WO2022130728A1 - Carbon fiber composite, and method for manufacturing carbon fiber composite - Google Patents

Carbon fiber composite, and method for manufacturing carbon fiber composite Download PDF

Info

Publication number
WO2022130728A1
WO2022130728A1 PCT/JP2021/035704 JP2021035704W WO2022130728A1 WO 2022130728 A1 WO2022130728 A1 WO 2022130728A1 JP 2021035704 W JP2021035704 W JP 2021035704W WO 2022130728 A1 WO2022130728 A1 WO 2022130728A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
polyamide resin
carbon fiber
resin composition
fiber composite
Prior art date
Application number
PCT/JP2021/035704
Other languages
French (fr)
Japanese (ja)
Inventor
央尚 片岡
紀彦 加賀
雅俊 平田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2022130728A1 publication Critical patent/WO2022130728A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a carbon fiber composite and a method for producing the carbon fiber composite.
  • Patent Document 1 describes heat using a plant-derived polyamide resin such as PA11 (a condensed polymer of a monomer derived from castor oil), a polyolefin resin, and a compatibilizer at predetermined ratios. It is disclosed that the plastic resin composition is excellent in impact resistance and rigidity.
  • PA11 a condensed polymer of a monomer derived from castor oil
  • polyolefin resin a polyolefin resin
  • compatibilizer a compatibilizer at predetermined ratios. It is disclosed that the plastic resin composition is excellent in impact resistance and rigidity.
  • a so-called semi-aromatic polyamide resin that is, a polycondensate of a dicarboxylic acid containing at least an aromatic dicarboxylic acid and a non-aromatic diamine, or a non-aromatic dicarboxylic acid
  • a polycondensate of an acid and a diamine containing at least an aromatic diamine has been attracting attention.
  • this semi-aromatic polyamide resin tends to have a high glass transition temperature due to its molecular structure, and is therefore positioned as an important material expected to be developed in the fields of automobiles and aircraft.
  • the semi-aromatic polyamide resin may need to be heated to an extremely high temperature (for example, over 300 ° C.) in the process of processing, and at this time, the increase in viscosity is further promoted, and the gel is gelled during domain dispersion. It turned out that the problem of becoming a resin arises. Such gelation may make molding difficult or impossible.
  • the gist structure of the present invention that solves the above problems is as follows.
  • the carbon fiber composite of the present invention is a carbon fiber composite containing carbon fibers and a matrix portion made of a resin composition.
  • the resin composition has a sea-island structure consisting of a continuous phase of the polyamide resin (A) and a discontinuous phase of the polyolefin (B).
  • the polyamide resin (A) contains only the semi-aromatic polyamide resin (A1), and contains only the semi-aromatic polyamide resin (A1).
  • the polyolefin (B) contains an unmodified polyolefin (B1) and a modified polyolefin (B2).
  • the resin composition is characterized in that the viscosity measured at a temperature of 300 ° C. and a shear rate of 12.16s -1 is 900 Pa ⁇ s or more and 4000 Pa ⁇ s or less in accordance with JIS K 7199.
  • the method for producing a carbon fiber composite of the present invention is a method for producing a carbon fiber composite containing carbon fibers and a matrix portion composed of a resin composition.
  • a composite acquisition step of contacting the sheet with the carbon fibers to obtain a carbon fiber composite containing the carbon fibers and a matrix portion made of the resin composition is provided.
  • the polyamide resin (A) contains only a semi-aromatic polyamide resin (A1)
  • the polyolefin (B) contains an unmodified polyolefin (B1) and a modified polyolefin (B2).
  • the present invention it is possible to provide a carbon fiber composite having high impact resistance and excellent moldability while using a semi-aromatic polyamide resin. Further, according to the present invention, it is possible to provide a method for producing a carbon fiber composite having high impact resistance and excellent moldability while using a semi-aromatic polyamide resin.
  • the carbon fiber complex of one embodiment of the present invention (hereinafter, may be referred to as “complex of the present embodiment”) includes a carbon fiber and a matrix portion composed of a resin composition. And the complex of this embodiment is The resin composition has a sea-island structure consisting of a continuous phase of the polyamide resin (A) and a discontinuous phase of the polyolefin (B) (structural requirement).
  • the polyamide resin (A) contains only a semi-aromatic polyamide resin (A1), and the polyolefin (B) contains an unmodified polyolefin (B1) and a modified polyolefin (B2) (composition requirement), and
  • the viscosity of the resin composition measured at a temperature of 300 ° C. and a shear rate of 12.16s -1 (hereinafter, may be simply referred to as “300 ° C. viscosity”) in accordance with JIS K 7199 is 900 Pa ⁇ s or more. Each is characterized by being 4000 Pa ⁇ s or less (viscosity requirement).
  • the "semi-aromatic polyamide resin” contains at least a polycondensate of a dicarboxylic acid containing at least an aromatic dicarboxylic acid and a non-aromatic diamine, or at least a non-aromatic dicarboxylic acid and an aromatic diamine. It shall refer to a polycondensate with a diamine.
  • the composite of the present embodiment as described above, only the semi-aromatic polyamide resin (A1) is used as the polyamide resin (A) with respect to the resin composition of the matrix portion, and the continuous phase of the polyamide resin (A) and the continuous phase of the polyamide resin (A) are used.
  • a sea-island structure is formed by the discontinuous phase of the polyolefin (B).
  • the complex of the present embodiment can exhibit high impact resistance due to the characteristics of the semi-aromatic polyamide resin (A1) itself in the matrix portion and the predetermined sea-island structure. Whether or not the sea-island structure is formed can be confirmed by observing with a microscope such as an atomic force microscope.
  • the resin composition has a viscosity at 300 ° C. adjusted to a certain range (900 Pa ⁇ s or more and 4000 Pa ⁇ s or less) while achieving the above-mentioned structural requirements. Excellent. Even if the resin composition satisfies the above-mentioned structural requirements and composition requirements, if the viscosity at 300 ° C. exceeds 4000 Pa ⁇ s, holes and coarse resin lumps are generated during molding, which is high. Formability cannot be guaranteed. Further, even if the resin composition satisfies the above-mentioned structure and composition requirements, if the viscosity at 300 ° C.
  • the viscosity of the resin composition at 300 ° C. is preferably 3000 Pa ⁇ s or less, more preferably 2500 Pa ⁇ s or less, still more preferably 2000 Pa ⁇ s or less, and 1800 Pa ⁇ s or less. -It is more preferable that it is s or less.
  • the complex of the present embodiment is not particularly limited, but includes at least the following two forms.
  • Composite prepreg (2) A laminated body in which a plurality of fiber layers in which reinforcing fibers containing carbon fibers are arranged and a plurality of resin layers containing a polyamide resin (A) and a polyolefin (B) are laminated.
  • the composite prepreg of the above (1) is a sheet material obtained by impregnating a reinforcing fiber containing carbon fiber with a matrix resin containing a polyamide resin (A) and a polyolefin (B).
  • the reinforcing fiber is preferably a layer of an aggregate of fibers arranged so that the major axis directions of two or more fibers are oriented in a specific direction.
  • the complex of the present embodiment also includes the form of a laminated body in which a plurality of composite prepregs are laminated with the above (1) as a repeating unit.
  • the above (2) includes not only a form in which a fiber layer and a resin layer are laminated one by one, but also a form in which a plurality of fiber layers and a resin layer are laminated.
  • the fiber layer is preferably a layer of an aggregate of fibers arranged so that the major axis directions of two or more fibers are oriented in a specific direction.
  • the complex of the present embodiment also includes the form of a laminated body in which the above (1) and the above (2) are mixed.
  • the resin composition preferably has a discontinuous phase circle-equivalent diameter (domain diameter) of 0.3 ⁇ m or more, and preferably 3.0 ⁇ m or less.
  • the domain diameter is within the above range, high impact resistance can be exhibited more effectively.
