WO2022130782A1 - Electrodialysis device, and system and method for treating water - Google Patents

Electrodialysis device, and system and method for treating water Download PDF

Info

Publication number
WO2022130782A1
WO2022130782A1 PCT/JP2021/039051 JP2021039051W WO2022130782A1 WO 2022130782 A1 WO2022130782 A1 WO 2022130782A1 JP 2021039051 W JP2021039051 W JP 2021039051W WO 2022130782 A1 WO2022130782 A1 WO 2022130782A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
chamber
electrodialysis
alkaline
liquid
Prior art date
Application number
PCT/JP2021/039051
Other languages
French (fr)
Japanese (ja)
Inventor
明広 高田
徹 中野
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Publication of WO2022130782A1 publication Critical patent/WO2022130782A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/463Apparatus therefor comprising the membrane sequence AC or CA, where C is a cation exchange membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis

Definitions

  • the present invention relates to an electrodialysis apparatus, a water treatment system and a method.
  • the stripping method has a problem that the TDS (Total Dissolved Solid) value of wastewater increases as well as the cost of chemicals increases because it is necessary to add an alkali to adjust the pH.
  • TDS Total Dissolved Solid
  • Patent Document 1 proposes a method of recovering hydrofluoric acid and ammonia water (or ammonia gas) from the liquid to be treated by using well-known electrodialysis.
  • an acid solution, an alkaline solution and a desalting solution are generated from the liquid to be treated by using an electrodialysis apparatus.
  • the desalting solution is not always necessary in the water treatment system in the manufacturing process of the semiconductor device whose main purpose is to recover the acid and the alkali from the waste liquid. It may also require equipment to further process the desalted solution produced. Therefore, in a water treatment system containing such a desalting solution as a product, the cost of the entire system may increase.
  • the present invention has been made to solve the problems of the background techniques as described above, and to provide an electrodialysis apparatus, a water treatment system and a method capable of recovering an acid and an alkali from a liquid to be treated at low cost. The purpose.
  • the electrodialysis apparatus of the present invention is an electrodialysis apparatus used for treating a liquid to be treated containing an acid and an alkali.
  • Bipolar membranes and anion exchange membranes are alternately arranged between the anode and the cathode, The anode, the anode chamber defined by the bipolar membrane, and The cathode, the cathode chamber defined by the bipolar membrane, and the At least one set of acid chamber and alkaline chamber arranged adjacent to each other with the anion exchange membrane interposed therebetween between the anode chamber and the cathode chamber.
  • the acid chamber is defined by the anion exchange membrane and the bipolar membrane arranged on the anode chamber side, and water is supplied to generate an acid solution by electrodialysis.
  • the alkaline chamber is defined by the anion exchange membrane and the bipolar membrane arranged on the cathode chamber side, and the liquid to be treated is supplied to generate an alkaline liquid by electrodialysis.
  • the water treatment system of the present invention includes the above electrodialysis apparatus and A pure water tank for storing the water supplied to the acid chamber, and A liquid tank to be treated that stores the liquid to be treated to be supplied to the alkaline chamber, and a liquid tank to be treated.
  • An acid circulation path in which an acid mixture discharged from the acid chamber and containing the acid solution produced by the electrodialysis and the water remaining without being involved in the formation of the acid solution is returned to the pure water tank and circulated.
  • the alkaline mixture discharged from the alkaline chamber and containing the alkaline solution generated by the electrodialysis and the solution to be treated that remains without being involved in the formation of the alkaline solution is returned to the liquid tank to be treated and circulated.
  • Alkaline circulation path to make A current measuring device that measures the current value flowing through the electrodialysis device during the electrodialysis, and a current measuring device.
  • a control device that controls the operation of the pure water tank and the liquid tank to be treated, and the acid circulation path and the alkali circulation path, and receives the current value measured by the current measuring device. Have, The control device circulates the acid mixed solution using the acid circulation path and circulates the alkaline mixed solution using the alkaline circulation path at the time of executing the electrodialysis, and the current value is within a predetermined range.
  • the acid mixed solution in the pure water tank is discharged as the acid solution
  • the alkaline mixed solution in the treated liquid tank is discharged as the alkaline solution. It is a configuration to make it.
  • the water treatment method of the present invention is a water treatment method used for treating a liquid to be treated containing an acid and an alkali.
  • Bipolar films and anion exchange films are alternately arranged between the anode and the cathode, and the anode chamber defined by the anode and the bipolar film, the cathode chamber defined by the cathode and the bipolar film, and the anode.
  • An electrodialysis apparatus including at least one set of acid chamber and alkaline chamber, which are arranged adjacent to each other with the anion exchange membrane sandwiched between the chamber and the cathode chamber, is prepared.
  • Water is supplied to the acid chamber defined by the anion exchange membrane and the bipolar membrane arranged on the anode chamber side, and an acid solution is generated by electrodialysis.
  • This is a method in which the liquid to be treated is supplied to the alkaline chamber defined by the anion exchange membrane and the bipolar membrane arranged on the cathode chamber side, and the alkaline liquid is generated by the electrodialysis.
  • FIG. 1 is a block diagram showing a configuration example of a water treatment system according to the first embodiment.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the electrodialysis apparatus shown in FIG.
  • FIG. 3 is a block diagram showing a configuration example of the water treatment system according to the second embodiment.
  • FIG. 4 is a block diagram showing a connection example of a current measuring device included in the water treatment system of the second embodiment.
  • FIG. 5 is a block diagram showing a configuration example of the water treatment system according to the third embodiment.
  • FIG. 6 is a block diagram showing a configuration example of the water treatment system according to the fourth embodiment.
  • FIG. 1 is a block diagram showing a configuration example of a water treatment system according to the first embodiment.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the electrodialysis apparatus shown in FIG.
  • FIG. 3 is a block diagram showing a configuration example of the water treatment system according to the second embodiment.
  • FIG. 4 is a block diagram showing
  • FIG. 7 is a graph showing a change in the abundance ratio (molar ratio) of fluorine ions and ammonium in the acid mixture and the alkali mixture of the examples.
  • FIG. 8 is a graph showing changes in the conductivity of the acid mixture and the alkali mixture of the examples.
  • FIG. 9 is a graph showing changes in the current value and the integrated current amount flowing through the electrodialysis apparatus of the embodiment.
  • FIG. 1 is a block diagram showing a configuration example of a water treatment system according to the first embodiment
  • FIG. 2 is a schematic diagram showing a schematic configuration of the electrodialysis apparatus of the present invention shown in FIG.
  • the water treatment system of the first embodiment includes a liquid treatment tank 11 for storing a liquid to be treated, a pure water tank 12 for storing water (pure water: H2O ), and a water treatment tank 12.
  • An electrodialysis device 13 to which a treatment liquid and water are supplied to generate an acid solution and an alkaline liquid from the liquid to be treated and water by electrodialysis, and a power source for supplying a predetermined DC voltage required for electrodialysis to the electrodialysis device 13.
  • the liquid tank 11, the pure water tank 12, the acid liquid tank 15, and the alkaline liquid tank 16 are each connected to the electrodialysis apparatus 13 via a flow path 18 provided with a pump and a valve (not shown).
  • the control device 17 is connected to the power supply device 14 and the pumps and valves included in each flow path 18 via a well-known wired communication means or wireless communication means, and the power supply device 14 and the pumps and valves included in each flow path 18 are connected. Operation can be controlled.
  • the control device 17 controls the on / off of the power supply device 14, and also uses the pumps and valves provided in each flow path 18 to supply and stop the liquid to be treated from the liquid tank 11 to the electrodialyzer 13 and purely.
  • the control device 17 supplies a required amount of the liquid to be treated and pure water from the liquid tank 11 and the pure water tank 12 to the electrodialysis device 13, and the power supply device 14 supplies the electrodialysis device 13.
  • a DC voltage is applied to the device, and electrodialysis is performed, for example, for a predetermined time set in advance. Then, when the electrodialysis is completed, the acid solution produced by the electrodialysis apparatus 13 is collected in the acid solution tank 15, and the alkaline solution produced by the electrodialysis apparatus 13 is collected in the alkaline solution tank 16.
  • the control device 17 stores a CPU (Central Processing Unit) that executes processing according to a predetermined program, a main storage device that temporarily holds information and data necessary for the processing of the CPU, a program, and the above information and data.
  • a CPU Central Processing Unit
  • main storage device that temporarily holds information and data necessary for the processing of the CPU, a program, and the above information and data.
  • auxiliary storage device Realized by an auxiliary storage device (auxiliary storage device), a communication device for transmitting and receiving information to and from the outside, various input devices such as touch panels and keyboards, and an information processing device (computer) including various output devices such as display devices and printers.
  • the control device 17 does not need to be constantly connected to the water treatment system of the present invention, and is subject to the change only when, for example, the settings of the power supply device 14 and the pumps and valves included in each flow path 18 are changed. It may be connected to the device.
  • the liquid to be treated stored in the liquid tank 11 to be treated is, for example, a waste liquid in which hydrofluoric acid (HF) and buffered hydrofluoric acid (BHF) are mixed, which is discharged from the manufacturing process of a semiconductor device.
  • HF hydrofluoric acid
  • BHF buffered hydrofluoric acid
  • the acid solution produced by the electrodialysis apparatus 13 is hydrofluoric acid
  • the alkaline solution is ammonia water.
  • the electrodialysis apparatus 13 of the present invention has a bipolar membrane (BP membrane) 133 and an anion exchange membrane (A membrane) which are ion exchange membranes between the anode (+) 131 and the cathode ( ⁇ ) 132. ) 134 is alternately arranged to form a plurality of chambers.
  • the electrodialysis apparatus 13 is arranged between the anode chamber 135 defined by the anode 131 and the BP membrane 133, the cathode chamber 136 defined by the cathode 132 and the BP membrane 133, and the anode chamber 135 and the cathode chamber 136.
  • At least one set of acid chambers 137 and alkali chambers 138 At least one set of acid chambers 137 and alkali chambers 138.
  • FIG. 2 shows a configuration example in which three sets of acid chambers 137 and alkaline chambers 138 are arranged between the anode chamber 135 and the cathode chamber 136.
  • anode 131 and the cathode 132 for example, a nickel (Ni) electrode, a titanium (Ti) platinum (Pt) plated electrode, or the like is used.
  • the anode chamber 135 and the cathode chamber 136 are each filled with an electrode solution composed of, for example, a sodium hydroxide (NaOH) solution or a sodium sulfide (Na 2 SO 4 ) solution.
  • a set of the acid chamber 137 and the alkali chamber 138 are adjacent to each other with the A film 134 interposed therebetween, and the acid chamber 137 is arranged on the anode 131 side and the alkali chamber 138 is arranged on the cathode 132 side.
  • the acid chamber 137 is defined by the A film 134 and the BP film 133 arranged on the anode 131 side, and water (pure water: H2O ) is supplied from the pure water tank 12.
  • the alkaline chamber 138 is defined by the A film 134 and the BP film 133 arranged on the cathode 132 side, and the liquid to be treated is supplied from the liquid tank 11 to be treated.
  • the A film 134 is an ion exchange membrane that allows anions to pass through and blocks the passage of cations.
  • the BP film 133 is a composite film in which a cation exchange membrane and an A film are laminated.
  • the cation exchange membrane is an ion exchange membrane that allows cations to pass through and blocks the passage of anions.
  • a current flows when a positive potential difference (forward voltage) is applied to the cation exchange film side and a negative potential difference (forward voltage) is applied to the A film side, and a potential difference (reverse voltage) in the direction opposite to the forward voltage is applied.
  • forward voltage positive potential difference
  • reverse voltage negative potential difference
  • it has a rectifying effect in which only a small amount of current flows.
  • water H2O
  • the plurality of BP films 133 are arranged between the anode 131 and the cathode 132 so that a reverse voltage is applied to each of them.
  • a predetermined DC voltage is applied from the power supply device 14 between the anode 131 and the cathode 132 so that the anode 131 side is positive and the cathode 132 side is negative. Then electrodialysis is started.
  • the water in the membrane of each BP membrane 133 is ionized into hydrogen ions (H + ) and hydroxide ions (OH ⁇ ), and the hydrogen ions move to the acid chamber 137 (or cathode chamber 136). It moves and the hydroxide ion moves to the alkali chamber 138 (or the anode chamber 135).
  • the liquid to be treated HF, NH 4 F
  • the liquid to be treated is ionized into hydrogen ions (H + ), fluorine ions (F ⁇ ), and ammonium (NH 4 + ), and fluorine ions, which are anions, are generated. It passes through the A film 134 and moves to the adjacent acid chamber 137 on the anode 131 side.
  • the hydroxide ion ionized by the BP membrane 133 moves to the anode chamber 135, and the hydrogen ion ionized by the BP membrane 133 moves to the cathode chamber 136. do. Therefore, when the same electrode solution is used in the anode chamber 135 and the cathode chamber 136, for example, the electrode solution is circulated between the anode chamber 135 and the cathode chamber 136 to obtain hydrogen ions and hydroxide ions, respectively. It should be balanced.
  • the bipolar film (BP film) 133 and the anion exchange film (A film) 134 are alternately arranged between the anode 131 and the cathode 132, and the acid chamber 137 is provided.
  • an acid solution fluoric acid
  • an alkaline solution ammonia water
  • FIG. 3 is a block diagram showing a configuration example of the water treatment system according to the second embodiment.
  • the water treatment system of the second embodiment has an acid circulation path 21 for returning the solution discharged from the acid chamber 137 of the electrodialysis device 13 to the pure water tank 12 and circulating the solution, and the electrodialysis device. It has a configuration different from that of the water treatment system of the first embodiment in that it has an alkaline circulation path 22 for returning the solution discharged from the alkaline chamber 138 of 13 to the liquid tank 11 to be treated and circulating the solution.
  • hydrofluoric acid (HF) generated by electrodialysis from the acid chamber 137 of the electrodialysis apparatus 13 and pure water not ionized by the BP membrane 133.
  • the acid mixture consisting of and will be discharged to the outside of the room.
  • the alkaline chamber 138 of the electrodialysis apparatus 13 did not move to the ammonium water generated by the electrodialysis and the ammonium and the acid chamber 137 which were not bound to the hydroxide ion, or returned from the acid chamber 137.
  • An alkaline mixture consisting of a liquid to be treated containing fluorine ions may be discharged to the outside of the room.
  • an acid solution containing an acid solution generated by electrodialysis and water (pure water) remaining without being involved in the formation of the acid solution is discharged from the acid chamber 137, and electricity is discharged from the alkali chamber 138.
  • the alkaline liquid produced by dialysis and the alkaline mixed liquid containing the liquid to be treated that remains without being involved in the formation of the alkaline liquid will be discharged.
  • the acid mixed solution discharged from the acid chamber 137 of the electrodialysis apparatus 13 is returned to the pure water tank 12 using the acid circulation passage 21 when the electrodialysis is performed. It is supplied again from the pure water tank 12 to the acid chamber 137.
