WO2022130821A1 - 無線通信装置、無線通信装置の方法、及び非一時的なコンピュータ可読媒体 - Google Patents
無線通信装置、無線通信装置の方法、及び非一時的なコンピュータ可読媒体 Download PDFInfo
- Publication number
- WO2022130821A1 WO2022130821A1 PCT/JP2021/040738 JP2021040738W WO2022130821A1 WO 2022130821 A1 WO2022130821 A1 WO 2022130821A1 JP 2021040738 W JP2021040738 W JP 2021040738W WO 2022130821 A1 WO2022130821 A1 WO 2022130821A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- calibration
- signal
- antenna
- coefficient
- antennas
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000005259 measurement Methods 0.000 claims description 54
- 230000005540 biological transmission Effects 0.000 claims description 48
- 238000004364 calculation method Methods 0.000 claims description 30
- 238000012937 correction Methods 0.000 claims description 29
- 238000012935 Averaging Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 24
- 239000011159 matrix material Substances 0.000 description 10
- 238000009434 installation Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0837—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
- H04B7/0842—Weighted combining
- H04B7/086—Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
Definitions
- the present disclosure relates to a wireless communication device, a method and a program of the wireless communication device, and more particularly to a wireless communication device, a method and a program of the wireless communication device capable of easily calibrating the distributed antenna.
- a base station that supports MIMO transmission is equipped with a plurality of antennas and modulators and demodulators, and sends and receives different radio signals from each.
- the frequency utilization efficiency is increased by spatially multiplexing the radio signals (user signals) using the plurality of radio signals (transmission / reception signals).
- a base station compatible with the MIMO transmission method it is possible to increase the antenna gain in a specific direction by using a plurality of antennas, suppress interference by forming a null, and the like. This technique is called beamforming, and there are two main types. One is analog beamforming and the other is digital beamforming.
- Analog beamforming is a technique for increasing antenna gain in a specific direction by distributing (dispersing) one or more radio signals to a plurality of antennas and giving different phases to each of them by a phase controller or the like.
- digital beamforming is a technique for adjusting the phase and amplitude of the transmitted / received signals of each antenna.
- a base station that supports digital beamforming is equipped with the same number of transceivers as the number of antennas, and digitally controls the transmission / reception signals from each antenna. This makes it possible to use spatial multiplexing techniques such as ZF (Zero Forcing) and MMSE (Minimum Mean Square Error). In ZF and MMSE, since the antenna gain is also controlled in the null direction, interference of a plurality of transmitted / received signals can be suppressed and signals can be multiplexed more efficiently.
- ZF Zero Forcing
- MMSE Minimum Mean Square Error
- the base station estimates the channel coefficient from the reference signal contained therein, for example, using the received signal (UL (Uplink) signal) of the base station.
- the process of estimating the channel coefficient is called channel estimation.
- the base station receives UL signals from a plurality of user terminals (UE: User Equipment), these UL signals interfere with each other. Therefore, the base station can perform UL communication with each UE by separating the multiplexed UL signal by using the channel coefficient obtained by the channel estimation and the spatial multiplexing technique.
- multiplexed DL communication is performed by transmitting a DL signal to which a spatial multiplexing technique is applied in advance using a channel coefficient estimated from a UL signal.
- Precoding is a process of generating a DL signal using the channel coefficient to which the spatial multiplexing technique is applied in advance.
- the DL signal to which the spatial multiplexing technique is applied in advance is transmitted using the channel coefficient estimated from the UL signal.
- This utilizes the reciprocity of propagation channels in UL communication and DL communication, and is used in TDD (Time Division Duplex) type communication.
- TDD Time Division Duplex
- it is necessary to calibrate the transmission / reception signals transmitted / received from each antenna. If this calibration is incomplete, the channel coefficients obtained by channel estimation will contain errors due to the receiver and the radio signal will not be able to be accurately spatially multiplexed.
- the error of the transmitter also affects the spatial multiplexing and deteriorates the communication characteristics.
- the base station may include a transmission / reception circuit for calibration in addition to the transmission / reception circuit used for communication, and may calibrate the transmission / reception circuit used for communication by using the transmission / reception circuit for calibration.
- a transmission / reception circuit for calibration in addition to the transmission / reception circuit used for communication, and may calibrate the transmission / reception circuit used for communication by using the transmission / reception circuit for calibration.
- a base station that supports the MIMO transmission method is referred to as a MIMO device or a MIMO base station.
- MIMO devices can be divided into two types. One is a C-MIMO (Collocated-MIMO) device in which a plurality of antenna units are mounted in one housing, and the other is a distributed MIMO in which each of the plurality of antenna parts is mounted in a separate housing. It is a device.
- a distributed MIMO device is referred to as a D-MIMO (Distributed-MIMO) device. Calibration of the antenna section is particularly important in D-MIMO equipment.
- a plurality of antenna units of the D-MIMO device are installed at different positions and are connected to one RU (Radio Unit) unit by wire.
- the RU unit includes a DFE (Digital Front End) that performs digital baseband signal processing and a modulation / demodulation unit.
- Each of the plurality of antenna units includes an antenna and an up / down converter unit that converts the DL signal from the RU into a high frequency band.
- the D-MIMO device since the RU and the antenna unit are separated from each other, it is difficult to pre-calibrate the amplitude and phase of the DL signal at each antenna end of the plurality of antenna units at the time of manufacture. Therefore, it is necessary to calibrate the D-MIMO device by using an external measuring instrument after installing the D-MIMO device in the operating place.
- Patent Document 1 states that "the first modification information determined from the first calibration of the base station is received from the system module. The signal from at least one antenna of the base station is received by the high frequency module. The second correction information is determined based on the received signal and the first correction information.
- Patent Document 2 states that "in a communication base station performing adaptive array communication, the remaining CCH carrier transmitted by any one of the N antenna elements equipped in the communication base station during communication (in the communication base station). N-1) The calibration process received by the antenna elements is performed, and the calibration data of each antenna element is determined from the amplitude ratio and phase difference at the time of reception of each antenna element. " There is.
- Patent Document 2 describes "DL control in which a calibration DL (DownLink) signal is transmitted from an antenna other than one of a plurality of antennas and the calibration DL signal is received by the one antenna, and the above 1).
- UL control in which a calibration UL (UpLink) signal is transmitted from one antenna and the calibration UL signal is received by an antenna other than the one is performed for each of the plurality of antennas is not described.
- a feedback transceiver transmission / reception circuit
- signal wiring from each signal path to the feedback transmission / reception circuit is also required.
- the C-MIMO apparatus becomes complicated, and there is a problem that the cost and the power consumption increase.
- the antenna unit and the modulation / demodulation unit are separated, and it is difficult to calibrate the antenna unit at the time of manufacturing. Therefore, it is necessary to calibrate the antenna unit using an external measuring instrument after installing the D-MIMO device in the operating place. Since it is difficult to perform calibration using an external measuring instrument frequently, it is difficult to change the installation position of the antenna unit. Further, there is a problem that it is difficult to calibrate the antenna portion each time in order to cope with the deterioration of the communication characteristics due to the temperature change of the D-MIMO device.
- An object of the present disclosure is to provide a wireless communication device, a method of a wireless communication device, and a program that solve any of the above-mentioned problems.
- the wireless communication device is DL control in which a calibration DL (Down Link) signal is transmitted from an antenna other than one of a plurality of antennas and the calibration DL signal is received by the one antenna, and a calibration UL ( Up Link)
- a calibration control unit that transmits a signal and receives the calibration UL signal with an antenna other than the one, and a calibration control unit that performs the UL control for each of the plurality of antennas.
- the DL channel coefficient of the transmitter connected to the antenna and the UL channel coefficient of the receiver are calculated for each of the plurality of antennas.
- a calibration coefficient calculation unit that calculates a calibration coefficient for calibrating a radio DL signal based on the DL channel coefficient and the UL channel coefficient.
- a calibration application unit that adjusts the phase and amplitude of the radio DL signal transmitted from each of the plurality of antennas based on the calibration coefficient. To prepare for.
