WO2022130821A1 - 無線通信装置、無線通信装置の方法、及び非一時的なコンピュータ可読媒体 - Google Patents

無線通信装置、無線通信装置の方法、及び非一時的なコンピュータ可読媒体 Download PDF

Info

Publication number
WO2022130821A1
WO2022130821A1 PCT/JP2021/040738 JP2021040738W WO2022130821A1 WO 2022130821 A1 WO2022130821 A1 WO 2022130821A1 JP 2021040738 W JP2021040738 W JP 2021040738W WO 2022130821 A1 WO2022130821 A1 WO 2022130821A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
signal
antenna
coefficient
antennas
Prior art date
Application number
PCT/JP2021/040738
Other languages
English (en)
French (fr)
Inventor
憲明 田和
俊秀 桑原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US18/266,389 priority Critical patent/US20240048200A1/en
Priority to JP2022569761A priority patent/JPWO2022130821A5/ja
Publication of WO2022130821A1 publication Critical patent/WO2022130821A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming

Definitions

  • the present disclosure relates to a wireless communication device, a method and a program of the wireless communication device, and more particularly to a wireless communication device, a method and a program of the wireless communication device capable of easily calibrating the distributed antenna.
  • a base station that supports MIMO transmission is equipped with a plurality of antennas and modulators and demodulators, and sends and receives different radio signals from each.
  • the frequency utilization efficiency is increased by spatially multiplexing the radio signals (user signals) using the plurality of radio signals (transmission / reception signals).
  • a base station compatible with the MIMO transmission method it is possible to increase the antenna gain in a specific direction by using a plurality of antennas, suppress interference by forming a null, and the like. This technique is called beamforming, and there are two main types. One is analog beamforming and the other is digital beamforming.
  • Analog beamforming is a technique for increasing antenna gain in a specific direction by distributing (dispersing) one or more radio signals to a plurality of antennas and giving different phases to each of them by a phase controller or the like.
  • digital beamforming is a technique for adjusting the phase and amplitude of the transmitted / received signals of each antenna.
  • a base station that supports digital beamforming is equipped with the same number of transceivers as the number of antennas, and digitally controls the transmission / reception signals from each antenna. This makes it possible to use spatial multiplexing techniques such as ZF (Zero Forcing) and MMSE (Minimum Mean Square Error). In ZF and MMSE, since the antenna gain is also controlled in the null direction, interference of a plurality of transmitted / received signals can be suppressed and signals can be multiplexed more efficiently.
  • ZF Zero Forcing
  • MMSE Minimum Mean Square Error
  • the base station estimates the channel coefficient from the reference signal contained therein, for example, using the received signal (UL (Uplink) signal) of the base station.
  • the process of estimating the channel coefficient is called channel estimation.
  • the base station receives UL signals from a plurality of user terminals (UE: User Equipment), these UL signals interfere with each other. Therefore, the base station can perform UL communication with each UE by separating the multiplexed UL signal by using the channel coefficient obtained by the channel estimation and the spatial multiplexing technique.
  • multiplexed DL communication is performed by transmitting a DL signal to which a spatial multiplexing technique is applied in advance using a channel coefficient estimated from a UL signal.
  • Precoding is a process of generating a DL signal using the channel coefficient to which the spatial multiplexing technique is applied in advance.
  • the DL signal to which the spatial multiplexing technique is applied in advance is transmitted using the channel coefficient estimated from the UL signal.
  • This utilizes the reciprocity of propagation channels in UL communication and DL communication, and is used in TDD (Time Division Duplex) type communication.
  • TDD Time Division Duplex
  • it is necessary to calibrate the transmission / reception signals transmitted / received from each antenna. If this calibration is incomplete, the channel coefficients obtained by channel estimation will contain errors due to the receiver and the radio signal will not be able to be accurately spatially multiplexed.
  • the error of the transmitter also affects the spatial multiplexing and deteriorates the communication characteristics.
  • the base station may include a transmission / reception circuit for calibration in addition to the transmission / reception circuit used for communication, and may calibrate the transmission / reception circuit used for communication by using the transmission / reception circuit for calibration.
  • a transmission / reception circuit for calibration in addition to the transmission / reception circuit used for communication, and may calibrate the transmission / reception circuit used for communication by using the transmission / reception circuit for calibration.
  • a base station that supports the MIMO transmission method is referred to as a MIMO device or a MIMO base station.
  • MIMO devices can be divided into two types. One is a C-MIMO (Collocated-MIMO) device in which a plurality of antenna units are mounted in one housing, and the other is a distributed MIMO in which each of the plurality of antenna parts is mounted in a separate housing. It is a device.
  • a distributed MIMO device is referred to as a D-MIMO (Distributed-MIMO) device. Calibration of the antenna section is particularly important in D-MIMO equipment.
  • a plurality of antenna units of the D-MIMO device are installed at different positions and are connected to one RU (Radio Unit) unit by wire.
  • the RU unit includes a DFE (Digital Front End) that performs digital baseband signal processing and a modulation / demodulation unit.
  • Each of the plurality of antenna units includes an antenna and an up / down converter unit that converts the DL signal from the RU into a high frequency band.
  • the D-MIMO device since the RU and the antenna unit are separated from each other, it is difficult to pre-calibrate the amplitude and phase of the DL signal at each antenna end of the plurality of antenna units at the time of manufacture. Therefore, it is necessary to calibrate the D-MIMO device by using an external measuring instrument after installing the D-MIMO device in the operating place.
  • Patent Document 1 states that "the first modification information determined from the first calibration of the base station is received from the system module. The signal from at least one antenna of the base station is received by the high frequency module. The second correction information is determined based on the received signal and the first correction information.
  • Patent Document 2 states that "in a communication base station performing adaptive array communication, the remaining CCH carrier transmitted by any one of the N antenna elements equipped in the communication base station during communication (in the communication base station). N-1) The calibration process received by the antenna elements is performed, and the calibration data of each antenna element is determined from the amplitude ratio and phase difference at the time of reception of each antenna element. " There is.
  • Patent Document 2 describes "DL control in which a calibration DL (DownLink) signal is transmitted from an antenna other than one of a plurality of antennas and the calibration DL signal is received by the one antenna, and the above 1).
  • UL control in which a calibration UL (UpLink) signal is transmitted from one antenna and the calibration UL signal is received by an antenna other than the one is performed for each of the plurality of antennas is not described.
  • a feedback transceiver transmission / reception circuit
  • signal wiring from each signal path to the feedback transmission / reception circuit is also required.
  • the C-MIMO apparatus becomes complicated, and there is a problem that the cost and the power consumption increase.
  • the antenna unit and the modulation / demodulation unit are separated, and it is difficult to calibrate the antenna unit at the time of manufacturing. Therefore, it is necessary to calibrate the antenna unit using an external measuring instrument after installing the D-MIMO device in the operating place. Since it is difficult to perform calibration using an external measuring instrument frequently, it is difficult to change the installation position of the antenna unit. Further, there is a problem that it is difficult to calibrate the antenna portion each time in order to cope with the deterioration of the communication characteristics due to the temperature change of the D-MIMO device.
  • An object of the present disclosure is to provide a wireless communication device, a method of a wireless communication device, and a program that solve any of the above-mentioned problems.
  • the wireless communication device is DL control in which a calibration DL (Down Link) signal is transmitted from an antenna other than one of a plurality of antennas and the calibration DL signal is received by the one antenna, and a calibration UL ( Up Link)
  • a calibration control unit that transmits a signal and receives the calibration UL signal with an antenna other than the one, and a calibration control unit that performs the UL control for each of the plurality of antennas.
  • the DL channel coefficient of the transmitter connected to the antenna and the UL channel coefficient of the receiver are calculated for each of the plurality of antennas.
  • a calibration coefficient calculation unit that calculates a calibration coefficient for calibrating a radio DL signal based on the DL channel coefficient and the UL channel coefficient.
  • a calibration application unit that adjusts the phase and amplitude of the radio DL signal transmitted from each of the plurality of antennas based on the calibration coefficient. To prepare for.
  • the method of the wireless communication device is DL control in which a calibration DL (Down Link) signal is transmitted from an antenna other than one of a plurality of antennas and the calibration DL signal is received by the one antenna, and a calibration UL ( Up Link) UL control that transmits a signal and receives the calibration UL signal with an antenna other than the one is performed for each of the plurality of antennas.
  • a calibration DL signal transmitted from the plurality of antennas in the DL control, the calibration DL signal received by the plurality of antennas, and the calibration UL signal transmitted from the plurality of antennas in the UL control.
  • the program related to this disclosure is DL control in which a calibration DL (Down Link) signal is transmitted from an antenna other than one of a plurality of antennas and the calibration DL signal is received by the one antenna, and a calibration UL ( Up Link) UL control that transmits a signal and receives the calibration UL signal with an antenna other than the one is performed for each of the plurality of antennas.
  • a wireless communication device it is possible to provide a wireless communication device, a method of a wireless communication device, and a program capable of easily calibrating a distributed antenna.
  • FIG. 6 is a blow chart illustrating the operation of the D-MIMO apparatus according to the first embodiment. It is a schematic diagram which illustrates the frequency arrangement of the calibration DL signal which concerns on Embodiment 1.
  • FIG. 1 It is a schematic diagram which illustrates the frequency arrangement of the calibration DL signal which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which illustrates the frequency arrangement of the calibration DL signal which concerns on Embodiment 1.
  • FIG. 1 is a schematic diagram which illustrates the frequency arrangement of the calibration DL signal which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which illustrates the frequency arrangement of the UL signal for calibration which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which illustrates the installation of the distributed antenna and the external antenna which concerns on Embodiment 2.
  • FIG. It is a block diagram which illustrates the structure of the D-MIMO apparatus which concerns on Embodiment 3.
  • FIG. 1 is a block diagram illustrating the wireless communication device according to the first embodiment.
  • FIG. 1 shows the minimum configuration of the wireless communication device according to the first embodiment.
  • the wireless communication device may also be referred to as a D-MIMO device.
  • a distributed antenna of a D-MIMO device will be described as an example as a plurality of antennas, but the present invention is not limited to this.
  • the wireless communication device 11 includes a calibration control unit 111, a calibration coefficient calculation unit 112, and a calibration application unit 113.
  • the calibration control unit 111 performs DL control in which a calibration DL (DownLink) signal is transmitted from an antenna other than one of the plurality of distributed antenna DAs and the calibration DL signal is received by one antenna. That is, one of the plurality of distributed antenna DAs is used as the calibration antenna. One antenna is, for example, the distributed antenna DA1.
  • the calibration control unit 111 performs UL control in which a calibration UL (UpLink) signal is transmitted from one antenna and a calibration UL signal is received by an antenna other than one.
  • the calibration control unit 111 performs DL control and UL control for each of a plurality of distributed antennas DA.
  • the calibration coefficient calculation unit 112 includes a calibration DL signal transmitted from a plurality of distributed antenna DAs in DL control, a calibration DL signal received by a plurality of distributed antenna DAs, and a calibration DL signal transmitted from a plurality of distributed antenna DAs in UL control. Based on the UL signal and the calibration UL signal received by the plurality of distributed antennas, the DL channel coefficient of the transmitter connected to the distributed antenna and the UL channel coefficient of the receiver are calculated for each of the plurality of distributed antennas. The calibration coefficient calculation unit 112 calculates the calibration coefficient for calibrating the radio DL signal based on the DL channel coefficient and the UL channel coefficient.
  • the calibration coefficient calculation unit 112 Based on the DL channel coefficient and the UL channel coefficient, the calibration coefficient calculation unit 112 assumes that the DL propagation channel included in the DL channel coefficient is equal to the UL propagation channel included in the UL channel coefficient, and transmits and receives for each of the plurality of distributed antenna DAs.
  • the gain ratio may be calculated and used as a calibration coefficient for calibrating the wireless DL signal.
  • the calibration application unit 113 adjusts the phase and amplitude of the radio DL signal transmitted from each of the plurality of distributed antennas based on the calibration coefficient.
  • the wireless DL signal may be referred to as a DL signal.
  • the wireless communication device 11 uses one of the plurality of distributed antenna DAs as a calibration antenna to perform calibration measurement.
  • the calibration measurement is performed a plurality of times while changing one distributed antenna DA used as the calibration antenna to one of the plurality of distributed antenna DAs.
  • the distributed antenna DA can be calibrated without the external measuring instrument, the calibration-dedicated antenna, or the calibration-dedicated circuit.
  • the calibration coefficient calculation unit 112 has characteristics (propagation channel) of DL radio wave propagation based on the calibration DL signal at the time of transmission transmitted from one antenna and the calibration DL signal at the time of reception received by one antenna. And a DL channel coefficient including the transmission characteristics of the distributed antenna DA, and a plurality of DL channel coefficients corresponding to antennas other than one are calculated for each of the plurality of distributed antenna DAs. The calculation of the DL channel coefficient is also performed for a plurality of calibration measurements performed by changing the calibration antenna.