  • the circle-equivalent diameter (domain diameter) of the discontinuous phase is 0.5 ⁇ m or more, 0.8 ⁇ m or more, 1.2 ⁇ m or more, and 2.8 ⁇ m or less and 2.7 ⁇ m or less.
  • the domain diameter can be obtained as an average value of circle-equivalent diameters (diameters of circles of the same area) for all discontinuous phases observed from an image region of 30 ⁇ m ⁇ 30 ⁇ m of the resin composition.
  • the means for achieving the above-mentioned structural requirements and viscosity requirements is not particularly limited, but for example, (1)
  • the types of the semi-aromatic polyamide resin (A1), the unmodified polyolefin (B1) and the modified polyolefin (B2) are appropriately selected.
  • the blending ratios of the semi-aromatic polyamide resin (A1), the unmodified polyolefin (B1) and the modified polyolefin (B2) are appropriately selected.
  • (3) Appropriately select the kneading conditions (addition timing of each raw material, kneading time, rotation speed of kneading device, screw shape, resin temperature at the time of kneading). Etc., and the above resin composition can be obtained based on these combined actions.
  • Polyamide resin (A) The above-mentioned resin composition contains a polyamide resin (A), and the polyamide resin (A) contains only a semi-aromatic polyamide resin (A1) as described above. This is because if a polyamide resin other than the semi-aromatic polyamide resin (A1), for example, an aliphatic polyamide resin is further used as the polyamide resin (A), the impact resistance may be deteriorated.
  • the semi-aromatic polyamide resin (A1) may be used alone or in combination of two or more.
  • the semi-aromatic polyamide resin (A1) includes a polycondensate of a dicarboxylic acid containing at least an aromatic dicarboxylic acid and a non-aromatic diamine, and a weight of a diamine containing at least a non-aromatic dicarboxylic acid and an aromatic diamine.
  • Examples include condensates.
  • polyamide 4T polyhexamethylene terephthalamide (polyamide 6T), polyhexamethylene isophthalamide (polyamide 6I), polyhexamethylenenaphthalamide (polyamide 6N), polynonamethylene terephthalamide (polyamide 6N).
  • polyamide 9T polynonamethylene isophthalamide
  • polyamide 9I polynonamethylene isophthalamide
  • polyamide 9N polynonamethylene naphthalamide
  • polyamide M8T poly (2-methyloctamethylene terephthalamide)
  • polyamide M8T poly (2-methyloctamethyleneisophthalamide
  • Polyamide M8I Poly (2-methyloctamethylenenaphthalamide) (Polyamide M8N), Polytrimethylhexamethylene terephthalamide (Polyamide TMHT), Polytrimethylhexamethyleneisophthalamide (Polyamide TMHI), Polytrimethylhexamethylenenaphthal Ramide (polyamide TMHN), polydecamethylene terephthalamide (polyamide 10T), polydecamethylene isophthalamide (polyamide 10I), polydecamethylene naphthalamide (polyamide 10N), polyundecamethylene terephthalamide (polyamide 11T), Polyundecamethylene isophthalamide (polyamide 11I), polyundecamethylene naphthalamide (polyamide 11N), polydodecamethylene terephthalamide (polyamide 12T), polydodecamethylene isophthalamide (polyamide 12I), polydodecamethylene naphthalamide (Polyamide 12N), polyamide MXD6 (PAMXD6) and the
  • aromatic dicarboxylic acid examples include aromatic dicarboxylic acids having 8 to 20 carbon atoms, and more specifically, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, and 2-methylterephthalic acid. , 5-Methylisophthalic acid, 5-sodiumsulfoisophthalic acid and the like. These aromatic dicarboxylic acids may be used alone or in combination of two or more.
  • aromatic dicarboxylic acid may be unsubstituted, and various substituents (for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl) may be used. It may be substituted with an alkyl group having 1 to 4 carbon atoms such as a group).
  • examples of the dicarboxylic acid (non-aromatic dicarboxylic acid) other than the aromatic dicarboxylic acid include a linear or branched aliphatic dicarboxylic acid having 3 to 20 carbon atoms and an alicyclic structure having 3 to 10 carbon atoms. Examples thereof include alicyclic dicarboxylic acids.
  • the dicarboxylic acids other than these aromatic dicarboxylic acids may be used alone or in combination of two or more.
  • linear or branched aliphatic dicarboxylic acid having 3 to 20 carbon atoms examples include malonic acid, dimethylmalonic acid, succinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethylglutaric acid, 2, 2-diethylsuccinic acid, 2,3-diethylglutaric acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, suberic acid, azelaic acid, sevacinic acid, Examples thereof include dodecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, octadecanedioic acid, eicosandioic acid, diglycolic acid and the like.
  • Examples of the alicyclic dicarboxylic acid having an alicyclic structure having 3 to 10 carbon atoms include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and 1,3-cyclopentanedicarboxylic acid. ..
  • the alicyclic dicarboxylic acid contains trans and cis geometric isomers.
  • the 1,4-cyclohexanedicarboxylic acid as the raw material monomer either a trans form or a cis form may be used, or a mixture containing the trans form and the cis form in various ratios may be used.
  • the alicyclic dicarboxylic acid described above may be unsubstituted and may have various substituents (eg, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-. It may be substituted with an alkyl group having 1 to 4 carbon atoms such as a butyl group).
  • aromatic diamine examples include metaxylylenediamine, orthoxylylenediamine, paraxylylenediamine and the like. These aromatic diamines may be used alone or in combination of two or more.
  • examples of diamines other than aromatic diamines include linear or branched aliphatic diamines and alicyclic diamines. Diamines other than these aromatic diamines may be used alone or in combination of two or more.
  • linear aliphatic diamine examples include ethylenediamine, propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine (nonanediamine), decamethylenediamine, and undecamethylene. Examples thereof include diamine, dodecamethylenediamine and tridecamethylenediamine.
  • Examples of the branched aliphatic diamine include 2-methylpentamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2-methyloctamethylenediamine, 2,4-dimethyloctamethylenediamine and the like.
  • Examples of the alicyclic diamine include 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, 1,3-cyclopentanediamine and the like.
  • the diamine other than the aromatic diamine (non-aromatic diamine) a diamine having 7 to 12 carbon atoms is preferable.
  • these diamines having 7 to 12 carbon atoms as a monomer, the stability of the obtained semi-aromatic polyamide resin (A1) at the time of melting and, by extension, the moldability can be further improved.
  • 1,9-nonanediamine and 1,10-decamethylenediamine are more preferable, and 1,9-nonanediamine is further preferable.
  • the semi-aromatic polyamide resin (A1) is preferably a polycondensate of a dicarboxylic acid containing at least an aromatic dicarboxylic acid and a non-aromatic diamine from the viewpoint of more effectively improving heat resistance and impact resistance. ..
  • the ratio of the aromatic dicarboxylic acid to the dicarboxylic acid is preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more.
  • the ratio of the diamine having 7 to 12 carbon atoms in the non-aromatic diamine is preferably 20 mol% or more, preferably 30 mol% or more, from the viewpoint of the balance between moldability and heat resistance. It is more preferably 40 mol% or more, and particularly preferably 45 mol% or more.
  • the semi-aromatic polyamide resin (A1) preferably has a melting point of 280 ° C. or lower.
  • Examples of the method for producing the semi-aromatic polyamide resin (A1) include the following various methods. (1) A method in which an aqueous solution of a dicarboxylic acid and a diamine or a suspension of water is heated and polymerized while maintaining a molten state (thermal melt polymerization method). (2) A method of increasing the degree of polymerization of a polyamide obtained by a hot melt polymerization method while maintaining a solid state at a temperature below its melting point (hot melt polymerization / solid phase polymerization method). (3) A method of heating an aqueous solution of a dicarboxylic acid and a diamine or a suspension of water to precipitate a prepolymer (prepolymer method).