  • the acid solution (hydrofluoric acid) in the acid mixed solution is concentrated.
  • the concentration of the acid solution (hydrofluoric acid) reaches a predetermined value (or a predetermined range)
  • the acid mixture is discharged (or extracted) from the pure water tank 12 and recovered as an acid solution (hydrofluoric acid). Just do it.
  • the acid solution recovered from the pure water tank 12 may be stored in the acid solution tank 15 as shown in FIG. Pure water is newly supplied to the pure water tank 12 from which the acid mixture is discharged from an external tank (not shown).
  • the alkaline mixture discharged from the alkaline chamber 138 is returned to the liquid tank 11 to be treated by using the alkaline circulation path 22 at the time of performing electrodialysis, and the subject is said to be treated. It is supplied again from the treatment liquid tank 11 to the alkaline chamber 138.
  • the concentration of the alkaline solution (ammonia water) in the alkaline mixed solution is concentrated.
  • the alkaline mixture is discharged (or extracted) from the liquid tank 11 to be treated as an alkaline solution (ammonia water). You can collect it.
  • the alkaline liquid recovered from the liquid tank 11 to be treated may be stored in the alkaline liquid tank 16 as shown in FIG.
  • the liquid to be treated is newly supplied to the liquid tank 11 to be treated from which the alkaline mixed liquid is discharged from an external tank (not shown).
  • the acid mixture in the pure water tank 12 and the alkaline mixture in the liquid tank 11 may be discharged at the same timing.
  • the concentration of the acid solution in the acid mixture and the concentration of the alkaline solution in the alkali mixture may be adjusted. Depending on the situation, it may be discharged at different timings.
  • Pumps and valves that can be controlled by the control device 17 are arranged in the acid circulation path 21 and the alkaline circulation path 22, respectively.
  • the control device 17 can control the circulation and stop of the acid mixture in the acid circulation path 21 and the circulation and stop of the alkaline mixture in the alkaline circulation path 22 by using these pumps and valves.
  • a valve that can be controlled by the control device 17 is arranged in the liquid tank 11 and the pure water tank 12 to be treated.
  • the control device 17 can control the discharge and stop of the alkaline mixed liquid from the liquid tank 11 to be treated and the discharge and stop of the acid mixed liquid from the pure water tank 12 by using the valve.
  • the control device 17 supplies the required amount of the liquid to be treated and water from the liquid tank 11 to be treated and the pure water tank 12 to the electric dialysis apparatus 13, the electric dialysis is started.
  • the acid mixed solution discharged from the acid chamber 137 is circulated using the acid circulation path 21, and the alkaline mixed solution discharged from the alkaline chamber 138 is circulated using the alkaline circulation path 22.
  • the control device 17 stops the circulation of the acid mixed solution using the acid circulation path 21 and the circulation of the alkaline mixed solution using the alkaline circulation path 22, respectively, and the acid mixing in the pure water tank 12
  • the liquid is discharged and stored in the acid liquid tank 15, and the alkaline mixed liquid in the liquid tank 11 to be treated is discharged and stored in the alkaline liquid tank 16. Since other configurations are the same as those of the water treatment system of the first embodiment shown in FIG. 1, the description thereof will be omitted.
  • the electrodialysis using the electrodialysis apparatus 13 can be performed for a predetermined predetermined time as illustrated in the first embodiment.
  • the timing to end the electrodialysis is determined by observing the change in the current value flowing between the anode 131 and the cathode 132 of the electrodialysis apparatus 13.
  • the timing of ending electrodialysis can also be determined by observing changes in the conductivity of the acid mixture and the alkali mixture.
  • the electrode portion made of metal provided in the conductivity meter it is necessary to insert the electrode portion made of metal provided in the conductivity meter into the acid mixed solution and the alkaline mixed solution.
  • the electrode portion may be corroded by hydrofluoric acid or the like contained in the acid mixed solution. Therefore, for example, it is necessary to protect the electrode portion from corrosion by taking measures such as fluorine coating.
  • the current value flowing between the anode 131 and the cathode 132 of the electrodialysis apparatus 13 can be measured without inserting a part (electrode portion) of the current sensor or ammeter into the acid mixture or the alkali mixture. Therefore, no measures are required to protect it from corrosion. Further, in electrodialysis, since the current value flowing between the anode 131 and the cathode 132 of the electrodialysis apparatus 13 is generally monitored by using a current sensor or an ammeter, electrodialysis is performed based on the change in the current value. If the timing of termination is determined, there is no need to install a new instrument such as a conductivity meter. Therefore, it is preferable to determine the timing at which the electrodialysis is terminated by observing the change in the current value flowing between the anode 131 and the cathode 132 of the electrodialysis apparatus 13.
  • the water treatment system of the second embodiment includes a current measuring device 30 connected in series with the power supply device 14 and the electrodialysis device 13.
  • the current measuring device 30 includes a well-known current sensor or current meter that measures the current value flowing between the power supply device 14 and the electrodialysis device 13, and the current value measured by the current sensor or the current meter is well-known. It is transmitted to the control device 17 at all times or at predetermined intervals (for example, about several seconds to several minutes) by using a wired communication means or a wireless communication means.
  • FIG. 4 shows a configuration example in which the water treatment system independently includes the current measuring device 30, but the current measuring device 30 may be provided in the power supply device 14 or in the control device 17. It may be.
  • the fluorine ion concentration in the alkaline mixed solution decreases, and the hydroxide ion concentration ionized by the BP film increases, so that the pH becomes alkaline and the alkaline mixture is used. Since ammonium in the liquid becomes free ammonia that does not contribute to conductivity, the conductivity gradually decreases and stabilizes at a low value after a certain period of time.
  • the acid mixed solution pure water having low conductivity decreases and hydrogen ions and fluorine ions contributing to high conductivity increase, so that the conductivity gradually increases and relatively after a certain period of time elapses. Stable at high values.
  • Electrodialysis is terminated when the current value is relatively low and stable, that is, when the current value continues within a predetermined range for a predetermined time. Whether or not the current value continues within a predetermined range for a predetermined time may be determined, for example, by whether or not the slope of the change in the current value is within the predetermined range. As a result, the concentration of hydrofluoric acid and ammonia water by electrodialysis can be completed in the minimum required time. Therefore, the acid solution and the alkaline solution can be efficiently recovered from the liquid to be treated.
  • the control device 17 of the present embodiment observes the change while storing the current value received from the current measuring device 30, and as described above, at the timing when the slope of the change of the current value falls within a predetermined range. All you have to do is finish the electrodialysis.
  • FIG. 5 is a block diagram showing a configuration example of the water treatment system according to the third embodiment.
  • the concentrated liquid concentrated by the reverse osmosis membrane device 40 is used as the liquid to be treated via the liquid tank 11 to be treated, and the alkali of the electrodialysis device 13 is used. It has a different configuration from the water treatment system of the first and second embodiments in that it supplies to the chamber 138.
  • FIG. 5 shows a configuration example in which the water treatment system of the first embodiment shown in FIG. 1 is provided with the reverse osmosis membrane device 40, and the reverse osmosis membrane device 40 is the second embodiment shown in FIG.
  • the configuration may be provided in the water treatment system of the embodiment.
  • the control device 17 In the flow path 41 connecting the reverse osmosis membrane device 40 and the liquid tank 11 to be treated, the control device 17 enables control of supply and stop of the concentrated liquid from the reverse osmosis membrane device 40 to the liquid tank 11 to be treated.
  • the pump and valve shown are provided.
  • the control device 17 and the pumps and valves included in the flow paths 53 and 54 are connected via a well-known wired communication means or wireless communication means.
  • the control device 17 of the present embodiment controls the supply and stop of the concentrated liquid to the liquid tank 11 to be processed by controlling the pump and the valve included in the flow path 41.
  • the reverse osmosis membrane device 40 uses a well-known reverse osmosis (RO) membrane to remove solutes from the supplied solution of permeated water (usually pure water), and a concentrated solution in which the solutes are concentrated. It is a device that produces two solutions of.
  • the reverse osmosis membrane device 40 is supplied with, for example, a waste liquid in which the above-mentioned hydrofluoric acid (HF) and buffered hydrofluoric acid (BHF) are mixed. In that case, the reverse osmosis membrane device 40 outputs a concentrated solution in which hydrofluoric acid (HF) and ammonium fluoride (NH 4F ) are concentrated. Since other configurations are the same as those of the water treatment system of the first embodiment shown in FIG. 1 or the second embodiment shown in FIG. 3, the description thereof will be omitted.
  • RO reverse osmosis
  • the concentrated liquid concentrated by the reverse osmosis membrane device 40 is supplied to the electrodialysis device 13 as the liquid to be treated, so that the liquid to be treated is supplied to the electrodialysis device 13.
  • FIG. 6 is a block diagram showing a configuration example of the water treatment system according to the fourth embodiment.
  • the fluorine recovery device 51 for recovering fluorine from the acid solution (fluoric acid) stored in the acid solution tank 15 and the alkaline solution tank 16 store the water. It has a configuration different from that of the water treatment system of the first to third embodiments in that it further includes an ammonia recovery device 52 that recovers ammonia gas from the alkaline liquid (ammonia water).
  • the fluorine recovery device 51 may be configured to react fluorine obtained from the acid solution tank 15 with a calcium compound (for example, calcium hydroxide) to recover fluorine as solid calcium fluoride (CaF 2 ). good.
  • the ammonia recovery device 52 may be configured to recover the ammonia gas by distilling the ammonia water obtained from the alkaline liquid tank 16.
  • the fluorine recovery device 51 recovers fluorine from the acid solution (fluoric acid) stored in the acid solution tank 15, and the ammonia recovery device 52 recovers ammonia from the alkaline solution (ammonia water) stored in the alkaline solution tank 16.
  • a configuration example for recovering gas is shown.
  • the fluorine recovery device 51 may recover fluorine from the acid solution discharged from the acid chamber 137 of the electrodialysis device 13, and the ammonia recovery device 52 may recover fluorine from the alkaline solution discharged from the alkali chamber 138 of the electrodialysis device 13. Ammonia gas may be recovered.
  • FIG. 6 shows a configuration example in which the water treatment system of the first embodiment shown in FIG. 1 is provided with the fluorine recovery device 51 and the ammonia recovery device 52.
  • the fluorine recovery device 51 and the ammonia recovery device 52 shown in FIG. 6 may have a configuration included in the water treatment system of the second embodiment shown in FIG. In that case, the fluorine recovery device 51 may recover fluorine from the acid mixture (acid solution) discharged from the pure water tank 12, and the ammonia recovery device 52 may recover the alkali mixture (ammonia) discharged from the liquid tank 11 to be treated. Ammonia gas may be recovered from water). Further, the fluorine recovery device 51 and the ammonia recovery device 52 shown in FIG. 6 may be configured to be provided in the water treatment system of the third embodiment shown in FIG.
  • a pump (not shown) that enables control of supply and stop of the acid liquid from the acid liquid tank 15 to the fluorine recovery device 51 by the control device 17 Equipped with a valve.
  • the control device 17 enables control of supply and stop of the alkaline liquid from the alkaline liquid tank 16 to the ammonia recovery device 52 (not shown). Equipped with pumps and valves.
  • the control device 17 and the pumps and valves included in the flow paths 53 and 54 are connected via a well-known wired communication means or wireless communication means.
  • the control device 17 of the present embodiment controls, for example, the pumps and valves included in the flow paths 53 and 54 to supply and stop the acid solution to the fluorine recovery device 51, and supply and stop the alkaline solution to the ammonia recovery device 52. To control.
  • the fluorine recovery device 51 and the ammonia recovery device 52 by providing the fluorine recovery device 51 and the ammonia recovery device 52, not only the acid solution (fluoric acid) and the alkaline solution (ammonia water) but also fluorine and ammonia gas can be obtained. Can be recovered. Therefore, in addition to the same effects as those of the first to third embodiments, fluorine and ammonia gas can also be recovered from the liquid to be treated.
  • electrodialysis was performed under the conditions shown in Table 1 below using the water treatment system of the second embodiment shown in FIG.
  • the concentration of fluorine ions in the acid mixture the concentration of ammonium in the alkali mixture, the conductivity of the acid mixture and the alkali mixture, the current value flowing through the electrodialysis apparatus 13, and the integrated current thereof.
  • the amounts were measured respectively.
  • FIG. 7 is a graph showing a change in the abundance ratio (molar ratio) of fluorine ions and ammonium in the acid mixture and the alkali mixture of the examples
  • FIG. 8 is the acid mixture and the alkali mixture of the examples. It is a graph which shows the state of the change of the conductivity of.
  • FIG. 9 is a graph showing changes in the current value and the integrated current amount flowing through the electrodialysis apparatus of the embodiment. 7 to 9 show an example of the experimental results in this example.
  • the movement of ions through the ion exchange membrane is basically controlled by the above-mentioned electrodialysis.
  • ions gradually move through the ion exchange membrane due to a well-known diffusion phenomenon caused by the concentration difference. That is, in the configuration in which water (pure water: H 2 O) is supplied to the acid chamber 137 shown in FIG. 2 and the liquid to be treated (HF, NH 4 F) is supplied to the alkali chamber 138, the alkaline chamber has a high concentration. Fluorine ions (F ⁇ ) and ammonium (NH 4+ ) migrate from 138 to a low-concentration acid chamber by diffusion, respectively.
  • FIG. 7 shows an example in which the acid mixture contains fluorine ions and ammonium transferred from the alkaline chamber 138 due to the diffusion phenomenon before starting electrodialysis.
  • fluorine ions (F ⁇ ) move from the alkaline mixed solution to the acid mixed solution, so that the ratio of fluorine ions in the acid mixed solution changes over time. Increases with. Then, when the amount of fluorine ions (F ⁇ ) transferred from the alkaline mixed solution decreases after a certain period of time, the increase of fluorine ions in the acid mixed solution stops. In addition, since ammonium (NH 4+ ) does not move in electrodialysis, fluorine ions (F ⁇ ) move from the alkaline mixed solution to the acid mixed solution, so that the proportion of ammonium in the alkaline mixed solution increases. In FIG. 7, the proportion of ammonium in the acid mixture is once decreased and then gradually increased with the passage of time. This is because the proportion of ammonium in the acid mixture is increased due to the diffusion phenomenon. Is shown.
  • the current value flowing through the electrodialysis apparatus 13 gradually increases when electrodialysis is started, then starts to decrease from a certain point, and then stabilizes at a relatively low value.
  • the conductivitys of the alkaline mixed solution and the acid mixed solution become stable about 40 minutes after the start of electrodialysis, and the electrodialysis apparatus 13 is used.
  • the current value that flows is also stable at a relatively low value.
  • the inventors can obtain an acid solution having a sufficient fluorine ion concentration and sufficient ammonium from the liquid to be treated and pure water. It was confirmed that an alkaline solution having a high concentration could be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

