WO2022131244A1 - Exhaust gas purification catalyst for saddle riding-type vehicle - Google Patents

Exhaust gas purification catalyst for saddle riding-type vehicle Download PDF

Info

Publication number
WO2022131244A1
WO2022131244A1 PCT/JP2021/045998 JP2021045998W WO2022131244A1 WO 2022131244 A1 WO2022131244 A1 WO 2022131244A1 JP 2021045998 W JP2021045998 W JP 2021045998W WO 2022131244 A1 WO2022131244 A1 WO 2022131244A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
base material
particles
exhaust gas
material particles
Prior art date
Application number
PCT/JP2021/045998
Other languages
French (fr)
Japanese (ja)
Inventor
健 長島
Original Assignee
エヌ・イーケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・イーケムキャット株式会社 filed Critical エヌ・イーケムキャット株式会社
Priority to JP2022570004A priority Critical patent/JPWO2022131244A1/ja
Priority to CN202180069397.8A priority patent/CN116322946A/en
Publication of WO2022131244A1 publication Critical patent/WO2022131244A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an exhaust gas purification catalyst for a saddle-type vehicle such as a two-wheeled vehicle and a method for manufacturing the same, and more particularly to an exhaust gas purification catalyst for a saddle-type vehicle having only one catalyst layer.
  • Exhaust gas from gasoline-fueled automobiles and motorcycles contains harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx).
  • hydrocarbons (HC) are oxidized and converted to water and carbon dioxide
  • carbon monoxide (CO) is oxidized and converted to carbon dioxide
  • nitrogen oxides (NOx) are reduced.
  • a catalyst such as converting it to nitrogen.
  • exhaust gas purification catalyst a three-way catalyst (TWC) capable of redoxing CO, HC and NOx is used. There is.
  • platinum group elements PGM: Platinum Group Metal
  • ruthenium, rhodium, palladium, osmium, iridium, and platinum are catalytically active components on alumina base material particles having a high specific surface area.
  • the material is supported as a base material, for example, a fire-resistant ceramic or a metal honeycomb-structured Monolithic base material.
  • the ratio of fuel to air changes greatly according to the operating conditions of the engine such as acceleration, deceleration, low-speed running, and high-speed running, and the theoretical air-fuel ratio in exhaust gas.
  • the exhaust gas catalyst needs to exhibit a certain level of catalytic performance under both a fuel lean atmosphere and a fuel rich atmosphere.
  • a catalyst in which a platinum group element, which is a catalytically active component, is used in combination with an auxiliary catalyst is used.
  • an auxiliary catalyst it may be referred to as an co-catalyst having an oxygen storage capacity (OSC: Oxygen Storage capacity) that releases oxygen in a reducing atmosphere and absorbs oxygen in an oxidizing atmosphere (hereinafter, referred to as "OSC material". )It has been known.
  • OSC Oxygen Storage capacity
  • ceria cerium oxide, CeO 2
  • ceria-zirconia composite oxide and the like are known as OSC materials having an oxygen storage ability. These OSC materials function as a buffer for reducing changes in the oxidizing and reducing properties of the exhaust gas, and have a function of maintaining the purification performance of the catalyst. Further, the ceria-zirconia composite oxide in which zirconia is dissolved in ceria is added to many catalysts as an OSC material because it has a further excellent oxygen storage capacity (OSC).
  • OSC oxygen storage capacity
  • the exhaust gas purification catalyst for motorcycles has a special problem different from the exhaust gas purification catalyst for four-wheeled vehicles.
  • an exhaust gas purification catalyst for a two-wheeled vehicle has a limited space for mounting the catalyst as compared with a catalyst for a four-wheeled vehicle, so that it is required to exhibit a high degree of purification ability while having a small capacity.
  • motorcycles have a relatively short exhaust gas flow path and tend to use a large amount of fuel with an emphasis on output, so that the catalyst is easily exposed to high temperatures.
  • the air-fuel ratio (A / F) in the exhaust gas tends to be less than the theoretical air-fuel ratio of 14.7 in many cases. Therefore, it is required to have excellent heat resistance and excellent exhaust gas purification efficiency even in a fuel-rich atmosphere having an air-fuel ratio (A / F) of less than 14.7.
  • the amount of CeO 2 is 45 to 70% by mass
  • the amount of ZrO 2 is 20 to 45% by mass
  • the amount of Nd 2 O 3 is 2 to 20% by mass
  • La 2 O an internal combustion engine exhaust gas characterized by having a carrier made of a cerium-zirconium composite oxide in which the amount of 3 is 1 to 10% by mass, and a catalyst component made of a metal Pd or Pd oxide supported on the carrier. Purification catalyst materials are disclosed.
  • Patent Document 2 has a first catalyst layer formed on the surface of a carrier made of ceramics or a metal material and a second catalyst layer formed on the first catalyst layer, and the first catalyst is provided.
  • the layer has a amount of CeO 2 of 45 to 70% by mass, an amount of ZrO 2 of 20 to 45% by mass, an amount of Nd 2 O 3 of 2 to 20% by mass, and an amount of La 2 O 3 in an amount of La 2 O 3.
  • It has a carrier made of a cerium-zirconium composite oxide of 1 to 10% by mass and a catalyst component made of a metal Pd or Pd oxide supported on the carrier, and the second catalyst layer has an amount of ZrO 2 .
  • a carrier composed of a zirconium-based composite oxide and a catalyst component composed of a metal Rh or Rh oxide supported on the carrier, or a catalyst component composed of a metal Rh or Rh oxide supported on the carrier and a catalyst component.
  • a catalyst for purifying exhaust gas for a saddle-type vehicle is disclosed, which comprises a catalyst component composed of a metal Pt or a Pt oxide.
  • Patent Document 3 describes an exhaust gas purification catalyst for a saddle-mounted vehicle provided in an exhaust passage of an internal combustion engine.
  • a palladium catalyst for a saddle-type vehicle exhaust gas is disclosed.
  • Patent Document 1 a catalyst material (Pd-supported cerium-zirconium-based composite oxide) in which Pd is supported on the surface of a cerium-zirconium-based composite oxide having a specific composition is used as the base material particles.
  • this catalyst material alone still has insufficient purification performance (see Examples 1 and 2).
  • the exhaust gas emitted from an internal combustion engine such as an automobile emits a large amount of carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx) when the catalyst temperature is low such as at the time of starting.
  • CO carbon monoxide
  • HC hydrocarbon
  • NOx nitrogen oxide
  • the catalyst material described in Patent Document 1 is still insufficient in low temperature catalytic activity by itself (see Examples 1 and 2).
  • the exhaust gas purification catalyst described in Patent Document 2 is provided with a first catalyst layer containing the Pd-supported cerium-zyroxide-based composite oxide described in Patent Document 1 as a catalyst component on the surface of the base material, and the first catalyst layer is provided. It has a laminated structure further provided with a second catalyst layer containing Rh or Pt-supported cerium-zyrosine-based composite oxide as a catalyst component.
  • a series of processes of coating the catalyst slurry, firing, supporting PGM, drying and firing is required for each catalyst layer, resulting in an increase in manufacturing cost. , The obtained exhaust gas purification catalyst becomes expensive.
  • the exhaust gas purification catalyst described in Patent Document 2 has a poor gas diffusivity due to the laminated structure of the catalyst layer, and has insufficient purification performance and low temperature catalytic activity (see Tables 3 and 5).
  • Patent Document 3 describes an exhaust gas purification catalyst provided with a single-layer catalyst in which the amount of Ce used is relatively small, the purification performance is extremely low (see Tables 2 and 3). ..
  • an object of the present invention is for a saddle-type vehicle, which has a simple and low-cost configuration in which only one catalyst layer is provided, but is excellent in CO, HC, NOx purification performance and low-temperature purification performance thereof.
  • the purpose is to provide an exhaust gas purification catalyst and the like.
  • the present inventors have diligently studied to solve the above problems. As a result, they have found a single-layer catalyst using a combination of predetermined Rh-supported composite catalyst particles and predetermined Pd-supported composite catalyst particles, and have found that the above problems can be solved by using such a single-layer catalyst. It was completed.
  • An exhaust gas purification catalyst for a saddle-mounted vehicle provided in an exhaust gas passage of an internal combustion engine comprising a metal base material and a single-layer catalyst layer provided on the metal base material, and the catalyst layer is provided.
  • the zirconia-based base material particles are rare earth solid-dissolved zirconia base material particles in which at least one or more rare earth elements selected from the group consisting of Ce, Nd, and La are solid-dissolved. Exhaust gas purification catalyst for saddle-mounted vehicles.
  • the ceria alumina base material particles of the third composite catalyst particles contain 70 to 90% by mass of Al 2 O 3 and 10 to 30% by mass of CeO 2 in terms of oxide, [1] to [ 4]
  • the exhaust gas purification catalyst for a saddle-type vehicle according to any one of the items.
  • the catalyst layer is any one of [1] to [5], further containing the ceria alumina base material particles and the fourth composite catalyst particles containing Rh supported on the surface of the ceria alumina base material particles.
  • the exhaust gas purification catalyst for a saddle-type vehicle of the present invention is particularly suitable as a three-way catalyst (TWC: Three Way Catalyst) for reducing NOx, CO, HC, etc. in exhaust gas based on its composition and structure. Can be used.
  • TWC Three Way Catalyst
  • the exhaust gas purification catalyst for saddle-mounted vehicles of the present invention is preferably used in the field of motorcycles and the like, which are required to have a small capacity and high heat resistance, and also to have high exhaust gas purification efficiency even in a fuel-rich atmosphere. Can be done.
  • C450 purification rate purification rate
  • T50 low temperature purification performance
  • FIG. 1 is a schematic cross-sectional view showing an exhaust gas purification catalyst 100 for a saddle-mounted vehicle according to the present embodiment.
  • 2 to 5 are schematic cross-sectional views showing a schematic configuration of the first composite catalyst particles 31, the second composite catalyst particles 41, the third composite catalyst particles 51, and the fourth composite catalyst particles 61.
  • the exhaust gas purification catalyst 100 for a saddle-type vehicle of the present embodiment includes a metal base material 11 and a single-layer catalyst layer 21 provided on the metal base material 11, and the catalyst layer 21 is a first composite. It is characterized by containing the catalyst particles 31, the second composite catalyst particles 41 and / or the third composite catalyst particles 51.
  • the exhaust gas purification catalyst 100 for a saddle-type vehicle of the present embodiment is provided in the exhaust gas passage of an internal combustion engine and contains carbon monoxide (CO), hydrocarbon (HC), nitrogen oxides (NOx) and the like passing through the system. Purify.
  • the metal base material 11 is a support that supports the above-mentioned single-layer catalyst layer 21.
  • the metal base material 11 those known in the art can be appropriately selected, and the type thereof is not particularly limited.
  • the metal base material 11 include, but are not limited to, a metal honeycomb carrier made of stainless steel, a wire mesh carrier made of stainless steel, a steel wool-like knit wire carrier, and the like.
  • the shape thereof is not particularly limited, and any shape such as a prismatic shape, a cylindrical shape, a spherical shape, a honeycomb shape, a sheet shape, and a pellet shape can be selected. These can be used individually by 1 type or in combination of 2 or more types as appropriate.
  • the catalyst layer 21 is a single catalyst layer provided on the metal base material 11.
  • the catalyst layer 21 contains a first composite catalyst particle 31, a second composite catalyst particle 41 and / or a third composite catalyst particle 51, and, if necessary, a fourth composite catalyst particle 61.
  • the first composite catalyst particle 31 is a composite particle having at least the zirconia-based base particle 32 and the Rh and CeO 2 particles 33 co-supported on the surface 32a of the zirconia-based base particle 32.
  • Rh and CeO 2 particles 33 are co-supported on the surface 32a of the zirconia-based base material particles 32 to suppress a decrease in catalytic activity due to grain growth of Rh and carbon monoxide.
  • CeO 2 particles 33 By supporting CeO 2 particles 33, high purification performance is exhibited in a wide range of A / F windows for the exhaust gas of a saddle-type vehicle in which the concentrations of (CO), hydrocarbons (HC), and nitrogen oxides (NOx) change drastically. , The low temperature purification performance is also improved.
  • the first composite catalyst particles 31 may be used alone or in combination of two or more.
  • the zirconia-based base material particles 32 are zirconia (ZrO 2 ), a composite oxide obtained by doping zirconia (ZrO 2 ) with another element, or a solid solution thereof.
  • Specific examples of the zirconia-based base material particles 32 include zirconium oxide (IV), zirconium-rare earth element composite oxide, zirconium-transition element composite oxide, zirconium-rare earth element-transition element composite oxide and the like.
  • examples of the rare earth element include, but are not limited to, cerium, neodymium, praseodymium, lanthanum, yttrium, and the like. As the rare earth element, one kind may be used alone, or two or more kinds may be used in combination as appropriate.
  • the content ratio thereof is not particularly limited, but is the total amount of the rare earth element in terms of oxide (for example, La 2 O 3 , Nd 2 O 3 , Pr) with respect to the total amount of the zirconia-based base material particles 32. In total of 5O11 and the like), 0.1% by mass or more is preferable, 5% by mass or more is more preferable, 10% by mass or more is further preferable, 50% by mass or less is preferable, 45% by mass or less is more preferable, and 40. More preferably, it is by mass or less.
  • the transition element is not particularly limited, and examples thereof include chromium, cobalt, iron, nickel, titanium, manganese, and copper.
  • the transition element one kind may be used alone, or two or more kinds may be used in combination as appropriate.
  • the content ratio thereof is not particularly limited, but the total amount of the above-mentioned transition element in terms of oxide (for example, Fe 2 O 3 , TiO 2 etc.) with respect to the total amount of the zirconia-based base material particles 32 is not particularly limited. Total), 0.01% by mass or more is preferable, 0.1% by mass or more is more preferable, 0.5% by mass or more is further preferable, 10% by mass or less is preferable, 5% by mass or less is more preferable, and 3% by mass is used. % Or less is more preferable.
  • the zirconia-based base material particles 32 one type can be used alone, or two or more types can be used in combination as appropriate.
  • zirconia-based base material particles 32 As the zirconia-based base material particles 32, a zirconia-based composite oxide containing 65 to 85% by mass of ZrO 2 in terms of oxide and 15 to 35% by mass of an oxide of a rare earth element is preferable, and ZrO 2 is used in terms of oxide. A zirconia-based composite oxide containing 70 to 80% by mass and an oxide of a rare earth element in an amount of 20 to 30% by mass is more preferable.
  • zirconia-based base material particles 32 a part of zirconium is replaced with alkali metal elements such as lithium, sodium and potassium, and alkaline earth metal elements such as beryllium, magnesium, calcium, strontium and barium. May be good. Further, as the alkali metal element and the alkaline earth metal element, one kind may be used alone, or two or more kinds may be used in any combination and ratio. Further, the zirconia-based base material particles 32 may contain hafnium (Hf), which is usually contained in the zirconia ore in an amount of about 1 to 2% by mass, as an unavoidable impurity.
  • Hf hafnium
  • the average particle diameter D 50 of the zirconia-based base material particles 32 can be appropriately set according to the desired performance, and is not particularly limited.
  • the average particle size D50 of the zirconia-based base particle 32 is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, from the viewpoint of maintaining a large specific surface area and increasing heat resistance to increase the number of its own catalytically active sites. It is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, still more preferably 15 ⁇ m or less.
  • the average particle size D 50 of the particles is a median diameter measured by a laser diffraction type particle size distribution measuring device (for example, a laser folding type particle size distribution measuring device SALD-3100 manufactured by Shimadzu Corporation). Means.
  • Rh and CeO 2 particles 33 are co-supported in a highly dispersed manner on the surface 32a of the zirconia-based base material particles 32.
  • Rh functions as a catalytically active component
  • the CeO 2 particles 33 function as a catalytically active component or a co-catalyst having oxygen storage capacity (OSC: Oxygen Storage Capacity).
  • OSC Oxygen Storage Capacity
  • the content ratio of Rh may be appropriately set according to the desired performance in consideration of the material and pore diameter of the zirconia-based base material particles 32, and is not particularly limited, but from the viewpoint of catalytic activity and the like, the first composite catalyst particles.
  • the total amount of Rh in terms of metal is preferably 0.001 to 5% by mass, more preferably 0.01 to 3% by mass, and further preferably 0.1 to 1% by mass with respect to the total amount of 31.
  • the content ratio of the CeO 2 particles 33 may be appropriately set according to the desired performance in consideration of the material and pore diameter of the zirconia-based base particle 32, and is not particularly limited, but is first from the viewpoint of catalytic activity and the like.
  • the total amount of the composite catalyst particles 31 excluding the amount of noble metal
  • 5 to 20% by mass is preferable, more preferably 7 to 18% by mass, and further preferably 10 to 15% by mass in terms of oxide. be.
  • the second composite catalyst particle 41 is a composite particle having at least an alumina base material particle 42 and Pd supported on the surface 42a of the alumina base material particle 42.
  • the second composite catalyst particle 41 one kind may be used alone, or two or more kinds may be used in combination as appropriate.
  • the alumina base material particles 42 are base material particles containing alumina (Al 2 O 3 ) as a main component.
  • containing alumina as a main component means that alumina is contained in an amount of more than 90% by mass to 100% by mass or less with respect to the total amount of the alumina base material particles 42.
  • Specific examples of the alumina base material particles 42 include alumina, silica-alumina, aluminosilicates, alumina-zirconia, alumina-chromia, alumina-ceria, alumina-magnesium oxide, alumina-barium oxide, alumina-lanthanum oxide and the like. However, the present invention is not particularly limited to these. As the alumina base material particles 42, one type may be used alone, or two or more types may be used in combination as appropriate.
  • the average particle diameter D 50 of the alumina base material particles 42 can be appropriately set according to the desired performance, and is not particularly limited. From the viewpoint of maintaining a large specific surface area and increasing the number of catalytically active sites, the average particle diameter D 50 of the alumina base particle 42 is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and further preferably 3 ⁇ m or more. It is preferably 50 ⁇ m or less, more preferably 45 ⁇ m or less, still more preferably 40 ⁇ m or less.
  • Pd is co-supported with high dispersion on the surface 42a of the alumina base material particles 42.
  • Pd functions as a catalytically active ingredient.
  • the content ratio of Pd may be appropriately set according to the desired performance in consideration of the material and pore diameter of the alumina base particle 42, and is not particularly limited, but from the viewpoint of catalytic activity and the like, the second composite catalyst particle 41
  • the total amount of Pd in terms of metal is preferably 0.001 to 5% by mass, more preferably 0.01 to 3% by mass, and further preferably 0.1 to 1% by mass with respect to the total amount of Pd.
  • the second composite catalyst particle 41 may further support the Ba component, which is an alkaline earth metal, on the surface 42a of the alumina base material particles 42.
  • the Ba component can be supported on the surface 42a of the alumina base material particles 42 as barium carbonate, barium sulfate, or the like, and occludes NOx in a lean environment with a large amount of oxygen, and occludes NOx in a Rich environment with a small amount of oxygen. Is released.
  • the content ratio of the Ba component may be appropriately set according to the desired performance in consideration of the material and pore diameter of the alumina base material particles 42, and is not particularly limited, but from the viewpoint of catalytic activity and the like, the second composite catalyst particles. With respect to the total amount of 41 (excluding the amount of noble metal), 0.1 to 10% by mass is preferable, more preferably 0.5 to 8% by mass, and further preferably 1 to 5% by mass in terms of oxide. Is.
  • the third composite catalyst particle 51 is a composite particle having at least ceria alumina base material particles 52 and Pd supported on the surface 52a of the ceria alumina base material particles 52.
  • the third composite catalyst particle 51 one kind may be used alone, or two or more kinds may be used in combination as appropriate.
  • the ceria alumina base material particles 52 are composite oxides of ceria (CeO 2 ) and alumina (Al 2 O 3 ).
  • the content ratios of ceria and alumina can be appropriately set according to the desired performance and are not particularly limited, but the content ratio of ceria: alumina is 10 to 30% by mass: 70 to 90% by mass in terms of oxide. It is preferable, and more preferably 15 to 25% by mass: 75 to 85% by mass.
  • the ceria alumina base material particles 52 may contain the above-mentioned rare earth element, transition element, alkali metal element, alkaline earth metal element and the like. Further, the ceria alumina base material particles 52 may be used alone or in combination of two or more.
  • the average particle diameter D 50 of the ceria alumina base material particles 52 can be appropriately set according to the desired performance, and is not particularly limited. From the viewpoint of maintaining a large specific surface area and increasing the number of catalytically active sites, the average particle diameter D50 of the ceria alumina base particle 52 is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, still more preferably 10 ⁇ m or more. , 30 ⁇ m or less is preferable, 20 ⁇ m or less is more preferable, and 15 ⁇ m or less is further preferable.
  • Pd is co-supported with high dispersion on the surface 52a of the ceria alumina base material particles 52.
  • Pd functions as a catalytically active ingredient.
  • the content ratio of Pd may be appropriately set according to the desired performance in consideration of the material and pore diameter of the ceria alumina base particle 52, and is not particularly limited, but from the viewpoint of catalytic activity and the like, the third composite catalyst particle.
  • the total amount of Pd in terms of metal is preferably 0.001 to 15% by mass, more preferably 0.1 to 5% by mass, and further preferably 0.3 to 3% by mass with respect to the total amount of 51.
  • the fourth composite catalyst particle 61 is a composite particle having at least ceria alumina base material particles 62 and Rh supported on the surface 62a of the ceria alumina base material particles 62.
  • the fourth composite catalyst particle 61 one kind may be used alone, or two or more kinds may be used in combination as appropriate.
  • the ceria alumina base material particles 62 are composite oxides of ceria (CeO 2 ) and alumina (Al 2 O 3 ).
  • the content ratios of ceria and alumina can be appropriately set according to the desired performance and are not particularly limited, but the content ratio of ceria: alumina is 10 to 30% by mass: 70 to 90% by mass in terms of oxide. It is preferable, and more preferably 15 to 25% by mass: 75 to 85% by mass.
  • the ceria alumina base material particles 62 may contain the above-mentioned rare earth element, transition element, alkali metal element, alkaline earth metal element and the like. Further, as the ceria alumina base material particles 62, one type may be used alone, or two or more types may be used in combination as appropriate.
  • the average particle diameter D 50 of the ceria alumina base material particles 62 can be appropriately set according to the desired performance, and is not particularly limited. From the viewpoint of maintaining a large specific surface area and increasing the number of catalytically active sites, the average particle diameter D50 of the ceria alumina base particle 62 is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, still more preferably 10 ⁇ m or more. , 30 ⁇ m or less is preferable, 20 ⁇ m or less is more preferable, and 15 ⁇ m or less is further preferable.
  • Rh is co-supported with high dispersion on the surface 62a of the ceria alumina base material particles 62.
  • Rh functions as a catalytically active ingredient.
  • the content ratio of Rh may be appropriately set according to the desired performance in consideration of the material and pore diameter of the ceria alumina base material particles 62, and is not particularly limited, but from the viewpoint of catalytic activity and the like, the fourth composite catalyst particles.
  • the total amount of Rh in terms of metal is preferably 0.001 to 15% by mass, more preferably 0.1 to 5% by mass, and further preferably 0.3 to 3% by mass with respect to the total amount of 61.
  • Rh and Pd supported on the composite catalyst particles 31, 41, 51, 61 can be changed to a simple substance of a metal or a metal oxide depending on the external environment. Therefore, Rh and Pd supported on the composite catalyst particles 31, 41, 51, 61 need only be confirmed at least in a reducing atmosphere, and the properties of Rh and Pd in an oxidizing atmosphere and a stoichiometric atmosphere are particularly good for a single metal. Not limited.
  • the reducing atmosphere means a state of being allowed to stand at 400 ° C. for 0.5 hours or more under a hydrogen gas atmosphere.
  • Rh and Pd are observed by observation with a scanning transmission electron microscope (STEM), powder X-ray diffraction (XRD: X-ray Diffraction, electron probe microanalyzer (EPMA: Electron Probe Micro Analyzer), etc. It can be grasped by various measurement methods such as X-ray photoelectric spectroscopy (XPS: X-ray Photoelectron Spectroscopy or ESCA: Electron Spectroscopy for Chemical Analysis).
  • STEM scanning transmission electron microscope
  • XRD powder X-ray diffraction
  • EPMA Electron Probe Micro Analyzer
  • the methods for producing the composite catalyst particles 31, 41, 51, 61 include Rh, Pd, CeO 2 particles 33, and the surface 32a, 42a, 52a of each base particle 32, 42, 52, 62 having a barium component. It is not particularly limited as long as the one supported on 62a can be obtained. From the viewpoint of producing composite particles easily and at low cost, the evaporation dry solid method (impregnation method) or the like is preferable.
  • the base material particles 32, 42, 52, 62 used as raw materials here various grades of commercially available products can be used, and they can also be produced by a method known in the art. These production methods are not particularly limited, but for example, the zirconia-based base material particles 32 are preferably a coprecipitation method or an alkoxide method.
  • a coprecipitation method for example, an alkaline substance is added to an aqueous solution in which a cerium salt and / or a zirconium salt is mixed with other rare earth metal elements or transition elements to be blended as necessary at a predetermined chemical quantitative ratio.
  • the method of hydrolyzing or coprecipitating the precursor and firing the hydrolysis product or coprecipitate thereof is preferable.
  • the types of various salts used here are not particularly limited. Generally, hydrochlorides, oxy hydrochlorides, nitrates, oxynitrates, carbonates, phosphates, acetates, oxalates, citrates and the like are preferred. Further, the type of alkaline substance is not particularly limited. Generally, an aqueous ammonia solution is preferable. As an alkoxide method, for example, a mixture of cerium alkoxide and / or zirconium alkoxide mixed with other rare earth metal elements, transition elements, etc. to be blended as necessary at a predetermined chemical quantitative ratio is hydrolyzed, and then hydrolyzed. A manufacturing method of firing is preferable.
  • the type of alkoxide used here is not particularly limited. In general, methoxide, ethoxide, propoxide, isopropoxide, butoxide, and ethylene oxide adducts thereof are preferable. Further, the rare earth metal element may be blended as a metal alkoxide or as various salts described above.
  • the firing conditions may be according to a conventional method and are not particularly limited.
  • the firing atmosphere may be any of an oxidizing atmosphere, a reducing atmosphere, and an atmospheric atmosphere.
  • the firing temperature and treatment time vary depending on the desired composition and its stoichiometric ratio, but from the viewpoint of productivity and the like, generally, 1 to 12 hours is preferable at 150 ° C. or higher and 1300 ° C. or lower, more preferably.
  • vacuum drying Prior to high-temperature firing, it is preferable to perform vacuum drying using a vacuum dryer or the like, and to perform a drying treatment at 50 ° C. or higher and 200 ° C. or lower for about 1 to 48 hours.
  • the above-mentioned base material particles 32, 42, 52, 62 are impregnated with an aqueous solution containing Rh or Pd ions, Ce ions, Ba ions, etc. to be supported, and then heat-treated.
  • a manufacturing method for chemical treatment is preferable.
  • Rh and Pd ions, Ce ions, Ba ions and the like are adsorbed (adhered) on the surfaces 32a, 42a, 52a and 62a of the base material particles 32, 42, 52 and 62 in a highly dispersed state.
  • the ions of Rh and Pd can be added to the aqueous solution as various salts of Rh and Pd.
  • the types of various salts used here are not particularly limited. In general, sulfates, hydrochlorides, oxysalts, nitrates, oxynitrates, carbonates, oxycarbonates, phosphates, acetates, oxalates, citrates, chlorides, oxides, complex oxidations. Goods, complex salts and the like are preferable. Further, the content ratio of the ions of Rh and Pd in the aqueous solution can be appropriately adjusted so that the content ratio of Rh and Pd in each of the obtained composite catalyst particles 31, 41, 51, 61 or the catalyst layer 21 is a desired ratio. It can be done, and it is not particularly limited. Needless to say, the aqueous solution used here may contain the above-mentioned optional components such as other rare earth elements and transition elements, as well as unavoidable impurities.
  • a water washing treatment for example, a drying treatment for removing water at a temperature of 50 ° C. or higher and 200 ° C. or lower in the air for about 1 to 48 hours is performed according to a conventional method.
  • the drying treatment may be natural drying, or a drying device such as a drum type dryer, a vacuum dryer, or a spray dryer may be used.
  • the atmosphere during the drying treatment may be any of the atmosphere, the vacuum, and the atmosphere of an inert gas such as nitrogen gas.
  • pulverization treatment, classification treatment, etc. may be further performed as necessary.
  • chemical treatment may be performed.
  • the ions of Rh and Pd are hydrolyzed on the base material particles 32, 42, 52 and 62 using a basic component.
  • the basic component used here is preferably amines such as ammonia and ethanolamine, alkali metal hydroxides such as caustic soda and strontium hydroxide, and alkaline earth metal hydroxides such as barium hydroxide.
  • the firing conditions may be in accordance with a conventional method and are not particularly limited.
  • the heating means is not particularly limited, and known equipment such as an electric furnace or a gas furnace can be used.
  • the firing atmosphere may be any of an oxidizing atmosphere, an atmospheric atmosphere, and a reducing atmosphere, and the oxidizing atmosphere and the atmospheric atmosphere are preferable.
  • the firing temperature and treatment time vary depending on the desired performance, but from the viewpoint of Rh and Pd production and productivity, it is generally preferable to use 0.1 to 12 hours at 300 ° C. or higher and 1100 ° C. or lower. It is preferably 400 ° C. or higher and 800 ° C. or lower for 0.5 to 6 hours.
  • the catalyst layer 21 can be used by mixing with a catalyst, a co-catalyst, base metal particles, etc. known in the art, in addition to the above-mentioned components.
  • Known catalysts, co-catalysts, and base metal particles that can be used in combination include, for example, metal oxides or metal composite oxides such as silica, alumina, lanthanum oxide, neodymium oxide, and placeodium oxide; perovskite-type oxides; silica-alumina. , Silica-alumina-zirconia, a composite oxide containing alumina such as silica-alumina-boria; barium compounds, zeolites and the like, but are not particularly limited thereto.
  • the ratio of the catalyst, co-catalyst, and base particle to be used in combination can be appropriately set according to the required performance and the like, and is not particularly limited, but is preferably 0.01% by mass or more and 20% by mass or less in total with respect to the total amount. A total of 0.05% by mass or more and 10% by mass or less is more preferable, and a total of 0.1% by mass or more and 8% by mass or less is further preferable.
  • the catalyst layer 21 can be used by mixing with additives known in the art in addition to the above-mentioned components.
  • additives known in the art in addition to the above-mentioned components.
  • the additive that can be used in combination include, but are not limited to, various binders, dispersion stabilizers such as nonionic surfactants and anionic surfactants, pH adjusters, viscosity regulators, and the like.
  • the binder include, but are not limited to, various sol such as alumina sol, titania sol, silica sol, and zirconia sol.
  • soluble salts such as aluminum nitrate, aluminum acetate, titanium nitrate, titanium acetate, zirconium nitrate and zirconium acetate can also be used as a binder.
  • acids such as acetic acid, nitric acid, hydrochloric acid, and sulfuric acid can also be used as the binder.
  • the amount of the binder used is not particularly limited and may be an amount necessary for maintaining the molded product.
  • the ratio of the above-mentioned additives to be used can be appropriately set according to the required performance and the like, and is not particularly limited, but is preferably 0.01 to 20% by mass in total and 0.05 to 10% by mass in total with respect to the total amount. % Is more preferable, and 0.1 to 8% by mass in total is further preferable.
  • the catalyst layer 21 described above is provided on at least one surface side of the metal base material 11.
  • the applicability to various applications is increased, such as realizing a low-cost catalyst configuration with a small manufacturing load and facilitating incorporation into an apparatus at the time of manufacturing.
  • a metal honeycomb structure carrier or the like is used as the metal base material 11, and the exhaust gas purification catalyst 100 for a saddle-mounted vehicle is installed in the flow path through which the gas flow passes, and the gas flow is passed through the cell of the honeycomb structure carrier. Therefore, exhaust gas purification can be performed with high efficiency.
  • the "single-layer catalyst” means a catalyst having only one catalyst layer. Further, “provided on at least one surface side of the metal substrate 11” means that an arbitrary other layer other than the catalyst layer is interposed between one surface of the metal substrate 11 and the catalyst layer. It is a meaning that includes.
  • Such an exhaust gas purification catalyst 100 for a saddle-mounted vehicle can be obtained, for example, by providing the catalyst layer 21 on the above-mentioned metal base material 11.
  • the method for forming the catalyst layer 21 may be carried out according to a conventional method, and is not particularly limited. For example, a slurry-like mixture containing each component of the catalyst layer 21 described above is applied onto the metal substrate 11 by applying various known coating methods, wash coat methods, etc., and dried or fired as necessary. By doing so, the exhaust gas purification catalyst 100 for a slurry-type vehicle of the present embodiment can be obtained.
  • Specific examples include the above-mentioned composite catalyst particles 31, 41, 51, 61, an aqueous medium, and optionally a binder known in the art, other catalysts, co-catalysts, OSC materials, various base material particles, and additives.
  • Etc. are mixed at a desired blending ratio to prepare a slurry-like mixture, and the obtained slurry-like mixture is applied to the surface of the metal base material 11 and dried and fired to obtain a catalyst layer on the metal base material 11. It is possible to obtain an exhaust gas purification catalyst 100 for a slurry-type vehicle provided with 21.
  • the aqueous medium used when preparing the slurry-like mixture may be an amount that allows each main component to be uniformly dispersed in the slurry.
  • an acid or a base for adjusting the pH can be added, or a surfactant, a resin for dispersion, or the like for adjusting the viscosity or improving the dispersibility of the slurry can be added.
  • a surfactant, a resin for dispersion, or the like for adjusting the viscosity or improving the dispersibility of the slurry can be added.
  • a known pulverizing method or mixing method such as pulverizing and mixing with a ball mill or the like can be applied.
  • the drying temperature is not particularly limited, but is preferably 70 to 200 ° C, more preferably 80 to 150 ° C, for example.
  • the firing temperature is not particularly limited, but is preferably 300 to 650 ° C, more preferably 400 to 600 ° C, for example.
  • the heating means used at this time can be a known heating means such as an electric furnace or a gas furnace.
  • the total coating amount of the catalyst layer 21 described above is not particularly limited, but is 1 to 200 g / L (excluding the amount of precious metal) per 1 L of the capacity of the metal base material 11 from the viewpoint of catalyst performance, balance of pressure loss, and the like. It is preferably 50 to 180 g / L (excluding the amount of precious metal), and more preferably.
  • the total coating amount of Rh and Pd is not particularly limited, but is preferably 0.05 to 1.5 g / L in terms of metal, and 0.1 to 1.0 g, from the viewpoint of catalyst performance, balance of pressure loss, and the like. / L is more preferable.
  • the total coating amount of Rh is not particularly limited, but is preferably 0.02 to 0.6 g / L in terms of metal, and 0.04 to 0.4 g / L from the viewpoint of catalyst performance, pressure loss balance, and the like. L is more preferable.
  • the total coating amount of Pd is not particularly limited, but is preferably 0.03 to 0.9 g / L in terms of metal, and 0.06 to 0.6 g / L from the viewpoint of catalytic performance and balance of pressure loss. Is more preferable.
  • the mass ratio (Pd / Rh) of the coating amount of Pd and Rh is preferably 10/1 to 10/9, more preferably 10/2 to 10/8 in terms of metal.
  • the exhaust gas purification catalyst 100 for a saddle-type vehicle of the present embodiment described above can be arranged in the exhaust system of various engines of the saddle-type vehicle, and the number and location of the installation thereof can be arbitrarily determined according to the exhaust gas regulation. Can be designed.
  • the exhaust gas purification catalyst 100 for a saddle-mounted vehicle of the present embodiment has a simple and low-cost configuration in which only one catalyst layer is provided, but has CO, HC, and NOx purification performance and low-temperature purification performance. It can exert an excellent effect on.
  • the present invention is not limited thereto. That is, the materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Further, the values of various manufacturing conditions and evaluation results in the following examples have meanings as a preferable upper limit value or a preferable lower limit value in the embodiment of the present invention, and the preferable numerical range is the above-mentioned upper limit value or the lower limit value. It may be in the range specified by the combination of the value and the value of the following examples or the values of the examples.
  • Example 1 Zirconia composite oxide base material particles containing 75.0% by mass of ZrO 2 and 25.0% by mass of oxides of rare earth elements are charged into a Nauta mixer, and a predetermined amount of cerium nitrate and diluting material are used. After further adding pure water, the mixture was stirred for 15 minutes to prepare composite particles in which 12.5% by mass of CeO 2 particles were carried on the surface of the zirconia composite oxide base material particles in terms of oxide.
  • Rh catalyst slurry and Pd catalyst slurry were weighed in predetermined amounts, put into a stirrer, and stirred for 15 minutes. Then, it was pulverized with a ball mill until the average particle diameter D90 became 11 ⁇ m. An alumina sol-based binder material and distilled water were added to the obtained mixture, and the mixture was further stirred for 10 minutes to obtain a catalyst slurry for wash coat.
  • the excess wash coat liquid in the cell is removed by air blow, dried, and fired at 500 ° C. for 1 hour.
  • an exhaust gas purification catalyst for a slurry-type vehicle was obtained.
  • the wash coat amount of this catalyst was 120 g / L (excluding the amount of precious metal) per 1 L of stainless metal honeycomb carrier, the Rh content was 0.2 g / L, and the Pd content was 0.3 g / L. ..
  • Example 2 A predetermined amount of rhodium nitrate and pure water were added to the stirrer and stirred for 5 minutes, and then the CeO2 particle - supporting composite particles obtained in Example 1 were added and further stirred for 15 minutes. Celia alumina base material particles containing 80.7% by mass of Al 2 O 3 and 19.3% by mass of CeO 2 in terms of oxide for the fourth composite catalyst particles were further added thereto, and the mixture was stirred for 15 minutes. As a result, Rh containing the first composite catalyst particles in which Rh and CeO2 particles are co - supported on the surface of the zirconia composite oxide base material particles and the fourth composite catalyst particles in which Rh is supported on the surface of the ceria alumina base material particles. A catalyst slurry was obtained.
  • Rh catalyst slurry and Pd catalyst slurry are weighed in predetermined amounts and put into a stirrer, and after stirring for 15 minutes, Al 2 O 3 powder having Ba supported on the surface is further put into the stirrer for 15 minutes. Stirred. Then, it was pulverized with a ball mill until the average particle diameter D90 became 11 ⁇ m. An alumina sol-based binder material and distilled water were added to the obtained mixture, and the mixture was further stirred for 10 minutes to obtain a catalyst slurry for wash coat.
  • the excess wash coat liquid in the cell is removed by air blow, dried, and fired at 500 ° C. for 1 hour.
  • an exhaust gas purification catalyst for a slurry-type vehicle was obtained.
  • the wash coat amount of this catalyst was 120 g / L (excluding the amount of precious metal) per 1 L of stainless metal honeycomb carrier, the Rh content was 0.2 g / L, and the Pd content was 0.3 g / L. ..
  • Comparative Example 2 The Rh catalyst slurry obtained in Comparative Example 1 and the Pd catalyst slurry obtained in Comparative Example 1 are weighed in predetermined amounts and put into a stirrer, and after adding an alumina sol-based binder material and distilled water, the mixture is stirred for 10 minutes. As a result, a catalyst slurry for wash coat was obtained.
  • the excess wash coat liquid in the cell is removed by air blow, dried, and fired at 500 ° C. for 1 hour.
  • an exhaust gas purification catalyst for a slurry-type vehicle was obtained.
  • the wash coat amount of this catalyst was 120 g / L (excluding the amount of precious metal) per 1 L of stainless metal honeycomb carrier, the Rh content was 0.2 g / L, and the Pd content was 0.3 g / L. ..
  • ⁇ Performance evaluation> The purification characteristics of each catalyst were evaluated using a model gas evaluation device manufactured by HORIBA, Ltd. Here, HC, CO and NO (the rate at which nitrogen oxide is reduced at 450 ° C. (C450 purification rate) and the temperature at which the 50% purification rate is reached [T50 (° C.)] in the model gas are measured and each is measured. The ternary purification performance of the catalyst was evaluated. In this evaluation, a test piece (25.4 ⁇ 50 mmL) was used from the exhaust gas purification catalyst for a saddle-mounted vehicle obtained in Examples 1 and 2 and Comparative Examples 1 and 2.
  • this test piece was subjected to a rich atmosphere of 2% CO + 10% H 2 O + remaining N 2 and a lean atmosphere of 5% O 2 + 10% H 2 O + remaining N 2 at intervals of 5 minutes at 1050 ° C.
  • the catalyst after the endurance treatment which was held for 5 hours in the above, was used as an evaluation sample.
  • the evaluation device used was a flow-type reaction device composed of stainless steel pipes, and a model having the following composition from the entry side. Gas is introduced, distributed to the exhaust gas purification reaction section, and discharged to the outlet side. By heating the model gas with an external heater and sending it to the exhaust gas purification reaction section, the purification reaction section is heated.
  • the gas composition on the outflow side (after passing through the catalyst portion) is analyzed in the temperature range of 100 ° C to 450 ° C, and the rate of change in CO, HC, and NO concentrations is determined. The results are shown in FIGS. 6 and 7. ..
  • the exhaust gas purification catalyst for a saddle-type vehicle of the present invention has a simple and low-cost configuration in which only one catalyst layer is provided, but is excellent in CO, HC, NOx purification performance and low-temperature purification performance thereof. Since it is excellent in productivity and economy, it can be widely and effectively used as a three-way catalyst (TWC: Three Way Catalyst) that reduces NOx, CO, HC, etc. in exhaust gas based on its composition and structure.
  • TWC Three Way Catalyst
  • the exhaust gas purification catalyst for a saddle-mounted vehicle of the present invention is particularly effectively used in the field of motorcycles and the like, which are required to have a small capacity and high heat resistance, and are also required to have high exhaust gas purification efficiency even in a fuel-rich atmosphere. It is possible.