  • a method of increasing the degree of polymerization by further melting the prepolymer precipitated by heating an aqueous solution of a dicarboxylic acid and a diamine or a suspension of water with an extruder such as a kneader prepolymer / extrusion polymerization method.
  • a method of polymerizing a dicarboxylic acid and a diamine or a mixture thereof while maintaining a solid state (solid phase polymerization method).
  • Method of polymerizing using a dicarboxylic acid halide component equivalent to a dicarboxylic acid and a diamine component (solution method)
  • the polymerization form may be a batch type or a continuous type.
  • the polymerization apparatus is not particularly limited, and examples thereof include known apparatus such as an autoclave type reactor, a tumbler type reactor, and an extruder type reactor such as a kneader.
  • the amount of added mol of dicarboxylic acid and the amount of added mol of diamine are preferably about the same in order to increase the molecular weight. Considering the amount of diamine escaping to the outside of the reaction system during the polymerization reaction in the mol ratio, the ratio of the amount of added mol of diamine to the total amount of added mol of dicarboxylic acid is 0.90 (diamine / dicarboxylic acid).
  • the above is preferable, 0.95 or more is more preferable, 0.98 or more is further preferable, 1.20 or less is preferable, and 1.10 or less is more preferable. It is preferably 1.05 or less, and more preferably 1.05 or less.
  • a known end-capping agent can be used for adjusting the molecular weight.
  • the terminal encapsulant include acid anhydrides such as monocarboxylic acid, monoamine and phthalic anhydride, monoisocyanate, monoacid halides, monoesters and monoalcohols, and examples thereof include monoalcohols and the like from the viewpoint of thermal stability. , Monocarboxylic acid and monoamine are preferred.
  • the terminal encapsulant may be used alone or in combination of two or more.
  • the resin composition contains a polyolefin (B), and the polyolefin (B) contains an unmodified polyolefin (B1) and a modified polyolefin (B2) as described above.
  • the modified polyolefin (B2) as the polyolefin (B)
  • the unmodified polyolefin (B1) in combination as the polyolefin (B) the viscosity can be optimized.
  • the unmodified polyolefin (B1) and the modified polyolefin (B2) may be used alone or in combination of two or more.
  • Examples of the unmodified polyolefin (B1) include ethylene homopolymers; ethylene-propylene copolymers, ethylene-1-butene copolymers, ethylene-1-hexene copolymers, and ethylene-1-octene copolymers.
  • Ethylene- ⁇ -olefin copolymer such as ethylene-4-methyl-1-pentene copolymer; propylene homopolymer; propylene- ⁇ -olefin copolymer such as propylene-1-butene copolymer; ⁇ -olefin Polymers of each other; Polymers of monomers other than ⁇ -olefins that can be copolymerized with ⁇ -olefins and ⁇ -olefins; styrene-ethylene / butylene-styrene copolymers, styrene-propylene / butylene-styrene Copolymer; etc.
  • Examples of the ⁇ -olefin include propylene, 1-butene, isobutylene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, 1-octadecene, 4 Examples thereof include ⁇ -olefins having 3 to 20 carbon atoms such as -methyl-1-pentene.
  • Examples of the monomer other than the ⁇ -olefin copolymerizable with the above ⁇ -olefin include vinyl acetate, maleic acid, vinyl alcohol, methacrylic acid, methyl methacrylate, ethyl methacrylate, methyl acrylate, and ethyl acrylate. And so on.
  • the unmodified polyolefin (B1) an ethylene homopolymer, an ethylene- ⁇ -olefin copolymer, a propylene homopolymer; and a propylene- ⁇ -olefin copolymer are more preferable.
  • the modified polyolefin (B2) is a modified version of an unmodified polyolefin, and more specific examples thereof include acid-modified polyolefin, epoxy-modified polyolefin, and glycidyl-modified polyolefin.
  • an acid-modified polyolefin is preferable.
  • the acid-modified polyolefin is an acid-modified polyolefin with an unsaturated carboxylic acid or an acid anhydride thereof.
  • unsaturated carboxylic acid or acid anhydride thereof include maleic acid, fumaric acid, itaconic acid, acrylic acid, methacrylic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, maleic anhydride, and itaconic anhydride. , Sis-4-cyclohexene-1,2-dicarboxylic acid anhydride and the like.
  • unsaturated carboxylic acid or its acid anhydride maleic anhydride or itaconic anhydride is preferable, and maleic anhydride is more preferable.
  • Derivatives such as acid amides and acid esters can also be used in place of unsaturated carboxylic acids or acid anhydrides thereof.
  • polystyrene resin polystyrene resin
  • polyolefin before modification of the modified polyolefin (B2) polyolefin before modification of the modified polyolefin (B2)
  • an ethylene homopolymer, an ethylene- ⁇ -olefin copolymer, a propylene homopolymer; and a propylene- ⁇ -olefin copolymer are more preferable.
  • the average acid value of the polyolefin (B) is preferably 0.1 mgKOH / g or more and 3.0 mgKOH / g or less.
  • the average acid value of the polyolefin (B) is 0.1 mgKOH / g or more, the viscosity is appropriately increased, and the domain diameter of the discontinuous phase is suppressed from being excessively coarsened to effectively improve the impact resistance. Can be made to.
  • the average acid value of the polyolefin (B) is 3.0 mgKOH / g or less, an excessive increase in viscosity is suppressed, good moldability is more reliably maintained, and the domain diameter of the discontinuous phase is appropriately adjusted.
  • the average acid value of the polyolefin (B) is more preferably 0.3 mgKOH / g or more, further preferably 0.5 mgKOH / g or more, and 2.0 mgKOH / g or less. It is more preferably present, and further preferably 1.6 mgKOH / g or less.
  • the average acid value of the polyolefin (B) can be calculated as follows.
  • the unmodified polyolefin (B1) (acid value is 0 mgKOH / g) is a part by mass
  • the first modified polyolefin (B2) having an acid value of x (mgKOH / g) is b by mass
  • the acid value is y
  • the second modified polyolefin (B3) of mgKOH / g) is used in c parts by mass
  • the average acid value (mgKOH / g) of the polyolefin (B) can be calculated as (xb + yc) / (a + b + c).
  • the mass ratio (B1 / B) of the unmodified polyolefin (B1) to the polyolefin (B) is preferably 0.75 or more and less than 1.00.
  • the mass ratio (B1 / B) is 0.75 or more, an excessive increase in viscosity is suppressed, good moldability is more reliably maintained especially in a high temperature environment, and the domain diameter of the discontinuous phase is increased. It can be kept moderate and the deterioration of impact resistance can be suppressed more effectively.
  • the mass ratio (B1 / B) is more preferably 0.95 or less from the viewpoint of suppressing excessive coarsening of the domain diameter of the discontinuous phase and, by extension, effectively improving the impact resistance. It is more preferably 0.92 or less.
  • the mass ratio (A / B) of the polyamide resin (A) to the polyolefin (B) is preferably 1.0 or more.
  • the mass ratio (A / B) is more preferably 1.0 or more, and further preferably 1.2 or more. , 1.5 or more is more preferable.
  • the mass ratio (A / B) of the polyamide resin (A) to the polyolefin (B) is preferably 4.0 or less.
  • the mass ratio (A / B) is 4.0 or less, the domain diameter of the discontinuous phase can be appropriately increased.
  • the mass ratio (A / B) is more preferably 3.0 or less, further preferably 2.5 or less, and even more preferably 2.0 or less.
  • the above resin compositions include various additives that are usually blended, such as flow improvers, compatibilizers, cross-linking additives, organic solvents, polymerization initiators, and polymerization inhibitors, as long as they do not impair the purpose.
  • additives such as flow improvers, compatibilizers, cross-linking additives, organic solvents, polymerization initiators, and polymerization inhibitors, as long as they do not impair the purpose.