  • the calibration coefficient calculation unit 112 is based on the UL signal for calibration at the time of transmission transmitted from one antenna and the UL signal for calibration at the time of reception received by another antenna, and the characteristics (propagation channel) of UL radio wave propagation. And a UL channel coefficient including the reception characteristics of the distributed antenna DA, and a plurality of UL channel coefficients corresponding to antennas other than one are calculated for each of the plurality of distributed antenna DAs. The calculation of the UL channel coefficient is also performed for a plurality of calibration measurements performed by changing the calibration antenna.
  • the calibration coefficient calculation unit 112 is used for each of the plurality of calibration measurements and for each of the plurality of calibration measurements and for each of the plurality of calibration coefficients based on the plurality of DL channel coefficients and the plurality of UL channel coefficients for each of the plurality of distributed antenna DAs.
  • the ratio of the DL channel coefficient to the UL channel coefficient (UL / DL channel coefficient ratio) is calculated for each distributed antenna DA.
  • the calibration coefficient calculation unit 112 calculates the calibration coefficient for calibrating the radio DL signal based on the DL channel coefficient and the UL channel coefficient.
  • the DL channel coefficient and the UL channel coefficient also include the transmission / reception characteristics of the distributed antenna DA.
  • the propagation channel included in the DL channel coefficient shall be equal to the propagation channel included in the UL channel coefficient. That is, since both DL and UL have the same propagation path, the propagation channels are assumed to be the same.
  • the calibration coefficient calculation unit 112 determines the UL / DL channel coefficient ratio between the calibration antenna for the reference calibration measurement and the reference distributed antenna among the plurality of calibration measurements.
  • UL / DL channel coefficient ratio between the calibration antenna in the measurement for calibration other than the reference and the distributed antenna as the reference Calculate the ratio. This ratio is called the correction coefficient of the calibration measurement.
  • the correction factor between the plurality of calibration measurements is used to correct the ratio of the DL channel coefficient to the UL channel coefficient for the plurality of calibration measurements.
  • a plurality of reference distributed antennas may be used, and the correction coefficients calculated by the plurality of reference distributed antennas may be averaged and used as a new correction coefficient.
  • the calibration coefficient calculation unit 112 performs calibration measurement multiple times, and calibrates when a plurality of DL channel coefficients and UL channel coefficients are obtained for one distributed antenna DA (when there are multiple valid measurements).
  • the weighting coefficient is obtained based on the received power of the DL signal or the UL signal for calibration.
  • the calibration coefficient calculation unit 112 calculates the UL / DL channel coefficient ratio for each calibration measurement from the DL channel coefficient and the UL channel coefficient.
  • the calibration coefficient calculation unit 112 corrects the UL / DL channel coefficient ratio for each calibration measurement by using the correction coefficient between the calibration measurements.
  • the calibration coefficient calculation unit 112 weighted and averaged the corrected UL / DL channel coefficient ratio for each calibration measurement among the plurality of calibration measurements based on the weighting coefficient for each of the plurality of distributed antenna DAs. Calculate the DL channel coefficient ratio.
  • the weighted average UL / DL channel coefficient ratio is referred to as a calibration coefficient.
  • the calibration coefficient calculation unit 112 selects the DL channel coefficient corresponding to the calibration DL signal whose received power is equal to or higher than the predetermined power from the DL channel coefficients of a plurality of measurements.
  • the calibration coefficient calculation unit 112 selects the DL channel coefficient corresponding to the calibration UL signal whose received power is equal to or higher than the predetermined power from the UL channel coefficients of a plurality of measurements.
  • the calibration coefficient calculation unit 112 may calculate the calibration coefficient for each of the plurality of distributed antenna DAs by using the selected DL channel coefficient and the selected UL channel coefficient.
  • the calibration control unit 111 may add a calibration DL signal or a calibration UL signal to the wireless DL signal transmitted from each of the plurality of distributed antennas to perform calibration measurement.
  • a D-MIMO device will be described as an example as one of the wireless communication devices. Further, the D-MIMO apparatus 11 corresponds to MIMO transmission and uses the TDD method as an example.
  • FIG. 2 is a schematic diagram illustrating the installation of the distributed antenna according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating the installation of the distributed antenna according to the first embodiment. 2 and 3 are views from above when the distributed antenna of the D-MIMO apparatus according to the first embodiment is installed in an operating place, for example, indoors.
  • FIG. 2 shows the communication state at the time of calibration.
  • FIG. 3 shows a communication state during operation.
  • the number of distributed antenna DAs is four and they are installed at the four corners of the room.
  • the radio wave transmitted from the distributed antenna DA1 does not reach the distributed antenna DA3 because it is blocked by the pillar, and vice versa.
  • the dotted line shown in FIG. 2 indicates that a plurality of distributed antenna DAs can communicate with each other.
  • All of the distributed antenna DA1 to the distributed antenna DA4 shall be calibrated. Calibration is performed by transmitting and receiving calibration signals, which are known signals for calibration, through these distributed antennas DA. In the first embodiment, it is possible to calibrate using an external measuring instrument or a UE (User Equipment), but the calibration is performed only by the distributed antenna DA.
  • UE User Equipment
  • the method of calibrating with the distributed antenna DA according to the first embodiment does not switch transmission and reception of all the distributed antenna DAs at the same timing as in normal operation.
  • one of the distributed antenna DAs is operated by reversing transmission and reception with the other distributed antenna DAs. That is, one distributed antenna DA is used like an external measuring instrument. This one distributed antenna DA is called a calibration antenna. As a result, calibration can be performed only with the D-MIMO device 11.
  • the distributed antenna DA of the D-MIMO device 11 is installed in various places depending on the operation place. Therefore, unlike the distributed antenna DA1 and the distributed antenna DA4 shown in FIG. 2, signals may not reach each other. Therefore, calibration (measurement) using the calibration signal of the D-MIMO device 11 is performed a plurality of times by changing the distributed antenna DA used as the calibration antenna.
  • the D-MIMO device 11 uses the results of a plurality of measurements to obtain a calibration coefficient for calibrating the transmission portion of the D-MIMO device 11. After that, the D-MIMO apparatus 11 calibrates by adding the obtained calibration coefficient to the DL signal transmitted from each distributed antenna DA.
  • FIG. 4 is a block diagram illustrating the configuration of the D-MIMO apparatus according to the first embodiment.
  • FIG. 5 is a block diagram illustrating the digital front-end DFE according to the first embodiment.
  • the D-MIMO device 11 includes a distributed antenna unit DA1, a distributed antenna unit DA2, a distributed antenna unit DA3, a distributed antenna unit DA4, and a radio unit RU.
  • Each distributed antenna unit DA mainly has an antenna and an RF up / down converter unit.
  • the distributed antenna unit DA1, the distributed antenna unit DA2, the distributed antenna unit DA3, and the distributed antenna unit DA4 are collectively referred to as the distributed antenna unit DA.
  • the digital front-end DFE shown in FIG. 4 includes a calibration control unit 111, a calibration coefficient calculation unit 112, and a calibration application unit 113 shown in FIG.
  • the RF up / down converter unit of the distributed antenna unit DA shown in FIG. 4 is included in the transceiver 114 shown in FIG.
  • the wireless unit RU converts a digital signal, which is a transmission signal, into an analog signal in DL (DownLink) communication, and converts an analog signal, which is a reception signal, into a digital signal in UL (UpLink) communication.
  • the radio unit RU and each of the four distributed antenna units DA are connected by a cable.
  • the distributed antenna unit DA can be freely installed within the reach of the cable.
  • the number of distributed antenna units DA is set to 4, but the number is not limited to this.
  • the number of distributed antenna units DA may be three or more.
  • the radio unit RU includes a digital front end DFE (Digital Front End) that performs digital signal processing, and a modulator / demodulator MODEM that converts a digital signal and an analog modulated signal.
  • the radio unit RU has four modulator / demodulator MODEMs, which are the same number as the number of distributed antenna units DA, and performs digital beamforming.
  • the radio unit RU and the four distributed antenna units DA are connected by a coaxial cable, and an analog modulated signal is transmitted using the coaxial cable.
  • the distributed antenna unit DA up-converts the analog modulation signal transmitted from the radio unit RU into an RF signal by the RF up / down converter unit, and then transmits the analog modulation signal from the antenna. Further, the distributed antenna unit DA down-converts the signal received by the antenna into an analog modulation signal by the RF up / down converter unit, and then transmits the signal to the radio unit RU.
  • the processing of the DL signal of the digital front-end DFE is shown below.
  • the digital front-end DFE divides the transmission signal into layers by the layer mapper unit 1151 and outputs the layer signal X.
  • the number of layers is, for example, two.
  • the precoding unit 1152 weights each layer signal X according to the precoding weight coefficient W and adds them to each other to generate four DL signals WX.
  • the calibration application unit 113 outputs the DL signal CWX by multiplying the precoded DL signal WX by the coefficient C for calibrating the error of the transceiver.
  • the OFDM signal generation unit 1153 performs OFDM modulation on the precoded and calibrated DL signal CWX to generate a digital baseband signal.
  • the digital baseband signal is sent to the modulator / demodulator MODEM and converted into an analog modulated signal.
  • the processing of the UL signal of the digital front-end DFE is shown below.
  • the OFDM signal demodulation unit 1154 demodulates the received baseband signal (OFDM signal) input from the modulator / demodulator MODEM, and outputs the signal U.
  • the received baseband signal is converted from the signal in the time domain to the signal in the frequency domain. That is, it is converted into a signal for each subcarrier.
  • the OFDM demodulated signal U is a signal whose phase and amplitude change due to the influence of interference between multiplex communications with a plurality of UEs, the propagation environment, and the like.
  • the channel estimation unit 1155 obtains the channel coefficients Hu and H d of the propagation path (communication path) by using the known reference signal included in the OFDM signal or the distributed antenna unit DA calibration signal.
  • Hu be the channel coefficient obtained by channel estimation from the UL signal or the UL signal for DA calibration of the distributed antenna unit.
  • H d be the channel coefficient obtained by channel estimation from the DL signal for DA calibration of the distributed antenna unit.
  • the D-MIMO apparatus 11 uses the channel coefficient Hu to correct signal interference and correct phase / amplitude changes by spatial multiplexing technology, and acquires a UL signal for each layer.
  • the precoding weight calculation unit 1156 calculates the precoding weight coefficient W for DL from the channel coefficient Hu obtained by the channel estimation unit 1155 by using the spatial multiplexing technique.
  • the calibration coefficient calculation unit 112 calculates the calibration coefficient C using the channel coefficients Hu and H d .
  • the calibration application unit 113 calibrates the DL signal using the calibration coefficient C.
  • FIG. 6 is a blow chart illustrating the operation of the D-MIMO apparatus according to the first embodiment.
  • FIG. 6 shows the operation of the D-MIMO apparatus according to the first embodiment at the time of calibration.
  • FIG. 7 is a schematic diagram illustrating the frequency arrangement of the calibration DL signal according to the first embodiment.
  • FIG. 7 shows the frequency arrangement of the calibration DL signal transmitted from the distributed antenna DA1.
  • FIG. 8 is a schematic diagram illustrating the frequency arrangement of the calibration DL signal according to the first embodiment.
  • FIG. 8 shows the frequency arrangement of the calibration DL signal transmitted from the distributed antenna DA2.
  • FIG. 9 is a schematic diagram illustrating the frequency arrangement of the calibration DL signal according to the first embodiment.
  • FIG. 9 shows the frequency arrangement of the calibration DL signal transmitted from the distributed antenna DA3.
  • FIG. 10 is a schematic diagram illustrating the frequency arrangement of the calibration DL signal according to the first embodiment.
  • FIG. 10 shows the frequency arrangement of the calibration DL signal transmitted from the distributed antenna DA4.
  • FIG. 11 is a schematic diagram illustrating the frequency arrangement of the UL signal for calibration according to the first embodiment.
  • the D-MIMO apparatus 11 may start a calibration operation, that is, an operation of adjusting the phase and amplitude of the DL signal, triggered by any of the following operations. -When the D-MIMO device 11 is started (when the power is turned on). -When the difference between the temperature of any of the multiple distributed antenna DAs and the temperature at the time of the previous calibration is the specified temperature or more, or the difference between the average temperature of all the distributed antenna DAs and the temperature at the time of the previous calibration is specified. Above temperature. ⁇ If more than the specified time has passed since the last calibration, -When the communication quality of the DL signal is lower than the specified quality for a specified period or longer.
  • the variable k is set to 1 (step S101).
  • the variable k is an integer.
  • the distributed antenna DAk becomes the distributed antenna DA1.
  • the distributed antenna DA1 is set as the calibration antenna, and the measurement for calibration is performed using the distributed antenna DA1 (step S102).
  • the k-th distributed antenna DA is referred to as a distributed antenna DAk.
  • a known calibration DL signal is transmitted from all distributed antenna DAs other than the distributed antenna DAk and received by the distributed antenna DAk (step S103).
  • the calibration DL signal an OFDM signal arranged at a different frequency (subcarrier) for each of a plurality of distributed antenna DAs is used in order to avoid interference between the distributed antenna DAs.
  • calibration DL signals arranged on different subcarriers are assigned to each of the plurality of distributed antenna DAs.
