WO2022131176A1 - 制御装置、プログラム、システム、及び方法 - Google Patents

制御装置、プログラム、システム、及び方法 Download PDF

Info

Publication number
WO2022131176A1
WO2022131176A1 PCT/JP2021/045696 JP2021045696W WO2022131176A1 WO 2022131176 A1 WO2022131176 A1 WO 2022131176A1 JP 2021045696 W JP2021045696 W JP 2021045696W WO 2022131176 A1 WO2022131176 A1 WO 2022131176A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
sensor
agricultural
area
control device
Prior art date
Application number
PCT/JP2021/045696
Other languages
English (en)
French (fr)
Inventor
泰貴 西野
Original Assignee
Hapsモバイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hapsモバイル株式会社 filed Critical Hapsモバイル株式会社
Publication of WO2022131176A1 publication Critical patent/WO2022131176A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Definitions

  • the present invention relates to a control device, a program, a system, and a method.
  • Patent Document 1 describes an unmanned aerial vehicle for agriculture.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2018-198609
  • a control device is provided.
  • the control device is mounted on an air vehicle that functions as a stratospheric platform from a sensor that detects the state of farmland, forms a wireless communication area by irradiating a beam, and provides a wireless communication service to the sensor in the wireless communication area.
  • the information receiving unit may be provided to receive the sensor information indicating the state of the farmland via the communication device provided with the above.
  • the control device may include an agricultural work decision unit that determines the agricultural work to be performed on the agricultural land based on the sensor information.
  • the control device may include a moving body control information generation unit that generates moving body control information that controls the moving body so as to execute the farm work determined by the farm work determination unit.
  • the control device may include a movement control information transmitting unit that transmits the moving body control information to the moving body via the communication device.
  • the information receiving unit may receive the sensor information from the sensor installed on the farmland.
  • the agricultural work determination unit may determine the agricultural work based on the growth state of the crops of the agricultural land specified based on the sensor information.
  • the control device may include a storage unit that stores the sensor information received by the information receiving unit and the growing state of the crop specified by the agricultural work determination unit based on the sensor information in association with each other.
  • the control device uses the plurality of sensor information stored in the storage unit and the growth state of the agricultural product as teacher data, and the information receiving unit receives the sensor information received by the information receiving unit. It may be provided with a model generation unit that generates an estimation model for estimating the growth state of the agricultural product corresponding to the sensor information obtained by machine learning.
  • the agricultural work determination unit estimates the growth state of the crop corresponding to the sensor information received by the information receiving unit from the sensor information received by the information receiving unit using the estimation model.
  • the growing state of the crop may be specified.
  • the control device may include a communication device control unit that controls the communication device.
  • the communication device control unit may control the communication device so as to set a priority for communication between the sensor and the control device.
  • the communication device control unit specifies the installation position of the sensor based on the sensor-related information stored in the storage unit, and the sensor and the control device are set according to the specified installation position of the sensor.
  • the communication device may be controlled so as to set the priority for communication between the two.
  • the agricultural work determination unit may specify a harvesting area in the farmland where the crops of the farmland are in a harvestable state, and decide to harvest the crops in the specified harvesting area.
  • the agricultural work determination unit may identify an abnormal region in the agricultural land where the crops of the agricultural land are in an abnormal growing state, and decide to execute the agricultural work in the identified abnormal region.
  • the control device when the agricultural work determination unit identifies the abnormal area, the priority of communication between the sensor installed in the abnormal area and the control device is set to an area other than the abnormal area.
  • a communication device control unit that controls the communication device may be provided so as to be set higher than the communication between the sensor and the control device.
  • the information receiving unit may receive image information of the farmland captured by the camera from the camera mounted on the flying object.
  • the farm work determination unit may determine the farm work based on the captured image information.
  • the control device may include a disaster occurrence area specifying unit for specifying a disaster occurrence area in the farmland based on the captured image information of the farmland captured by the camera mounted on the flying object.
  • the control device sets the priority of communication between the sensor installed in the disaster occurrence area and the control device to other than the disaster occurrence area.
  • a communication device control unit that controls the communication device may be provided so as to be set higher than the communication between the sensor and the control device installed in the area of.
  • the agricultural work determination unit may determine the agricultural work based on the soil condition of the agricultural land specified based on the sensor information.
  • the control device may be mounted on the flying object.
  • the control device may include a communication device control unit that controls the communication device.
  • the communication device control unit may control the communication device so as to set the priority of communication between the terminal in the wireless communication area and the control device by using the network slicing technique.
  • the communication device control unit sets the priority of communication between the terminal and the control device in the wireless communication area according to the contents of the contract between the user of the wireless communication service and the communication carrier.
  • the communication device may be controlled to set.
  • a program for making a computer function as the control device is provided.
  • a system may include a control device.
  • the system may include an air vehicle that acts as a stratospheric platform.
  • the control device is mounted on the flying object from a sensor that detects the state of the farmland, forms a wireless communication area by irradiating the beam, and provides the wireless communication service to the sensor in the wireless communication area. It may have an information receiving unit that receives sensor information indicating the state of the farmland via a communication device.
  • the control device may have a farm work determination unit that determines farm work to be performed on the farmland based on the sensor information.
  • the control device may have a moving body control information generation unit that generates moving body control information that controls the moving body so as to execute the farm work determined by the farm work determination unit.
  • the control device may have a movement control information transmitting unit that transmits the moving body control information to the moving body via the communication device.
  • a method performed by a computer is provided.
  • the method is to form a wireless communication area by irradiating a beam from a sensor that detects the state of farmland to an air vehicle that functions as a stratospheric platform, and provide wireless communication services to the sensors in the wireless communication area.
  • An information receiving step of receiving sensor information indicating the state of the farmland may be provided via the provided communication device.
  • the method may comprise a farm work determination step that determines the farm work to be performed on the farmland based on the sensor information.
  • the method may comprise a mobile control information generation step that generates mobile control information that controls the mobile to perform the farm work determined by the farm work determination stage.
  • the method may include a movement control information transmission step of transmitting the moving body control information to the moving body via the communication device.
  • An example of the system 10 is shown schematically.
  • An example of the functional configuration of the control device 200 is schematically shown. It is explanatory drawing for demonstrating the process of setting the priority of communication between a terminal in a wireless communication area 122 and a control device 200. It is explanatory drawing for demonstrating the process of setting the priority of communication between a sensor 300 and a control device 200. It is explanatory drawing for demonstrating an example of the processing flow of a control apparatus 200. An example of the hardware configuration of the computer 1200 that functions as the control device 200 is schematically shown.
  • the system 10 according to the present embodiment covers the entire vast farm by using HAPS (High Altitude Platform Station).
  • HAPS High Altitude Platform Station
  • the system 10 according to the present embodiment enables automatic operation of drones and agricultural equipment that require real-time performance by using 5G network slicing technology.
  • the system 10 according to the present embodiment provides a method for managing a large-scale farm utilizing an IoT (Internet of Things) sensor and AI (Artificial Intelligence) technology.
  • FIG. 1 schematically shows an example of the system 10.
  • the system 10 according to the present embodiment includes a flying object 100 and a control device 200.
  • the system 10 may include a sensor 300.
  • the system 10 may include an unmanned aerial vehicle 400.
  • the aircraft 100 may include an agricultural machine 500.
  • the system 10 may include a gateway 40.
  • the system 10 may include a user terminal 600.
  • System 10 provides technology that contributes to agricultural work.
  • the system 10 is particularly effective when controlling a mobile body to perform farm work on a large-scale farm in a rural area where a radio base station is not installed on the ground.
  • FIG. 1 a case where a mobile body is controlled to perform farm work on a large-scale farm in a rural area will be mainly described as an example.
  • the flying object 100 has a main wing portion 101, a main body portion 102, a propeller 104, a solar cell panel 110, an antenna 112, an antenna 114, and a camera 116.
  • the main body 102 includes a communication device 150, a battery (not shown), and a flight control device.
  • the battery stores the electric power generated by the solar cell panel 110.
  • the flight control device controls the flight of the flying object 100.
  • the flight control device flies the flying object 100 by, for example, rotating the propeller 104 using the electric power stored in the battery.
  • the communication device 150 forms a wireless communication area 122 on the farmland 50 by irradiating a beam using the antenna 112, and provides a wireless communication service to the user terminal 600 owned by the user 650 in the wireless communication area 122.
  • the communication device 150 may use the antenna 112 to establish a service link with the user terminal 600 in the wireless communication area 122.
  • the communication device 150 may use the antenna 114 to establish a feeder link with the gateway 40 on the ground.
  • the communication device 150 communicates with the control device 200 via the gateway 40 and the network 20.
  • the communication device 150 and the flight control device may be integrated.
  • the network 20 includes, for example, the Internet.
  • the network 20 may include a core network provided by the carrier.
  • the core network conforms to, for example, a 5G (5th Generation) communication system.
  • the core network may conform to a mobile communication system after the 6G (6th Generation) communication system.
  • the core network may be compliant with a 3G (3rd Generation) communication system.
  • the core network may be compliant with the LTE (Long Term Evolution) communication system.
  • the flying object 100 for example, flies in the stratosphere and provides a wireless communication service to the user terminal 600.
  • the aircraft body 100 may function as a stratospheric platform.
  • the flying object 100 covers the area by the wireless communication area 122 while patrolling over the area to be covered, for example. Further, the flying object 100 covers the entire area by moving over the area while covering a part of the area to be covered by the wireless communication area 122, for example.
  • the flying object 100 has a function of acquiring the position information of the flying object 100.
  • the flight object 100 acquires the position information of the flight object 100 by using, for example, a GNSS (Global Navigation Satellite System) function.
  • the flying object 100 transmits the acquired position information of the flying object 100 to the control device 200 via the communication device 150.
  • GNSS Global Navigation Satellite System
  • the camera 116 may be any camera as long as it can capture the image of the agricultural land 50.
  • the camera 116 is, for example, a visible light camera.
  • the camera 116 is, for example, an infrared camera.
  • the camera 116 may be a thermal camera.
  • the sensor 300 may be any sensor as long as it is a sensor that detects the state of the agricultural land 50.
  • the sensor 300 is, for example, a camera.
  • the camera is, for example, a visible light camera.
  • the camera is, for example, an infrared camera.
  • the camera may be a thermal camera.
  • the sensor 300 is, for example, a moisture meter that detects the water content of the soil of the agricultural land 50.
  • the sensor 300 is, for example, an EC (Electrical Conductivity) meter that detects the amount of fertilizer in the soil of the agricultural land 50.
  • the sensor 300 is, for example, a thermometer that detects the air temperature of the agricultural land 50.
  • the sensor 300 may be a hygrometer that detects the humidity of the agricultural land 50.
  • the sensor 300 is installed on the farmland 50, for example.
  • the sensor 300 may be installed on the flying object 100.
  • the camera 116 may be an example of the sensor 300.
  • the sensor 300 transmits the sensor information indicating the state of the detected agricultural land 50 to the control device 200 via the communication device 150.
  • the sensor 300 intermittently transmits sensor information to the control device 200, for example.
  • the control device 200 may periodically transmit sensor information to the control device 200.
  • the unmanned aerial vehicle 400 has a function of executing agricultural work.
  • the unmanned aerial vehicle 400 has, for example, a function of spraying water on the farmland 50.
  • the unmanned aerial vehicle 400 has, for example, a function of spraying fertilizer on the farmland 50.
  • the unmanned aerial vehicle 400 has, for example, a function of spraying a pesticide on the farmland 50.