  • Chain transfer agent, light stabilizer, crystal nucleating agent / mold release agent, lubricant, antioxidant, flame retardant, light resistant agent, weather resistant agent and the like can be contained in an appropriate amount depending on the purpose.
  • the method for preparing the resin composition is not particularly limited, and for example, the resin composition of the present embodiment can be obtained by blending and kneading the above-mentioned components according to a conventional method.
  • all the components may be blended and kneaded at one time, or each component may be blended and kneaded in multiple stages such as two steps or three steps.
  • a kneading machine such as a roll, an internal mixer, or a Banbury rotor can be used.
  • Carbon fiber The complex of this embodiment contains carbon fibers. As a result, high rigidity can be obtained while being lightweight.
  • Carbon fibers can include continuous fibers and / or discontinuous fibers.
  • the continuous fiber refers to a fiber having a length of 5 cm or more, and includes not only a single fiber but also a fiber sewn into a sheet shape.
  • the discontinuous fiber refers to a reinforcing fiber other than the continuous fiber.
  • the carbon fiber is preferably selected from the group consisting of continuous fiber and long fiber of 0.05 cm or more, and continuous fiber is more preferable. Further, the fiber length of the carbon fiber is more preferably 1 cm or more. The carbon fiber is most preferably a continuous fiber from the viewpoint of impact resistance. The shorter the length of the carbon fiber, the smaller the effect of improving the impact resistance, but on the other hand, there is an advantage that it can be applied to a wider range of molding methods.
  • the composite of the present embodiment may contain other fibers other than carbon fibers.
  • Such other fibers include, for example, glass fiber, glass milled fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone fiber, metal fiber. , Organic fiber and the like.
  • the method for producing the composite of the present embodiment is not particularly limited, but the composite of the present embodiment can be suitably produced by the method for producing a carbon fiber composite described later.
  • the method for producing a carbon fiber composite according to an embodiment of the present invention (hereinafter, may be referred to as "the production method for the present embodiment") is a carbon fiber containing carbon fibers and a matrix portion composed of a resin composition. It is a method for manufacturing a complex.
  • a composite acquisition step of contacting the sheet with the carbon fibers to obtain a carbon fiber composite containing the carbon fibers and a matrix portion made of the resin composition is provided.
  • the polyamide resin (A) contains only a semi-aromatic polyamide resin (A1), and the polyolefin (B) contains an unmodified polyolefin (B1) and a modified polyolefin (B2). According to the manufacturing method of the present embodiment, it is possible to manufacture a carbon fiber composite having high impact resistance and excellent moldability.
  • the manufacturing method of the present embodiment may appropriately include steps other than the above-mentioned steps (for example, a cross-linking step described later).
  • a sheet having a thickness of 10 ⁇ m or more and 500 ⁇ m or less is formed from the resin composition containing the polyamide resin (A) and the polyolefin (B).
  • the polyamide resin (A) contains only a semi-aromatic polyamide resin (A1)
  • the polyolefin (B) contains an unmodified polyolefin (B1) and a modified polyolefin (B2).
  • a sheet having a sea-island structure can be formed by the continuous phase of the polyamide resin (A) (semi-aromatic polyamide resin (A1)) and the discontinuous phase of the polyolefin (B).
  • the sheet forming step is not particularly limited, and it is preferable to form a predetermined sea-island structure by appropriately selecting the contents described above for the complex of the present embodiment.
  • the resin composition used in the sheet forming step includes components other than the semi-aromatic polyamide resin (A1) and the polyolefin (B), for example, a flow improver, a compatibilizer, a cross-linking additive, an organic solvent, and polymerization initiation.
  • a flow improver for example, a flow improver, a compatibilizer, a cross-linking additive, an organic solvent, and polymerization initiation.
  • Agents, polymerization inhibitors, chain transfer agents, light stabilizers, crystal nucleating agents / mold release agents, lubricants, antioxidants, flame retardants, light resistant agents, weather resistant agents and the like can be appropriately blended according to the purpose.
  • the resin composition used in the sheet forming step conforms to JIS K 7199 and has a viscosity (300 ° C. viscosity) measured at a temperature of 300 ° C. and a shear rate of 12.16s -1 at 900 Pa ⁇ s or more and 4000 Pa ⁇ s or less. It is preferable to have. The reason for this is as described above.
  • the sheet forming step is not particularly limited, and it is preferable to adjust the viscosity at 300 ° C. by appropriately selecting the contents described above for the complex of the present embodiment.
  • the thickness of the sheet formed in the sheet forming step is 10 ⁇ m or more and 500 ⁇ m or less. Since the above-mentioned resin composition is used as a raw material in the sheet forming step, it can be produced with a predetermined thinness (500 ⁇ m or less) with high moldability.
  • the above-mentioned resin composition can be melted and molded into a sheet by extrusion molding (melt extrusion molding).
  • melt extrusion molding for example, the above-mentioned resin composition is heated and melted and supplied to a die such as a T-die through a gear pump or a filter. Next, the melt supplied to the die is extruded into a sheet and appropriately cooled and solidified using a cooling roll or the like to obtain a sheet.
  • the sheet formed in the sheet forming step and the carbon fiber are brought into contact with each other to obtain a carbon fiber composite containing the carbon fiber and the matrix portion made of the resin composition.
  • the carbon fibers are as described above.
  • the form in which the sheet and the carbon fiber are brought into contact with each other is not particularly limited as long as the sheet and the carbon fiber are in direct contact with each other, and examples thereof include the following (a) to (e).
  • (A) A form in which a sheet and carbon fiber are directly or indirectly bonded to each other.
  • (B) A method in which carbon fibers are directly or indirectly sandwiched between a pair of sheets, or a form in which sheets are directly or indirectly sandwiched between a pair of carbon fibers.
  • C A form in which a plurality of sheets and carbon fibers are (alternately) laminated.
  • (D) A form in which the sheet is heated at a temperature equal to or higher than the melting point of the semi-aromatic polyamide resin (A1) contained in the sheet, and then the molten sheet is impregnated with carbon fibers.
  • (E) A form in which a sheet and carbon fibers are bonded (or placed in contact with each other) and then heated to a temperature equal to or higher than the melting point of the semi-aromatic polyamide resin (A1) to be impregnated with the carbon fibers.
  • a metal mold such as a male mold or a female mold may be used, or the above sheet and carbon fiber may be brought into contact with each other in the mold. Therefore, any of the above (a) to (e) may be performed in the mold. Further, in the above (a) to (e), when the sheet and the carbon fiber are bonded, sandwiched, or laminated, a known binder, a semi-aromatic polyamide resin (A1), or a polyolefin (A1) may be used, if necessary. A solution in which B) is dissolved in an organic solvent may be used as a binder.
  • the orientation direction of the carbon fibers with respect to the sheet is not particularly limited. Further, the number of sheets and the number of carbon fibers when the sheets and carbon fibers are brought into contact with each other are not particularly limited and can be appropriately selected.
  • the conditions for contacting the sheet with the carbon fiber are not particularly limited, and conditions such as the sheet temperature, atmosphere, and contact pressure can be appropriately set according to the contact mode.
  • the cross-linking step of cross-linking the polyolefin (B) is further provided between the start of the sheet forming step and the completion of the complex acquisition step.
  • the cross-linking step can be performed at any time from the start of the sheet forming step to the completion of the complex acquisition step.
  • the cross-linking in the above-mentioned cross-linking step is preferably one or more selected from the group consisting of electron beam cross-linking, chemical cross-linking, electromagnetic cross-linking, and thermal cross-linking.
  • Electron beam cross-linking can be performed by a known method.
  • the polyolefin (B) When the polyolefin (B) is irradiated with an electron beam, a part of the polymer chain constituting the polyolefin (B) is cleaved to generate radicals. Then, the radical is recombined with other sites of the polymer chain to form a crosslinked structure.
  • the electron beam used for such electron beam cross-linking is composed of electrons having a predetermined energy emitted from an electron gun or the like.