  • the DL signal for calibration is not transmitted from the distributed antenna DAk used as the antenna for calibration.
  • the calibration DL signal (data) transmitted from the distributed antenna DA other than the distributed antenna DAk used as the calibration antenna, received by the distributed antenna DAk, and measured is demodulated and channel-estimated in the same manner as when the normal OFDM signal is received. After that, it is held in the storage unit (not shown).
  • examples from the distributed antenna DA1 to the distributed antenna DA4 are shown, but the present invention is not limited thereto.
  • step S103 a known calibration UL signal is transmitted from the distributed antenna DAk and received by a distributed antenna DA other than the distributed antenna DAk (step S104).
  • the calibration UL signal does not change the subcarriers arranged for each distributed antenna DA.
  • the subcarrier mapping (frequency arrangement) of the UL signal for calibration is arranged in all subcarriers unlike the DL signal for calibration.
  • the UL signal (data) for calibration received by each distributed antenna DA is demodulated and channel-estimated in the same manner as when a normal OFDM signal is received, and then stored in the storage unit.
  • step S104 1 is added to the variable k (step S105).
  • step S106 N Comment
  • step S106: N Comment If the variable k is 4 or less (step S106: N caution), the process returns to step S102. If the variable k is larger than 4 (step S106: Yes), the process proceeds to step S107.
  • the distributed antenna DA1 is set as the calibration antenna in order, and the measurement is performed so that all the distributed antenna DAs are once used as the calibration antennas.
  • step S106 the calibration coefficient is calculated based on the calibration DL signal or the calibration UL signal (data) measured by repeating steps S103 and S104, and applied to the calibration application unit 113 (step). S107).
  • step S107 the measurement for calculating the calibration coefficient is completed, and the normal operation is returned (step S108).
  • the calibration DL signal output from the distributed antenna DA is arranged in a different subcarrier for each distributed antenna DA.
  • the calibration DL signal transmitted from the distributed antenna DA2 by the distributed antenna DA4 is received by the distributed antenna DA1 as the calibration antenna.
  • the calibration DL signal is OFDM demodulated and divided for each subcarrier so that it is received without interference between the plurality of distributed antenna DAs.
  • the subcarrier used for communication with the i-th distributed antenna DAi is s i .
  • the calibration DL signal and the calibration UL signal may be collectively referred to as a calibration signal.
  • the variable i is an integer from 1 to 4.
  • the subcarriers s1 are, for example, 1 , 5, 9, ..., The th subcarrier.
  • Subcarriers s2 are the second , sixth, tenth, ..., Third subcarriers.
  • the calibration antenna is changed and the calibration DL signal and the calibration UL signal are measured four times, respectively. Since the calibration antenna is changed, the transmission / reception characteristics differ between each calibration antenna.
  • the transmit complex gain of the kth calibration antenna be ⁇ k and t
  • the receive complex gain be ⁇ k and r .
  • the gain is a value represented by a complex number and has amplitude and phase information. Therefore, they are referred to as transmission complex gain and reception complex gain, but in the following description, complex may be omitted and referred to as transmission gain and reception gain.
  • each distributed antenna DA there is an error in each distributed antenna DA.
  • Let e i and t be the transmission complex gains of the i-th distributed antenna DAi, and let e i and r be the reception complex gains.
  • the first embodiment aims to correct the influence of this gain on the DL signal during operation.
  • the transmission gain ⁇ k, t and the transmission gain e i, t , or the reception gain ⁇ k, r and the reception are received.
  • the gains e i and r are equal.
  • the second embodiment and the third embodiment which will be described later, may differ from each other, they are treated as different gains.
  • the calibration DL signal d k, i ( si) measured at the kth position can be expressed as follows.
  • h k and i are channel coefficients of the propagation path from the distributed antenna DAi to the distributed antenna DAk
  • xi are known calibration DL signals transmitted from the distributed antenna DAi.
  • ( Si ) in the formula (1) indicates that it changes depending on the frequency (subcarrier), but it is omitted below for the sake of simplicity.
  • the calibration DL signals dk and i ( si ) include noise because they are measured by OTA (Over The Air), but they are omitted in this example.
  • the signals uk and i (si) received by the i -th distributed antenna DAi can be expressed as follows.
  • y k is a known calibration UL signal transmitted from the calibration antenna CAk.
  • ( Si ) in the formula (2) indicates that it changes depending on the frequency (subcarrier), but it is omitted below for the sake of simplicity.
  • the UL signals uk and i ( si ) for calibration are measured by OTA, noise is included, but they are omitted in this example.
  • the measured calibration DL signals d k and i and the measured calibration UL signals uk and i have channel coefficients h k and i equal to each other, assuming that the calibration signals propagate in the same propagation path. ..
  • Channel estimation is performed from Eqs. (1) and Eq. (2), respectively.
  • the channel coefficients h u, k, i estimated from the calibration UL signal are calculated as in Eq. (5) or Eq. (6).
  • the correction coefficient ⁇ k for correcting r is obtained.
  • the correction coefficient ⁇ k was obtained only from the measurement results of the i0th distributed antenna DAi0, but the above was calculated from the communication with a plurality of distributed antennas DA by changing the number of i0. Then, the correction coefficient ⁇ k may be calculated by averaging. The correction factor ⁇ k is calculated for all k (1 to 4 in this example). However, the number i0 of the distributed antenna DAi0 may be changed each time the value of k changes.
  • the reference k0th correction coefficient ⁇ k0 is 1.
  • the correction coefficient ⁇ k depends on the frequency and differs for each subcarrier.
  • the correction coefficient ⁇ k may be obtained by averaging all the subcarriers or for each fixed number of subcarriers. Further, when the amplitude gain is small, the amplitude component of the correction coefficient ⁇ k may be ignored and only the phase component of the correction coefficient ⁇ k may be used.
  • Equation (11) The calibration coefficient ci for calibrating the transmission gain e i , t and the reception gain e i, r of the distributed antenna DA in the transmission portion of the D-MIMO device 11 is as shown in the equation (11).
  • N m 4.
  • the number of distributed antenna DAs be N.
  • Equation (11) can be expanded as in equation (12).
  • the calibration coefficient c i is the average of (ei , r / e i, t ) weighted by (
  • the received power changes greatly depending on the arrangement of the distributed antenna DA and the like. Normally, the larger the received power, the smaller the influence of noise, and a more accurate calibration signal can be obtained. Therefore, by weighting and averaging with (
  • the calibration coefficient c i is standardized according to the dynamic range of the D-MIMO device 11. Further, ( ⁇ k0, t / ⁇ k0, r ) in the equation (12) is the ratio of the transmission / reception gain of the calibration antenna used as the reference of the correction coefficient ⁇ k . Since this is constant for all distributed antennas DA, it does not affect the accuracy of the DL signal. Therefore, together with the standardization, ( ⁇ k0, t / ⁇ k0, r ) can be omitted, and the equation (12) can be approximately expressed as the equation (13). Therefore, the transmission portion of the D-MIMO device 11 is calibrated by using the ratio of the transmission / reception gains of the distributed antenna DA.
  • the calibration coefficient c i is obtained for each subcarrier s i used for calibration.
  • the calibration coefficient ci of the subcarriers not used for calibration, such as the subcarriers used for calibration of the other distributed antenna DA, is obtained by interpolation or extrapolation from the calibration coefficient of the subcarrier s i . Further, the calibration coefficient may be obtained by averaging in a certain subcarrier range. This makes it possible to calibrate in consideration of the frequency characteristics of the error between the distributed antenna DAs.
  • the calibration signal is arranged in all the subcarriers, but the calibration can be performed by using only some of the subcarriers.
  • Subcarriers for which the calibration signal could not be placed are calibrated by interpolating or extrapolating from the calibration results of nearby subcarriers. Therefore, even during operation, calibration can be performed using a subcarrier such as a reference signal and timing.
  • the effect of the first embodiment will be described.
  • the effect in a normal operating state in which communication is performed with two UEs using spatial multiplexing will be described.
  • the number of UEs is generally equal to or less than the number of antennas of the D-MIMO device 11, and when the number of distributed antennas DA is N, M can take an integer of 1 to N.
  • U be the UL signal transmitted from each UE and received (measured) by the distributed antenna DA.
  • the UL signal U is a matrix of N rows and 1 column (hereinafter, described as Nx1), and can be expressed by the equation (14).
  • H is the channel coefficient of the propagation path and is represented by a matrix of NxM
  • Y is a UL signal transmitted from the UE and is represented by a matrix of Mx1.
  • Er represents the reception gain of the distributed antenna DA, and e i and r are used. Is expressed, and it becomes a diagonal matrix of NxN.
  • the channel coefficient Hu obtained by channel estimation from the received UL signal U is given by Eq. (16). It can be seen that the reception gain Er is included in the channel coefficient Hu .
  • the weight coefficient W for precoding is obtained by using the ZF (Zero-Forcing) algorithm, which is one of the spatial multiplexing techniques, as in the equation (17).
  • the superscript T of the precoding weight coefficient W indicates a transposed matrix, and the superscript + indicates a pseudo inverse matrix.
  • there are multiple spatial multiplexing techniques such as the MMSE algorithm, but the effect of calibration can be obtained in the same way as the ZF algorithm.
  • a DL signal obtained by multiplying the precoding weight coefficient W and the calibration coefficient ci represented by the equation (11) is transmitted from each distributed antenna DA.
  • the DL signal D received by each UE is represented as follows.
  • X is a matrix of Mx1 and is a source signal to be transmitted to each UE.
  • the signal is transmitted in one layer per UE.
  • C is a diagonal matrix of NxN as shown in the equation (19) having the calibration coefficient ci obtained by the method of the first embodiment.
  • Et represents the transmission gain of the distributed antenna DA, and is a diagonal matrix of NxN as shown in the equation (20).
  • the calibration coefficient matrix C is expressed as Eq. (21) using Eqs. (13) to (15) and Eqs. (20).
  • a C-MIMO device is a MIMO device in which a plurality of antennas are mounted in one housing.
  • a C-MIMO device is a MIMO device in which a plurality of antennas are mounted in one housing.
  • one of a plurality of antennas mounted in one housing is operated as a calibration antenna, and calibration is performed in the same manner as the D-MIMO device.
  • the antenna other than the calibration antenna in the C-MIMO device and the calibration antenna transmit and receive the calibration DL signal and the calibration UL signal due to the leakage of radio waves. This eliminates the need to mount a feedback circuit for calibration or the like.
  • FIG. 12 is a schematic diagram illustrating the installation of the distributed antenna and the external antenna according to the second embodiment.
  • the first embodiment calibration was performed using an antenna provided in the D-MIMO device or the C-MIMO device.
  • an external antenna for calibration is used.
  • the number of external antennas will be described as 3.
  • Antennas other than one of the plurality of antennas are antennas constituting MIMO.
  • one of the plurality of antennas is an external antenna that is not an antenna constituting MIMO.
  • an external antenna EA is installed in the room.
  • all distributed antenna DAs and calibration measurements are performed.
  • the plurality of external antennas EA and a plurality of measurements due to position movement can be handled in the same manner as when the number k of the calibration antenna of the first embodiment is changed.
  • the calibration method using the external antenna EA in the D-MIMO device has been described as an example, but the present invention is not limited to this.
  • the calibration method according to the second embodiment can also be applied to a C-MIMO apparatus.
  • FIG. 13 is a block diagram illustrating the configuration of the D-MIMO apparatus according to the third embodiment.
  • the D-MIMO device 11 according to the third embodiment is different from the D-MIMO device 31 according to the first embodiment in that the wireless unit RU and the distributed antenna unit DU are connected by an optical cable.
  • the DL signal generated by the digital front-end DFE of the radio unit RU is converted into an optical signal together with the transmission / reception switching signal and transmitted to the distributed antenna unit DA through the optical cable.
  • the optical signal transmitted to the distributed antenna unit DA is converted into an electric signal, then converted into an RF signal, and transmitted from the antenna.
  • the UL signal is processed in the reverse of the DL signal.
  • the reference clock which is the reference of the radio unit RU and each distributed antenna unit DA
  • the transmission / reception characteristics of the distributed antenna unit DA differ due to variations in analog circuit characteristics such as the skew of the reference clock and the phase of the local oscillator.
  • the difference in the transmission / reception characteristics of the distributed antenna unit DA can be calibrated by the same method as that of the first embodiment.
  • the present invention has been described as a hardware configuration in the above embodiment, the present invention is not limited thereto.
  • the present invention can also realize the processing of each component by causing a CPU (Central Processing Unit) to execute a computer program.
  • a CPU Central Processing Unit
  • Non-temporary computer-readable media include various types of real-world recording media (tangible storage medium). Examples of non-temporary computer-readable media include magnetic recording media (specifically flexible disks, magnetic tapes, hard disk drives), opto-magnetic recording media (specifically opto-magnetic disks), and CD-ROMs (Read Only Memory). ), CD-R, CD-R / W, semiconductor memory (specifically, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM)), flash ROM, RAM (Random Access Memory).
  • the program may also be supplied to the computer by various types of temporary computer readable media. Examples of temporary computer readable media include electrical, optical, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • 11 Wireless communication device, D-MIMO device 111: Calibration control unit 112: Calibration coefficient calculation unit 113: Calibration application unit 1141, 1142, 1143, 1144: Transmitter / receiver 1141t, 1142t, 1143t, 1144t: Transmitter 1141r, 1142r, 1143r, 1144r: Receiver 1151: Layer mapper part 1152: Precoding part 1153: OFDM signal generation part 1154: OFDM signal demodulation part 1155: Channel estimation part 1156: Precoding weight calculation part DA, DA1, DA2, DA3, DA4: Distributed Antenna, distributed antenna part EA, EA1, EA2, EA3: External antenna RU: Wireless part DFE: Digital front end MIMO: Modulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

