WO2022131261A1 - Sheet and method for producing sheet - Google Patents

Sheet and method for producing sheet Download PDF

Info

Publication number
WO2022131261A1
WO2022131261A1 PCT/JP2021/046082 JP2021046082W WO2022131261A1 WO 2022131261 A1 WO2022131261 A1 WO 2022131261A1 JP 2021046082 W JP2021046082 W JP 2021046082W WO 2022131261 A1 WO2022131261 A1 WO 2022131261A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
skiving
sheet according
processing
skived
Prior art date
Application number
PCT/JP2021/046082
Other languages
French (fr)
Japanese (ja)
Inventor
智和 渡邉
優 吉田
友乃 宇梶
昌史 関口
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Priority to CN202180085470.0A priority Critical patent/CN116635223A/en
Priority to JP2022570014A priority patent/JPWO2022131261A1/ja
Publication of WO2022131261A1 publication Critical patent/WO2022131261A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances

Definitions

  • the present invention relates to a sheet and a method for manufacturing the sheet.
  • Fluororesin is a synthetic resin with excellent heat resistance, electrical insulation, non-adhesiveness, and weather resistance, and fluororesin sheets formed into sheets are chemical materials, electrical and electronic parts, semiconductors, and automobiles. It is widely used in industrial fields such as (for example, Patent Documents 1 to 4).
  • PTFE polytetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • a method for producing a resin sheet that is difficult to melt-mold a method called skiving, in which a raw material powder is compression-molded to form a cylindrical block (billet) and then the block surface is carved into a thin film.
  • skiving a method for producing a resin sheet that is difficult to melt-mold, a method called skiving, in which a raw material powder is compression-molded to form a cylindrical block (billet) and then the block surface is carved into a thin film.
  • Patent Document 1 discloses, regarding a method for producing a PTFE sheet, a technique for suppressing distortion of a block body by heat-treating and lowering the temperature of the block body before skiving processing under predetermined conditions.
  • Patent Document 2 discloses a technique for heat-pressing a film obtained by a skive method. According to the technique of Patent Document 2, the surface of the release sheet is smoothed, but some vertical streaks (skiving marks) may be reduced, but the vertical streaks cannot be substantially removed. Further, when the film after skiving is heat-pressed, thermal deformation due to a temperature change or the like may occur.
  • fluororesin since fluororesin has excellent heat resistance and insulating properties, it is expected to be applied as a heat resistant material such as a heat resistant insulating tape or a printed circuit board material.
  • a heat resistant material such as a heat resistant insulating tape or a printed circuit board material.
  • the fluororesin sheet produced by skiving is easily heat-shrinked by heating or the like and has poor dimensional stability, so that it is difficult to perform processing such as joining with other materials.
  • An object of the present invention is to provide a sheet capable of suppressing thermal deformation and having excellent dimensional stability.
  • the following sheets are provided. 1.
  • the skived surface has a surface on which calcined products of raw material powder containing fluororesin powder are accumulated, and the calcined product retains substantially the same shape as the particles of the raw material powder and is stretched and deformed by skiving processing.
  • the sheet according to 2 in which is not generated. 4.
  • a portion of the skived surface in the center of the sheet having a plane dimension of 3 mm ⁇ 3 mm was photographed in a range of 20 ⁇ m in width ⁇ 15 ⁇ m in length at a magnification of 6000 times using a scanning electron microscope, and stored in 1280 ⁇ 960 pixels.
  • the plane dimension of the sheet contracts along a predetermined direction which is a skiving processing direction in the sheet plane direction, and expands along a direction orthogonal to the predetermined direction.
  • PTFE polytetrafluoroethylene
  • a material for a printed circuit board which comprises the sheet according to any one of 11.1 to 10. 12.
  • FIG. 5A is a scanning electron microscope image of a skiving machined surface having processing marks
  • FIG. 5B is a conceptual diagram showing one of the dark-colored portions shown in FIG. 5A by extracting it. Is.
  • FIG. 6A is a scanning electron microscope image of a skived surface having substantially no processing marks
  • FIG. 6B is a scanning electron microscope image of a skived surface having substantially no processing marks
  • 6B is an extraction of one of the dark-colored portions shown in FIG. 6A. It is a conceptual diagram shown by. 6 is a scanning electron microscope image of the sheet surface obtained in Examples 1 to 6 and Comparative Examples 1 and 2. It is a scanning electron microscope image of the raw material powder of the sheet shown in FIG. It is a scanning electron microscope image which observed by magnifying the range shown by ⁇ of FIG.
  • x to y represents a numerical range of "x or more and y or less”.
  • the upper limit value and the lower limit value can be arbitrarily selected and combined. It shall be possible.
  • the sheet according to one aspect of the present invention is a sheet made of synthetic resin obtained by skiving processing and has substantially no processing marks.
  • the sheet has one surface forming a flat surface and the other surface which is the back surface thereof, regardless of the thickness, and can be formed in a band shape, a flat plate shape, or the like, and includes, for example, a film or a tape.
  • the sheet made of synthetic resin means a sheet containing synthetic resin. Further, in the following description, a resin piece containing a synthetic resin is simply referred to as a resin piece of a synthetic resin.
  • skiving refers to a method of continuously cutting a sheet thinly by applying a cutting blade 20 to the surface of the billet 10 while rotating the billet 10 obtained by firing a compression molded product of resin powder. ..
  • the skived surface refers to the surfaces 30A and 30B cut by the cutting blade in the sheet machined by skiving.
  • the skived surface typically refers to both planes of the sheet, in view of the fact that the portion cut out having the outer peripheral surface of the billet 10 on one surface is usually excluded as a product.
  • the skiving direction is the direction indicated by the arrow A in FIG.
  • the machined mark is a streak-shaped synthetic resin piece formed on the skived surface.
  • the processing mark refers to an embodiment in which a resin piece of synthetic resin is erected in a gap described later on the skiving surface, and refers to a resin piece on the gap and a gap defined by the resin piece. ..
  • the skiving processing direction is the formation direction of the processing marks (specifically, the resin piece described above on the voids in the sheet plane (specifically, the resin piece described above (specifically, on the sheet plane). It can be specified as the direction in which the processing mark) extends over, or the longitudinal direction of the void that is partially covered with the resin piece (processing mark) to form an elongated shape).
  • the machining mark means a resin piece of a streak-shaped synthetic resin extending in the machining direction on a void on the skiving processed surface, and a void defined by the resin piece.
  • the skiving processing direction can be specified as the shrinkage direction after the heat treatment of the sheet.
  • the sheet obtained by skiving is subjected to heat treatment and then allowed to cool due to the stress characteristics of skiving (more specifically, item 1 in "Measurement of heating dimension change rate" of the embodiment described later.
  • the plane dimension contracts along a predetermined direction which is a skiving processing direction in the sheet plane direction, and expands along a direction orthogonal to the predetermined direction. That is, the direction in which the plane dimension of the sheet shrinks when it is allowed to cool after heat treatment can be specified as the skiving direction.
  • a layer having processing marks on the skive processed surface is referred to as a fragile layer. That is, the fragile layer means a layer formed by stretching the surface layer of the sheet by the cutting blade in the processing direction by skiving. It is presumed that the fragile layer is mechanically fragile and susceptible to thermal changes and the like.
  • the sheet of this embodiment does not substantially have the above-mentioned processing marks (fragile layer), deformation due to temperature changes is suppressed, and the sheet is excellent in dimensional stability.
  • the sheet of this embodiment does not substantially have the above-mentioned processing marks (fragile layer)
  • the processing marks on the sheet to be released are left. Transfer can be reduced, and when the sheet is adhered to another member (for example, a metal material such as copper or another material), surface modification such as plasma treatment can be effectively performed, so that the other member can be effectively bonded.
  • the adhesive strength with and can be improved.
  • skiving is performed on a billet (molded body) obtained by firing a compression molded body of raw material powder.
  • voids called voids 10a existing between the compressed powders are dispersed and exist inside the billet which is the workpiece (see FIG. 2).
  • a part of the void inside the billet appears as a depressed portion on the surface of the sheet carved by skiving.
  • the skiving surface has processing marks, at least a part of the resin piece extends over the depressed portion (corresponding to the above-mentioned void) and extends in the skiving processing direction (region ⁇ in FIG. 3).
  • the shape of the depressed portion (corresponding to the above-mentioned void) identified on the skiving surface is a portion that is elongated in the skiving processing direction by covering a part of the recessed portion (corresponding to the above-mentioned void) (streak-shaped portion).
  • the shape of the recessed portion identified on the skiving surface is close to the shape of the void itself described above, so that the degree of elongation in the skiving direction is low in many cases. (See Fig. 4). Since a typical processing mark looks like a streak, the presence or absence of the processing mark can be confirmed by a microscope image (FIG. 3).
  • substantially having no machining marks means that the machining marks are substantially removed on the skiving surface of the sheet and the internal structure is exposed.
  • substantially having no processing marks means the following states. First, a carbon tape is attached to the sample table of a scanning electron microscope (Hitachi High-Tech Co., Ltd., "SU3500"), and the skived surface of the measurement sample (planar dimension 3 mm x 3 mm in the center of the sheet) becomes the observation surface. To install.
  • the streak-shaped portion is not substantially visually recognized in an arbitrary three-point image (1280 ⁇ 960 pixel region) in a plurality of image data in which an electron microscope image is stored with a number of 1280 ⁇ 960 pixels. This includes not only the case where the streak-shaped portion is not visually recognized on the image at all, but also the case where the streak-shaped portion remaining within a range not contrary to the essence of the present invention is visually recognized on the image in light of the object of the present invention.
  • the arithmetic mean value of the aspect ratio of the dark-colored portion in the scanning electron microscope image of the skived surface exceeds 0.80.
  • the present embodiment provides one method for specifying the above-mentioned processing marks (streak-shaped portions).
  • the dark-colored portion in the scanning electron microscope image corresponds to the depressed portion (void) on the sheet surface, and is specified as follows.
  • the skived surface of the sheet was photographed with a scanning electron microscope at a magnification of 6000 times in a range of 20 ⁇ m in width ⁇ 15 ⁇ m in length, and from a plurality of image data saved in 1280 ⁇ 960 pixels, a predetermined pixel area (1280 ⁇ ). 960 pixel area) is set and extracted. For this extracted image, a gray scale (256 gradations) using a histogram analysis acquisition program for multi-valued image processing (for example, analysis software (for example, "Image-Pro 10" manufactured by Media Cybernetics. Inc.)).
  • analysis software for example, "Image-Pro 10" manufactured by Media Cybernetics. Inc.
  • a histogram is acquired, the acquired histogram is used as a normal distribution, and the range of the average value ⁇ 3 ⁇ when the dispersion amount is ⁇ is extracted and used as 256 gradations. Further, the histogram is flattened, and the pixel portion of 0 to 35 gradations in 256 gradations is defined as a "dark color portion" based on the grayscale frequency distribution data obtained by the flattening process.
  • FIG. 5A is an example of a scanning electron microscope image of the central portion of the skive machined surface having processing marks, and the dark color portion P extracted by image analysis of the scanning electron microscope image by the above-mentioned method. The outer edge of is surrounded by a line.
  • FIG. 5B is a conceptual diagram showing one of the dark-colored portions shown in FIG. 5A by extracting it.
  • the direction indicated by "a” is the skiving direction, and in the example shown in FIG. 5A, it corresponds to the longitudinal direction of the sheet.
  • the direction indicated by "b” is a direction orthogonal to the skiving processing direction, and in the example shown in FIG. 5A, it corresponds to a direction orthogonal to the longitudinal direction of the sheet.
  • the scale (10 scales) shown in the lower right of FIG. 5A shows 5.00 ⁇ m in the entire scale. This point is the same for FIG. 6A.
  • FIG. 6A is an example of a scanning electron microscope image of the central portion of the skive machined surface having substantially no processing marks, and the scanning electron microscope image was extracted by image analysis by the above-mentioned method.
  • the outer edge of the dark part is surrounded by a line.
  • FIG. 6B is a conceptual diagram showing one of the dark-colored portions shown in FIG. 6A by extracting it.
  • the direction indicated by “a” is the skiving direction, and in the example shown in FIG. 6A, it corresponds to the longitudinal direction of the sheet.
  • the direction indicated by “b” is a direction orthogonal to the skiving processing direction, and in the example shown in FIG. 6A, it corresponds to a direction orthogonal to the longitudinal direction of the sheet.
  • the "aspect ratio of the dark color portion” is a diameter in a direction orthogonal to the skiving processing direction with respect to the diameter in the skiving processing direction.
  • the “arithmetic mean value of the aspect ratio of the dark color portion” is arbitrary from the image observed using a scanning electron microscope on the skived surface of the measurement sample (planar dimension 3 mm ⁇ 3 mm portion in the center of the sheet). 3 points of image (1280 ⁇ 960 pixel area) are extracted, and the arithmetic mean value is calculated for each image for the aspect ratio of the total dark color part specified in each of these 3 points of images, and obtained for each image. It is a value obtained by further arithmetically averaging the obtained arithmetic mean value.
  • the diameter of the dark color portion P in the skiving processing direction is Ra1 and the diameter in the direction orthogonal to the skiving processing direction is Rb1, the aspect ratio of the dark color portion P (in the skiving processing direction).
  • the diameter in the orthogonal direction / the diameter in the skiving direction) is represented by (Rb1 / Ra1).
  • (Rb1 / Ra1) is approximately 0.5.
  • the diameter of the dark color portion P in the skiving processing direction is Ra2
  • the diameter in the direction orthogonal to the skiving processing direction is Rb2, so that the aspect ratio of the dark color portion P is (Rb2). It is represented by / Ra2).
  • (Rb2 / Ra2) is approximately 1.
  • the shape of the depressed portion on the skiving surface tends to be smaller in the aspect ratio as shown in FIG. 5 because most of the shapes are elongated in the skiving direction as described above. There is.