An electrodialysis device is provided with: bipolar membranes and anion exchange membranes which are arranged alternatively between a positive electrode and a negative electrode; a positive electrode chamber which is defined by the positive electrode and the bipolar membrane; a negative electrode chamber which is defined by the negative electrode and the bipolar membrane; and at least one (acid chamber)-(alkali chamber) set which is arranged between the positive electrode chamber and the negative electrode chamber and in which an acid chamber and an alkali chamber are arranged adjacently to each other with the anion exchange membrane interposed therebetween. The acid chamber is defined by the anion exchange membrane and the bipolar membrane arranged on the positive electrode chamber side and produces an acid solution by electrodialysis upon the supply of water, and the alkali chamber is defined by the anion exchange membrane and the bipolar membrane arranged on the negative electrode chamber side and produces an alkali solution by electrodialysis upon the supply of a solution to be treated which contains an acid and an alkali.

Description

電気透析装置、水処理システム及び方法Electrodialysis equipment, water treatment systems and methods
 本発明は、電気透析装置、水処理システム及び方法に関する。 The present invention relates to an electrodialysis apparatus, a water treatment system and a method.
 各種工程から副生成物または廃棄物として排出される中性塩や廃酸・廃アルカリを再利用する技術を開発することは、種々のプラントにおける重要な課題である。例えば、半導体デバイスの製造工程では、フッ酸(HF)とバッファードフッ酸(HF+NHF:BHF)とが混合された廃液が大量に排出される。この廃液から酸(フッ酸)やアルカリ(アンモニア水:NHOH)を回収するための技術が従来から検討されている。この回収には、フッ素(F)やアンモニアガス(NH)を回収することも含まれる。 It is an important task in various plants to develop a technique for reusing neutral salts, waste acids and waste alkalis discharged as by-products or wastes from various processes. For example, in the manufacturing process of a semiconductor device, a large amount of waste liquid in which hydrofluoric acid (HF) and buffered hydrofluoric acid ( HF + NH 4F: BHF) are mixed is discharged. Techniques for recovering acids (hydrofluoric acid) and alkalis (ammonia water: NH 4 OH) from this waste liquid have been studied conventionally. This recovery also includes the recovery of fluorine (F) and ammonia gas (NH 3 ).
 このようなフッ素とアンモニウム(NH )を含有する廃液(以下、被処理液と称す場合がある)からフッ酸(またはフッ素)を回収する方法としては、従来から水酸化カルシウム(Ca(OH))を用いた凝集沈殿法が知られている。しかしながら、凝集沈殿法は、未反応の水酸化カルシウムや沈殿によって分離されなかったフッ素化合物を含む、さらなる処理を必要とするスラッジ(汚泥)が大量に生成されるという課題がある。 As a method for recovering hydrofluoric acid (or fluorine) from such a waste liquid containing fluorine and ammonium (NH 4+ ) (hereinafter, may be referred to as a liquid to be treated), calcium hydroxide (Ca (OH)) has been conventionally used. ) A coagulation sedimentation method using 2 ) is known. However, the coagulation precipitation method has a problem that a large amount of sludge (sludge) requiring further treatment is generated, which contains unreacted calcium hydroxide and a fluorine compound not separated by precipitation.
 一方、上記被処理液からアンモニアガスを回収する方法としては、蒸気を用いたストリッピング法が知られている。しかしながら、ストリッピング法は、pHを調整するためにアルカリを添加する必要があるため、薬品コストが増大すると共に、排水のTDS(Total Dissolved Solid)値が大きくなるという課題がある。 On the other hand, as a method for recovering ammonia gas from the liquid to be treated, a stripping method using steam is known. However, the stripping method has a problem that the TDS (Total Dissolved Solid) value of wastewater increases as well as the cost of chemicals increases because it is necessary to add an alkali to adjust the pH.
 これらの課題を解決するため、例えば、特許文献1では、周知の電気透析を用いて上記被処理液からフッ酸とアンモニア水(またはアンモニアガス)を回収する方法を提案している。 In order to solve these problems, for example, Patent Document 1 proposes a method of recovering hydrofluoric acid and ammonia water (or ammonia gas) from the liquid to be treated by using well-known electrodialysis.
 特許文献1に記載された水処理システムでは、電気透析装置を用いて被処理液から酸液、アルカリ液及び脱塩液がそれぞれ生成される。しかしながら、廃液から酸及びアルカリの回収を主目的とする半導体デバイスの製造工程における水処理システムでは、脱塩液は必ずしも必要であるとは限らない。また、生成された脱塩液をさらに処理するための設備が必要になる可能性もある。したがって、そのような脱塩液を生成物として含む水処理システムでは、システム全体のコストの増大を招くおそれがある。 In the water treatment system described in Patent Document 1, an acid solution, an alkaline solution and a desalting solution are generated from the liquid to be treated by using an electrodialysis apparatus. However, the desalting solution is not always necessary in the water treatment system in the manufacturing process of the semiconductor device whose main purpose is to recover the acid and the alkali from the waste liquid. It may also require equipment to further process the desalted solution produced. Therefore, in a water treatment system containing such a desalting solution as a product, the cost of the entire system may increase.
特許第3519112号公報Japanese Patent No. 3519112
 本発明は上述したような背景技術が有する課題を解決するためになされたものであり、低コストで被処理液から酸及びアルカリを回収できる電気透析装置、水処理システム及び方法を提供することを目的とする。 The present invention has been made to solve the problems of the background techniques as described above, and to provide an electrodialysis apparatus, a water treatment system and a method capable of recovering an acid and an alkali from a liquid to be treated at low cost. The purpose.
 上記目的を達成するため本発明の電気透析装置は、酸及びアルカリを含有する被処理液の処理に用いる電気透析装置であって、
 陽極と陰極との間にバイポーラ膜とアニオン交換膜とが交互に配置され、
 前記陽極と前記バイポーラ膜で画定される陽極室と、
 前記陰極と前記バイポーラ膜で画定される陰極室と、
 前記陽極室と前記陰極室との間に前記アニオン交換膜を挟んで隣接して配置された、少なくとも1組の酸室及びアルカリ室と、
を備え、
 前記酸室は、前記アニオン交換膜と前記陽極室側に配置された前記バイポーラ膜とで画定され、水が供給されて電気透析によって酸液を生成し、
 前記アルカリ室は、前記アニオン交換膜と前記陰極室側に配置された前記バイポーラ膜とで画定され、前記被処理液が供給されて前記電気透析によってアルカリ液を生成する構成である。
In order to achieve the above object, the electrodialysis apparatus of the present invention is an electrodialysis apparatus used for treating a liquid to be treated containing an acid and an alkali.
Bipolar membranes and anion exchange membranes are alternately arranged between the anode and the cathode,
The anode, the anode chamber defined by the bipolar membrane, and
The cathode, the cathode chamber defined by the bipolar membrane, and the
At least one set of acid chamber and alkaline chamber arranged adjacent to each other with the anion exchange membrane interposed therebetween between the anode chamber and the cathode chamber.
Equipped with
The acid chamber is defined by the anion exchange membrane and the bipolar membrane arranged on the anode chamber side, and water is supplied to generate an acid solution by electrodialysis.
The alkaline chamber is defined by the anion exchange membrane and the bipolar membrane arranged on the cathode chamber side, and the liquid to be treated is supplied to generate an alkaline liquid by electrodialysis.
 本発明の水処理システムは、上記電気透析装置と、
 前記酸室へ供給する前記水を貯留する純水槽と、
 前記アルカリ室へ供給する前記被処理液を貯留する被処理液槽と、
 前記酸室から排出される、前記電気透析によって生成された前記酸液及び前記酸液の生成に関与せずに残った前記水を含む酸混合液を前記純水槽へ戻して循環させる酸循環路と、
 前記アルカリ室から排出される、前記電気透析によって生成された前記アルカリ液及び前記アルカリ液の生成に関与せずに残った前記被処理液を含むアルカリ混合液を前記被処理液槽へ戻して循環させるアルカリ循環路と、
 前記電気透析時に、前記電気透析装置に流れる電流値を測定する電流測定装置と、
 前記純水槽及び前記被処理液槽、並びに前記酸循環路及び前記アルカリ循環路の動作を制御すると共に、前記電流測定装置で測定された電流値を受信する制御装置と、
を有し、
 前記制御装置は、前記電気透析の実行時に、前記酸循環路を用いて前記酸混合液を循環させ、前記アルカリ循環路を用いて前記アルカリ混合液を循環させ、前記電流値が所定の範囲内で所定の時間だけ継続すると、前記電気透析を終了して、前記純水槽内の前記酸混合液を前記酸液として排出させ、前記被処理液槽内の前記アルカリ混合液を前記アルカリ液として排出させる構成である。
The water treatment system of the present invention includes the above electrodialysis apparatus and
A pure water tank for storing the water supplied to the acid chamber, and
A liquid tank to be treated that stores the liquid to be treated to be supplied to the alkaline chamber, and a liquid tank to be treated.
An acid circulation path in which an acid mixture discharged from the acid chamber and containing the acid solution produced by the electrodialysis and the water remaining without being involved in the formation of the acid solution is returned to the pure water tank and circulated. When,
The alkaline mixture discharged from the alkaline chamber and containing the alkaline solution generated by the electrodialysis and the solution to be treated that remains without being involved in the formation of the alkaline solution is returned to the liquid tank to be treated and circulated. Alkaline circulation path to make
A current measuring device that measures the current value flowing through the electrodialysis device during the electrodialysis, and a current measuring device.
A control device that controls the operation of the pure water tank and the liquid tank to be treated, and the acid circulation path and the alkali circulation path, and receives the current value measured by the current measuring device.
Have,
The control device circulates the acid mixed solution using the acid circulation path and circulates the alkaline mixed solution using the alkaline circulation path at the time of executing the electrodialysis, and the current value is within a predetermined range. When the electrodialysis is continued for a predetermined time, the acid mixed solution in the pure water tank is discharged as the acid solution, and the alkaline mixed solution in the treated liquid tank is discharged as the alkaline solution. It is a configuration to make it.
 本発明の水処理方法は、酸及びアルカリを含有する被処理液の処理に用いる水処理方法であって、
 陽極と陰極との間にバイポーラ膜とアニオン交換膜とが交互に配置され、前記陽極と前記バイポーラ膜で画定される陽極室と、前記陰極と前記バイポーラ膜で画定される陰極室と、前記陽極室と前記陰極室との間に前記アニオン交換膜を挟んで隣接して配置される、少なくとも1組の酸室及びアルカリ室と、を備えた電気透析装置を用意し、
 前記アニオン交換膜と前記陽極室側に配置された前記バイポーラ膜とで画定される前記酸室に水を供給し、電気透析によって酸液を生成し、
 前記アニオン交換膜と前記陰極室側に配置された前記バイポーラ膜とで画定される前記アルカリ室に前記被処理液を供給し、前記電気透析によってアルカリ液を生成する方法である。
The water treatment method of the present invention is a water treatment method used for treating a liquid to be treated containing an acid and an alkali.
Bipolar films and anion exchange films are alternately arranged between the anode and the cathode, and the anode chamber defined by the anode and the bipolar film, the cathode chamber defined by the cathode and the bipolar film, and the anode. An electrodialysis apparatus including at least one set of acid chamber and alkaline chamber, which are arranged adjacent to each other with the anion exchange membrane sandwiched between the chamber and the cathode chamber, is prepared.
Water is supplied to the acid chamber defined by the anion exchange membrane and the bipolar membrane arranged on the anode chamber side, and an acid solution is generated by electrodialysis.
This is a method in which the liquid to be treated is supplied to the alkaline chamber defined by the anion exchange membrane and the bipolar membrane arranged on the cathode chamber side, and the alkaline liquid is generated by the electrodialysis.
図1は、第1の実施の形態の水処理システムの一構成例を示すブロック図である。FIG. 1 is a block diagram showing a configuration example of a water treatment system according to the first embodiment. 図2は、図1に示した電気透析装置の概略構成を示す模式図である。FIG. 2 is a schematic diagram showing a schematic configuration of the electrodialysis apparatus shown in FIG. 図3は、第2の実施の形態の水処理システムの一構成例を示すブロック図である。FIG. 3 is a block diagram showing a configuration example of the water treatment system according to the second embodiment. 図4は、第2の実施の形態の水処理システムが備える電流測定装置の接続例を示すブロック図である。FIG. 4 is a block diagram showing a connection example of a current measuring device included in the water treatment system of the second embodiment. 図5は、第3の実施の形態の水処理システムの一構成例を示すブロック図である。FIG. 5 is a block diagram showing a configuration example of the water treatment system according to the third embodiment. 図6は、第4の実施の形態の水処理システムの一構成例を示すブロック図である。FIG. 6 is a block diagram showing a configuration example of the water treatment system according to the fourth embodiment. 図7は、実施例の酸混合液及びアルカリ混合液におけるフッ素イオンとアンモニウムの存在比(モル比)の変化の様子を示すグラフである。FIG. 7 is a graph showing a change in the abundance ratio (molar ratio) of fluorine ions and ammonium in the acid mixture and the alkali mixture of the examples. 図8は、実施例の酸混合液及びアルカリ混合液の導電率の変化の様子を示すグラフである。FIG. 8 is a graph showing changes in the conductivity of the acid mixture and the alkali mixture of the examples. 図9は、実施例の電気透析装置に流れる電流値及び積算電流量の変化の様子を示すグラフである。FIG. 9 is a graph showing changes in the current value and the integrated current amount flowing through the electrodialysis apparatus of the embodiment.
 次に本発明について図面を用いて説明する。
(第1の実施の形態)
 第1の実施の形態では本発明の電気透析装置を含む水処理システムの一例を説明する。
Next, the present invention will be described with reference to the drawings.
(First Embodiment)
In the first embodiment, an example of a water treatment system including the electrodialysis apparatus of the present invention will be described.
 図1は第1の実施の形態の水処理システムの一構成例を示すブロック図であり、図2は図1に示した本発明の電気透析装置の概略構成を示す模式図である。 FIG. 1 is a block diagram showing a configuration example of a water treatment system according to the first embodiment, and FIG. 2 is a schematic diagram showing a schematic configuration of the electrodialysis apparatus of the present invention shown in FIG.