アンテナの校正を容易に行うことが可能な無線通信装置、無線通信装置の方法、及びプログラムを提供することを目的とする。本開示に係る無線通信装置(11)は、複数のアンテナDAのうちの1つ以外のアンテナから校正用DL(Down Link)信号を送信し、1つのアンテナで校正用DL信号を受信するDL制御と、1つのアンテナから校正用UL(Up Link)信号を送信し、1つ以外のアンテナで校正用UL信号を受信するUL制御と、を行う校正制御部(111)と、DL制御において送信した校正用DL信号と受信した校正用DL信号と、UL制御において送信した校正用UL信号と受信した校正用UL信号と、に基づいて計算された送信機のDLチャネル係数と受信機のULチャネル係数とに基づいて、校正係数を計算する校正係数計算部(112)と、校正係数に基づいて無線DL信号の位相と振幅を調整する校正適用部(113)と、を備える。

Description

無線通信装置、無線通信装置の方法、及び非一時的なコンピュータ可読媒体
 本開示は、無線通信装置、無線通信装置の方法、及びプログラムに関するものであり、特に、分散アンテナの校正を容易に行うことが可能な無線通信装置、無線通信装置の方法、及びプログラムに関する。
 近年の基地局では、MIMO(Multiple Input Multiple Output)伝送方式を用いて、通信容量の向上が図られている。MIMO伝送方式に対応した基地局は、複数のアンテナと変復調器を備え、それぞれから異なる無線信号を送受信する。この複数の無線信号(送受信信号)を用いて、空間的に無線信号(ユーザ信号)を多重することで、周波数利用効率を増加させている。MIMO伝送方式に対応した基地局では、複数のアンテナを用いて特定の方向へのアンテナゲインの増加や、ヌル形成による混信の抑圧などを行うことができる。この技術をビームフォーミングと呼び、主に2つの種類が有る。1つはアナログビームフォーミングであり、もう1つはデジタルビームフォーミングである。アナログビームフォーミングは、1つ以上の無線信号を複数のアンテナに分配(分散)し、それぞれに位相器などで異なる位相を与えることで、特定の方向のアンテナゲインを増加させる技術である。一方、デジタルビームフォーミングは、各アンテナの送受信信号の位相と振幅を調整する技術である。デジタルビームフォーミングに対応した基地局は、アンテナ数と同数のトランシーバを備え、各アンテナからの送受信信号をデジタル的に制御する。これにより、ZF(Zero Forcing)やMMSE(Minimum Mean Square Error)などの空間多重技術を使用できる。ZFやMMSEでは、アンテナゲインのヌル方向の制御も行うため、複数の送受信信号の混信を抑え、より効率的に信号を多重することができる。
 空間多重技術を用いるためには、電波の伝搬環境を示すチャネル係数を求める必要がある。基地局は、チャネル係数を、例えば、基地局の受信信号(UL(Uplink)信号)を用いて、これに含まれるリファレンス信号から推定する。チャネル係数を推定する処理のことをチャネル推定という。基地局が複数のユーザ端末(UE:User Equipment)からのUL信号を受信した場合、これらのUL信号は混信してしまう。そこで、基地局は、チャネル推定で求めたチャネル係数と空間多重技術とを用いて、多重化されたUL信号を分離することでそれぞれのUEとの間でUL通信を行うことができる。一方、基地局からUEへのDL(Down Link)通信では、UL信号から推定したチャネル係数を用いて、予め空間多重技術を適応したDL信号を送信することで多重化したDL通信を行う。チャネル係数を用いて、予め空間多重技術を適応したDL信号を生成する処理をプリコーディングという。基地局は、プリコーディングを行うことで、DL通信において、UE間の混信を抑圧することができ、複数のUEと通信することができる。これにより、基地局は、同じ周波数帯域、且つ、同じ時間帯において、複数のユーザと通信することができ、周波数利用効率を向上させることができる。
 DL通信では、UL信号から推定したチャネル係数を用いて、予め空間多重技術を適応したDL信号を送信する。これは、UL通信とDL通信における伝搬チャネルの相反性を利用するものであり、TDD(Time Division Duplex)方式の通信で用いられる。チャネルの相反性をMIMO伝送方式に用いるためには、各アンテナから送受信される送受信信号を校正する必要がある。この校正が不完全な場合、チャネル推定で得られるチャネル係数に受信機に起因する誤差が含まれ、無線信号を正確に空間多重することができない。また、送信機の誤差も空間多重に影響を与え通信特性を劣化させる。
 そこで、基地局は、通信に使用する送受信回路に加えて校正用送受信回路を備え、校正用送受信回路を用いて通信に使用する送受信回路を校正する場合がある。このようにすることで、基地局を運用場所に設置後も校正が可能なため、温度や経年変化による送受信特性の変化を補正でき、高い精度の空間多重技術を使用することができる。一方、基地局は、校正用送受信回路が追加となるため、コストや消費電力が増加してしまう。また、アナログビームフォーミングとデジタルビームフォーミングを組み合わせたハイブリッドビームフォーミングと呼ばれる技術を使用した基地局が有る。このような基地局においても、送受信回路の校正が必要である。
 MIMO伝送方式に対応した基地局を、MIMO装置、又は、MIMO基地局と称する。MIMO装置は、2つの種類に分けられる。1つは、複数のアンテナ部が1つの筐体に搭載されたC-MIMO(Collocated - MIMO)装置と、もう1つは、複数のアンテナ部のそれぞれが個別の筐体に搭載された分散MIMO装置である。分散MIMO装置をD-MIMO(Distributed - MIMO)装置と称する。アンテナ部の校正は、特に、D-MIMO装置で重要とされる。D-MIMO装置の複数のアンテナ部は、それぞれ異なる位置に設置され、1つのRU(Radio Unit)部と有線で接続される。RU部は、デジタルベースバンド信号処理を行うDFE(Digital Front End)と変復調部とを備える。複数のアンテナ部のそれぞれは、アンテナと、RUからのDL信号を高周波帯域に変換するアップダウンコンバータ(Up/Down Converter)部と、を備える。D-MIMO装置は、RUとアンテナ部とが離れているため、複数のアンテナ部のそれぞれのアンテナ端でDL信号の振幅と位相を製造時に予め校正しておくことが難しい。このため、D-MIMO装置の校正は、D-MIMO装置を運用場所に設置後、外部測定器を用いて行う必要があった。外部測定器を用いて校正を行った場合、D-MIMO装置を設置後にアンテナ部の位置を変更することが難しく、また、D-MIMO装置の温度変化などによる位相と振幅の変化にも対応することが難しく、通信品質が低下するという課題があった。
 特許文献1には、「ベースステーションの第1の校正から決定される第1の修正情報がシステムモジュールから受信される。ベースステーションの少なくとも1つのアンテナからの信号が高周波モジュールで受信される。その受信信号及び第1の修正情報に基づいて第2の修正情報が決定される。」と記載されている。特許文献2には、「アダプティブアレイ通信を行う通信基地局において、通信中に、通信基地局に装備されているN本のアンテナ素子の内の任意の1本が送信するCCHキャリアを残りの(N-1)本のアンテナ素子で受信するキャリブレーション用処理を実施して、各アンテナ素子の受信時の振幅比と位相差から、各アンテナ素子のキャリブレーションデータを決定する。」と記載されている。特許文献2には、「複数のアンテナのうちの1つ以外のアンテナから校正用DL(Down Link)信号を送信し、前記1つのアンテナで前記校正用DL信号を受信するDL制御と、前記1つのアンテナから校正用UL(Up Link)信号を送信し、前記1つ以外のアンテナで前記校正用UL信号を受信するUL制御と、を複数の前記アンテナごとに行うこと」は記載されていない。
特表2013-535124号公報 特開2008-166866号公報
 上述したように、MIMO装置では、複数のアンテナ部の校正、すなわち、アンテナ間送受信誤差の校正が必要である。特に空間多重技術を用いたC-MIMO装置では、装置内に校正用のフィードバック送受信機(送受信回路)を追加し、これを用いて校正を行う場合がある。フィードバック送受信回路を備える場合、これに加えて、各信号経路からのフィードバック送受信回路への信号配線も必要なる。これらにより、C-MIMO装置が複雑化するとともに、コストや消費電力が増加するという課題があった。また、D-MIMO装置は、アンテナ部と変復調部とが分離しており、製造時にアンテナ部の校正を行うことが難しい。よって、D-MIMO装置を運用場所に設置した後に、外部測定器を用いてアンテナ部を校正する必要がある。外部測定器を用いた校正は頻繁に行うことが難しいため、アンテナ部の設置位置を変更することが難しい。また、D-MIMO装置の温度変化などによる通信特性の劣化に対応するため、その都度、アンテナ部の校正をすることが難しいという課題があった。
 本開示の目的は、上述した課題のいずれかを解決する無線通信装置、無線通信装置の方法、及びプログラムを提供することにある。
 本開示に係る無線通信装置は、
 複数のアンテナのうちの1つ以外のアンテナから校正用DL(Down Link)信号を送信し、前記1つのアンテナで前記校正用DL信号を受信するDL制御と、前記1つのアンテナから校正用UL(Up Link)信号を送信し、前記1つ以外のアンテナで前記校正用UL信号を受信するUL制御と、を複数の前記アンテナごとに行う校正制御部と、
 前記DL制御において複数の前記アンテナから送信した前記校正用DL信号と複数の前記アンテナで受信した前記校正用DL信号と、前記UL制御において複数の前記アンテナから送信した前記校正用UL信号と複数の前記アンテナで受信した前記校正用UL信号と、に基づいて複数の前記アンテナごとに前記アンテナに接続する送信機のDLチャネル係数と受信機のULチャネル係数を計算し、
 前記DLチャネル係数と前記ULチャネル係数とに基づいて、無線DL信号を校正するための校正係数を計算する校正係数計算部と、
 前記校正係数に基づいて複数の前記アンテナのそれぞれから送信する前記無線DL信号の位相と振幅を調整する校正適用部と、
 を備える。
 本開示に係る無線通信装置の方法は、
 複数のアンテナのうちの1つ以外のアンテナから校正用DL(Down Link)信号を送信し、前記1つのアンテナで前記校正用DL信号を受信するDL制御と、前記1つのアンテナから校正用UL(Up Link)信号を送信し、前記1つ以外のアンテナで前記校正用UL信号を受信するUL制御と、を複数の前記アンテナごとに行うことと、
 前記DL制御において複数の前記アンテナから送信した前記校正用DL信号と複数の前記アンテナで受信した前記校正用DL信号と、前記UL制御において複数の前記アンテナから送信した前記校正用UL信号と複数の前記アンテナで受信した前記校正用UL信号と、に基づいて複数の前記アンテナごとに前記アンテナに接続する送信機のDLチャネル係数と受信機のULチャネル係数を計算することと、
 前記DLチャネル係数と前記ULチャネル係数とに基づいて、無線DL信号を校正するための校正係数を計算することと、
 前記校正係数に基づいて複数の前記アンテナのそれぞれから送信する前記無線DL信号の位相と振幅を調整することと、
 を備える。
 本開示に係るプログラムは、
 複数のアンテナのうちの1つ以外のアンテナから校正用DL(Down Link)信号を送信し、前記1つのアンテナで前記校正用DL信号を受信するDL制御と、前記1つのアンテナから校正用UL(Up Link)信号を送信し、前記1つ以外のアンテナで前記校正用UL信号を受信するUL制御と、を複数の前記アンテナごとに行うことと、
 前記DL制御において複数の前記アンテナから送信した前記校正用DL信号と複数の前記アンテナで受信した前記校正用DL信号と、前記UL制御において複数の前記アンテナから送信した前記校正用UL信号と複数の前記アンテナで受信した前記校正用UL信号と、に基づいて複数の前記アンテナごとに前記アンテナに接続する送信機のDLチャネル係数と受信機のULチャネル係数を計算することと、
 前記DLチャネル係数と前記ULチャネル係数とに基づいて、無線DL信号を校正するための校正係数を計算することと、
 前記校正係数に基づいて複数の前記アンテナのそれぞれから送信する前記無線DL信号の位相と振幅を調整することと、
 をコンピュータに実行させる。
 本開示によれば、分散アンテナの校正を容易に行うことが可能な無線通信装置、無線通信装置の方法、及びプログラムを提供することができる。