  • Electron guns that are electron sources include thermal electron guns, field emission electron guns, and shotkey electron guns. As long as electron beam cross-linking is possible, the type, strength, electron source, etc. of the electron beam do not matter.
  • the absorbed dose in the irradiation of the electron beam is preferably 20 to 600 kGy, more preferably 50 to 500 kGy. If the absorbed dose is 600 kGy or less, the polymer chain of the polyolefin (B) is cut without cutting the polymer chain of the semi-aromatic polyamide resin (A1), and if the absorbed dose is 20 kGy or more, the polyolefin is cut. It becomes easy to cut the polymer chain of (B). Further, by setting the absorbed dose of the electron beam within the above range, the cross-linking rate or the molecular weight can be adjusted within an appropriate range, and it is possible to easily suppress or prevent the shape change of the discontinuous phase.
  • the generated radicals may be inactivated, so it is preferable to perform the electron beam irradiation in an inert gas atmosphere such as nitrogen or argon.
  • the chemical cross-linking is not particularly limited and can be carried out by a known method.
  • the chemical cross-linking is preferably a method of carrying out a cross-linking reaction by light irradiation or heating in the presence of a chemical cross-linking agent, or a silane cross-linking method.
  • a silane cross-linking method cross-linking due to silanol bonds is formed between the molecular chains of the polyolefin (B) by contacting with water in the presence of a catalyst such as a coupling agent, a radical initiator and an organic tin compound. ..
  • chemical cross-linking is preferably carried out using a chemical cross-linking agent and a cross-linking aid, an activator or a catalyst compounded as necessary.
  • the chemical cross-linking agent include a phenol resin such as alkylphenol formaldehyde, and a silane coupling agent such as vinylalkoxysilane such as vinyltrimethoxysilane or vinyltriethoxysilane.
  • the cross-linking aid include sulfur, p-dinitrosobenzene, divinylbenzene, 1,3-diphenylguanidine, stannous chloride / anhydrous, stannous chloride / dihydrate, and second chloride. Examples include iron.
  • the electromagnetic wave cross-linking is not particularly limited and can be performed by a known method.
  • ionizing radiation such as ultraviolet rays, visible rays, ⁇ rays, ⁇ rays, ⁇ rays, proton rays, heavy ion rays, and neutron rays can be used.
  • ultraviolet rays are preferable from the viewpoint of deterioration of the sheet.
  • electromagnetic wave cross-linking it is preferable to cross-link the polyolefin (B) by irradiating the electromagnetic wave in the presence of an electromagnetic wave initiator.
  • the light source of the above ultraviolet rays is not particularly limited, and can be appropriately set in consideration of the wavelength to be irradiated (for example, in the range of 200 to 450 nm).
  • a light source such as a high-pressure mercury lamp, a low-pressure mercury lamp, a xenon lamp, a mercury xenon lamp, a metal halide lamp, or an ultraviolet laser light source can be mentioned.
  • light of a specific wavelength may be irradiated by using a wavelength filter, if necessary.
  • Thermal cross-linking is not particularly limited and can be performed by a known method. In thermal cross-linking, it is preferable to cross-link the polyolefin (B) by performing a heat treatment in the presence of a thermal cross-linking agent.
  • a thermal cross-linking agent include organic peroxides such as hydroperoxides, oxime compounds, and azo compounds such as triallyl cyanurate or triallyl isocyanurate.
  • cross-linking additive The above-mentioned chemical cross-linking agent, cross-linking aid, activator, catalyst, electromagnetic wave initiator, electromagnetic wave cross-linking agent, electromagnetic wave absorber and thermal cross-linking agent are collectively referred to as "cross-linking additive" in the present specification.
  • the form of performing the cross-linking step in the composite acquisition step for example, when the molding of the sheet and the carbon fiber and the cross-linking step of the polyolefin (B) are performed in combination
  • the molding of the sheet and the carbon fiber are performed.
  • Any of the forms performed a plurality of times for example, when a plurality of carbon fiber composites are laminated
  • the shape of the discontinuous phase can be more easily maintained until the final product.
  • the cross-linking step is preferably performed during the sheet forming step, the composite acquisition step, or between the sheet forming step and the carbon fiber composite acquisition step.
  • the shape of the discontinuous phase is further maintained. It will be easier. Further, if the cross-linking step is performed during any of the above steps, the manufacturing efficiency is improved.
  • the evaluation result is an index of moldability. Further, usually, when the appearance of the strand is poor, the sheet formability tends to be poor. A: The entire surface is smooth. B: Infrequent roughness is observed on the surface. C: Roughness or unevenness is observed on the entire surface.
  • unidirectional open fibers carbon fiber, continuous fiber
  • a composite prepreg is hot-pressed under the conditions of a temperature of 280 ° C. and a pressure of 1 MPa using a press machine (manufactured by Kodaira Seisakusho Co., Ltd.).
  • Carbon fiber composite was prepared. Twenty layers of this composite prepreg were alternately laminated in the 0 ° and 90 ° directions and hot-pressed under the conditions of a temperature of 300 ° C. and a pressure of 5 MPa to obtain a laminate having a size of 160 mm ⁇ 160 mm and a thickness of 2.0 mm.
  • the shock absorption energy was measured according to ISO6603-2: 2000. The results are shown in Table 1. If the impact absorption energy is 60.0 J or more, it can be considered that the impact resistance is good.
  • the appearance of the strands made of the resin composition is good and the viscosity is appropriate at 300 ° C., so that the moldability is excellent. Further, in the examples, since the resin composition contains a semi-aromatic polyamide resin and a discontinuous phase (polyolefin domain) having an appropriate size is dispersed and formed, it exhibits high impact resistance. You can also see that it can be done.
  • the present invention it is possible to provide a carbon fiber composite having high impact resistance and excellent moldability while using a semi-aromatic polyamide resin. Further, according to the present invention, it is possible to provide a method for producing a carbon fiber composite having high impact resistance and excellent moldability while using a semi-aromatic polyamide resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The present invention provides a carbon fiber composite that has high impact resistance and excellent moldability while using a semi-aromatic polyamide resin. The carbon fiber composite is characterized by comprising carbon fibers and a matrix portion comprising a resin composition, wherein: the resin composition has a sea-island structure comprising a continuous phase of a polyamide resin (A) and a non-continuous phase of a polyolefin (B); the polyamide resin (A) includes only a semi-aromatic polyamide resin (A1); the polyolefin (B) includes an unmodified polyolefin (B1) and a modified polyolefin (B2); and the viscosity of the resin composition measured in accordance with JIS K 7199 at a temperature of 300ºC and a shear rate of 12.16 s-1 is 900-4000 Pa·s.

Description

炭素繊維複合体、及び炭素繊維複合体の製造方法Carbon fiber complex and method for manufacturing carbon fiber complex
 本発明は、炭素繊維複合体、及び炭素繊維複合体の製造方法に関するものである。 The present invention relates to a carbon fiber composite and a method for producing the carbon fiber composite.
 ポリアミド樹脂中にエラストマーのドメインを導入し分散させると、耐衝撃性が向上することが知られている。この点、エラストマーのドメインを分散させるためには、通常、無水マレイン酸等の相溶化剤が必要となる。これは、上記相溶化剤を用いることで、ポリアミド樹脂と相溶化剤との反応により一部が結合して、ポリアミド及びエラストマーの両方の機能を有する界面活性剤のような構造を形成することができるからである。 It is known that impact resistance is improved by introducing and dispersing an elastomer domain in a polyamide resin. In this regard, in order to disperse the domain of the elastomer, a compatibilizer such as maleic anhydride is usually required. By using the above compatibilizer, a part of the polyamide resin and the compatibilizer can be reacted to form a surfactant-like structure having both functions of polyamide and elastomer. Because it can be done.