  • the unmanned aerial vehicle 400 has, for example, a function of spraying an insecticide on the farmland 50.
  • the unmanned aerial vehicle 400 may have a function of spraying seeds on the farmland 50.
  • the unmanned aerial vehicle 400 has a battery (not shown).
  • the unmanned aerial vehicle 400 for example, flies using the electric power stored in the battery.
  • the unmanned aerial vehicle 400 has a function of wirelessly communicating with the control device 200 via, for example, the communication device 150.
  • the unmanned aerial vehicle 400 may be a so-called drone.
  • the unmanned aerial vehicle 400 may be an example of a moving body.
  • the agricultural machine 500 has a function of executing agricultural work.
  • the agricultural machine 500 has a function of cultivating the farmland 50, for example.
  • the agricultural machine 500 has, for example, a function of planting seedlings on the farmland 50.
  • the agricultural machine 500 has, for example, a function of harvesting the crops of the agricultural land 50.
  • the agricultural machine 500 has a function of wirelessly communicating with the control device 200 via, for example, the communication device 150.
  • the agricultural machine 500 may be any machine as long as it has a function of executing agricultural work.
  • the agricultural machine 500 is, for example, a tractor.
  • the agricultural machine 500 is, for example, a combine.
  • the agricultural machine 500 may be a rice transplanter.
  • the agricultural machine 500 may be an example of a moving body.
  • the user terminal 600 may be any communication terminal that can communicate with the control device 200 via the communication device 150.
  • the user terminal 600 is a mobile phone such as a smartphone, a tablet terminal, a wearable terminal, or the like.
  • the control device 200 controls the moving body.
  • the control device 200 controls, for example, the unmanned aerial vehicle 400.
  • the control device 200 controls, for example, the agricultural machine 500.
  • control device 200 receives sensor information indicating the state of the agricultural land 50 from the sensor 300 via the communication device 150.
  • the control device 200 determines the farm work to be performed on the farmland 50 based on the received sensor information.
  • the control device 200 controls the moving body via the communication device 150 to perform the determined farm work.
  • the control device 200 is installed on the ground, for example.
  • the control device 200 is installed on the network 20, for example.
  • the control device 200 may be mounted on the flying object 100.
  • the control device receives information from a terminal in the farmland or controls an unmanned aerial vehicle in the farmland to perform farm work via a radio base station installed on the ground. For this reason, in the conventional system, when controlling an unmanned aerial vehicle to perform farm work on a farm in a rural area where a terrestrial radio base station is not installed, it is necessary to newly install a terrestrial radio base station. .. In particular, when controlling an unmanned aerial vehicle to perform farm work on a large-scale farm with a diameter of several tens of kilometers, the coverage area of the radio base station on the ground is about several kilometers in diameter, so the coverage area covering the entire large-scale farm is covered. In order to form, many terrestrial radio base stations had to be newly installed.
  • the control device 200 receives sensor information from the sensor 300 via the communication device 150 of the flying object 100 that functions as a stratospheric platform.
  • the system 10 according to the present embodiment can receive sensor information from the sensor 300 without newly installing a radio base station on the ground.
  • the communication device 150 provided in the flying object 100 flying in the stratosphere can cover, for example, about 200 km in diameter, so that one cover area covers the entire large-scale farm having a diameter of several tens of kilometers. It can be formed by the flying object 100 of.
  • the RTT (Round Trip Time) of communication between the communication device 150 and the terrestrial terminal is, for example, about 0.6 ms, and the communication between the communication satellite and the terrestrial terminal having an RTT of about 400 ms. Shorter.
  • communication via the communication device 150 can be used to control a moving object such as an unmanned aerial vehicle 400. Therefore, the system 10 according to the present embodiment can execute the agricultural work at a lower cost as compared with the conventional system when the moving body is controlled and the agricultural work is executed on the agricultural land in the rural area.
  • the storage unit 202 stores various information.
  • the storage unit 202 stores, for example, sensor-related information related to the sensor 300.
  • the sensor-related information includes, for example, the sensor ID of the sensor 300.
  • the sensor-related information may include information indicating the installation position of the sensor 300.
  • the information receiving unit 204 receives various information.
  • the information receiving unit 204 receives sensor information from, for example, the sensor 300 via the communication device 150.
  • the information receiving unit 204 receives sensor information from, for example, a sensor 300 installed in the agricultural land 50 via a communication device 150.
  • the information receiving unit 204 stores the received sensor information in the storage unit 202.
  • the sensor information includes, for example, captured image information of the agricultural land 50.
  • the sensor information includes, for example, information indicating the water content of the soil of the agricultural land 50.
  • the sensor information includes, for example, information indicating the amount of fertilizer in the soil of the farmland 50.
  • the sensor information includes, for example, information indicating the temperature of the agricultural land 50.
  • the sensor information includes, for example, information indicating the humidity of the agricultural land 50.
  • the sensor information may include the sensor ID of the sensor 300.
  • the information receiving unit 204 may receive the flight object-related information related to the flight object 100 from the flight object 100 via the communication device 150.
  • the flight object-related information includes, for example, image capture image information of the agricultural land 50 captured by the camera 116 mounted on the flight object 100.
  • the flight object-related information includes, for example, the position information of the flight object 100.
  • the aircraft-related information may include the aircraft ID of the aircraft 100.
  • the information receiving unit 204 stores the received flight object-related information in the storage unit 202.
  • the aircraft-related information may be an example of sensor information.
  • the information receiving unit 204 may receive environmental information regarding the environment of the agricultural land 50 from an external device.
  • the information receiving unit 204 stores the received environment information in the storage unit 202.
  • the information receiving unit 204 receives, for example, the weather information of the agricultural land 50 from the weather information management device that manages the weather information related to the weather of the agricultural land 50.
  • the weather information may include temperature information indicating the temperature of the agricultural land 50.
  • the weather information may include humidity information indicating the humidity of the agricultural land 50.
  • the information receiving unit 204 may receive disaster information from a disaster information management device that manages disaster information related to a disaster that has occurred in the farmland 50.
  • the disaster information includes, for example, information indicating an area where a disaster has occurred.
  • the disaster information may include disaster type information indicating the type of disaster that has occurred in the agricultural land 50.
  • the disaster type information indicates, for example, that the disaster that occurred in the agricultural land 50 is a typhoon.
  • the disaster type information indicates, for example, that the disaster that occurred in the agricultural land 50 is a fire.
  • the disaster type information may indicate that the disaster that occurred in the agricultural land 50 is any other disaster.
  • Agricultural work decision unit 206 decides the agricultural work to be performed on the agricultural land 50.
  • the agricultural work determination unit 206 determines, for example, the agricultural work to be executed on the agricultural land 50 based on the sensor information received by the information receiving unit 204.
  • the agricultural work determination unit 206 identifies the growing state of the crop of the agricultural land 50, for example, based on the sensor information.
  • the agricultural work determination unit 206 may store the sensor information received by the information receiving unit 204 and the growing state of the crop of the agricultural land 50 specified based on the sensor information in the storage unit 202 in association with each other.
  • Agricultural work determination unit 206 identifies the growth state of the agricultural product of the agricultural land 50, for example, based on the captured image information of the agricultural land 50 included in the sensor information.
  • the agricultural work determination unit 206 identifies the growing state of the crop of the agricultural land 50, for example, based on the captured image information of the agricultural land 50 captured by the camera installed in the agricultural land 50.
  • the agricultural work determination unit 206 may specify the growing state of the crop of the agricultural land 50 based on the image image information of the agricultural land 50 captured by the camera 116 mounted on the flying object 100.
  • the agricultural work determination unit 206 identifies the growing state of the crop of the agricultural land 50 by, for example, image analysis of the captured image information of the agricultural land 50.
  • the agricultural work determination unit 206 specifies the growing state of the crop, for example, by specifying the color of the crop in the agricultural land 50.
  • the agricultural work determination unit 206 specifies the growth state of the crop of the agricultural land 50, for example, by specifying the size of the crop of the agricultural land 50.
  • the agricultural work determination unit 206 may specify the growth state of the crop of the agricultural land 50 by, for example, specifying the presence or absence of a pest.
  • Agricultural work determination unit 206 determines agricultural work based on the growth state of the crops of the specified agricultural land 50.
  • the agricultural work decision unit 206 decides to spray water on the agricultural land 50, for example.
  • the agricultural work decision unit 206 determines, for example, to spray fertilizer on the agricultural land 50.
  • the agricultural work decision unit 206 decides to spray the pesticide on the agricultural land 50.
  • the agricultural work decision unit 206 may decide to spray the pesticide on the agricultural land 50.
  • the agricultural work determination unit 206 may specify the soil condition of the agricultural land 50 based on the sensor information received by the information receiving unit 204.
  • the agricultural work determination unit 206 identifies the state of the soil of the agricultural land 50 by, for example, specifying the water content of the soil of the agricultural land 50 by using the information indicating the water content of the soil of the agricultural land 50 included in the sensor information. Even if the agricultural work determination unit 206 specifies the soil condition of the agricultural land 50 by specifying the amount of fertilizer in the soil of the agricultural land 50 by using the information indicating the amount of fertilizer in the soil of the agricultural land 50 included in the sensor information. good.
  • Agricultural work determination unit 206 may determine agricultural work based on the soil condition of the specified agricultural land 50.
  • the agricultural work determination unit 206 decides to spray water on the agricultural land 50, for example, when the water content of the soil of the specified agricultural land 50 is less than the water content of the predetermined soil. If the amount of fertilizer in the soil of the specified agricultural land 50 is less than the predetermined amount of fertilizer, the agricultural work determination unit 206 may decide to spray the fertilizer on the agricultural land 50.
  • the agricultural work determination unit 206 specifies, for example, a harvesting area of the agricultural land 50 in which the crops of the agricultural land 50 are in a harvestable state.
  • the agricultural work determination unit 206 specifies a harvesting area based on, for example, the growing state of the crop of the specified agricultural land 50.
  • the agricultural work determination unit 206 specifies, for example, a region where the color of the crop is a predetermined color as a harvest region.
  • the agricultural work determination unit 206 may specify a region where the size of the crop is larger than a predetermined size as a harvest region.
  • the agricultural work decision unit 206 decides to harvest the crops in the specified harvesting area.
  • the agricultural work decision unit 206 identifies an abnormal region of the agricultural land 50 in which the crops of the agricultural land 50 are in an abnormal growing state.
  • the agricultural work determination unit 206 identifies an abnormal region based on, for example, the growth state of the crop of the specified agricultural land 50.
  • the agricultural work determination unit 206 identifies, for example, a region where the color of the crop is a predetermined color as an abnormal region.
  • the agricultural work determination unit 206 may specify the area where the pest is present as an abnormal area.
  • the agricultural work determination unit 206 decides to execute the agricultural work in the specified abnormal area.
  • Agricultural work determination unit 206 determines, for example, to spray water on the identified anomalous area.
  • Agricultural work decision unit 206 decides to apply fertilizer to the identified abnormal area, for example.
  • the agricultural work decision unit 206 decides, for example, to spray the pesticide on the identified abnormal area.
  • Agricultural work decision unit 206 may decide to spray the pesticide on the identified anomalous area.
  • the agricultural work determination unit 206 may determine the agricultural work to be performed on the agricultural land 50 according to the environment of the agricultural land 50. For example, the agricultural work determination unit 206 determines the amount of water and the amount of fertilizer to be sprayed on the agricultural land 50 according to the temperature of the agricultural land 50. The agricultural work determination unit 206 may determine the amount of water and the amount of fertilizer to be sprayed on the agricultural land 50 according to the humidity of the agricultural land 50.
  • Agricultural work decision unit 206 may decide to cultivate the agricultural land 50 before starting farming on the agricultural land 50. After cultivating the agricultural land 50, the agricultural work determination unit 206 may decide to spray the seeds on the agricultural land 50 or to plant seedlings on the agricultural land 50.
