300 nm or more and less than 5000 nm, which is made of a first material which is a lipophilic polymer material. There,
    In the fiber aggregate, the first fibers are irregularly entangled with each other.
    A breathable tarpaulin that features this.
  2.  請求項1に記載された通気性防水シートにおいて、
     前記第1繊維の繊維径の数量分布における最頻値である中心繊維径が800nm以上であり且つ3000nm以下である、
    ことを特徴とする、通気性防水シート。
    In the breathable waterproof sheet according to claim 1,
    The central fiber diameter, which is the mode in the quantity distribution of the fiber diameter of the first fiber, is 800 nm or more and 3000 nm or less.
    A breathable tarpaulin that features this.
  3.  請求項2に記載された通気性防水シートにおいて、
     前記第1繊維の繊維径の数量分布における変動係数が0.50以上であり且つ0.65以下である、
    ことを特徴とする、通気性防水シート。
    In the breathable waterproof sheet according to claim 2.
    The coefficient of variation in the quantity distribution of the fiber diameter of the first fiber is 0.50 or more and 0.65 or less.
    A breathable tarpaulin that features this.
  4.  請求項2又は請求項3に記載された通気性防水シートにおいて、
     前記繊維集積体の嵩密度が0.01g/cm以上であり且つ0.10g/cm以下である、
    ことを特徴とする、通気性防水シート。
    In the breathable tarpaulin according to claim 2 or 3.
    The bulk density of the fiber aggregate is 0.01 g / cm 3 or more and 0.10 g / cm 3 or less.
    A breathable tarpaulin that features this.
  5.  請求項4に記載された通気性防水シートにおいて、
     JIS L 1092:2009に準拠する撥水度試験において前記繊維集積体が第5級乃至第4級の湿潤状態を示す、
    ことを特徴とする、通気性防水シート。
    In the breathable waterproof sheet according to claim 4,
    In a water repellency test according to JIS L 1092: 2009, the fiber aggregate shows a fifth to fourth grade wet state.
    A breathable tarpaulin that features this.
  6.  請求項1乃至請求項5の何れか1項に記載された通気性防水シートにおいて、
     通気性防水シートの一方の側に71mmHOの水圧がかかる状態において前記通気性防水シートの他方の側にかかる気圧を高めていく過程において前記一方の側に気泡が生じ始めるときの前記通気性防水シートの両側における気圧差を通気開始圧として計測する試験である防水通気性評価試験によって計測される前記通気開始圧が400Pa以下である、
    ことを特徴とする、通気性防水シート。
    In the breathable waterproof sheet according to any one of claims 1 to 5.
    The breathability when air bubbles start to be generated on one side in the process of increasing the air pressure applied to the other side of the breathable waterproof sheet in a state where a water pressure of 71 mmH2O is applied to one side of the breathable waterproof sheet. The ventilation start pressure measured by the waterproof breathability evaluation test, which is a test for measuring the pressure difference on both sides of the waterproof sheet as the ventilation start pressure, is 400 Pa or less.
    A breathable tarpaulin that features this.
  7.  請求項1乃至請求項6の何れか1項に記載された通気性防水シートにおいて、
     前記第1材料はポリオレフィンである、
    ことを特徴とする、通気性防水シート。
    In the breathable waterproof sheet according to any one of claims 1 to 6.
    The first material is polyolefin.
    A breathable tarpaulin that features this.
  8.  請求項7に記載された通気性防水シートにおいて、
     前記第1材料はポリエチレン、ポリプロピレン及びポリブチレンからなる群より選ばれる少なくとも1種の高分子材料である、
    ことを特徴とする、通気性防水シート。
    In the breathable tarpaulin according to claim 7.
    The first material is at least one polymer material selected from the group consisting of polyethylene, polypropylene and polybutylene.
    A breathable tarpaulin that features this.
  9.  請求項1乃至請求項8の何れか1項に記載された通気性防水シートにおいて、
     気体が通過し得る複数の間隙を備えるシート状の部材であるカバーシートを更に含み、
     前記第1繊維が漏出しないように前記繊維集積体の少なくとも一部が前記カバーシートによって覆われている、
    ことを特徴とする、通気性防水シート。
    In the breathable waterproof sheet according to any one of claims 1 to 8.
    It further includes a cover sheet, which is a sheet-like member having a plurality of gaps through which gas can pass.
    At least a part of the fiber aggregate is covered with the cover sheet so that the first fiber does not leak.
    A breathable tarpaulin that features this.
  10.  請求項9に記載された通気性防水シートにおいて、
     前記カバーシートは不織布又はメッシュである、
    ことを特徴とする、通気性防水シート。
    In the breathable tarpaulin according to claim 9.
    The cover sheet is a non-woven fabric or a mesh.
    A breathable tarpaulin that features this.
PCT/JP2021/046842 2020-12-17 2021-12-17 Gas-permeable waterproof sheet WO2022131377A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022507710A JPWO2022131377A1 (en) 2020-12-17 2021-12-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020209138 2020-12-17
JP2020-209138 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022131377A1 true WO2022131377A1 (en) 2022-06-23