実施の形態1に係る無線通信装置を例示するブロック図である。 実施の形態1に係る分散アンテナの設置を例示する模式図である。 実施の形態1に係る分散アンテナの設置を例示する模式図である。 実施の形態1に係るD-MIMO装置の構成を例示するブロック図である。 実施の形態1に係るデジタルフロントエンドDFEを例示するブロック図である。 実施の形態1に係るD-MIMO装置の動作を例示するブローチャートである。 実施の形態1に係る校正用DL信号の周波数配置を例示する模式図である。 実施の形態1に係る校正用DL信号の周波数配置を例示する模式図である。 実施の形態1に係る校正用DL信号の周波数配置を例示する模式図である。 実施の形態1に係る校正用DL信号の周波数配置を例示する模式図である。 実施の形態1に係る校正用UL信号の周波数配置を例示する模式図である。 実施の形態2に係る分散アンテナと外部アンテナの設置を例示する模式図である。 実施の形態3に係るD-MIMO装置の構成を例示するブロック図である。
 以下、図面を参照して本発明の実施の形態について説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明を省略する。
 [実施の形態1]
 <無線通信装置の構成の概要>
 図1は、実施の形態1に係る無線通信装置を例示するブロック図である。
 図1は、実施の形態1に係る無線通信装置の最小構成を示す。
 無線通信装置をD-MIMO装置と称することもある。
 実施の形態1では、複数のアンテナとしてD-MIMO装置の分散アンテナを例に挙げて説明するが、これには限定されない。
 図1に示すように、実施の形態1に係る無線通信装置11は、校正制御部111と、校正係数計算部112と、校正適用部113と、を備える。
 校正制御部111は、複数の分散アンテナDAのうちの1つ以外のアンテナから校正用DL(Down Link)信号を送信し、1つのアンテナで校正用DL信号を受信するDL制御を行う。すなわち、複数の分散アンテナDAのうちの1つのアンテナを校正用アンテナとして使用する。1つのアンテナは、例えば、分散アンテナDA1である。校正制御部111は、1つのアンテナから校正用UL(Up Link)信号を送信し、1つ以外のアンテナで校正用UL信号を受信するUL制御を行う。校正制御部111は、DL制御とUL制御を、複数の分散アンテナDAごとに行う。
 校正係数計算部112は、DL制御において複数の分散アンテナDAから送信した校正用DL信号と複数の分散アンテナDAで受信した校正用DL信号と、UL制御において複数の分散アンテナDAから送信した校正用UL信号と複数の分散アンテナで受信した校正用UL信号と、に基づいて複数の分散アンテナごとに分散アンテナに接続する送信機のDLチャネル係数と受信機のULチャネル係数を計算する。校正係数計算部112は、DLチャネル係数とULチャネル係数とに基づいて、無線DL信号を校正するための校正係数を計算する。
 校正係数計算部112は、DLチャネル係数とULチャネル係数とに基づき、DLチャネル係数に含まれるDL伝搬チャネルはULチャネル係数に含まれるUL伝搬チャネルに等しいものとして、複数の分散アンテナDAごとに送受信利得比率を計算し、無線DL信号を校正するための校正係数としてもよい。
 校正適用部113は、校正係数に基づいて複数の分散アンテナのそれぞれから送信する無線DL信号の位相と振幅を調整する。無線DL信号のことを、DL信号と称することもある。
 実施の形態1に係る無線通信装置11は、複数の分散アンテナDAのうちの1つのアンテナを校正用アンテナとして使用して校正用測定を行う。上記校正用アンテナとして用いる1つの分散アンテナDAを、複数の分散アンテナDAのうちいずれかの1つの分散アンテナDAに変えつつ複数回校正用測定を行う。これにより、実施の形態1によれば、外部測定器、校正専用アンテナ、若しくは校正専用回路が無くても分散アンテナDAの校正を行うことができる。その結果、分散アンテナの校正を容易に行うことが可能な無線通信装置、無線通信装置の方法、及びプログラムを提供することができる。
 校正係数計算部112は、1つ以外のアンテナから送信した送信時の校正用DL信号と1つのアンテナで受信した受信時の校正用DL信号とに基づいて、DL電波伝搬の特性(伝搬チャネル)と分散アンテナDAの送信特性を含むDLチャネル係数であって、1つ以外のアンテナに対応する複数のDLチャネル係数を、複数の分散アンテナDAごとに計算する。上記DLチャネル係数の計算を、上記校正用アンテナを変えて行った複数の校正用測定に対しても実施する。
 校正係数計算部112は、1つのアンテナから送信した送信時の校正用UL信号と1つ以外のアンテナで受信した受信時の校正用UL信号とに基づいて、UL電波伝搬の特性(伝搬チャネル)と分散アンテナDAの受信特性を含むULチャネル係数であって、1つ以外のアンテナに対応する複数のULチャネル係数を、複数の分散アンテナDAごとに計算する。上記ULチャネル係数の計算を、上記校正用アンテナを変えて行った複数の校正用測定に対しても実施する。
 校正係数計算部112は、複数の校正用測定ごと、かつ、複数の分散アンテナDAごとの複数のDLチャネル係数と複数のULチャネル係数とに基づいて、複数の校正用測定ごと、かつ、複数の分散アンテナDAごとにULチャネル係数に対するDLチャネル係数の比率(UL/DLチャネル係数比率)比率を計算する。校正係数計算部112は、DLチャネル係数とULチャネル係数とに基づいて、無線DL信号を校正するための校正係数を計算する。DLチャネル係数とULチャネル係数には、分散アンテナDAの送受信特性も含まれる。ただし、DLチャネル係数に含まれる伝搬チャネルは、ULチャネル係数に含まれる伝搬チャネルに等しいものとする。すなわち、DLもULも同じ伝搬路なので、伝搬チャネルは等しいものとした。
 校正係数計算部112は、複数回の校正用測定のうち基準とする校正用測定おける校正用アンテナと、基準とする分散アンテナとのUL/DLチャネル係数比率と、
 基準以外の校正用測定における校正用アンテナと、基準とする分散アンテナとのUL/DLチャネル係数比率との、
 比率を計算する。この比率を校正用測定の補正係数と称する。
 複数の校正用測定間の補正係数を用いて、複数の校正用測定に対して、ULチャネル係数に対するDLチャネル係数の割合を補正する。
 上記、基準とする分散アンテナを複数とし、上記複数の基準分散アンテナで計算した補正係数を平均して、新たに補正係数としてもよい。
 校正係数計算部112は、複数回校正用測定を行い、1つの分散アンテナDAに対して、複数のDLチャネル係数とULチャネル係数が得られた場合(複数有効な測定があった場合)、校正用DL信号又は校正用UL信号の受信電力に基づいて重み付け係数を求める。
 校正係数計算部112は、上記DLチャネル係数とULチャネル係数から、校正用測定ごとにUL/DLチャネル係数比率を計算する。
 校正係数計算部112は、上記校正用測定ごとにUL/DLチャネル係数比率を、上記補正係数を用いて、校正用測定間の補正を行う。
 校正係数計算部112は、複数の分散アンテナDAごとに、補正した前記校正用測定ごとのUL/DLチャネル係数比率を、重み付け係数に基づいて複数校正用測定間で重み付け平均した、重み付け平均UL/DLチャネル係数比率を計算する。
 重み付け平均UL/DLチャネル係数比率を校正係数と称する。
 校正係数計算部112は、受信電力が所定電力以上の校正用DL信号に対応するDLチャネル係数を、複数測定のDLチャネル係数のうちから選択する。校正係数計算部112は、受信電力が所定電力以上の校正用UL信号に対応するDLチャネル係数を、複数測定のULチャネル係数のうちから選択する。校正係数計算部112は、選択したDLチャネル係数と選択したULチャネル係数を使用して、複数の分散アンテナDAごとに校正係数を計算してもよい。
 校正制御部111は、複数の分散アンテナのそれぞれから送信される無線DL信号に校正用DL信号又は校正用UL信号を付加して校正用の測定を行ってもよい。
 <無線通信装置の動作の概要>
 以下では、無線通信装置の1つとしてD-MIMO装置を例に挙げて説明する。また、D-MIMO装置11は、MIMO伝送に対応し、TDD方式を使用していることを例に挙げて説明する。
 図2は、実施の形態1に係る分散アンテナの設置を例示する模式図である。
 図3は、実施の形態1に係る分散アンテナの設置を例示する模式図である。
 図2及び図3は、実施の形態1に係るD-MIMO装置の分散アンテナを運用場所、例えば、室内に設置した場合を上方から見た図である。
 図2は、校正時の通信状態を示す。図3は、運用時の通信状態を示す。実施の形態1では、分散アンテナDAの数は4つで、それぞれ室内の四隅に設置されたものとする。図2に示すように、分散アンテナDA1から送信された電波は、柱で遮られるため、分散アンテナDA3に届かず、逆もまた同様とする。また、図2に示す点線は、複数の分散アンテナDAが相互に通信可能なことを示す。
 分散アンテナDA1から分散アンテナDA4の全てを校正するものとする。校正は、校正用の既知信号である校正用信号を、これらの分散アンテナDAで送受信することで行う。実施の形態1は、外部測定器やUE(User Equipment)を用いて校正することも可能だが、分散アンテナDAのみで校正を行うものとする。
 実施の形態1に係る分散アンテナDAで校正を行う方法は、通常の運用中のように、全ての分散アンテナDAを同じタイミングで送信と受信を切り替えるのでは無い。実施の形態1では、いずれかの分散アンテナDAの1つを、他の分散アンテナDAとは送信と受信を逆にして動作させる。すなわち、1つの分散アンテナDAを外部測定器のように用いる。この1つの分散アンテナDAを校正用アンテナと呼ぶ。これにより、D-MIMO装置11のみで校正が可能になる。
 実施の形態1に係るD-MIMO装置11の分散アンテナDAは、運用場所によってさまざまな場所に設置される。そのため、図2に示す分散アンテナDA1と分散アンテナDA4のように、互いに信号が届かない場合がある。そこで、D-MIMO装置11の校正用信号を用いた校正(測定)は、校正用アンテナとして用いる分散アンテナDAを変更して複数回実施する。D-MIMO装置11は、複数回の測定結果を用いて、D-MIMO装置11の送信部分を校正するための校正係数を求める。その後、D-MIMO装置11は、求めた校正係数を、各分散アンテナDAから送信するDL信号に付加することで校正を行う。
 <無線通信装置の構成の詳細>
 図4は、実施の形態1に係るD-MIMO装置の構成を例示するブロック図である。
 図5は、実施の形態1に係るデジタルフロントエンドDFEを例示するブロック図である。
 図4に示すように、実施の形態1に係るD-MIMO装置11は、分散アンテナ部DA1と分散アンテナ部DA2と分散アンテナ部DA3と分散アンテナ部DA4と無線部RUとを備える。各分散アンテナ部DAは、主にアンテナとRFアップダウンコンバータ部とを有する。分散アンテナ部DA1と分散アンテナ部DA2と分散アンテナ部DA3と分散アンテナ部DA4とを総称して分散アンテナ部DAと称する。
 図4に示すデジタルフロントエンドDFEは、図1に示す校正制御部111と校正係数計算部112と校正適用部113を含む。図4に示す分散アンテナ部DAのRFアップダウンコンバータ部は、図1に示す送受信機114に含まれる。
 無線部RUは、DL(Down Link)通信では、送信信号であるデジタル信号をアナログ信号に変換し、UL(Up Link)通信では、受信信号であるアナログ信号をデジタル信号に変換する。無線部RUと、4つの分散アンテナ部DA(分散アンテナ部DA1から分散アンテナ部DA4)のそれぞれは、ケーブルで接続されている。分散アンテナ部DAは、ケーブルの届く範囲内で自由に設置することができる。実施の形態1では、分散アンテナ部DAの数を4つとしたが、これには限定されない。分散アンテナ部DAの数は、3つ以上でもよい。
 無線部RUは、デジタル信号処理を行うデジタルフロントエンドDFE(Digital Front End)と、デジタル信号とアナログ変調信号とを変換する変復調器MODEMと、を備える。無線部RUは、分散アンテナ部DAの数と同数である4つの変復調器MODEMを有し、デジタルビームフォーミングを行う。無線部RUと4つの分散アンテナ部DAは、同軸ケーブルで接続され、同軸ケーブルを使用してアナログ変調信号を伝送する。
 分散アンテナ部DAは、無線部RUから送信されたアナログ変調信号を、RFアップダウンコンバータ部でRF信号にアップコンバートした後、アンテナから送信する。また、分散アンテナ部DAは、アンテナで受信した信号を、RFアップダウンコンバータ部でアナログ変調信号にダウンコンバートした後、無線部RUに伝送する。