- the method of the wireless communication device is DL control in which a calibration DL (Down Link) signal is transmitted from an antenna other than one of a plurality of antennas and the calibration DL signal is received by the one antenna, and a calibration UL ( Up Link) UL control that transmits a signal and receives the calibration UL signal with an antenna other than the one is performed for each of the plurality of antennas.
- a calibration DL signal transmitted from the plurality of antennas in the DL control, the calibration DL signal received by the plurality of antennas, and the calibration UL signal transmitted from the plurality of antennas in the UL control.
- the program related to this disclosure is DL control in which a calibration DL (Down Link) signal is transmitted from an antenna other than one of a plurality of antennas and the calibration DL signal is received by the one antenna, and a calibration UL ( Up Link) UL control that transmits a signal and receives the calibration UL signal with an antenna other than the one is performed for each of the plurality of antennas.
- a wireless communication device it is possible to provide a wireless communication device, a method of a wireless communication device, and a program capable of easily calibrating a distributed antenna.
- FIG. 6 is a blow chart illustrating the operation of the D-MIMO apparatus according to the first embodiment. It is a schematic diagram which illustrates the frequency arrangement of the calibration DL signal which concerns on Embodiment 1.
- FIG. 1 It is a schematic diagram which illustrates the frequency arrangement of the calibration DL signal which concerns on Embodiment 1.
- FIG. It is a schematic diagram which illustrates the frequency arrangement of the calibration DL signal which concerns on Embodiment 1.
- FIG. 1 is a schematic diagram which illustrates the frequency arrangement of the calibration DL signal which concerns on Embodiment 1.
- FIG. It is a schematic diagram which illustrates the frequency arrangement of the UL signal for calibration which concerns on Embodiment 1.
- FIG. It is a schematic diagram which illustrates the installation of the distributed antenna and the external antenna which concerns on Embodiment 2.
- FIG. It is a block diagram which illustrates the structure of the D-MIMO apparatus which concerns on Embodiment 3.
- FIG. 1 is a block diagram illustrating the wireless communication device according to the first embodiment.
- FIG. 1 shows the minimum configuration of the wireless communication device according to the first embodiment.
- the wireless communication device may also be referred to as a D-MIMO device.
- a distributed antenna of a D-MIMO device will be described as an example as a plurality of antennas, but the present invention is not limited to this.
- the wireless communication device 11 includes a calibration control unit 111, a calibration coefficient calculation unit 112, and a calibration application unit 113.
- the calibration control unit 111 performs DL control in which a calibration DL (DownLink) signal is transmitted from an antenna other than one of the plurality of distributed antenna DAs and the calibration DL signal is received by one antenna. That is, one of the plurality of distributed antenna DAs is used as the calibration antenna. One antenna is, for example, the distributed antenna DA1.
- the calibration control unit 111 performs UL control in which a calibration UL (UpLink) signal is transmitted from one antenna and a calibration UL signal is received by an antenna other than one.
- the calibration control unit 111 performs DL control and UL control for each of a plurality of distributed antennas DA.
- the calibration coefficient calculation unit 112 includes a calibration DL signal transmitted from a plurality of distributed antenna DAs in DL control, a calibration DL signal received by a plurality of distributed antenna DAs, and a calibration DL signal transmitted from a plurality of distributed antenna DAs in UL control. Based on the UL signal and the calibration UL signal received by the plurality of distributed antennas, the DL channel coefficient of the transmitter connected to the distributed antenna and the UL channel coefficient of the receiver are calculated for each of the plurality of distributed antennas. The calibration coefficient calculation unit 112 calculates the calibration coefficient for calibrating the radio DL signal based on the DL channel coefficient and the UL channel coefficient.
- the calibration coefficient calculation unit 112 Based on the DL channel coefficient and the UL channel coefficient, the calibration coefficient calculation unit 112 assumes that the DL propagation channel included in the DL channel coefficient is equal to the UL propagation channel included in the UL channel coefficient, and transmits and receives for each of the plurality of distributed antenna DAs.
- the gain ratio may be calculated and used as a calibration coefficient for calibrating the wireless DL signal.
- the calibration application unit 113 adjusts the phase and amplitude of the radio DL signal transmitted from each of the plurality of distributed antennas based on the calibration coefficient.
- the wireless DL signal may be referred to as a DL signal.
- the wireless communication device 11 uses one of the plurality of distributed antenna DAs as a calibration antenna to perform calibration measurement.
- the calibration measurement is performed a plurality of times while changing one distributed antenna DA used as the calibration antenna to one of the plurality of distributed antenna DAs.
- the distributed antenna DA can be calibrated without the external measuring instrument, the calibration-dedicated antenna, or the calibration-dedicated circuit.
- the calibration coefficient calculation unit 112 has characteristics (propagation channel) of DL radio wave propagation based on the calibration DL signal at the time of transmission transmitted from one antenna and the calibration DL signal at the time of reception received by one antenna. And a DL channel coefficient including the transmission characteristics of the distributed antenna DA, and a plurality of DL channel coefficients corresponding to antennas other than one are calculated for each of the plurality of distributed antenna DAs. The calculation of the DL channel coefficient is also performed for a plurality of calibration measurements performed by changing the calibration antenna.
- the calibration coefficient calculation unit 112 is based on the UL signal for calibration at the time of transmission transmitted from one antenna and the UL signal for calibration at the time of reception received by another antenna, and the characteristics (propagation channel) of UL radio wave propagation. And a UL channel coefficient including the reception characteristics of the distributed antenna DA, and a plurality of UL channel coefficients corresponding to antennas other than one are calculated for each of the plurality of distributed antenna DAs. The calculation of the UL channel coefficient is also performed for a plurality of calibration measurements performed by changing the calibration antenna.
- the calibration coefficient calculation unit 112 is used for each of the plurality of calibration measurements and for each of the plurality of calibration measurements and for each of the plurality of calibration coefficients based on the plurality of DL channel coefficients and the plurality of UL channel coefficients for each of the plurality of distributed antenna DAs.
- the ratio of the DL channel coefficient to the UL channel coefficient (UL / DL channel coefficient ratio) is calculated for each distributed antenna DA.
- the calibration coefficient calculation unit 112 calculates the calibration coefficient for calibrating the radio DL signal based on the DL channel coefficient and the UL channel coefficient.
- the DL channel coefficient and the UL channel coefficient also include the transmission / reception characteristics of the distributed antenna DA.
- the propagation channel included in the DL channel coefficient shall be equal to the propagation channel included in the UL channel coefficient. That is, since both DL and UL have the same propagation path, the propagation channels are assumed to be the same.
- the calibration coefficient calculation unit 112 determines the UL / DL channel coefficient ratio between the calibration antenna for the reference calibration measurement and the reference distributed antenna among the plurality of calibration measurements.
- UL / DL channel coefficient ratio between the calibration antenna in the measurement for calibration other than the reference and the distributed antenna as the reference Calculate the ratio. This ratio is called the correction coefficient of the calibration measurement.
- the correction factor between the plurality of calibration measurements is used to correct the ratio of the DL channel coefficient to the UL channel coefficient for the plurality of calibration measurements.
- a plurality of reference distributed antennas may be used, and the correction coefficients calculated by the plurality of reference distributed antennas may be averaged and used as a new correction coefficient.
- the calibration coefficient calculation unit 112 performs calibration measurement multiple times, and calibrates when a plurality of DL channel coefficients and UL channel coefficients are obtained for one distributed antenna DA (when there are multiple valid measurements).
- the weighting coefficient is obtained based on the received power of the DL signal or the UL signal for calibration.
- the calibration coefficient calculation unit 112 calculates the UL / DL channel coefficient ratio for each calibration measurement from the DL channel coefficient and the UL channel coefficient.
- the calibration coefficient calculation unit 112 corrects the UL / DL channel coefficient ratio for each calibration measurement by using the correction coefficient between the calibration measurements.
- the calibration coefficient calculation unit 112 weighted and averaged the corrected UL / DL channel coefficient ratio for each calibration measurement among the plurality of calibration measurements based on the weighting coefficient for each of the plurality of distributed antenna DAs. Calculate the DL channel coefficient ratio.