Family

ID=82057609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046842 WO2022131377A1 (en) 2020-12-17 2021-12-17 Gas-permeable waterproof sheet

Country Status (2)

Country Link
JP (1) JPWO2022131377A1 (en)
WO (1) WO2022131377A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184166A (en) * 1986-02-07 1987-08-12 昭和工業株式会社 Waterproof base material
JPH05193037A (en) * 1992-01-16 1993-08-03 Toray Ind Inc Permeable and waterproof sheet having stretching nerve
JP2001138425A (en) * 1999-11-15 2001-05-22 Asahi Kasei Corp Waterproof/moisture permeable nonwoven fabric
JP2013133579A (en) * 2011-12-27 2013-07-08 Asahi Kasei Fibers Corp Nonwoven fabric laminate
JP2013159882A (en) * 2012-02-07 2013-08-19 Japan Vilene Co Ltd Fiber sheet
CN111065772A (en) * 2017-09-06 2020-04-24 可隆材料株式公司 Waterproof and breathable sheet and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184166A (en) * 1986-02-07 1987-08-12 昭和工業株式会社 Waterproof base material
JPH05193037A (en) * 1992-01-16 1993-08-03 Toray Ind Inc Permeable and waterproof sheet having stretching nerve
JP2001138425A (en) * 1999-11-15 2001-05-22 Asahi Kasei Corp Waterproof/moisture permeable nonwoven fabric
JP2013133579A (en) * 2011-12-27 2013-07-08 Asahi Kasei Fibers Corp Nonwoven fabric laminate
JP2013159882A (en) * 2012-02-07 2013-08-19 Japan Vilene Co Ltd Fiber sheet
CN111065772A (en) * 2017-09-06 2020-04-24 可隆材料株式公司 Waterproof and breathable sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2022131377A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
CN108465383A (en) Protectiveness ventilation part and the method for preparing protectiveness ventilation part
KR102021855B1 (en) Composite Membrane and Method of Making Composite Membrane
US20080011034A1 (en) Cover For Contained Aerobic Treatment of Biodegradable Matter
US20130205655A1 (en) Irrigation device
CN103801153A (en) Completely biodegradable polylactic acid fiber non-woven fabric filtering material
US20180353883A1 (en) Nonwoven fabric and air filter including same
WO2022131377A1 (en) Gas-permeable waterproof sheet
EP3019000B1 (en) System and method for irrigation
JP2006042656A (en) Agricultural mulch film
WO2018007465A1 (en) Multilayer substrate for cultivating plants
CA1279216C (en) Bagpipes and a bag therefor
FR2501108A1 (en) PROCESS FOR MANUFACTURING PIPES FOR IRRIGATION AND OTHER USES
JP6119816B2 (en) Agricultural sheet
KR20090129039A (en) Water-proof and moisture-permeable fabric
JP3130562U (en) Aeration disperser
JPH0755889Y2 (en) Medium container for hydroponics
JP2021178280A (en) Oil adsorbent, and oil adsorption mat
JP2009214518A (en) Tubular aggregate containing functional material
TWM641498U (en) Composite paving slab
IT202000031382A1 (en) GROWTH CARPET FOR GROWING PLANTS
JP2007110938A (en) Plant-growing water-absorbing/draining body and method for installing the same
JP2009000072A (en) Root blocking and water permeating tube
JPH10168889A (en) Spraying curing material
GB2450029A (en) Irrigation system
JPS63135684A (en) Waste cotton molding gas permeable pipe

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022507710

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906735

Country of ref document: EP

Kind code of ref document: A1