Abstract

The present invention provides an exhaust gas purification catalyst which is for a saddle riding-type vehicle, has a simple and low-cost structure in which only a singled layered catalyst layer is provided, and has excellent purification performance for CO, HC, and NOx and excellent low-temperature purification performance for the same. The exhaust gas purification catalyst, which is for a saddle riding-type vehicle and is provided in an exhaust gas passage of an internal combustion engine, comprises a metal substrate and a single-layered catalyst layer provided on the metal substrate, wherein the catalyst layer contains: first composite catalyst particles having at least zirconia-based host particles and Rh and CeO2 particles co-supported on the surface of the zirconia-based host particles; second composite catalyst particles having alumina host particles and Pd supported on the surface of the alumina host particles; and/or third composite catalyst particles having ceria alumina host particles and Pd supported on the surface of the ceria alumina host particles.

Description

鞍乗型車両用排ガス浄化触媒Exhaust gas purification catalyst for saddle-type vehicles
 本発明は、二輪自動車等の鞍乗型車両用排ガス浄化触媒及びその製造方法に関し、特に、触媒層が一層のみからなる鞍乗型車両用排ガス浄化触媒等に関する。 The present invention relates to an exhaust gas purification catalyst for a saddle-type vehicle such as a two-wheeled vehicle and a method for manufacturing the same, and more particularly to an exhaust gas purification catalyst for a saddle-type vehicle having only one catalyst layer.
 ガソリンを燃料とする自動車や二輪自動車の排ガス中には、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)等の有害成分が含まれる。これらを浄化するには、炭化水素(HC)は酸化して水と二酸化炭素に転化させ、一酸化炭素(CO)は酸化して二酸化炭素に転化させ、窒素酸化物(NOx)は還元して窒素に転化させる等、それぞれの有害成分を触媒で浄化する必要がある。このような排ガスを処理するための触媒(以下「排ガス浄化触媒」と称する)としては、CO、HC及びNOxを酸化還元することができる3元触媒(Three-Way Catalyst:TWC)が用いられている。このような3元触媒としては、例えば高い比表面積を有するアルミナ母材粒子上に、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、プラチナ等の白金族元素(PGM:Platinum Group Metal)等を触媒活性成分として担持し、これを基材、例えば耐火性セラミック又は金属製ハニカム構造のモノリス型(Monolithic)基材に担持したものが広く知られている。 Exhaust gas from gasoline-fueled automobiles and motorcycles contains harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx). To purify these, hydrocarbons (HC) are oxidized and converted to water and carbon dioxide, carbon monoxide (CO) is oxidized and converted to carbon dioxide, and nitrogen oxides (NOx) are reduced. It is necessary to purify each harmful component with a catalyst, such as converting it to nitrogen. As a catalyst for treating such exhaust gas (hereinafter referred to as "exhaust gas purification catalyst"), a three-way catalyst (TWC) capable of redoxing CO, HC and NOx is used. There is. As such a ternary catalyst, for example, platinum group elements (PGM: Platinum Group Metal) such as ruthenium, rhodium, palladium, osmium, iridium, and platinum are catalytically active components on alumina base material particles having a high specific surface area. It is widely known that the material is supported as a base material, for example, a fire-resistant ceramic or a metal honeycomb-structured Monolithic base material.
 上述した自動車等の内燃機関は、加速、減速、低速走行、高速走行等、エンジンの作動条件に応じて燃料と空気の比(空燃比、A/F)が大きく変化し、排ガスにおける理論空燃比14.7を境に、酸化反応が有利となる酸素過剰雰囲気(燃料リーン雰囲気)と、還元反応が有利となる燃料過剰条件(燃料リッチ雰囲気)とが、走行条件に応じて交互に繰り返し出現する。そのため、排ガス用触媒は、燃料リーン雰囲気及び燃料リッチ雰囲気のいずれの条件下でも一定以上の触媒性能を発揮する必要がある。特に二輪自動車の場合には、出力アップのために燃料リッチ雰囲気下でエンジンの回転数を高めて運転する傾向があるため、燃料リッチ雰囲気下において優れた触媒性能を発揮することが求められる。そのため従来から空燃比(A/F)の制御が行われていたが、空燃比(A/F)を制御するだけでは触媒が十分に浄化触媒性能を発揮することができないため、触媒層自身にも空燃比(A/F)を制御する作用が求められている。 In the above-mentioned internal combustion engine such as an automobile, the ratio of fuel to air (air-fuel ratio, A / F) changes greatly according to the operating conditions of the engine such as acceleration, deceleration, low-speed running, and high-speed running, and the theoretical air-fuel ratio in exhaust gas. At 14.7, an oxygen excess atmosphere (fuel lean atmosphere) in which the oxidation reaction is advantageous and a fuel excess condition (fuel rich atmosphere) in which the reduction reaction is advantageous appear alternately and repeatedly according to the driving conditions. .. Therefore, the exhaust gas catalyst needs to exhibit a certain level of catalytic performance under both a fuel lean atmosphere and a fuel rich atmosphere. In particular, in the case of a two-wheeled vehicle, there is a tendency to increase the engine speed in a fuel-rich atmosphere in order to increase the output, so that it is required to exhibit excellent catalytic performance in a fuel-rich atmosphere. Therefore, the air-fuel ratio (A / F) has been controlled conventionally, but the catalyst cannot sufficiently exhibit the purification catalyst performance only by controlling the air-fuel ratio (A / F), so that the catalyst layer itself Is also required to have an action of controlling the air-fuel ratio (A / F).
 そこで、空燃比の変化に起因して発生する触媒の浄化性能の低下を、触媒自体の化学的作用により防止する目的で、触媒活性成分である白金族元素に助触媒を併用した触媒が用いられている。このような助触媒として、還元雰囲気では酸素を放出し、酸化雰囲気では酸素を吸収する酸素ストレージ能(OSC:Oxygen Storage capacity)を有する助触媒(以降において、「OSC材」と称する場合がある。)が知られている。具体的には、セリア(酸化セリウム、CeO)や、セリア-ジルコニア複合酸化物等が、酸素ストレージ能を有するOSC材として知られている。これらのOSC材は、排ガスの酸化性と還元性の変化を小さくする緩衝剤としての機能を果たし、触媒の浄化性能を維持する機能を有している。また、セリアにジルコニアを固溶させたセリア-ジルコニア複合酸化物は、酸素ストレージ能(OSC)がさらに優れているため、OSC材として多くの触媒に加えられている。 Therefore, for the purpose of preventing the deterioration of the purification performance of the catalyst caused by the change in the air-fuel ratio by the chemical action of the catalyst itself, a catalyst in which a platinum group element, which is a catalytically active component, is used in combination with an auxiliary catalyst is used. ing. As such an co-catalyst, it may be referred to as an co-catalyst having an oxygen storage capacity (OSC: Oxygen Storage capacity) that releases oxygen in a reducing atmosphere and absorbs oxygen in an oxidizing atmosphere (hereinafter, referred to as "OSC material". )It has been known. Specifically, ceria (cerium oxide, CeO 2 ), ceria-zirconia composite oxide, and the like are known as OSC materials having an oxygen storage ability. These OSC materials function as a buffer for reducing changes in the oxidizing and reducing properties of the exhaust gas, and have a function of maintaining the purification performance of the catalyst. Further, the ceria-zirconia composite oxide in which zirconia is dissolved in ceria is added to many catalysts as an OSC material because it has a further excellent oxygen storage capacity (OSC).
 ところで、二輪自動車用の排ガス浄化触媒は、四輪自動車用の排ガス浄化触媒等とは異なる特殊な課題を抱えている。例えば二輪自動車用の排ガス浄化触媒は、四輪自動車用のものと比較して触媒を搭載するスペースが限られるため、小容量でありながら、高度の浄化能力を発揮することが求められる。また、二輪自動車は、比較的に排ガス流路が短く、また、出力を重視して燃料を多く使用する傾向にあるため、触媒が高温に曝され易い。しかも、それに応じて排ガス中の酸素濃度が低下するため、排ガスにおける空燃比(A/F)が、理論空燃比14.7未満になる場面が多い傾向にある。そのため、耐熱性に優れるとともに、空燃比(A/F)が14.7未満の燃料リッチ雰囲気においても排ガス浄化効率に優れることが求められる。 By the way, the exhaust gas purification catalyst for motorcycles has a special problem different from the exhaust gas purification catalyst for four-wheeled vehicles. For example, an exhaust gas purification catalyst for a two-wheeled vehicle has a limited space for mounting the catalyst as compared with a catalyst for a four-wheeled vehicle, so that it is required to exhibit a high degree of purification ability while having a small capacity. In addition, motorcycles have a relatively short exhaust gas flow path and tend to use a large amount of fuel with an emphasis on output, so that the catalyst is easily exposed to high temperatures. Moreover, since the oxygen concentration in the exhaust gas decreases accordingly, the air-fuel ratio (A / F) in the exhaust gas tends to be less than the theoretical air-fuel ratio of 14.7 in many cases. Therefore, it is required to have excellent heat resistance and excellent exhaust gas purification efficiency even in a fuel-rich atmosphere having an air-fuel ratio (A / F) of less than 14.7.
 例えば特許文献1には、CeOの量が45~70質量%であり、ZrOの量が20~45質量%であり、Nd量が2~20質量%であり、La量が1~10質量%であるセリウム-ジルコニウム系複合酸化物からなるキャリアと、該キャリアに担持された金属Pd又はPd酸化物からなる触媒成分とを有することを特徴とする内燃機関排気ガス浄化用触媒材料が開示されている。 For example, in Patent Document 1, the amount of CeO 2 is 45 to 70% by mass, the amount of ZrO 2 is 20 to 45% by mass, the amount of Nd 2 O 3 is 2 to 20% by mass, and La 2 O. An internal combustion engine exhaust gas characterized by having a carrier made of a cerium-zirconium composite oxide in which the amount of 3 is 1 to 10% by mass, and a catalyst component made of a metal Pd or Pd oxide supported on the carrier. Purification catalyst materials are disclosed.
 また、特許文献2には、セラミックス又は金属材料からなる担体の表面に形成された第一触媒層と該第一触媒層の上に形成された第二触媒層とを有し、該第一触媒層はCeOの量が45~70質量%であり、ZrOの量が20~45質量%であり、Ndの量が2~20質量%であり、Laの量が1~10質量%であるセリウム-ジルコニウム系複合酸化物からなるキャリアと、該キャリアに担持された金属Pd又はPd酸化物からなる触媒成分とを有し、該第二触媒層はZrOの量が50~95質量%であり、CeOの量が0~40質量%であり、Ndの量が2~20質量%であり、Laの量が1~10質量%であるジルコニウム系複合酸化物からなるキャリアと、該キャリアに担持された金属Rh又はRh酸化物からなる触媒成分とを有するか、又は該キャリアに担持された金属Rh又はRh酸化物からなる触媒成分及び金属Pt又はPt酸化物からなる触媒成分とを有することを特徴とする鞍乗型車両用排気ガス浄化触媒が開示されている。 Further, Patent Document 2 has a first catalyst layer formed on the surface of a carrier made of ceramics or a metal material and a second catalyst layer formed on the first catalyst layer, and the first catalyst is provided. The layer has a amount of CeO 2 of 45 to 70% by mass, an amount of ZrO 2 of 20 to 45% by mass, an amount of Nd 2 O 3 of 2 to 20% by mass, and an amount of La 2 O 3 in an amount of La 2 O 3. It has a carrier made of a cerium-zirconium composite oxide of 1 to 10% by mass and a catalyst component made of a metal Pd or Pd oxide supported on the carrier, and the second catalyst layer has an amount of ZrO 2 . Is 50 to 95% by mass, the amount of CeO 2 is 0 to 40% by mass, the amount of Nd 2 O 3 is 2 to 20% by mass, and the amount of La 2 O 3 is 1 to 10% by mass. A carrier composed of a zirconium-based composite oxide and a catalyst component composed of a metal Rh or Rh oxide supported on the carrier, or a catalyst component composed of a metal Rh or Rh oxide supported on the carrier and a catalyst component. A catalyst for purifying exhaust gas for a saddle-type vehicle is disclosed, which comprises a catalyst component composed of a metal Pt or a Pt oxide.
 一方、貴金属の中でも比較的に高価なPtやRhを使用せずに低コスト化を図った触媒として、特許文献3には、内燃機関の排気通路に設けられる鞍乗型車両用排気ガス浄化触媒であって、基材と、触媒活性成分としてのパラジウム、触媒担持体としての多孔質γ-アルミナ等の無機多孔質体、助触媒成分としてのセリア(CeO)粒子及びバリウムを含有する単層としての触媒層と、を備えた鞍乗型車両排気ガス用パラジウム触媒が開示されている。 On the other hand, as a catalyst for reducing the cost without using Pt and Rh, which are relatively expensive among precious metals, Patent Document 3 describes an exhaust gas purification catalyst for a saddle-mounted vehicle provided in an exhaust passage of an internal combustion engine. A single layer containing a base material, palladium as a catalytically active component, an inorganic porous body such as porous γ-alumina as a catalyst carrier, ceria (CeO 2 ) particles as a co-catalytic component, and barium. A palladium catalyst for a saddle-type vehicle exhaust gas is disclosed.
特開2010-227739号公報Japanese Unexamined Patent Publication No. 2010-227739 WO2010/109734WO2010 / 109734 特開2013-208578号公報Japanese Unexamined Patent Publication No. 2013-208578
 上記特許文献1では、母材粒子として特定組成のセリウム-ジルコニウム系複合酸化物の表面にPdを担持させた触媒材料(Pd担持セリウム-ジルコニウム系複合酸化物)を用いている。しかしながら、この触媒材料は、単独では依然として浄化性能が不十分なものである(実施例1及び2参照)。 In Patent Document 1, a catalyst material (Pd-supported cerium-zirconium-based composite oxide) in which Pd is supported on the surface of a cerium-zirconium-based composite oxide having a specific composition is used as the base material particles. However, this catalyst material alone still has insufficient purification performance (see Examples 1 and 2).
 また、自動車等の内燃機関から排出される排ガスは、始動時等の触媒温度が低い状態では、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)が多く排出される。浄化性能を向上させるためには、触媒の早期昇温と触媒の低温浄化性能の向上が重要である。しかしながら、特許文献1に記載の触媒材料は、単独では依然として低温触媒活性が不十分なものである(実施例1及び2参照)。 In addition, the exhaust gas emitted from an internal combustion engine such as an automobile emits a large amount of carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx) when the catalyst temperature is low such as at the time of starting. In order to improve the purification performance, it is important to raise the temperature of the catalyst at an early stage and improve the low temperature purification performance of the catalyst. However, the catalyst material described in Patent Document 1 is still insufficient in low temperature catalytic activity by itself (see Examples 1 and 2).
 一方、触媒材料用途以外においても蛍光体やガラス基板研磨剤等で使用されている重要なレアアースであるCeは、昨今の海外情勢により供給危機に陥り、供給が極度に制限され、また、国際価格が暴騰した経緯がある。そのため、Ceの使用量が少ない新規触媒材料が求められているが、特許文献1に記載の触媒材料は、依然としてCe使用量が比較的に多く、かかる観点で昨今の要請に応じたものとなっていない。 On the other hand, Ce, which is an important rare earth used for phosphors and glass substrate abrasives other than as a catalyst material, has fallen into a supply crisis due to the recent overseas situation, supply is extremely limited, and international prices are high. Has a history of soaring. Therefore, there is a demand for a new catalyst material in which the amount of Ce used is small, but the catalyst material described in Patent Document 1 still has a relatively large amount of Ce used, and from this viewpoint, it meets the recent demands. Not.
 また、特許文献2に記載の排ガス浄化触媒は、基材表面に、特許文献1に記載のPd担持セリウム-ジルコニウム系複合酸化物を触媒成分とする第一触媒層を設け、この第一触媒層上にRh又はPt担持セリウム-ジルコニウム系複合酸化物を触媒成分とする第二触媒層をさらに設けた、積層構造を有する。このように触媒層を2層以上設けるには、触媒スラリーの塗工、焼成、PGMの担持、乾燥及び焼成という一連のプロセスが触媒層毎に要求されるため、製造コストが増大し、その結果、得られる排ガス浄化触媒は高コストなものとなってしまう。また、特許文献2に記載の排ガス浄化触媒は、触媒層が積層構造であるためガス拡散性が乏しく、浄化性能や低温触媒活性が不十分なものであった(表3及び表5参照)。 Further, the exhaust gas purification catalyst described in Patent Document 2 is provided with a first catalyst layer containing the Pd-supported cerium-zyroxide-based composite oxide described in Patent Document 1 as a catalyst component on the surface of the base material, and the first catalyst layer is provided. It has a laminated structure further provided with a second catalyst layer containing Rh or Pt-supported cerium-zyrosine-based composite oxide as a catalyst component. In order to provide two or more catalyst layers in this way, a series of processes of coating the catalyst slurry, firing, supporting PGM, drying and firing is required for each catalyst layer, resulting in an increase in manufacturing cost. , The obtained exhaust gas purification catalyst becomes expensive. Further, the exhaust gas purification catalyst described in Patent Document 2 has a poor gas diffusivity due to the laminated structure of the catalyst layer, and has insufficient purification performance and low temperature catalytic activity (see Tables 3 and 5).
 一方、特許文献3には、Ce使用量が比較的に少ない単層触媒を設けた排ガス浄化触媒が記載されているものの、浄化性能が極度に低いものであった(表2及び表3参照)。 On the other hand, although Patent Document 3 describes an exhaust gas purification catalyst provided with a single-layer catalyst in which the amount of Ce used is relatively small, the purification performance is extremely low (see Tables 2 and 3). ..
 本発明は、上記課題に鑑みてなされたものである。すなわち、本発明の目的は、一層の触媒層だけが設けられた簡易且つ低コストな構成でありながらも、CO,HC,NOxの浄化性能及びこれらの低温浄化性能に優れる、鞍乗型車両用排ガス浄化触媒等を提供することにある。 The present invention has been made in view of the above problems. That is, an object of the present invention is for a saddle-type vehicle, which has a simple and low-cost configuration in which only one catalyst layer is provided, but is excellent in CO, HC, NOx purification performance and low-temperature purification performance thereof. The purpose is to provide an exhaust gas purification catalyst and the like.
 本発明者らは、上記課題を解決すべく鋭意検討した。その結果、所定のRh担持複合触媒粒子と所定のPd担持複合触媒粒子とを組み合わせて用いた単層触媒を見出し、かかる単層触媒を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。 The present inventors have diligently studied to solve the above problems. As a result, they have found a single-layer catalyst using a combination of predetermined Rh-supported composite catalyst particles and predetermined Pd-supported composite catalyst particles, and have found that the above problems can be solved by using such a single-layer catalyst. It was completed.
 すなわち、本発明は、以下に示す種々の具体的態様を提供する。
〔1〕内燃機関の排ガス通路に設けられる鞍乗型車両用排ガス浄化触媒であって、メタル基材と、該メタル基材上に設けられた単層の触媒層とを備え、前記触媒層は、ジルコニア系母材粒子と該ジルコニア系母材粒子の表面に共担持されたRh及びCeO粒子とを少なくとも有する第1複合触媒粒子、並びに、アルミナ母材粒子と該アルミナ母材粒子の表面に担持されたPdを含む第2複合触媒粒子、及び/又は、セリアアルミナ母材粒子と該セリアアルミナ母材粒子の表面に担持されたPdとを少なくとも有する第3複合触媒粒子を含有する、鞍乗型車両用排ガス浄化触媒。
That is, the present invention provides various specific embodiments shown below.
[1] An exhaust gas purification catalyst for a saddle-mounted vehicle provided in an exhaust gas passage of an internal combustion engine, comprising a metal base material and a single-layer catalyst layer provided on the metal base material, and the catalyst layer is provided. , A first composite catalyst particle having at least Rh and CeO 2 particles co-supported on the surface of the zirconia-based base material particles and the zirconia-based base material particles, and on the surface of the alumina base material particles and the alumina base material particles. The saddle-loaded second composite catalyst particles containing the carried Pd and / or the third composite catalyst particles having at least the ceria alumina base material particles and the Pd carried on the surface of the ceria alumina base material particles. Exhaust gas purification catalyst for type vehicles.