- the weighted average UL / DL channel coefficient ratio is referred to as a calibration coefficient.
- the calibration coefficient calculation unit 112 selects the DL channel coefficient corresponding to the calibration DL signal whose received power is equal to or higher than the predetermined power from the DL channel coefficients of a plurality of measurements.
- the calibration coefficient calculation unit 112 selects the DL channel coefficient corresponding to the calibration UL signal whose received power is equal to or higher than the predetermined power from the UL channel coefficients of a plurality of measurements.
- the calibration coefficient calculation unit 112 may calculate the calibration coefficient for each of the plurality of distributed antenna DAs by using the selected DL channel coefficient and the selected UL channel coefficient.
- the calibration control unit 111 may add a calibration DL signal or a calibration UL signal to the wireless DL signal transmitted from each of the plurality of distributed antennas to perform calibration measurement.
- a D-MIMO device will be described as an example as one of the wireless communication devices. Further, the D-MIMO apparatus 11 corresponds to MIMO transmission and uses the TDD method as an example.
- FIG. 2 is a schematic diagram illustrating the installation of the distributed antenna according to the first embodiment.
- FIG. 3 is a schematic diagram illustrating the installation of the distributed antenna according to the first embodiment. 2 and 3 are views from above when the distributed antenna of the D-MIMO apparatus according to the first embodiment is installed in an operating place, for example, indoors.
- FIG. 2 shows the communication state at the time of calibration.
- FIG. 3 shows a communication state during operation.
- the number of distributed antenna DAs is four and they are installed at the four corners of the room.
- the radio wave transmitted from the distributed antenna DA1 does not reach the distributed antenna DA3 because it is blocked by the pillar, and vice versa.
- the dotted line shown in FIG. 2 indicates that a plurality of distributed antenna DAs can communicate with each other.
- All of the distributed antenna DA1 to the distributed antenna DA4 shall be calibrated. Calibration is performed by transmitting and receiving calibration signals, which are known signals for calibration, through these distributed antennas DA. In the first embodiment, it is possible to calibrate using an external measuring instrument or a UE (User Equipment), but the calibration is performed only by the distributed antenna DA.
- UE User Equipment
- the method of calibrating with the distributed antenna DA according to the first embodiment does not switch transmission and reception of all the distributed antenna DAs at the same timing as in normal operation.
- one of the distributed antenna DAs is operated by reversing transmission and reception with the other distributed antenna DAs. That is, one distributed antenna DA is used like an external measuring instrument. This one distributed antenna DA is called a calibration antenna. As a result, calibration can be performed only with the D-MIMO device 11.
- the distributed antenna DA of the D-MIMO device 11 is installed in various places depending on the operation place. Therefore, unlike the distributed antenna DA1 and the distributed antenna DA4 shown in FIG. 2, signals may not reach each other. Therefore, calibration (measurement) using the calibration signal of the D-MIMO device 11 is performed a plurality of times by changing the distributed antenna DA used as the calibration antenna.
- the D-MIMO device 11 uses the results of a plurality of measurements to obtain a calibration coefficient for calibrating the transmission portion of the D-MIMO device 11. After that, the D-MIMO apparatus 11 calibrates by adding the obtained calibration coefficient to the DL signal transmitted from each distributed antenna DA.
- FIG. 4 is a block diagram illustrating the configuration of the D-MIMO apparatus according to the first embodiment.
- FIG. 5 is a block diagram illustrating the digital front-end DFE according to the first embodiment.
- the D-MIMO device 11 includes a distributed antenna unit DA1, a distributed antenna unit DA2, a distributed antenna unit DA3, a distributed antenna unit DA4, and a radio unit RU.
- Each distributed antenna unit DA mainly has an antenna and an RF up / down converter unit.
- the distributed antenna unit DA1, the distributed antenna unit DA2, the distributed antenna unit DA3, and the distributed antenna unit DA4 are collectively referred to as the distributed antenna unit DA.
- the digital front-end DFE shown in FIG. 4 includes a calibration control unit 111, a calibration coefficient calculation unit 112, and a calibration application unit 113 shown in FIG.
- the RF up / down converter unit of the distributed antenna unit DA shown in FIG. 4 is included in the transceiver 114 shown in FIG.
- the wireless unit RU converts a digital signal, which is a transmission signal, into an analog signal in DL (DownLink) communication, and converts an analog signal, which is a reception signal, into a digital signal in UL (UpLink) communication.
- the radio unit RU and each of the four distributed antenna units DA are connected by a cable.
- the distributed antenna unit DA can be freely installed within the reach of the cable.
- the number of distributed antenna units DA is set to 4, but the number is not limited to this.
- the number of distributed antenna units DA may be three or more.
- the radio unit RU includes a digital front end DFE (Digital Front End) that performs digital signal processing, and a modulator / demodulator MODEM that converts a digital signal and an analog modulated signal.
- the radio unit RU has four modulator / demodulator MODEMs, which are the same number as the number of distributed antenna units DA, and performs digital beamforming.
- the radio unit RU and the four distributed antenna units DA are connected by a coaxial cable, and an analog modulated signal is transmitted using the coaxial cable.
- the distributed antenna unit DA up-converts the analog modulation signal transmitted from the radio unit RU into an RF signal by the RF up / down converter unit, and then transmits the analog modulation signal from the antenna. Further, the distributed antenna unit DA down-converts the signal received by the antenna into an analog modulation signal by the RF up / down converter unit, and then transmits the signal to the radio unit RU.
- the processing of the DL signal of the digital front-end DFE is shown below.
- the digital front-end DFE divides the transmission signal into layers by the layer mapper unit 1151 and outputs the layer signal X.
- the number of layers is, for example, two.
- the precoding unit 1152 weights each layer signal X according to the precoding weight coefficient W and adds them to each other to generate four DL signals WX.
- the calibration application unit 113 outputs the DL signal CWX by multiplying the precoded DL signal WX by the coefficient C for calibrating the error of the transceiver.
- the OFDM signal generation unit 1153 performs OFDM modulation on the precoded and calibrated DL signal CWX to generate a digital baseband signal.
- the digital baseband signal is sent to the modulator / demodulator MODEM and converted into an analog modulated signal.
- the processing of the UL signal of the digital front-end DFE is shown below.
- the OFDM signal demodulation unit 1154 demodulates the received baseband signal (OFDM signal) input from the modulator / demodulator MODEM, and outputs the signal U.
- the received baseband signal is converted from the signal in the time domain to the signal in the frequency domain. That is, it is converted into a signal for each subcarrier.
- the OFDM demodulated signal U is a signal whose phase and amplitude change due to the influence of interference between multiplex communications with a plurality of UEs, the propagation environment, and the like.
- the channel estimation unit 1155 obtains the channel coefficients Hu and H d of the propagation path (communication path) by using the known reference signal included in the OFDM signal or the distributed antenna unit DA calibration signal.
- Hu be the channel coefficient obtained by channel estimation from the UL signal or the UL signal for DA calibration of the distributed antenna unit.
- H d be the channel coefficient obtained by channel estimation from the DL signal for DA calibration of the distributed antenna unit.
- the D-MIMO apparatus 11 uses the channel coefficient Hu to correct signal interference and correct phase / amplitude changes by spatial multiplexing technology, and acquires a UL signal for each layer.
- the precoding weight calculation unit 1156 calculates the precoding weight coefficient W for DL from the channel coefficient Hu obtained by the channel estimation unit 1155 by using the spatial multiplexing technique.
- the calibration coefficient calculation unit 112 calculates the calibration coefficient C using the channel coefficients Hu and H d .
- the calibration application unit 113 calibrates the DL signal using the calibration coefficient C.
- FIG. 6 is a blow chart illustrating the operation of the D-MIMO apparatus according to the first embodiment.
- FIG. 6 shows the operation of the D-MIMO apparatus according to the first embodiment at the time of calibration.
- FIG. 7 is a schematic diagram illustrating the frequency arrangement of the calibration DL signal according to the first embodiment.