 上記に関連した技術として、例えば特許文献1は、PA11(ヒマシ油由来の単量体の縮重合体)等の植物由来のポリアミド樹脂、ポリオレフィン樹脂及び相溶化剤をそれぞれ所定の割合で用いた熱可塑性樹脂組成物が、耐衝撃特性に優れるとともに剛性に優れることを開示している。 As a technique related to the above, for example, Patent Document 1 describes heat using a plant-derived polyamide resin such as PA11 (a condensed polymer of a monomer derived from castor oil), a polyolefin resin, and a compatibilizer at predetermined ratios. It is disclosed that the plastic resin composition is excellent in impact resistance and rigidity.
特開2013-147646号公報Japanese Unexamined Patent Publication No. 2013-147646
 ところで、近年、耐水性や耐熱性に優れるポリアミド樹脂として、いわゆる半芳香族ポリアミド樹脂(即ち、芳香族ジカルボン酸を少なくとも含むジカルボン酸と非芳香族ジアミンとの重縮合物、又は、非芳香族ジカルボン酸と芳香族ジアミンを少なくとも含むジアミンとの重縮合物)が注目されている。特に、この半芳香族ポリアミド樹脂は、その分子構造がゆえ、ガラス転移温度が高い傾向にあることから、自動車や航空機分野などへの展開が期待される重要な材料として位置付けられている。 By the way, in recent years, as a polyamide resin having excellent water resistance and heat resistance, a so-called semi-aromatic polyamide resin (that is, a polycondensate of a dicarboxylic acid containing at least an aromatic dicarboxylic acid and a non-aromatic diamine, or a non-aromatic dicarboxylic acid) A polycondensate of an acid and a diamine containing at least an aromatic diamine) has been attracting attention. In particular, this semi-aromatic polyamide resin tends to have a high glass transition temperature due to its molecular structure, and is therefore positioned as an important material expected to be developed in the fields of automobiles and aircraft.
 ここで一般に、ポリアミド樹脂及びエラストマーに相溶化剤を配合すると、見かけ上の分子量が高くなって粘度が上昇する傾向にある。この点、上記半芳香族ポリアミド樹脂は、加工の過程で極めて高温(例えば、300℃超)に加熱する必要が生じ得るところ、このときに粘度上昇が一層促進されて、ドメイン分散の際にゲル化するという問題が生じることが判明した。かかるゲル化は、成形を困難又は不能にする虞がある。 Here, in general, when a compatibilizer is added to a polyamide resin and an elastomer, the apparent molecular weight tends to increase and the viscosity tends to increase. In this regard, the semi-aromatic polyamide resin may need to be heated to an extremely high temperature (for example, over 300 ° C.) in the process of processing, and at this time, the increase in viscosity is further promoted, and the gel is gelled during domain dispersion. It turned out that the problem of becoming a resin arises. Such gelation may make molding difficult or impossible.
 なお、ポリアミド6及びポリアミド66等の従来のポリアミド樹脂を用いる場合には、加工温度をさほど高くする必要がないため、上記のような粘度上昇に起因した問題には、これまでほとんど至っていない。 When conventional polyamide resins such as polyamide 6 and polyamide 66 are used, it is not necessary to raise the processing temperature so much, so that the problem caused by the increase in viscosity as described above has hardly been reached so far.
 更には、近年、「コンポジットプリプレグ」とも呼ばれる、シート状のマトリックス樹脂を炭素繊維等の強化繊維に含浸させてなるシート材料(繊維複合体)などの需要の高まりに伴い、ポリアミド樹脂からのシート化も求められている。しかし、上述した半芳香族ポリアミド樹脂を用いたシート成形では、穴あきや粗大な樹脂塊などが頻発するため、所望のシートを安定的に成形することができなかった。 Furthermore, in recent years, with the increasing demand for sheet materials (fiber composites) made by impregnating reinforcing fibers such as carbon fibers with a sheet-shaped matrix resin, which is also called "composite prepreg", the sheet is made from a polyamide resin. Is also required. However, in the sheet molding using the above-mentioned semi-aromatic polyamide resin, holes and coarse resin lumps frequently occur, so that the desired sheet cannot be stably molded.
 そこで、本発明は、半芳香族ポリアミド樹脂を用いつつも、高い耐衝撃性を有し且つ成形性に優れる炭素繊維複合体を提供することを課題とする。
 また、本発明は、半芳香族ポリアミド樹脂を用いつつも、高い耐衝撃性を有し且つ成形性に優れる炭素繊維複合体の製造方法を提供することを課題とする。
Therefore, it is an object of the present invention to provide a carbon fiber composite having high impact resistance and excellent moldability while using a semi-aromatic polyamide resin.
Another object of the present invention is to provide a method for producing a carbon fiber composite having high impact resistance and excellent moldability while using a semi-aromatic polyamide resin.
 上記課題を解決する本発明の要旨構成は、以下の通りである。 The gist structure of the present invention that solves the above problems is as follows.
 本発明の炭素繊維複合体は、炭素繊維と、樹脂組成物からなるマトリックス部とを含む炭素繊維複合体であって、
 前記樹脂組成物が、ポリアミド樹脂(A)の連続相と、ポリオレフィン(B)の非連続相とによる海島構造を有し、
 前記ポリアミド樹脂(A)は、半芳香族ポリアミド樹脂(A1)のみを含み、
 前記ポリオレフィン(B)は、未変性ポリオレフィン(B1)及び変性ポリオレフィン(B2)を含み、
 前記樹脂組成物が、JIS K 7199に準拠し、温度300℃、せん断速度12.16s-1により測定した粘度が、900Pa・s以上4000Pa・s以下である、ことを特徴とする。
The carbon fiber composite of the present invention is a carbon fiber composite containing carbon fibers and a matrix portion made of a resin composition.
The resin composition has a sea-island structure consisting of a continuous phase of the polyamide resin (A) and a discontinuous phase of the polyolefin (B).
The polyamide resin (A) contains only the semi-aromatic polyamide resin (A1), and contains only the semi-aromatic polyamide resin (A1).
The polyolefin (B) contains an unmodified polyolefin (B1) and a modified polyolefin (B2).
The resin composition is characterized in that the viscosity measured at a temperature of 300 ° C. and a shear rate of 12.16s -1 is 900 Pa · s or more and 4000 Pa · s or less in accordance with JIS K 7199.
 また、本発明の炭素繊維複合体の製造方法は、炭素繊維と、樹脂組成物からなるマトリックス部とを含む炭素繊維複合体の製造方法であって、
 ポリアミド樹脂(A)及びポリオレフィン(B)を含む樹脂組成物から、厚みが10μm以上500μm以下であるシートを形成する、シート形成工程と、
 前記シートと炭素繊維とを接触させて、炭素繊維と、前記樹脂組成物からなるマトリックス部とを含む炭素繊維複合体を得る、複合体取得工程とを、備え、
 前記ポリアミド樹脂(A)は、半芳香族ポリアミド樹脂(A1)のみを含み、前記ポリオレフィン(B)は、未変性ポリオレフィン(B1)及び変性ポリオレフィン(B2)を含む、ことを特徴とする。
Further, the method for producing a carbon fiber composite of the present invention is a method for producing a carbon fiber composite containing carbon fibers and a matrix portion composed of a resin composition.
A sheet forming step of forming a sheet having a thickness of 10 μm or more and 500 μm or less from the resin composition containing the polyamide resin (A) and the polyolefin (B).
A composite acquisition step of contacting the sheet with the carbon fibers to obtain a carbon fiber composite containing the carbon fibers and a matrix portion made of the resin composition is provided.
The polyamide resin (A) contains only a semi-aromatic polyamide resin (A1), and the polyolefin (B) contains an unmodified polyolefin (B1) and a modified polyolefin (B2).