 図1で示すように、第1の実施の形態の水処理システムは、被処理液を貯留する被処理液槽11と、水(純水:HO)を貯留する純水槽12と、被処理液及び水が供給され、電気透析によって被処理液及び水から酸液とアルカリ液とを生成する電気透析装置13と、電気透析で必要な所定の直流電圧を電気透析装置13に供給する電源装置14と、電気透析装置13で生成された酸液を貯留する酸液槽15と、電気透析装置13で生成されたアルカリ液を貯留するアルカリ液槽16と、図1に示す水処理システム全体の動作を制御する制御装置17とを有する。 As shown in FIG. 1, the water treatment system of the first embodiment includes a liquid treatment tank 11 for storing a liquid to be treated, a pure water tank 12 for storing water (pure water: H2O ), and a water treatment tank 12. An electrodialysis device 13 to which a treatment liquid and water are supplied to generate an acid solution and an alkaline liquid from the liquid to be treated and water by electrodialysis, and a power source for supplying a predetermined DC voltage required for electrodialysis to the electrodialysis device 13. The device 14, the acid solution tank 15 for storing the acid solution generated by the electrodialysis device 13, the alkali solution tank 16 for storing the alkali solution generated by the electrodialysis device 13, and the entire water treatment system shown in FIG. It has a control device 17 for controlling the operation of the above.
 被処理液槽11、純水槽12、酸液槽15及びアルカリ液槽16は、不図示のポンプ及びバルブを備えた流路18を介して電気透析装置13とそれぞれ接続される。制御装置17は、電源装置14、並びに各流路18が備えるポンプ及びバルブと周知の有線通信手段または無線通信手段を介して接続され、電源装置14、並びに各流路18が備えるポンプ及びバルブの動作の制御が可能である。制御装置17は、電源装置14のオン/オフを制御すると共に、各流路18が備えるポンプ及びバルブを用いて、被処理液槽11から電気透析装置13に対する被処理液の供給及び停止、純水槽12から電気透析装置13に対する水の供給及び停止、電気透析装置13から酸液槽15に対する酸液の供給及び停止、並びに電気透析装置13からアルカリ液槽16に対するアルカリ液の供給及び停止を制御する。 The liquid tank 11, the pure water tank 12, the acid liquid tank 15, and the alkaline liquid tank 16 are each connected to the electrodialysis apparatus 13 via a flow path 18 provided with a pump and a valve (not shown). The control device 17 is connected to the power supply device 14 and the pumps and valves included in each flow path 18 via a well-known wired communication means or wireless communication means, and the power supply device 14 and the pumps and valves included in each flow path 18 are connected. Operation can be controlled. The control device 17 controls the on / off of the power supply device 14, and also uses the pumps and valves provided in each flow path 18 to supply and stop the liquid to be treated from the liquid tank 11 to the electrodialyzer 13 and purely. Controls the supply and stop of water from the water tank 12 to the electrodialysis device 13, the supply and stop of the acid solution from the electrodialysis device 13 to the acid solution tank 15, and the supply and stop of the alkaline solution from the electrodialysis device 13 to the alkaline solution tank 16. do.
 図1で示す水処理システムにおいて、制御装置17は、被処理液槽11及び純水槽12から所要量の被処理液及び純水を電気透析装置13に供給させ、電源装置14から電気透析装置13に直流電圧を印加させ、例えば予め設定された所定の時間だけ電気透析を実行する。そして、電気透析が終了すると、電気透析装置13で生成された酸液を酸液槽15に回収させ、電気透析装置13で生成されたアルカリ液をアルカリ液槽16に回収させる。制御装置17は、所定のプログラムにしたがって処理を実行するCPU(Central Processing Unit)、該CPUの処理で必要な情報やデータを一時的に保持する主記憶装置、プログラムや上記情報やデータが保存される副記憶装置(補助記憶装置)、外部と情報を送受信するための通信装置、タッチパネルやキーボード等の各種入力装置、並びにディスプレイ装置やプリンター等の各種出力装置を含む情報処理装置(コンピュータ)で実現できる。制御装置17は、本発明の水処理システムと常時接続されている必要はなく、例えば、電源装置14、並びに各流路18が備えるポンプ及びバルブ等の設定を変更するときのみ、該変更対象の装置と接続してもよい。 In the water treatment system shown in FIG. 1, the control device 17 supplies a required amount of the liquid to be treated and pure water from the liquid tank 11 and the pure water tank 12 to the electrodialysis device 13, and the power supply device 14 supplies the electrodialysis device 13. A DC voltage is applied to the device, and electrodialysis is performed, for example, for a predetermined time set in advance. Then, when the electrodialysis is completed, the acid solution produced by the electrodialysis apparatus 13 is collected in the acid solution tank 15, and the alkaline solution produced by the electrodialysis apparatus 13 is collected in the alkaline solution tank 16. The control device 17 stores a CPU (Central Processing Unit) that executes processing according to a predetermined program, a main storage device that temporarily holds information and data necessary for the processing of the CPU, a program, and the above information and data. Realized by an auxiliary storage device (auxiliary storage device), a communication device for transmitting and receiving information to and from the outside, various input devices such as touch panels and keyboards, and an information processing device (computer) including various output devices such as display devices and printers. can. The control device 17 does not need to be constantly connected to the water treatment system of the present invention, and is subject to the change only when, for example, the settings of the power supply device 14 and the pumps and valves included in each flow path 18 are changed. It may be connected to the device.
 被処理液槽11に貯留される被処理液は、例えば半導体デバイスの製造工程から排出される、フッ酸(HF)とバッファードフッ酸(BHF)とが混合された廃液である。その場合、電気透析装置13で生成される酸液はフッ酸であり、アルカリ液はアンモニア水である。 The liquid to be treated stored in the liquid tank 11 to be treated is, for example, a waste liquid in which hydrofluoric acid (HF) and buffered hydrofluoric acid (BHF) are mixed, which is discharged from the manufacturing process of a semiconductor device. In that case, the acid solution produced by the electrodialysis apparatus 13 is hydrofluoric acid, and the alkaline solution is ammonia water.
 図2で示すように、本発明の電気透析装置13は、陽極(+)131と陰極(-)132との間にイオン交換膜であるバイポーラ膜(BP膜)133とアニオン交換膜(A膜)134とが交互に配置されて複数の室が形成された構成である。電気透析装置13は、陽極131とBP膜133で画定される陽極室135と、陰極132とBP膜133で画定される陰極室136と、陽極室135と陰極室136との間に配置される、少なくとも1組の酸室137及びアルカリ室138を備える。図2は、陽極室135と陰極室136との間に3組の酸室137及びアルカリ室138が配置された構成例を示している。 As shown in FIG. 2, the electrodialysis apparatus 13 of the present invention has a bipolar membrane (BP membrane) 133 and an anion exchange membrane (A membrane) which are ion exchange membranes between the anode (+) 131 and the cathode (−) 132. ) 134 is alternately arranged to form a plurality of chambers. The electrodialysis apparatus 13 is arranged between the anode chamber 135 defined by the anode 131 and the BP membrane 133, the cathode chamber 136 defined by the cathode 132 and the BP membrane 133, and the anode chamber 135 and the cathode chamber 136. , At least one set of acid chambers 137 and alkali chambers 138. FIG. 2 shows a configuration example in which three sets of acid chambers 137 and alkaline chambers 138 are arranged between the anode chamber 135 and the cathode chamber 136.
 陽極131及び陰極132には、例えば、ニッケル(Ni)電極やチタン(Ti)製白金(Pt)メッキ電極等が用いられる。陽極室135及び陰極室136は、例えば水酸化ナトリウム(NaOH)溶液や硫化ナトリウム(NaSO)溶液等から成る電極液でそれぞれ満たされている。1組の酸室137とアルカリ室138とは、A膜134を挟んで隣接しており、陽極131側に酸室137が配置され、陰極132側にアルカリ室138が配置される。酸室137は、A膜134と陽極131側に配置されたBP膜133とで画定され、純水槽12から水(純水:HO)が供給される。アルカリ室138は、A膜134と陰極132側に配置されたBP膜133とで画定され、被処理液槽11から被処理液が供給される。 For the anode 131 and the cathode 132, for example, a nickel (Ni) electrode, a titanium (Ti) platinum (Pt) plated electrode, or the like is used. The anode chamber 135 and the cathode chamber 136 are each filled with an electrode solution composed of, for example, a sodium hydroxide (NaOH) solution or a sodium sulfide (Na 2 SO 4 ) solution. A set of the acid chamber 137 and the alkali chamber 138 are adjacent to each other with the A film 134 interposed therebetween, and the acid chamber 137 is arranged on the anode 131 side and the alkali chamber 138 is arranged on the cathode 132 side. The acid chamber 137 is defined by the A film 134 and the BP film 133 arranged on the anode 131 side, and water (pure water: H2O ) is supplied from the pure water tank 12. The alkaline chamber 138 is defined by the A film 134 and the BP film 133 arranged on the cathode 132 side, and the liquid to be treated is supplied from the liquid tank 11 to be treated.
 A膜134は、陰イオンを通過させ、陽イオンの通過を阻止するイオン交換膜である。BP膜133は、カチオン交換膜とA膜とを張り合わせた複合膜である。カチオン交換膜は、陽イオンを通過させ、陰イオンの通過を阻止するイオン交換膜である。 The A film 134 is an ion exchange membrane that allows anions to pass through and blocks the passage of cations. The BP film 133 is a composite film in which a cation exchange membrane and an A film are laminated. The cation exchange membrane is an ion exchange membrane that allows cations to pass through and blocks the passage of anions.
 BP膜133は、カチオン交換膜側に正、A膜側に負の電位差(順方向電圧)が印加されると電流が流れ、順方向電圧とは逆の方向の電位差(逆方向電圧)が印加されるとわずかな電流しか流れない整流効果を有する。但し、BP膜133は、逆方向電圧が所定の臨界値を超えて大きくなると、膜内で水(HO)の電離が起こり、水素イオンと水酸化イオンとが生成されて大きな電流が流れるようになる。複数のBP膜133は、それぞれに逆方向電圧が印加されるように陽極131と陰極132との間に配置される。 In the BP film 133, a current flows when a positive potential difference (forward voltage) is applied to the cation exchange film side and a negative potential difference (forward voltage) is applied to the A film side, and a potential difference (reverse voltage) in the direction opposite to the forward voltage is applied. When it is done, it has a rectifying effect in which only a small amount of current flows. However, in the BP film 133, when the reverse voltage exceeds a predetermined critical value, water ( H2O ) is ionized in the film, hydrogen ions and hydroxide ions are generated, and a large current flows. It will be like. The plurality of BP films 133 are arranged between the anode 131 and the cathode 132 so that a reverse voltage is applied to each of them.
 図2に示す本実施形態の電気透析装置13では、陽極131側が正となり、陰極132側が負となるように、陽極131と陰極132との間に電源装置14から所定の直流電圧が印加されることで電気透析が開始される。 In the electrodialysis apparatus 13 of the present embodiment shown in FIG. 2, a predetermined DC voltage is applied from the power supply device 14 between the anode 131 and the cathode 132 so that the anode 131 side is positive and the cathode 132 side is negative. Then electrodialysis is started.
 電気透析が開始されると、各BP膜133における膜内の水が水素イオン(H)と水酸化イオン(OH)とに電離し、水素イオンが酸室137(または陰極室136)へ移動し、水酸化イオンがアルカリ室138(または陽極室135)へ移動する。アルカリ室138では、被処理液(HF、NHF)が水素イオン(H)とフッ素イオン(F)とアンモニウム(NH )とに電離しており、陰イオンであるフッ素イオンがA膜134を通過して陽極131側で隣接する酸室137へ移動する。 When electrodialysis is started, the water in the membrane of each BP membrane 133 is ionized into hydrogen ions (H + ) and hydroxide ions (OH ), and the hydrogen ions move to the acid chamber 137 (or cathode chamber 136). It moves and the hydroxide ion moves to the alkali chamber 138 (or the anode chamber 135). In the alkali chamber 138, the liquid to be treated (HF, NH 4 F) is ionized into hydrogen ions (H + ), fluorine ions (F ), and ammonium (NH 4 + ), and fluorine ions, which are anions, are generated. It passes through the A film 134 and moves to the adjacent acid chamber 137 on the anode 131 side.
 その結果、酸室137では、BP膜133で電離された水素イオンとアルカリ室138から移動したフッ素イオンとが結合してフッ酸(HF)が生成され、室外へ排出されて酸液槽15で回収される。一方、アルカリ室138では、アンモニウムと陰極132側のBP膜133で電離された水酸化イオンとが結合してアンモニア水(NHOH)が生成され、室外へ排出されてアルカリ液槽16で回収される。 As a result, in the acid chamber 137, hydrogen ions ionized in the BP film 133 and fluorine ions transferred from the alkali chamber 138 are combined to generate hydrofluoric acid (HF), which is discharged to the outside and discharged in the acid solution tank 15. Will be recovered. On the other hand, in the alkaline chamber 138, ammonium and the hydroxide ion ionized by the BP film 133 on the cathode 132 side are combined to generate ammonia water (NH 4 OH), which is discharged to the outside and recovered in the alkaline liquid tank 16. Will be done.
 なお、図2で示すように、電気透析の実施中、陽極室135にはBP膜133で電離された水酸化イオンが移動し、陰極室136にはBP膜133で電離された水素イオンが移動する。そのため、陽極室135と陰極室136とで同じ電極液を用いる場合は、例えば、陽極室135と陰極室136との間で電極液を循環させることで、それぞれの水素イオンと水酸化イオンとを平衡させればよい。 As shown in FIG. 2, during the electrodialysis, the hydroxide ion ionized by the BP membrane 133 moves to the anode chamber 135, and the hydrogen ion ionized by the BP membrane 133 moves to the cathode chamber 136. do. Therefore, when the same electrode solution is used in the anode chamber 135 and the cathode chamber 136, for example, the electrode solution is circulated between the anode chamber 135 and the cathode chamber 136 to obtain hydrogen ions and hydroxide ions, respectively. It should be balanced.
 第1の実施の形態の水処理システムによれば、陽極131と陰極132との間にバイポーラ膜(BP膜)133とアニオン交換膜(A膜)134とが交互に配置されて、酸室137とアルカリ室138とが形成された電気透析装置13を用いて電気透析を行うことで、被処理液及び純水から酸液(フッ酸)とアルカリ液(アンモニア水)とを生成できる。 According to the water treatment system of the first embodiment, the bipolar film (BP film) 133 and the anion exchange film (A film) 134 are alternately arranged between the anode 131 and the cathode 132, and the acid chamber 137 is provided. By performing electrodialysis using the electrodialysis apparatus 13 in which the alkali chamber 138 is formed, an acid solution (fluoric acid) and an alkaline solution (ammonia water) can be generated from the liquid to be treated and pure water.
 したがって、特許文献1に記載された水処理システムのように、コストの増大を招く可能性がある脱塩液を生成物として含むことなく、被処理液から酸及びアルカリを回収できる。よって、低コストで被処理液から酸及びアルカリを回収できる。
(第2の実施の形態)
 図3は、第2の実施の形態の水処理システムの一構成例を示すブロック図である。
Therefore, unlike the water treatment system described in Patent Document 1, the acid and alkali can be recovered from the liquid to be treated without containing the desalting liquid as a product, which may lead to an increase in cost. Therefore, the acid and alkali can be recovered from the liquid to be treated at low cost.
(Second embodiment)
FIG. 3 is a block diagram showing a configuration example of the water treatment system according to the second embodiment.