- FIG. 7 shows the frequency arrangement of the calibration DL signal transmitted from the distributed antenna DA1.
- FIG. 8 is a schematic diagram illustrating the frequency arrangement of the calibration DL signal according to the first embodiment.
- FIG. 8 shows the frequency arrangement of the calibration DL signal transmitted from the distributed antenna DA2.
- FIG. 9 is a schematic diagram illustrating the frequency arrangement of the calibration DL signal according to the first embodiment.
- FIG. 9 shows the frequency arrangement of the calibration DL signal transmitted from the distributed antenna DA3.
- FIG. 10 is a schematic diagram illustrating the frequency arrangement of the calibration DL signal according to the first embodiment.
- FIG. 10 shows the frequency arrangement of the calibration DL signal transmitted from the distributed antenna DA4.
- FIG. 11 is a schematic diagram illustrating the frequency arrangement of the UL signal for calibration according to the first embodiment.
- the D-MIMO apparatus 11 may start a calibration operation, that is, an operation of adjusting the phase and amplitude of the DL signal, triggered by any of the following operations. -When the D-MIMO device 11 is started (when the power is turned on). -When the difference between the temperature of any of the multiple distributed antenna DAs and the temperature at the time of the previous calibration is the specified temperature or more, or the difference between the average temperature of all the distributed antenna DAs and the temperature at the time of the previous calibration is specified. Above temperature. ⁇ If more than the specified time has passed since the last calibration, -When the communication quality of the DL signal is lower than the specified quality for a specified period or longer.
- the variable k is set to 1 (step S101).
- the variable k is an integer.
- the distributed antenna DAk becomes the distributed antenna DA1.
- the distributed antenna DA1 is set as the calibration antenna, and the measurement for calibration is performed using the distributed antenna DA1 (step S102).
- the k-th distributed antenna DA is referred to as a distributed antenna DAk.
- a known calibration DL signal is transmitted from all distributed antenna DAs other than the distributed antenna DAk and received by the distributed antenna DAk (step S103).
- the calibration DL signal an OFDM signal arranged at a different frequency (subcarrier) for each of a plurality of distributed antenna DAs is used in order to avoid interference between the distributed antenna DAs.
- calibration DL signals arranged on different subcarriers are assigned to each of the plurality of distributed antenna DAs.
- the DL signal for calibration is not transmitted from the distributed antenna DAk used as the antenna for calibration.
- the calibration DL signal (data) transmitted from the distributed antenna DA other than the distributed antenna DAk used as the calibration antenna, received by the distributed antenna DAk, and measured is demodulated and channel-estimated in the same manner as when the normal OFDM signal is received. After that, it is held in the storage unit (not shown).
- examples from the distributed antenna DA1 to the distributed antenna DA4 are shown, but the present invention is not limited thereto.
- step S103 a known calibration UL signal is transmitted from the distributed antenna DAk and received by a distributed antenna DA other than the distributed antenna DAk (step S104).
- the calibration UL signal does not change the subcarriers arranged for each distributed antenna DA.
- the subcarrier mapping (frequency arrangement) of the UL signal for calibration is arranged in all subcarriers unlike the DL signal for calibration.
- the UL signal (data) for calibration received by each distributed antenna DA is demodulated and channel-estimated in the same manner as when a normal OFDM signal is received, and then stored in the storage unit.
- step S104 1 is added to the variable k (step S105).
- step S106 N Comment
- step S106: N Comment If the variable k is 4 or less (step S106: N caution), the process returns to step S102. If the variable k is larger than 4 (step S106: Yes), the process proceeds to step S107.
- the distributed antenna DA1 is set as the calibration antenna in order, and the measurement is performed so that all the distributed antenna DAs are once used as the calibration antennas.
- step S106 the calibration coefficient is calculated based on the calibration DL signal or the calibration UL signal (data) measured by repeating steps S103 and S104, and applied to the calibration application unit 113 (step). S107).
- step S107 the measurement for calculating the calibration coefficient is completed, and the normal operation is returned (step S108).
- the calibration DL signal output from the distributed antenna DA is arranged in a different subcarrier for each distributed antenna DA.
- the calibration DL signal transmitted from the distributed antenna DA2 by the distributed antenna DA4 is received by the distributed antenna DA1 as the calibration antenna.
- the calibration DL signal is OFDM demodulated and divided for each subcarrier so that it is received without interference between the plurality of distributed antenna DAs.
- the subcarrier used for communication with the i-th distributed antenna DAi is s i .
- the calibration DL signal and the calibration UL signal may be collectively referred to as a calibration signal.
- the variable i is an integer from 1 to 4.
- the subcarriers s1 are, for example, 1 , 5, 9, ..., The th subcarrier.
- Subcarriers s2 are the second , sixth, tenth, ..., Third subcarriers.
- the calibration antenna is changed and the calibration DL signal and the calibration UL signal are measured four times, respectively. Since the calibration antenna is changed, the transmission / reception characteristics differ between each calibration antenna.
- the transmit complex gain of the kth calibration antenna be ⁇ k and t
- the receive complex gain be ⁇ k and r .
- the gain is a value represented by a complex number and has amplitude and phase information. Therefore, they are referred to as transmission complex gain and reception complex gain, but in the following description, complex may be omitted and referred to as transmission gain and reception gain.
- each distributed antenna DA there is an error in each distributed antenna DA.
- Let e i and t be the transmission complex gains of the i-th distributed antenna DAi, and let e i and r be the reception complex gains.
- the first embodiment aims to correct the influence of this gain on the DL signal during operation.
- the transmission gain ⁇ k, t and the transmission gain e i, t , or the reception gain ⁇ k, r and the reception are received.
- the gains e i and r are equal.
- the second embodiment and the third embodiment which will be described later, may differ from each other, they are treated as different gains.
- the calibration DL signal d k, i ( si) measured at the kth position can be expressed as follows.
- h k and i are channel coefficients of the propagation path from the distributed antenna DAi to the distributed antenna DAk
- xi are known calibration DL signals transmitted from the distributed antenna DAi.
- ( Si ) in the formula (1) indicates that it changes depending on the frequency (subcarrier), but it is omitted below for the sake of simplicity.
- the calibration DL signals dk and i ( si ) include noise because they are measured by OTA (Over The Air), but they are omitted in this example.
- the signals uk and i (si) received by the i -th distributed antenna DAi can be expressed as follows.
- y k is a known calibration UL signal transmitted from the calibration antenna CAk.
- ( Si ) in the formula (2) indicates that it changes depending on the frequency (subcarrier), but it is omitted below for the sake of simplicity.
- the UL signals uk and i ( si ) for calibration are measured by OTA, noise is included, but they are omitted in this example.
- the measured calibration DL signals d k and i and the measured calibration UL signals uk and i have channel coefficients h k and i equal to each other, assuming that the calibration signals propagate in the same propagation path. ..
- Channel estimation is performed from Eqs. (1) and Eq. (2), respectively.
- the channel coefficients h u, k, i estimated from the calibration UL signal are calculated as in Eq. (5) or Eq. (6).
- the correction coefficient ⁇ k for correcting r is obtained.
- the correction coefficient ⁇ k was obtained only from the measurement results of the i0th distributed antenna DAi0, but the above was calculated from the communication with a plurality of distributed antennas DA by changing the number of i0. Then, the correction coefficient ⁇ k may be calculated by averaging. The correction factor ⁇ k is calculated for all k (1 to 4 in this example). However, the number i0 of the distributed antenna DAi0 may be changed each time the value of k changes.
- the reference k0th correction coefficient ⁇ k0 is 1.
- the correction coefficient ⁇ k depends on the frequency and differs for each subcarrier.
- the correction coefficient ⁇ k may be obtained by averaging all the subcarriers or for each fixed number of subcarriers. Further, when the amplitude gain is small, the amplitude component of the correction coefficient ⁇ k may be ignored and only the phase component of the correction coefficient ⁇ k may be used.
- Equation (11) The calibration coefficient ci for calibrating the transmission gain e i , t and the reception gain e i, r of the distributed antenna DA in the transmission portion of the D-MIMO device 11 is as shown in the equation (11).