〔2〕前記ジルコニア系母材粒子は、Ce、Nd、及びLaよりなる群から選択される少なくとも1以上の希土類元素が固溶した希土類固溶ジルコニア母材粒子である、〔1〕に記載の鞍乗型車両用排ガス浄化触媒。 [2] The zirconia-based base material particles are rare earth solid-dissolved zirconia base material particles in which at least one or more rare earth elements selected from the group consisting of Ce, Nd, and La are solid-dissolved. Exhaust gas purification catalyst for saddle-mounted vehicles.
〔3〕前記ジルコニア系母材粒子は、酸化物換算で、ZrOを65~85質量%及び希土類元素の酸化物を15~35質量%含有する、〔1〕又は〔2〕に記載の鞍乗型車両用排ガス浄化触媒。 [3] The saddle according to [1] or [2], wherein the zirconia-based base material particles contain 65 to 85% by mass of ZrO 2 and 15 to 35% by mass of an oxide of a rare earth element in terms of oxide. Exhaust gas purification catalyst for riding vehicles.
〔4〕前記第2複合触媒粒子は、前記アルミナ母材粒子と前記アルミナ母材粒子の表面に担持されたPd及びBaを含む、〔1〕~〔3〕のいずれか一項に記載の鞍乗型車両用排ガス浄化触媒。 [4] The saddle according to any one of [1] to [3], wherein the second composite catalyst particle contains the alumina base material particles and Pd and Ba supported on the surface of the alumina base material particles. Exhaust gas purification catalyst for riding vehicles.
〔5〕前記第3複合触媒粒子の前記セリアアルミナ母材粒子は、酸化物換算で、Alを70~90質量%及びCeOを10~30質量%含有する、〔1〕~〔4〕のいずれか一項に記載の鞍乗型車両用排ガス浄化触媒。 [5] The ceria alumina base material particles of the third composite catalyst particles contain 70 to 90% by mass of Al 2 O 3 and 10 to 30% by mass of CeO 2 in terms of oxide, [1] to [ 4] The exhaust gas purification catalyst for a saddle-type vehicle according to any one of the items.
〔6〕前記触媒層は、セリアアルミナ母材粒子と該セリアアルミナ母材粒子の表面に担持されたRhを含む第4複合触媒粒子をさらに含有する、〔1〕~〔5〕のいずれか一項に記載の鞍乗型車両用排ガス浄化触媒。 [6] The catalyst layer is any one of [1] to [5], further containing the ceria alumina base material particles and the fourth composite catalyst particles containing Rh supported on the surface of the ceria alumina base material particles. Exhaust gas purification catalyst for saddle-mounted vehicles as described in the section.
〔7〕前記触媒層の塗工量が、前記メタル基材1Lあたり1~200g/Lである、〔1〕~〔6〕のいずれか一項に記載の鞍乗型車両用排ガス浄化触媒。 [7] The exhaust gas purification catalyst for a saddle-type vehicle according to any one of [1] to [6], wherein the coating amount of the catalyst layer is 1 to 200 g / L per 1 L of the metal base material.
 本発明によれば、触媒層が一層だけ設けられた簡易且つ低コストな構成でありながらも、CO,HC,NOxの浄化性能及びこれらの低温浄化性能に優れ、生産性及び経済性に優れる高性能な鞍乗型車両用排ガス浄化触媒等を実現することができる。そして、本発明の鞍乗型車両用排ガス浄化触媒等は、その組成及び構造に基づいて、排ガス中のNOx、CO、HC等を削減する三元触媒(TWC:Three Way Catalyst)として特に好適に用いることができる。とりわけ、本発明の鞍乗型車両用排ガス浄化触媒等は、小容量で高い耐熱性が求められ、また、燃料リッチ雰囲気においても高い排ガス浄化効率が求められる二輪自動車等の分野において、好ましく用いることができる。 According to the present invention, although it is a simple and low-cost configuration in which only one catalyst layer is provided, it is excellent in CO, HC, NOx purification performance and low temperature purification performance thereof, and is highly productive and economical. It is possible to realize a high-performance exhaust gas purification catalyst for a saddle-mounted vehicle. The exhaust gas purification catalyst for a saddle-type vehicle of the present invention is particularly suitable as a three-way catalyst (TWC: Three Way Catalyst) for reducing NOx, CO, HC, etc. in exhaust gas based on its composition and structure. Can be used. In particular, the exhaust gas purification catalyst for saddle-mounted vehicles of the present invention is preferably used in the field of motorcycles and the like, which are required to have a small capacity and high heat resistance, and also to have high exhaust gas purification efficiency even in a fuel-rich atmosphere. Can be done.
実施形態の鞍乗型車両用排ガス浄化触媒100を示す模式断面図である。It is a schematic sectional drawing which shows the exhaust gas purification catalyst 100 for a saddle type vehicle of an embodiment. 第1複合触媒粒子31の概略構成を示す模式断面図である。It is a schematic cross-sectional view which shows the schematic structure of the 1st composite catalyst particle 31. 第2複合触媒粒子41の概略構成を示す模式断面図である。It is a schematic cross-sectional view which shows the schematic structure of the 2nd composite catalyst particle 41. 第3複合触媒粒子51の概略構成を示す模式断面図である。It is a schematic cross-sectional view which shows the schematic structure of the 3rd composite catalyst particle 51. 第4複合触媒粒子61の概略構成を示す模式断面図である。It is a schematic cross-sectional view which shows the schematic structure of the 4th composite catalyst particle 61. 実施例と比較例の浄化性能(C450浄化率)を示す図である。It is a figure which shows the purification performance (C450 purification rate) of an Example and a comparative example. 実施例と比較例の低温浄化性能(T50)を示す図である。It is a figure which shows the low temperature purification performance (T50) of an Example and a comparative example.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。但し、以下の実施の形態は、本発明を説明するための例示であり、本発明はこれらに限定されるものではない。すなわち本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。なお、本明細書において、例えば「1~100」との数値範囲の表記は、その下限値「1」及び上限値「100」の双方を包含する。他の数値範囲の表記も同様である。また、本明細書において、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は、図示の比率に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the following embodiments are examples for explaining the present invention, and the present invention is not limited thereto. That is, the present invention can be arbitrarily modified and implemented without departing from the gist thereof. In the present specification, for example, the notation of the numerical range of "1 to 100" includes both the lower limit value "1" and the upper limit value "100". The same applies to the notation of other numerical ranges. Further, in the present specification, the positional relationship such as up, down, left, and right shall be based on the positional relationship shown in the drawings unless otherwise specified. Furthermore, the dimensional ratios in the drawings are not limited to the ratios shown.
 図1は、本実施形態の鞍乗型車両用排ガス浄化触媒100を示す模式断面図である。また、図2~5は、第1複合触媒粒子31、第2複合触媒粒子41、第3複合触媒粒子51、及び第4複合触媒粒子61の概略構成を示す模式断面図である。 FIG. 1 is a schematic cross-sectional view showing an exhaust gas purification catalyst 100 for a saddle-mounted vehicle according to the present embodiment. 2 to 5 are schematic cross-sectional views showing a schematic configuration of the first composite catalyst particles 31, the second composite catalyst particles 41, the third composite catalyst particles 51, and the fourth composite catalyst particles 61.
 本実施形態の鞍乗型車両用排ガス浄化触媒100は、メタル基材11と、前記メタル基材11上に設けられた単層の触媒層21とを備え、前記触媒層21は、第1複合触媒粒子31と、第2複合触媒粒子41及び/又は第3複合触媒粒子51とを含有することを特徴とする。本実施形態の鞍乗型車両用排ガス浄化触媒100は、内燃機関の排ガス通路に設けられ、系内を通過する一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)等を浄化する。 The exhaust gas purification catalyst 100 for a saddle-type vehicle of the present embodiment includes a metal base material 11 and a single-layer catalyst layer 21 provided on the metal base material 11, and the catalyst layer 21 is a first composite. It is characterized by containing the catalyst particles 31, the second composite catalyst particles 41 and / or the third composite catalyst particles 51. The exhaust gas purification catalyst 100 for a saddle-type vehicle of the present embodiment is provided in the exhaust gas passage of an internal combustion engine and contains carbon monoxide (CO), hydrocarbon (HC), nitrogen oxides (NOx) and the like passing through the system. Purify.
 メタル基材11は、上述した単層の触媒層21を支持する支持体である。メタル基材11としては、当業界で公知のものを適宜選択することができ、その種類は特に限定されない。メタル基材11としては、例えばステンレス製等のメタルハニカム担体、ステンレス製等のワイヤメッシュ担体、スチールウール状のニットワイヤ担体等が挙げられるが、これらに特に限定されない。また、その形状も、特に限定されず、例えば角柱状、円筒状、球状、ハニカム状、シート状、ペレット状等の任意の形状を選択可能である。これらは、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。 The metal base material 11 is a support that supports the above-mentioned single-layer catalyst layer 21. As the metal base material 11, those known in the art can be appropriately selected, and the type thereof is not particularly limited. Examples of the metal base material 11 include, but are not limited to, a metal honeycomb carrier made of stainless steel, a wire mesh carrier made of stainless steel, a steel wool-like knit wire carrier, and the like. Further, the shape thereof is not particularly limited, and any shape such as a prismatic shape, a cylindrical shape, a spherical shape, a honeycomb shape, a sheet shape, and a pellet shape can be selected. These can be used individually by 1 type or in combination of 2 or more types as appropriate.
 触媒層21は、メタル基材11上に設けられた単一の触媒層である。触媒層21は、第1複合触媒粒子31と、第2複合触媒粒子41及び/又は第3複合触媒粒子51と、必要に応じてさらに第4複合触媒粒子61とを含有する。 The catalyst layer 21 is a single catalyst layer provided on the metal base material 11. The catalyst layer 21 contains a first composite catalyst particle 31, a second composite catalyst particle 41 and / or a third composite catalyst particle 51, and, if necessary, a fourth composite catalyst particle 61.
 第1複合触媒粒子31は、ジルコニア系母材粒子32と、このジルコニア系母材粒子32の表面32aに共担持されたRh及びCeO粒子33とを少なくとも有する複合粒子である。この第1複合触媒粒子31においては、ジルコニア系母材粒子32の表面32aにRh及びCeO粒子33を共担持させることにより、Rhの粒成長による触媒活性の低下を抑制するとともに、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)の濃度変化が激しい鞍乗型車両の排ガスに対して、CeO粒子33の担持により幅広いA/Fウィンドで高い浄化性能を発揮させ、低温浄化性能をも向上させている。なお、第1複合触媒粒子31は、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。 The first composite catalyst particle 31 is a composite particle having at least the zirconia-based base particle 32 and the Rh and CeO 2 particles 33 co-supported on the surface 32a of the zirconia-based base particle 32. In the first composite catalyst particles 31, Rh and CeO 2 particles 33 are co-supported on the surface 32a of the zirconia-based base material particles 32 to suppress a decrease in catalytic activity due to grain growth of Rh and carbon monoxide. By supporting CeO 2 particles 33, high purification performance is exhibited in a wide range of A / F windows for the exhaust gas of a saddle-type vehicle in which the concentrations of (CO), hydrocarbons (HC), and nitrogen oxides (NOx) change drastically. , The low temperature purification performance is also improved. The first composite catalyst particles 31 may be used alone or in combination of two or more.
 ジルコニア系母材粒子32は、ジルコニア(ZrO)、又はジルコニア(ZrO)に他元素がドープされた複合酸化物或いはその固溶体である。ジルコニア系母材粒子32の具体例としては、酸化ジルコニウム(IV)、ジルコニウム-希土類元素複合酸化物、ジルコニウム-遷移元素複合酸化物、ジルコニウム-希土類元素-遷移元素複合酸化物等が挙げられる。ここで、希土類元素としては、特に限定さないが、セリウム、ネオジム、プラセオジム、ランタン、イットリウム等が挙げられる。希土類元素は、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。希土類元素が含まれる場合、その含有割合は、特に限定されないが、ジルコニア系母材粒子32の総量に対して、希土類元素の酸化物換算の総量(例えばLa、Nd、Pr11等の総和)で、0.1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上がさらに好ましく、50質量%以下が好ましく、45質量%以下がより好ましく、40質量%以下がさらに好ましい。また、遷移元素としては、特に限定さないが、クロム、コバルト、鉄、ニッケル、チタン、マンガン及び銅等が挙げられる。遷移元素は、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。遷移元素が含まれる場合、その含有割合は、特に限定されないが、ジルコニア系母材粒子32の総量に対して、上述した遷移元素の酸化物換算の総量(例えばFe、TiO等の総和)で、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.5質量%以上がさらに好ましく、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。なお、ジルコニア系母材粒子32は、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。 The zirconia-based base material particles 32 are zirconia (ZrO 2 ), a composite oxide obtained by doping zirconia (ZrO 2 ) with another element, or a solid solution thereof. Specific examples of the zirconia-based base material particles 32 include zirconium oxide (IV), zirconium-rare earth element composite oxide, zirconium-transition element composite oxide, zirconium-rare earth element-transition element composite oxide and the like. Here, examples of the rare earth element include, but are not limited to, cerium, neodymium, praseodymium, lanthanum, yttrium, and the like. As the rare earth element, one kind may be used alone, or two or more kinds may be used in combination as appropriate. When the rare earth element is contained, the content ratio thereof is not particularly limited, but is the total amount of the rare earth element in terms of oxide (for example, La 2 O 3 , Nd 2 O 3 , Pr) with respect to the total amount of the zirconia-based base material particles 32. In total of 5O11 and the like), 0.1% by mass or more is preferable, 5% by mass or more is more preferable, 10% by mass or more is further preferable, 50% by mass or less is preferable, 45% by mass or less is more preferable, and 40. More preferably, it is by mass or less. The transition element is not particularly limited, and examples thereof include chromium, cobalt, iron, nickel, titanium, manganese, and copper. As the transition element, one kind may be used alone, or two or more kinds may be used in combination as appropriate. When the transition element is contained, the content ratio thereof is not particularly limited, but the total amount of the above-mentioned transition element in terms of oxide (for example, Fe 2 O 3 , TiO 2 etc.) with respect to the total amount of the zirconia-based base material particles 32 is not particularly limited. Total), 0.01% by mass or more is preferable, 0.1% by mass or more is more preferable, 0.5% by mass or more is further preferable, 10% by mass or less is preferable, 5% by mass or less is more preferable, and 3% by mass is used. % Or less is more preferable. As the zirconia-based base material particles 32, one type can be used alone, or two or more types can be used in combination as appropriate.
 ジルコニア系母材粒子32としては、酸化物換算でZrOを65~85質量%及び希土類元素の酸化物を15~35質量%含有するジルコニア系複合酸化物が好ましく、酸化物換算でZrOを70~80質量%及び希土類元素の酸化物を20~30質量%含有するジルコニア系複合酸化物がより好ましい。 As the zirconia-based base material particles 32, a zirconia-based composite oxide containing 65 to 85% by mass of ZrO 2 in terms of oxide and 15 to 35% by mass of an oxide of a rare earth element is preferable, and ZrO 2 is used in terms of oxide. A zirconia-based composite oxide containing 70 to 80% by mass and an oxide of a rare earth element in an amount of 20 to 30% by mass is more preferable.
 なお、ジルコニア系母材粒子32において、ジルコニウムの一部が、リチウム、ナトリウム、カリウム等のアルカリ金属元素や、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属元素等で置換されていてもよい。また、アルカリ金属元素及びアルカリ土類金属元素は、それぞれ1種を単独で、又は2種以上の任意の組み合わせ及び割合で用いることができる。また、ジルコニア系母材粒子32は、ジルコニア鉱石中に通常1~2質量%程度含まれているハフニウム(Hf)を不可避不純物として含有していても構わない。 In the zirconia-based base material particles 32, a part of zirconium is replaced with alkali metal elements such as lithium, sodium and potassium, and alkaline earth metal elements such as beryllium, magnesium, calcium, strontium and barium. May be good. Further, as the alkali metal element and the alkaline earth metal element, one kind may be used alone, or two or more kinds may be used in any combination and ratio. Further, the zirconia-based base material particles 32 may contain hafnium (Hf), which is usually contained in the zirconia ore in an amount of about 1 to 2% by mass, as an unavoidable impurity.
 ジルコニア系母材粒子32の平均粒子径D50は、所望性能に応じて適宜設定することができ、特に限定されない。大きな比表面積を保持させるとともに耐熱性を高めて自身の触媒活性サイトの数を増大させる等の観点から、ジルコニア系母材粒子32の平均粒子径D50は、1μm以上が好ましく、5μm以上がより好ましく、10μm以上がさらに好ましく、30μm以下が好ましく、20μm以下がより好ましく、15μm以下がさらに好ましい。なお、本明細書において、粒子の平均粒子径D50は、レーザー回折式粒度分布測定装置(例えば、島津製作所社製、レーザー回 折式粒度分布測定装置SALD-3100等)で測定されるメディアン径を意味する。 The average particle diameter D 50 of the zirconia-based base material particles 32 can be appropriately set according to the desired performance, and is not particularly limited. The average particle size D50 of the zirconia-based base particle 32 is preferably 1 μm or more, more preferably 5 μm or more, from the viewpoint of maintaining a large specific surface area and increasing heat resistance to increase the number of its own catalytically active sites. It is preferably 10 μm or more, more preferably 30 μm or less, more preferably 20 μm or less, still more preferably 15 μm or less. In the present specification, the average particle size D 50 of the particles is a median diameter measured by a laser diffraction type particle size distribution measuring device (for example, a laser folding type particle size distribution measuring device SALD-3100 manufactured by Shimadzu Corporation). Means.
 ジルコニア系母材粒子32の表面32aには、Rh及びCeO粒子33が高分散に共担持されている。ここで、Rhは触媒活性成分として機能し、CeO粒子33は、触媒活性成分ないしは酸素ストレージ能(OSC:Oxygen Storage Capacity)を有する助触媒として機能する。ジルコニア系母材粒子32の表面32aにRh及びCeO粒子33を共担持させることにより、耐熱性を高めて、高温に曝された際の触媒性能の低下を抑制でき、これにより浄化性能及び低温浄化性能が高められる。また、ジルコニア系母材粒子32の表面32aにCeO粒子33を担持しているため、Rh及びCeの相互作用を促進され、これによっても浄化性能及び低温浄化性能が高められる。 Rh and CeO 2 particles 33 are co-supported in a highly dispersed manner on the surface 32a of the zirconia-based base material particles 32. Here, Rh functions as a catalytically active component, and the CeO 2 particles 33 function as a catalytically active component or a co-catalyst having oxygen storage capacity (OSC: Oxygen Storage Capacity). By co-supporting Rh and CeO 2 particles 33 on the surface 32a of the zirconia-based base particle 32, heat resistance can be enhanced and deterioration of catalytic performance when exposed to high temperature can be suppressed, thereby purifying performance and low temperature. Purification performance is enhanced. Further, since the CeO 2 particles 33 are supported on the surface 32a of the zirconia-based base particle 32, the interaction between Rh and Ce is promoted, which also enhances the purification performance and the low temperature purification performance.