  • the model generation unit 208 uses a plurality of sensor information stored in the storage unit 202 and the growth state of the crop as teacher data, and determines the growth state of the crop of the farmland 50 corresponding to the sensor information received by the information reception unit 204. Generate an estimation model to be estimated by machine learning. The model generation unit 208 stores the generated estimation model in the storage unit 202.
  • the model generation unit 208 generates an estimation model using, for example, a plurality of sensor information when a crop has been grown in the past on the agricultural land 50 and the growth result of the crop.
  • the storage unit 202 stores, for example, the sensor information obtained by observing the crop and the growth state indicating whether the growth of the crop is normal or abnormal in association with each other. Whether the growth of the crop is normal or abnormal is registered, for example, by a manager or the like who has managed the agricultural work in the past.
  • the model generation unit 208 uses the sensor information when the growth state is normal and the sensor information when the growth state is abnormal, and the growth state of the crop is normal from the newly acquired sensor information. You may generate an estimation model that can estimate whether it becomes abnormal or abnormal. As the sensor information for observing the crop, for example, the captured image information of the crop may be used.
  • the model generation unit 208 uses, for example, image information of a plurality of crops when the crops were grown in the past and the growth state indicating whether the growth of the crops was normal or abnormal as teacher data.
  • the model generation unit 208 for example, provides teacher data on the colors of the plurality of crops identified from the captured image information of the plurality of crops when the crops were grown in the past and the growth state indicating whether the growth of the crops was normal or abnormal. Used as.
  • the model generation unit 208 uses the amount of change in the color of the crop when the growth state is normal as teacher data of the growth state of the crop when the growth state is normal.
  • the model generation unit 208 uses the amount of change in the color of the crop when the growth state is abnormal as teacher data of the growth state of the crop when the growth state is abnormal.
  • the model generation unit 208 uses as teacher data the sizes of the plurality of crops identified from the captured image information of the plurality of crops when the crops were grown in the past and the growth state indicating whether the growth of the crops was normal or abnormal. You may use it. For example, the model generation unit 208 uses the amount of change in the size of the crop when the growth state is normal as teacher data of the growth state of the crop when the growth state is normal. The model generation unit 208 uses the amount of change in the size of the crop when the growth state is abnormal as teacher data of the growth state of the crop when the growth state is abnormal.
  • the agricultural work determination unit 206 uses the estimation model generated by the model generation unit 208 from the sensor information received by the information reception unit 204 to determine the growth state of the crops of the agricultural land 50 corresponding to the sensor information received by the information reception unit 204. By estimating, the growth state of the crop may be specified. For example, the agricultural work determination unit 206 uses the estimation model generated by the model generation unit 208 from the captured image information of the agricultural land 50 received by the information receiving unit 204, and the growth state of the agricultural product corresponding to the captured image information is normal. By estimating whether it becomes abnormal or abnormal, the growth state of the crop is identified.
  • the mobile control information generation unit 210 generates mobile control information that controls the mobile.
  • the mobile control information generation unit 210 generates, for example, mobile control information for controlling the unmanned aerial vehicle 400.
  • the mobile control information generation unit 210 generates, for example, mobile control information for controlling the agricultural machine 500.
  • the moving object control information includes, for example, information for controlling at least one of the flight speed, flight direction, and flight altitude of the unmanned aerial vehicle 400.
  • the moving body control information includes, for example, information for controlling at least one of the traveling speed and traveling direction of the agricultural machine 500.
  • the mobile body control information generation unit 210 generates, for example, mobile body control information that controls the mobile body so as to execute the farm work determined by the farm work decision unit 206.
  • the mobile control information generation unit 210 generates, for example, mobile control information that controls the unmanned aerial vehicle 400 so as to spray water on the farmland 50.
  • the mobile control information generation unit 210 generates, for example, mobile control information that controls the unmanned aerial vehicle 400 so as to spray fertilizer on the farmland 50.
  • the mobile control information generation unit 210 generates, for example, mobile control information that controls the unmanned aerial vehicle 400 so as to spray pesticides on the farmland 50.
  • the mobile control information generation unit 210 generates, for example, mobile control information that controls the unmanned aerial vehicle 400 so as to spray the insecticide on the farmland 50.
  • the mobile control information generation unit 210 may generate mobile control information that controls the unmanned aerial vehicle 400 so as to disperse seeds on the farmland 50.
  • the mobile control information generation unit 210 generates, for example, mobile control information that controls the agricultural machine 500 so as to harvest the crops in the harvest area.
  • the mobile control information generation unit 210 generates, for example, mobile control information that controls the agricultural machine 500 so as to cultivate the agricultural land 50.
  • the mobile control information generation unit 210 may generate mobile control information that controls the agricultural machine 500 so as to plant seedlings on the farmland 50.
  • the mobile control information transmission unit 212 transmits the mobile control information generated by the mobile control information generation unit 210 to the mobile via the communication device 150.
  • the mobile control information transmission unit 212 transmits the mobile control information to, for example, the unmanned aerial vehicle 400.
  • the mobile control information transmission unit 212 transmits, for example, the mobile control information to the agricultural machine 500.
  • the communication device control unit 214 controls the communication device 150.
  • the communication device control unit 214 controls the communication device 150 by, for example, generating communication device control information for controlling the communication device 150 and transmitting the generated communication device control information to the communication device 150.
  • the communication device control unit 214 controls the communication device 150 so as to set the priority of communication between the terminal in the wireless communication area 122 and the control device 200, for example, by using the network slicing technique.
  • Network slicing technology is a technology that divides a network into slices, which are virtual logical networks, for each service or purpose.
  • the communication device control unit 214 sets the priority of communication between the terminal in the wireless communication area 122 and the control device 200, for example, according to the contract contents between the user of the wireless communication service and the communication carrier.
  • the communication device 150 is controlled so as to do so.
  • the communication device control unit 214 controls the communication device 150 so as to set the priority of communication between the terminal in the wireless communication area 122 and the control device 200 only while farming is being carried out on the farmland 50. ..
  • the communication device control unit 214 controls the communication device 150 so as to set a priority for communication between the sensor 300 and the control device 200, for example.
  • the communication device control unit 214 specifies, for example, the installation position of the sensor 300 based on the sensor-related information stored in the storage unit 202, and the sensor 300 and the control device 200 are arranged according to the specified installation position of the sensor 300.
  • the communication device 150 is controlled so as to set a priority for communication between.
  • the communication device control unit 214 controls the communication device 150 so as to set a priority for communication between the sensor 300 and the control device 200, for example, based on the abnormal region specified by the agricultural work determination unit 206. For example, when the agricultural work determination unit 206 identifies an abnormal area, the communication device control unit 214 sets the priority of communication between the sensor 300 installed in the abnormal area and the control device 200 in an area other than the abnormal area. The communication device 150 is controlled so as to be set higher than the communication between the sensor 300 and the control device 200.
  • the disaster occurrence area identification unit 216 specifies the disaster occurrence area in the agricultural land 50.
  • the disaster occurrence area identification unit 216 identifies the disaster occurrence area in the farmland 50, for example, based on the image information of the farmland 50 captured by the camera 116 mounted on the flying object 100, which is stored in the storage unit 202. do.
  • the disaster occurrence area specifying unit 216 identifies the disaster occurrence area in the farmland 50 by, for example, performing image analysis of the captured image information of the farmland 50 captured by the camera 116.
  • the disaster occurrence area identification unit 216 specifies, for example, a typhoon occurrence area in the agricultural land 50.
  • the disaster occurrence area identification unit 216 specifies, for example, a fire occurrence area in the agricultural land 50.
  • the disaster occurrence area identification unit 216 may specify an area where any other disaster has occurred in the agricultural land 50.
  • the disaster occurrence area specifying unit 216 may specify the disaster occurrence area in the agricultural land 50 by using the disaster information received by the information receiving unit 204 from the disaster information management device. For example, the disaster occurrence area specifying unit 216 sets the disaster occurrence area included in the disaster information as the disaster occurrence area.
  • the communication device control unit 214 may control the communication device 150 so as to set a priority for communication between the sensor 300 and the control device 200 based on the disaster occurrence area specified by the disaster occurrence area identification unit 216. .. For example, when the disaster occurrence area identification unit 216 identifies the disaster occurrence area, the communication device control unit 214 sets the priority of communication between the sensor 300 installed in the disaster occurrence area and the control device 200 to the disaster occurrence area.
  • the communication device 150 may be controlled so as to be set higher than the communication between the sensor 300 and the control device 200 installed in a region other than the above.
  • FIG. 3 is an explanatory diagram for explaining a process of setting the priority of communication between the terminal in the wireless communication area 122 and the control device 200.
  • a process for setting the priority of communication between the terminal in the wireless communication area 122 and the control device 200 by using the network slicing technique will be described.
  • the communication device control unit 214 has, for example, a slice 22 and a sensor used for communication between the terminal in the wireless communication area 122 and the control device 200, and communication between the unmanned aircraft 400 and the agricultural machine 500 and the control device 200.
  • the communication device 150 is controlled to be divided into three slices, a slice 24 used for communication between the 300 and the control device 200, and a slice 26 used for communication between the user terminal 600 and the control device 200.
  • the slice 22 corresponds to a URLLC (Ultra-Reliable and Low Latency Communications) service.
  • the slice 24 corresponds to the mMTC (massive Machine Type Communication) service.
  • the slice 26 corresponds to the eMBB (enhanced Mobile Broadband) service.
  • the communication device 150 divides the communication between the terminal in the wireless communication area 122 and the control device 200 into slices 22, slices 24, and slices 26 according to the control by the control device 200.
  • the communication device control unit 214 controls the communication device 150 so as to set the priority in the order of slice 22, slice 24, and slice 26.
  • the communication device 150 sets the priority in the order of the slice 22, the slice 24, and the slice 26 according to the control by the control device 200.
  • the communication between the unmanned aerial vehicle 400 and the agricultural machine 500 and the control device 200 is highly reliable and has little delay because the control device 200 is used to control the movement of the unmanned aerial vehicle 400 and the agricultural machine 500. Is required. Therefore, the control device 200 controls the communication device 150 so that the priority of the slice 22 is set higher than the priority of the other slices. As a result, even when the network between the terminal in the wireless communication area 122 and the control device 200 is congested, the control device 200 can be used for the quality of communication between the unmanned aerial vehicle 400 and the agricultural machine 500 and the control device 200. Can contribute to maintaining.
  • FIG. 4 is an explanatory diagram for explaining a process of setting a priority of communication between the sensor 300 and the control device 200.
  • a process for setting the priority of communication between the sensor 300 and the control device 200 according to the installation position of the sensor 300 will be described.
  • the agricultural work decision unit 206 identifies an abnormal region of the agricultural land 50 in which the crops of the agricultural land 50 are in an abnormal growing state.
  • the description will be continued assuming that the area 52 is specified as an abnormal area by the agricultural work determination unit 206.
  • the communication device control unit 214 sets the priority of communication between the sensor 300 installed in the area 52 and the control device 200 to the area of the agricultural land 50.
  • the communication device 150 is controlled so as to be set higher than the communication between the sensor 300 installed in the area other than 52 and the control device 200.
  • the communication device 150 controls the priority of communication between the sensor 300 installed in the area 52 and the control device 200 with the sensor 300 installed in an area other than the area 52 of the agricultural land 50 according to the control by the control device 200. Set higher than the communication with the device 200.