- N m 4.
- the number of distributed antenna DAs be N.
- Equation (11) can be expanded as in equation (12).
- the calibration coefficient c i is the average of (ei , r / e i, t ) weighted by (
- the received power changes greatly depending on the arrangement of the distributed antenna DA and the like. Normally, the larger the received power, the smaller the influence of noise, and a more accurate calibration signal can be obtained. Therefore, by weighting and averaging with (
- the calibration coefficient c i is standardized according to the dynamic range of the D-MIMO device 11. Further, ( ⁇ k0, t / ⁇ k0, r ) in the equation (12) is the ratio of the transmission / reception gain of the calibration antenna used as the reference of the correction coefficient ⁇ k . Since this is constant for all distributed antennas DA, it does not affect the accuracy of the DL signal. Therefore, together with the standardization, ( ⁇ k0, t / ⁇ k0, r ) can be omitted, and the equation (12) can be approximately expressed as the equation (13). Therefore, the transmission portion of the D-MIMO device 11 is calibrated by using the ratio of the transmission / reception gains of the distributed antenna DA.
- the calibration coefficient c i is obtained for each subcarrier s i used for calibration.
- the calibration coefficient ci of the subcarriers not used for calibration, such as the subcarriers used for calibration of the other distributed antenna DA, is obtained by interpolation or extrapolation from the calibration coefficient of the subcarrier s i . Further, the calibration coefficient may be obtained by averaging in a certain subcarrier range. This makes it possible to calibrate in consideration of the frequency characteristics of the error between the distributed antenna DAs.
- the calibration signal is arranged in all the subcarriers, but the calibration can be performed by using only some of the subcarriers.
- Subcarriers for which the calibration signal could not be placed are calibrated by interpolating or extrapolating from the calibration results of nearby subcarriers. Therefore, even during operation, calibration can be performed using a subcarrier such as a reference signal and timing.
- the effect of the first embodiment will be described.
- the effect in a normal operating state in which communication is performed with two UEs using spatial multiplexing will be described.
- the number of UEs is generally equal to or less than the number of antennas of the D-MIMO device 11, and when the number of distributed antennas DA is N, M can take an integer of 1 to N.
- U be the UL signal transmitted from each UE and received (measured) by the distributed antenna DA.
- the UL signal U is a matrix of N rows and 1 column (hereinafter, described as Nx1), and can be expressed by the equation (14).
- H is the channel coefficient of the propagation path and is represented by a matrix of NxM
- Y is a UL signal transmitted from the UE and is represented by a matrix of Mx1.
- Er represents the reception gain of the distributed antenna DA, and e i and r are used. Is expressed, and it becomes a diagonal matrix of NxN.
- the channel coefficient Hu obtained by channel estimation from the received UL signal U is given by Eq. (16). It can be seen that the reception gain Er is included in the channel coefficient Hu .
- the weight coefficient W for precoding is obtained by using the ZF (Zero-Forcing) algorithm, which is one of the spatial multiplexing techniques, as in the equation (17).
- the superscript T of the precoding weight coefficient W indicates a transposed matrix, and the superscript + indicates a pseudo inverse matrix.
- there are multiple spatial multiplexing techniques such as the MMSE algorithm, but the effect of calibration can be obtained in the same way as the ZF algorithm.
- a DL signal obtained by multiplying the precoding weight coefficient W and the calibration coefficient ci represented by the equation (11) is transmitted from each distributed antenna DA.
- the DL signal D received by each UE is represented as follows.
- X is a matrix of Mx1 and is a source signal to be transmitted to each UE.
- the signal is transmitted in one layer per UE.
- C is a diagonal matrix of NxN as shown in the equation (19) having the calibration coefficient ci obtained by the method of the first embodiment.
- Et represents the transmission gain of the distributed antenna DA, and is a diagonal matrix of NxN as shown in the equation (20).
- the calibration coefficient matrix C is expressed as Eq. (21) using Eqs. (13) to (15) and Eqs. (20).
- a C-MIMO device is a MIMO device in which a plurality of antennas are mounted in one housing.
- a C-MIMO device is a MIMO device in which a plurality of antennas are mounted in one housing.
- one of a plurality of antennas mounted in one housing is operated as a calibration antenna, and calibration is performed in the same manner as the D-MIMO device.
- the antenna other than the calibration antenna in the C-MIMO device and the calibration antenna transmit and receive the calibration DL signal and the calibration UL signal due to the leakage of radio waves. This eliminates the need to mount a feedback circuit for calibration or the like.
- FIG. 12 is a schematic diagram illustrating the installation of the distributed antenna and the external antenna according to the second embodiment.
- the first embodiment calibration was performed using an antenna provided in the D-MIMO device or the C-MIMO device.
- an external antenna for calibration is used.
- the number of external antennas will be described as 3.
- Antennas other than one of the plurality of antennas are antennas constituting MIMO.
- one of the plurality of antennas is an external antenna that is not an antenna constituting MIMO.
- an external antenna EA is installed in the room.
- all distributed antenna DAs and calibration measurements are performed.
- the plurality of external antennas EA and a plurality of measurements due to position movement can be handled in the same manner as when the number k of the calibration antenna of the first embodiment is changed.
- the calibration method using the external antenna EA in the D-MIMO device has been described as an example, but the present invention is not limited to this.
- the calibration method according to the second embodiment can also be applied to a C-MIMO apparatus.
- FIG. 13 is a block diagram illustrating the configuration of the D-MIMO apparatus according to the third embodiment.
- the D-MIMO device 11 according to the third embodiment is different from the D-MIMO device 31 according to the first embodiment in that the wireless unit RU and the distributed antenna unit DU are connected by an optical cable.
- the DL signal generated by the digital front-end DFE of the radio unit RU is converted into an optical signal together with the transmission / reception switching signal and transmitted to the distributed antenna unit DA through the optical cable.
- the optical signal transmitted to the distributed antenna unit DA is converted into an electric signal, then converted into an RF signal, and transmitted from the antenna.
- the UL signal is processed in the reverse of the DL signal.
- the reference clock which is the reference of the radio unit RU and each distributed antenna unit DA
- the transmission / reception characteristics of the distributed antenna unit DA differ due to variations in analog circuit characteristics such as the skew of the reference clock and the phase of the local oscillator.
- the difference in the transmission / reception characteristics of the distributed antenna unit DA can be calibrated by the same method as that of the first embodiment.
- the present invention has been described as a hardware configuration in the above embodiment, the present invention is not limited thereto.
- the present invention can also realize the processing of each component by causing a CPU (Central Processing Unit) to execute a computer program.
- a CPU Central Processing Unit
- Non-temporary computer-readable media include various types of real-world recording media (tangible storage medium). Examples of non-temporary computer-readable media include magnetic recording media (specifically flexible disks, magnetic tapes, hard disk drives), opto-magnetic recording media (specifically opto-magnetic disks), and CD-ROMs (Read Only Memory). ), CD-R, CD-R / W, semiconductor memory (specifically, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM)), flash ROM, RAM (Random Access Memory).
- the program may also be supplied to the computer by various types of temporary computer readable media. Examples of temporary computer readable media include electrical, optical, and electromagnetic waves.