 本発明によれば、半芳香族ポリアミド樹脂を用いつつも、高い耐衝撃性を有し且つ成形性に優れる炭素繊維複合体を提供することができる。
 また、本発明によれば、半芳香族ポリアミド樹脂を用いつつも、高い耐衝撃性を有し且つ成形性に優れる炭素繊維複合体の製造方法を提供することができる。
According to the present invention, it is possible to provide a carbon fiber composite having high impact resistance and excellent moldability while using a semi-aromatic polyamide resin.
Further, according to the present invention, it is possible to provide a method for producing a carbon fiber composite having high impact resistance and excellent moldability while using a semi-aromatic polyamide resin.
 以下に、本発明の炭素繊維複合体、及びその製造方法を、その実施形態に基づき、詳細に例示説明する。 Hereinafter, the carbon fiber complex of the present invention and a method for producing the same will be described in detail as examples based on the embodiments thereof.
<炭素繊維複合体>
 本発明の一実施形態の炭素繊維複合体(以下、「本実施形態の複合体」と称することがある。)は、炭素繊維と、樹脂組成物からなるマトリックス部とを含む。そして、本実施形態の複合体は、
 上記樹脂組成物が、ポリアミド樹脂(A)の連続相と、ポリオレフィン(B)の非連続相とによる海島構造を有すること(構造要件)、
 前記ポリアミド樹脂(A)は、半芳香族ポリアミド樹脂(A1)のみを含み、前記ポリオレフィン(B)は、未変性ポリオレフィン(B1)及び変性ポリオレフィン(B2)を含むこと(組成要件)、並びに、
 上記樹脂組成物が、JIS K 7199に準拠し、温度300℃、せん断速度12.16s-1により測定した粘度(以下、単に「300℃粘度」と称することがある。)が、900Pa・s以上4000Pa・s以下であること(粘度要件)、をそれぞれ一特徴とする。
<Carbon fiber complex>
The carbon fiber complex of one embodiment of the present invention (hereinafter, may be referred to as “complex of the present embodiment”) includes a carbon fiber and a matrix portion composed of a resin composition. And the complex of this embodiment is
The resin composition has a sea-island structure consisting of a continuous phase of the polyamide resin (A) and a discontinuous phase of the polyolefin (B) (structural requirement).
The polyamide resin (A) contains only a semi-aromatic polyamide resin (A1), and the polyolefin (B) contains an unmodified polyolefin (B1) and a modified polyolefin (B2) (composition requirement), and
The viscosity of the resin composition measured at a temperature of 300 ° C. and a shear rate of 12.16s -1 (hereinafter, may be simply referred to as “300 ° C. viscosity”) in accordance with JIS K 7199 is 900 Pa · s or more. Each is characterized by being 4000 Pa · s or less (viscosity requirement).
 なお、本明細書において、「半芳香族ポリアミド樹脂」は、芳香族ジカルボン酸を少なくとも含むジカルボン酸と非芳香族ジアミンとの重縮合物、又は、非芳香族ジカルボン酸と芳香族ジアミンを少なくとも含むジアミンとの重縮合物を指すものとする。 In the present specification, the "semi-aromatic polyamide resin" contains at least a polycondensate of a dicarboxylic acid containing at least an aromatic dicarboxylic acid and a non-aromatic diamine, or at least a non-aromatic dicarboxylic acid and an aromatic diamine. It shall refer to a polycondensate with a diamine.
 本実施形態の複合体では、マトリックス部の樹脂組成物に関して、上述の通り、ポリアミド樹脂(A)として半芳香族ポリアミド樹脂(A1)のみを用いるとともに、当該ポリアミド樹脂(A)の連続相と、ポリオレフィン(B)の非連続相とによる海島構造が形成されている。このように、本実施形態の複合体は、マトリックス部における、半芳香族ポリアミド樹脂(A1)自体の特性と、所定の海島構造とに起因して、高い耐衝撃性を発揮することができる。
 なお、海島構造が形成されているか否かは、原子間力顕微鏡等の顕微鏡で観察することにより、確認することができる。
In the composite of the present embodiment, as described above, only the semi-aromatic polyamide resin (A1) is used as the polyamide resin (A) with respect to the resin composition of the matrix portion, and the continuous phase of the polyamide resin (A) and the continuous phase of the polyamide resin (A) are used. A sea-island structure is formed by the discontinuous phase of the polyolefin (B). As described above, the complex of the present embodiment can exhibit high impact resistance due to the characteristics of the semi-aromatic polyamide resin (A1) itself in the matrix portion and the predetermined sea-island structure.
Whether or not the sea-island structure is formed can be confirmed by observing with a microscope such as an atomic force microscope.
 更に、上記樹脂組成物は、上述した構造要件を達成しつつ、300℃粘度が一定の範囲(900Pa・s以上4000Pa・s以下)に調整されているので、成形性、特にはシート成形性に優れる。なお、たとえ樹脂組成物が上述した構造要件及び組成要件を満たすとしても、300℃での粘度が4000Pa・sを超える場合には、成形時に穴あきや粗大な樹脂塊などが発生するため、高い成形性を担保することができない。また、たとえ樹脂組成物が上述の構造及び組成の要件を満たすとしても、300℃粘度が900Pa・s未満である場合には、シート成形時に脈動などの不具合が発生し、厚みが一定であるシートを作製することができない。更に、上記樹脂組成物の300℃粘度が900Pa・s未満である場合には、不所望なドメインの大径化及び/又は減少が生じる結果、高い耐衝撃性を発揮することができない虞がある。 Further, the resin composition has a viscosity at 300 ° C. adjusted to a certain range (900 Pa · s or more and 4000 Pa · s or less) while achieving the above-mentioned structural requirements. Excellent. Even if the resin composition satisfies the above-mentioned structural requirements and composition requirements, if the viscosity at 300 ° C. exceeds 4000 Pa · s, holes and coarse resin lumps are generated during molding, which is high. Formability cannot be guaranteed. Further, even if the resin composition satisfies the above-mentioned structure and composition requirements, if the viscosity at 300 ° C. is less than 900 Pa · s, problems such as pulsation occur during sheet molding, and the thickness of the sheet is constant. Cannot be made. Further, when the viscosity of the resin composition at 300 ° C. is less than 900 Pa · s, there is a possibility that high impact resistance cannot be exhibited as a result of an undesired increase in diameter and / or decrease in the diameter of the domain. ..
 上記と同様の観点で、上記樹脂組成物の300℃粘度は、3000Pa・s以下であることが好ましく、2500Pa・s以下であることがより好ましく、2000Pa・s以下であることが更に好ましく、1800Pa・s以下であることが一層好ましい。 From the same viewpoint as above, the viscosity of the resin composition at 300 ° C. is preferably 3000 Pa · s or less, more preferably 2500 Pa · s or less, still more preferably 2000 Pa · s or less, and 1800 Pa · s or less. -It is more preferable that it is s or less.
 なお、本実施形態の複合体は、特に限定されないが、少なくとも以下の2つの形態を包含する。
 (1)コンポジットプリプレグ
 (2)炭素繊維を含む強化繊維が配列された繊維層と、ポリアミド樹脂(A)及びポリオレフィン(B)を含む樹脂層とがそれぞれ複数積層してなる、積層体
The complex of the present embodiment is not particularly limited, but includes at least the following two forms.
(1) Composite prepreg (2) A laminated body in which a plurality of fiber layers in which reinforcing fibers containing carbon fibers are arranged and a plurality of resin layers containing a polyamide resin (A) and a polyolefin (B) are laminated.
 上記(1)のコンポジットプリプレグは、即ち、ポリアミド樹脂(A)及びポリオレフィン(B)を含むマトリックス樹脂を、炭素繊維を含む強化繊維に含浸させてなるシート材料である。強化繊維は、2以上の繊維の長軸方向がそれぞれ特定の方向に配向するよう配置した、繊維の集合体の層であることが好ましい。更に、本実施形態の複合体は、上記(1)を繰り返し単位とした、コンポジットプリプレグを複数積層させた積層体の形態も包含する。 The composite prepreg of the above (1) is a sheet material obtained by impregnating a reinforcing fiber containing carbon fiber with a matrix resin containing a polyamide resin (A) and a polyolefin (B). The reinforcing fiber is preferably a layer of an aggregate of fibers arranged so that the major axis directions of two or more fibers are oriented in a specific direction. Further, the complex of the present embodiment also includes the form of a laminated body in which a plurality of composite prepregs are laminated with the above (1) as a repeating unit.