  • the shape of the depressed portion on the skiving surface is often low in the degree of elongation in the skiving direction as described above, so that the aspect ratio is as shown in FIG. It tends to be larger than the predetermined value.
  • the aspect ratio tends to be larger than a predetermined lower limit value and smaller than a predetermined upper limit value, that is, it tends to have a variation in the vicinity of 1 which is a perfect circle, and thus can be said to be close to 1.
  • the arithmetic mean value of the aspect ratio of the dark-colored portion in the scanning electron microscope image exceeds 0.80, it is assumed that there are substantially no processing marks.
  • the arithmetic mean value is a value calculated from the aspect ratio of all dark color portions extracted from the pixel area described above.
  • the lower limit of the arithmetic mean value of the aspect ratio of the dark color portion exceeds 0.80, 0.81 or more, 0.85 or more, 0.90 or more, 0.93 or more, It may be 0.95 or more, 1.00 or more, 1.05 or more, 1.12 or more, 1.14 or more, 1.16 or more, or 1.20 or more.
  • the upper limit of the arithmetic mean value of the aspect ratio of the dark color portion is not particularly limited, but is, for example, 1.5 or less, 1.35 or less, 1.33 or less, 1 It can be composed of .26 or less, 1.23 or less, or 1.15 or less.
  • the arithmetic mean value of the aspect ratio of the dark color portion can be configured by combining the upper limit value and the lower limit value of the above embodiment, for example, exceeding 0.80 and 1.5. It can also be composed of the following, or 0.90 or more and 1.35 or less. If the arithmetic mean value of the aspect ratio of the dark-colored portion is within the above range, it can be said that the sheet has a good surface condition with few processing marks on the skived surface and a structure close to the internal structure exposed on the surface.
  • the lower limit of the haze value of the sheet skived surface may be more than 53%, 55% or more, or 60% or more.
  • the upper limit of the haze value may be, for example, 100% or less, 99% or less, 95% or less, 90% or less, 80% or less, 70% or less, or 65% or less.
  • the haze value is an index relating to the transparency of the film and is an index representing turbidity (turbidity). The haze value is specifically evaluated by the method described in Examples.
  • the adhesive strength on the skived surface of the sheet after surface modification such as plasma treatment may be more than 0.2 N / mm, 0.5 N / mm. It may be the above.
  • the adhesive strength is specifically evaluated by the method described in Examples.
  • the sheet according to one embodiment may have a shrinkage rate (heat dimensional change rate) of less than 1.5% in the skiving direction in the sheet plane direction when allowed to cool after heat treatment at 180 ° C. It may be 1.3% or less, or 1.1% or less.
  • the heating dimensional change rate is specifically evaluated by the method described in Examples.
  • Synthetic resin As the synthetic resin, generally used ones can be used without particular limitation, and examples thereof include polyolefins such as polyethylene and polypropylene, fluororesins, polyester resins, and urethane resins. Among these, fluororesin can be preferably used.
  • fluororesin generally used ones can be used without particular limitation, but polytetrafluoroethylene (PTFE) is preferable.
  • PTFE polytetrafluoroethylene
  • Polytetrafluoroethylene (PTFE) is a homopolymer of tetrafluoroethylene.
  • modified polytetrafluoroethylene modified polytetrafluoroethylene
  • modified PTFE is polytetrafluoroethylene modified with perfluoroalkyl vinyl ether.
  • perfluoroalkyl vinyl ether examples include perfluoroalkyl vinyl ether represented by the following formula (1).
  • CF 2 CF-OR f (1)
  • R f is a perfluoroalkyl group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms) or a perfluoroorganic group represented by the following formula (2)).
  • n is an integer of 1 to 4.
  • Examples of the perfluoroalkyl group having 1 to 10 carbon atoms in the formula (1) include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, a perfluorohexyl group and the like. It is preferably a perfluoropropyl group.
  • the sheet may further contain a filler.
  • the filler include alumina, titanium oxide, silica, barium sulfate, silicon carbide, silicon nitride, glass fiber, glass beads, and mica. As these fillers, one kind or two or more kinds can be used.
  • the sheet contains one or more fillers selected from alumina, titanium oxide, silica, barium sulfate, silicon carbide, silicon nitride, glass fiber, glass beads and mica, the content thereof is, for example, 0.5 to 0.5. It is 50% by mass, preferably 1 to 35% by mass.
  • the sheet does not necessarily have to contain a filler.
  • the sheet is, for example, 85% by mass or more, 90% by mass or more, 95% by mass or more, 98% by mass or more, 99% by mass or more, 99.5% by mass or more, 99.9% by mass or more, or. 100% by mass, Polytetrafluoroethylene or modified polytetrafluoroethylene; And optionally one or more fillers selected from alumina, titanium oxide, silica, glass fiber, glass beads and mica.
  • the processing marks are removed from at least one surface of the synthetic resin sheet obtained by skiving processing so that the one surface does not substantially have processing marks. Includes the process of performing the processing.
  • the method for manufacturing a sheet includes the following steps (1) to (4): (1) A step of filling a mold with a raw material containing a synthetic resin and compression molding to form a molded body (2) A step of firing a molded body (3) A step of cutting the surface of the fired molded body into a sheet shape. Step of performing skive processing (4) Step of removing processing marks from the surface of the sheet-shaped molded product
  • the resin described in the above-mentioned sheet item can be used.
  • a raw material containing 80 to 100% by mass of a fluororesin for example, polytetrafluoroethylene or modified polytetrafluoroethylene
  • the raw material to be compressed contains one or more kinds of fillers selected from alumina, titanium oxide, silica, glass fiber, glass beads, and mica
  • the blending amount of the filler is fluororesin (for example, polytetrafluoroethylene, modified). 1 to 50% by mass based on polytetrafluoroethylene or a mixture thereof).
  • the above raw materials are filled in a mold and compression molded to form a compression molded product.
  • the surface pressure may be 10 to 100 MPa, 20 to 60 MPa, or 30 to 50 MPa.
  • the obtained compression molded product is fired to obtain a billet.
  • the firing temperature may be 100 to 400 ° C, 350 to 370 ° C, or 360 to 370 ° C.
  • a raw material powder containing a fluororesin such as polytetrafluoroethylene is used as the raw material powder of the compression molded body
  • the obtained billet is obtained as a molded body obtained by accumulating the calcined product of the raw material powder.
  • the shape of the billet (molded body) is preferably cylindrical from the viewpoint of ease of skiving processing described later.
  • the diameter of the cylindrical body may be, for example, 100 to 500 mm or 150 to 500 mm.
  • skiving processing is performed to cut the surface of the billet, which is a fired molded product, into a sheet.
  • the billet (molded body) is a cylindrical body
  • a cutting blade is applied to the outer peripheral surface of the fired cylindrical body in the longitudinal direction to cut it into a sheet shape.
  • the outer peripheral surface, inner peripheral surface, and end face surface of the fired cylinder are before the step of cutting the longitudinal outer peripheral surface of the fired cylinder into a sheet shape. May be removed from the outside of the surface to a thickness of 3 mm, respectively.
  • the skiving step of cutting the outer peripheral surface of the fired cylinder in the longitudinal direction into a sheet can be carried out by using the apparatus shown in FIG.
  • the thickness of the sheet obtained by cutting may be, for example, 0.01 to 1 mm, or 0.01 to 0.5 mm.
  • the fired billet (cylindrical body) 10 is rotated and cut with a cutting blade (bite) 20 to obtain a sheet 30.
  • the processing marks existing on the surface of the sheet are removed.
  • the surface of the sheet can be prevented from having substantially no processing marks.
  • a method of removing processing marks by particle projection particularly if the method can be adjusted so that the sheet surface is stretched by the particle projection and new processing marks (marks different from the processing marks by skiving processing) are not generated. Not limited.
  • the method for removing the processing marks include, but are not limited to, a dry ice blast treatment using dry ice as the projection particles and a treatment of projecting a slurry in which the particles are dispersed in water.
  • the removal of the processing marks by particle projection is new so that the processing marks on the sheet surface can be removed so that the sheet surface has substantially no processing marks, and the sheet surface is stretched by particle projection. This can be done by appropriately adjusting the type of projection particles (particle material, shape, particle size) and projection conditions (projection angle, projection distance, projection pressure) so as not to generate processing marks. ..
  • the sheet obtained by the above-mentioned method substantially the same structure as the structure inside the billet appears as the surface shape of the skived surface.
  • the molded body (billet) formed by accumulating the fired products of the raw material powder is subjected to the above-mentioned skiving processing and processing marks removal processing.
  • the finally obtained sheet has a skived surface having a surface on which the calcined product of the raw material powder is accumulated.
  • the fired product retains substantially the same shape as the particles of the raw material powder, and constitutes the skived surface on the assumption that the stretch deformation due to skiving does not occur.
  • FIG. 8 is an image obtained by observing the raw material powder of the sheet shown in FIG. 4 with a scanning electron microscope
  • FIG. 9 is an image observed with a scanning electron microscope with the range indicated by ⁇ in FIG. 8 further enlarged.
  • the raw material powder (PTFE powder) shown in FIG. 8 is obtained by granulating primary particles synthesized by suspension polymerization for compression molding, and is a minute primary particle existing at a position indicated by, for example, Q in the range shown in ⁇ .
  • the particles (average particle size: about 1 ⁇ m) are aggregated to form secondary particles having an average particle size of about 10 to 100 ⁇ m (for example, agglomerate particles occupying the range shown in ⁇ ).
  • the compression molded body obtained by compression molding the raw material powder shown in FIG. 8 is an aggregate of the above-mentioned primary particles (average particle diameter: about 1 ⁇ m), and the billet obtained by firing the molded body is skived.
  • a scanning electron microscope image obtained by observing the skived surface of the obtained sheet with a scanning electron microscope is shown in FIG. Since the billet is formed by compression molding primary particles having an average particle diameter of about 1 ⁇ m and undergoing a firing process, a part of the primary particles is deformed into a flat shape, and a part is fused and crimped with other primary particles. Or it is glued.
  • the billet has a state in which the flat primary particles are bonded (engaged) with each other, in other words, the primary particles hold substantially the same shape as the particles of the raw material powder, and the billet is skived.
  • the skived surface of the obtained sheet has a surface in which particles (baked product of raw material powder) having an average particle diameter of about 1 ⁇ m are accumulated.
  • the shape of each region (baked product of raw material powder) shown in c, d, e, and f is the shape of each region (primary particles of raw material powder) shown in g, h, i, and j in FIG. Each has substantially the same shape as the shape.
  • the sheet of this embodiment described above is suitably used, for example, as a material for a printed circuit board.
  • Example 1 ⁇ Making billets> A mold is filled with polytetrafluoroethylene (PTFE) powder and compression-molded from above and below at a press pressure of 20 MPa for 0.5 hours to form a cylindrical preformed body (outer diameter 245 mm x inner diameter 75 mm x height 300 mm). Obtained. The obtained preformed body was put into a firing furnace and fired at 365 ° C. for 5 hours.
  • PTFE polytetrafluoroethylene
  • a treatment was performed in which a slurry (polishing liquid) in which an abrasive was dispersed as projection particles was projected onto the skived surface of the obtained sheet.
  • the process of projecting the polishing liquid is adopted as an example of the process of removing the processing marks, but in the process of removing the processing marks in the present invention, for example, a method capable of removing the processing marks by particle projection may be used. For example, different methods can be adopted as appropriate.
  • the processing marks were removed under the following conditions.
  • an image of a 1280 ⁇ 960 pixel region is optionally extracted from an arbitrary three-point image (1280 ⁇ 960 pixel region). did.
  • a gray scale (256 gradations) histogram was created using a histogram analysis acquisition program (“Image-Pro 10” manufactured by Media Cybernetics. Inc.) for multi-value image processing. The acquired histogram was used as a normal distribution, and the range of the average value ⁇ 3 ⁇ when the dispersion amount was ⁇ was extracted and used as 256 gradations.
  • Example 2 Comparative Example 2 A sheet was prepared and evaluated in the same manner as in Example 1 except that the polishing agent concentration of the slurry (polishing liquid) used for removing the processing marks was changed as shown in Table 1. The results are shown in Table 1.
  • Comparative Example 1 A sheet was prepared and evaluated in the same manner as in Example 1 except that the step of removing the processing marks was not performed. The results are shown in Table 1.
  • Example 7 Sheets were prepared and evaluated in the same manner as in Example 6 except that modified polytetrafluoroethylene (modified PTFE) was used instead of polytetrafluoroethylene. The results are shown in Table 2.
  • modified PTFE modified polytetrafluoroethylene
  • Comparative Example 3 Sheets were prepared and evaluated in the same manner as in Comparative Example 1 except that modified polytetrafluoroethylene was used instead of polytetrafluoroethylene. The results are shown in Table 2.
  • Heating dimension change rate (post-heating dimension-pre-heating dimension) / pre-heating dimension ... (i)
  • Example 6 and Comparative Example 1 were cut into 100 mm ⁇ 100 mm, subjected to the plasma treatment shown below, and then the adhesiveness evaluation shown below was performed. The results are shown in Table 4.
  • a sheet was placed in a vacuum plasma apparatus to evacuate, and plasma treatment was performed for 10 seconds using a 2.45 GHz microwave in a mixed gas atmosphere of nitrogen gas and hydrogen gas.
  • a hot press temperature: 160 ° C., press time: 1 hour, press load: 4 MPa
  • a notch was made in this sample to a width of 10 mm, and the copper foil was peeled off by 30 mm.
  • the peeled sample with the copper foil was subjected to a 90 ° peeling test at a tensile speed of 50 mm / min using a small tabletop tester (manufactured by Shimadzu Corporation, "EZ-LX”), and the adhesive strength was measured.
  • FIG. 7 shows an electron microscope image (magnification 6000 times, 1280 ⁇ 960 pixel region) acquired in “Extraction of dark color portion and calculation of aspect ratio” in Examples 1 to 6 and Comparative Examples 1 to 2.
  • the sheet of the present invention is suitably used as a heat-resistant material such as heat-resistant insulating tape, a material for a printed circuit board, and a release sheet, but is not limited thereto.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a sheet that is made of a synthetic resin and that is obtained by skiving processing, wherein the sheet has substantially no processing marks.