- the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
- 11 Wireless communication device, D-MIMO device 111: Calibration control unit 112: Calibration coefficient calculation unit 113: Calibration application unit 1141, 1142, 1143, 1144: Transmitter / receiver 1141t, 1142t, 1143t, 1144t: Transmitter 1141r, 1142r, 1143r, 1144r: Receiver 1151: Layer mapper part 1152: Precoding part 1153: OFDM signal generation part 1154: OFDM signal demodulation part 1155: Channel estimation part 1156: Precoding weight calculation part DA, DA1, DA2, DA3, DA4: Distributed Antenna, distributed antenna part EA, EA1, EA2, EA3: External antenna RU: Wireless part DFE: Digital front end MIMO: Modulator
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
複数のアンテナのうちの1つ以外のアンテナから校正用DL(Down Link)信号を送信し、前記1つのアンテナで前記校正用DL信号を受信するDL制御と、前記1つのアンテナから校正用UL(Up Link)信号を送信し、前記1つ以外のアンテナで前記校正用UL信号を受信するUL制御と、を複数の前記アンテナごとに行う校正制御部と、
前記DL制御において複数の前記アンテナから送信した前記校正用DL信号と複数の前記アンテナで受信した前記校正用DL信号と、前記UL制御において複数の前記アンテナから送信した前記校正用UL信号と複数の前記アンテナで受信した前記校正用UL信号と、に基づいて複数の前記アンテナごとに前記アンテナに接続する送信機のDLチャネル係数と受信機のULチャネル係数を計算し、
前記DLチャネル係数と前記ULチャネル係数とに基づいて、無線DL信号を校正するための校正係数を計算する校正係数計算部と、
前記校正係数に基づいて複数の前記アンテナのそれぞれから送信する前記無線DL信号の位相と振幅を調整する校正適用部と、
を備える。
複数のアンテナのうちの1つ以外のアンテナから校正用DL(Down Link)信号を送信し、前記1つのアンテナで前記校正用DL信号を受信するDL制御と、前記1つのアンテナから校正用UL(Up Link)信号を送信し、前記1つ以外のアンテナで前記校正用UL信号を受信するUL制御と、を複数の前記アンテナごとに行うことと、
前記DL制御において複数の前記アンテナから送信した前記校正用DL信号と複数の前記アンテナで受信した前記校正用DL信号と、前記UL制御において複数の前記アンテナから送信した前記校正用UL信号と複数の前記アンテナで受信した前記校正用UL信号と、に基づいて複数の前記アンテナごとに前記アンテナに接続する送信機のDLチャネル係数と受信機のULチャネル係数を計算することと、
前記DLチャネル係数と前記ULチャネル係数とに基づいて、無線DL信号を校正するための校正係数を計算することと、
前記校正係数に基づいて複数の前記アンテナのそれぞれから送信する前記無線DL信号の位相と振幅を調整することと、
を備える。
複数のアンテナのうちの1つ以外のアンテナから校正用DL(Down Link)信号を送信し、前記1つのアンテナで前記校正用DL信号を受信するDL制御と、前記1つのアンテナから校正用UL(Up Link)信号を送信し、前記1つ以外のアンテナで前記校正用UL信号を受信するUL制御と、を複数の前記アンテナごとに行うことと、
前記DL制御において複数の前記アンテナから送信した前記校正用DL信号と複数の前記アンテナで受信した前記校正用DL信号と、前記UL制御において複数の前記アンテナから送信した前記校正用UL信号と複数の前記アンテナで受信した前記校正用UL信号と、に基づいて複数の前記アンテナごとに前記アンテナに接続する送信機のDLチャネル係数と受信機のULチャネル係数を計算することと、
前記DLチャネル係数と前記ULチャネル係数とに基づいて、無線DL信号を校正するための校正係数を計算することと、
前記校正係数に基づいて複数の前記アンテナのそれぞれから送信する前記無線DL信号の位相と振幅を調整することと、
をコンピュータに実行させる。
<無線通信装置の構成の概要>
図1は、実施の形態1に係る無線通信装置を例示するブロック図である。
図1は、実施の形態1に係る無線通信装置の最小構成を示す。
無線通信装置をD-MIMO装置と称することもある。
実施の形態1では、複数のアンテナとしてD-MIMO装置の分散アンテナを例に挙げて説明するが、これには限定されない。
基準以外の校正用測定における校正用アンテナと、基準とする分散アンテナとのUL/DLチャネル係数比率との、
比率を計算する。この比率を校正用測定の補正係数と称する。
複数の校正用測定間の補正係数を用いて、複数の校正用測定に対して、ULチャネル係数に対するDLチャネル係数の割合を補正する。
上記、基準とする分散アンテナを複数とし、上記複数の基準分散アンテナで計算した補正係数を平均して、新たに補正係数としてもよい。
校正係数計算部112は、上記DLチャネル係数とULチャネル係数から、校正用測定ごとにUL/DLチャネル係数比率を計算する。
校正係数計算部112は、上記校正用測定ごとにUL/DLチャネル係数比率を、上記補正係数を用いて、校正用測定間の補正を行う。
校正係数計算部112は、複数の分散アンテナDAごとに、補正した前記校正用測定ごとのUL/DLチャネル係数比率を、重み付け係数に基づいて複数校正用測定間で重み付け平均した、重み付け平均UL/DLチャネル係数比率を計算する。
重み付け平均UL/DLチャネル係数比率を校正係数と称する。
以下では、無線通信装置の1つとしてD-MIMO装置を例に挙げて説明する。また、D-MIMO装置11は、MIMO伝送に対応し、TDD方式を使用していることを例に挙げて説明する。
図3は、実施の形態1に係る分散アンテナの設置を例示する模式図である。
図2及び図3は、実施の形態1に係るD-MIMO装置の分散アンテナを運用場所、例えば、室内に設置した場合を上方から見た図である。
図4は、実施の形態1に係るD-MIMO装置の構成を例示するブロック図である。
図5は、実施の形態1に係るデジタルフロントエンドDFEを例示するブロック図である。
図5に示すように、デジタルフロントエンドDFEは、DL信号の処理では、送信信号をレイヤマッパ(Layer mapper)部1151でレイヤごとに分けてレイヤ信号Xを出力する。この例では、レイヤ数は、例えば2つとする。プリコーディング(Precoding)部1152は、各レイヤ信号Xを、プリコーディング用ウェイト係数Wに従って重み付けし、互いに加算することにより4つのDL信号WXを生成する。校正適用部113は、プリコーディング後のDL信号WXに送受信機の誤差を校正する係数Cを乗算してDL信号CWXを出力する。OFDM信号生成部1153は、プリコーディングと校正が行われたDL信号CWXに対してOFDM変調を行い、デジタルベースバンド信号を生成する。デジタルベースバンド信号は、変復調器MODEMに送られ、アナログ変調信号に変換される。
OFDM信号復調部1154は、変復調器MODEMから入力された受信ベースバンド信号(OFDM信号)を復調処理し、信号Uを出力する。これにより、受信ベースバンド信号は、タイムドメインの信号から周波数ドメインの信号に変換される。すなわち、サブキャリアごとの信号に変換される。OFDM復調された信号Uは、複数のUEとの多重通信間の混信や伝搬環境などの影響により位相と振幅が変化している信号である。
図6は、実施の形態1に係るD-MIMO装置の動作を例示するブローチャートである。
図6は、実施の形態1に係るD-MIMO装置の校正時の動作を示す。
図7は、実施の形態1に係る校正用DL信号の周波数配置を例示する模式図である。
図7は、分散アンテナDA1から送信する校正用DL信号の周波数配置を示す。
図8は、実施の形態1に係る校正用DL信号の周波数配置を例示する模式図である。
図8は、分散アンテナDA2から送信する校正用DL信号の周波数配置を示す。
図9は、実施の形態1に係る校正用DL信号の周波数配置を例示する模式図である。
図9は、分散アンテナDA3から送信する校正用DL信号の周波数配置を示す。
図10は、実施の形態1に係る校正用DL信号の周波数配置を例示する模式図である。
図10は、分散アンテナDA4から送信する校正用DL信号の周波数配置を示す。
図11は、実施の形態1に係る校正用UL信号の周波数配置を例示する模式図である。
・D-MIMO装置11の起動時(電源投入時)。
・複数の分散アンテナDAのいずれかの温度と前回の校正時の温度との差が所定温度以上の場合、又は、全ての分散アンテナDAの平均温度と前回の校正時の温度との差が所定温度以上の場合。
・前回の校正時から所定時間以上経過した場合、
・DL信号の通信品質が所定期間以上の間、所定品質よりも低い場合。
ここで、図6に示すステップS107で行う校正係数の計算方法について説明する。
図7から図10に示すように、分散アンテナDAから出力した校正用DL信号は、それぞれの分散アンテナDAごとに異なるサブキャリアに配置される。例えば、分散アンテナDA2から分散アンテナDA4で送信された校正用DL信号は、校正用アンテナとしての分散アンテナDA1で受信される。校正用DL信号は、OFDM復調され、サブキャリアごとに分けることで、複数の分散アンテナDA相互の間の混信が無く受信される。