 図3で示すように、第2の実施の形態の水処理システムは、電気透析装置13の酸室137から排出された溶液を純水槽12へ戻して循環させる酸循環路21と、電気透析装置13のアルカリ室138から排出された溶液を被処理液槽11へ戻して循環させるアルカリ循環路22とを有する点で、第1の実施の形態の水処理システムと異なる構成である。 As shown in FIG. 3, the water treatment system of the second embodiment has an acid circulation path 21 for returning the solution discharged from the acid chamber 137 of the electrodialysis device 13 to the pure water tank 12 and circulating the solution, and the electrodialysis device. It has a configuration different from that of the water treatment system of the first embodiment in that it has an alkaline circulation path 22 for returning the solution discharged from the alkaline chamber 138 of 13 to the liquid tank 11 to be treated and circulating the solution.
 図1で示した第1の実施の形態の水処理システムでは、電気透析装置13の酸室137から、電気透析で生成されたフッ酸(HF)と、BP膜133で電離していない純水とから成る酸混合液が室外へ排出される可能性がある。同様に、電気透析装置13のアルカリ室138からは、電気透析で生成されたアンモニア水と、水酸化イオンと結合していないアンモニウム及び酸室137へ移動していない、または酸室137から戻ったフッ素イオンを含む被処理液とから成るアルカリ混合液が室外へ排出される可能性がある。すなわち、酸室137からは、電気透析で生成された酸液及び該酸液の生成に関与せずに残った水(純水)を含む酸混合液が排出され、アルカリ室138からは、電気透析で生成されたアルカリ液及び該アルカリ液の生成に関与せずに残った被処理液を含むアルカリ混合液が排出される可能性がある。 In the water treatment system of the first embodiment shown in FIG. 1, hydrofluoric acid (HF) generated by electrodialysis from the acid chamber 137 of the electrodialysis apparatus 13 and pure water not ionized by the BP membrane 133. There is a possibility that the acid mixture consisting of and will be discharged to the outside of the room. Similarly, the alkaline chamber 138 of the electrodialysis apparatus 13 did not move to the ammonium water generated by the electrodialysis and the ammonium and the acid chamber 137 which were not bound to the hydroxide ion, or returned from the acid chamber 137. An alkaline mixture consisting of a liquid to be treated containing fluorine ions may be discharged to the outside of the room. That is, an acid solution containing an acid solution generated by electrodialysis and water (pure water) remaining without being involved in the formation of the acid solution is discharged from the acid chamber 137, and electricity is discharged from the alkali chamber 138. There is a possibility that the alkaline liquid produced by dialysis and the alkaline mixed liquid containing the liquid to be treated that remains without being involved in the formation of the alkaline liquid will be discharged.
 そこで、第2の実施の形態の水処理システムでは、電気透析の実行時に、電気透析装置13の酸室137から排出される酸混合液を、酸循環路21を用いて純水槽12へ戻し、該純水槽12から酸室137に再び供給させる。このように電気透析の実行時に、酸循環路21を用いて酸混合液を循環させることで、酸混合液における酸液(フッ酸)が濃縮される。酸混合液は、酸液(フッ酸)の濃度が所定の値(または、所定の範囲)に到達したとき、純水槽12から排出させて(または抜き出して)酸液(フッ酸)として回収すればよい。純水槽12から回収した酸液は、図3で示すように酸液槽15に貯留すればよい。酸混合液が排出された純水槽12には、不図示の外部タンクから純水が新たに供給される。 Therefore, in the water treatment system of the second embodiment, the acid mixed solution discharged from the acid chamber 137 of the electrodialysis apparatus 13 is returned to the pure water tank 12 using the acid circulation passage 21 when the electrodialysis is performed. It is supplied again from the pure water tank 12 to the acid chamber 137. By circulating the acid mixed solution using the acid circulation path 21 during the execution of electrodialysis in this way, the acid solution (hydrofluoric acid) in the acid mixed solution is concentrated. When the concentration of the acid solution (hydrofluoric acid) reaches a predetermined value (or a predetermined range), the acid mixture is discharged (or extracted) from the pure water tank 12 and recovered as an acid solution (hydrofluoric acid). Just do it. The acid solution recovered from the pure water tank 12 may be stored in the acid solution tank 15 as shown in FIG. Pure water is newly supplied to the pure water tank 12 from which the acid mixture is discharged from an external tank (not shown).
 同様に、第2の実施の形態の水処理システムでは、電気透析の実行時に、アルカリ室138から排出されるアルカリ混合液を、アルカリ循環路22を用いて被処理液槽11へ戻し、該被処理液槽11からアルカリ室138に再び供給させる。このように電気透析の実行時に、アルカリ循環路22を用いてアルカリ混合液を循環させることで、アルカリ混合液におけるアルカリ液(アンモニア水)の濃度が濃縮される。アルカリ混合液は、アルカリ液(アンモニア水)の濃度が所定の値(または、所定の範囲)に到達したとき、被処理液槽11から排出させて(または抜き出して)アルカリ液(アンモニア水)として回収すればよい。被処理液槽11から回収したアルカリ液は、図3で示すようにアルカリ液槽16で貯留すればよい。アルカリ混合液が排出された被処理液槽11には、不図示の外部タンクから被処理液が新たに供給される。 Similarly, in the water treatment system of the second embodiment, the alkaline mixture discharged from the alkaline chamber 138 is returned to the liquid tank 11 to be treated by using the alkaline circulation path 22 at the time of performing electrodialysis, and the subject is said to be treated. It is supplied again from the treatment liquid tank 11 to the alkaline chamber 138. By circulating the alkaline mixed solution using the alkaline circulation path 22 during the execution of electrodialysis in this way, the concentration of the alkaline solution (ammonia water) in the alkaline mixed solution is concentrated. When the concentration of the alkaline solution (ammonia water) reaches a predetermined value (or a predetermined range), the alkaline mixture is discharged (or extracted) from the liquid tank 11 to be treated as an alkaline solution (ammonia water). You can collect it. The alkaline liquid recovered from the liquid tank 11 to be treated may be stored in the alkaline liquid tank 16 as shown in FIG. The liquid to be treated is newly supplied to the liquid tank 11 to be treated from which the alkaline mixed liquid is discharged from an external tank (not shown).
 純水槽12内の酸混合液と被処理液槽11内のアルカリ混合液とは、同じタイミングで排出させてもよく、例えば酸混合液における酸液の濃度及びアルカリ混合液におけるアルカリ液の濃度に応じて、異なるタイミングで排出させてもよい。 The acid mixture in the pure water tank 12 and the alkaline mixture in the liquid tank 11 may be discharged at the same timing. For example, the concentration of the acid solution in the acid mixture and the concentration of the alkaline solution in the alkali mixture may be adjusted. Depending on the situation, it may be discharged at different timings.
 酸循環路21及びアルカリ循環路22には、制御装置17によって制御可能な不図示のポンプ及びバルブがそれぞれ配置されている。制御装置17は、これらのポンプ及びバルブを用いて、酸循環路21における酸混合液の循環及び停止、並びにアルカリ循環路22におけるアルカリ混合液の循環及び停止を制御できる。また、被処理液槽11及び純水槽12には、制御装置17によって制御可能な不図示のバルブが配置されている。制御装置17は、該バルブを用いて被処理液槽11からのアルカリ混合液の排出及び停止、並びに純水槽12からの酸混合液の排出及び停止を制御できる。 Pumps and valves (not shown) that can be controlled by the control device 17 are arranged in the acid circulation path 21 and the alkaline circulation path 22, respectively. The control device 17 can control the circulation and stop of the acid mixture in the acid circulation path 21 and the circulation and stop of the alkaline mixture in the alkaline circulation path 22 by using these pumps and valves. Further, a valve (not shown) that can be controlled by the control device 17 is arranged in the liquid tank 11 and the pure water tank 12 to be treated. The control device 17 can control the discharge and stop of the alkaline mixed liquid from the liquid tank 11 to be treated and the discharge and stop of the acid mixed liquid from the pure water tank 12 by using the valve.
 第2の実施の形態の水処理システムにおいて、制御装置17は、被処理液槽11及び純水槽12から所要量の被処理液及び水を電気透析装置13へ供給させて電気透析を開始すると、酸循環路21を用いて酸室137から排出される酸混合液を循環させ、アルカリ循環路22を用いてアルカリ室138から排出されるアルカリ混合液を循環させる。一方、電気透析が終了すると、制御装置17は、酸循環路21を用いた酸混合液の循環及びアルカリ循環路22を用いたアルカリ混合液の循環をそれぞれ停止し、純水槽12内の酸混合液を排出させて酸液槽15に貯留させ、被処理液槽11内のアルカリ混合液を排出させてアルカリ液槽16に貯留させる。その他の構成は、図1で示した第1の実施の形態の水処理システム同様であるため、その説明は省略する。 In the water treatment system of the second embodiment, when the control device 17 supplies the required amount of the liquid to be treated and water from the liquid tank 11 to be treated and the pure water tank 12 to the electric dialysis apparatus 13, the electric dialysis is started. The acid mixed solution discharged from the acid chamber 137 is circulated using the acid circulation path 21, and the alkaline mixed solution discharged from the alkaline chamber 138 is circulated using the alkaline circulation path 22. On the other hand, when the electrodialysis is completed, the control device 17 stops the circulation of the acid mixed solution using the acid circulation path 21 and the circulation of the alkaline mixed solution using the alkaline circulation path 22, respectively, and the acid mixing in the pure water tank 12 The liquid is discharged and stored in the acid liquid tank 15, and the alkaline mixed liquid in the liquid tank 11 to be treated is discharged and stored in the alkaline liquid tank 16. Since other configurations are the same as those of the water treatment system of the first embodiment shown in FIG. 1, the description thereof will be omitted.
 このような構成において、電気透析装置13を用いた電気透析は、第1の実施の形態で例示したように、予め設定された所定の時間だけ実行することも可能である。しかしながら、第2の実施の形態の水処理システムでは、電気透析装置13の陽極131と陰極132との間に流れる電流値の変化を観察することで電気透析を終了するタイミングを決定する。 In such a configuration, the electrodialysis using the electrodialysis apparatus 13 can be performed for a predetermined predetermined time as illustrated in the first embodiment. However, in the water treatment system of the second embodiment, the timing to end the electrodialysis is determined by observing the change in the current value flowing between the anode 131 and the cathode 132 of the electrodialysis apparatus 13.
 なお、後述する実施例でも示しているが、電気透析を終了するタイミングは、酸混合液及びアルカリ混合液の導電率の変化をそれぞれ観測することでも決定できる。しかしながら、一般的な導電率計を用いて導電率を測定するためには、該導電率計が備える、金属から成る電極部を酸混合液内及びアルカリ混合液内に挿入する必要がある。その場合、酸混合液に含まれるフッ酸等によって電極部が腐食するおそれがあるため、例えば、フッ素コーティング等の措置を行うことで電極部を腐食から保護する必要がある。 Although shown in Examples described later, the timing of ending electrodialysis can also be determined by observing changes in the conductivity of the acid mixture and the alkali mixture. However, in order to measure the conductivity using a general conductivity meter, it is necessary to insert the electrode portion made of metal provided in the conductivity meter into the acid mixed solution and the alkaline mixed solution. In that case, the electrode portion may be corroded by hydrofluoric acid or the like contained in the acid mixed solution. Therefore, for example, it is necessary to protect the electrode portion from corrosion by taking measures such as fluorine coating.
 一方、電気透析装置13の陽極131と陰極132との間に流れる電流値は、電流センサや電流計の一部(電極部)を酸混合液内やアルカリ混合液内に挿入することなく測定できるため、腐食から保護するための措置が不要である。また、電気透析では、一般的に電流センサや電流計を用いて電気透析装置13の陽極131と陰極132との間に流れる電流値を監視しているため、該電流値の変化から電気透析を終了するタイミングを決定すれば、導電率計等の新たな計器を設ける必要も無い。そのため、電気透析を終了するタイミングは、電気透析装置13の陽極131と陰極132との間に流れる電流値の変化を観察することで決定することが好ましい。 On the other hand, the current value flowing between the anode 131 and the cathode 132 of the electrodialysis apparatus 13 can be measured without inserting a part (electrode portion) of the current sensor or ammeter into the acid mixture or the alkali mixture. Therefore, no measures are required to protect it from corrosion. Further, in electrodialysis, since the current value flowing between the anode 131 and the cathode 132 of the electrodialysis apparatus 13 is generally monitored by using a current sensor or an ammeter, electrodialysis is performed based on the change in the current value. If the timing of termination is determined, there is no need to install a new instrument such as a conductivity meter. Therefore, it is preferable to determine the timing at which the electrodialysis is terminated by observing the change in the current value flowing between the anode 131 and the cathode 132 of the electrodialysis apparatus 13.
 図4で示すように、第2の実施の形態の水処理システムは、電源装置14及び電気透析装置13と直列に接続される電流測定装置30を備える。電流測定装置30は、電源装置14と電気透析装置13との間で流れる電流値を測定する周知の電流センサや電流計を備え、該電流センサや電流計で測定された電流値を、周知の有線通信手段または無線通信手段を用いて常時または所定の周期(例えば、数秒~数分程度)毎に制御装置17へ送信する。図4では、水処理システムが電流測定装置30を独立して備える構成例を示しているが、電流測定装置30は電源装置14内に備える構成であってもよく、制御装置17内に備える構成であってもよい。 As shown in FIG. 4, the water treatment system of the second embodiment includes a current measuring device 30 connected in series with the power supply device 14 and the electrodialysis device 13. The current measuring device 30 includes a well-known current sensor or current meter that measures the current value flowing between the power supply device 14 and the electrodialysis device 13, and the current value measured by the current sensor or the current meter is well-known. It is transmitted to the control device 17 at all times or at predetermined intervals (for example, about several seconds to several minutes) by using a wired communication means or a wireless communication means. FIG. 4 shows a configuration example in which the water treatment system independently includes the current measuring device 30, but the current measuring device 30 may be provided in the power supply device 14 or in the control device 17. It may be.