 Rhの含有割合は、ジルコニア系母材粒子32の素材や細孔径等を考慮して所望性能に応じて適宜設定すればよく、特に限定されないが、触媒活性等の観点から、第1複合触媒粒子31の総量に対して、Rhの金属換算で合計0.001~5質量%が好ましく、より好ましくは0.01~3質量%であり、さらに好ましくは0.1~1質量%である。 The content ratio of Rh may be appropriately set according to the desired performance in consideration of the material and pore diameter of the zirconia-based base material particles 32, and is not particularly limited, but from the viewpoint of catalytic activity and the like, the first composite catalyst particles. The total amount of Rh in terms of metal is preferably 0.001 to 5% by mass, more preferably 0.01 to 3% by mass, and further preferably 0.1 to 1% by mass with respect to the total amount of 31.
 CeO粒子33の含有割合は、ジルコニア系母材粒子32の素材や細孔径等を考慮して所望性能に応じて適宜設定すればよく、特に限定されないが、触媒活性等の観点から、第1複合触媒粒子31の総量(貴金属量を除く。)に対して、酸化物換算で、5~20質量%が好ましく、より好ましくは7~18質量%であり、さらに好ましくは10~15質量%である。 The content ratio of the CeO 2 particles 33 may be appropriately set according to the desired performance in consideration of the material and pore diameter of the zirconia-based base particle 32, and is not particularly limited, but is first from the viewpoint of catalytic activity and the like. With respect to the total amount of the composite catalyst particles 31 (excluding the amount of noble metal), 5 to 20% by mass is preferable, more preferably 7 to 18% by mass, and further preferably 10 to 15% by mass in terms of oxide. be.
 第2複合触媒粒子41は、アルミナ母材粒子42と、このアルミナ母材粒子42の表面42aに担持されたPdとを少なくとも有する複合粒子である。第2複合触媒粒子41は、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。 The second composite catalyst particle 41 is a composite particle having at least an alumina base material particle 42 and Pd supported on the surface 42a of the alumina base material particle 42. As the second composite catalyst particle 41, one kind may be used alone, or two or more kinds may be used in combination as appropriate.
 アルミナ母材粒子42は、アルミナ(Al)を主成分として含有する母材粒子である。ここで「アルミナを主成分として含有する」とは、アルミナ母材粒子42の総量に対してアルミナを90質量%超~100質量%以下含有することを意味する。アルミナ母材粒子42の具体例としては、例えばアルミナ、シリカ-アルミナ、アルミノシリケート類、アルミナ-ジルコニア、アルミナ-クロミア、アルミナ-セリア、アルミナ-酸化マグネシウム、アルミナ-酸化バリウム、アルミナ-酸化ランタン等が挙げられるが、これらに特に限定されない。なお、アルミナ母材粒子42は、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。 The alumina base material particles 42 are base material particles containing alumina (Al 2 O 3 ) as a main component. Here, "containing alumina as a main component" means that alumina is contained in an amount of more than 90% by mass to 100% by mass or less with respect to the total amount of the alumina base material particles 42. Specific examples of the alumina base material particles 42 include alumina, silica-alumina, aluminosilicates, alumina-zirconia, alumina-chromia, alumina-ceria, alumina-magnesium oxide, alumina-barium oxide, alumina-lanthanum oxide and the like. However, the present invention is not particularly limited to these. As the alumina base material particles 42, one type may be used alone, or two or more types may be used in combination as appropriate.
 アルミナ母材粒子42の平均粒子径D50は、所望性能に応じて適宜設定することができ、特に限定されない。大きな比表面積を保持させるとともに触媒活性サイトの数を増大させる等の観点から、アルミナ母材粒子42の平均粒子径D50は、0.1μm以上が好ましく、1μm以上がより好ましく、3μm以上がさらに好ましく、50μm以下が好ましく、45μm以下がより好ましく、40μm以下がさらに好ましい。 The average particle diameter D 50 of the alumina base material particles 42 can be appropriately set according to the desired performance, and is not particularly limited. From the viewpoint of maintaining a large specific surface area and increasing the number of catalytically active sites, the average particle diameter D 50 of the alumina base particle 42 is preferably 0.1 μm or more, more preferably 1 μm or more, and further preferably 3 μm or more. It is preferably 50 μm or less, more preferably 45 μm or less, still more preferably 40 μm or less.
 アルミナ母材粒子42の表面42aには、Pdが高分散に共担持されている。ここで、Pdは触媒活性成分として機能する。アルミナ母材粒子42の表面42aにPdを担持させることにより、浄化性能及び低温浄化性能が高められる。 Pd is co-supported with high dispersion on the surface 42a of the alumina base material particles 42. Here, Pd functions as a catalytically active ingredient. By supporting Pd on the surface 42a of the alumina base material particles 42, the purification performance and the low temperature purification performance are enhanced.
 Pdの含有割合は、アルミナ母材粒子42の素材や細孔径等を考慮して所望性能に応じて適宜設定すればよく、特に限定されないが、触媒活性等の観点から、第2複合触媒粒子41の総量に対して、Pdの金属換算で合計0.001~5質量%が好ましく、より好ましくは0.01~3質量%であり、さらに好ましくは0.1~1質量%である。 The content ratio of Pd may be appropriately set according to the desired performance in consideration of the material and pore diameter of the alumina base particle 42, and is not particularly limited, but from the viewpoint of catalytic activity and the like, the second composite catalyst particle 41 The total amount of Pd in terms of metal is preferably 0.001 to 5% by mass, more preferably 0.01 to 3% by mass, and further preferably 0.1 to 1% by mass with respect to the total amount of Pd.
 第2複合触媒粒子41は、アルミナ母材粒子42の表面42aにアルカリ土類金属であるBa成分をさらに担持していてもよい。これらの成分は、NOx吸蔵成分として知られている。Ba成分は、例えば炭酸バリウムや硫酸バリウム等としてアルミナ母材粒子42の表面42aに担持することができ、酸素が多いLean環境下では、NOxを吸蔵し、酸素が少ないRich環境下では吸蔵したNOxを放出する。Ba成分の含有割合は、アルミナ母材粒子42の素材や細孔径等を考慮して所望性能に応じて適宜設定すればよく、特に限定されないが、触媒活性等の観点から、第2複合触媒粒子41の総量(貴金属量を除く。)に対して、酸化物換算で、0.1~10質量%が好ましく、より好ましくは0.5~8質量%であり、さらに好ましくは1~5質量%である。 The second composite catalyst particle 41 may further support the Ba component, which is an alkaline earth metal, on the surface 42a of the alumina base material particles 42. These components are known as NOx storage components. The Ba component can be supported on the surface 42a of the alumina base material particles 42 as barium carbonate, barium sulfate, or the like, and occludes NOx in a lean environment with a large amount of oxygen, and occludes NOx in a Rich environment with a small amount of oxygen. Is released. The content ratio of the Ba component may be appropriately set according to the desired performance in consideration of the material and pore diameter of the alumina base material particles 42, and is not particularly limited, but from the viewpoint of catalytic activity and the like, the second composite catalyst particles. With respect to the total amount of 41 (excluding the amount of noble metal), 0.1 to 10% by mass is preferable, more preferably 0.5 to 8% by mass, and further preferably 1 to 5% by mass in terms of oxide. Is.
 第3複合触媒粒子51は、セリアアルミナ母材粒子52と、このセリアアルミナ母材粒子52の表面52aに担持されたPdとを少なくとも有する複合粒子である。第3複合触媒粒子51は、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。 The third composite catalyst particle 51 is a composite particle having at least ceria alumina base material particles 52 and Pd supported on the surface 52a of the ceria alumina base material particles 52. As the third composite catalyst particle 51, one kind may be used alone, or two or more kinds may be used in combination as appropriate.
 セリアアルミナ母材粒子52は、セリア(CeO)及びアルミナ(Al)の複合酸化物である。セリア及びアルミナの含有割合は、所望性能に応じて適宜設定することができ、特に限定されないが、酸化物換算で、セリア:アルミナの含有割合が10~30質量%:70~90質量%であることが好ましく、より好ましくは15~25質量%:75~85質量%である。なお、セリアアルミナ母材粒子52は、セリア及びアルミナ以外に、上述した希土類元素、遷移元素、アルカリ金属元素、アルカリ土類金属元素等を含んでいてもよい。また、セリアアルミナ母材粒子52は、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。 The ceria alumina base material particles 52 are composite oxides of ceria (CeO 2 ) and alumina (Al 2 O 3 ). The content ratios of ceria and alumina can be appropriately set according to the desired performance and are not particularly limited, but the content ratio of ceria: alumina is 10 to 30% by mass: 70 to 90% by mass in terms of oxide. It is preferable, and more preferably 15 to 25% by mass: 75 to 85% by mass. In addition to ceria and alumina, the ceria alumina base material particles 52 may contain the above-mentioned rare earth element, transition element, alkali metal element, alkaline earth metal element and the like. Further, the ceria alumina base material particles 52 may be used alone or in combination of two or more.
 セリアアルミナ母材粒子52の平均粒子径D50は、所望性能に応じて適宜設定することができ、特に限定されない。大きな比表面積を保持させるとともに触媒活性サイトの数を増大させる等の観点から、セリアアルミナ母材粒子52の平均粒子径D50は、1μm以上が好ましく、5μm以上がより好ましく、10μm以上がさらに好ましく、30μm以下が好ましく、20μm以下がより好ましく、15μm以下がさらに好ましい。 The average particle diameter D 50 of the ceria alumina base material particles 52 can be appropriately set according to the desired performance, and is not particularly limited. From the viewpoint of maintaining a large specific surface area and increasing the number of catalytically active sites, the average particle diameter D50 of the ceria alumina base particle 52 is preferably 1 μm or more, more preferably 5 μm or more, still more preferably 10 μm or more. , 30 μm or less is preferable, 20 μm or less is more preferable, and 15 μm or less is further preferable.
 セリアアルミナ母材粒子52の表面52aには、Pdが高分散に共担持されている。ここで、Pdは触媒活性成分として機能する。セリアアルミナ母材粒子52の表面52aにPdを担持させることにより、耐熱性及びOSC性能を高く維持でき、これにより浄化性能及び低温浄化性能が高められる。 Pd is co-supported with high dispersion on the surface 52a of the ceria alumina base material particles 52. Here, Pd functions as a catalytically active ingredient. By supporting Pd on the surface 52a of the ceria alumina base material particles 52, high heat resistance and OSC performance can be maintained, thereby enhancing purification performance and low temperature purification performance.
 Pdの含有割合は、セリアアルミナ母材粒子52の素材や細孔径等を考慮して所望性能に応じて適宜設定すればよく、特に限定されないが、触媒活性等の観点から、第3複合触媒粒子51の総量に対して、Pdの金属換算で合計0.001~15質量%が好ましく、より好ましくは0.1~5質量%であり、さらに好ましくは0.3~3質量%である。 The content ratio of Pd may be appropriately set according to the desired performance in consideration of the material and pore diameter of the ceria alumina base particle 52, and is not particularly limited, but from the viewpoint of catalytic activity and the like, the third composite catalyst particle. The total amount of Pd in terms of metal is preferably 0.001 to 15% by mass, more preferably 0.1 to 5% by mass, and further preferably 0.3 to 3% by mass with respect to the total amount of 51.
 第4複合触媒粒子61は、セリアアルミナ母材粒子62と、このセリアアルミナ母材粒子62の表面62aに担持されたRhとを少なくとも有する複合粒子である。第4複合触媒粒子61は、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。 The fourth composite catalyst particle 61 is a composite particle having at least ceria alumina base material particles 62 and Rh supported on the surface 62a of the ceria alumina base material particles 62. As the fourth composite catalyst particle 61, one kind may be used alone, or two or more kinds may be used in combination as appropriate.
 セリアアルミナ母材粒子62は、セリア(CeO)及びアルミナ(Al)の複合酸化物である。セリア及びアルミナの含有割合は、所望性能に応じて適宜設定することができ、特に限定されないが、酸化物換算で、セリア:アルミナの含有割合が10~30質量%:70~90質量%であることが好ましく、より好ましくは15~25質量%:75~85質量%である。なお、セリアアルミナ母材粒子62は、セリア及びアルミナ以外に、上述した希土類元素、遷移元素、アルカリ金属元素、アルカリ土類金属元素等を含んでいてもよい。また、セリアアルミナ母材粒子62は、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。 The ceria alumina base material particles 62 are composite oxides of ceria (CeO 2 ) and alumina (Al 2 O 3 ). The content ratios of ceria and alumina can be appropriately set according to the desired performance and are not particularly limited, but the content ratio of ceria: alumina is 10 to 30% by mass: 70 to 90% by mass in terms of oxide. It is preferable, and more preferably 15 to 25% by mass: 75 to 85% by mass. In addition to ceria and alumina, the ceria alumina base material particles 62 may contain the above-mentioned rare earth element, transition element, alkali metal element, alkaline earth metal element and the like. Further, as the ceria alumina base material particles 62, one type may be used alone, or two or more types may be used in combination as appropriate.
 セリアアルミナ母材粒子62の平均粒子径D50は、所望性能に応じて適宜設定することができ、特に限定されない。大きな比表面積を保持させるとともに触媒活性サイトの数を増大させる等の観点から、セリアアルミナ母材粒子62の平均粒子径D50は、1μm以上が好ましく、5μm以上がより好ましく、10μm以上がさらに好ましく、30μm以下が好ましく、20μm以下がより好ましく、15μm以下がさらに好ましい。 The average particle diameter D 50 of the ceria alumina base material particles 62 can be appropriately set according to the desired performance, and is not particularly limited. From the viewpoint of maintaining a large specific surface area and increasing the number of catalytically active sites, the average particle diameter D50 of the ceria alumina base particle 62 is preferably 1 μm or more, more preferably 5 μm or more, still more preferably 10 μm or more. , 30 μm or less is preferable, 20 μm or less is more preferable, and 15 μm or less is further preferable.
 セリアアルミナ母材粒子62の表面62aには、Rhが高分散に共担持されている。ここで、Rhは触媒活性成分として機能する。セリアアルミナ母材粒子62の表面62aにRhを担持させることにより、耐熱性及びOSC性能を高く維持でき、また、高温に曝された際の触媒性能の低下を抑制でき、これにより浄化性能及び低温浄化性能が高められる。 Rh is co-supported with high dispersion on the surface 62a of the ceria alumina base material particles 62. Here, Rh functions as a catalytically active ingredient. By supporting Rh on the surface 62a of the ceria alumina base material particles 62, high heat resistance and OSC performance can be maintained, and deterioration of catalytic performance when exposed to high temperature can be suppressed, thereby purifying performance and low temperature. Purification performance is enhanced.
 Rhの含有割合は、セリアアルミナ母材粒子62の素材や細孔径等を考慮して所望性能に応じて適宜設定すればよく、特に限定されないが、触媒活性等の観点から、第4複合触媒粒子61の総量に対して、Rhの金属換算で合計0.001~15質量%が好ましく、より好ましくは0.1~5質量%であり、さらに好ましくは0.3~3質量%である。 The content ratio of Rh may be appropriately set according to the desired performance in consideration of the material and pore diameter of the ceria alumina base material particles 62, and is not particularly limited, but from the viewpoint of catalytic activity and the like, the fourth composite catalyst particles. The total amount of Rh in terms of metal is preferably 0.001 to 15% by mass, more preferably 0.1 to 5% by mass, and further preferably 0.3 to 3% by mass with respect to the total amount of 61.
 本実施形態の触媒層21において、各複合触媒粒子31,41,51,61に担持されるRhやPdは、外部環境に応じて金属単体、金属酸化物に変化し得るものである。そのため、各複合触媒粒子31,41,51,61に担持されるRhやPdは、少なくとも還元性雰囲気において確認されればよく、酸化性雰囲気やストイキ雰囲気におけるRhやPdの性状は金属単体に特に限定されない。ここで本明細書において、還元性雰囲気とは、水素ガス雰囲気下400℃で0.5時間以上、静置した状態を意味する。なお、RhやPdの存在は、走査透過型電子顕微鏡(STEM:Scanning Transmission Electron Microscope)による観察、粉末X線回折(XRD:X‐ray Diffraction、電子プローブマイクロアナライザ(EPMA:Electron Probe Micro Analyzer)、X線光電分光法(XPS:X-ray Photoelectron Spectroscopy、又はESCA:Electron Spectroscopy for Chemical Analysis)等の各種測定方法により把握することができる。 In the catalyst layer 21 of the present embodiment, Rh and Pd supported on the composite catalyst particles 31, 41, 51, 61 can be changed to a simple substance of a metal or a metal oxide depending on the external environment. Therefore, Rh and Pd supported on the composite catalyst particles 31, 41, 51, 61 need only be confirmed at least in a reducing atmosphere, and the properties of Rh and Pd in an oxidizing atmosphere and a stoichiometric atmosphere are particularly good for a single metal. Not limited. Here, in the present specification, the reducing atmosphere means a state of being allowed to stand at 400 ° C. for 0.5 hours or more under a hydrogen gas atmosphere. The presence of Rh and Pd is observed by observation with a scanning transmission electron microscope (STEM), powder X-ray diffraction (XRD: X-ray Diffraction, electron probe microanalyzer (EPMA: Electron Probe Micro Analyzer), etc. It can be grasped by various measurement methods such as X-ray photoelectric spectroscopy (XPS: X-ray Photoelectron Spectroscopy or ESCA: Electron Spectroscopy for Chemical Analysis).
 各複合触媒粒子31,41,51,61の製造方法は、上述したとおりRhやPdやCeO粒子33やバリウム成分が各母材粒子32,42,52,62の表面32a,42a,52a,62a上に担持されたものが得られる限り、特に限定されない。簡易且つ低コストで複合粒子を製造する観点からは、蒸発乾固法(含浸法)等が好ましい。 As described above, the methods for producing the composite catalyst particles 31, 41, 51, 61 include Rh, Pd, CeO 2 particles 33, and the surface 32a, 42a, 52a of each base particle 32, 42, 52, 62 having a barium component. It is not particularly limited as long as the one supported on 62a can be obtained. From the viewpoint of producing composite particles easily and at low cost, the evaporation dry solid method (impregnation method) or the like is preferable.