  • the control device 200 preferentially receives sensor information indicating the state of the abnormal area from the sensor 300 installed in the abnormal area in order to determine the farm work to be performed in the abnormal area. There is a need to. Therefore, the control device 200 sets the priority of communication between the sensor 300 installed in the abnormal area and the control device 200 to be higher than the communication between the sensor 300 installed in the area other than the abnormal area and the control device 200.
  • the communication device 150 is controlled so as to be set high. As a result, the control device 200 can preferentially receive the sensor information from the sensor 300 installed in the abnormal area and contribute to determining the farm work to be performed in the abnormal area.
  • the disaster occurrence area specifying unit 216 specifies the disaster occurrence area in the agricultural land 50.
  • the description will be continued assuming that the disaster occurrence area specifying unit 216 has specified that the area 54 is a disaster occurrence area.
  • the communication device control unit 214 sets the priority of communication between the sensor 300 installed in the area 54 and the control device 200 on the farmland.
  • the communication device 150 is controlled so as to be set higher than the communication between the sensor 300 installed in the area other than the area 54 of 50 and the control device 200.
  • the communication device 150 controls the priority of communication between the sensor 300 installed in the area 54 and the control device 200 with the sensor 300 installed in an area other than the area 54 of the agricultural land 50 according to the control by the control device 200. Set higher than the communication with the device 200.
  • the control device 200 When the disaster area exists in the agricultural land 50, the control device 200 needs to preferentially confirm the growth state of the crops in the disaster area. Therefore, the control device 200 sets the priority of communication between the sensor 300 installed in the disaster occurrence area and the control device 200 between the sensor 300 installed in the area other than the disaster occurrence area and the control device 200.
  • the communication device 150 is controlled so as to be set higher than the communication. As a result, the control device 200 can contribute to receiving sensor information from the sensor 300 installed in the disaster occurrence area and preferentially confirming the growth state of the crop in the disaster occurrence area.
  • FIG. 5 is an explanatory diagram for explaining an example of the processing flow of the control device 200.
  • a state in which the control device 200 does not receive sensor information indicating the state of the agricultural land 50 from the sensor 300 will be described as a start state.
  • the information receiving unit 204 receives the sensor information from the sensor 300 via the communication device 150.
  • the agricultural work determination unit 206 determines whether or not the harvest area exists in the agricultural land 50 based on the sensor information received by the information receiving unit 204. If the agricultural work determination unit 206 determines that the harvest area exists in the agricultural land 50, the process proceeds to S106. If the agricultural work determination unit 206 determines that the harvest area does not exist in the agricultural land 50, the process proceeds to S108.
  • the agricultural work decision unit 206 decides to harvest the crops in the harvest area.
  • the agricultural work determination unit 206 determines whether or not the area where the water content of the soil is insufficient exists in the agricultural land 50 based on the sensor information received by the information receiving unit 204. When the agricultural work determination unit 206 determines that the area where the water content of the soil is insufficient exists in the agricultural land 50, the process proceeds to S110. When the agricultural work determination unit 206 determines that the area where the water content of the soil is insufficient does not exist in the agricultural land 50, the process proceeds to S112.
  • the agricultural work decision unit 206 decides to spray water on the area where the water content of the soil is insufficient.
  • the agricultural work determination unit 206 determines whether or not there is a region in the agricultural land 50 in which the amount of fertilizer in the soil is insufficient, based on the sensor information received by the information receiving unit 204. When the agricultural work decision unit 206 determines that the area where the amount of fertilizer in the soil is insufficient exists in the agricultural land 50, the process proceeds to S114. If the agricultural work determination unit 206 determines that the area where the amount of fertilizer in the soil is insufficient does not exist in the agricultural land 50, the process proceeds to S116.
  • the agricultural work decision unit 206 decides to spray the fertilizer to the area where the amount of fertilizer in the soil is insufficient.
  • the agricultural work determination unit 206 determines whether or not the area where the pest exists exists in the agricultural land 50 based on the sensor information received by the information receiving unit 204. If the agricultural work determination unit 206 determines that the area where the pest is present exists in the agricultural land 50, the process proceeds to S118. If the agricultural work determination unit 206 determines that the area where the pest is present does not exist in the agricultural land 50, the process proceeds to S120.
  • the agricultural work decision unit 206 decides to spray the insecticide on the area where the pest is present.
  • the mobile control information generation unit 210 generates mobile control information so as to execute the farm work determined by the farm work determination unit 206 to be executed between S104 and S118.
  • the mobile control information transmission unit 212 transmits the mobile control information generated by the mobile control information generation unit 210 to the mobile via the communication device 150.
  • the mobile body performs farm work according to the mobile body control information received from the control device 200. After that, the process ends. If there is no farm work determined by the farm work determination unit 206 to be executed between S104 and S118 in S120, the process ends without the mobile control information generation unit 210 generating the mobile control information.
  • FIG. 6 schematically shows an example of a hardware configuration of a computer 1200 that functions as a control device 200.
  • a program installed on the computer 1200 causes the computer 1200 to function as one or more "parts" of the device according to the embodiment, or causes the computer 1200 to perform an operation associated with the device according to the embodiment or the one or the like.
  • a plurality of "parts" can be executed and / or a computer 1200 can be made to execute a process according to the above embodiment or a stage of the process.
  • Such a program may be run by the CPU 1212 to cause the computer 1200 to perform certain operations associated with some or all of the blocks of the flowcharts and block diagrams described herein.
  • the computer 1200 includes a CPU 1212, a RAM 1214, and a graphic controller 1216, which are interconnected by a host controller 1210.
  • the computer 1200 also includes input / output units such as a communication interface 1222, a storage device 1224, a DVD drive 1226, and an IC card drive, which are connected to the host controller 1210 via the input / output controller 1220.
  • the DVD drive 1226 may be a DVD-ROM drive, a DVD-RAM drive, or the like.
  • the storage device 1224 may be a hard disk drive, a solid state drive, or the like.
  • the computer 1200 also includes legacy input / output units such as the ROM 1230 and keyboard 1242, which are connected to the input / output controller 1220 via an input / output chip 1240.
  • the CPU 1212 operates according to the programs stored in the ROM 1230 and the RAM 1214, thereby controlling each unit.
  • the graphic controller 1216 acquires the image data generated by the CPU 1212 in a frame buffer or the like provided in the RAM 1214 or itself so that the image data is displayed on the display device 1218.
  • the communication interface 1222 communicates with other electronic devices via the network.
  • the storage device 1224 stores programs and data used by the CPU 1212 in the computer 1200.
  • the DVD drive 1226 reads the program or data from the DVD-ROM 1227 or the like and provides it to the storage device 1224.
  • the IC card drive reads the program and data from the IC card and / or writes the program and data to the IC card.
  • the ROM 1230 stores in it a boot program or the like executed by the computer 1200 at the time of activation, and / or a program depending on the hardware of the computer 1200.
  • the input / output chip 1240 may also connect various input / output units to the input / output controller 1220 via a USB port, a parallel port, a serial port, a keyboard port, a mouse port, and the like.
  • the program is provided by a computer-readable storage medium such as a DVD-ROM1227 or an IC card.
  • the program is read from a computer-readable storage medium, installed in a storage device 1224, RAM 1214, or ROM 1230, which is also an example of a computer-readable storage medium, and executed by the CPU 1212.
  • the information processing described in these programs is read by the computer 1200 and provides a link between the program and the various types of hardware resources described above.
  • the device or method may be configured to implement the operation or processing of information in accordance with the use of the computer 1200.
  • the CPU 1212 executes a communication program loaded in the RAM 1214, and performs communication processing with respect to the communication interface 1222 based on the processing described in the communication program. You may order.
  • the communication interface 1222 reads and reads transmission data stored in a transmission buffer area provided in a recording medium such as a RAM 1214, a storage device 1224, a DVD-ROM 1227, or an IC card. The data is transmitted to the network, or the received data received from the network is written to the reception buffer area or the like provided on the recording medium.
  • the CPU 1212 makes it possible for the RAM 1214 to read all or necessary parts of a file or database stored in an external recording medium such as a storage device 1224, a DVD drive 1226 (DVD-ROM1227), an IC card, etc., on the RAM 1214. Various types of processing may be performed on the data of. The CPU 1212 may then write back the processed data to an external recording medium.
  • an external recording medium such as a storage device 1224, a DVD drive 1226 (DVD-ROM1227), an IC card, etc.
  • the CPU 1212 describes various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, and information retrieval described in various parts of the present disclosure with respect to the data read from the RAM 1214. Various types of processing may be performed, including / replacement, etc., and the results are written back to the RAM 1214. Further, the CPU 1212 may search for information in a file, a database, or the like in the recording medium. For example, when a plurality of entries each having an attribute value of the first attribute associated with the attribute value of the second attribute are stored in the recording medium, the CPU 1212 is the first of the plurality of entries.
  • the attribute value of the attribute of is searched for the entry that matches the specified condition, the attribute value of the second attribute stored in the entry is read, and the attribute value of the second attribute is changed to the first attribute that satisfies the predetermined condition. You may get the attribute value of the associated second attribute.
  • the program or software module described above may be stored on a computer 1200 or in a computer-readable storage medium near the computer 1200. Further, a recording medium such as a hard disk or RAM provided in a dedicated communication network or a server system connected to the Internet can be used as a computer-readable storage medium, whereby the program can be transferred to the computer 1200 via the network. offer.
  • a recording medium such as a hard disk or RAM provided in a dedicated communication network or a server system connected to the Internet can be used as a computer-readable storage medium, whereby the program can be transferred to the computer 1200 via the network. offer.
  • the blocks in the flowchart and the block diagram in the present embodiment may represent the stage of the process in which the operation is executed or the "part" of the device having a role of executing the operation.
  • Specific steps and "parts" are supplied with a dedicated circuit, a programmable circuit supplied with computer-readable instructions stored on a computer-readable storage medium, and / or with computer-readable instructions stored on a computer-readable storage medium. It may be implemented by the processor.
  • Dedicated circuits may include digital and / or analog hardware circuits, and may include integrated circuits (ICs) and / or discrete circuits.
  • Programmable circuits include logical products, logical sums, exclusive logical sums, negative logical products, negative logical sums, and other logical operations, such as, for example, field programmable gate arrays (FPGAs), programmable logic arrays (PLAs), and the like. , Flip-flops, registers, and reconfigurable hardware circuits, including memory elements.
  • the computer readable storage medium may include any tangible device capable of storing instructions executed by the appropriate device, so that the computer readable storage medium having the instructions stored therein may be in a flow chart or block diagram. It will be equipped with a product that contains instructions that can be executed to create means for performing the specified operation.
  • Examples of the computer-readable storage medium may include an electronic storage medium, a magnetic storage medium, an optical storage medium, an electromagnetic storage medium, a semiconductor storage medium, and the like. More specific examples of computer-readable storage media include floppy (registered trademark) disks, diskettes, hard disks, random access memory (RAM), read-only memory (ROM), and erasable programmable read-only memory (EPROM or flash memory).
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • SRAM Static Random Access Memory
  • CD-ROM Compact Disc Read Only Memory
  • DVD Digital Versatile Disc
  • Blu-ray® Disc Memory Stick
  • Integrated circuit cards and the like may be included.
  • Computer-readable instructions include assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcodes, firmware instructions, state-setting data, or Smalltalk®, JAVA®, C ++, etc.
  • ISA instruction set architecture
  • Object-oriented programming languages and either source code or object code written in any combination of one or more programming languages, including traditional procedural programming languages such as the "C" programming language or similar programming languages. May include.
  • Computer-readable instructions are used to generate means for a general-purpose computer, a special-purpose computer, or the processor of another programmable data processing device, or a programmable circuit, to perform an operation specified in a flowchart or block diagram.
  • Examples of processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers and the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Economics (AREA)
  • Forests & Forestry (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