Description

シート及びシートの製造方法Sheets and sheet manufacturing methods
 本発明は、シート及びシートの製造方法に関する。 The present invention relates to a sheet and a method for manufacturing the sheet.
 フッ素樹脂は優れた耐熱性、電気絶縁性、非粘着性、耐候性を備えた合成樹脂であり、シート状に成形してフッ素樹脂シートとしたものが、化学材料、電気電子部品、半導体、自動車等の産業分野において広く利用されている(例えば特許文献1~4)。 Fluororesin is a synthetic resin with excellent heat resistance, electrical insulation, non-adhesiveness, and weather resistance, and fluororesin sheets formed into sheets are chemical materials, electrical and electronic parts, semiconductors, and automobiles. It is widely used in industrial fields such as (for example, Patent Documents 1 to 4).
 例えば、ポリテトラフルオロエチレン(以下、PTFEと称する。)などは溶融粘度が著しく高いため、一般的な熱可塑性樹脂で行われているような、押出成形等の溶融成形を行うことが困難である。
 このような溶融成形が困難な樹脂のシートの製法としては、原料粉末を圧縮成形して円筒状のブロック(ビレット)を成形した後、ブロック表面を薄いフィルム状に削り出す、スカイブ加工と呼ばれる方法が採用されている。
For example, since polytetrafluoroethylene (hereinafter referred to as PTFE) has a remarkably high melt viscosity, it is difficult to perform melt molding such as extrusion molding as is performed with general thermoplastic resins. ..
As a method for producing a resin sheet that is difficult to melt-mold, a method called skiving, in which a raw material powder is compression-molded to form a cylindrical block (billet) and then the block surface is carved into a thin film. Has been adopted.
 例えば特許文献1には、PTFEシートの製造方法に関して、スカイブ加工前のブロック体を、所定の条件で加熱処理及び温度低下処理することで、ブロック体の歪みを抑制する技術が開示されている。 For example, Patent Document 1 discloses, regarding a method for producing a PTFE sheet, a technique for suppressing distortion of a block body by heat-treating and lowering the temperature of the block body before skiving processing under predetermined conditions.
 フッ素樹脂等の合成樹脂の応用例として、例えば非粘着性で離型性に優れる特性を生かした、離型シートとしての利用が知られている。しかしながら、前述したスカイブ加工を経て得られた合成樹脂フィルムを離型シートとして用いると、離型される側のシートの表面に、スカイブ痕と呼ばれる縦筋が転写することがある。
 フッ素樹脂フィルムの表面を平滑化する技術として、例えば特許文献2には、スカイブ法により得られたフィルムを加熱プレス処理する技術が開示されている。特許文献2の技術によれば、離型シートの表面を平滑化しているが、一部の縦筋(スカイブ痕)を低減できる可能性があるものの縦筋を実質的に除去することはできず、また、スカイブ加工後のフィルムに加熱プレス処理を行うと、温度変化等による熱変形が生じ得る。
As an application example of a synthetic resin such as a fluororesin, it is known to be used as a mold release sheet, for example, taking advantage of its non-adhesive property and excellent mold release property. However, when the synthetic resin film obtained through the skiving process described above is used as a release sheet, vertical streaks called skive marks may be transferred to the surface of the sheet on the release side.
As a technique for smoothing the surface of a fluororesin film, for example, Patent Document 2 discloses a technique for heat-pressing a film obtained by a skive method. According to the technique of Patent Document 2, the surface of the release sheet is smoothed, but some vertical streaks (skiving marks) may be reduced, but the vertical streaks cannot be substantially removed. Further, when the film after skiving is heat-pressed, thermal deformation due to a temperature change or the like may occur.
 また、フッ素樹脂は耐熱性、絶縁性に優れるため、例えば耐熱絶縁テープ等の耐熱材料やプリント基板材料としての応用も期待されている。
 しかしながら、スカイブ加工により製造したフッ素樹脂シートは、加熱等により熱収縮し易く、寸法安定性が悪いため、例えば他の材料との接合等の加工処理を行いにくいという問題が指摘されている。
Further, since fluororesin has excellent heat resistance and insulating properties, it is expected to be applied as a heat resistant material such as a heat resistant insulating tape or a printed circuit board material.
However, it has been pointed out that the fluororesin sheet produced by skiving is easily heat-shrinked by heating or the like and has poor dimensional stability, so that it is difficult to perform processing such as joining with other materials.
特開2013-027983号公報Japanese Unexamined Patent Publication No. 2013-027983 特開2015-189934号公報JP-A-2015-189934 特開2014-231562号公報Japanese Unexamined Patent Publication No. 2014-231562 特開2010-201649号公報JP-A-2010-201649
 本発明の目的は、熱変形を抑制でき、寸法安定性に優れたシートを提供することである。 An object of the present invention is to provide a sheet capable of suppressing thermal deformation and having excellent dimensional stability.
 本発明によれば、以下のシートが提供される。
1.スカイブ加工により得られた、合成樹脂製のシートであって、加工痕を実質的に有しないシート。
2.前記合成樹脂がフッ素樹脂を含有する1に記載のシート。
3.前記スカイブ加工面は、フッ素樹脂粉末を含む原料粉末の焼成物が集積してなる面を有し、前記焼成物は、前記原料粉末の粒子と略同形状を保持し、且つスカイブ加工による延伸変形が生じていない、2に記載のシート。
4.前記シートの中心部のスカイブ加工面における平面寸法3mm×3mmの部位を、走査型電子顕微鏡を用いて6000倍の倍率で、横20μm×縦15μmの範囲を撮影し、1280×960画素数で保存した複数の画像データから抽出した任意の1280×960画素領域中に、スカイブ加工方向に伸長する空隙が実質的に視認されない、1~3のいずれかに記載のシート。
5.180℃での加熱後、放冷したときに、前記シートの平面寸法が、シート平面方向においてスカイブ加工方向である所定方向に沿って収縮し、当該所定方向と直交する方向に沿って膨張する、1~4のいずれかに記載のシート。
6.前記シートのスカイブ加工面の走査型電子顕微鏡画像における濃色部のアスペクト比の算術平均値が0.80を超える、1~5のいずれかに記載のシート。
7.前記濃色部のアスペクト比の算術平均値が0.90以上である、6に記載のシート。
8.表面改質した前記スカイブ加工面における接着強度が0.2N/mmを超える、1~7のいずれかに記載のシート。
9.180℃での加熱後、放冷したときの、スカイブ加工方向の収縮率が1.5%未満である、1~8のいずれかに記載のシート。
10.前記フッ素樹脂がポリテトラフルオロエチレン(PTFE)又は変性PTFEである、2~9のいずれかに記載のシート。
11.1~10のいずれかに記載のシートを含む、プリント基板用材料。
12.1~10のいずれかに記載のシートを製造する方法であって、スカイブ加工により得られた、合成樹脂製のシートの少なくとも一面に対して、当該一面が加工痕を実質的に有しないように当該加工痕を除去する処理を行う工程を含む、シートの製造方法。
According to the present invention, the following sheets are provided.
1. 1. A sheet made of synthetic resin obtained by skiving processing and having substantially no processing marks.
2. 2. The sheet according to 1, wherein the synthetic resin contains a fluororesin.
3. 3. The skived surface has a surface on which calcined products of raw material powder containing fluororesin powder are accumulated, and the calcined product retains substantially the same shape as the particles of the raw material powder and is stretched and deformed by skiving processing. The sheet according to 2 in which is not generated.
4. A portion of the skived surface in the center of the sheet having a plane dimension of 3 mm × 3 mm was photographed in a range of 20 μm in width × 15 μm in length at a magnification of 6000 times using a scanning electron microscope, and stored in 1280 × 960 pixels. The sheet according to any one of 1 to 3, wherein the voids extending in the skiving processing direction are not substantially visible in the arbitrary 1280 × 960 pixel region extracted from the plurality of image data.
5. When the sheet is allowed to cool after heating at 180 ° C., the plane dimension of the sheet contracts along a predetermined direction which is a skiving processing direction in the sheet plane direction, and expands along a direction orthogonal to the predetermined direction. The sheet according to any one of 1 to 4.
6. The sheet according to any one of 1 to 5, wherein the arithmetic mean value of the aspect ratio of the dark-colored portion in the scanning electron microscope image of the skived surface of the sheet exceeds 0.80.
7. The sheet according to 6, wherein the arithmetic mean value of the aspect ratio of the dark-colored portion is 0.90 or more.
8. The sheet according to any one of 1 to 7, wherein the surface-modified surface has an adhesive strength of more than 0.2 N / mm on the skived surface.
9. The sheet according to any one of 1 to 8, wherein the shrinkage in the skiving direction when allowed to cool after heating at 180 ° C. is less than 1.5%.
10. The sheet according to any one of 2 to 9, wherein the fluororesin is polytetrafluoroethylene (PTFE) or modified PTFE.
A material for a printed circuit board, which comprises the sheet according to any one of 11.1 to 10.
12. The method for producing a sheet according to any one of 12.1 to 10, wherein the one surface of the synthetic resin sheet obtained by skiving has substantially no processing marks on at least one surface thereof. A method for manufacturing a sheet, which comprises a step of removing the processing marks.
 本発明によれば、熱変形を抑制でき、寸法安定性に優れたシートが提供できる。 According to the present invention, it is possible to provide a sheet that can suppress thermal deformation and has excellent dimensional stability.
焼成した成形体(ビレット)の長手方向外周表面を切削してシート状にするスカイブ工程を示す図である。It is a figure which shows the skive process which cuts the outer peripheral surface in the longitudinal direction of a fired molded body (billet) into a sheet shape. 成形体の内部構造を説明するための概念図である。It is a conceptual diagram for demonstrating the internal structure of a molded body. 加工痕を有するスカイブ加工面の走査型電子顕微鏡画像である。It is a scanning electron microscope image of a skiving machined surface which has a work mark. 加工痕を有しないスカイブ加工面の走査型電子顕微鏡画像である。It is a scanning electron microscope image of a skiving machined surface having no processing mark. 図5(a)は、加工痕を有するスカイブ加工面の走査型電子顕微鏡画像であり、図5(b)は、図5(a)中に示す濃色部の一つを抜き出して示す概念図である。FIG. 5A is a scanning electron microscope image of a skiving machined surface having processing marks, and FIG. 5B is a conceptual diagram showing one of the dark-colored portions shown in FIG. 5A by extracting it. Is. 図6(a)は、加工痕を実質的に有しないスカイブ加工面の走査型電子顕微鏡画像であり、図6(b)は、図6(a)中に示す濃色部の一つを抜き出して示す概念図である。FIG. 6A is a scanning electron microscope image of a skived surface having substantially no processing marks, and FIG. 6B is an extraction of one of the dark-colored portions shown in FIG. 6A. It is a conceptual diagram shown by. 実施例1~6及び比較例1~2で得られたシート表面の走査型電子顕微鏡画像である。6 is a scanning electron microscope image of the sheet surface obtained in Examples 1 to 6 and Comparative Examples 1 and 2. 図4に示すシートの原料粉末の走査型電子顕微鏡画像である。It is a scanning electron microscope image of the raw material powder of the sheet shown in FIG. 図8のβで示す範囲を拡大して観察した走査型電子顕微鏡画像である。It is a scanning electron microscope image which observed by magnifying the range shown by β of FIG.
 以下、本発明に係るシート及びシートの製造方法について説明する。本明細書において、「x~y」は「x以上、y以下」の数値範囲を表すものとする。一の技術的事項に関して、「x以上」等の下限値が複数存在する場合、又は「y以下」等の上限値が複数存在する場合、当該上限値及び下限値から任意に選択して組み合わせることができるものとする。 Hereinafter, the sheet and the method for manufacturing the sheet according to the present invention will be described. In the present specification, "x to y" represents a numerical range of "x or more and y or less". Regarding one technical matter, when there are multiple lower limit values such as "x or more" or when there are multiple upper limit values such as "y or less", the upper limit value and the lower limit value can be arbitrarily selected and combined. It shall be possible.
[シート]
 本発明の一態様に係るシートは、スカイブ加工により得られた、合成樹脂製のシートであって、加工痕を実質的に有しないシートである。シートとは、厚みに関わらず、平面をなす一面とその裏面である他面を有しており、帯状、平板状等の形状で構成されることができ、例えば、フィルム、テープを含む。合成樹脂製のシートとは、合成樹脂を含有するシートを意味する。
 また、以下の説明において、合成樹脂を含有する樹脂片を単に合成樹脂の樹脂片と示す。
[Sheet]
The sheet according to one aspect of the present invention is a sheet made of synthetic resin obtained by skiving processing and has substantially no processing marks. The sheet has one surface forming a flat surface and the other surface which is the back surface thereof, regardless of the thickness, and can be formed in a band shape, a flat plate shape, or the like, and includes, for example, a film or a tape. The sheet made of synthetic resin means a sheet containing synthetic resin.
Further, in the following description, a resin piece containing a synthetic resin is simply referred to as a resin piece of a synthetic resin.
 スカイブ加工とは、図1に示すように、樹脂粉末の圧縮成形体を焼成したビレット10を回転させながら、ビレット10の表面に切削刃20を当てて薄く連続的にシートを削り出す方法をいう。
 スカイブ加工面とは、スカイブ加工により削り出されたシートにおいて、切削刃により切削された面30A、30Bをいう。ビレット10の外周面を一面に有して切り出された部分は、通常、製品としては除かれることに鑑み、スカイブ加工面とは典型的にはシートの両平面をいう。またスカイブ加工方向とは、図1中矢印Aで示す方向をいう。
 加工痕とは、スカイブ加工面に形成された、スジ形状の合成樹脂の樹脂片をいう。具体的には、加工痕は、スカイブ加工面において、合成樹脂の樹脂片が後述する空隙に架設された態様をいい、当該空隙上の樹脂片と、当該樹脂片により画定される空隙とをいう。
 なお、スカイブ加工方向について詳説すると、シート平面に加工痕が残っている場合は、スカイブ加工方向は、当該加工痕の形成方向(具体的には、シート平面において、空隙上に前述した樹脂片(加工痕)が跨って延設されている方向、又は当該樹脂片(加工痕)によりその一部が覆われて長尺状をなす空隙の長手方向)として特定できる。換言すれば、加工痕とは、スカイブ加工面の空隙上において加工方向に伸長するスジ形状の合成樹脂の樹脂片と、当該樹脂片により画定される空隙をいう。
 一方、シート平面に加工痕が残っていない場合は、スカイブ加工方向は、当該シートの熱処理後の収縮方向として特定できる。具体的には、スカイブ加工により得られたシートは、スカイブ加工による応力特性上、熱処理後、放冷したとき(より詳細には、後述する実施例の「加熱寸法変化率の測定」における項目1~項目5の処理をしたとき)に、その平面寸法は、シート平面方向においてスカイブ加工方向である所定方向に沿って収縮し、当該所定方向と直交する方向に沿って膨張する。即ち、熱処理後、放冷したときにシートの平面寸法が収縮する方向を、スカイブ加工方向として特定できる。