 ここで原料として使用する各母材粒子32,42,52,62は、各種グレードの市販品を用いることができ、また、当業界で公知の方法で製造することもできる。これらの製造方法は、特に限定されないが、例えばジルコニア系母材粒子32は、共沈法やアルコキシド法が好ましい。共沈法としては、例えば、セリウム塩及び/又はジルコニウム塩と、必要に応じて配合する他の希土類金属元素や遷移元素等とを所定の化学量論比で混合した水溶液に、アルカリ物質を添加して加水分解させ或いは前駆体を共沈させ、その加水分解生成物或いは共沈物を焼成する製法が好ましい。ここで用いる各種塩の種類は、特に限定されない。一般的には、塩酸塩、オキシ塩酸塩、硝酸塩、オキシ硝酸塩、炭酸塩、リン酸塩、酢酸塩、シュウ酸塩、クエン酸塩等が好ましい。また、アルカリ性物質の種類も、特に限定されない。一般的には、アンモニア水溶液が好ましい。アルコキシド法としては、例えば、セリウムアルコキシド及び/又はジルコニウムアルコキシドと、必要に応じて配合する他の希土類金属元素や遷移元素等とを所定の化学量論比で混合した混合物を加水分解し、その後に焼成する製法が好ましい。ここで用いるアルコキシドの種類は、特に限定されない。一般的には、メトキシド、エトキシド、プロポキシド、イソプロポキシド、ブトキシドや、これらのエチレンオキサイド付加物等が好ましい。また、希土類金属元素は、金属アルコキシドとして配合しても、上述した各種塩として配合してもよい。焼成条件は、常法にしたがえばよく、特に限定されない。焼成雰囲気は、酸化性雰囲気、還元性雰囲気、大気雰囲気のいずれの雰囲気でもよい。焼成温度及び処理時間は、所望する組成及びその化学量論比によって変動するが、生産性等の観点からは、一般的には、150℃以上1300℃以下で1~12時間が好ましく、より好ましくは350℃以上800℃以下で2~4時間である。なお、高温焼成に先立って、真空乾燥機等を用いて減圧乾燥を行い、50℃以上200℃以下で約1~48時間程度の乾燥処理を行うことが好ましい。 As the base material particles 32, 42, 52, 62 used as raw materials here, various grades of commercially available products can be used, and they can also be produced by a method known in the art. These production methods are not particularly limited, but for example, the zirconia-based base material particles 32 are preferably a coprecipitation method or an alkoxide method. As a coprecipitation method, for example, an alkaline substance is added to an aqueous solution in which a cerium salt and / or a zirconium salt is mixed with other rare earth metal elements or transition elements to be blended as necessary at a predetermined chemical quantitative ratio. The method of hydrolyzing or coprecipitating the precursor and firing the hydrolysis product or coprecipitate thereof is preferable. The types of various salts used here are not particularly limited. Generally, hydrochlorides, oxy hydrochlorides, nitrates, oxynitrates, carbonates, phosphates, acetates, oxalates, citrates and the like are preferred. Further, the type of alkaline substance is not particularly limited. Generally, an aqueous ammonia solution is preferable. As an alkoxide method, for example, a mixture of cerium alkoxide and / or zirconium alkoxide mixed with other rare earth metal elements, transition elements, etc. to be blended as necessary at a predetermined chemical quantitative ratio is hydrolyzed, and then hydrolyzed. A manufacturing method of firing is preferable. The type of alkoxide used here is not particularly limited. In general, methoxide, ethoxide, propoxide, isopropoxide, butoxide, and ethylene oxide adducts thereof are preferable. Further, the rare earth metal element may be blended as a metal alkoxide or as various salts described above. The firing conditions may be according to a conventional method and are not particularly limited. The firing atmosphere may be any of an oxidizing atmosphere, a reducing atmosphere, and an atmospheric atmosphere. The firing temperature and treatment time vary depending on the desired composition and its stoichiometric ratio, but from the viewpoint of productivity and the like, generally, 1 to 12 hours is preferable at 150 ° C. or higher and 1300 ° C. or lower, more preferably. Is 350 ° C. or higher and 800 ° C. or lower for 2 to 4 hours. Prior to high-temperature firing, it is preferable to perform vacuum drying using a vacuum dryer or the like, and to perform a drying treatment at 50 ° C. or higher and 200 ° C. or lower for about 1 to 48 hours.
 蒸発乾固法としては、上述した各母材粒子32,42,52,62に、担持させようとするRhやPdのイオンやCeイオンやBaイオン等を含有する水溶液を含浸させ、その後に熱処理又は化学処理する製法が好ましい。この含浸処理により、RhやPdのイオンやCeイオンやBaイオン等が、各母材粒子32,42,52,62の表面32a,42a,52a,62a上に高分散状態で吸着(付着)される。このとき、RhやPdのイオンは、RhやPdの各種塩として水溶液に配合することができる。ここで用いる各種塩の種類は、特に限定されない。一般的には、硫酸塩、塩酸塩、オキシ塩酸塩、硝酸塩、オキシ硝酸塩、炭酸塩、オキシ炭酸塩、リン酸塩、酢酸塩、シュウ酸塩、クエン酸塩、塩化物、酸化物、複合酸化物、錯塩等が好ましい。また、水溶液中のRhやPdのイオンの含有割合は、得られる各複合触媒粒子31,41,51,61ないしは触媒層21においてRhやPdが所望の含有割合となるように適宜調整することができ、特に限定されない。また、言うまでもないが、ここで用いる水溶液は、上述した任意成分、例えば他の希土類元素や遷移元素、さらには不可避不純物を含んでいてもよい。 As an evaporative drying method, the above-mentioned base material particles 32, 42, 52, 62 are impregnated with an aqueous solution containing Rh or Pd ions, Ce ions, Ba ions, etc. to be supported, and then heat-treated. Alternatively, a manufacturing method for chemical treatment is preferable. By this impregnation treatment, Rh and Pd ions, Ce ions, Ba ions and the like are adsorbed (adhered) on the surfaces 32a, 42a, 52a and 62a of the base material particles 32, 42, 52 and 62 in a highly dispersed state. To. At this time, the ions of Rh and Pd can be added to the aqueous solution as various salts of Rh and Pd. The types of various salts used here are not particularly limited. In general, sulfates, hydrochlorides, oxysalts, nitrates, oxynitrates, carbonates, oxycarbonates, phosphates, acetates, oxalates, citrates, chlorides, oxides, complex oxidations. Goods, complex salts and the like are preferable. Further, the content ratio of the ions of Rh and Pd in the aqueous solution can be appropriately adjusted so that the content ratio of Rh and Pd in each of the obtained composite catalyst particles 31, 41, 51, 61 or the catalyst layer 21 is a desired ratio. It can be done, and it is not particularly limited. Needless to say, the aqueous solution used here may contain the above-mentioned optional components such as other rare earth elements and transition elements, as well as unavoidable impurities.
 含浸処理後、必要に応じて、固液分離処理、水洗処理、例えば大気中50℃以上200℃以下程度の温度で約1~48時間程度、水分を除去する乾燥処理等を常法にしたがって行うことができる。乾燥処理は、自然乾燥でもよいし、ドラム式乾燥機、減圧乾燥機、スプレードライ等の乾燥装置を使用してもよい。また、乾燥処理の際の雰囲気は、大気中、真空中、窒素ガス等の不活性ガス雰囲気中のいずれでもよい。なお、乾燥の前後に、さらに必要に応じて粉砕処理や分級処理等を行ってもよい。また、化学処理を行ってもよく、例えば、上記蒸発乾固法における含浸処理の後に、塩基性成分を用いてRhやPdのイオンを各母材粒子32,42,52,62上で加水分解させてもよい。ここで用いる塩基性成分は、アンモニア、エタノールアミン等のアミン類、苛性ソーダ、水酸化ストロンチウム等のアルカリ金属水酸化物、水酸化バリウム等のアルカリ土類金属水酸化物が好ましい。これらの熱処理や化学処理により、ナノオーダーサイズに高分散したRhやPd等が、さらに必要に応じてCeO粒子33やバリウム成分が、各母材粒子32,42,52,62上に生成される。 After the impregnation treatment, if necessary, a solid-liquid separation treatment, a water washing treatment, for example, a drying treatment for removing water at a temperature of 50 ° C. or higher and 200 ° C. or lower in the air for about 1 to 48 hours is performed according to a conventional method. be able to. The drying treatment may be natural drying, or a drying device such as a drum type dryer, a vacuum dryer, or a spray dryer may be used. Further, the atmosphere during the drying treatment may be any of the atmosphere, the vacuum, and the atmosphere of an inert gas such as nitrogen gas. Before and after drying, pulverization treatment, classification treatment, etc. may be further performed as necessary. Further, chemical treatment may be performed. For example, after the impregnation treatment in the above evaporation to dryness method, the ions of Rh and Pd are hydrolyzed on the base material particles 32, 42, 52 and 62 using a basic component. You may let me. The basic component used here is preferably amines such as ammonia and ethanolamine, alkali metal hydroxides such as caustic soda and strontium hydroxide, and alkaline earth metal hydroxides such as barium hydroxide. By these heat treatments and chemical treatments, Rh, Pd, etc., which are highly dispersed in nano-order size, and CeO 2 particles 33 and barium components are generated on each base particle 32, 42, 52, 62 as needed. To.
 焼成条件は、常法にしたがえばよく、特に限定されない。加熱手段は、特に限定されず、例えば電気炉やガス炉等の公知の機器を用いることができる。焼成雰囲気は、酸化性雰囲気、大気雰囲気、還元性雰囲気のいずれでもよく、酸化性雰囲気、大気雰囲気が好ましい。焼成温度及び処理時間は、所望性能によって変動するが、RhやPdの生成及び生産性等の観点からは、一般的には、300℃以上1100℃以下で0.1~12時間が好ましく、より好ましくは400℃以上800℃以下で0.5~6時間である。 The firing conditions may be in accordance with a conventional method and are not particularly limited. The heating means is not particularly limited, and known equipment such as an electric furnace or a gas furnace can be used. The firing atmosphere may be any of an oxidizing atmosphere, an atmospheric atmosphere, and a reducing atmosphere, and the oxidizing atmosphere and the atmospheric atmosphere are preferable. The firing temperature and treatment time vary depending on the desired performance, but from the viewpoint of Rh and Pd production and productivity, it is generally preferable to use 0.1 to 12 hours at 300 ° C. or higher and 1100 ° C. or lower. It is preferably 400 ° C. or higher and 800 ° C. or lower for 0.5 to 6 hours.
 触媒層21は、上述した各成分以外に、当業界で公知の触媒や助触媒や母材粒子等と混合して使用することができる。併用可能な公知の触媒や助触媒や母材粒子としては、例えば、シリカ、アルミナ、酸化ランタン、酸化ネオジム、酸化プラセオジム等の金属酸化物乃至は金属複合酸化物;ペロブスカイト型酸化物;シリカ-アルミナ、シリカ-アルミナ-ジルコニア、シリカ-アルミナ-ボリア等のアルミナを含む複合酸化物;バリウム化合物、ゼオライト等が挙げられるが、これらに特に限定されない。なお、併用する触媒や助触媒や母材粒子の使用割合は、要求性能などに応じて適宜設定でき、特に限定されないが、総量に対して合計で0.01質量%以上20質量%以下が好ましく、合計で0.05質量%以上10質量%以下がより好ましく、合計で0.1質量%以上8質量%以下がさらに好ましい。 The catalyst layer 21 can be used by mixing with a catalyst, a co-catalyst, base metal particles, etc. known in the art, in addition to the above-mentioned components. Known catalysts, co-catalysts, and base metal particles that can be used in combination include, for example, metal oxides or metal composite oxides such as silica, alumina, lanthanum oxide, neodymium oxide, and placeodium oxide; perovskite-type oxides; silica-alumina. , Silica-alumina-zirconia, a composite oxide containing alumina such as silica-alumina-boria; barium compounds, zeolites and the like, but are not particularly limited thereto. The ratio of the catalyst, co-catalyst, and base particle to be used in combination can be appropriately set according to the required performance and the like, and is not particularly limited, but is preferably 0.01% by mass or more and 20% by mass or less in total with respect to the total amount. A total of 0.05% by mass or more and 10% by mass or less is more preferable, and a total of 0.1% by mass or more and 8% by mass or less is further preferable.
 また、触媒層21は、上述した各成分以外に、当業界で公知の添加剤と混合して使用することができる。併用可能な添加剤としては、各種バインダー、非イオン系界面活性剤やアニオン系界面活性剤等の分散安定化剤、pH調整剤、粘度調整剤等が挙げられるが、これらに特に限定されない。バインダーとしては、アルミナゾル、チタニアゾル、シリカゾル、ジルコニアゾル等の種々のゾルが挙げられるが、これらに特に限定されない。また、硝酸アルミニウム、酢酸アルミニウム、硝酸チタン、酢酸チタン、硝酸ジルコニウム、酢酸ジルコニウム等の可溶性の塩もバインダーとして使用することができる。その他、酢酸、硝酸、塩酸、硫酸等の酸も、バインダーとして使用することができる。なお、バインダーの使用量は、特に限定されず、成形体の維持に必要な程度の量であれば構わない。なお、上述した添加剤の使用割合は、要求性能などに応じて適宜設定でき、特に限定されないが、総量に対して合計で0.01~20質量%が好ましく、合計で0.05~10質量%がより好ましく、合計で0.1~8質量%がさらに好ましい。 Further, the catalyst layer 21 can be used by mixing with additives known in the art in addition to the above-mentioned components. Examples of the additive that can be used in combination include, but are not limited to, various binders, dispersion stabilizers such as nonionic surfactants and anionic surfactants, pH adjusters, viscosity regulators, and the like. Examples of the binder include, but are not limited to, various sol such as alumina sol, titania sol, silica sol, and zirconia sol. Further, soluble salts such as aluminum nitrate, aluminum acetate, titanium nitrate, titanium acetate, zirconium nitrate and zirconium acetate can also be used as a binder. In addition, acids such as acetic acid, nitric acid, hydrochloric acid, and sulfuric acid can also be used as the binder. The amount of the binder used is not particularly limited and may be an amount necessary for maintaining the molded product. The ratio of the above-mentioned additives to be used can be appropriately set according to the required performance and the like, and is not particularly limited, but is preferably 0.01 to 20% by mass in total and 0.05 to 10% by mass in total with respect to the total amount. % Is more preferable, and 0.1 to 8% by mass in total is further preferable.
 本実施形態の鞍乗型車両用排ガス浄化触媒100は、上述した触媒層21がメタル基材11の少なくとも一方の面側に設けられている。このような構成を採用することで、製造負荷が少なく低コストな触媒構成を実現しつつ、製造時の装置への組み込みが容易となる等、種々の用途への適用可能性が増大する。例えばメタル基材11としてメタルハニカム構造担体等を用い、ガス流が通過する流路内にこの鞍乗型車両用排ガス浄化触媒100を設置し、ハニカム構造担体のセル内にガス流を通過させることで、高効率に排ガス浄化を行うことができる。 In the exhaust gas purification catalyst 100 for a saddle-mounted vehicle of the present embodiment, the catalyst layer 21 described above is provided on at least one surface side of the metal base material 11. By adopting such a configuration, the applicability to various applications is increased, such as realizing a low-cost catalyst configuration with a small manufacturing load and facilitating incorporation into an apparatus at the time of manufacturing. For example, a metal honeycomb structure carrier or the like is used as the metal base material 11, and the exhaust gas purification catalyst 100 for a saddle-mounted vehicle is installed in the flow path through which the gas flow passes, and the gas flow is passed through the cell of the honeycomb structure carrier. Therefore, exhaust gas purification can be performed with high efficiency.
 ここで、本明細書において、「単層触媒」とは、触媒層を1つのみ有する触媒を意味する。また、「メタル基材11の少なくとも一方の面側に設けられた」とは、メタル基材11の一方の面と触媒層との間に、触媒層以外の任意の他の層が介在した態様を包含する意味である。 Here, in the present specification, the "single-layer catalyst" means a catalyst having only one catalyst layer. Further, "provided on at least one surface side of the metal substrate 11" means that an arbitrary other layer other than the catalyst layer is interposed between one surface of the metal substrate 11 and the catalyst layer. It is a meaning that includes.
 このような鞍乗型車両用排ガス浄化触媒100は、例えば、上述したメタル基材11上に触媒層21を設けることで得ることができる。触媒層21の形成方法は、常法にしたがって行えばよく、特に限定されない。例えば、上述した触媒層21の各成分を含むスラリー状混合物を、各種公知のコーティング法やウォッシュコート法等を適用してメタル基材11上に塗工し、必要に応じて乾燥や焼成等を行うことにより、本実施形態の鞍乗型車両用排ガス浄化触媒100を得ることができる。 Such an exhaust gas purification catalyst 100 for a saddle-mounted vehicle can be obtained, for example, by providing the catalyst layer 21 on the above-mentioned metal base material 11. The method for forming the catalyst layer 21 may be carried out according to a conventional method, and is not particularly limited. For example, a slurry-like mixture containing each component of the catalyst layer 21 described above is applied onto the metal substrate 11 by applying various known coating methods, wash coat methods, etc., and dried or fired as necessary. By doing so, the exhaust gas purification catalyst 100 for a slurry-type vehicle of the present embodiment can be obtained.
 具体例としては、上述した各複合触媒粒子31,41,51,61と水系媒体と必要に応じて当業界で公知のバインダー、他の触媒、助触媒、OSC材、各種母材粒子、添加剤等とを所望の配合割合で混合してスラリー状混合物を調製し、得られたスラリー状混合物をメタル基材11の表面に付与し、乾燥及び焼成することで、メタル基材11上に触媒層21が設けられた鞍乗型車両用排ガス浄化触媒100を得ることができる。 Specific examples include the above-mentioned composite catalyst particles 31, 41, 51, 61, an aqueous medium, and optionally a binder known in the art, other catalysts, co-catalysts, OSC materials, various base material particles, and additives. Etc. are mixed at a desired blending ratio to prepare a slurry-like mixture, and the obtained slurry-like mixture is applied to the surface of the metal base material 11 and dried and fired to obtain a catalyst layer on the metal base material 11. It is possible to obtain an exhaust gas purification catalyst 100 for a slurry-type vehicle provided with 21.
 スラリー状混合物の調製時に用いる水系媒体は、スラリー中で各主成分が均一に分散できる量を用いればよい。このとき、必要に応じてpH調整のための酸や塩基を配合したり、粘性の調整やスラリー分散性向上のための界面活性剤や分散用樹脂等を配合したりすることができる。得られる触媒層21をメタル基材11に強固に付着させ或いは結合させる観点からは、上述したバインダー等を用いることが好ましい。また、スラリーの混合方法としては、ボールミル等による粉砕混合等、公知の粉砕方法又は混合方法を適用することができる。 The aqueous medium used when preparing the slurry-like mixture may be an amount that allows each main component to be uniformly dispersed in the slurry. At this time, if necessary, an acid or a base for adjusting the pH can be added, or a surfactant, a resin for dispersion, or the like for adjusting the viscosity or improving the dispersibility of the slurry can be added. From the viewpoint of firmly adhering or bonding the obtained catalyst layer 21 to the metal substrate 11, it is preferable to use the above-mentioned binder or the like. Further, as a method for mixing the slurry, a known pulverizing method or mixing method such as pulverizing and mixing with a ball mill or the like can be applied.
 メタル基材11上にスラリー状混合物を付与した後においては、常法にしたがい乾燥や焼成を行うことができる。なお、乾燥温度は、特に限定されないが、例えば70~200℃が好ましく、80~150℃がより好ましい。また、焼成温度は、特に限定されないが、例えば300~650℃が好ましく、400~600℃がより好ましい。このとき用いる加熱手段については、例えば電気炉やガス炉等の公知の加熱手段によって行うことができる。 After the slurry-like mixture is applied onto the metal substrate 11, it can be dried or fired according to a conventional method. The drying temperature is not particularly limited, but is preferably 70 to 200 ° C, more preferably 80 to 150 ° C, for example. The firing temperature is not particularly limited, but is preferably 300 to 650 ° C, more preferably 400 to 600 ° C, for example. The heating means used at this time can be a known heating means such as an electric furnace or a gas furnace.
 上述した触媒層21の総塗工量は、特に限定されないが、触媒性能や圧損のバランス等の観点から、メタル基材11の容量1Lあたり1~200g/L(貴金属量を除く。)であることが好ましく、50~180g/L(貴金属量を除く。)がより好ましい。 The total coating amount of the catalyst layer 21 described above is not particularly limited, but is 1 to 200 g / L (excluding the amount of precious metal) per 1 L of the capacity of the metal base material 11 from the viewpoint of catalyst performance, balance of pressure loss, and the like. It is preferably 50 to 180 g / L (excluding the amount of precious metal), and more preferably.
 また、Rh及びPdの総塗工量は、特に限定されないが、触媒性能や圧損のバランス等の観点から、金属換算で0.05~1.5g/Lが好ましく、0.1~1.0g/Lがより好ましい。このとき、Rhの総塗工量は、特に限定されないが、触媒性能や圧損のバランス等の観点から、金属換算で0.02~0.6g/Lが好ましく、0.04~0.4g/Lがより好ましい。一方、Pdの総塗工量は、特に限定されないが、触媒性能や圧損のバランス等の観点から、金属換算で0.03~0.9g/Lが好ましく、0.06~0.6g/Lがより好ましい。そして、PdとRhとの塗工量の質量比(Pd/Rh)は、金属換算で10/1~10/9が好ましく、10/2~10/8がより好ましい。 The total coating amount of Rh and Pd is not particularly limited, but is preferably 0.05 to 1.5 g / L in terms of metal, and 0.1 to 1.0 g, from the viewpoint of catalyst performance, balance of pressure loss, and the like. / L is more preferable. At this time, the total coating amount of Rh is not particularly limited, but is preferably 0.02 to 0.6 g / L in terms of metal, and 0.04 to 0.4 g / L from the viewpoint of catalyst performance, pressure loss balance, and the like. L is more preferable. On the other hand, the total coating amount of Pd is not particularly limited, but is preferably 0.03 to 0.9 g / L in terms of metal, and 0.06 to 0.6 g / L from the viewpoint of catalytic performance and balance of pressure loss. Is more preferable. The mass ratio (Pd / Rh) of the coating amount of Pd and Rh is preferably 10/1 to 10/9, more preferably 10/2 to 10/8 in terms of metal.