実施の形態1では、変数iは1から4の整数とする。図7から図10に示すように、サブキャリアs1は、例えば、1、5、9、…、番目のサブキャリアである。サブキャリアs2は、2、6、10、…、番目のサブキャリアである。k番目の校正用アンテナで受信されたOFDM信号を復調して得られたsi番目のサブキャリアのデータをdk、i(si)と表すことにする。k=iの場合は、dk、i(si)=0とする。
hk、iは、分散アンテナDAiから分散アンテナDAkまでの伝搬路のチャネル係数であり、xiは、分散アンテナDAiから送信された既知の校正用DL信号である。式(1)中の(si)は、周波数(サブキャリア)に依存して変化することを示すが、以後、簡単のため省略して記載する。また、校正用DL信号dk、i(si)は、OTA(Over The Air)で測定されたためノイズが含まれるが、この例では省略するものとする。
ykは、校正用アンテナCAkから送信された既知の校正用UL信号である。式(2)中の(si)は、周波数(サブキャリア)に依存して変化することを示すが、以後、簡単のため省略して記載する。また、校正用UL信号uk、i(si)は、OTAで測定されたため、ノイズが含まれるが、この例では省略する。
既知の校正用DL信号xiは、xi・xi *=1とする。(*)は共役複素数を表す。
kとk0とi0はそれぞれ異なる番号とする。
ただし、校正用アンテナを変えて行った校正用測定回数をNm個とする。実施の形態1の場合、Nm=4である。分散アンテナDAの数をN個とする。補正係数γk=0の場合、(γk)-1=0とする。式(11)は、式(12)のように展開できる。式(12)によると、校正係数ciは、(ei、r/ei、t)を、(|εk、r|2|hk、r|2)の重みを付けて平均したものである。また、(|εk、r|2|hk、r|2)は、校正用信号の受信電力に比例する。
よって、分散アンテナDAの送受信利得の比を用いることで、D-MIMO装置11の送信部分の校正を行う。
実施の形態1の効果を説明する。ここでは、2台のUEと空間多重を用いて通信する通常の運用状態(図3参照)での効果を説明する。以下の説明では、UEの数をM=2台とする。UEの数は、一般的にD-MIMO装置11のアンテナの本数以下であり、分散アンテナDAの数をN個とした場合、Mは、1からNのいずれかの整数を取り得る。
Hは伝搬路のチャネル係数でありNxMの行列で表され、YはUEから送信されたUL信号でありMx1の行列で表される。Erは分散アンテナDAの受信利得を表し、ei、rを用いて、
と表され、NxNの対角行列となる。
プリコーディング用ウェイト係数Wの上付きTは転置行列を示し、上付き+は疑似逆行列を示す。空間多重技術にはZFアルゴリズムの他に、MMSEアルゴリズムなど複数のものがあるが、ZFアルゴリズムと同様に校正の効果を得られる。
XはMx1の行列であり各UEに送信する元信号である。実施の形態1では、1UEあたり1レイヤで信号を伝送する。Cは実施の形態1の手法で求めた校正係数ciを有する式(19)に示すようなNxNの対角行列である。
Etは分散アンテナDAの送信利得を表し、式(20)のようなNxNの対角行列となる。
校正係数行列Cは、式(13)から式(15)と式(20)を用いて式(21)のように表される。
これにより、実施の形態1で求めた校正係数Cを用いることで、D-MIMO装置11の送信利得と受信利得を補正し、精度のよいDL信号を送信することができる。
図12は、実施の形態2に係る分散アンテナと外部アンテナの設置を例示する模式図である。
図13は、実施の形態3に係るD-MIMO装置の構成を例示するブロック図である。
111:校正制御部
112:校正係数計算部
113:校正適用部
1141、1142,1143、1144:送受信機
1141t、1142t、1143t、1144t:送信機
1141r、1142r、1143r、1144r:受信機
1151:レイヤマッパ部
1152:プリコーディング部
1153:OFDM信号生成部
1154:OFDM信号復調部
1155:チャネル推定部
1156:プリコーディングウェイト計算部
DA、DA1、DA2、DA3、DA4:分散アンテナ、分散アンテナ部
EA、EA1、EA2、EA3:外部アンテナ
RU:無線部
DFE:デジタルフロントエンド
MODEM:変復調器
Claims (10)
- 複数のアンテナのうちの1つ以外のアンテナから校正用DL(Down Link)信号を送信し、前記1つのアンテナで前記校正用DL信号を受信するDL制御と、前記1つのアンテナから校正用UL(Up Link)信号を送信し、前記1つ以外のアンテナで前記校正用UL信号を受信するUL制御と、を複数の前記アンテナごとに行う校正制御手段と、
前記DL制御において複数の前記アンテナから送信した前記校正用DL信号と複数の前記アンテナで受信した前記校正用DL信号と、前記UL制御において複数の前記アンテナから送信した前記校正用UL信号と複数の前記アンテナで受信した前記校正用UL信号と、に基づいて複数の前記アンテナごとに前記アンテナに接続する送信機のDLチャネル係数と受信機のULチャネル係数を計算し、
前記DLチャネル係数と前記ULチャネル係数とに基づいて、無線DL信号を校正するための校正係数を計算する校正係数計算手段と、
前記校正係数に基づいて複数の前記アンテナのそれぞれから送信する前記無線DL信号の位相と振幅を調整する校正適用手段と、
を備える無線通信装置。 - 前記校正係数計算手段は、
前記1つ以外のアンテナから送信した送信時の前記校正用DL信号と前記1つのアンテナで受信した受信時の前記校正用DL信号とに基づいて前記1つ以外のアンテナに対応する複数の前記DLチャネル係数を、複数の前記アンテナごとに計算し、
前記1つのアンテナから送信した送信時の前記校正用UL信号と前記1つ以外のアンテナで受信した受信時の前記校正用UL信号とに基づいて前記1つ以外のアンテナに対応する複数の前記ULチャネル係数を、複数の前記アンテナごとに計算し、
前記DL制御と前記UL制御により得られた複数の校正用測定から計算した前記DLチャネル係数と前記ULチャネル係数とに基づいて、前記無線DL信号を校正するための前記校正係数を計算する、
請求項1に記載の無線通信装置。 - 前記校正係数計算手段は、
複数の前記校正用測定から計算した前記ULチャネル係数に対する前記DLチャネル係数の割合をチャネル係数比率として計算し、
複数の前記校正用測定の前記チャネル係数比率のうちの1つを基準チャネル係数比率として選択し、
複数の前記校正用測定の前記チャネル係数比率に対する前記基準チャネル係数比率の割合を複数の校正用測定間の補正係数として計算し、
複数の前記校正用測定間の前記補正係数を用いて、複数の前記校正用測定に対して、前記ULチャネル係数に対する前記DLチャネル係数の割合を補正する、
請求項2に記載する無線通信装置。 - 前記校正係数計算手段は、
複数の前記校正用測定で計算した複数の前記校正用測定間の前記補正係数を平均して平均補正係数を計算し、
前記平均補正係数を新たに前記補正係数とする、
請求項3に記載の無線通信装置。 - 前記校正係数計算手段は、
複数回の前記校正用測定を行い、前記1つのアンテナに対して複数の前記DLチャネル係数と前記ULチャネル係数が得られた場合、前記校正用DL信号又は前記校正用UL信号の受信電力に基づいて重み付け係数を求め、
前記DLチャネル係数と前記ULチャネル係数から、前記校正用測定ごとに前記ULチャネル係数に対する前記DLチャネル係数の比率を、UL/DLチャネル係数比率として計算し、
前記校正用測定ごとに前記UL/DLチャネル係数比率を、前記補正係数を用いて、前記校正用測定間の補正を行い、
複数の前記アンテナごとに、補正した前記校正用測定ごとの前記UL/DLチャネル係数比率を、前記重み付け係数に基づいて複数の前記校正用測定間で重み付け平均した重み付け平均UL/DLチャネル係数比率を計算し、
前記重み付け平均UL/DLチャネル係数比率を、新たに前記校正係数とする、
請求項3に記載の無線通信装置。 - 前記校正制御手段は、複数の前記アンテナのそれぞれから異なる周波数の前記校正用DL信号が送信するように制御する、
請求項1から5のいずれか1つに記載の無線通信装置。 - 前記校正適用手段は、複数の前記アンテナのいずれかの温度と前回の校正時の温度との差が所定温度以上の場合、又は、全ての前記アンテナの平均温度と前回の校正時の温度との差が前記所定温度以上の場合、前記無線DL信号の位相と振幅を再度調整する、
請求項1から6のいずれか1つに記載の無線通信装置。 - 前記1つ以外のアンテナは、MIMOを構成するアンテナであり、
前記1つのアンテナは、前記MIMOを構成するアンテナではない外部のアンテナである、
請求項1から7のいずれか1つに記載の無線通信装置。 - 複数のアンテナのうちの1つ以外のアンテナから校正用DL(Down Link)信号を送信し、前記1つのアンテナで前記校正用DL信号を受信するDL制御と、前記1つのアンテナから校正用UL(Up Link)信号を送信し、前記1つ以外のアンテナで前記校正用UL信号を受信するUL制御と、を複数の前記アンテナごとに行うことと、
前記DL制御において複数の前記アンテナから送信した前記校正用DL信号と複数の前記アンテナで受信した前記校正用DL信号と、前記UL制御において複数の前記アンテナから送信した前記校正用UL信号と複数の前記アンテナで受信した前記校正用UL信号と、に基づいて複数の前記アンテナごとに前記アンテナに接続する送信機のDLチャネル係数と受信機のULチャネル係数を計算することと、
前記DLチャネル係数と前記ULチャネル係数とに基づいて、無線DL信号を校正するための校正係数を計算することと、
前記校正係数に基づいて複数の前記アンテナのそれぞれから送信する前記無線DL信号の位相と振幅を調整することと、