As shown in FIG. 1, skiving refers to a method of continuously cutting a sheet thinly by applying a cutting blade 20 to the surface of the billet 10 while rotating the billet 10 obtained by firing a compression molded product of resin powder. ..
The skived surface refers to the surfaces 30A and 30B cut by the cutting blade in the sheet machined by skiving. The skived surface typically refers to both planes of the sheet, in view of the fact that the portion cut out having the outer peripheral surface of the billet 10 on one surface is usually excluded as a product. The skiving direction is the direction indicated by the arrow A in FIG.
The machined mark is a streak-shaped synthetic resin piece formed on the skived surface. Specifically, the processing mark refers to an embodiment in which a resin piece of synthetic resin is erected in a gap described later on the skiving surface, and refers to a resin piece on the gap and a gap defined by the resin piece. ..
In addition, when the skiving processing direction is described in detail, when the processing marks remain on the sheet plane, the skiving processing direction is the formation direction of the processing marks (specifically, the resin piece described above on the voids in the sheet plane (specifically, the resin piece described above (specifically, on the sheet plane). It can be specified as the direction in which the processing mark) extends over, or the longitudinal direction of the void that is partially covered with the resin piece (processing mark) to form an elongated shape). In other words, the machining mark means a resin piece of a streak-shaped synthetic resin extending in the machining direction on a void on the skiving processed surface, and a void defined by the resin piece.
On the other hand, when no processing marks remain on the sheet plane, the skiving processing direction can be specified as the shrinkage direction after the heat treatment of the sheet. Specifically, the sheet obtained by skiving is subjected to heat treatment and then allowed to cool due to the stress characteristics of skiving (more specifically, item 1 in "Measurement of heating dimension change rate" of the embodiment described later. (When the processing of item 5 is performed), the plane dimension contracts along a predetermined direction which is a skiving processing direction in the sheet plane direction, and expands along a direction orthogonal to the predetermined direction. That is, the direction in which the plane dimension of the sheet shrinks when it is allowed to cool after heat treatment can be specified as the skiving direction.
 本発明者らは、スカイブ加工を経て得られた合成樹脂製のシートが熱変形し易く、寸法安定性に劣る原因について鋭意研究した結果、スカイブ加工面に加工痕が残存していると、シートの熱変化が生じ易くなり寸法安定性が悪化することを見出した。
 ここで、スカイブ加工面における加工痕を有する層を脆弱層という。すなわち、脆弱層とは、スカイブ加工によりシートの表層が切削刃によって加工方向に引き伸ばされて形成された層をいう。脆弱層は、機械的に脆く、熱変化等の影響を受けやすいと推定される。
As a result of diligent research on the cause of the fact that the synthetic resin sheet obtained through skiving is easily thermally deformed and inferior in dimensional stability, the present inventors have found that processing marks remain on the skiving surface. It was found that the thermal change is likely to occur and the dimensional stability is deteriorated.
Here, a layer having processing marks on the skive processed surface is referred to as a fragile layer. That is, the fragile layer means a layer formed by stretching the surface layer of the sheet by the cutting blade in the processing direction by skiving. It is presumed that the fragile layer is mechanically fragile and susceptible to thermal changes and the like.
 本態様のシートは、前述した加工痕(脆弱層)を実質的に有しないため、温度変化に伴う変形が抑制されており、寸法安定性に優れる。
 その他にも、本態様のシートは、前述した加工痕(脆弱層)を実質的に有しないため、当該シートを離型シートとして用いる場合には、離型される側のシートへの加工痕の転写を低減でき、また当該シートを他部材(例えば銅等の金属材料や、その他の材料)と接着させる場合には、プラズマ処理等の表面改質を効果的に行うことができるので、他部材との接着強度を向上させることができる。
Since the sheet of this embodiment does not substantially have the above-mentioned processing marks (fragile layer), deformation due to temperature changes is suppressed, and the sheet is excellent in dimensional stability.
In addition, since the sheet of this embodiment does not substantially have the above-mentioned processing marks (fragile layer), when the sheet is used as a mold release sheet, the processing marks on the sheet to be released are left. Transfer can be reduced, and when the sheet is adhered to another member (for example, a metal material such as copper or another material), surface modification such as plasma treatment can be effectively performed, so that the other member can be effectively bonded. The adhesive strength with and can be improved.
 上述のように、スカイブ加工は、原料粉末の圧縮成形体を焼成したビレット(成形体)に対して行われる。この場合、被加工体であるビレットの内部には、圧縮粉末間に存在するボイド10aと呼ばれる空隙が、全体に分散して存在する(図2参照)。このため、スカイブ加工により削り出されたシートの表面には、ビレット内部のボイドの一部が陥没部となって顕れる。
 スカイブ加工面に加工痕を有する場合、樹脂片の少なくとも一部は、陥没部(前述した空隙に相当する)を跨いで、スカイブ加工方向に伸びて存在する(図3中の領域α)。このため、スカイブ加工面において識別される陥没部(前述した空隙に相当する)の形状は、樹脂片によりその一部が覆われることで、スカイブ加工方向に細長く伸長したもの(スジ形状部)が多くなる。
 一方、スカイブ加工面に加工痕を実質的に有しない場合、スカイブ加工面において識別される陥没部の形状は、前述したボイド自体の形状に近いため、スカイブ加工方向の伸長度は低いものが多くなる(図4参照)。
 典型的な加工痕はスジ形状に見えるため、加工痕の有無は顕微鏡画像により確認できる(図3)。本願において「加工痕を実質的に有しない」とは、シートのスカイブ加工面において、加工痕が実質的に除去され、内部構造が露出してなることをいう。
 具体的には、「加工痕を実質的に有しない」とは、以下の状態を意味する。まず、走査型電子顕微鏡(株式会社日立ハイテク製、「SU3500」)の試料台にカーボンテープを添付し、測定試料(シート中心部の平面寸法3mm×3mm部位)のスカイブ加工面が観察面となるように設置する。次いで、スカイブ加工面に白金蒸着し、走査型電子顕微鏡(株式会社日立ハイテク製、「SU3500」)を用いて加速電圧5kV、6000倍の倍率で、横20μm×縦15μmの範囲で観察した走査型電子顕微鏡画像を1280×960画素数で保存した複数の画像データにおける、任意の3点の画像(1280×960画素領域)中に、スジ形状部が実質的に視認されないことを意味しており、スジ形状部が画像上において全く視認されない場合はもとより、本発明の目的等に照らし、本発明の本質に反しない範囲内で残存するスジ形状部が画像上において視認される場合も含む。
As described above, skiving is performed on a billet (molded body) obtained by firing a compression molded body of raw material powder. In this case, voids called voids 10a existing between the compressed powders are dispersed and exist inside the billet which is the workpiece (see FIG. 2). For this reason, a part of the void inside the billet appears as a depressed portion on the surface of the sheet carved by skiving.
When the skiving surface has processing marks, at least a part of the resin piece extends over the depressed portion (corresponding to the above-mentioned void) and extends in the skiving processing direction (region α in FIG. 3). For this reason, the shape of the depressed portion (corresponding to the above-mentioned void) identified on the skiving surface is a portion that is elongated in the skiving processing direction by covering a part of the recessed portion (corresponding to the above-mentioned void) (streak-shaped portion). Will increase.
On the other hand, when there are substantially no machining marks on the skiving surface, the shape of the recessed portion identified on the skiving surface is close to the shape of the void itself described above, so that the degree of elongation in the skiving direction is low in many cases. (See Fig. 4).
Since a typical processing mark looks like a streak, the presence or absence of the processing mark can be confirmed by a microscope image (FIG. 3). In the present application, "substantially having no machining marks" means that the machining marks are substantially removed on the skiving surface of the sheet and the internal structure is exposed.
Specifically, "substantially having no processing marks" means the following states. First, a carbon tape is attached to the sample table of a scanning electron microscope (Hitachi High-Tech Co., Ltd., "SU3500"), and the skived surface of the measurement sample (planar dimension 3 mm x 3 mm in the center of the sheet) becomes the observation surface. To install. Next, platinum was vapor-deposited on the skive-processed surface, and a scanning electron microscope (manufactured by Hitachi High-Tech Co., Ltd., "SU3500") was used to observe an acceleration voltage of 5 kV at a magnification of 6000 times in a range of 20 μm in width and 15 μm in length. It means that the streak-shaped portion is not substantially visually recognized in an arbitrary three-point image (1280 × 960 pixel region) in a plurality of image data in which an electron microscope image is stored with a number of 1280 × 960 pixels. This includes not only the case where the streak-shaped portion is not visually recognized on the image at all, but also the case where the streak-shaped portion remaining within a range not contrary to the essence of the present invention is visually recognized on the image in light of the object of the present invention.
 一実施形態に係るシートは、スカイブ加工面の走査型電子顕微鏡画像における濃色部のアスペクト比の算術平均値が0.80を超える。本実施形態は、上述した加工痕(スジ形状部)を特定する1つの手法を提供するものである。
 ここで、本願では、走査型電子顕微鏡画像における濃色部は、シート表面における陥没部(空隙)に相当するものであり、以下のようにして特定される。
In the sheet according to one embodiment, the arithmetic mean value of the aspect ratio of the dark-colored portion in the scanning electron microscope image of the skived surface exceeds 0.80. The present embodiment provides one method for specifying the above-mentioned processing marks (streak-shaped portions).
Here, in the present application, the dark-colored portion in the scanning electron microscope image corresponds to the depressed portion (void) on the sheet surface, and is specified as follows.
 まず、シートのスカイブ加工面を走査型電子顕微鏡で倍率6000倍にて横20μm×縦15μmの範囲で撮影し、1280×960画素数で保存した複数の画像データから、所定の画素領域(1280×960画素領域)を設定して抽出する。この抽出画像に対して、多値画像処理のヒストグラム解析取得プログラム(例えば、解析ソフト(Media Cybernetics.Inc.製、「Image-Pro 10」))を使用して、グレースケール(256階調)のヒストグラムを取得し、取得したヒストグラムを正規分布とし、その分散量をσとしたときの平均値±3σの範囲を抽出し、256階調とする。さらに、ヒストグラムの平坦化処理を行い、これにより得られたグレースケール度数分布データをもとに、256階調における0~35階調の画素部分を「濃色部」と定義する。 First, the skived surface of the sheet was photographed with a scanning electron microscope at a magnification of 6000 times in a range of 20 μm in width × 15 μm in length, and from a plurality of image data saved in 1280 × 960 pixels, a predetermined pixel area (1280 ×). 960 pixel area) is set and extracted. For this extracted image, a gray scale (256 gradations) using a histogram analysis acquisition program for multi-valued image processing (for example, analysis software (for example, "Image-Pro 10" manufactured by Media Cybernetics. Inc.)). A histogram is acquired, the acquired histogram is used as a normal distribution, and the range of the average value ± 3σ when the dispersion amount is σ is extracted and used as 256 gradations. Further, the histogram is flattened, and the pixel portion of 0 to 35 gradations in 256 gradations is defined as a "dark color portion" based on the grayscale frequency distribution data obtained by the flattening process.
 図5(a)は、加工痕を有するスカイブ加工面中心部の走査型電子顕微鏡画像の一例であり、当該走査型電子顕微鏡画像について、上述した手法で画像解析して抽出された濃色部Pの外縁を線で囲って示している。図5(b)は、図5(a)中に示す濃色部の一つを抜き出して示す概念図である。
 なお、図5(a)中、「a」で示す方向はスカイブ加工方向であり、図5(a)に示す例では、シートの長手方向に該当する。図5(a)中、「b」で示す方向はスカイブ加工方向に直交する方向であり、図5(a)に示す例では、シートの長手方向に直交する方向に該当する。なお、図5(a)の右下に示すスケール(10目盛り)は、スケール全体で5.00μmを示している。この点は、図6(a)についても同様である。
FIG. 5A is an example of a scanning electron microscope image of the central portion of the skive machined surface having processing marks, and the dark color portion P extracted by image analysis of the scanning electron microscope image by the above-mentioned method. The outer edge of is surrounded by a line. FIG. 5B is a conceptual diagram showing one of the dark-colored portions shown in FIG. 5A by extracting it.
In FIG. 5A, the direction indicated by "a" is the skiving direction, and in the example shown in FIG. 5A, it corresponds to the longitudinal direction of the sheet. In FIG. 5A, the direction indicated by "b" is a direction orthogonal to the skiving processing direction, and in the example shown in FIG. 5A, it corresponds to a direction orthogonal to the longitudinal direction of the sheet. The scale (10 scales) shown in the lower right of FIG. 5A shows 5.00 μm in the entire scale. This point is the same for FIG. 6A.
 図6(a)は、加工痕を実質的に有しないスカイブ加工面中心部の走査型電子顕微鏡画像の一例であり、当該走査型電子顕微鏡画像について、上述した手法で画像解析して抽出された濃色部の外縁を線で囲って示している。図6(b)は、図6(a)中に示す濃色部の一つを抜き出して示す概念図である。