 上述した本実施形態の鞍乗型車両用排ガス浄化触媒100は、鞍乗型車両の各種エンジンの排気系に配置することができ、その設置個数及び設置箇所は、排ガスの規制に応じて任意に設計できる。そして、本実施形態の鞍乗型車両用排ガス浄化触媒100によれば、触媒層が一層だけ設けられた簡易且つ低コストな構成でありながらも、CO,HC,NOxの浄化性能及び低温浄化性能に優れた効果を発揮することができる。 The exhaust gas purification catalyst 100 for a saddle-type vehicle of the present embodiment described above can be arranged in the exhaust system of various engines of the saddle-type vehicle, and the number and location of the installation thereof can be arbitrarily determined according to the exhaust gas regulation. Can be designed. The exhaust gas purification catalyst 100 for a saddle-mounted vehicle of the present embodiment has a simple and low-cost configuration in which only one catalyst layer is provided, but has CO, HC, and NOx purification performance and low-temperature purification performance. It can exert an excellent effect on.
 以下に実施例及び比較例を挙げて本発明の特徴をさらに具体的に説明するが、本発明は、これらによりなんら限定されるものではない。すなわち、以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜変更することができる。また、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における好ましい上限値又は好ましい下限値としての意味をもつものであり、好ましい数値範囲は前記の上限値又は下限値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。 The features of the present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto. That is, the materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Further, the values of various manufacturing conditions and evaluation results in the following examples have meanings as a preferable upper limit value or a preferable lower limit value in the embodiment of the present invention, and the preferable numerical range is the above-mentioned upper limit value or the lower limit value. It may be in the range specified by the combination of the value and the value of the following examples or the values of the examples.
(実施例1)
 酸化物換算でZrOを75.0質量%及び希土類元素の酸化物を25.0質量%含有するジルコニア複合酸化物母材粒子をナウタ―ミキサーに投入し、所定量の硝酸セリウム及び希釈用の純水をさらに加えた後、15分間撹拌して、ジルコニア複合酸化物母材粒子の表面に酸化物換算で12.5質量%のCeO粒子を担持した複合粒子を調製した。
(Example 1)
Zirconia composite oxide base material particles containing 75.0% by mass of ZrO 2 and 25.0% by mass of oxides of rare earth elements are charged into a Nauta mixer, and a predetermined amount of cerium nitrate and diluting material are used. After further adding pure water, the mixture was stirred for 15 minutes to prepare composite particles in which 12.5% by mass of CeO 2 particles were carried on the surface of the zirconia composite oxide base material particles in terms of oxide.
 次に、攪拌器に、所定量の硝酸ロジウム及び純水を投入して5分間攪拌した後、上記の複合粒子を投入して15分間さらに攪拌した。これにより、ジルコニア複合酸化物母材粒子の表面にRh及びCeO粒子が共担持された第1複合触媒粒子を含むRh触媒スラリーを得た。 Next, a predetermined amount of rhodium nitrate and pure water were added to the stirrer and stirred for 5 minutes, and then the above composite particles were added and further stirred for 15 minutes. As a result, a Rh catalyst slurry containing the first composite catalyst particles in which Rh and CeO 2 particles were co-supported on the surface of the zirconia composite oxide base material particles was obtained.
 次いで、攪拌器に、所定量の硝酸パラジウム及び純水を投入して5分間攪拌した後、第3複合触媒粒子用の酸化物換算でAlを80.7質量%及びCeOを19.3質量%含有するセリアアルミナ母材粒子をさらに投入し、15分間攪拌した。これにより、セリアアルミナ母材粒子の表面にPdが担持された第3複合触媒粒子を含むPd触媒スラリーを得た。 Next, a predetermined amount of palladium nitrate and pure water were added to the stirrer and stirred for 5 minutes, and then Al 2 O 3 was 80.7% by mass and CeO 2 was 19 in terms of oxide for the third composite catalyst particles. . Celia alumina base material particles containing 3% by mass were further added and stirred for 15 minutes. As a result, a Pd catalyst slurry containing the third composite catalyst particles in which Pd was supported on the surface of the ceria alumina base material particles was obtained.
 得られたRh触媒スラリー及びPd触媒スラリーをそれぞれ所定量秤量して攪拌器に投入し、15分間攪拌した。その後、平均粒子径D90が11μmになるまでボールミルで粉砕処理した。得られた混合物に対して、アルミナゾル系バインダー材及び蒸留水を加えた後、さらに10分間攪拌することにより、ウォッシュコート用触媒スラリーを得た。 The obtained Rh catalyst slurry and Pd catalyst slurry were weighed in predetermined amounts, put into a stirrer, and stirred for 15 minutes. Then, it was pulverized with a ball mill until the average particle diameter D90 became 11 μm. An alumina sol-based binder material and distilled water were added to the obtained mixture, and the mixture was further stirred for 10 minutes to obtain a catalyst slurry for wash coat.
 そして、ステンレス製メタルハニカム担体(300cpsi/50μm、40×90mmL)をウォッシュコート用触媒スラリーに浸漬した後、エアブローでセル中の余分のウォシュコート液を除去し、乾燥させ、500℃で1時間焼成して、鞍乗型車両用排ガス浄化触媒を得た。この触媒のウォシュコート量は、ステンレス製メタルハニカム担体1Lあたり120g/L(貴金属量を除く。)であり、Rh含有量は0.2g/L、Pd含有量は0.3g/Lであった。 Then, after immersing the stainless metal honeycomb carrier (300 cpsi / 50 μm, 40 × 90 mmL) in the catalyst slurry for wash coat, the excess wash coat liquid in the cell is removed by air blow, dried, and fired at 500 ° C. for 1 hour. Then, an exhaust gas purification catalyst for a slurry-type vehicle was obtained. The wash coat amount of this catalyst was 120 g / L (excluding the amount of precious metal) per 1 L of stainless metal honeycomb carrier, the Rh content was 0.2 g / L, and the Pd content was 0.3 g / L. ..
(実施例2)
 攪拌器に、所定量の硝酸ロジウム及び純水を投入して5分間攪拌した後、実施例1で得たCeO粒子担持複合粒子を投入して15分間さらに攪拌した。そこに、第4複合触媒粒子用の酸化物換算でAlを80.7質量%及びCeOを19.3質量%含有するセリアアルミナ母材粒子をさらに投入し、15分間攪拌した。これにより、ジルコニア複合酸化物母材粒子の表面にRh及びCeO粒子が共担持された第1複合触媒粒子とセリアアルミナ母材粒子の表面にRhが担持された第4複合触媒粒子を含むRh触媒スラリーを得た。
(Example 2)
A predetermined amount of rhodium nitrate and pure water were added to the stirrer and stirred for 5 minutes, and then the CeO2 particle - supporting composite particles obtained in Example 1 were added and further stirred for 15 minutes. Celia alumina base material particles containing 80.7% by mass of Al 2 O 3 and 19.3% by mass of CeO 2 in terms of oxide for the fourth composite catalyst particles were further added thereto, and the mixture was stirred for 15 minutes. As a result, Rh containing the first composite catalyst particles in which Rh and CeO2 particles are co - supported on the surface of the zirconia composite oxide base material particles and the fourth composite catalyst particles in which Rh is supported on the surface of the ceria alumina base material particles. A catalyst slurry was obtained.
 次いで、攪拌器に、所定量の硝酸パラジウム及び純水を投入して5分間攪拌した後、表面にBaが担持されたAl粉体を投入して、15分間さらに攪拌した。その後、pHが4~5になるまで1Nの硝酸を加え、15分間攪拌した。これにより、アルミナ粒子の表面にPd及びBaが担持された第2複合触媒粒子を含むPd触媒スラリーを得た。 Next, a predetermined amount of palladium nitrate and pure water were added to the stirrer and stirred for 5 minutes, and then Al2O3 powder having Ba supported on the surface was added and further stirred for 15 minutes. Then, 1N nitric acid was added until the pH reached 4 to 5, and the mixture was stirred for 15 minutes. As a result, a Pd catalyst slurry containing the second composite catalyst particles in which Pd and Ba were supported on the surface of the alumina particles was obtained.
 得られたRh触媒スラリー及びPd触媒スラリーをそれぞれ所定量秤量して攪拌器に投入し、15分間攪拌した後、表面にBaが担持されたAl粉体をさらに投入して、15分間攪拌した。その後、平均粒子径D90が11μmになるまでボールミルで粉砕処理した。得られた混合物に対して、アルミナゾル系バインダー材及び蒸留水を加えた後、さらに10分間攪拌することにより、ウォッシュコート用触媒スラリーを得た。 The obtained Rh catalyst slurry and Pd catalyst slurry are weighed in predetermined amounts and put into a stirrer, and after stirring for 15 minutes, Al 2 O 3 powder having Ba supported on the surface is further put into the stirrer for 15 minutes. Stirred. Then, it was pulverized with a ball mill until the average particle diameter D90 became 11 μm. An alumina sol-based binder material and distilled water were added to the obtained mixture, and the mixture was further stirred for 10 minutes to obtain a catalyst slurry for wash coat.
 そして、ステンレス製メタルハニカム担体(300cpsi/50μm、40×90mmL)をウォッシュコート用触媒スラリーに浸漬した後、エアブローでセル中の余分のウォシュコート液を除去し、乾燥させ、500℃で1時間焼成して、鞍乗型車両用排ガス浄化触媒を得た。この触媒のウォシュコート量は、ステンレス製メタルハニカム担体1Lあたり120g/L(貴金属量を除く。)であり、Rh含有量は0.2g/L、Pd含有量は0.3g/Lであった。 Then, after immersing the stainless metal honeycomb carrier (300 cpsi / 50 μm, 40 × 90 mmL) in the catalyst slurry for wash coat, the excess wash coat liquid in the cell is removed by air blow, dried, and fired at 500 ° C. for 1 hour. Then, an exhaust gas purification catalyst for a slurry-type vehicle was obtained. The wash coat amount of this catalyst was 120 g / L (excluding the amount of precious metal) per 1 L of stainless metal honeycomb carrier, the Rh content was 0.2 g / L, and the Pd content was 0.3 g / L. ..
(比較例1)
 攪拌器に、所定量の硝酸ロジウム及び純水を投入して5分間攪拌した後、セリアアルミナ母材粒子を投入し、15分間攪拌した。これにより、セリアアルミナ母材粒子の表面にRhが担持された複合触媒粒子を含む混合スラリーを得た。その後、この混合スラリーを平均粒子径D90が11μmになるまでボールミルで粉砕処理した。得られた混合物に対して、アルミナゾル系バインダー材及び蒸留水を加えた後、さらに10分間攪拌することにより、セリアアルミナ母材粒子の表面にRhが担持された複合触媒粒子を含むRh触媒スラリーを得た。
(Comparative Example 1)
A predetermined amount of rhodium nitrate and pure water were added to the stirrer and stirred for 5 minutes, then ceria alumina base material particles were added and stirred for 15 minutes. As a result, a mixed slurry containing composite catalyst particles in which Rh was supported on the surface of the ceria alumina base material particles was obtained. Then, this mixed slurry was pulverized with a ball mill until the average particle size D90 became 11 μm. An alumina sol-based binder material and distilled water are added to the obtained mixture, and then the mixture is further stirred for 10 minutes to obtain a Rh catalyst slurry containing composite catalyst particles in which Rh is supported on the surface of the ceria alumina base material particles. Obtained.
 次いで、攪拌器に、所定量の硝酸パラジウム及び純水を投入して5分間攪拌した後、セリアアルミナ母材粒子を投入し、15分間攪拌した。これにより、セリアアルミナ母材粒子の表面にPdが担持された複合触媒粒子を含む混合スラリーを得た。その後、この混合スラリーを平均粒子径D90が11μmになるまでボールミルで粉砕処理した。得られた混合物に対して、アルミナゾル系バインダー材及び蒸留水を加えた後、さらに10分間攪拌することにより、Pd触媒スラリーを得た。 Next, a predetermined amount of palladium nitrate and pure water were added to the stirrer and stirred for 5 minutes, then ceria alumina base material particles were added and stirred for 15 minutes. As a result, a mixed slurry containing composite catalyst particles in which Pd was supported on the surface of the ceria alumina base material particles was obtained. Then, this mixed slurry was pulverized with a ball mill until the average particle size D90 became 11 μm. An alumina sol-based binder material and distilled water were added to the obtained mixture, and the mixture was further stirred for 10 minutes to obtain a Pd-catalyzed slurry.
 そして、ステンレス製メタルハニカム担体(300cpsi/50μm、40×90mmL)をPd触媒スラリーに浸漬した後、エアブローでセル中の余分のウォシュコート液を除去し、乾燥させ、500℃で1時間焼成した。その後、Pd触媒スラリー塗工後のステンレス製メタルハニカム担体をRh触媒スラリーに浸漬した後、エアブローでセル中の余分のウォシュコート液を除去し、乾燥させ、500℃で1時間焼成して、鞍乗型車両用排ガス浄化多層触媒を得た。この触媒のウォシュコート量は、ステンレス製メタルハニカム担体1Lあたり120g/L(貴金属量を除く。)であり、Rh含有量は0.2g/L、Pd含有量は0.3g/Lであった。 Then, after immersing the stainless metal honeycomb carrier (300 cpsi / 50 μm, 40 × 90 mmL) in the Pd catalyst slurry, excess washcoat liquid in the cell was removed by air blowing, dried, and calcined at 500 ° C. for 1 hour. Then, after immersing the stainless metal honeycomb carrier coated with the Pd catalyst slurry in the Rh catalyst slurry, excess washcoat liquid in the cell is removed by air blowing, dried, and fired at 500 ° C. for 1 hour to saddle. An exhaust gas purification multilayer catalyst for riding vehicles was obtained. The wash coat amount of this catalyst was 120 g / L (excluding the amount of precious metal) per 1 L of stainless metal honeycomb carrier, the Rh content was 0.2 g / L, and the Pd content was 0.3 g / L. ..
(比較例2)
 比較例1で得られたRh触媒スラリー及び比較例1で得られたPd触媒スラリーをそれぞれ所定量秤量して攪拌器に投入し、アルミナゾル系バインダー材及び蒸留水を加えた後、10分間攪拌することにより、ウォッシュコート用触媒スラリーを得た。
(Comparative Example 2)
The Rh catalyst slurry obtained in Comparative Example 1 and the Pd catalyst slurry obtained in Comparative Example 1 are weighed in predetermined amounts and put into a stirrer, and after adding an alumina sol-based binder material and distilled water, the mixture is stirred for 10 minutes. As a result, a catalyst slurry for wash coat was obtained.
 そして、ステンレス製メタルハニカム担体(300cpsi/50μm、40×90mmL)をウォッシュコート用触媒スラリーに浸漬した後、エアブローでセル中の余分のウォシュコート液を除去し、乾燥させ、500℃で1時間焼成して、鞍乗型車両用排ガス浄化触媒を得た。この触媒のウォシュコート量は、ステンレス製メタルハニカム担体1Lあたり120g/L(貴金属量を除く。)であり、Rh含有量は0.2g/L、Pd含有量は0.3g/Lであった。 Then, after immersing the stainless metal honeycomb carrier (300 cpsi / 50 μm, 40 × 90 mmL) in the catalyst slurry for wash coat, the excess wash coat liquid in the cell is removed by air blow, dried, and fired at 500 ° C. for 1 hour. Then, an exhaust gas purification catalyst for a slurry-type vehicle was obtained. The wash coat amount of this catalyst was 120 g / L (excluding the amount of precious metal) per 1 L of stainless metal honeycomb carrier, the Rh content was 0.2 g / L, and the Pd content was 0.3 g / L. ..
<性能評価>
 堀場製作所社製のモデルガス評価装置を用いて、各々の触媒の浄化特性を評価した。ここでは、モデルガス中のHC、CO及びNO(酸化窒素が450℃で低減される割合(C450浄化率)及び50%浄化率に到達する温度〔T50(℃)〕を測定して、各々の触媒の三元浄化性能を評価した。なお、この評価では、実施例1~2及び比較例1~2で得られた鞍乗型車両用排ガス浄化触媒からテストピース(25.4×50mmL)を打ち抜き、このテストピースを2%CO+10%HO+残Nのリッチ雰囲気と5%O+10%HO+残Nのリーン雰囲気とを各5分間隔で変動させた雰囲気下、1050℃で5時間保持した、耐久処理後の触媒を、評価用サンプルとしてそれぞれ用いた。また、用いた評価装置は、ステンレス製配管で構成された流通型反応装置であり、入り側から下記組成のモデルガスを導入し、これを排ガス浄化反応部に流通させて、出口側に排出するものである。モデルガスを外部ヒーターにて加熱して排ガス浄化反応部に送ることで、浄化反応部分が加熱される。100℃から450℃の温度範囲で、流出側(触媒部分通過後)のガス組成を分析し、CO、HC、及びNO濃度の変化率を求める。結果を、図6及び図7に示す。
<Performance evaluation>
The purification characteristics of each catalyst were evaluated using a model gas evaluation device manufactured by HORIBA, Ltd. Here, HC, CO and NO (the rate at which nitrogen oxide is reduced at 450 ° C. (C450 purification rate) and the temperature at which the 50% purification rate is reached [T50 (° C.)] in the model gas are measured and each is measured. The ternary purification performance of the catalyst was evaluated. In this evaluation, a test piece (25.4 × 50 mmL) was used from the exhaust gas purification catalyst for a saddle-mounted vehicle obtained in Examples 1 and 2 and Comparative Examples 1 and 2. After punching, this test piece was subjected to a rich atmosphere of 2% CO + 10% H 2 O + remaining N 2 and a lean atmosphere of 5% O 2 + 10% H 2 O + remaining N 2 at intervals of 5 minutes at 1050 ° C. The catalyst after the endurance treatment, which was held for 5 hours in the above, was used as an evaluation sample. The evaluation device used was a flow-type reaction device composed of stainless steel pipes, and a model having the following composition from the entry side. Gas is introduced, distributed to the exhaust gas purification reaction section, and discharged to the outlet side. By heating the model gas with an external heater and sending it to the exhaust gas purification reaction section, the purification reaction section is heated. The gas composition on the outflow side (after passing through the catalyst portion) is analyzed in the temperature range of 100 ° C to 450 ° C, and the rate of change in CO, HC, and NO concentrations is determined. The results are shown in FIGS. 6 and 7. ..
 モデルガス組成:CO:0.3%、C:3000ppm、NO:3000ppm、O:0.15%、CO:10%、HO:10%、N:残余
 A/F=14.5
 空間速度(SV):72,000/h
 評価温度   :100~500℃
 昇温速度   :10℃/min
Model gas composition: CO: 0.3%, C 3 H 6 : 3000 ppm, NO: 3000 ppm, O 2 : 0.15%, CO 2 : 10%, H 2 O: 10%, N 2 : Residual A / F = 14.5
Space velocity (SV): 72,000 / h
Evaluation temperature: 100-500 ° C
Temperature rise rate: 10 ° C / min
 本発明の鞍乗型車両用排ガス浄化触媒等は、触媒層が一層だけ設けられた簡易且つ低コストな構成でありながらも、CO,HC,NOxの浄化性能及びこれらの低温浄化性能に優れ、生産性及び経済性に優れるため、その組成及び構造に基づいて、排ガス中のNOx、CO、HC等を削減する三元触媒(TWC:Three Way Catalyst)として広く且つ有効に利用可能である。とりわけ、本発明の鞍乗型車両用排ガス浄化触媒等は、小容量で高い耐熱性が求められ、また、燃料リッチ雰囲気においても高い排ガス浄化効率が求められる二輪自動車等の分野において特に有効に利用可能である。 The exhaust gas purification catalyst for a saddle-type vehicle of the present invention has a simple and low-cost configuration in which only one catalyst layer is provided, but is excellent in CO, HC, NOx purification performance and low-temperature purification performance thereof. Since it is excellent in productivity and economy, it can be widely and effectively used as a three-way catalyst (TWC: Three Way Catalyst) that reduces NOx, CO, HC, etc. in exhaust gas based on its composition and structure. In particular, the exhaust gas purification catalyst for a saddle-mounted vehicle of the present invention is particularly effectively used in the field of motorcycles and the like, which are required to have a small capacity and high heat resistance, and are also required to have high exhaust gas purification efficiency even in a fuel-rich atmosphere. It is possible.
 100 ・・・鞍乗型車両用排ガス浄化触媒
  11 ・・・メタル基材
  21 ・・・触媒層
  31 ・・・第1複合触媒粒子
  32 ・・・ジルコニア系母材粒子
  32a・・・表面
  33 ・・・CeO粒子
  41 ・・・第2複合触媒粒子
  42 ・・・アルミナ母材粒子
  42a・・・表面
  51 ・・・第3複合触媒粒子
  52 ・・・セリアアルミナ母材粒子
  52a・・・表面
  61 ・・・第4複合触媒粒子
  62 ・・・セリアアルミナ母材粒
  62a・・・表面
100 ・ ・ ・ Exhaust gas purification catalyst for saddle-mounted vehicle 11 ・ ・ ・ Metal substrate 21 ・ ・ ・ Catalyst layer 31 ・ ・ ・ First composite catalyst particles 32 ・ ・ ・ Zirconia base material particles 32a ・ ・ ・ Surface 33 ・・ ・ CeO 2 particles 41 ・ ・ ・ 2nd composite catalyst particles 42 ・ ・ ・ Alumina base material particles 42a ・ ・ ・ Surface 51 ・ ・ ・ Third composite catalyst particles 52 ・ ・ ・ Celia alumina base material particles 52a ・ ・ ・ Surface 61 ・ ・ ・ Fourth composite catalyst particles 62 ・ ・ ・ Celia alumina base metal particles 62a ・ ・ ・ Surface