 後述する実施例でも示しているが、電気透析を開始すると、アルカリ混合液では、フッ素イオン濃度が低減し、BP膜で電離された水酸化イオン濃度が上昇することでpHがアルカリとなり、アルカリ混合液中のアンモニウムが導電率に寄与しない遊離アンモニアとなるため、導電率が徐々に下降して、ある程度の時間が経過すると低い値で安定する。一方、酸混合液では、導電率が低い純水が低減し、高い導電率に寄与する水素イオン及びフッ素イオンが増加するため、導電率が徐々に上昇して、ある程度の時間が経過すると比較的高い値で安定する。 As shown in Examples described later, when electrodialysis is started, the fluorine ion concentration in the alkaline mixed solution decreases, and the hydroxide ion concentration ionized by the BP film increases, so that the pH becomes alkaline and the alkaline mixture is used. Since ammonium in the liquid becomes free ammonia that does not contribute to conductivity, the conductivity gradually decreases and stabilizes at a low value after a certain period of time. On the other hand, in the acid mixed solution, pure water having low conductivity decreases and hydrogen ions and fluorine ions contributing to high conductivity increase, so that the conductivity gradually increases and relatively after a certain period of time elapses. Stable at high values.
 そのため、電気透析装置13に流れる電流値は、電気透析を開始すると、徐々に上昇した後、ある時点から下降に転じ、その後、比較的低い値で安定する。この電流値が比較的低い値で安定した状態、すなわち電流値が所定の範囲内で所定の時間だけ継続したときに電気透析を終了させる。電流値が所定の範囲内で所定の時間だけ継続しているか否かは、例えば、電流値の変化の傾きが所定の範囲内であるか否かで判定すればよい。これにより、電気透析によるフッ酸及びアンモニア水の濃縮を必要最小限の時間で終了できる。したがって、効率良く被処理液から酸液及びアルカリ液を回収できる。 Therefore, when electrodialysis is started, the current value flowing through the electrodialysis device 13 gradually rises, then starts to fall from a certain point, and then stabilizes at a relatively low value. Electrodialysis is terminated when the current value is relatively low and stable, that is, when the current value continues within a predetermined range for a predetermined time. Whether or not the current value continues within a predetermined range for a predetermined time may be determined, for example, by whether or not the slope of the change in the current value is within the predetermined range. As a result, the concentration of hydrofluoric acid and ammonia water by electrodialysis can be completed in the minimum required time. Therefore, the acid solution and the alkaline solution can be efficiently recovered from the liquid to be treated.
 本実施形態の制御装置17は、電流測定装置30から受信した電流値を保存しつつその変化を観測し、上述したように、該電流値の変化の傾きが所定の範囲内になったタイミングで電気透析を終了すればよい。 The control device 17 of the present embodiment observes the change while storing the current value received from the current measuring device 30, and as described above, at the timing when the slope of the change of the current value falls within a predetermined range. All you have to do is finish the electrodialysis.
 第2の実施の形態の水処理システムによれば、第1の実施の形態の水処理システムと同様の効果に加えて、効率良く被処理液から酸液及びアルカリ液を回収できる。
(第3の実施の形態)
 図5は、第3の実施の形態の水処理システムの一構成例を示すブロック図である。
According to the water treatment system of the second embodiment, in addition to the same effect as the water treatment system of the first embodiment, the acid solution and the alkaline solution can be efficiently recovered from the liquid to be treated.
(Third embodiment)
FIG. 5 is a block diagram showing a configuration example of the water treatment system according to the third embodiment.
 図5で示すように、第3の実施の形態の水処理システムは、逆浸透膜装置40で濃縮された濃縮液を、被処理液槽11を介して被処理液として電気透析装置13のアルカリ室138へ供給する点で、第1及び第2の実施の形態の水処理システムと異なる構成である。図5は、図1で示した第1の実施の形態の水処理システムに逆浸透膜装置40を備える構成例を示しているが、逆浸透膜装置40は、図3で示した第2の実施の形態の水処理システムが備える構成であってもよい。 As shown in FIG. 5, in the water treatment system of the third embodiment, the concentrated liquid concentrated by the reverse osmosis membrane device 40 is used as the liquid to be treated via the liquid tank 11 to be treated, and the alkali of the electrodialysis device 13 is used. It has a different configuration from the water treatment system of the first and second embodiments in that it supplies to the chamber 138. FIG. 5 shows a configuration example in which the water treatment system of the first embodiment shown in FIG. 1 is provided with the reverse osmosis membrane device 40, and the reverse osmosis membrane device 40 is the second embodiment shown in FIG. The configuration may be provided in the water treatment system of the embodiment.
 逆浸透膜装置40と被処理液槽11とを接続する流路41には、制御装置17により逆浸透膜装置40から被処理液槽11に対する濃縮液の供給及び停止の制御を可能にする不図示のポンプ及びバルブを備える。制御装置17と流路53及び54が備えるポンプ及びバルブとは、周知の有線通信手段または無線通信手段を介して接続される。本実施形態の制御装置17は、流路41が備えるポンプ及びバルブを制御することで被処理液槽11に対する濃縮液の供給及び停止を制御する。 In the flow path 41 connecting the reverse osmosis membrane device 40 and the liquid tank 11 to be treated, the control device 17 enables control of supply and stop of the concentrated liquid from the reverse osmosis membrane device 40 to the liquid tank 11 to be treated. The pump and valve shown are provided. The control device 17 and the pumps and valves included in the flow paths 53 and 54 are connected via a well-known wired communication means or wireless communication means. The control device 17 of the present embodiment controls the supply and stop of the concentrated liquid to the liquid tank 11 to be processed by controlling the pump and the valve included in the flow path 41.
 逆浸透膜装置40は、周知の逆浸透(RO:Reverse Osmosis)膜を用いて、供給された溶液の溶質を除去した透過水(通常、純水)と、該溶質が濃縮された濃縮液との2つの溶液を生成する装置である。逆浸透膜装置40には、例えば、上記フッ酸(HF)とバッファードフッ酸(BHF)とが混合された廃液が供給される。その場合、逆浸透膜装置40からは、フッ酸(HF)とフッ化アンモニウム(NHF)とが濃縮された濃縮液が出力される。その他の構成は、図1で示した第1の実施の形態または図3で示した第2の実施の形態の水処理システム同様であるため、その説明は省略する。 The reverse osmosis membrane device 40 uses a well-known reverse osmosis (RO) membrane to remove solutes from the supplied solution of permeated water (usually pure water), and a concentrated solution in which the solutes are concentrated. It is a device that produces two solutions of. The reverse osmosis membrane device 40 is supplied with, for example, a waste liquid in which the above-mentioned hydrofluoric acid (HF) and buffered hydrofluoric acid (BHF) are mixed. In that case, the reverse osmosis membrane device 40 outputs a concentrated solution in which hydrofluoric acid (HF) and ammonium fluoride (NH 4F ) are concentrated. Since other configurations are the same as those of the water treatment system of the first embodiment shown in FIG. 1 or the second embodiment shown in FIG. 3, the description thereof will be omitted.
 第3の実施の形態の水処理システムによれば、逆浸透膜装置40で濃縮された濃縮液を被処理液として電気透析装置13へ供給することで、電気透析装置13へ供給する被処理液を減容化できる。そのため、第1の実施の形態または第2の実施の形態と同様の効果に加えて、電気透析装置13を小型化することが可能になる。したがって、水処理システム全体のさらなるコストダウンが期待できる。なお、濃縮後の被処理液に含まれるフッ素イオンの濃度及びアンモニウムの濃度は、より大きい値である程、電気透析装置13の小型化に寄与するために好ましい。例えば、被処理液に含まれるフッ素イオン及びアンモニウムの濃度は、それぞれ1000mg/L以上であることが好ましく、5000mg/L以上であることがより好ましい。
(第4の実施の形態)
 図6は、第4の実施の形態の水処理システムの一構成例を示すブロック図である。
According to the water treatment system of the third embodiment, the concentrated liquid concentrated by the reverse osmosis membrane device 40 is supplied to the electrodialysis device 13 as the liquid to be treated, so that the liquid to be treated is supplied to the electrodialysis device 13. Can be reduced in volume. Therefore, in addition to the same effects as those of the first embodiment or the second embodiment, the electrodialysis apparatus 13 can be miniaturized. Therefore, further cost reduction of the entire water treatment system can be expected. The larger the concentration of fluorine ions and the concentration of ammonium contained in the liquid to be treated after concentration, the more preferable it is because it contributes to the miniaturization of the electrodialysis apparatus 13. For example, the concentrations of fluorine ions and ammonium contained in the liquid to be treated are preferably 1000 mg / L or more, and more preferably 5000 mg / L or more.
(Fourth Embodiment)
FIG. 6 is a block diagram showing a configuration example of the water treatment system according to the fourth embodiment.
 図6で示すように、第4の実施の形態の水処理システムは、酸液槽15に貯留された酸液(フッ酸)からフッ素を回収するフッ素回収装置51と、アルカリ液槽16に貯留されたアルカリ液(アンモニア水)からアンモニアガスを回収するアンモニア回収装置52とをさらに有する点で、第1~第3の実施の形態の水処理システムと異なる構成である。 As shown in FIG. 6, in the water treatment system of the fourth embodiment, the fluorine recovery device 51 for recovering fluorine from the acid solution (fluoric acid) stored in the acid solution tank 15 and the alkaline solution tank 16 store the water. It has a configuration different from that of the water treatment system of the first to third embodiments in that it further includes an ammonia recovery device 52 that recovers ammonia gas from the alkaline liquid (ammonia water).
 フッ素回収装置51は、例えば、酸液槽15から得られたフッ酸をカルシウム化合物(例えば、水酸化カルシウム)と反応させ、固体のフッ化カルシウム(CaF)としてフッ素を回収する構成とすればよい。また、アンモニア回収装置52は、アルカリ液槽16から得られたアンモニア水を蒸留することでアンモニアガスを回収する構成とすればよい。 For example, the fluorine recovery device 51 may be configured to react fluorine obtained from the acid solution tank 15 with a calcium compound (for example, calcium hydroxide) to recover fluorine as solid calcium fluoride (CaF 2 ). good. Further, the ammonia recovery device 52 may be configured to recover the ammonia gas by distilling the ammonia water obtained from the alkaline liquid tank 16.
 図6では、フッ素回収装置51が酸液槽15に貯留された酸液(フッ酸)からフッ素を回収し、アンモニア回収装置52がアルカリ液槽16に貯留されたアルカリ液(アンモニア水)からアンモニアガスを回収する構成例を示している。フッ素回収装置51は、電気透析装置13の酸室137から排出される酸液からフッ素を回収してもよく、アンモニア回収装置52は、電気透析装置13のアルカリ室138から排出されるアルカリ液からアンモニアガスを回収してもよい。 In FIG. 6, the fluorine recovery device 51 recovers fluorine from the acid solution (fluoric acid) stored in the acid solution tank 15, and the ammonia recovery device 52 recovers ammonia from the alkaline solution (ammonia water) stored in the alkaline solution tank 16. A configuration example for recovering gas is shown. The fluorine recovery device 51 may recover fluorine from the acid solution discharged from the acid chamber 137 of the electrodialysis device 13, and the ammonia recovery device 52 may recover fluorine from the alkaline solution discharged from the alkali chamber 138 of the electrodialysis device 13. Ammonia gas may be recovered.
 また、図6では、図1で示した第1の実施の形態の水処理システムにフッ素回収装置51及びアンモニア回収装置52を備える構成例を示している。図6で示すフッ素回収装置51及びアンモニア回収装置52は、図3で示した第2の実施の形態の水処理システムが備える構成であってもよい。その場合、フッ素回収装置51は純水槽12から排出される酸混合液(酸液)からフッ素を回収してもよく、アンモニア回収装置52は被処理液槽11から排出されるアルカリ混合液(アンモニア水)からアンモニアガスを回収してもよい。さらに、図6で示すフッ素回収装置51及びアンモニア回収装置52は、図5で示した第3の実施の形態の水処理システムが備える構成であってもよい。 Further, FIG. 6 shows a configuration example in which the water treatment system of the first embodiment shown in FIG. 1 is provided with the fluorine recovery device 51 and the ammonia recovery device 52. The fluorine recovery device 51 and the ammonia recovery device 52 shown in FIG. 6 may have a configuration included in the water treatment system of the second embodiment shown in FIG. In that case, the fluorine recovery device 51 may recover fluorine from the acid mixture (acid solution) discharged from the pure water tank 12, and the ammonia recovery device 52 may recover the alkali mixture (ammonia) discharged from the liquid tank 11 to be treated. Ammonia gas may be recovered from water). Further, the fluorine recovery device 51 and the ammonia recovery device 52 shown in FIG. 6 may be configured to be provided in the water treatment system of the third embodiment shown in FIG.
 酸液槽15とフッ素回収装置51とを接続する流路53には、制御装置17によって酸液槽15からフッ素回収装置51に対する酸液の供給及び停止の制御を可能にする不図示のポンプ及びバルブを備える。同様に、アルカリ液槽16とアンモニア回収装置52とを接続する流路54には、制御装置17によってアルカリ液槽16からアンモニア回収装置52に対するアルカリ液の供給及び停止の制御を可能にする不図示のポンプ及びバルブを備える。制御装置17と流路53及び54が備えるポンプ及びバルブとは、周知の有線通信手段または無線通信手段を介して接続される。本実施形態の制御装置17は、例えば、流路53及び54が備えるポンプ及びバルブを制御することでフッ素回収装置51に対する酸液の供給及び停止、並びにアンモニア回収装置52に対するアルカリ液の供給及び停止を制御する。 In the flow path 53 connecting the acid liquid tank 15 and the fluorine recovery device 51, a pump (not shown) that enables control of supply and stop of the acid liquid from the acid liquid tank 15 to the fluorine recovery device 51 by the control device 17 Equipped with a valve. Similarly, in the flow path 54 connecting the alkaline liquid tank 16 and the ammonia recovery device 52, the control device 17 enables control of supply and stop of the alkaline liquid from the alkaline liquid tank 16 to the ammonia recovery device 52 (not shown). Equipped with pumps and valves. The control device 17 and the pumps and valves included in the flow paths 53 and 54 are connected via a well-known wired communication means or wireless communication means. The control device 17 of the present embodiment controls, for example, the pumps and valves included in the flow paths 53 and 54 to supply and stop the acid solution to the fluorine recovery device 51, and supply and stop the alkaline solution to the ammonia recovery device 52. To control.
 第4の実施の形態の水処理システムによれば、フッ素回収装置51及びアンモニア回収装置52を備えることで、酸液(フッ酸)及びアルカリ液(アンモニア水)だけでなく、フッ素及びアンモニアガスを回収できる。そのため、第1~第3の実施の形態と同様の効果に加えて、被処理液からフッ素及びアンモニアガスも併せて回収できる。 According to the water treatment system of the fourth embodiment, by providing the fluorine recovery device 51 and the ammonia recovery device 52, not only the acid solution (fluoric acid) and the alkaline solution (ammonia water) but also fluorine and ammonia gas can be obtained. Can be recovered. Therefore, in addition to the same effects as those of the first to third embodiments, fluorine and ammonia gas can also be recovered from the liquid to be treated.
 次に本発明の実施例について図面を用いて説明する。 Next, examples of the present invention will be described with reference to the drawings.
 本実施例では、図3で示した第2の実施の形態の水処理システムを用いて、以下の表1で示す条件で電気透析を実施した。 In this example, electrodialysis was performed under the conditions shown in Table 1 below using the water treatment system of the second embodiment shown in FIG.
Figure JPOXMLDOC01-appb-T000001