 なお、図6(a)中、「a」で示す方向はスカイブ加工方向であり、図6(a)に示す例では、シートの長手方向に該当する。図6(a)中、「b」で示す方向はスカイブ加工方向に直交する方向であり、図6(a)に示す例では、シートの長手方向に直交する方向に該当する。
FIG. 6A is an example of a scanning electron microscope image of the central portion of the skive machined surface having substantially no processing marks, and the scanning electron microscope image was extracted by image analysis by the above-mentioned method. The outer edge of the dark part is surrounded by a line. FIG. 6B is a conceptual diagram showing one of the dark-colored portions shown in FIG. 6A by extracting it.
In FIG. 6A, the direction indicated by “a” is the skiving direction, and in the example shown in FIG. 6A, it corresponds to the longitudinal direction of the sheet. In FIG. 6A, the direction indicated by “b” is a direction orthogonal to the skiving processing direction, and in the example shown in FIG. 6A, it corresponds to a direction orthogonal to the longitudinal direction of the sheet.
 また、本願では、「濃色部のアスペクト比」とは、スカイブ加工方向の径に対する、スカイブ加工方向に直交する方向の径である。
 また、「濃色部のアスペクト比の算術平均値」とは、測定試料(シート中心部の平面寸法3mm×3mm部位)のスカイブ加工面について、走査型電子顕微鏡を用いて観察される画像から任意の3点の画像(1280×960画素領域)を抽出し、これら3点の画像の各々において特定される全濃色部のアスペクト比について、画像毎に算術平均値を算出し、各画像について得られた算術平均値をさらに算術平均して得られる値である。例えば図5に示す例では、濃色部Pのスカイブ加工方向の径はRa1であり、スカイブ加工方向に直交する方向の径はRb1であるため、濃色部Pのアスペクト比(スカイブ加工方向に直交する方向の径/スカイブ加工方向の径)は、(Rb1/Ra1)で表される。図5に示す例では、(Rb1/Ra1)は概ね0.5である。
 また、例えば図6に示す例では、濃色部Pのスカイブ加工方向の径はRa2であり、スカイブ加工方向に直交する方向の径はRb2であるため、濃色部Pのアスペクト比は(Rb2/Ra2)で表される。図6に示す例では、(Rb2/Ra2)は概ね1である。
Further, in the present application, the "aspect ratio of the dark color portion" is a diameter in a direction orthogonal to the skiving processing direction with respect to the diameter in the skiving processing direction.
The "arithmetic mean value of the aspect ratio of the dark color portion" is arbitrary from the image observed using a scanning electron microscope on the skived surface of the measurement sample (planar dimension 3 mm × 3 mm portion in the center of the sheet). 3 points of image (1280 × 960 pixel area) are extracted, and the arithmetic mean value is calculated for each image for the aspect ratio of the total dark color part specified in each of these 3 points of images, and obtained for each image. It is a value obtained by further arithmetically averaging the obtained arithmetic mean value. For example, in the example shown in FIG. 5, since the diameter of the dark color portion P in the skiving processing direction is Ra1 and the diameter in the direction orthogonal to the skiving processing direction is Rb1, the aspect ratio of the dark color portion P (in the skiving processing direction). The diameter in the orthogonal direction / the diameter in the skiving direction) is represented by (Rb1 / Ra1). In the example shown in FIG. 5, (Rb1 / Ra1) is approximately 0.5.
Further, for example, in the example shown in FIG. 6, the diameter of the dark color portion P in the skiving processing direction is Ra2, and the diameter in the direction orthogonal to the skiving processing direction is Rb2, so that the aspect ratio of the dark color portion P is (Rb2). It is represented by / Ra2). In the example shown in FIG. 6, (Rb2 / Ra2) is approximately 1.
 シート表面に加工痕がある場合、スカイブ加工面における陥没部の形状は、前述したように、スカイブ加工方向に伸長した形状ものが多くなるため、図5に示すように、アスペクト比は小さくなる傾向がある。
 一方、シート表面に加工痕が無い場合、スカイブ加工面における陥没部の形状は、前述したように、スカイブ加工方向の伸長度が低いものが多くなるため、図6に示すように、アスペクト比は所定値より大きくなる傾向がある。大局的には、アスペクト比は、所定の下限値より大きく、所定の上限値より小さくなる傾向、即ち、真円である1の近傍にばらつきをもつ傾向があるので、1に近くなるともいえる。
When there are processing marks on the sheet surface, the shape of the depressed portion on the skiving surface tends to be smaller in the aspect ratio as shown in FIG. 5 because most of the shapes are elongated in the skiving direction as described above. There is.
On the other hand, when there are no machining marks on the sheet surface, the shape of the depressed portion on the skiving surface is often low in the degree of elongation in the skiving direction as described above, so that the aspect ratio is as shown in FIG. It tends to be larger than the predetermined value. In the big picture, the aspect ratio tends to be larger than a predetermined lower limit value and smaller than a predetermined upper limit value, that is, it tends to have a variation in the vicinity of 1 which is a perfect circle, and thus can be said to be close to 1.
 一実施形態において、走査型電子顕微鏡画像における濃色部のアスペクト比の算術平均値が0.80を超えれば、加工痕を実質的に有しないものとする。
 なお、算術平均値は、前述した画素領域内から抽出した全濃色部のアスペクト比から算出される値とする。
In one embodiment, if the arithmetic mean value of the aspect ratio of the dark-colored portion in the scanning electron microscope image exceeds 0.80, it is assumed that there are substantially no processing marks.
The arithmetic mean value is a value calculated from the aspect ratio of all dark color portions extracted from the pixel area described above.
 本発明の他の実施形態として、濃色部のアスペクト比の算術平均値の下限値は、0.80を超え、0.81以上、0.85以上、0.90以上、0.93以上、0.95以上、1.00以上、1.05以上、1.12以上、1.14以上、1.16以上、又は1.20以上であってもよい。本発明のその他の実施形態として、濃色部のアスペクト比の算術平均値の上限は、特に限定されるものではないが、例えば、1.5以下、1.35以下、1.33以下、1.26以下、1.23以下、又は1.15以下で構成することができる。さらに本発明のその他の実施形態では、濃色部のアスペクト比の算術平均値は、上記実施形態の上限値と下限値を組み合せて構成することができ、例えば、0.80を超え1.5以下、又は0.90以上1.35以下で構成することもできる。
 濃色部のアスペクト比の算術平均値が上記範囲にあれば、スカイブ加工面に加工痕が少なく、内部構造に近い構造が表面に露出した、良好な表面状態を有するシートであるといえる。
As another embodiment of the present invention, the lower limit of the arithmetic mean value of the aspect ratio of the dark color portion exceeds 0.80, 0.81 or more, 0.85 or more, 0.90 or more, 0.93 or more, It may be 0.95 or more, 1.00 or more, 1.05 or more, 1.12 or more, 1.14 or more, 1.16 or more, or 1.20 or more. As another embodiment of the present invention, the upper limit of the arithmetic mean value of the aspect ratio of the dark color portion is not particularly limited, but is, for example, 1.5 or less, 1.35 or less, 1.33 or less, 1 It can be composed of .26 or less, 1.23 or less, or 1.15 or less. Further, in another embodiment of the present invention, the arithmetic mean value of the aspect ratio of the dark color portion can be configured by combining the upper limit value and the lower limit value of the above embodiment, for example, exceeding 0.80 and 1.5. It can also be composed of the following, or 0.90 or more and 1.35 or less.
If the arithmetic mean value of the aspect ratio of the dark-colored portion is within the above range, it can be said that the sheet has a good surface condition with few processing marks on the skived surface and a structure close to the internal structure exposed on the surface.
(ヘイズ値)
 一実施形態において、シートスカイブ加工面のヘイズ値の下限は、53%超であってもよく、55%以上、又は60%以上であってもよい。またヘイズ値の上限は、例えば100%以下、99%以下、95%以下、90%以下、80%以下、70%以下、又は65%以下であってもよい。
 なお、ヘイズ値とは、フィルムの透明性に関する指標であり、濁度(曇度)を表す指標である。ヘイズ値は、具体的には実施例に記載の方法により評価する。
(Haze value)
In one embodiment, the lower limit of the haze value of the sheet skived surface may be more than 53%, 55% or more, or 60% or more. The upper limit of the haze value may be, for example, 100% or less, 99% or less, 95% or less, 90% or less, 80% or less, 70% or less, or 65% or less.
The haze value is an index relating to the transparency of the film and is an index representing turbidity (turbidity). The haze value is specifically evaluated by the method described in Examples.
(接着強度)
 一実施形態において、シートのスカイブ加工面にプラズマ処理等の表面改質を行った後の、当該スカイブ加工面における接着強度は、0.2N/mm超であってもよく、0.5N/mm以上であってもよい。接着強度は、具体的には実施例に記載の方法により評価する。
(Adhesive strength)
In one embodiment, the adhesive strength on the skived surface of the sheet after surface modification such as plasma treatment may be more than 0.2 N / mm, 0.5 N / mm. It may be the above. The adhesive strength is specifically evaluated by the method described in Examples.
(加熱寸法変化率)
 一実施形態に係るシートは、180℃での加熱処理後、放冷したときの、シート平面方向におけるスカイブ加工方向の収縮率(加熱寸法変化率)が1.5%未満であってもよく、1.3%以下、又は1.1%以下であってもよい。加熱寸法変化率は、具体的には実施例に記載の方法により評価する。
(Heating dimensional change rate)
The sheet according to one embodiment may have a shrinkage rate (heat dimensional change rate) of less than 1.5% in the skiving direction in the sheet plane direction when allowed to cool after heat treatment at 180 ° C. It may be 1.3% or less, or 1.1% or less. The heating dimensional change rate is specifically evaluated by the method described in Examples.
[合成樹脂]
 合成樹脂としては、一般に用いられているものを特に限定なく使用できるが、例えばポリエチレン、ポリプロピレン等のポリオレフィン、フッ素樹脂、ポリエステル樹脂、ウレタン樹脂等が挙げられる。これらの中でも、フッ素樹脂を好適に使用できる。
[Synthetic resin]
As the synthetic resin, generally used ones can be used without particular limitation, and examples thereof include polyolefins such as polyethylene and polypropylene, fluororesins, polyester resins, and urethane resins. Among these, fluororesin can be preferably used.
 フッ素樹脂としては、一般に用いられているものを特に限定なく使用できるが、ポリテトラフルオロエチレン(PTFE)が好ましい。ポリテトラフルオロエチレン(PTFE)は、テトラフルオロエチレンの単独重合体である。 As the fluororesin, generally used ones can be used without particular limitation, but polytetrafluoroethylene (PTFE) is preferable. Polytetrafluoroethylene (PTFE) is a homopolymer of tetrafluoroethylene.
 また、フッ素樹脂としては、変性ポリテトラフルオロエチレン(変性PTFE)を用いてもよい。変性ポリテトラフルオロエチレン(変性PTFE)は、パーフルオロアルキルビニルエーテルで変性されたポリテトラフルオロエチレンである。
 上記パーフルオロアルキルビニルエーテルとしては、下記式(1)で表されるパーフルオロアルキルビニルエーテルが挙げられる。
   CF=CF-OR     (1)
(式(1)中、Rは炭素数1~10(好ましくは炭素数1~5)のパーフルオロアルキル基、又は下記式(2)で表されるパーフルオロ有機基である。)
Figure JPOXMLDOC01-appb-C000001
(式(2)中、nは1~4の整数である。)
Further, as the fluororesin, modified polytetrafluoroethylene (modified PTFE) may be used. Modified polytetrafluoroethylene (modified PTFE) is polytetrafluoroethylene modified with perfluoroalkyl vinyl ether.
Examples of the perfluoroalkyl vinyl ether include perfluoroalkyl vinyl ether represented by the following formula (1).
CF 2 = CF-OR f (1)
(In the formula (1), R f is a perfluoroalkyl group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms) or a perfluoroorganic group represented by the following formula (2)).
Figure JPOXMLDOC01-appb-C000001
(In equation (2), n is an integer of 1 to 4.)
 式(1)の炭素数1~10のパーフルオロアルキル基としては、例えばパーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基等が挙げられ、好ましくはパーフルオロプロピル基である。 Examples of the perfluoroalkyl group having 1 to 10 carbon atoms in the formula (1) include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, a perfluorohexyl group and the like. It is preferably a perfluoropropyl group.
[その他充填材]
 一実施形態において、シートはさらに充填材を含んでもよい。当該充填材としては、アルミナ、酸化チタン、シリカ、硫酸バリウム、炭化珪素、窒化珪素、ガラスファイバー、ガラスビーズ、マイカが挙げられる。これら充填材は、1種又は2種以上を使用できる。
[Other fillers]
In one embodiment, the sheet may further contain a filler. Examples of the filler include alumina, titanium oxide, silica, barium sulfate, silicon carbide, silicon nitride, glass fiber, glass beads, and mica. As these fillers, one kind or two or more kinds can be used.
 シート中におけるアルミナ、酸化チタン、シリカ、硫酸バリウム、炭化珪素、窒化珪素、ガラスファイバー、ガラスビーズ及びマイカから選択される1種以上の充填材を含む場合、その含有量は、例えば0.5~50質量%であり、好ましくは1~35質量%である。なお、シート中には必ずしも充填剤を含んでいなくてもよい。 When the sheet contains one or more fillers selected from alumina, titanium oxide, silica, barium sulfate, silicon carbide, silicon nitride, glass fiber, glass beads and mica, the content thereof is, for example, 0.5 to 0.5. It is 50% by mass, preferably 1 to 35% by mass. The sheet does not necessarily have to contain a filler.
 一実施形態において、シートは、例えば、85質量%以上、90質量%以上、95質量%以上、98質量%以上、99質量%以上、99.5質量%以上、99.9質量%以上、又は100質量%が、
ポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレン;
及び任意にアルミナ、酸化チタン、シリカ、ガラスファイバー、ガラスビーズ及びマイカから選択される1種類以上の充填材からなってもよい。
In one embodiment, the sheet is, for example, 85% by mass or more, 90% by mass or more, 95% by mass or more, 98% by mass or more, 99% by mass or more, 99.5% by mass or more, 99.9% by mass or more, or. 100% by mass,
Polytetrafluoroethylene or modified polytetrafluoroethylene;
And optionally one or more fillers selected from alumina, titanium oxide, silica, glass fiber, glass beads and mica.
[シートの製造方法]
 本発明の一態様に係るシートの製造方法は、スカイブ加工により得られた、合成樹脂製のシートの少なくとも一面に対して、当該一面が加工痕を実質的に有しないように当該加工痕を除去する処理を行う工程を含む。
[Sheet manufacturing method]