を備える無線通信装置の方法。 - 複数のアンテナのうちの1つ以外のアンテナから校正用DL(Down Link)信号を送信し、前記1つのアンテナで前記校正用DL信号を受信するDL制御と、前記1つのアンテナから校正用UL(Up Link)信号を送信し、前記1つ以外のアンテナで前記校正用UL信号を受信するUL制御と、を複数の前記アンテナごとに行うことと、
前記DL制御において複数の前記アンテナから送信した前記校正用DL信号と複数の前記アンテナで受信した前記校正用DL信号と、前記UL制御において複数の前記アンテナから送信した前記校正用UL信号と複数の前記アンテナで受信した前記校正用UL信号と、に基づいて複数の前記アンテナごとに前記アンテナに接続する送信機のDLチャネル係数と受信機のULチャネル係数を計算することと、
前記DLチャネル係数と前記ULチャネル係数とに基づいて、無線DL信号を校正するための校正係数を計算することと、
前記校正係数に基づいて複数の前記アンテナのそれぞれから送信する前記無線DL信号の位相と振幅を調整することと、
をコンピュータに実行させるプログラムが格納される非一時的なコンピュータ可読媒体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/266,389 US20240048200A1 (en) | 2020-12-17 | 2021-11-05 | Radio communication apparatus, method for radio communication apparatus, and non-transitory computer readable medium |
JP2022569761A JPWO2022130821A5 (ja) | 2021-11-05 | 無線通信装置、無線通信装置の方法、及びプログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020209739 | 2020-12-17 | ||
JP2020-209739 | 2020-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022130821A1 true WO2022130821A1 (ja) | 2022-06-23 |
Family
ID=82057578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/040738 WO2022130821A1 (ja) | 2020-12-17 | 2021-11-05 | 無線通信装置、無線通信装置の方法、及び非一時的なコンピュータ可読媒体 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20240048200A1 (ja) |
WO (1) | WO2022130821A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004235829A (ja) * | 2003-01-29 | 2004-08-19 | Hitachi Kokusai Electric Inc | 無線基地局装置 |
JP2005064626A (ja) * | 2003-08-20 | 2005-03-10 | Hitachi Kokusai Electric Inc | 基地局装置 |
JP2012182804A (ja) * | 2007-05-29 | 2012-09-20 | Mitsubishi Electric Corp | 無線局 |
WO2015185680A1 (en) * | 2014-06-04 | 2015-12-10 | Airrays Gmbh | Modular antenna system |
-
2021
- 2021-11-05 US US18/266,389 patent/US20240048200A1/en active Pending
- 2021-11-05 WO PCT/JP2021/040738 patent/WO2022130821A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004235829A (ja) * | 2003-01-29 | 2004-08-19 | Hitachi Kokusai Electric Inc | 無線基地局装置 |
JP2005064626A (ja) * | 2003-08-20 | 2005-03-10 | Hitachi Kokusai Electric Inc | 基地局装置 |
JP2012182804A (ja) * | 2007-05-29 | 2012-09-20 | Mitsubishi Electric Corp | 無線局 |
WO2015185680A1 (en) * | 2014-06-04 | 2015-12-10 | Airrays Gmbh | Modular antenna system |
Also Published As
Publication number | Publication date |
---|---|
US20240048200A1 (en) | 2024-02-08 |
JPWO2022130821A1 (ja) | 2022-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100656979B1 (ko) | 스마트 안테나 어레이 시스템의 실시간 교정 방법 | |
JP5869682B2 (ja) | アンテナアレイシステムにおけるアンテナ装置のキャリブレーションのための方法、処理装置、コンピュータプログラム、及びアンテナ装置 | |
US9118111B2 (en) | Antenna array calibration for wireless communication systems | |
US7389193B2 (en) | Apparatus and method for calibrating transmission paths in a multicarrier communication system using multiple antennas | |
US8050314B2 (en) | Apparatus and method for wireless communication, and computer program | |
KR101381458B1 (ko) | 다중 입출력 직교 주파수 분할 다중화 무선 네트워크에서 안테나 맵핑을 선택하는 방법 및 장치 | |
CN108471324A (zh) | 电子设备、通信装置和信号处理方法 | |
EP2988443B1 (en) | Wireless communication apparatus and wireless communication method | |
JP4696842B2 (ja) | 無線通信装置、アンテナ・キャリブレーション方法、並びにコンピュータ・プログラム | |
JP2010034937A (ja) | 無線通信装置及び無線通信方法、並びにコンピューター・プログラム | |
EP3963845A1 (en) | Methods, distributed base station system, remote radio unit and base band unit system for handling uplink signals | |
US8498669B2 (en) | Antenna array calibration for wireless communication systems | |
JP3932456B2 (ja) | 移動通信システムの受信信号補正装置及びその方法 | |
CA2628478A1 (en) | Antenna array calibration for wireless communication systems | |
JP2014060616A (ja) | 通信装置、および信号検出方法 | |
WO2022130821A1 (ja) | 無線通信装置、無線通信装置の方法、及び非一時的なコンピュータ可読媒体 | |
CA2606163A1 (en) | Antenna array calibration for wireless communication systems | |
KR101054090B1 (ko) | 배열 안테나 시스템의 평균 내부순환 안테나 교정 방법 | |
JP2006014027A (ja) | 無線通信装置及び無線通信方法、並びにコンピュータ・プログラム | |
WO2022137891A1 (ja) | 信号処理装置、信号処理方法及び非一時的なコンピュータ可読媒体 | |
CN111726172B (zh) | 通道校正的方法和装置 | |
JP6696336B2 (ja) | 送信制御装置、無線通信システム及びキャリブレーション方法 | |
WO2023053472A1 (ja) | 無線通信装置、システム、方法、及び非一時的なコンピュータ可読媒体 | |
JP6163083B2 (ja) | 通信装置及び送信方法 | |
JP2013093658A (ja) | 無線通信装置および無線通信システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21906185 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18266389 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2022569761 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21906185 Country of ref document: EP Kind code of ref document: A1 |