 表1で示すように、本実施例では、電極液として1molの水酸化ナトリウム(1N-NaOH)溶液を用い、電気透析装置13の酸室137に純水(HO)を供給して循環させ、アルカリ室138にフッ酸とバッファードフッ酸とを混合させたBHF廃液(バッファードフッ酸廃液)を供給して循環させた。また、これら純水及びBHF廃液は、それぞれ常温(20~25℃)とする。そして、電気透析の実行時における、酸混合液のフッ素イオンの濃度及びアルカリ混合液のアンモニウムの濃度、酸混合液及びアルカリ混合液の導電率、並びに電気透析装置13に流れる電流値及びその積算電流量をそれぞれ測定した。
Figure JPOXMLDOC01-appb-T000001

As shown in Table 1, in this embodiment, 1 mol of sodium hydroxide (1N-NaOH) solution is used as the electrode solution, and pure water ( H2O ) is supplied to the acid chamber 137 of the electrodialysis apparatus 13 to circulate. Then, a BHF waste liquid (buffered hydrofluoric acid waste liquid) in which hydrofluoric acid and buffered hydrofluoric acid were mixed was supplied to the alkaline chamber 138 and circulated. The pure water and the BHF waste liquid are kept at room temperature (20 to 25 ° C.), respectively. Then, at the time of performing electrodialysis, the concentration of fluorine ions in the acid mixture, the concentration of ammonium in the alkali mixture, the conductivity of the acid mixture and the alkali mixture, the current value flowing through the electrodialysis apparatus 13, and the integrated current thereof. The amounts were measured respectively.
 図7は、実施例の酸混合液及びアルカリ混合液におけるフッ素イオンとアンモニウムの存在比(モル比)の変化の様子を示すグラフであり、図8は、実施例の酸混合液及びアルカリ混合液の導電率の変化の様子を示すグラフである。図9は、実施例の電気透析装置に流れる電流値及び積算電流量の変化の様子を示すグラフである。図7~図9は、本実施例における実験結果の一例をそれぞれ示している。 FIG. 7 is a graph showing a change in the abundance ratio (molar ratio) of fluorine ions and ammonium in the acid mixture and the alkali mixture of the examples, and FIG. 8 is the acid mixture and the alkali mixture of the examples. It is a graph which shows the state of the change of the conductivity of. FIG. 9 is a graph showing changes in the current value and the integrated current amount flowing through the electrodialysis apparatus of the embodiment. 7 to 9 show an example of the experimental results in this example.
 イオン交換膜を介したイオンの移動は、基本的に上述した電気透析によって制御される。しかしながら、イオン交換膜を挟んで隣接する2つの室内の溶液に濃度差がある場合、該濃度差に起因する周知の拡散現象によって該イオン交換膜を通してイオンが徐々に移動する。すなわち、図2で示した酸室137に水(純水:HO)が供給され、アルカリ室138に被処理液(HF、NHF)が供給される構成では、濃度の高いアルカリ室138から濃度の低い酸室へフッ素イオン(F)及びアンモニウム(NH )が拡散することでそれぞれ移動する。拡散現象によるイオンの移動は、電気透析の実行時及び非実行時に関係なく発生する。図7は、電気透析を開始する前に拡散現象によってアルカリ室138から移動したフッ素イオン及びアンモニウムが酸混合液に含まれる例を示している。 The movement of ions through the ion exchange membrane is basically controlled by the above-mentioned electrodialysis. However, when there is a concentration difference between the solutions in two adjacent chambers sandwiching the ion exchange membrane, ions gradually move through the ion exchange membrane due to a well-known diffusion phenomenon caused by the concentration difference. That is, in the configuration in which water (pure water: H 2 O) is supplied to the acid chamber 137 shown in FIG. 2 and the liquid to be treated (HF, NH 4 F) is supplied to the alkali chamber 138, the alkaline chamber has a high concentration. Fluorine ions (F ) and ammonium (NH 4+ ) migrate from 138 to a low-concentration acid chamber by diffusion, respectively. The movement of ions due to the diffusion phenomenon occurs regardless of whether electrodialysis is performed or not. FIG. 7 shows an example in which the acid mixture contains fluorine ions and ammonium transferred from the alkaline chamber 138 due to the diffusion phenomenon before starting electrodialysis.
 図7で示すように、電気透析を開始すると、上述したように、フッ素イオン(F)がアルカリ混合液から酸混合液に移動することで、酸混合液におけるフッ素イオンの割合が時間の経過と共に増加する。そして、ある程度の時間が経過してアルカリ混合液から移動するフッ素イオン(F)が少なくなると、酸混合液におけるフッ素イオンの増加が停止する。また、電気透析ではアンモニウム(NH )が移動しないため、フッ素イオン(F)がアルカリ混合液から酸混合液に移動することで、アルカリ混合液におけるアンモニウムの割合が増大する。図7では、酸混合液におけるアンモニウムの割合が、一旦、低減した後、時間の経過と共に徐々に増加しているが、これは上記拡散現象によって酸混合液におけるアンモニウムの割合が増加していることを示している。 As shown in FIG. 7, when electrodialysis is started, as described above, fluorine ions (F ) move from the alkaline mixed solution to the acid mixed solution, so that the ratio of fluorine ions in the acid mixed solution changes over time. Increases with. Then, when the amount of fluorine ions (F ) transferred from the alkaline mixed solution decreases after a certain period of time, the increase of fluorine ions in the acid mixed solution stops. In addition, since ammonium (NH 4+ ) does not move in electrodialysis, fluorine ions (F ) move from the alkaline mixed solution to the acid mixed solution, so that the proportion of ammonium in the alkaline mixed solution increases. In FIG. 7, the proportion of ammonium in the acid mixture is once decreased and then gradually increased with the passage of time. This is because the proportion of ammonium in the acid mixture is increased due to the diffusion phenomenon. Is shown.
 上述したように、電気透析を開始すると、アルカリ混合液では、フッ素イオンが低減し、アンモニウムが増加するため、図8で示すように導電率が徐々に低下して、ある程度の時間が経過すると低い値で安定する。一方、酸混合液では、水素イオン及びフッ素イオンが増加するため、図8で示すように酸混合液の導電率が徐々に上昇して、ある程度の時間が経過すると比較的高い値で安定する。 As described above, when electrodialysis is started, in the alkaline mixture, fluorine ions decrease and ammonium increases, so that the conductivity gradually decreases as shown in FIG. 8, and it is low after a certain period of time. Stable with value. On the other hand, in the acid mixed solution, hydrogen ions and fluorine ions increase, so that the conductivity of the acid mixed solution gradually increases as shown in FIG. 8 and stabilizes at a relatively high value after a certain period of time.
 したがって、図9で示すように、電気透析装置13に流れる電流値は、電気透析を開始すると、徐々に上昇した後、ある時点から下降に転じ、その後、比較的低い値で安定する。図8及び図9で示すように、本実施例では、電気透析を開始してから40分ほど経過した時点で、アルカリ混合液及び酸混合液の導電率がそれぞれ安定し、電気透析装置13に流れる電流値も比較的低い値で安定している。 Therefore, as shown in FIG. 9, the current value flowing through the electrodialysis apparatus 13 gradually increases when electrodialysis is started, then starts to decrease from a certain point, and then stabilizes at a relatively low value. As shown in FIGS. 8 and 9, in this embodiment, the conductivitys of the alkaline mixed solution and the acid mixed solution become stable about 40 minutes after the start of electrodialysis, and the electrodialysis apparatus 13 is used. The current value that flows is also stable at a relatively low value.
 図9で示すように、電流値が比較的低い値で安定した後でも電気透析装置13に電流を流すと、積算電流量が上昇する。しかしながら、電流値が比較的低い値で安定した以降は、フッ酸とアンモニア水の濃縮に電気透析が寄与しないため、該電気透析を継続する必要は無い。さらに、図7で示したように、酸混合液では、時間の経過と共に拡散現象によってアンモニウムの割合が徐々に増加する。そのため、酸混合液におけるフッ素イオンの割合の増大が停止したら、その時点で電気透析を停止し、酸混合液及びアルカリ混合液を電気透析装置13からそれぞれ排出させることが望ましい。すなわち、電気透析は、電気透析装置13に流れる電流値が比較的低い値で安定した状態、例えば、該電流値の変化の傾きが所定の範囲内になったタイミングで終了することが望ましい。 As shown in FIG. 9, when a current is passed through the electrodialysis apparatus 13 even after the current value stabilizes at a relatively low value, the integrated current amount increases. However, after the current value stabilizes at a relatively low value, electrodialysis does not contribute to the concentration of hydrofluoric acid and ammonia water, so it is not necessary to continue the electrodialysis. Further, as shown in FIG. 7, in the acid mixture, the proportion of ammonium gradually increases due to the diffusion phenomenon with the passage of time. Therefore, when the increase in the ratio of fluorine ions in the acid mixture stops, it is desirable to stop the electrodialysis at that point and discharge the acid mixture and the alkali mixture from the electrodialysis apparatus 13, respectively. That is, it is desirable that the electrodialysis ends in a stable state where the current value flowing through the electrodialysis apparatus 13 is relatively low, for example, when the slope of the change in the current value falls within a predetermined range.
 本実施例により、発明者等は、電気透析装置13が1組の酸室137及びアルカリ室138のみ備える構成でも、被処理液と純水とから十分なフッ素イオン濃度の酸液及び十分なアンモニウム濃度のアルカリ液が得られることを確認した。 According to this embodiment, even if the electrodialysis apparatus 13 is provided with only one set of acid chambers 137 and alkaline chambers 138, the inventors can obtain an acid solution having a sufficient fluorine ion concentration and sufficient ammonium from the liquid to be treated and pure water. It was confirmed that an alkaline solution having a high concentration could be obtained.
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細には本願発明のスコープ内で当業者が理解し得る様々な変更が可能である。 Although the invention of the present application has been described above with reference to the embodiments and examples, the invention of the present application is not limited to the above-described embodiment. Various changes that can be understood by those skilled in the art are possible within the scope of the present invention in terms of the configuration and details of the present invention.