In the method for producing a sheet according to one aspect of the present invention, the processing marks are removed from at least one surface of the synthetic resin sheet obtained by skiving processing so that the one surface does not substantially have processing marks. Includes the process of performing the processing.
 一実施形態に係るシートの製造方法は、下記(1)~(4)の工程を含む:
(1)合成樹脂を含む原料を金型に充填し、圧縮成形して成形体を形成する工程
(2)成形体を焼成する工程
(3)焼成した成形体の表面を切削してシート状にするスカイブ加工処理を行う工程
(4)シート状にした成形体の表面から加工痕を除去する工程
The method for manufacturing a sheet according to an embodiment includes the following steps (1) to (4):
(1) A step of filling a mold with a raw material containing a synthetic resin and compression molding to form a molded body (2) A step of firing a molded body (3) A step of cutting the surface of the fired molded body into a sheet shape. Step of performing skive processing (4) Step of removing processing marks from the surface of the sheet-shaped molded product
 合成樹脂としては、前述したシートの項目で説明した樹脂を用いることができる。
 圧縮成形する原料は、合成樹脂としてフッ素樹脂(例えばポリテトラフルオロエチレン又は変性ポリテトラフルオロエチレン)を80~100質量%含む原料が好適なものとして挙げられる。
 圧縮する原料が、アルミナ、酸化チタン、シリカ、ガラスファイバー、ガラスビーズ、マイカから選択される1種類以上の充填材を含む場合、当該充填材の配合量はフッ素樹脂(例えばポリテトラフルオロエチレン、変性ポリテトラフルオロエチレン又はこれらの混合物)に対して1~50質量%である。
As the synthetic resin, the resin described in the above-mentioned sheet item can be used.
As the raw material to be compression-molded, a raw material containing 80 to 100% by mass of a fluororesin (for example, polytetrafluoroethylene or modified polytetrafluoroethylene) as a synthetic resin is preferable.
When the raw material to be compressed contains one or more kinds of fillers selected from alumina, titanium oxide, silica, glass fiber, glass beads, and mica, the blending amount of the filler is fluororesin (for example, polytetrafluoroethylene, modified). 1 to 50% by mass based on polytetrafluoroethylene or a mixture thereof).
 上記原料を金型に充填して、圧縮成形して圧縮成形体を形成する。面圧は、10~100MPaであってもよく、20~60MPaであってもよく、30~50MPaであってもよい。 The above raw materials are filled in a mold and compression molded to form a compression molded product. The surface pressure may be 10 to 100 MPa, 20 to 60 MPa, or 30 to 50 MPa.
 得られた圧縮成形体を焼成し、ビレットを得る。焼成温度は100~400℃であってもよく、350~370℃であってもよく、360~370℃であってもよい。
 圧縮成形体の原料粉末として、例えばポリテトラフルオロエチレン等のフッ素樹脂を含む原料粉末を用いた場合、得られるビレットは、原料粉末の焼成物が集積してなる成形体として得られる。
The obtained compression molded product is fired to obtain a billet. The firing temperature may be 100 to 400 ° C, 350 to 370 ° C, or 360 to 370 ° C.
When a raw material powder containing a fluororesin such as polytetrafluoroethylene is used as the raw material powder of the compression molded body, the obtained billet is obtained as a molded body obtained by accumulating the calcined product of the raw material powder.
 後述するスカイブ加工の行い易さの点から、ビレット(成形体)の形状は、好ましくは円筒状である。ビレット(成形体)が円筒体である場合、当該円筒体の直径は、例えば100~500mmであってもよく、150~500mmであってもよい。 The shape of the billet (molded body) is preferably cylindrical from the viewpoint of ease of skiving processing described later. When the billet (molded body) is a cylindrical body, the diameter of the cylindrical body may be, for example, 100 to 500 mm or 150 to 500 mm.
 次に、焼成した成形体であるビレットの表面を切削してシート状にするスカイブ加工処理を行う。
 ビレット(成形体)が円筒体である場合、焼成した円筒体の長手方向外周表面に切削刃を当てて切削してシート状にする。
Next, skiving processing is performed to cut the surface of the billet, which is a fired molded product, into a sheet.
When the billet (molded body) is a cylindrical body, a cutting blade is applied to the outer peripheral surface of the fired cylindrical body in the longitudinal direction to cut it into a sheet shape.
 ビレット(成形体)が円筒体である場合、焼成した円筒体の長手方向外周表面を切削してシート状にする工程を実施する前に、焼成した円筒体の外周表面、内周表面及び端面表面をそれぞれ表面外側から3mmまでの厚みを除去してもよい。 When the billet (molded body) is a cylinder, the outer peripheral surface, inner peripheral surface, and end face surface of the fired cylinder are before the step of cutting the longitudinal outer peripheral surface of the fired cylinder into a sheet shape. May be removed from the outside of the surface to a thickness of 3 mm, respectively.
 焼成した円筒体の長手方向外周表面を切削してシート状にするスカイブ加工工程は図1に示す装置を用いて実施できる。切削して得られるシートの厚さは、例えば0.01~1mmであってよく、0.01~0.5mmであってもよい。
 図1において、焼成したビレット(円筒体)10を回転させ、切削刃(バイト)20で切削してシート30とする。
The skiving step of cutting the outer peripheral surface of the fired cylinder in the longitudinal direction into a sheet can be carried out by using the apparatus shown in FIG. The thickness of the sheet obtained by cutting may be, for example, 0.01 to 1 mm, or 0.01 to 0.5 mm.
In FIG. 1, the fired billet (cylindrical body) 10 is rotated and cut with a cutting blade (bite) 20 to obtain a sheet 30.
 次いで、シートの表面に粒子を投射することで、シートの表面に存在する加工痕を除去する。これにより、当該シート表面が加工痕を実質的に有しないようにすることができる。
 粒子投射によって加工痕を除去する方法としては、当該粒子投射によってシート表面が引き伸ばされて新たに加工痕(スカイブ加工による加工痕とは異なる痕)を発生させないように調整できる方法であれば、特に限定されない。加工痕を除去する方法としては、例えば、投射粒子としてドライアイスを用いるドライアイスブラスト処理、水に粒子を分散させたスラリーを投射する処理が挙げられるが、これに限定されない。
Then, by projecting the particles onto the surface of the sheet, the processing marks existing on the surface of the sheet are removed. As a result, the surface of the sheet can be prevented from having substantially no processing marks.
As a method of removing processing marks by particle projection, particularly if the method can be adjusted so that the sheet surface is stretched by the particle projection and new processing marks (marks different from the processing marks by skiving processing) are not generated. Not limited. Examples of the method for removing the processing marks include, but are not limited to, a dry ice blast treatment using dry ice as the projection particles and a treatment of projecting a slurry in which the particles are dispersed in water.
 粒子投射による加工痕の除去は、シート表面の加工痕を除去して当該シート表面が加工痕を実質的に有しないものすることができるように、且つ、粒子投射によってシート表面が引き伸ばされて新に加工痕を発生させることがないように、投射粒子の種類(粒子の材質、形状、粒径)や、投射条件(投射角度、投射距離、投射圧)を適宜調整することより行うことができる。 The removal of the processing marks by particle projection is new so that the processing marks on the sheet surface can be removed so that the sheet surface has substantially no processing marks, and the sheet surface is stretched by particle projection. This can be done by appropriately adjusting the type of projection particles (particle material, shape, particle size) and projection conditions (projection angle, projection distance, projection pressure) so as not to generate processing marks. ..
 上述した方法により得られるシートにおいては、ビレット内部の構造と略同じ構造が、スカイブ加工面の表面形状として顕れる。
 例えば、原料粉末として、フッ素樹脂を含む原料粉末を用いた場合、原料粉末の焼成物が集積してなる成形体(ビレット)について、上述したスカイブ加工処理及び加工痕の除去処理を行うことにより、最終的に得られるシートは、スカイブ加工面が、原料粉末の焼成物が集積してなる面を有するものとなる。当該焼成物は、原料粉末の粒子と略同じ形状を保持しており、スカイブ加工による延伸変形が生じていないものとして、スカイブ加工面を構成する。
In the sheet obtained by the above-mentioned method, substantially the same structure as the structure inside the billet appears as the surface shape of the skived surface.
For example, when a raw material powder containing a fluororesin is used as the raw material powder, the molded body (billet) formed by accumulating the fired products of the raw material powder is subjected to the above-mentioned skiving processing and processing marks removal processing. The finally obtained sheet has a skived surface having a surface on which the calcined product of the raw material powder is accumulated. The fired product retains substantially the same shape as the particles of the raw material powder, and constitutes the skived surface on the assumption that the stretch deformation due to skiving does not occur.
 図8は、図4に示すシートの原料粉末を、走査型電子顕微鏡で観察した画像であり、図9は、図8中、βで示す範囲をさらに拡大して走査型電子顕微鏡で観察した画像である。
 図8に示す原料粉末(PTFE粉末)は、懸濁重合により合成された一次粒子を圧縮成形用に造粒したものであり、βに示す範囲において、例えばQで示す位置に存在する微小な一次粒子(平均粒子径:約1μm)が凝集して、平均粒子径が10~100μm程度の二次粒子(例えば、βに示す範囲を占める塊状粒子)を形成している。
 図8に示す原料粉末を圧縮成形して得られる圧縮成形体は、前述した一次粒子(平均粒子径:約1μm)の集合体であり、当該成形体を焼成して得られるビレットをスカイブ加工して得られるシートのスカイブ加工面を走査型電子顕微鏡で観察した走査型電子顕微鏡画像が、図4に示されている。
 当該ビレットは、平均粒子径約1μm程度の一次粒子を圧縮成形し、焼成過程を経ているため、当該一次粒子の一部は偏平状に変形し、一部は他の一次粒子と融着、圧着又は接着している。即ち、ビレットは、偏平状の一次粒子が互いに結合(係合)した状態、換言すると、一次粒子が原料粉末の粒子と略同形状を保持した状態を有しており、当該ビレットをスカイブ加工して得られるシートのスカイブ加工面は、図4に示すように、平均粒子径約1μm程度の粒子(原料粉末の焼成物)が集積してなる面を有している。
 図4中、例えばc、d、e、fに示す各領域(原料粉末の焼成物)の形状は、図9中、g、h、i、jに示す各領域(原料粉末の一次粒子)の形状と、それぞれ略同じ形状を有している。
FIG. 8 is an image obtained by observing the raw material powder of the sheet shown in FIG. 4 with a scanning electron microscope, and FIG. 9 is an image observed with a scanning electron microscope with the range indicated by β in FIG. 8 further enlarged. Is.
The raw material powder (PTFE powder) shown in FIG. 8 is obtained by granulating primary particles synthesized by suspension polymerization for compression molding, and is a minute primary particle existing at a position indicated by, for example, Q in the range shown in β. The particles (average particle size: about 1 μm) are aggregated to form secondary particles having an average particle size of about 10 to 100 μm (for example, agglomerate particles occupying the range shown in β).
The compression molded body obtained by compression molding the raw material powder shown in FIG. 8 is an aggregate of the above-mentioned primary particles (average particle diameter: about 1 μm), and the billet obtained by firing the molded body is skived. A scanning electron microscope image obtained by observing the skived surface of the obtained sheet with a scanning electron microscope is shown in FIG.
Since the billet is formed by compression molding primary particles having an average particle diameter of about 1 μm and undergoing a firing process, a part of the primary particles is deformed into a flat shape, and a part is fused and crimped with other primary particles. Or it is glued. That is, the billet has a state in which the flat primary particles are bonded (engaged) with each other, in other words, the primary particles hold substantially the same shape as the particles of the raw material powder, and the billet is skived. As shown in FIG. 4, the skived surface of the obtained sheet has a surface in which particles (baked product of raw material powder) having an average particle diameter of about 1 μm are accumulated.
In FIG. 4, for example, the shape of each region (baked product of raw material powder) shown in c, d, e, and f is the shape of each region (primary particles of raw material powder) shown in g, h, i, and j in FIG. Each has substantially the same shape as the shape.
 以上説明した本態様のシートは、例えばプリント基板用材料として好適に用いられる。 The sheet of this embodiment described above is suitably used, for example, as a material for a printed circuit board.
実施例1
<ビレットの作製>
 ポリテトラフルオロエチレン(PTFE)のパウダーを金型に充填して、上下からプレス圧力20MPaで0.5時間圧縮成形し、円筒状の予備成形体(外径245mm×内径75mm×高さ300mm)を得た。得られた予備成形体を焼成炉に投入して365℃で5時間焼成した。
Example 1
<Making billets>
A mold is filled with polytetrafluoroethylene (PTFE) powder and compression-molded from above and below at a press pressure of 20 MPa for 0.5 hours to form a cylindrical preformed body (outer diameter 245 mm x inner diameter 75 mm x height 300 mm). Obtained. The obtained preformed body was put into a firing furnace and fired at 365 ° C. for 5 hours.
<スカイブ加工>
 得られた円筒状焼成体(外径245mm×内径75mm×高さ300mm)を図1に示す装置でスカイブ加工し、0.05mm厚のシートを製造した。
<Skiving>
The obtained cylindrical fired body (outer diameter 245 mm × inner diameter 75 mm × height 300 mm) was skived with the apparatus shown in FIG. 1 to produce a sheet having a thickness of 0.05 mm.
<加工痕の除去>
 得られたシートのスカイブ加工面に向けて投射粒子として研磨剤を分散させたスラリー(研磨液)を投射する処理を行った。
 なお、本実施例においては、加工痕の除去工程の一例として、研磨液を投射する処理を採用したが、本発明における加工痕の除去工程では、例えば粒子投射により加工痕を除去できる方法であれば、異なる方法を適宜採用可能である。
 加工痕の除去は、以下の条件で行った。
(粒子投射条件)
・スラリー(研磨液):
 溶媒:純水
 研磨剤:アルミナ(Al)、多角形粒子、平均粒子径(D50)6.7μm、
 研磨剤含有量:0.95体積%
・投射角度:90°
・投射距離:20mm
・エア圧:0.2MPa
<Removal of processing marks>
A treatment was performed in which a slurry (polishing liquid) in which an abrasive was dispersed as projection particles was projected onto the skived surface of the obtained sheet.
In this embodiment, the process of projecting the polishing liquid is adopted as an example of the process of removing the processing marks, but in the process of removing the processing marks in the present invention, for example, a method capable of removing the processing marks by particle projection may be used. For example, different methods can be adopted as appropriate.