農地の状態を検出するセンサから、成層圏プラットフォームとして機能する飛行体に搭載されて、ビームを照射することによって無線通信エリアを形成して無線通信エリア内のセンサに無線通信サービスを提供する通信装置を介して、農地の状態を示すセンサ情報を受信する情報受信部と、センサ情報に基づいて、農地で実行する農作業を決定する農作業決定部と、農作業決定部が決定した農作業を実行するよう移動体を制御する移動体制御情報を生成する移動体制御情報生成部と、通信装置を介して、移動体に移動体制御情報を送信する移動制御情報送信部とを備える、制御装置を提供する。

Description

制御装置、プログラム、システム、及び方法
 本発明は、制御装置、プログラム、システム、及び方法に関する。
 特許文献1には、農業用の無人航空機が記載されている。
 [先行技術文献]
 [特許文献]
 [特許文献1]特開2018-198609号公報
一般的開示
 本発明の一実施態様によれば、制御装置が提供される。制御装置は、農地の状態を検出するセンサから、成層圏プラットフォームとして機能する飛行体に搭載されて、ビームを照射することによって無線通信エリアを形成して上記無線通信エリア内の上記センサに無線通信サービスを提供する通信装置を介して、上記農地の状態を示すセンサ情報を受信する情報受信部を備えてよい。制御装置は、上記センサ情報に基づいて、上記農地で実行する農作業を決定する農作業決定部を備えてよい。制御装置は、上記農作業決定部が決定した上記農作業を実行するよう移動体を制御する移動体制御情報を生成する移動体制御情報生成部を備えてよい。制御装置は、上記通信装置を介して、上記移動体に上記移動体制御情報を送信する移動制御情報送信部を備えてよい。
 上記情報受信部は、上記農地に設置された上記センサから上記センサ情報を受信してよい。上記農作業決定部は、上記センサ情報に基づいて特定した上記農地の農作物の生育状態に基づいて、上記農作業を決定してよい。上記制御装置は、上記情報受信部が受信した上記センサ情報と、上記農作業決定部が上記センサ情報に基づいて特定した上記農作物の上記生育状態とを対応付けて格納する格納部を備えてよい。上記制御装置は、上記格納部に格納されている複数の上記センサ情報及び上記農作物の上記生育状態を教師データとして用いて、上記情報受信部が受信した上記センサ情報から、上記情報受信部が受信した上記センサ情報に対応する上記農作物の上記生育状態を推定する推定モデルを機械学習により生成するモデル生成部を備えてよい。上記農作業決定部は、上記情報受信部が受信した上記センサ情報から、上記推定モデルを用いて、上記情報受信部が受信した上記センサ情報に対応する上記農作物の上記生育状態を推定することによって、上記農作物の上記生育状態を特定してよい。
 上記制御装置は、上記通信装置を制御する通信装置制御部を備えてよい。上記通信装置制御部は、上記センサと上記制御装置との間の通信に優先度を設定するよう上記通信装置を制御してよい。上記通信装置制御部は、上記格納部に格納されているセンサ関連情報に基づいて上記センサの設置位置を特定し、特定した上記センサの上記設置位置に応じて、上記センサと上記制御装置との間の通信に上記優先度を設定するよう上記通信装置を制御してよい。上記農作業決定部は、上記農地のうち、上記農地の農作物が収穫可能な生育状態である収穫領域を特定し、特定した上記収穫領域内の上記農作物を収穫することを決定してよい。上記農作業決定部は、上記農地のうち、上記農地の農作物が異常な生育状態である異常領域を特定し、特定した上記異常領域で上記農作業を実行することを決定してよい。上記制御装置は、上記農作業決定部が上記異常領域を特定した場合、上記異常領域に設置された上記センサと上記制御装置との間の通信の優先度を、上記異常領域以外の領域に設置された上記センサと上記制御装置との間の通信よりも高く設定するよう上記通信装置を制御する通信装置制御部を備えてよい。
 上記情報受信部は、上記飛行体に搭載されたカメラから、上記カメラによって撮像された上記農地の撮像画像情報を受信してよい。上記農作業決定部は、上記撮像画像情報に基づいて、上記農作業を決定してよい。上記制御装置は、上記飛行体に搭載されたカメラによって撮像された上記農地の撮像画像情報に基づいて、上記農地における災害発生領域を特定する災害発生領域特定部を備えてよい。上記制御装置は、上記災害発生領域特定部が上記災害発生領域を特定した場合、上記災害発生領域に設置された上記センサと上記制御装置との間の通信の優先度を、上記災害発生領域以外の領域に設置された上記センサと上記制御装置との間の通信よりも高く設定するよう上記通信装置を制御する通信装置制御部を備えてよい。上記農作業決定部は、上記センサ情報に基づいて特定した上記農地の土壌の状態に基づいて、上記農作業を決定してよい。上記制御装置は、上記飛行体に搭載されてよい。上記制御装置は、上記通信装置を制御する通信装置制御部を備えてよい。上記通信装置制御部は、ネットワークスライシング技術を用いて、上記無線通信エリア内の端末と上記制御装置との間の通信の優先度を設定するよう上記通信装置を制御してよい。上記通信装置制御部は、上記無線通信サービスの利用者と通信事業者との間の契約内容に応じて、上記無線通信エリア内の上記端末と上記制御装置との間の通信の上記優先度を設定するよう上記通信装置を制御してよい。
 本発明の一実施態様によれば、コンピュータを、上記制御装置として機能させるためのプログラムが提供される。
 本発明の一実施態様によれば、システムが提供される。システムは、制御装置を備えてよい。システムは、成層圏プラットフォームとして機能する飛行体を備えてよい。上記制御装置は、農地の状態を検出するセンサから、上記飛行体に搭載されて、ビームを照射することによって無線通信エリアを形成して上記無線通信エリア内の上記センサに無線通信サービスを提供する通信装置を介して、上記農地の状態を示すセンサ情報を受信する情報受信部を有してよい。上記制御装置は、上記センサ情報に基づいて、上記農地で実行する農作業を決定する農作業決定部を有してよい。上記制御装置は、上記農作業決定部が決定した上記農作業を実行するよう移動体を制御する移動体制御情報を生成する移動体制御情報生成部を有してよい。上記制御装置は、上記通信装置を介して、上記移動体に上記移動体制御情報を送信する移動制御情報送信部を有してよい。
 本発明の一実施態様によれば、コンピュータによって実行される方法が提供される。方法は、農地の状態を検出するセンサから、成層圏プラットフォームとして機能する飛行体に搭載されて、ビームを照射することによって無線通信エリアを形成して上記無線通信エリア内の上記センサに無線通信サービスを提供する通信装置を介して、上記農地の状態を示すセンサ情報を受信する情報受信段階を備えてよい。方法は、上記センサ情報に基づいて、上記農地で実行する農作業を決定する農作業決定段階を備えてよい。方法は、上記農作業決定段階が決定した上記農作業を実行するよう移動体を制御する移動体制御情報を生成する移動体制御情報生成段階を備えてよい。方法は、上記通信装置を介して、上記移動体に上記移動体制御情報を送信する移動制御情報送信段階を備えてよい。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
システム10の一例を概略的に示す。 制御装置200の機能構成の一例を概略的に示す。 無線通信エリア122内の端末と制御装置200との通信の優先度を設定する処理を説明するための説明図である。 センサ300と制御装置200との通信の優先度を設定する処理を説明するための説明図である。 制御装置200の処理の流れの一例を説明するための説明図である。 制御装置200として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。
 大規模農場では大人数での作業が必要である。地上局を用いて大規模農場での作業を自動化した場合、地上局では広大な農場全てをカバーすることが難しい。また、衛星であれば農場全てのエリア化は簡単だが、比較的大きな遅延量が存在するため、リアルタイム性が求められるドローンや農耕器具の自動運転には用いることができない。それに対して、本実施形態に係るシステム10は、HAPS(High Altitude Platform Station)を用いることにより、広大な農場全てをカバーする。また、本実施形態に係るシステム10は、5Gネットワークスライシング技術により、リアルタイム性が求められるドローンや農耕器具の自動運転を可能とする。さらに、本実施形態に係るシステム10は、IoT(Internet of Things)センサやAI(Artificial Intelligence)技術を活用した大規模農場の管理方法を提供する。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲に係る発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、システム10の一例を概略的に示す。本実施形態に係るシステム10は、飛行体100及び制御装置200を備える。システム10は、センサ300を備えてよい。システム10は、無人航空機400を備えてよい。飛行体100は、農業機械500を備えてよい。システム10は、ゲートウェイ40を備えてよい。システム10は、ユーザ端末600を備えてよい。
 システム10は、農作業に貢献する技術を提供する。システム10は、特に、無線基地局が地上に設置されていないルーラルエリアの大規模農場で移動体を制御して農作業を実行する場合に効果を発揮する。図1では、ルーラルエリアの大規模農場で移動体を制御して農作業を実行する場合を主に例に挙げて説明する。
 飛行体100は、主翼部101、本体部102、プロペラ104、太陽電池パネル110、アンテナ112、アンテナ114、及びカメラ116を有する。本体部102は、通信装置150と、不図示のバッテリ及び飛行制御装置とを含む。バッテリは、太陽電池パネル110によって発電された電力を蓄電する。飛行制御装置は、飛行体100の飛行を制御する。飛行制御装置は、例えば、バッテリに蓄電された電力を用いてプロペラ104を回転させることによって、飛行体100を飛行させる。
 通信装置150は、アンテナ112を用いてビームを照射することによって農地50に無線通信エリア122を形成して、無線通信エリア122内のユーザ650が所有するユーザ端末600に無線通信サービスを提供する。通信装置150は、アンテナ112を用いて、無線通信エリア122内のユーザ端末600との間でサービスリンクを確立してよい。通信装置150は、アンテナ114を用いて、地上のゲートウェイ40との間でフィーダリンクを確立してよい。通信装置150は、ゲートウェイ40及びネットワーク20を介して、制御装置200と通信する。通信装置150と飛行制御装置とは一体であってもよい。
 ネットワーク20は、例えば、インターネットを含む。ネットワーク20は、通信事業者によって提供されるコアネットワークを含んでもよい。コアネットワークは、例えば、5G(5th Generation)通信システムに準拠する。コアネットワークは、6G(6th Generation)通信システム以降の移動体通信システムに準拠してもよい。コアネットワークは、3G(3rd Generation)通信システムに準拠してもよい。コアネットワークは、LTE(Long Term Evolution)通信システムに準拠してもよい。
 飛行体100は、例えば、成層圏を飛行してユーザ端末600に無線通信サービスを提供する。飛行体100は、成層圏プラットフォームとして機能してよい。
 飛行体100は、例えば、カバー対象のエリアの上空を巡回しながら、無線通信エリア122によって当該エリアをカバーする。また、飛行体100は、例えば、カバー対象のエリアの一部を無線通信エリア122によってカバーしながら、エリアの上空を移動することによって、領域の全体をカバーする。
 飛行体100は、飛行体100の位置情報を取得する機能を有する。飛行体100は、例えば、GNSS(Global Navigation Satellite System)機能を用いて、飛行体100の位置情報を取得する。飛行体100は、通信装置150を介して、取得した飛行体100の位置情報を制御装置200に送信する。
 カメラ116は、農地50を撮像可能なカメラであればどのようなカメラであってもよい。カメラ116は、例えば、可視光カメラである。カメラ116は、例えば、赤外線カメラである。カメラ116は、サーマルカメラであってもよい。
 センサ300は、農地50の状態を検出するセンサであればどのようなセンサであってもよい。センサ300は、例えば、カメラである。カメラは、例えば、可視光カメラである。カメラは、例えば、赤外線カメラである。カメラは、サーマルカメラであってもよい。
 センサ300は、例えば、農地50の土壌の水分量を検出する水分計である。センサ300は、例えば、農地50の土壌の肥料の量を検出するEC(Electrical Conductivity)計である。センサ300は、例えば、農地50の気温を検出する温度計である。センサ300は、農地50の湿度を検出する湿度計であってもよい。
 センサ300は、例えば、農地50に設置される。センサ300がカメラである場合、センサ300は、飛行体100に設置されてもよい。カメラ116は、センサ300の一例であってよい。
 センサ300は、通信装置150を介して、検出した農地50の状態を示すセンサ情報を制御装置200に送信する。センサ300は、例えば、断続的にセンサ情報を制御装置200に送信する。制御装置200は、定期的にセンサ情報を制御装置200に送信してもよい。
 無人航空機400は、農作業を実行する機能を有する。無人航空機400は、例えば、農地50に水を散布する機能を有する。無人航空機400は、例えば、農地50に肥料を散布する機能を有する。無人航空機400は、例えば、農地50に農薬を散布する機能を有する。無人航空機400は、例えば、農地50に殺虫剤を散布する機能を有する。無人航空機400は、農地50に種を散布する機能を有してもよい。
 無人航空機400は、不図示のバッテリを有する。無人航空機400は、例えば、バッテリに蓄電された電力を用いて飛行する。無人航空機400は、例えば、通信装置150を介して、制御装置200と無線通信する機能を有する。
 無人航空機400は、いわゆるドローンであってよい。無人航空機400は、移動体の一例であってよい。
 農業機械500は、農作業を実行する機能を有する。農業機械500は、例えば、農地50を耕す機能を有する。農業機械500は、例えば、農地50に苗植えをする機能を有する。農業機械500は、例えば、農地50の農作物を収穫する機能を有する。農業機械500は、例えば、通信装置150を介して、制御装置200と無線通信する機能を有する。
 農業機械500は、農作業を実行する機能を有する機械であればどのような機械であってもよい。農業機械500は、例えば、トラクターである。農業機械500は、例えば、コンバインである。農業機械500は、田植機であってもよい。農業機械500は、移動体の一例であってよい。
 ユーザ端末600は、通信装置150を介して制御装置200と通信可能な通信端末であればどのような端末であってもよい。例えば、ユーザ端末600は、スマートフォン等の携帯電話、タブレット端末及びウェアラブル端末等である。
 制御装置200は、移動体を制御する。制御装置200は、例えば、無人航空機400を制御する。制御装置200は、例えば、農業機械500を制御する。
 例えば、制御装置200は、センサ300から、通信装置150を介して、農地50の状態を示すセンサ情報を受信する。制御装置200は、受信したセンサ情報に基づいて、農地50で実行する農作業を決定する。制御装置200は、通信装置150を介して、決定した農作業を実行するよう移動体を制御する。
 制御装置200は、例えば、地上に設置される。制御装置200は、例えば、ネットワーク20上に設置される。制御装置200は、飛行体100に搭載されてもよい。
 従来のシステムにおいて、制御装置は、地上に設置された無線基地局を介して、農地内の端末から情報を受信したり、農作業を実行するよう農地内の無人航空機を制御したりしていた。このため、従来のシステムでは、地上の無線基地局が設置されていないルーラルエリアの農場で無人航空機を制御して農作業を実行する場合、地上の無線基地局が新たに設置される必要があった。特に、直径が数十km規模の大規模農場で無人航空機を制御して農作業を実行する場合、地上の無線基地局のカバーエリアが直径約数kmなので、大規模農場全体をカバーするカバーエリアを形成するためには、多くの地上の無線基地局が新たに設置される必要があった。したがって、従来のシステムでは、ルーラルエリアの農場で無人航空機を制御して農作業を実行する場合、多くの費用が必要であった。また、従来のシステムにおいて、地上の無線基地局がルーラルエリアの農場に設置されていない場合、通信衛星を介した通信が利用される場合もあった。しかしながら、通信衛星を介した通信は遅延時間が長いので、通信衛星を介した通信は、無人航空機を制御するために用いることができなかった。