Claims (10)

  1.  酸及びアルカリを含有する被処理液の処理に用いる電気透析装置であって、
     陽極と陰極との間にバイポーラ膜とアニオン交換膜とが交互に配置され、
     前記陽極と前記バイポーラ膜で画定される陽極室と、
     前記陰極と前記バイポーラ膜で画定される陰極室と、
     前記陽極室と前記陰極室との間に前記アニオン交換膜を挟んで隣接して配置された、少なくとも1組の酸室及びアルカリ室と、
    を備え、
     前記酸室は、前記アニオン交換膜と前記陽極室側に配置された前記バイポーラ膜とで画定され、水が供給されて電気透析によって酸液を生成し、
     前記アルカリ室は、前記アニオン交換膜と前記陰極室側に配置された前記バイポーラ膜とで画定され、前記被処理液が供給されて前記電気透析によってアルカリ液を生成する、電気透析装置。
    An electrodialysis machine used for treating a liquid to be treated containing an acid and an alkali.
    Bipolar membranes and anion exchange membranes are alternately arranged between the anode and the cathode,
    The anode, the anode chamber defined by the bipolar membrane, and
    The cathode, the cathode chamber defined by the bipolar membrane, and the
    At least one set of acid chamber and alkaline chamber arranged adjacent to each other with the anion exchange membrane interposed therebetween between the anode chamber and the cathode chamber.
    Equipped with
    The acid chamber is defined by the anion exchange membrane and the bipolar membrane arranged on the anode chamber side, and water is supplied to generate an acid solution by electrodialysis.
    The alkaline chamber is defined by the anion exchange membrane and the bipolar membrane arranged on the cathode chamber side, and the liquid to be treated is supplied to generate an alkaline liquid by the electrodialysis.
  2.  請求項1に記載の電気透析装置と、
     前記酸室へ供給する前記水を貯留する純水槽と、
     前記アルカリ室へ供給する前記被処理液を貯留する被処理液槽と、
     前記酸室から排出される、前記電気透析によって生成された前記酸液及び前記酸液の生成に関与せずに残った前記水を含む酸混合液を前記純水槽へ戻して循環させる酸循環路と、
     前記アルカリ室から排出される、前記電気透析によって生成された前記アルカリ液及び前記アルカリ液の生成に関与せずに残った前記被処理液を含むアルカリ混合液を前記被処理液槽へ戻して循環させるアルカリ循環路と、
     前記電気透析時に、前記電気透析装置に流れる電流値を測定する電流測定装置と、
     前記純水槽及び前記被処理液槽、並びに前記酸循環路及び前記アルカリ循環路の動作を制御すると共に、前記電流測定装置で測定された電流値を受信する制御装置と、
    を有し、
     前記制御装置は、前記電気透析の実行時に、前記酸循環路を用いて前記酸混合液を循環させ、前記アルカリ循環路を用いて前記アルカリ混合液を循環させ、前記電流値が所定の範囲内で所定の時間だけ継続すると、前記電気透析を終了して、前記純水槽内の前記酸混合液を前記酸液として排出させ、前記被処理液槽内の前記アルカリ混合液を前記アルカリ液として排出させる、水処理システム。
    The electrodialysis apparatus according to claim 1 and
    A pure water tank for storing the water supplied to the acid chamber, and
    A liquid tank to be treated that stores the liquid to be treated to be supplied to the alkaline chamber, and a liquid tank to be treated.
    An acid circulation path in which an acid mixture discharged from the acid chamber and containing the acid solution produced by the electrodialysis and the water remaining without being involved in the formation of the acid solution is returned to the pure water tank and circulated. When,
    The alkaline mixture discharged from the alkaline chamber and containing the alkaline solution generated by the electrodialysis and the solution to be treated that remains without being involved in the formation of the alkaline solution is returned to the liquid tank to be treated and circulated. Alkaline circulation path to make
    A current measuring device that measures the current value flowing through the electrodialysis device during the electrodialysis, and a current measuring device.
    A control device that controls the operation of the pure water tank and the liquid tank to be treated, and the acid circulation path and the alkali circulation path, and receives the current value measured by the current measuring device.
    Have,
    The control device circulates the acid mixed solution using the acid circulation path and circulates the alkaline mixed solution using the alkaline circulation path at the time of executing the electrodialysis, and the current value is within a predetermined range. When the electrodialysis is continued for a predetermined time, the acid mixed solution in the pure water tank is discharged as the acid solution, and the alkaline mixed solution in the treated liquid tank is discharged as the alkaline solution. Let the water treatment system.
  3.  前記制御装置は、前記電流値の変化の傾きが所定の範囲内になったとき、前記電気透析を終了する、請求項2に記載の水処理システム。 The water treatment system according to claim 2, wherein the control device ends the electrodialysis when the slope of the change in the current value falls within a predetermined range.
  4.  逆浸透膜を用いて溶質が濃縮された濃縮液を前記アルカリ室へ前記被処理液として供給する逆浸透膜装置をさらに有する、請求項2または3に記載の水処理システム。 The water treatment system according to claim 2 or 3, further comprising a reverse osmosis membrane device that supplies a concentrated solution in which a solute is concentrated using a reverse osmosis membrane to the alkaline chamber as the liquid to be treated.
  5.  前記被処理液がフッ素とアンモニウムとを含有する、請求項2から4のいずれか1項に記載の水処理システム。 The water treatment system according to any one of claims 2 to 4, wherein the liquid to be treated contains fluorine and ammonium.
  6.  前記被処理液が半導体デバイスの製造工程で排出される廃液である、請求項5に記載の水処理システム。 The water treatment system according to claim 5, wherein the liquid to be treated is a waste liquid discharged in a manufacturing process of a semiconductor device.
  7.  前記電気透析装置で回収された前記酸液であるフッ酸とカルシウム化合物を反応させてフッ素を回収するフッ素回収装置と、
     前記電気透析装置で回収された前記アルカリ液であるアンモニア水を蒸留し、アンモニアガスを回収するアンモニア回収装置と、
    をさらに有する、請求項5または6に記載の水処理システム。
    A fluorine recovery device that recovers fluorine by reacting hydrofluoric acid, which is the acid solution recovered by the electrodialysis device, with a calcium compound.
    An ammonia recovery device that distills ammonia water, which is the alkaline solution recovered by the electrodialysis device, and recovers ammonia gas.
    The water treatment system according to claim 5 or 6, further comprising.
  8.  前記被処理液に含まれるフッ素イオンの濃度及び前記アンモニウムの濃度がそれぞれ1000mg/L以上である、請求項5から7のいずれか1項に記載の水処理システム。 The water treatment system according to any one of claims 5 to 7, wherein the concentration of fluorine ions and the concentration of ammonium contained in the liquid to be treated are 1000 mg / L or more, respectively.
  9.  前記被処理液に含まれる前記フッ素イオンの濃度及び前記アンモニウムの濃度がそれぞれ5000mg/L以上である、請求項8に記載の水処理システム。 The water treatment system according to claim 8, wherein the concentration of the fluorine ion and the concentration of the ammonium contained in the liquid to be treated are 5000 mg / L or more, respectively.
  10.  酸及びアルカリを含有する被処理液の処理に用いる水処理方法であって、
     陽極と陰極との間にバイポーラ膜とアニオン交換膜とが交互に配置され、前記陽極と前記バイポーラ膜で画定される陽極室と、前記陰極と前記バイポーラ膜で画定される陰極室と、前記陽極室と前記陰極室との間に前記アニオン交換膜を挟んで隣接して配置される、少なくとも1組の酸室及びアルカリ室と、を備えた電気透析装置を用意し、
     前記アニオン交換膜と前記陽極室側に配置された前記バイポーラ膜とで画定される前記酸室に水を供給し、電気透析によって酸液を生成し、
     前記アニオン交換膜と前記陰極室側に配置された前記バイポーラ膜とで画定される前記アルカリ室に前記被処理液を供給し、前記電気透析によってアルカリ液を生成する、水処理方法。
    A water treatment method used for treating a liquid to be treated containing an acid and an alkali.
    Bipolar films and anion exchange films are alternately arranged between the anode and the cathode, and the anode chamber defined by the anode and the bipolar film, the cathode chamber defined by the cathode and the bipolar film, and the anode. An electrodialysis apparatus including at least one set of acid chamber and alkaline chamber, which are arranged adjacent to each other with the anion exchange membrane sandwiched between the chamber and the cathode chamber, is prepared.
    Water is supplied to the acid chamber defined by the anion exchange membrane and the bipolar membrane arranged on the anode chamber side, and an acid solution is generated by electrodialysis.
    A water treatment method in which the liquid to be treated is supplied to the alkaline chamber defined by the anion exchange membrane and the bipolar membrane arranged on the cathode chamber side, and the alkaline liquid is generated by the electrodialysis.
PCT/JP2021/039051 2020-12-18 2021-10-22 Electrodialysis device, and system and method for treating water WO2022130782A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020210421A JP2022097062A (en) 2020-12-18 2020-12-18 Electrodialyzer, water treatment system and method
JP2020-210421 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022130782A1 true WO2022130782A1 (en) 2022-06-23

Family

ID=82059022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039051 WO2022130782A1 (en) 2020-12-18 2021-10-22 Electrodialysis device, and system and method for treating water

Country Status (3)

Country Link
JP (1) JP2022097062A (en)
TW (1) TW202225103A (en)
WO (1) WO2022130782A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824587A (en) * 1994-07-18 1996-01-30 Tokuyama Corp Electrodialysis
JP2007222779A (en) * 2006-02-23 2007-09-06 Astom:Kk Recovery process of very pure inorganic acid
JP2009241024A (en) * 2008-03-31 2009-10-22 Kurita Water Ind Ltd Electrodeionization apparatus for pharmaceutical purification and pharmaceutical purification method
JP2014161794A (en) * 2013-02-25 2014-09-08 Mitsubishi Heavy Ind Ltd Water treatment system and method for manufacturing valuable materials from seawater
JP2019072677A (en) * 2017-10-17 2019-05-16 国立大学法人秋田大学 Method and apparatus for producing carbonated water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824587A (en) * 1994-07-18 1996-01-30 Tokuyama Corp Electrodialysis
JP2007222779A (en) * 2006-02-23 2007-09-06 Astom:Kk Recovery process of very pure inorganic acid
JP2009241024A (en) * 2008-03-31 2009-10-22 Kurita Water Ind Ltd Electrodeionization apparatus for pharmaceutical purification and pharmaceutical purification method
JP2014161794A (en) * 2013-02-25 2014-09-08 Mitsubishi Heavy Ind Ltd Water treatment system and method for manufacturing valuable materials from seawater
JP2019072677A (en) * 2017-10-17 2019-05-16 国立大学法人秋田大学 Method and apparatus for producing carbonated water

Also Published As

Publication number Publication date
JP2022097062A (en) 2022-06-30
TW202225103A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
JP7250544B2 (en) Electrochemical liquid desiccant regeneration system
JP6191070B2 (en) Ammonia treatment system
AU2018208649A1 (en) Electrochemical desalination system with coupled electricity storage
JP5901665B2 (en) Dialysate preparation water production equipment
EA025677B1 (en) Low energy system and method of desalinating seawater
US10017400B2 (en) Process and apparatus for multivalent ion desalination
US20150329384A1 (en) Rechargeable electrochemical cells
TWI570273B (en) Processing apparatus and treatment liquid
JP4799260B2 (en) Equipment for extending the life of electroless nickel plating solution
WO2022130782A1 (en) Electrodialysis device, and system and method for treating water
JPH081168A (en) Treatment method for drainage containing monovalent neutral salt
US10696569B2 (en) Water desalination system
KR20220114538A (en) Control method of ultrapure water production equipment
Wu et al. Effects of multivalent ions on hydrogen production from the salinity gradient between desalination concentrated brine and river by reverse electrodialysis
JP2001259644A (en) Pure water producer and pure water production method using the same
EP3845686A1 (en) Apparatus for treating acidic treatment solution, and method for treating acidic treatment solution
JP4505965B2 (en) Pure water production method
JP4480903B2 (en) Method for producing dealkalized water glass solution
JP2007063617A (en) Apparatus for regenerating plating solution containing sulfate ion and method for removing sulfate ion
JP4016663B2 (en) Operation method of electrodeionization equipment
JP5303750B2 (en) Inorganic acid recovery method and recovery apparatus
JP2018199104A (en) Operational method of electric deionized water production apparatus and electric deionized water production apparatus
Priya et al. Removal of total dissolved solids with simultaneous recovery of acid and alkali using bipolar membrane electrodialysis–Application to RO reject of textile effluent
JPH11239792A (en) Production of pure water
JPH105551A (en) Method for concentrating aqueous nitric acid solution and its concentrating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906146

Country of ref document: EP

Kind code of ref document: A1