 デジタルフロントエンドDFEのDL信号の処理について以下に示す。
 図5に示すように、デジタルフロントエンドDFEは、DL信号の処理では、送信信号をレイヤマッパ(Layer mapper)部1151でレイヤごとに分けてレイヤ信号Xを出力する。この例では、レイヤ数は、例えば2つとする。プリコーディング(Precoding)部1152は、各レイヤ信号Xを、プリコーディング用ウェイト係数Wに従って重み付けし、互いに加算することにより4つのDL信号WXを生成する。校正適用部113は、プリコーディング後のDL信号WXに送受信機の誤差を校正する係数Cを乗算してDL信号CWXを出力する。OFDM信号生成部1153は、プリコーディングと校正が行われたDL信号CWXに対してOFDM変調を行い、デジタルベースバンド信号を生成する。デジタルベースバンド信号は、変復調器MODEMに送られ、アナログ変調信号に変換される。
 デジタルフロントエンドDFEのUL信号の処理について以下に示す。
 OFDM信号復調部1154は、変復調器MODEMから入力された受信ベースバンド信号(OFDM信号)を復調処理し、信号Uを出力する。これにより、受信ベースバンド信号は、タイムドメインの信号から周波数ドメインの信号に変換される。すなわち、サブキャリアごとの信号に変換される。OFDM復調された信号Uは、複数のUEとの多重通信間の混信や伝搬環境などの影響により位相と振幅が変化している信号である。
 チャネル推定部1155は、OFDM信号に含まれる既知のリファレンス信号、もしくは分散アンテナ部DA校正用信号を用いて、伝搬路(通信路)のチャネル係数H、Hを求める。UL信号、もしくは分散アンテナ部DA校正用UL信号からチャネル推定により求めたチャネル係数をHとする。分散アンテナ部DA校正用DL信号からチャネル推定により求めたチャネル係数をHとする。D-MIMO装置11は、チャネル係数Hを用いて空間多重技術によって、信号混信の除去や位相・振幅の変化を補正し、レイヤごとのUL信号を取得する。
 プリコーディングウェイト計算部1156は、空間多重技術を用いて、チャネル推定部1155で求められたチャネル係数Hから、DL用のプリコーディング用ウェイト係数Wを計算する。校正係数計算部112は、チャネル係数H、Hを用いて、校正係数Cを計算する。校正適用部113は、校正係数Cを用いて、DL信号の校正を行う。
 <無線通信装置の動作の詳細>
 図6は、実施の形態1に係るD-MIMO装置の動作を例示するブローチャートである。
 図6は、実施の形態1に係るD-MIMO装置の校正時の動作を示す。
 図7は、実施の形態1に係る校正用DL信号の周波数配置を例示する模式図である。
 図7は、分散アンテナDA1から送信する校正用DL信号の周波数配置を示す。
 図8は、実施の形態1に係る校正用DL信号の周波数配置を例示する模式図である。
 図8は、分散アンテナDA2から送信する校正用DL信号の周波数配置を示す。
 図9は、実施の形態1に係る校正用DL信号の周波数配置を例示する模式図である。
 図9は、分散アンテナDA3から送信する校正用DL信号の周波数配置を示す。
 図10は、実施の形態1に係る校正用DL信号の周波数配置を例示する模式図である。
 図10は、分散アンテナDA4から送信する校正用DL信号の周波数配置を示す。
 図11は、実施の形態1に係る校正用UL信号の周波数配置を例示する模式図である。
 D-MIMO装置11は、以下に示すいずれかの動作を契機として、校正動作、すなわち、DL信号の位相と振幅を調整する動作を開始してもよい。
・D-MIMO装置11の起動時(電源投入時)。
・複数の分散アンテナDAのいずれかの温度と前回の校正時の温度との差が所定温度以上の場合、又は、全ての分散アンテナDAの平均温度と前回の校正時の温度との差が所定温度以上の場合。
・前回の校正時から所定時間以上経過した場合、
・DL信号の通信品質が所定期間以上の間、所定品質よりも低い場合。
 上記を契機として、図6に示すように、変数kに1を設定する(ステップS101)。ただし、変数kは、整数とする。
 変数k=1のため、分散アンテナDAkは分散アンテナDA1となる。分散アンテナDA1を校正用アンテナに設定し、分散アンテナDA1を使用して校正用の測定を行う(ステップS102)。ただし、k番目の分散アンテナDAを、分散アンテナDAkとする。
 分散アンテナDAk以外の全ての分散アンテナDAから、既知の校正用DL信号を送信し、分散アンテナDAkで受信する(ステップS103)。校正用DL信号は、分散アンテナDA間の混信を避けるため、複数の分散アンテナDAごとに異なる周波数(サブキャリア)に配置したOFDM信号を使用する。
 図7から図10に示すように、複数の分散アンテナDAごとに異なるサブキャリアに配置された校正用DL信号が割当てられる。校正用DL信号には、4サブキャリアに1つのサブキャリアが配置される。校正用アンテナとして使用する分散アンテナDAkからは、校正用DL信号は送信しない。校正用アンテナとして使用する分散アンテナDAk以外の分散アンテナDAから送信され、分散アンテナDAkで受信され測定された校正用DL信号(データ)は、通常のOFDM信号受信時と同様に復調されチャネル推定された後に記憶部(図示せず)に保持される。この例では、分散アンテナDA1から分散アンテナDA4までの例を示したが、これには限定されない。
 ステップS103の後、分散アンテナDAkから既知の校正用UL信号を送信し、分散アンテナDAk以外の分散アンテナDAで受信する(ステップS104)。
 図11に示すように、校正用UL信号は、校正用DL信号と異なり、分散アンテナDAごとに配置されるサブキャリアを変更しない。校正用UL信号のサブキャリアマッピング(周波数配置)は、校正用DL信号とは異なり、全てのサブキャリアに配置される。各分散アンテナDAで受信した校正用UL信号(データ)は、通常のOFDM信号の受信時と同様に復調されチャネル推定された後に記憶部に保持される。
 ステップS104の後、変数kに1を加算する(ステップS105)。
 変数kが4以下の場合(ステップS106:Nо)は、ステップS102に戻る。また、変数kが4よりも大きい場合(ステップS106:Yes)、ステップS107に進む。実施の形態1では、分散アンテナDA1から順番に校正用アンテナに設定し、全ての分散アンテナDAが1度は校正用アンテナになるようにして測定を行う。
 ステップS106がYesの後、ステップS103とステップS104を繰り返して測定した校正用DL信号、又は、校正用UL信号(データ)に基づいて、校正係数を計算し、校正適用部113に適用する(ステップS107)。
 ステップS107の後、校正係数算出のための測定を終了し、通常の運用に戻る(ステップS108)。
 <校正係数の計算方法>
 ここで、図6に示すステップS107で行う校正係数の計算方法について説明する。
 図7から図10に示すように、分散アンテナDAから出力した校正用DL信号は、それぞれの分散アンテナDAごとに異なるサブキャリアに配置される。例えば、分散アンテナDA2から分散アンテナDA4で送信された校正用DL信号は、校正用アンテナとしての分散アンテナDA1で受信される。校正用DL信号は、OFDM復調され、サブキャリアごとに分けることで、複数の分散アンテナDA相互の間の混信が無く受信される。
 ここで、i番目の分散アンテナDAiとの通信に使用するサブキャリアをsとする。校正用DL信号と校正用UL信号とを総称して、校正用信号と称することもある。
 実施の形態1では、変数iは1から4の整数とする。図7から図10に示すように、サブキャリアsは、例えば、1、5、9、…、番目のサブキャリアである。サブキャリアsは、2、6、10、…、番目のサブキャリアである。k番目の校正用アンテナで受信されたOFDM信号を復調して得られたs番目のサブキャリアのデータをdk、i(s)と表すことにする。k=iの場合は、dk、i(s)=0とする。
 校正用UL信号の測定においては、k番目の分散アンテナDAkから送信され、i番目の分散アンテナDAiで受信して得られた校正用UL信号のs番目のサブキャリアの信号を、uk、i(s)とする。k=iの場合、uk、i(s)=0とする。校正用UL信号は、図11に示すように、全てのサブキャリアに配置されており、各分散アンテナDAの校正用DL信号で使用したサブキャリアを用いて校正係数の計算を行う。
 実施の形態1では、校正用アンテナを変えて、4回それぞれ校正用DL信号と校正用UL信号の測定を行う。校正用アンテナを変えたため、それぞれの校正用アンテナ間で送受信特性が異なる。k番目の校正用アンテナの送信複素利得をεk、tとし、受信複素利得をεk、rとする。ここでの利得は、複素数で表される値であり、振幅と位相の情報を有する。よって、送信複素利得、受信複素利得と称するが、以後の記載では、複素を省略し送信利得、受信利得とすることがある。
 同様に、個々の分散アンテナDAにも誤差が存在する。i番目の分散アンテナDAiの送信複素利得をei、tとし、受信複素利得をei、rとする。実施の形態1は、この利得による運用中のDL信号への影響を補正することを目的とする。実施の形態1では、分散アンテナDAの1つを校正用アンテナとして使用したため、k=iの場合、送信利得εk、tと送信利得ei、t、又は、受信利得εk、rと受信利得ei、rは等しい。ただし、後述する実施の形態2と実施の形態3では異なる場合もあるため、別の利得として扱う。
 k番目に測定した校正用DL信号dk、i(s)は、以下のように表せる。
Figure JPOXMLDOC01-appb-I000001
 hk、iは、分散アンテナDAiから分散アンテナDAkまでの伝搬路のチャネル係数であり、xは、分散アンテナDAiから送信された既知の校正用DL信号である。式(1)中の(s)は、周波数(サブキャリア)に依存して変化することを示すが、以後、簡単のため省略して記載する。また、校正用DL信号dk、i(s)は、OTA(Over The Air)で測定されたためノイズが含まれるが、この例では省略するものとする。
 同様に、k番目に測定した校正用UL信号において、i番目の分散アンテナDAiで受信した信号uk、i(s)は、以下のように表せる。
Figure JPOXMLDOC01-appb-I000002
 yは、校正用アンテナCAkから送信された既知の校正用UL信号である。式(2)中の(s)は、周波数(サブキャリア)に依存して変化することを示すが、以後、簡単のため省略して記載する。また、校正用UL信号uk、i(s)は、OTAで測定されたため、ノイズが含まれるが、この例では省略する。
 測定した校正用DL信号dk、iと測定した校正用UL信号uk、iに含まれるチャネル係数hk、iは、校正用信号が同じ伝搬経路を伝搬するものと考えて等しいものとする。式(1)と式(2)からそれぞれチャネル推定を行う。校正用DL信号dk、iから推定したチャネル係数をhd、k、iとする。
Figure JPOXMLDOC01-appb-I000003
 既知の校正用DL信号xは、x・x =1とする。(*)は共役複素数を表す。
 同様に、校正用UL信号から推定したチャネル係数hu、k、iは、式(5)又は式(6)のように計算される。
Figure JPOXMLDOC01-appb-I000004
 既知の校正用UL信号yは、y・y =1とする。
 式(3)と式(5)で求めたチャネル係数hd、k、iとチャネル係数hu、k、iから、k番目の校正用アンテナの送信利得εk、tと受信利得εk、rを補正する補正係数γを求める。補正係数γは、k=1から4のいずれかの測定を基準として求める。以下では、k0番目の測定のうち、i0番目の分散アンテナDAi0と通信して得られた校正用信号(データ)を基準として用いる。
Figure JPOXMLDOC01-appb-I000005
 kとk0とi0はそれぞれ異なる番号とする。
 式(7)と式(8)では、i0番目の分散アンテナDAi0との測定結果のみで補正係数γを求めたが、i0の番号を変えて複数の分散アンテナDAとの通信から上記を計算し、平均して補正係数γを算出しても良い。補正係数γは、全てのk(この例では1から4)について計算する。ただし、kの値が変わるごとに分散アンテナDAi0の番号i0を変えてもよい。基準としたk0番目の補正係数γk0は1とする。
 k番目で用いた校正用アンテナと、基準としたk0番目の校正用アンテナの配置によっては電波が届かず、校正用信号(データ)の取得ができない場合がある。基準とした校正用アンテナからの電波が届かない分散アンテナDAの番号を新たにk’とする。このようなk’番目の補正係数εk’は、既に補正係数を求めたk1番目の測定を用い、式(9)、式(10)のように求める。