 これに対して、本実施形態に係るシステム10によれば、制御装置200は、成層圏プラットフォームとして機能する飛行体100の通信装置150を介して、センサ300からセンサ情報を受信する。これにより、本実施形態に係るシステム10は、無線基地局を新たに地上に設置することなく、センサ300からセンサ情報を受信できる。特に、成層圏を飛行する飛行体100に備えられた通信装置150は、例えば、直径約200kmをカバーすることができるので、直径が数十km規模の大規模農場全体をカバーするカバーエリアを1機の飛行体100で形成できる。加えて、通信装置150と地上の端末との間の通信のRTT(Round Trip Time)は、例えば、約0.6msであり、RTTが約400msである通信衛星と地上の端末との間の通信より短い。これにより、通信装置150を介した通信は、無人航空機400等の移動体を制御するために用いることができる。したがって、本実施形態に係るシステム10は、ルーラルエリアの農地で移動体を制御して農作業を実行する場合、従来のシステムと比較して少ない費用で農作業を実行できる。
 図2は、制御装置200の機能構成の一例を概略的に示す。制御装置200は、格納部202、情報受信部204、農作業決定部206、モデル生成部208、移動体制御情報生成部210、移動体制御情報送信部212、通信装置制御部214、及び災害発生領域特定部216を有する。なお、制御装置200がこれらの全ての構成を含むことは必須とは限らない。
 格納部202は、各種情報を格納する。格納部202は、例えば、センサ300に関連するセンサ関連情報を格納する。センサ関連情報は、例えば、センサ300のセンサIDを含む。センサ関連情報は、センサ300の設置位置を示す情報を含んでもよい。
 情報受信部204は、各種情報を受信する。情報受信部204は、例えば、センサ300から、通信装置150を介して、センサ情報を受信する。情報受信部204は、例えば、農地50に設置されたセンサ300から、通信装置150を介して、センサ情報を受信する。情報受信部204は、受信したセンサ情報を格納部202に格納する。
 センサ情報は、例えば、農地50の撮像画像情報を含む。センサ情報は、例えば、農地50の土壌の水分量を示す情報を含む。センサ情報は、例えば、農地50の土壌の肥料の量を示す情報を含む。センサ情報は、例えば、農地50の気温を示す情報を含む。センサ情報は、例えば、農地50の湿度を示す情報を含む。センサ情報は、センサ300のセンサIDを含んでもよい。
 情報受信部204は、飛行体100から、通信装置150を介して、飛行体100に関連する飛行体関連情報を受信してもよい。飛行体関連情報は、例えば、飛行体100に搭載されたカメラ116によって撮像された農地50の撮像画像情報を含む。飛行体関連情報は、例えば、飛行体100の位置情報を含む。飛行体関連情報は、飛行体100の飛行体IDを含んでもよい。情報受信部204は、受信した飛行体関連情報を格納部202に格納する。飛行体関連情報は、センサ情報の一例であってよい。
 情報受信部204は、外部装置から、農地50の環境に関する環境情報を受信してもよい。情報受信部204は、受信した環境情報を格納部202に格納する。
 情報受信部204は、例えば、農地50の天気に関する天気情報を管理する天気情報管理装置から、農地50の天気情報を受信する。天気情報は、農地50の気温を示す気温情報を含んでよい。天気情報は、農地50の湿度を示す湿度情報を含んでもよい。
 情報受信部204は、農地50内で発生した災害に関する災害情報を管理する災害情報管理装置から、災害情報を受信してもよい。災害情報は、例えば、災害が発生した領域を示す情報を含む。災害情報は、農地50内で発生した災害の種別を示す災害種別情報を含んでもよい。災害種別情報は、例えば、農地50内で発生した災害が台風であることを示す。災害種別情報は、例えば、農地50内で発生した災害が火災であることを示す。災害種別情報は、農地50内で発生した災害がその他の任意の災害であることを示してもよい。
 農作業決定部206は、農地50で実行する農作業を決定する。農作業決定部206は、例えば、情報受信部204が受信したセンサ情報に基づいて、農地50で実行する農作業を決定する。
 農作業決定部206は、例えば、センサ情報に基づいて、農地50の農作物の生育状態を特定する。農作業決定部206は、情報受信部204が受信したセンサ情報と、センサ情報に基づいて特定した農地50の農作物の生育状態とを対応付けて格納部202に格納してよい。
 農作業決定部206は、例えば、センサ情報に含まれる農地50の撮像画像情報に基づいて、農地50の農作物の生育状態を特定する。農作業決定部206は、例えば、農地50に設置されたカメラによって撮像された農地50の撮像画像情報に基づいて、農地50の農作物の生育状態を特定する。農作業決定部206は、飛行体100に搭載されたカメラ116によって撮像された農地50の撮像画像情報に基づいて、農地50の農作物の生育状態を特定してもよい。
 農作業決定部206は、例えば、農地50の撮像画像情報を画像解析することによって、農地50の農作物の生育状態を特定する。農作業決定部206は、例えば、農地50の農作物の色を特定することによって、農作物の生育状態を特定する。農作業決定部206は、例えば、農地50の農作物の大きさを特定することによって、農地50の農作物の生育状態を特定する。農作業決定部206は、例えば、害虫の存在の有無を特定することによって、農地50の農作物の生育状態を特定してもよい。
 農作業決定部206は、特定した農地50の農作物の生育状態に基づいて、農作業を決定する。農作業決定部206は、例えば、農地50に水を散布することを決定する。農作業決定部206は、例えば、農地50に肥料を散布することを決定する。農作業決定部206は、農地50に農薬を散布することを決定する。農作業決定部206は、農地50に殺虫剤を散布することを決定してもよい。
 農作業決定部206は、情報受信部204が受信したセンサ情報に基づいて、農地50の土壌の状態を特定してもよい。農作業決定部206は、例えば、センサ情報に含まれる農地50の土壌の水分量を示す情報を用いて農地50の土壌の水分量を特定することによって、農地50の土壌の状態を特定する。農作業決定部206は、センサ情報に含まれる農地50の土壌の肥料の量を示す情報を用いて農地50の土壌の肥料の量を特定することによって、農地50の土壌の状態を特定してもよい。
 農作業決定部206は、特定した農地50の土壌の状態に基づいて、農作業を決定してもよい。農作業決定部206は、例えば、特定した農地50の土壌の水分量が予め定められた土壌の水分量より少ない場合、農地50に水を散布することを決定する。農作業決定部206は、特定した農地50の土壌の肥料の量が予め定められた肥料の量より少ない場合、農地50に肥料を散布することを決定してもよい。
 農作業決定部206は、例えば、農地50のうち、農地50の農作物が収穫可能な生育状態である収穫領域を特定する。農作業決定部206は、例えば、特定した農地50の農作物の生育状態に基づいて、収穫領域を特定する。農作業決定部206は、例えば、農作物の色が予め定められた色である領域を、収穫領域として特定する。農作業決定部206は、農作物の大きさが予め定められた大きさより大きい領域を、収穫領域として特定してもよい。農作業決定部206は、収穫領域を特定した場合、特定した収穫領域内の農作物を収穫することを決定する。
 農作業決定部206は、農地50のうち、農地50の農作物が異常な生育状態である異常領域を特定する。農作業決定部206は、例えば、特定した農地50の農作物の生育状態に基づいて、異常領域を特定する。
 農作業決定部206は、例えば、農作物の色が予め定められた色である領域を、異常領域として特定する。農作業決定部206は、害虫が存在する領域を、異常領域として特定してもよい。
 農作業決定部206は、異常領域を特定した場合、特定した異常領域で農作業を実行することを決定する。農作業決定部206は、例えば、特定した異常領域に水を散布することを決定する。農作業決定部206は、例えば、特定した異常領域に肥料を散布することを決定する。農作業決定部206は、例えば、特定した異常領域に農薬を散布することを決定する。農作業決定部206は、特定した異常領域に殺虫剤を散布することを決定してもよい。
 農作業決定部206は、農地50の環境に応じて、農地50で実行する農作業を決定してもよい。例えば、農作業決定部206は、農地50の気温に応じて、農地50に散布する水の量や肥料の量を決定する。農作業決定部206は、農地50の湿度に応じて、農地50に散布する水の量や肥料の量を決定してもよい。
 農作業決定部206は、農地50で農作を開始する前に、農地50を耕すことを決定してもよい。農作業決定部206は、農地50を耕した後に、農地50に種を散布することや農地50に苗植えをすることを決定してもよい。
 モデル生成部208は、格納部202に格納されている複数のセンサ情報及び農作物の生育状態を教師データとして用いて、情報受信部204が受信したセンサ情報に対応する農地50の農作物の生育状態を推定する推定モデルを機械学習により生成する。モデル生成部208は、生成した推定モデルを格納部202に格納する。
 モデル生成部208は、例えば、農地50において過去に農作物を生育させたときの、複数のセンサ情報と、農作物の生育結果とを用いて推定モデルを生成する。格納部202は、例えば、農作物を観察したセンサ情報と、農作物の生育が正常であったか異常であったかを示す生育状態とを対応付けて格納する。農作物の生育が正常であったか異常であったかは、例えば、過去に農作業を管理した管理者等によって登録される。モデル生成部208は、生育状態が正常であった場合のセンサ情報と、生育状態が異常であった場合のセンサ情報とを用いて、新たに取得したセンサ情報から、農作物の生育状態が正常になるか異常になるかを推定可能な推定モデルを生成してよい。農作物を観察したセンサ情報として、例えば、農作物の撮像画像情報を用いてよい。
 モデル生成部208は、例えば、過去に農作物を生育させたときの複数の農作物の撮像画像情報及び農作物の生育が正常であったか異常であったかを示す生育状態を教師データとして用いる。モデル生成部208は、例えば、過去に農作物を生育させたときの複数の農作物の撮像画像情報から特定した複数の農作物の色及び農作物の生育が正常であったか異常であったかを示す生育状態を教師データとして用いる。例えば、モデル生成部208は、生育状態が正常であった場合の農作物の色の変化量を、生育状態が正常であった場合の農作物の生育状態の教師データとして用いる。モデル生成部208は、生育状態が異常であった場合の農作物の色の変化量を、生育状態が異常であった場合の農作物の生育状態の教師データとして用いる。
 モデル生成部208は、過去に農作物を生育させたときの複数の農作物の撮像画像情報から特定した複数の農作物の大きさ及び農作物の生育が正常であったか異常であったかを示す生育状態を教師データとして用いてもよい。例えば、モデル生成部208は、生育状態が正常であった場合の農作物の大きさの変化量を、生育状態が正常であった場合の農作物の生育状態の教師データとして用いる。モデル生成部208は、生育状態が異常であった場合の農作物の大きさの変化量を、生育状態が異常であった場合の農作物の生育状態の教師データとして用いる。
 農作業決定部206は、情報受信部204が受信したセンサ情報から、モデル生成部208が生成した推定モデルを用いて、情報受信部204が受信したセンサ情報に対応する農地50の農作物の生育状態を推定することによって、農作物の生育状態を特定してもよい。農作業決定部206は、例えば、情報受信部204が受信した農地50の農作物の撮像画像情報から、モデル生成部208が生成した推定モデルを用いて、撮像画像情報に対応する農作物の生育状態が正常になるか異常になるかを推定することによって、農作物の生育状態を特定する。
 移動体制御情報生成部210は、移動体を制御する移動体制御情報を生成する。移動体制御情報生成部210は、例えば、無人航空機400を制御する移動体制御情報を生成する。移動体制御情報生成部210は、例えば、農業機械500を制御する移動体制御情報を生成する。
 移動体制御情報は、例えば、無人航空機400の飛行速度、飛行方向及び飛行高度のうちの少なくとも1つを制御する情報を含む。移動体制御情報は、例えば、農業機械500の走行速度及び走行方向のうちの少なくとも1つを制御する情報を含む。
 移動体制御情報生成部210は、例えば、農作業決定部206が決定した農作業を実行するよう移動体を制御する移動体制御情報を生成する。移動体制御情報生成部210は、例えば、農地50に水を散布するよう無人航空機400を制御する移動体制御情報を生成する。移動体制御情報生成部210は、例えば、農地50に肥料を散布するよう無人航空機400を制御する移動体制御情報を生成する。移動体制御情報生成部210は、例えば、農地50に農薬を散布するよう無人航空機400を制御する移動体制御情報を生成する。移動体制御情報生成部210は、例えば、農地50に殺虫剤を散布するよう無人航空機400を制御する移動体制御情報を生成する。移動体制御情報生成部210は、農地50に種を散布するよう無人航空機400を制御する移動体制御情報を生成してもよい。
 移動体制御情報生成部210は、例えば、収穫領域内の農作物を収穫するよう農業機械500を制御する移動体制御情報を生成する。移動体制御情報生成部210は、例えば、農地50を耕すよう農業機械500を制御する移動体制御情報を生成する。移動体制御情報生成部210は、農地50に苗植えをするよう農業機械500を制御する移動体制御情報を生成してもよい。
 移動体制御情報送信部212は、通信装置150を介して、移動体に移動体制御情報生成部210が生成した移動体制御情報を送信する。移動体制御情報送信部212は、例えば、無人航空機400に移動体制御情報を送信する。移動体制御情報送信部212は、例えば、農業機械500に移動体制御情報を送信する。
 通信装置制御部214は、通信装置150を制御する。通信装置制御部214は、例えば、通信装置150を制御する通信装置制御情報を生成し、生成した通信装置制御情報を通信装置150に送信することによって、通信装置150を制御する。
 通信装置制御部214は、例えば、ネットワークスライシング技術を用いて、無線通信エリア122内の端末と制御装置200との間の通信の優先度を設定するよう通信装置150を制御する。ネットワークスライシング技術とは、サービスや目的毎にネットワークを仮想的な論理ネットワークであるスライスに分割する技術である。
 通信装置制御部214は、例えば、無線通信サービスの利用者と通信事業者との間の契約内容に応じて、無線通信エリア122内の端末と制御装置200との間の通信の優先度を設定するよう通信装置150を制御する。通信装置制御部214は、例えば、農地50で農作を実施している間のみ、無線通信エリア122内の端末と制御装置200との間の通信の優先度を設定するよう通信装置150を制御する。
 通信装置制御部214は、例えば、センサ300と制御装置200との間の通信に優先度を設定するよう通信装置150を制御する。通信装置制御部214は、例えば、格納部202に格納されているセンサ関連情報に基づいてセンサ300の設置位置を特定し、特定したセンサ300の設置位置に応じて、センサ300と制御装置200との間の通信に優先度を設定するよう通信装置150を制御する。
 通信装置制御部214は、例えば、農作業決定部206が特定した異常領域に基づいて、センサ300と制御装置200との間の通信に優先度を設定するよう通信装置150を制御する。通信装置制御部214は、例えば、農作業決定部206が異常領域を特定した場合、異常領域に設置されたセンサ300と制御装置200との間の通信の優先度を、異常領域以外の領域に設置されたセンサ300と制御装置200との間の通信よりも高く設定するよう通信装置150を制御する。
 災害発生領域特定部216は、農地50における災害発生領域を特定する。災害発生領域特定部216は、例えば、格納部202に格納されている、飛行体100に搭載されたカメラ116によって撮像された農地50の撮像画像情報に基づいて、農地50における災害発生領域を特定する。災害発生領域特定部216は、例えば、カメラ116によって撮像された農地50の撮像画像情報を画像解析することによって、農地50における災害発生領域を特定する。
 災害発生領域特定部216は、例えば、農地50における台風発生領域を特定する。災害発生領域特定部216は、例えば、農地50における火災発生領域を特定する。災害発生領域特定部216は、農地50におけるその他の任意の災害が発生した領域を特定してもよい。
 災害発生領域特定部216は、情報受信部204が災害情報管理装置から受信した災害情報を用いて農地50における災害発生領域を特定してもよい。災害発生領域特定部216は、例えば、災害情報に含まれる災害が発生した領域を災害発生領域とする。
 通信装置制御部214は、災害発生領域特定部216が特定した災害発生領域に基づいて、センサ300と制御装置200との間の通信に優先度を設定するよう通信装置150を制御してもよい。通信装置制御部214は、例えば、災害発生領域特定部216が災害発生領域を特定した場合、災害発生領域に設置されたセンサ300と制御装置200との間の通信の優先度を、災害発生領域以外の領域に設置されたセンサ300と制御装置200との間の通信よりも高く設定するよう通信装置150を制御してよい。
 図3は、無線通信エリア122内の端末と制御装置200との通信の優先度を設定する処理を説明するための説明図である。ここでは、ネットワークスライシング技術を用いて無線通信エリア122内の端末と制御装置200との通信の優先度を設定する場合の処理について説明する。