The processing marks were removed under the following conditions.
(Particle projection conditions)
・ Slurry (polishing liquid):
Solvent: Pure water Abrasive: Aluminium (Al 2 O 3 ), polygonal particles, average particle size (D50) 6.7 μm,
Abrasive content: 0.95% by volume
・ Projection angle: 90 °
・ Projection distance: 20 mm
・ Air pressure: 0.2MPa
 得られたシートについて、以下の評価を行った。
 結果を表1に示す。
The obtained sheets were evaluated as follows.
The results are shown in Table 1.
[濃色部の抽出及びアスペクト比の算出]
 まず、走査型電子顕微鏡(株式会社日立ハイテク製、「SU3500」)の試料台にカーボンテープを添付し、測定試料(シート中心部の平面寸法3mm×3mm部位)のスカイブ加工面が観察面となるように設置した。次いで、測定試料のスカイブ加工面に白金蒸着し、走査型電子顕微鏡(株式会社日立ハイテク製、「SU3500」)を用いて加速電圧5kV、6000倍の倍率で、横20μm×縦15μmの範囲で観察した走査型電子顕微鏡画像を1280×960画素数で保存した複数の画像データにおける、任意の3点の画像(1280×960画素領域)から、1280×960画素領域の画像を、任意で3点抽出した。
 これら3点の各抽出画像に対して、多値画像処理のヒストグラム解析取得プログラム(Media Cybernetics.Inc.製、「Image-Pro 10」)を使用して、グレースケール(256階調)のヒストグラムを取得し、取得したヒストグラムを正規分布とし、その分散量をσとしたときの平均値±3σの範囲を抽出し、256階調とした。さらに、ヒストグラムの平坦化処理を行い、これにより得られたグレースケール度数分布データをもとに、256階調における0~35階調の画素部分を「濃色部」として特定した。
 次いで、各画像において特定した全濃色部について、それぞれスカイブ加工方向の径、及びスカイブ加工方向に直交する方向の径を計測し、アスペクト比((スカイブ加工方向に直交する方向の径)/(スカイブ加工方向の径))を算出した。このようにして得られた全濃縮部のアスペクト比について、画像毎に算術平均値を算出し、3点の画像について得られた各々の算術平均値を、さらに算術平均して「濃色部のアスペクト比の算術平均値」を算出した。
[Extraction of dark areas and calculation of aspect ratio]
First, a carbon tape is attached to the sample table of a scanning electron microscope (Hitachi High-Tech Co., Ltd., "SU3500"), and the skived surface of the measurement sample (planar dimension 3 mm x 3 mm in the center of the sheet) becomes the observation surface. I installed it like this. Next, platinum was deposited on the skive-processed surface of the measurement sample, and observed using a scanning electron microscope (manufactured by Hitachi High-Tech Co., Ltd., "SU3500") at an acceleration voltage of 5 kV and a magnification of 6000 times in a range of 20 μm in width × 15 μm in length. From a plurality of image data obtained by storing the scanned electron microscope image with the number of 1280 × 960 pixels, an image of a 1280 × 960 pixel region is optionally extracted from an arbitrary three-point image (1280 × 960 pixel region). did.
For each of these three extracted images, a gray scale (256 gradations) histogram was created using a histogram analysis acquisition program (“Image-Pro 10” manufactured by Media Cybernetics. Inc.) for multi-value image processing. The acquired histogram was used as a normal distribution, and the range of the average value ± 3σ when the dispersion amount was σ was extracted and used as 256 gradations. Further, a histogram flattening process was performed, and based on the grayscale frequency distribution data obtained by this, the pixel portion of 0 to 35 gradations in 256 gradations was specified as a “dark color portion”.
Next, for all the dark colored parts specified in each image, the diameter in the skiving processing direction and the diameter in the direction orthogonal to the skiving processing direction are measured, and the aspect ratio ((diameter in the direction orthogonal to the skiving processing direction) / ( The diameter in the skiving direction))) was calculated. Arithmetic mean values were calculated for each image for the aspect ratio of the total enrichment portion thus obtained, and the arithmetic mean values obtained for each of the three images were further arithmetically averaged to "dark-colored portions". "Arithmetic mean value of aspect ratio" was calculated.
[加工痕の有無]
 「濃色部の抽出及びアスペクト比の算出」において得られた走査型電子顕微鏡画像において、加工痕の有無を確認した。具体的には、上記条件にて観察した走査型電子顕微鏡画像から抽出した、3点の1280×960画素領域の画像のいずれかに、シートのスカイブ加工面の空隙上においてスカイブ加工方向に伸長するスジ形状の樹脂片又は同方向に長尺状をなす空隙(加工痕)が認められた場合には「加工痕有り」とし、前述した3点の画像のいずれにも加工痕が認められなかった場合には「加工痕無し」とした。
[Presence / absence of processing marks]
The presence or absence of processing marks was confirmed in the scanning electron microscope image obtained in "Extraction of dark color portion and calculation of aspect ratio". Specifically, any of the three 1280 × 960 pixel region images extracted from the scanning electron microscope image observed under the above conditions extends in the skiving direction on the voids on the skiving surface of the sheet. If a streak-shaped resin piece or a gap (machining mark) forming a long shape in the same direction is found, it is regarded as "having a machining mark", and no machining mark is found in any of the above-mentioned three images. In the case, it was set as "no processing marks".
実施例2~6、比較例2
 加工痕の除去に用いるスラリー(研磨液)の研磨剤濃度を表1に示すように変更したこと以外は、実施例1と同様にしてシートを作製し、評価した。結果を表1に示す。
Examples 2 to 6, Comparative Example 2
A sheet was prepared and evaluated in the same manner as in Example 1 except that the polishing agent concentration of the slurry (polishing liquid) used for removing the processing marks was changed as shown in Table 1. The results are shown in Table 1.
比較例1
 加工痕の除去工程を行わなかったこと以外は、実施例1と同様にしてシートを作製し、評価した。結果を表1に示す。
Comparative Example 1
A sheet was prepared and evaluated in the same manner as in Example 1 except that the step of removing the processing marks was not performed. The results are shown in Table 1.
実施例7
 ポリテトラフルオロエチレンの代わりに変性ポリテトラフルオロエチレン(変性PTFE)を用いたこと以外は、実施例6と同様にしてシートを作製し、評価した。結果を表2に示す。
Example 7
Sheets were prepared and evaluated in the same manner as in Example 6 except that modified polytetrafluoroethylene (modified PTFE) was used instead of polytetrafluoroethylene. The results are shown in Table 2.
比較例3
 ポリテトラフルオロエチレンの代わりに変性ポリテトラフルオロエチレンを用いたこと以外は、比較例1と同様にしてシートを作製し、評価した。結果を表2に示す。
Comparative Example 3
Sheets were prepared and evaluated in the same manner as in Comparative Example 1 except that modified polytetrafluoroethylene was used instead of polytetrafluoroethylene. The results are shown in Table 2.
[加熱寸法変化率の測定]
 実施例6、7及び比較例1、3で得られたシートの加熱前後の寸法変化(加熱寸法変化率)を以下の手順により評価した。結果を表2に示す。
1. シートを110mm×130mmの寸法にカットし、23℃の恒温室に15時間静置した。
2. 1.の静置後のシートに、50mm×50mmの標線を描き、スカイブ加工方向(以下、MD方向ともいう。)とその直交する方向(以下、CD方向ともいう。)の標線間距離をデジタルマイクロスコープ(株式会社キーエンス製、「VHX5000」)で測定し、加熱前寸法とした。
3. 2.の寸法測定後のシートのMD方向の両端をクリップで挟み、熱風循環式ギアオーブン(タバイエスペック株式会社製、「PHH-100」)内に吊るして設置した。
4. 3.の熱風循環式ギアオーブンを常温から180℃まで昇温し、180℃到達後に1時間保持し、常温まで放冷した。
5. 4.の放冷後、クリップを取り外し、23℃の恒温室に15時間静置した。
6. 5.の静置後に、再びデジタルマイクロスコープで標線間距離を測定し、加熱後寸法とした。
7. 2.で得られた加熱前寸法及び6.で得られた加熱後寸法から、加熱寸法変化率を下記式(i)により算出した。
  加熱寸法変化率=(加熱後寸法-加熱前寸法)/加熱前寸法   ・・・(i)
[Measurement of heating dimension change rate]
The dimensional changes (heated dimensional change rate) of the sheets obtained in Examples 6 and 7 and Comparative Examples 1 and 3 before and after heating were evaluated by the following procedure. The results are shown in Table 2.
1. 1. The sheet was cut to a size of 110 mm × 130 mm and allowed to stand in a constant temperature room at 23 ° C. for 15 hours.
2. 2. 1. 1. A 50 mm x 50 mm marked line is drawn on the sheet after standing still, and the distance between the marked lines in the skiving direction (hereinafter, also referred to as MD direction) and its orthogonal direction (hereinafter, also referred to as CD direction) is digital. It was measured with a microscope (manufactured by Keyence Co., Ltd., "VHX5000") and used as the pre-heating dimension.
3. 3. 2. 2. After measuring the dimensions of the sheet, both ends in the MD direction were clipped and hung in a hot air circulation type gear oven (manufactured by Tabie Spec Co., Ltd., "PHH-100").
4. 3. 3. The hot air circulation type gear oven was heated from room temperature to 180 ° C., held for 1 hour after reaching 180 ° C., and allowed to cool to room temperature.
5. 4. After allowing to cool, the clip was removed and the mixture was allowed to stand in a constant temperature room at 23 ° C. for 15 hours.
6. 5. After standing still, the distance between the marked lines was measured again with a digital microscope, and the dimensions were determined after heating.
7. 2. 2. Pre-heating dimensions and 6. From the post-heating dimensions obtained in 1), the heating dimension change rate was calculated by the following formula (i).
Heating dimension change rate = (post-heating dimension-pre-heating dimension) / pre-heating dimension ... (i)
[ヘイズ値の測定]
 実施例7及び比較例3で得られたシートのヘイズ値を以下の手順で測定した。
 JIS K7136に準拠し、シートの中心部から平面寸法30mm×30mmの部位を切り出し、ヘイズメーター(日本電色工業株式会社製、「NDH5000」)を用いて、拡散透過率及び全光線透過率を測定し、以下の式(ii)からヘイズ値を算出した。拡散透過率及び全光線透過率の測定は、シートの3箇所(スカイブ加工面の任意の3点)で行い、各々の測定値から算出されるヘイズ値の算術平均値を算出した。結果を表3に示す。
   ヘイズ値(%)=拡散透過率/全光線透過率×100  ・・・(ii)
[Measurement of haze value]
The haze values of the sheets obtained in Example 7 and Comparative Example 3 were measured by the following procedure.
In accordance with JIS K7136, a part with a plane dimension of 30 mm x 30 mm is cut out from the center of the sheet, and the diffusion transmittance and total light transmittance are measured using a haze meter (Nippon Denshoku Industries Co., Ltd., "NDH5000"). Then, the haze value was calculated from the following equation (ii). The diffusion transmittance and the total light transmittance were measured at three points on the sheet (arbitrary three points on the skived surface), and the arithmetic mean value of the haze value calculated from each measured value was calculated. The results are shown in Table 3.
Haze value (%) = diffuse transmittance / total light transmittance × 100 ... (ii)
[表面改質後のシートの接着性評価]
 実施例6、比較例1のシートを100mm×100mmに切り出し、下記に示すプラズマ処理を行った後、下記に示す接着性評価を行った。結果を表4に示す。
[Evaluation of sheet adhesiveness after surface modification]
The sheets of Example 6 and Comparative Example 1 were cut into 100 mm × 100 mm, subjected to the plasma treatment shown below, and then the adhesiveness evaluation shown below was performed. The results are shown in Table 4.
(プラズマ処理)
 真空プラズマ装置にシートを設置して真空引きを行い、窒素ガス及び水素ガスの混合ガス雰囲気下で、2.45GHzのマイクロ波を用いてプラズマ処理を10秒間施した。
(Plasma processing)
A sheet was placed in a vacuum plasma apparatus to evacuate, and plasma treatment was performed for 10 seconds using a 2.45 GHz microwave in a mixed gas atmosphere of nitrogen gas and hydrogen gas.
(接着強度測定)
 プラズマ処理済のシート、ハロゲンフリー低誘電接着剤(半硬化)シート(ニッカン工業株式会社製、「SAFY」、厚さ25μm)、及び電解銅箔(三井金属鉱業株式会社製、「TQ-M4-VSP」、厚さ18μm)をこの順で重ね合わせ、熱プレス(温度:160℃、プレス時間:1時間、プレス荷重:4MPa)で圧着させて、接着強度測定用の試料を作製した。この試料に10mm幅に切れ込みを入れ、銅箔を30mm剥がした。剥がした銅箔付きの試料を小型卓上試験機(株式会社島津製作所製、「EZ-LX」)を用いて、引張速度50mm/minで90°剥離試験を行い、接着強度を測定した。
(Adhesive strength measurement)
Plasma-treated sheet, halogen-free low-dielectric adhesive (semi-curing) sheet (manufactured by Nikkan Kogyo Co., Ltd., "SAFY", thickness 25 μm), and electrolytic copper foil (manufactured by Mitsui Mining & Smelting Co., Ltd., "TQ-M4-""VSP" (thickness 18 μm) was superposed in this order and crimped with a hot press (temperature: 160 ° C., press time: 1 hour, press load: 4 MPa) to prepare a sample for adhesive strength measurement. A notch was made in this sample to a width of 10 mm, and the copper foil was peeled off by 30 mm. The peeled sample with the copper foil was subjected to a 90 ° peeling test at a tensile speed of 50 mm / min using a small tabletop tester (manufactured by Shimadzu Corporation, "EZ-LX"), and the adhesive strength was measured.
 実施例1~6、比較例1~2において、「濃色部の抽出及びアスペクト比の算出」で取得した電子顕微鏡画像(倍率6000倍、1280×960画素領域)を図7に示す。 FIG. 7 shows an electron microscope image (magnification 6000 times, 1280 × 960 pixel region) acquired in “Extraction of dark color portion and calculation of aspect ratio” in Examples 1 to 6 and Comparative Examples 1 to 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明のシートは、耐熱絶縁テープ等の耐熱材料、プリント基板用材料、離型シートとして好適に使用されるが、これに限定されるものではない。 The sheet of the present invention is suitably used as a heat-resistant material such as heat-resistant insulating tape, a material for a printed circuit board, and a release sheet, but is not limited thereto.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。