Figure JPOXMLDOC01-appb-I000006
 式(7)、式(9)のように、補正係数γを求めるためには、2つの伝搬路が必要である。伝搬路が1つ以下の場合、γはゼロとする。また、受信電力が所定閾値以下である伝搬路は無いものと判定しても良い。受信電力が所定閾値以下である場合、該当するk番目の校正アンテナとi番目の分散アンテナDAiとの測定結果dk、iとuk、iをともにゼロにする。
 補正係数γは、周波数に依存しており、サブキャリアごとに異なる。全てのサブキャリア、又は一定のサブキャリア数ごとに平均して、補正係数γを求めても良い。また、振幅利得が小さい場合、補正係数γの振幅成分を無視し、補正係数γの位相成分のみを用いても良い。
 D-MIMO装置11の送信部分における、分散アンテナDAの送信利得ei、tと受信利得ei、rを校正する校正係数cは、式(11)のようになる。
Figure JPOXMLDOC01-appb-I000007
 ただし、校正用アンテナを変えて行った校正用測定回数をN個とする。実施の形態1の場合、N=4である。分散アンテナDAの数をN個とする。補正係数γ=0の場合、(γ-1=0とする。式(11)は、式(12)のように展開できる。式(12)によると、校正係数cは、(ei、r/ei、t)を、(|εk、r|hk、r)の重みを付けて平均したものである。また、(|εk、r|hk、r)は、校正用信号の受信電力に比例する。
 実際に校正用信号を測定する場合、分散アンテナDAの配置などによって受信電力は大きく変化する。通常、受信電力が大きいほど雑音の影響が小さくなり、精度の良い校正用信号を取得できる。そこで、(|εk、r|hk、r)で重みを付けて平均することで、精度の良い測定の影響を大きくし、精度の低い測定の影響を小さくすることにより、全体として精度の良い校正係数cを得ることができる。
 実際に校正係数cを、D-MIMO装置11に適応する場合、D-MIMO装置11のダイナミックレンジに合わせて校正係数cを規格化する。また、式(12)の(εk0、t/εk0、r)は、補正係数γの基準とした校正用アンテナの送受信利得の比である。これは全ての分散アンテナDAで一定なため、DL信号の精度に影響しない。そこで、規格化と合わせて、(εk0、t/εk0、r)を省略して、式(12)は近似的に、式(13)のように表せる。
Figure JPOXMLDOC01-appb-I000008
 よって、分散アンテナDAの送受信利得の比を用いることで、D-MIMO装置11の送信部分の校正を行う。
 校正係数cは、校正に使用したサブキャリアsごとに求められる。他の分散アンテナDAの校正に使用したサブキャリアなど、校正に使用しなかったサブキャリアの校正係数cは、サブキャリアsの校正係数から内挿や外挿により求める。また、あるサブキャリア範囲で平均して校正係数を求めてもよい。これにより、分散アンテナDA間の誤差の周波数特性も考慮して校正できる。
 実施の形態1では、全てのサブキャリアに校正用信号を配置したが、一部のサブキャリアのみを使用しても校正可能である。校正用信号を配置できなかったサブキャリアは、近傍のサブキャリアの校正結果から内挿・外挿して校正する。よって、運用中においてもリファレンス信号などのサブキャリアやタイミングを使用して校正を実行できる。
 <効果>
 実施の形態1の効果を説明する。ここでは、2台のUEと空間多重を用いて通信する通常の運用状態(図3参照)での効果を説明する。以下の説明では、UEの数をM=2台とする。UEの数は、一般的にD-MIMO装置11のアンテナの本数以下であり、分散アンテナDAの数をN個とした場合、Mは、1からNのいずれかの整数を取り得る。
 各UEから送信され、分散アンテナDAで受信された(測定された)UL信号をUとする。UL信号UはN行1列(以後、Nx1のように記載する)の行列であり、式(14)のように表すことができる。
Figure JPOXMLDOC01-appb-I000009
 Hは伝搬路のチャネル係数でありNxMの行列で表され、YはUEから送信されたUL信号でありMx1の行列で表される。Eは分散アンテナDAの受信利得を表し、ei、rを用いて、
Figure JPOXMLDOC01-appb-I000010
と表され、NxNの対角行列となる。
 受信されたUL信号Uからチャネル推定により求めたチャネル係数Hは、式(16)となる。
Figure JPOXMLDOC01-appb-I000011
チャネル係数Hに受信利得Eが含まれることがわかる。
 プリコーディング用ウェイト係数Wは、式(17)のように、空間多重技術の1つであるZF(Zero-Forcing)アルゴリズムを用いて求める。
Figure JPOXMLDOC01-appb-I000012
 プリコーディング用ウェイト係数Wの上付きTは転置行列を示し、上付き+は疑似逆行列を示す。空間多重技術にはZFアルゴリズムの他に、MMSEアルゴリズムなど複数のものがあるが、ZFアルゴリズムと同様に校正の効果を得られる。
 プリコーディング用ウェイト係数Wと、式(11)に示す校正係数cと、を乗算したDL信号が各分散アンテナDAから送信される。そして、各UEで受信されたDL信号Dは以下のように表される。
Figure JPOXMLDOC01-appb-I000013
 XはMx1の行列であり各UEに送信する元信号である。実施の形態1では、1UEあたり1レイヤで信号を伝送する。Cは実施の形態1の手法で求めた校正係数cを有する式(19)に示すようなNxNの対角行列である。
Figure JPOXMLDOC01-appb-I000014
 Eは分散アンテナDAの送信利得を表し、式(20)のようなNxNの対角行列となる。
Figure JPOXMLDOC01-appb-I000015
 校正係数行列Cは、式(13)から式(15)と式(20)を用いて式(21)のように表される。
Figure JPOXMLDOC01-appb-I000016
 式(18)に式(17)と式(21)を代入して式(22)、式(23)を得る。
Figure JPOXMLDOC01-appb-I000017
 これにより、実施の形態1で求めた校正係数Cを用いることで、D-MIMO装置11の送信利得と受信利得を補正し、精度のよいDL信号を送信することができる。
 尚、実施の形態1では、D-MIMO装置に適用することを例に挙げて説明したが、これには限定されない。実施の形態1は、C-MIMO装置にも適用可能である。C-MIMO装置は、複数のアンテナが1つの筐体に搭載されたMIMO装置のことである。実施の形態1をC-MIMO装置に適用する場合、1つの筐体内に搭載された複数のアンテナのうちの1つを校正用アンテナとして動作させ、D-MIMO装置と同様に校正を行う。C-MIMO装置内の校正用アンテナ以外のアンテナと校正用アンテナとは、電波の漏れ込みにより、校正用DL信号と校正用UL信号を送受信する。これにより、校正用のフィードバック回路等を搭載する必要が無い。
 [実施の形態2]
 図12は、実施の形態2に係る分散アンテナと外部アンテナの設置を例示する模式図である。
 実施の形態1では、D-MIMO装置又はC-MIMO装置が備えるアンテナを用いて校正を行った。一方、実施の形態2では、校正用の外部アンテナを使用する。この例では、外部アンテナの数を3として説明する。複数のアンテナのうちの1つ以外のアンテナは、MIMOを構成するアンテナである。また、複数のアンテナのうちの1つのアンテナは、MIMOを構成するアンテナではない外部アンテナである。
 図12に示すように、室内に外部アンテナEAを設置する。分散アンテナDAの設置場所によっては1つの外部アンテナ(例えば、外部アンテナEA1)だけでは全ての分散アンテナDAと通信することが難しい場合がある。そこで、複数の外部アンテナEAを使用して校正用測定を行う。または、1つの外部アンテナを移動させることで、全ての分散アンテナDAと校正用測定を行う。複数の外部アンテナEAや、位置移動による複数回の測定は、実施の形態1の校正用アンテナの番号kを変えたときと同様に扱うことができる。
 実施の形態2では、D-MIMO装置における外部アンテナEAを用いた校正方法を例に挙げて説明したが、これには限定されない。実施の形態2に係る校正方法は、C-MIMO装置にも適用できる。
 [実施の形態3]
 図13は、実施の形態3に係るD-MIMO装置の構成を例示するブロック図である。
 実施の形態3に係るD-MIMO装置11は、実施の形態1に係るD-MIMO装置31と比べて、無線部RUと分散アンテナ部DUとの間を光ケーブルで接続する点が異なる。
 図13に示すように、無線部RUのデジタルフロントエンドDFEで生成されたDL信号は、送受信切り替え信号とともに光信号に変換され、光ケーブルを通じて分散アンテナ部DAに伝送される。分散アンテナ部DAに伝送された光信号は、電気信号に変換された後にRF信号に変換されアンテナから送信される。UL信号は、DL信号とは逆の処理が行われる。
 無線部RUと各分散アンテナ部DAの基準となる基準クロックは同期しているものとする。しかしながら、基準クロックが同期していても、基準クロックのスキューや、局部発振器の位相など、アナログ回路特性のバラツキによって、分散アンテナ部DAの送受信特性はそれぞれ異なる。実施の形態3によれば、分散アンテナ部DAの送受信特性の差は、実施の形態1と同様の方法で校正することができる。
 尚、上記の実施の形態では、本発明をハードウェアの構成として説明したが、本発明はこれに限定されるものではない。本発明は、各構成要素の処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。
 上記の実施の形態において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実態のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(具体的にはフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(具体的には光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(具体的には、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM))、フラッシュROM、RAM(Random Access Memory)を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 さらに、動作は特定の順序で描かれているが、これは、望ましい結果を達成するために、そのような動作が示された特定の順序または連続した順序で実行されること、または示されたすべての動作が実行されることを要求するものとして理解されるべきではない。特定の状況では、マルチタスクと並列処理が有利な場合がある。同様に、いくつかの特定の実施の形態の詳細が上記の議論に含まれているが、これらは本開示の範囲に対する制限としてではなく、特定の実施の形態に特有の特徴の説明として解釈されるべきである。別個の実施の形態の文脈で説明される特定の特徴は、単一の実施の形態に組み合わせて実装されてもよい。逆に、単一の実施の形態の文脈で説明される様々な特徴は、複数の実施の形態で別々にまたは任意の適切な組み合わせで実装されてもよい。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 尚、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2020年12月17日に出願された日本出願特願2020-209739を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 11:無線通信装置、D-MIMO装置
 111:校正制御部
 112:校正係数計算部
 113:校正適用部
 1141、1142,1143、1144:送受信機
 1141t、1142t、1143t、1144t:送信機
 1141r、1142r、1143r、1144r:受信機
 1151:レイヤマッパ部
 1152:プリコーディング部
 1153:OFDM信号生成部
 1154:OFDM信号復調部
 1155:チャネル推定部
 1156:プリコーディングウェイト計算部
 DA、DA1、DA2、DA3、DA4:分散アンテナ、分散アンテナ部
 EA、EA1、EA2、EA3:外部アンテナ
 RU:無線部
 DFE:デジタルフロントエンド
 MODEM:変復調器