 通信装置制御部214は、例えば、無線通信エリア122内の端末と制御装置200との間の通信を、無人航空機400及び農業機械500と制御装置200との間の通信に用いられるスライス22、センサ300と制御装置200との間の通信に用いられるスライス24、及びユーザ端末600と制御装置200との間の通信に用いられるスライス26の3つのスライスに分割するよう通信装置150を制御する。例えば、スライス22は、URLLC(Ultra-Reliable and Low Latency Communications)サービスに対応する。スライス24は、mMTC(massive Machine Type Communication)サービスに対応する。スライス26は、eMBB(enhanced Mobile Broadband)サービスに対応する。通信装置150は、制御装置200による制御に従って、無線通信エリア122内の端末と制御装置200との間の通信を、スライス22、スライス24、及びスライス26に分割する。
 通信装置制御部214は、スライス22、スライス24、及びスライス26の順に優先度を設定するよう通信装置150を制御する。通信装置150は、制御装置200による制御に従って、スライス22、スライス24、及びスライス26の順に優先度を設定する。
 無人航空機400及び農業機械500と制御装置200との間の通信は、制御装置200が無人航空機400及び農業機械500の移動を制御するために用いるので、通信の信頼性が高いこと及び遅延が少ないことが要求される。そこで、制御装置200は、スライス22の優先度を他のスライスの優先度より高く設定するよう通信装置150を制御する。これにより、無線通信エリア122内の端末と制御装置200との間のネットワークが混雑している場合でも、制御装置200は、無人航空機400及び農業機械500と制御装置200との間の通信の品質を維持することに貢献することができる。
 図4は、センサ300と制御装置200との通信の優先度を設定する処理を説明するための説明図である。ここでは、センサ300の設置位置に応じて、センサ300と制御装置200との通信の優先度を設定する場合の処理について説明する。
 農作業決定部206は、農地50のうち、農地50の農作物が異常な生育状態である異常領域を特定する。ここでは、領域52が異常領域であると農作業決定部206が特定したものとして説明を続ける。
 通信装置制御部214は、領域52が異常領域であると農作業決定部206が特定した場合、領域52に設置されたセンサ300と制御装置200との間の通信の優先度を、農地50の領域52以外の領域に設置されたセンサ300と制御装置200との間の通信よりも高く設定するよう通信装置150を制御する。通信装置150は、制御装置200による制御に従って、領域52に設置されたセンサ300と制御装置200との間の通信の優先度を、農地50の領域52以外の領域に設置されたセンサ300と制御装置200との間の通信よりも高く設定する。
 制御装置200は、農地50に異常領域が存在する場合、異常領域で実行する農作業を決定するために、異常領域に設置されたセンサ300から、異常領域の状態を示すセンサ情報を優先的に受信する必要がある。そこで、制御装置200は、異常領域に設置されたセンサ300と制御装置200との間の通信の優先度を、異常領域以外の領域に設置されたセンサ300と制御装置200との間の通信よりも高く設定するよう通信装置150を制御する。これにより、制御装置200は、異常領域に設置されたセンサ300からセンサ情報を優先的に受信して、異常領域で実行する農作業を決定することに貢献することができる。
 また、災害発生領域特定部216は、農地50における災害発生領域を特定する。ここでは、領域54が災害発生領域であると災害発生領域特定部216が特定したものとして説明を続ける。
 通信装置制御部214は、領域54が災害発生領域であると災害発生領域特定部216が特定した場合、領域54に設置されたセンサ300と制御装置200との間の通信の優先度を、農地50の領域54以外の領域に設置されたセンサ300と制御装置200との間の通信よりも高く設定するよう通信装置150を制御する。通信装置150は、制御装置200による制御に従って、領域54に設置されたセンサ300と制御装置200との間の通信の優先度を、農地50の領域54以外の領域に設置されたセンサ300と制御装置200との間の通信よりも高く設定する。
 制御装置200は、農地50に災害発生領域が存在する場合、災害発生領域の農作物の生育状態を優先的に確認する必要がある。そこで、制御装置200は、災害発生領域に設置されたセンサ300と制御装置200との間の通信の優先度を、災害発生領域以外の領域に設置されたセンサ300と制御装置200との間の通信よりも高く設定するよう通信装置150を制御する。これにより、制御装置200は、災害発生領域に設置されたセンサ300からセンサ情報を受信して、災害発生領域の農作物の生育状態を優先的に確認することに貢献することができる。
 図5は、制御装置200の処理の流れの一例を説明するための説明図である。図5では、制御装置200が農地50の状態を示すセンサ情報をセンサ300から受信していない状態を開始状態として説明する。
 ステップ(ステップをSと省略して記載する場合がある。)102において、情報受信部204は、センサ300から、通信装置150を介して、センサ情報を受信する。S104において、農作業決定部206は、情報受信部204が受信したセンサ情報に基づいて、農地50に収穫領域が存在するか否かを判定する。農地50に収穫領域が存在すると農作業決定部206が判定した場合、S106に進む。農地50に収穫領域が存在しないと農作業決定部206が判定した場合、S108に進む。
 S106において、農作業決定部206は、収穫領域内の農作物を収穫することを決定する。S108において、農作業決定部206は、情報受信部204が受信したセンサ情報に基づいて、土壌の水分量が不足している領域が農地50に存在するか否かを判定する。土壌の水分量が不足している領域が農地50に存在すると農作業決定部206が判定した場合、S110に進む。土壌の水分量が不足している領域が農地50に存在しないと農作業決定部206が判定した場合、S112に進む。
 S110において、農作業決定部206は、土壌の水分量が不足している領域に水を散布することを決定する。S112において、農作業決定部206は、情報受信部204が受信したセンサ情報に基づいて、土壌の肥料の量が不足している領域が農地50に存在するか否かを判定する。土壌の肥料の量が不足している領域が農地50に存在すると農作業決定部206が判定した場合、S114に進む。土壌の肥料の量が不足している領域が農地50に存在しないと農作業決定部206が判定した場合、S116に進む。
 S114において、農作業決定部206は、土壌の肥料の量が不足している領域に肥料を散布することを決定する。S116において、農作業決定部206は、情報受信部204が受信したセンサ情報に基づいて、害虫が存在する領域が農地50に存在するか否かを判定する。害虫が存在する領域が農地50に存在すると農作業決定部206が判定した場合、S118に進む。害虫が存在する領域が農地50に存在しないと農作業決定部206が判定した場合、S120に進む。
 S118において、農作業決定部206は、害虫が存在する領域に殺虫剤を散布することを決定する。S120において、移動体制御情報生成部210は、S104からS118の間で農作業決定部206が実行すると決定した農作業を実行するよう移動体制御情報を生成する。移動体制御情報送信部212は、通信装置150を介して、移動体制御情報生成部210が生成した移動体制御情報を移動体に送信する。移動体は、制御装置200から受信した移動体制御情報に従って、農作業を実行する。その後、処理が終了する。尚、S120において、S104からS118の間で農作業決定部206が実行すると決定した農作業が存在しない場合、移動体制御情報生成部210が移動体制御情報を生成することなく処理が終了する。
 図6は、制御装置200として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。コンピュータ1200にインストールされたプログラムは、コンピュータ1200を、上記実施形態に係る装置の1又は複数の「部」として機能させ、又はコンピュータ1200に、上記実施形態に係る装置に関連付けられるオペレーション又は当該1又は複数の「部」を実行させることができ、及び/又はコンピュータ1200に、上記実施形態に係るプロセス又は当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャート及びブロック図のブロックのうちのいくつか又はすべてに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。
 本実施形態によるコンピュータ1200は、CPU1212、RAM1214、及びグラフィックコントローラ1216を含み、それらはホストコントローラ1210によって相互に接続されている。コンピュータ1200はまた、通信インタフェース1222、記憶装置1224、DVDドライブ1226、及びICカードドライブのような入出力ユニットを含み、それらは入出力コントローラ1220を介してホストコントローラ1210に接続されている。DVDドライブ1226は、DVD-ROMドライブ及びDVD-RAMドライブ等であってよい。記憶装置1224は、ハードディスクドライブ及びソリッドステートドライブ等であってよい。コンピュータ1200はまた、ROM1230及びキーボード1242のようなレガシの入出力ユニットを含み、それらは入出力チップ1240を介して入出力コントローラ1220に接続されている。
 CPU1212は、ROM1230及びRAM1214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。グラフィックコントローラ1216は、RAM1214内に提供されるフレームバッファ等又はそれ自体の中に、CPU1212によって生成されるイメージデータを取得し、イメージデータがディスプレイデバイス1218上に表示されるようにする。
 通信インタフェース1222は、ネットワークを介して他の電子デバイスと通信する。記憶装置1224は、コンピュータ1200内のCPU1212によって使用されるプログラム及びデータを格納する。DVDドライブ1226は、プログラム又はデータをDVD-ROM1227等から読み取り、記憶装置1224に提供する。ICカードドライブは、プログラム及びデータをICカードから読み取り、及び/又はプログラム及びデータをICカードに書き込む。
 ROM1230はその中に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、及び/又はコンピュータ1200のハードウェアに依存するプログラムを格納する。入出力チップ1240はまた、様々な入出力ユニットをUSBポート、パラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入出力コントローラ1220に接続してよい。
 プログラムは、DVD-ROM1227又はICカードのようなコンピュータ可読記憶媒体によって提供される。プログラムは、コンピュータ可読記憶媒体から読み取られ、コンピュータ可読記憶媒体の例でもある記憶装置1224、RAM1214、又はROM1230にインストールされ、CPU1212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置又は方法が、コンピュータ1200の使用に従い情報のオペレーション又は処理を実現することによって構成されてよい。
 例えば、通信がコンピュータ1200及び外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース1222に対し、通信処理を命令してよい。通信インタフェース1222は、CPU1212の制御の下、RAM1214、記憶装置1224、DVD-ROM1227、又はICカードのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、又はネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込む。
 また、CPU1212は、記憶装置1224、DVDドライブ1226(DVD-ROM1227)、ICカード等のような外部記録媒体に格納されたファイル又はデータベースの全部又は必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。
 様々なタイプのプログラム、データ、テーブル、及びデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックする。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、当該複数のエントリの中から、第1の属性の属性値が指定されている条件に一致するエントリを検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。
 上で説明したプログラム又はソフトウェアモジュールは、コンピュータ1200上又はコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワーク又はインターネットに接続されたサーバシステム内に提供されるハードディスク又はRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ1200に提供する。
 本実施形態におけるフローチャート及びブロック図におけるブロックは、オペレーションが実行されるプロセスの段階又はオペレーションを実行する役割を持つ装置の「部」を表わしてよい。特定の段階及び「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、及び/又はコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタル及び/又はアナログハードウェア回路を含んでよく、集積回路(IC)及び/又はディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、及びプログラマブルロジックアレイ(PLA)等のような、論理積、論理和、排他的論理和、否定論理積、否定論理和、及び他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。
 コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読記憶媒体は、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROM又はフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。
 コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、又はSmalltalk(登録商標)、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、及び「C」プログラミング言語又は同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1又は複数のプログラミング言語の任意の組み合わせで記述されたソースコード又はオブジェクトコードのいずれかを含んでよい。
 コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路が、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を生成するために当該コンピュータ可読命令を実行すべく、ローカルに又はローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路に提供されてよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階などの各処理の実行順序は、特段「より前に」、「先立って」などと明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」などを用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
 10 システム、20 ネットワーク、22 スライス、24 スライス、26 スライス、40 ゲートウェイ、50 農地、52 領域、54 領域、100 飛行体、101 主翼部、102 本体部、104 プロペラ、110 太陽電池パネル、112 アンテナ、114 アンテナ、116 カメラ、122 無線通信エリア、150 通信装置、200 制御装置、202 格納部、204 情報受信部、206 農作業決定部、208 モデル生成部、210 移動体制御情報生成部、212 移動体制御情報送信部、214 通信装置制御部、216 災害発生領域特定部、300 センサ、400 無人航空機、500 農業機械、600 ユーザ端末、650 ユーザ、1200 コンピュータ、1210 ホストコントローラ、1212 CPU、1214 RAM、1216 グラフィックコントローラ、1218 ディスプレイデバイス、1220 入出力コントローラ、1222 通信インタフェース、1224 記憶装置、1226 DVDドライブ、1227 DVD-ROM、1230 ROM、1240 入出力チップ、1242 キーボード