Claims (7)

  1.  内燃機関の排ガス通路に設けられる鞍乗型車両用排ガス浄化触媒であって、
     メタル基材と、該メタル基材上に設けられた単層の触媒層とを備え、
     前記触媒層は、
     ジルコニア系母材粒子と該ジルコニア系母材粒子の表面に共担持されたRh及びCeO粒子とを少なくとも有する第1複合触媒粒子、並びに、
     アルミナ母材粒子と該アルミナ母材粒子の表面に担持されたPdを含む第2複合触媒粒子、及び/又は、セリアアルミナ母材粒子と該セリアアルミナ母材粒子の表面に担持されたPdとを少なくとも有する第3複合触媒粒子を含有する、
    鞍乗型車両用排ガス浄化触媒。
    An exhaust gas purification catalyst for saddle-type vehicles installed in the exhaust gas passage of an internal combustion engine.
    A metal base material and a single-layer catalyst layer provided on the metal base material are provided.
    The catalyst layer is
    The first composite catalyst particles having at least the zirconia-based base material particles and the Rh and CeO2 particles co - supported on the surface of the zirconia-based base material particles, and
    A second composite catalyst particle containing the alumina base material particles and Pd supported on the surface of the alumina base material particles, and / or the ceria alumina base material particles and Pd supported on the surface of the ceria alumina base material particles. Contains at least the third composite catalyst particles having
    Exhaust gas purification catalyst for saddle-mounted vehicles.
  2.  前記ジルコニア系母材粒子は、Ce、Nd、及びLaよりなる群から選択される少なくとも1以上の希土類元素が固溶した希土類固溶ジルコニア母材粒子である、
    請求項1に記載の鞍乗型車両用排ガス浄化触媒。
    The zirconia-based base material particles are rare earth solid-dissolved zirconia base material particles in which at least one or more rare earth elements selected from the group consisting of Ce, Nd, and La are solid-dissolved.
    The exhaust gas purification catalyst for a saddle-mounted vehicle according to claim 1.
  3.  前記ジルコニア系母材粒子は、酸化物換算で、ZrOを65~85質量%及び希土類元素の酸化物を15~35質量%含有する、
    請求項1又は2に記載の鞍乗型車両用排ガス浄化触媒。
    The zirconia-based base material particles contain 65 to 85% by mass of ZrO 2 and 15 to 35% by mass of an oxide of a rare earth element in terms of oxide.
    The exhaust gas purification catalyst for a saddle-mounted vehicle according to claim 1 or 2.
  4.  前記第2複合触媒粒子は、前記アルミナ母材粒子と前記アルミナ母材粒子の表面に担持されたPd及びBaを含む、
    請求項1~3のいずれか一項に記載の鞍乗型車両用排ガス浄化触媒。
    The second composite catalyst particles include the alumina base material particles and Pd and Ba supported on the surface of the alumina base material particles.
    The exhaust gas purification catalyst for a saddle-type vehicle according to any one of claims 1 to 3.
  5.  前記第3複合触媒粒子の前記セリアアルミナ母材粒子は、酸化物換算で、Alを70~90質量%及びCeOを10~30質量%含有する、
    請求項1~4のいずれか一項に記載の鞍乗型車両用排ガス浄化触媒。
    The ceria alumina base material particles of the third composite catalyst particles contain 70 to 90% by mass of Al 2 O 3 and 10 to 30% by mass of CeO 2 in terms of oxide.
    The exhaust gas purification catalyst for a saddle-type vehicle according to any one of claims 1 to 4.
  6.  前記触媒層は、セリアアルミナ母材粒子と該セリアアルミナ母材粒子の表面に担持されたRhを含む第4複合触媒粒子をさらに含有する、
    請求項1~5のいずれか一項に記載の鞍乗型車両用排ガス浄化触媒。
    The catalyst layer further contains a ceria alumina base material particle and a fourth composite catalyst particle containing Rh supported on the surface of the ceria alumina base material particle.
    The exhaust gas purification catalyst for a saddle-type vehicle according to any one of claims 1 to 5.
  7.  前記触媒層の塗工量が、前記メタル基材1Lあたり1~200g/Lである、
    請求項1~6のいずれか一項に記載の鞍乗型車両用排ガス浄化触媒。
    The coating amount of the catalyst layer is 1 to 200 g / L per 1 L of the metal substrate.
    The exhaust gas purification catalyst for a saddle-type vehicle according to any one of claims 1 to 6.
PCT/JP2021/045998 2020-12-15 2021-12-14 Exhaust gas purification catalyst for saddle riding-type vehicle WO2022131244A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022570004A JPWO2022131244A1 (en) 2020-12-15 2021-12-14
CN202180069397.8A CN116322946A (en) 2020-12-15 2021-12-14 Exhaust gas purifying catalyst for saddle-ride type vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-207531 2020-12-15
JP2020207531 2020-12-15