Claims (10)

  1.  複数のアンテナのうちの1つ以外のアンテナから校正用DL(Down Link)信号を送信し、前記1つのアンテナで前記校正用DL信号を受信するDL制御と、前記1つのアンテナから校正用UL(Up Link)信号を送信し、前記1つ以外のアンテナで前記校正用UL信号を受信するUL制御と、を複数の前記アンテナごとに行う校正制御手段と、
     前記DL制御において複数の前記アンテナから送信した前記校正用DL信号と複数の前記アンテナで受信した前記校正用DL信号と、前記UL制御において複数の前記アンテナから送信した前記校正用UL信号と複数の前記アンテナで受信した前記校正用UL信号と、に基づいて複数の前記アンテナごとに前記アンテナに接続する送信機のDLチャネル係数と受信機のULチャネル係数を計算し、
     前記DLチャネル係数と前記ULチャネル係数とに基づいて、無線DL信号を校正するための校正係数を計算する校正係数計算手段と、
     前記校正係数に基づいて複数の前記アンテナのそれぞれから送信する前記無線DL信号の位相と振幅を調整する校正適用手段と、
     を備える無線通信装置。
  2.  前記校正係数計算手段は、
     前記1つ以外のアンテナから送信した送信時の前記校正用DL信号と前記1つのアンテナで受信した受信時の前記校正用DL信号とに基づいて前記1つ以外のアンテナに対応する複数の前記DLチャネル係数を、複数の前記アンテナごとに計算し、
     前記1つのアンテナから送信した送信時の前記校正用UL信号と前記1つ以外のアンテナで受信した受信時の前記校正用UL信号とに基づいて前記1つ以外のアンテナに対応する複数の前記ULチャネル係数を、複数の前記アンテナごとに計算し、
     前記DL制御と前記UL制御により得られた複数の校正用測定から計算した前記DLチャネル係数と前記ULチャネル係数とに基づいて、前記無線DL信号を校正するための前記校正係数を計算する、
     請求項1に記載の無線通信装置。
  3.  前記校正係数計算手段は、
     複数の前記校正用測定から計算した前記ULチャネル係数に対する前記DLチャネル係数の割合をチャネル係数比率として計算し、
     複数の前記校正用測定の前記チャネル係数比率のうちの1つを基準チャネル係数比率として選択し、
     複数の前記校正用測定の前記チャネル係数比率に対する前記基準チャネル係数比率の割合を複数の校正用測定間の補正係数として計算し、
     複数の前記校正用測定間の前記補正係数を用いて、複数の前記校正用測定に対して、前記ULチャネル係数に対する前記DLチャネル係数の割合を補正する、
     請求項2に記載する無線通信装置。
  4.  前記校正係数計算手段は、
     複数の前記校正用測定で計算した複数の前記校正用測定間の前記補正係数を平均して平均補正係数を計算し、
     前記平均補正係数を新たに前記補正係数とする、
     請求項3に記載の無線通信装置。
  5.  前記校正係数計算手段は、
     複数回の前記校正用測定を行い、前記1つのアンテナに対して複数の前記DLチャネル係数と前記ULチャネル係数が得られた場合、前記校正用DL信号又は前記校正用UL信号の受信電力に基づいて重み付け係数を求め、
     前記DLチャネル係数と前記ULチャネル係数から、前記校正用測定ごとに前記ULチャネル係数に対する前記DLチャネル係数の比率を、UL/DLチャネル係数比率として計算し、
     前記校正用測定ごとに前記UL/DLチャネル係数比率を、前記補正係数を用いて、前記校正用測定間の補正を行い、
     複数の前記アンテナごとに、補正した前記校正用測定ごとの前記UL/DLチャネル係数比率を、前記重み付け係数に基づいて複数の前記校正用測定間で重み付け平均した重み付け平均UL/DLチャネル係数比率を計算し、
     前記重み付け平均UL/DLチャネル係数比率を、新たに前記校正係数とする、
     請求項3に記載の無線通信装置。
  6.  前記校正制御手段は、複数の前記アンテナのそれぞれから異なる周波数の前記校正用DL信号が送信するように制御する、
     請求項1から5のいずれか1つに記載の無線通信装置。
  7.  前記校正適用手段は、複数の前記アンテナのいずれかの温度と前回の校正時の温度との差が所定温度以上の場合、又は、全ての前記アンテナの平均温度と前回の校正時の温度との差が前記所定温度以上の場合、前記無線DL信号の位相と振幅を再度調整する、
     請求項1から6のいずれか1つに記載の無線通信装置。
  8.  前記1つ以外のアンテナは、MIMOを構成するアンテナであり、
     前記1つのアンテナは、前記MIMOを構成するアンテナではない外部のアンテナである、
     請求項1から7のいずれか1つに記載の無線通信装置。
  9.  複数のアンテナのうちの1つ以外のアンテナから校正用DL(Down Link)信号を送信し、前記1つのアンテナで前記校正用DL信号を受信するDL制御と、前記1つのアンテナから校正用UL(Up Link)信号を送信し、前記1つ以外のアンテナで前記校正用UL信号を受信するUL制御と、を複数の前記アンテナごとに行うことと、
     前記DL制御において複数の前記アンテナから送信した前記校正用DL信号と複数の前記アンテナで受信した前記校正用DL信号と、前記UL制御において複数の前記アンテナから送信した前記校正用UL信号と複数の前記アンテナで受信した前記校正用UL信号と、に基づいて複数の前記アンテナごとに前記アンテナに接続する送信機のDLチャネル係数と受信機のULチャネル係数を計算することと、
     前記DLチャネル係数と前記ULチャネル係数とに基づいて、無線DL信号を校正するための校正係数を計算することと、
     前記校正係数に基づいて複数の前記アンテナのそれぞれから送信する前記無線DL信号の位相と振幅を調整することと、
     を備える無線通信装置の方法。
  10.  複数のアンテナのうちの1つ以外のアンテナから校正用DL(Down Link)信号を送信し、前記1つのアンテナで前記校正用DL信号を受信するDL制御と、前記1つのアンテナから校正用UL(Up Link)信号を送信し、前記1つ以外のアンテナで前記校正用UL信号を受信するUL制御と、を複数の前記アンテナごとに行うことと、
     前記DL制御において複数の前記アンテナから送信した前記校正用DL信号と複数の前記アンテナで受信した前記校正用DL信号と、前記UL制御において複数の前記アンテナから送信した前記校正用UL信号と複数の前記アンテナで受信した前記校正用UL信号と、に基づいて複数の前記アンテナごとに前記アンテナに接続する送信機のDLチャネル係数と受信機のULチャネル係数を計算することと、
     前記DLチャネル係数と前記ULチャネル係数とに基づいて、無線DL信号を校正するための校正係数を計算することと、
     前記校正係数に基づいて複数の前記アンテナのそれぞれから送信する前記無線DL信号の位相と振幅を調整することと、
     をコンピュータに実行させるプログラムが格納される非一時的なコンピュータ可読媒体。
PCT/JP2021/040738 2020-12-17 2021-11-05 無線通信装置、無線通信装置の方法、及び非一時的なコンピュータ可読媒体 WO2022130821A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/266,389 US20240048200A1 (en) 2020-12-17 2021-11-05 Radio communication apparatus, method for radio communication apparatus, and non-transitory computer readable medium
JP2022569761A JPWO2022130821A5 (ja) 2021-11-05 無線通信装置、無線通信装置の方法、及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020209739 2020-12-17
JP2020-209739 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022130821A1 true WO2022130821A1 (ja) 2022-06-23

Family

ID=82057578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040738 WO2022130821A1 (ja) 2020-12-17 2021-11-05 無線通信装置、無線通信装置の方法、及び非一時的なコンピュータ可読媒体

Country Status (2)

Country Link
US (1) US20240048200A1 (ja)
WO (1) WO2022130821A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235829A (ja) * 2003-01-29 2004-08-19 Hitachi Kokusai Electric Inc 無線基地局装置
JP2005064626A (ja) * 2003-08-20 2005-03-10 Hitachi Kokusai Electric Inc 基地局装置
JP2012182804A (ja) * 2007-05-29 2012-09-20 Mitsubishi Electric Corp 無線局
WO2015185680A1 (en) * 2014-06-04 2015-12-10 Airrays Gmbh Modular antenna system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235829A (ja) * 2003-01-29 2004-08-19 Hitachi Kokusai Electric Inc 無線基地局装置
JP2005064626A (ja) * 2003-08-20 2005-03-10 Hitachi Kokusai Electric Inc 基地局装置
JP2012182804A (ja) * 2007-05-29 2012-09-20 Mitsubishi Electric Corp 無線局
WO2015185680A1 (en) * 2014-06-04 2015-12-10 Airrays Gmbh Modular antenna system

Also Published As

Publication number Publication date
US20240048200A1 (en) 2024-02-08
JPWO2022130821A1 (ja) 2022-06-23

Similar Documents

Publication Publication Date Title
KR100656979B1 (ko) 스마트 안테나 어레이 시스템의 실시간 교정 방법
JP5869682B2 (ja) アンテナアレイシステムにおけるアンテナ装置のキャリブレーションのための方法、処理装置、コンピュータプログラム、及びアンテナ装置
US9118111B2 (en) Antenna array calibration for wireless communication systems
US7389193B2 (en) Apparatus and method for calibrating transmission paths in a multicarrier communication system using multiple antennas
US8050314B2 (en) Apparatus and method for wireless communication, and computer program
KR101381458B1 (ko) 다중 입출력 직교 주파수 분할 다중화 무선 네트워크에서 안테나 맵핑을 선택하는 방법 및 장치
CN108471324A (zh) 电子设备、通信装置和信号处理方法
EP2988443B1 (en) Wireless communication apparatus and wireless communication method
JP4696842B2 (ja) 無線通信装置、アンテナ・キャリブレーション方法、並びにコンピュータ・プログラム
JP2010034937A (ja) 無線通信装置及び無線通信方法、並びにコンピューター・プログラム
EP3963845A1 (en) Methods, distributed base station system, remote radio unit and base band unit system for handling uplink signals
US8498669B2 (en) Antenna array calibration for wireless communication systems
JP3932456B2 (ja) 移動通信システムの受信信号補正装置及びその方法
CA2628478A1 (en) Antenna array calibration for wireless communication systems
JP2014060616A (ja) 通信装置、および信号検出方法
WO2022130821A1 (ja) 無線通信装置、無線通信装置の方法、及び非一時的なコンピュータ可読媒体
CA2606163A1 (en) Antenna array calibration for wireless communication systems
KR101054090B1 (ko) 배열 안테나 시스템의 평균 내부순환 안테나 교정 방법
JP2006014027A (ja) 無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
WO2022137891A1 (ja) 信号処理装置、信号処理方法及び非一時的なコンピュータ可読媒体
CN111726172B (zh) 通道校正的方法和装置
JP6696336B2 (ja) 送信制御装置、無線通信システム及びキャリブレーション方法
WO2023053472A1 (ja) 無線通信装置、システム、方法、及び非一時的なコンピュータ可読媒体
JP6163083B2 (ja) 通信装置及び送信方法
JP2013093658A (ja) 無線通信装置および無線通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906185

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18266389

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022569761

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906185

Country of ref document: EP

Kind code of ref document: A1