Claims (14)

  1.  農地の状態を検出するセンサから、成層圏プラットフォームとして機能する飛行体に搭載されて、ビームを照射することによって無線通信エリアを形成して前記無線通信エリア内の前記センサに無線通信サービスを提供する通信装置を介して、前記農地の状態を示すセンサ情報を受信する情報受信部と、
     前記センサ情報に基づいて、前記農地で実行する農作業を決定する農作業決定部と、
     前記農作業決定部が決定した前記農作業を実行するよう移動体を制御する移動体制御情報を生成する移動体制御情報生成部と、
     前記通信装置を介して、前記移動体に前記移動体制御情報を送信する移動制御情報送信部と
     を備える、制御装置。
  2.  前記情報受信部は、前記農地に設置された前記センサから前記センサ情報を受信する、請求項1に記載の制御装置。
  3.  前記農作業決定部は、前記センサ情報に基づいて特定した前記農地の農作物の生育状態に基づいて、前記農作業を決定する、請求項1又は2に記載の制御装置。
  4.  前記情報受信部が受信した前記センサ情報と、前記農作業決定部が前記センサ情報に基づいて特定した前記農作物の前記生育状態とを対応付けて格納する格納部を備え、
     前記格納部に格納されている複数の前記センサ情報及び前記農作物の前記生育状態を教師データとして用いて、前記情報受信部が受信した前記センサ情報から、前記情報受信部が受信した前記センサ情報に対応する前記農作物の前記生育状態を推定する推定モデルを機械学習により生成するモデル生成部を備え、
     前記農作業決定部は、前記情報受信部が受信した前記センサ情報から、前記推定モデルを用いて、前記情報受信部が受信した前記センサ情報に対応する前記農作物の前記生育状態を推定することによって、前記農作物の前記生育状態を特定する、
     請求項3に記載の制御装置。
  5.  前記農作業決定部は、前記農地のうち、前記農地の農作物が収穫可能な生育状態である収穫領域を特定し、特定した前記収穫領域内の前記農作物を収穫することを決定する、請求項1から4のいずれか一項に記載の制御装置。
  6.  前記農作業決定部は、前記農地のうち、前記農地の農作物が異常な生育状態である異常領域を特定し、特定した前記異常領域で前記農作業を実行することを決定する、請求項1から5のいずれか一項に記載の制御装置。
  7.  前記農作業決定部が前記異常領域を特定した場合、前記異常領域に設置された前記センサと前記制御装置との間の通信の優先度を、前記異常領域以外の領域に設置された前記センサと前記制御装置との間の通信よりも高く設定するよう前記通信装置を制御する通信装置制御部を備える、請求項6に記載の制御装置。
  8.  前記情報受信部は、前記飛行体に搭載されたカメラから、前記カメラによって撮像された前記農地の撮像画像情報を受信し、
     前記農作業決定部は、前記撮像画像情報に基づいて、前記農作業を決定する、
     請求項1から7のいずれか一項に記載の制御装置。
  9.  前記飛行体に搭載されたカメラによって撮像された前記農地の撮像画像情報に基づいて、前記農地における災害発生領域を特定する災害発生領域特定部と、
     前記災害発生領域特定部が前記災害発生領域を特定した場合、前記災害発生領域に設置された前記センサと前記制御装置との間の通信の優先度を、前記災害発生領域以外の領域に設置された前記センサと前記制御装置との間の通信よりも高く設定するよう前記通信装置を制御する通信装置制御部と
     を備える、請求項1から6のいずれか一項に記載の制御装置。
  10.  前記農作業決定部は、前記センサ情報に基づいて特定した前記農地の土壌の状態に基づいて、前記農作業を決定する、請求項1から9のいずれか一項に記載の制御装置。
  11.  前記制御装置は、前記飛行体に搭載される、請求項1から10のいずれか一項に記載の制御装置。
  12.  コンピュータを、請求項1から11のいずれか一項に記載の制御装置として機能させるためのプログラム。
  13.  制御装置と、
     成層圏プラットフォームとして機能する飛行体と
     を備え、
     前記制御装置は、
     農地の状態を検出するセンサから、前記飛行体に搭載されて、ビームを照射することによって無線通信エリアを形成して前記無線通信エリア内の前記センサに無線通信サービスを提供する通信装置を介して、前記農地の状態を示すセンサ情報を受信する情報受信部と、
     前記センサ情報に基づいて、前記農地で実行する農作業を決定する農作業決定部と、
     前記農作業決定部が決定した前記農作業を実行するよう移動体を制御する移動体制御情報を生成する移動体制御情報生成部と、
     前記通信装置を介して、前記移動体に前記移動体制御情報を送信する移動制御情報送信部と
     有する、システム。
  14.  コンピュータによって実行される方法であって、
     農地の状態を検出するセンサから、成層圏プラットフォームとして機能する飛行体に搭載されて、ビームを照射することによって無線通信エリアを形成して前記無線通信エリア内の前記センサに無線通信サービスを提供する通信装置を介して、前記農地の状態を示すセンサ情報を受信する情報受信段階と、
     前記センサ情報に基づいて、前記農地で実行する農作業を決定する農作業決定段階と、
     前記農作業決定段階が決定した前記農作業を実行するよう移動体を制御する移動体制御情報を生成する移動体制御情報生成段階と、
     前記通信装置を介して、前記移動体に前記移動体制御情報を送信する移動制御情報送信段階と
     を備える、方法。
PCT/JP2021/045696 2020-12-15 2021-12-10 制御装置、プログラム、システム、及び方法 WO2022131176A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020207923A JP2022094828A (ja) 2020-12-15 2020-12-15 制御装置、プログラム、システム、及び方法
JP2020-207923 2020-12-15

Publications (1)

Publication Number Publication Date
WO2022131176A1 true WO2022131176A1 (ja) 2022-06-23

Family

ID=82057815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045696 WO2022131176A1 (ja) 2020-12-15 2021-12-10 制御装置、プログラム、システム、及び方法

Country Status (2)

Country Link
JP (1) JP2022094828A (ja)
WO (1) WO2022131176A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117132883A (zh) * 2023-05-08 2023-11-28 江苏商贸职业学院 一种基于gis的智慧农业灾害判别方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230088A (ja) * 2012-04-27 2013-11-14 Mitsubishi Electric Corp 農業用管理システム
WO2016009688A1 (ja) * 2014-07-16 2016-01-21 株式会社リコー システム、機械、制御方法、プログラム
JP2018068130A (ja) * 2016-10-24 2018-05-10 株式会社日本総合研究所 農業機械
WO2019106733A1 (ja) * 2017-11-29 2019-06-06 株式会社オプティム 生育状況または病害虫発生状況の予測システム、方法およびプログラム
JP2019166961A (ja) * 2018-03-23 2019-10-03 Hapsモバイル株式会社 Hapsを介した広域水中探査潜水ロボットの自律分散制御

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230088A (ja) * 2012-04-27 2013-11-14 Mitsubishi Electric Corp 農業用管理システム
WO2016009688A1 (ja) * 2014-07-16 2016-01-21 株式会社リコー システム、機械、制御方法、プログラム
JP2018068130A (ja) * 2016-10-24 2018-05-10 株式会社日本総合研究所 農業機械
WO2019106733A1 (ja) * 2017-11-29 2019-06-06 株式会社オプティム 生育状況または病害虫発生状況の予測システム、方法およびプログラム
JP2019166961A (ja) * 2018-03-23 2019-10-03 Hapsモバイル株式会社 Hapsを介した広域水中探査潜水ロボットの自律分散制御

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117132883A (zh) * 2023-05-08 2023-11-28 江苏商贸职业学院 一种基于gis的智慧农业灾害判别方法及系统
CN117132883B (zh) * 2023-05-08 2024-03-19 江苏商贸职业学院 一种基于gis的智慧农业灾害判别方法及系统

Also Published As

Publication number Publication date
JP2022094828A (ja) 2022-06-27

Similar Documents

Publication Publication Date Title
Singh et al. An intelligent WSN-UAV-based IoT framework for precision agriculture application
US10827672B2 (en) Field monitoring, analysis, and treatment system
CN114488921B (zh) 一种智慧果园物联网管控系统
Cicioğlu et al. Smart agriculture with internet of things in cornfields
KR102200314B1 (ko) 드론을 이용한 농작물 모니터링 시스템
JP7300796B2 (ja) 生育状況または病害虫発生状況の予測システム、方法およびプログラム
Nookala Venu et al. Smart agriculture with internet of things and unmanned aerial vehicles
CN104764533A (zh) 基于无人机图像采集和红外热像仪的智能农业系统
Jabir et al. Digital agriculture in Morocco, opportunities and challenges
US20230112407A1 (en) Systems and methods for obtaining location data
WO2022131176A1 (ja) 制御装置、プログラム、システム、及び方法
Petkovic et al. IoT devices VS. drones for data collection in agriculture
Molin et al. Precision agriculture and the digital contributions for site-specific management of the fields
Kumar et al. Role of artificial intelligence, sensor technology, big data in agriculture: next-generation farming
US20240090395A1 (en) Method and system for pollination
KR102381491B1 (ko) 작물 재배 애플리케이션을 통한 적응형 재배 정보 제공 시스템
CN117193347A (zh) 无人机飞行高度控制方法、装置、电子设备及存储介质
Huang et al. Digital image analysis technologies for decision support systems in agricultural
Khan et al. Harnessing 5G Networks for Enhanced Precision Agriculture: Challenges and potential Solutions
US11183073B2 (en) Aircraft flight plan systems
Jibon et al. Development of an Autonomous UAV for Seed and Fertilizer Distribution in Precision Agriculture
Ten et al. Achieving agriculture 4.0 through modernization and enhancement with mechanization, automation and advanced technologies
CN107563604A (zh) 无人机多要素决策平台
Shashikant et al. Challenges of Iot/5g advancement in the oil palm upstream
US20230368312A1 (en) Method for automated weed control of agricultural land and associated stand-alone system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906538

Country of ref document: EP

Kind code of ref document: A1