 
Although some embodiments and / or embodiments of the present invention have been described above in detail, those skilled in the art will appreciate these exemplary embodiments and / or embodiments without substantial departure from the novel teachings and effects of the present invention. It is easy to make many changes to the examples. Therefore, many of these modifications are within the scope of the invention.
All the documents described in this specification and the contents of the application underlying the priority under the Paris Convention of the present application are incorporated.

Claims (12)

  1.  スカイブ加工により得られた、合成樹脂製のシートであって、
     加工痕を実質的に有しないシート。
    A synthetic resin sheet obtained by skiving.
    A sheet that has virtually no processing marks.
  2.  前記合成樹脂がフッ素樹脂を含有する請求項1に記載のシート。 The sheet according to claim 1, wherein the synthetic resin contains a fluororesin.
  3.  前記スカイブ加工面は、フッ素樹脂粉末を含む原料粉末の焼成物が集積してなる面を有し、
     前記焼成物は、前記原料粉末の粒子と略同形状を保持し、且つスカイブ加工による延伸変形が生じていない、請求項2に記載のシート。
    The skived surface has a surface on which calcined products of raw material powder containing fluororesin powder are accumulated.
    The sheet according to claim 2, wherein the fired product retains substantially the same shape as the particles of the raw material powder and is not stretched and deformed by skiving.
  4.  前記シートの中心部のスカイブ加工面における平面寸法3mm×3mmの部位を、走査型電子顕微鏡を用いて6000倍の倍率で、横20μm×縦15μmの範囲を撮影し、1280×960画素数で保存した複数の画像データから抽出した任意の1280×960画素領域中に、スカイブ加工方向に伸長する空隙が実質的に視認されない、請求項1~3のいずれかに記載のシート。 A portion of the skived surface in the center of the sheet having a plane size of 3 mm × 3 mm was photographed in a range of 20 μm in width × 15 μm in length at a magnification of 6000 times using a scanning electron microscope, and stored in 1280 × 960 pixels. The sheet according to any one of claims 1 to 3, wherein the void extending in the skiving processing direction is substantially invisible in the arbitrary 1280 × 960 pixel region extracted from the plurality of image data.
  5.  180℃での加熱後、放冷したときに、前記シートの平面寸法が、シート平面方向においてスカイブ加工方向である所定方向に沿って収縮し、当該所定方向と直交する方向に沿って膨張する、請求項1~4のいずれかに記載のシート。 After heating at 180 ° C. and then allowed to cool, the plane dimension of the sheet contracts along a predetermined direction which is the skiving direction in the sheet plane direction and expands along a direction orthogonal to the predetermined direction. The sheet according to any one of claims 1 to 4.
  6.  前記シートのスカイブ加工面の走査型電子顕微鏡画像における濃色部のアスペクト比の算術平均値が0.80を超える、請求項1~5のいずれかに記載のシート。 The sheet according to any one of claims 1 to 5, wherein the arithmetic mean value of the aspect ratio of the dark-colored portion in the scanning electron microscope image of the skived surface of the sheet exceeds 0.80.
  7.  前記濃色部のアスペクト比の算術平均値が0.90以上である、請求項6に記載のシート。 The sheet according to claim 6, wherein the arithmetic mean value of the aspect ratio of the dark color portion is 0.90 or more.
  8.  表面改質した前記スカイブ加工面における接着強度が0.2N/mmを超える、請求項1~7のいずれかに記載のシート。 The sheet according to any one of claims 1 to 7, wherein the surface-modified adhesive strength on the skived surface exceeds 0.2 N / mm.
  9.  180℃での加熱後、放冷したときの、スカイブ加工方向の収縮率が1.5%未満である、請求項1~8のいずれかに記載のシート。 The sheet according to any one of claims 1 to 8, wherein the shrinkage rate in the skiving processing direction when allowed to cool after heating at 180 ° C. is less than 1.5%.
  10.  前記フッ素樹脂がポリテトラフルオロエチレン(PTFE)又は変性PTFEである、請求項2~9のいずれかに記載のシート。 The sheet according to any one of claims 2 to 9, wherein the fluororesin is polytetrafluoroethylene (PTFE) or modified PTFE.
  11.  請求項1~10のいずれかに記載のシートを含む、プリント基板用材料。 A material for a printed circuit board, including the sheet according to any one of claims 1 to 10.
  12.  請求項1~10のいずれかに記載のシートを製造する方法であって、
     スカイブ加工により得られた、合成樹脂製のシートの少なくとも一面に対して、当該一面が加工痕を実質的に有しないように当該加工痕を除去する処理を行う工程を含む、シートの製造方法。
    The method for manufacturing the sheet according to any one of claims 1 to 10.
    A method for manufacturing a sheet, comprising a step of removing at least one surface of a synthetic resin sheet obtained by skiving so that the one surface does not substantially have processing marks.
PCT/JP2021/046082 2020-12-16 2021-12-14 Sheet and method for producing sheet WO2022131261A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180085470.0A CN116635223A (en) 2020-12-16 2021-12-14 Sheet and method for producing sheet
JP2022570014A JPWO2022131261A1 (en) 2020-12-16 2021-12-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-208658 2020-12-16
JP2020208658 2020-12-16

Publications (1)

Publication Number Publication Date
WO2022131261A1 true WO2022131261A1 (en) 2022-06-23

Family

ID=82057775

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/046082 WO2022131261A1 (en) 2020-12-16 2021-12-14 Sheet and method for producing sheet
PCT/JP2021/046089 WO2022131263A1 (en) 2020-12-16 2021-12-14 Sheet and method for producing sheet

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046089 WO2022131263A1 (en) 2020-12-16 2021-12-14 Sheet and method for producing sheet

Country Status (4)

Country Link
JP (2) JPWO2022131261A1 (en)
CN (2) CN116648349A (en)
TW (2) TWI807541B (en)
WO (2) WO2022131261A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037011A (en) * 2009-08-06 2011-02-24 Asahi Sunac Corp Method for manufacturing sintered resin sheet
JP2012514547A (en) * 2008-12-31 2012-06-28 サン−ゴバン パフォーマンス プラスティックス コーポレイション Multilayer polymer article and method for producing the same
JP2016056363A (en) * 2014-09-05 2016-04-21 国立大学法人大阪大学 Production method of surface-modified molded body, and production method of composite body using the surface-modified molded body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012514547A (en) * 2008-12-31 2012-06-28 サン−ゴバン パフォーマンス プラスティックス コーポレイション Multilayer polymer article and method for producing the same
JP2011037011A (en) * 2009-08-06 2011-02-24 Asahi Sunac Corp Method for manufacturing sintered resin sheet
JP2016056363A (en) * 2014-09-05 2016-04-21 国立大学法人大阪大学 Production method of surface-modified molded body, and production method of composite body using the surface-modified molded body

Also Published As

Publication number Publication date
TW202235503A (en) 2022-09-16
CN116635223A (en) 2023-08-22
JPWO2022131261A1 (en) 2022-06-23
CN116648349A (en) 2023-08-25
JPWO2022131263A1 (en) 2022-06-23
JP7487340B2 (en) 2024-05-20
TW202241714A (en) 2022-11-01
WO2022131263A1 (en) 2022-06-23
TWI807541B (en) 2023-07-01

Similar Documents

Publication Publication Date Title
TWI608035B (en) Biaxially oriented laminated polyester film for release
CN1113077C (en) Microporous polyolefin film
KR101268726B1 (en) Filled fluororesin sheet, process for producing same, and gasket
EP3668283A1 (en) High-frequency printed circuit board base material
EP0076130B1 (en) Printing on low surface energy polymers
TWI386444B (en) Method for producing fluororesin sheet incorporating filler and fluororesin sheet incorporating filler
WO2022131261A1 (en) Sheet and method for producing sheet
WO2022255226A1 (en) Alumina particles and resin composition using same
EP2810775A1 (en) Film for forming decoration
US11472165B2 (en) Plate-like composite material
US3329527A (en) Graphite heating elements and method of conditioning the heating surfaces thereof
KR101874959B1 (en) Heat radiated grapheme sheet and manufacturing method thereof
TW202146619A (en) Sealing material
EP3725824A1 (en) Heat conduction sheet
JP7503597B2 (en) Sheet, substrate for printed circuit board, and method for producing sheet
JP7300023B1 (en) Titanium porous body and method for producing titanium porous body
JP2023111633A (en) Thermally conductive sheet and method for producing the same
JP4278446B2 (en) Fine powder support film
JP2016097518A (en) Polyphenylene sulfide film
KR20200089238A (en) Method for manufacturing RF heat dissipation sheet
JPH03197122A (en) Polytetrafluoroethylene resin film and its manufacture
DE112021001943T5 (en) Flexible dielectric material with a biaxially oriented polytetrafluoroethylene reinforcement layer
WO2018008207A1 (en) Oriented alumina sintered body and method for producing same
JP2020084154A (en) Resin molded body, resin composition and method for producing resin molded body
JP2020104273A (en) Resin film and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570014

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180085470.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906623

Country of ref document: EP

Kind code of ref document: A1