Publications (1)

Publication Number Publication Date
WO2022131244A1 true WO2022131244A1 (en) 2022-06-23

Family

ID=82059185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045998 WO2022131244A1 (en) 2020-12-15 2021-12-14 Exhaust gas purification catalyst for saddle riding-type vehicle

Country Status (3)

Country Link
JP (1) JPWO2022131244A1 (en)
CN (1) CN116322946A (en)
WO (1) WO2022131244A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243951A (en) * 1988-04-14 1990-02-14 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas and preparation thereof
JP2010058069A (en) * 2008-09-04 2010-03-18 Cataler Corp Catalyst for purification of exhaust gas for motorcycles
JP2011020013A (en) * 2009-07-13 2011-02-03 Kawasaki Heavy Ind Ltd Catalyst for cleaning exhaust gas and method for producing the same
JP2013208578A (en) * 2012-03-30 2013-10-10 Honda Motor Co Ltd Exhaust gas-purifying palladium single layer catalyst for saddle-riding type vehicle
JP2016179427A (en) * 2015-03-23 2016-10-13 新日本電工株式会社 Exhaust emission control catalyst and honeycomb catalyst structure for exhaust emission control
JP2016179466A (en) * 2015-03-23 2016-10-13 株式会社豊田中央研究所 EXHAUST GAS PURIFICATION CATALYST, NOx STORAGE REDUCTION TYPE CATALYST AND EXHAUST GAS PURIFICATION METHOD

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2027422A1 (en) * 1989-11-08 1991-05-09 Samuel J. Tauster Three way conversion catalyst including a ceria-containing zirconia support
JP2010227804A (en) * 2009-03-26 2010-10-14 Toyota Motor Corp Exhaust gas purifying catalyst
WO2013111457A1 (en) * 2012-01-23 2013-08-01 エヌ・イーケムキャット株式会社 Alumina material containing barium sulfate and exhaust gas purifying catalyst using same
JP6604815B2 (en) * 2015-10-27 2019-11-13 株式会社キャタラー Exhaust gas purification device
JP6180697B1 (en) * 2016-01-21 2017-08-16 株式会社キャタラー Exhaust gas purification device
JP7026530B2 (en) * 2018-02-22 2022-02-28 エヌ・イーケムキャット株式会社 Three-way catalyst for exhaust gas purification

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243951A (en) * 1988-04-14 1990-02-14 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas and preparation thereof
JP2010058069A (en) * 2008-09-04 2010-03-18 Cataler Corp Catalyst for purification of exhaust gas for motorcycles
JP2011020013A (en) * 2009-07-13 2011-02-03 Kawasaki Heavy Ind Ltd Catalyst for cleaning exhaust gas and method for producing the same
JP2013208578A (en) * 2012-03-30 2013-10-10 Honda Motor Co Ltd Exhaust gas-purifying palladium single layer catalyst for saddle-riding type vehicle
JP2016179427A (en) * 2015-03-23 2016-10-13 新日本電工株式会社 Exhaust emission control catalyst and honeycomb catalyst structure for exhaust emission control
JP2016179466A (en) * 2015-03-23 2016-10-13 株式会社豊田中央研究所 EXHAUST GAS PURIFICATION CATALYST, NOx STORAGE REDUCTION TYPE CATALYST AND EXHAUST GAS PURIFICATION METHOD

Also Published As

Publication number Publication date
JPWO2022131244A1 (en) 2022-06-23
CN116322946A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
EP0705134B1 (en) Layered catalyst composite
JP5727952B2 (en) Exhaust gas purification catalyst and method for producing the same
CA2696004C (en) Catalyst compositions
US9339793B2 (en) Catalyst composition for exhaust gas cleaning and catalyst for automobile exhaust gas cleaning
WO2010103870A1 (en) Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and method for purifying exhaust gas
JP7026530B2 (en) Three-way catalyst for exhaust gas purification
EP2921226B1 (en) Catalyst carrier for exhaust gas and exhaust gas-cleaning catalyst
EP0251752A1 (en) Aluminum-stabilized ceria catalyst compositions and method of making same
US20120295787A1 (en) Exhaust gas purifying catalyst
JP7187654B2 (en) Exhaust gas purification catalyst composition and automobile exhaust gas purification catalyst
US20170028387A1 (en) Catalyst composition for purifying exhaust gas and exhaust gas purifying catalyst
US11484864B2 (en) Exhaust gas-purifying three-way catalyst and method for producing same, and integral structure type exhaust gas-purifying catalyst
WO2022131244A1 (en) Exhaust gas purification catalyst for saddle riding-type vehicle
JP2019166450A (en) Exhaust gas purification catalyst, method for manufacturing the same and integral structure type exhaust gas purification catalyst
JP7226943B2 (en) Exhaust gas purification catalyst
WO2023047185A1 (en) Exhaust gas purification catalyst, and exhaust gas purification catalyst device for vehicles
JP6985913B2 (en) Exhaust gas purification catalyst, its manufacturing method, and integrated structure exhaust gas purification catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570004

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906606

Country of ref document: EP

Kind code of ref document: A1