 上記(2)は、繊維層及び樹脂層がそれぞれ一層ずつ積層された形態だけでなく、繊維層及び樹脂層がそれぞれ複数積層された形態も包含する。また、繊維層は、2以上の繊維の長軸方向がそれぞれ特定の方向に配向するよう配置した、繊維の集合体の層であることが好ましい。 The above (2) includes not only a form in which a fiber layer and a resin layer are laminated one by one, but also a form in which a plurality of fiber layers and a resin layer are laminated. Further, the fiber layer is preferably a layer of an aggregate of fibers arranged so that the major axis directions of two or more fibers are oriented in a specific direction.
 更に、本実施形態の複合体は、上記(1)と上記(2)とが混在する積層体の形態も包含する。 Further, the complex of the present embodiment also includes the form of a laminated body in which the above (1) and the above (2) are mixed.
 上記樹脂組成物は、好適な構造要件として、非連続相の円相当径(ドメイン径)が0.3μm以上であることが好ましく、また、3.0μm以下であることが好ましい。ドメイン径が上記範囲内であれば、より効果的に高い耐衝撃性を発揮することができる。より好ましくは、非連続相の円相当径(ドメイン径)は、0.5μm以上、0.8μm以上、1.2μm以上であり、また、2.8μm以下、2.7μm以下である。
 なお、上記ドメイン径は、樹脂組成物の30μm×30μmの画像領域から観察される全ての非連続相について、円相当径(同一面積の円の径)の平均値として求めることができる。
As a suitable structural requirement, the resin composition preferably has a discontinuous phase circle-equivalent diameter (domain diameter) of 0.3 μm or more, and preferably 3.0 μm or less. When the domain diameter is within the above range, high impact resistance can be exhibited more effectively. More preferably, the circle-equivalent diameter (domain diameter) of the discontinuous phase is 0.5 μm or more, 0.8 μm or more, 1.2 μm or more, and 2.8 μm or less and 2.7 μm or less.
The domain diameter can be obtained as an average value of circle-equivalent diameters (diameters of circles of the same area) for all discontinuous phases observed from an image region of 30 μm × 30 μm of the resin composition.
 なお、上述した構造要件及び粘度要件を達成する手段としては、特に限定されるものではないが、例えば、
(1)半芳香族ポリアミド樹脂(A1)、未変性ポリオレフィン(B1)及び変性ポリオレフィン(B2)の種類をそれぞれ適切に選択する、
(2)半芳香族ポリアミド樹脂(A1)、未変性ポリオレフィン(B1)及び変性ポリオレフィン(B2)の配合比をそれぞれ適切に選択する、
(3)混練条件(各原料の投入タイミング、混練時間、混練装置の回転数、スクリュー形状、混練時の樹脂温度)を適切に選択する、
等が挙げられ、これらの複合的な作用に基づいて、上記樹脂組成物を得ることができる。
The means for achieving the above-mentioned structural requirements and viscosity requirements is not particularly limited, but for example,
(1) The types of the semi-aromatic polyamide resin (A1), the unmodified polyolefin (B1) and the modified polyolefin (B2) are appropriately selected.
(2) The blending ratios of the semi-aromatic polyamide resin (A1), the unmodified polyolefin (B1) and the modified polyolefin (B2) are appropriately selected.
(3) Appropriately select the kneading conditions (addition timing of each raw material, kneading time, rotation speed of kneading device, screw shape, resin temperature at the time of kneading).
Etc., and the above resin composition can be obtained based on these combined actions.
 以下、上記樹脂組成物に含有される成分について説明する。 Hereinafter, the components contained in the above resin composition will be described.
(ポリアミド樹脂(A))
 上記樹脂組成物は、ポリアミド樹脂(A)を含有し、また、当該ポリアミド樹脂(A)は、上述の通り、半芳香族ポリアミド樹脂(A1)のみを含む。ポリアミド樹脂(A)として、半芳香族ポリアミド樹脂(A1)以外のポリアミド樹脂、例えば脂肪族ポリアミド樹脂を更に用いると、耐衝撃性が悪化する虞があるためである。なお、半芳香族ポリアミド樹脂(A1)は、1種単独であってもよく、2種以上の組み合わせであってもよい。
(Polyamide resin (A))
The above-mentioned resin composition contains a polyamide resin (A), and the polyamide resin (A) contains only a semi-aromatic polyamide resin (A1) as described above. This is because if a polyamide resin other than the semi-aromatic polyamide resin (A1), for example, an aliphatic polyamide resin is further used as the polyamide resin (A), the impact resistance may be deteriorated. The semi-aromatic polyamide resin (A1) may be used alone or in combination of two or more.
 上記半芳香族ポリアミド樹脂(A1)としては、芳香族ジカルボン酸を少なくとも含むジカルボン酸と非芳香族ジアミンとの重縮合物、及び、非芳香族ジカルボン酸と芳香族ジアミンを少なくとも含むジアミンとの重縮合物が挙げられる。具体的には、例えば、ポリアミド4T、ポリヘキサメチレンテレフタラミド(ポリアミド6T)、ポリヘキサメチレンイソフタラミド(ポリアミド6I)、ポリヘキサメチレンナフタラミド(ポリアミド6N)、ポリノナメチレンテレフタラミド(ポリアミド9T)、ポリノナメチレンイソフタラミド(ポリアミド9I)、ポリノナメチレンナフタラミド(ポリアミド9N)、ポリ(2-メチルオクタメチレンテレフタラミド)(ポリアミドM8T)、ポリ(2-メチルオクタメチレンイソフタラミド)(ポリアミドM8I)、ポリ(2-メチルオクタメチレンナフタラミド)(ポリアミドM8N)、ポリトリメチルヘキサメチレンテレフタラミド(ポリアミドTMHT)、ポリトリメチルヘキサメチレンイソフタラミド(ポリアミドTMHI)、ポリトリメチルヘキサメチレンナフタラミド(ポリアミドTMHN)、ポリデカメチレンテレフタラミド(ポリアミド10T)、ポリデカメチレンイソフタラミド(ポリアミド10I)、ポリデカメチレンナフタラミド(ポリアミド10N)、ポリウンデカメチレンテレフタラミド(ポリアミド11T)、ポリウンデカメチレンイソフタラミド(ポリアミド11I)、ポリウンデカメチレンナフタラミド(ポリアミド11N)、ポリドデカメチレンテレフタラミド(ポリアミド12T)、ポリドデカメチレンイソフタラミド(ポリアミド12I)、ポリドデカメチレンナフタラミド(ポリアミド12N)、ポリアミドMXD6(PAMXD6)等が、その一例である。 The semi-aromatic polyamide resin (A1) includes a polycondensate of a dicarboxylic acid containing at least an aromatic dicarboxylic acid and a non-aromatic diamine, and a weight of a diamine containing at least a non-aromatic dicarboxylic acid and an aromatic diamine. Examples include condensates. Specifically, for example, polyamide 4T, polyhexamethylene terephthalamide (polyamide 6T), polyhexamethylene isophthalamide (polyamide 6I), polyhexamethylenenaphthalamide (polyamide 6N), polynonamethylene terephthalamide (polyamide 6N). 9T), polynonamethylene isophthalamide (polyamide 9I), polynonamethylene naphthalamide (polyamide 9N), poly (2-methyloctamethylene terephthalamide) (polyamide M8T), poly (2-methyloctamethyleneisophthalamide). ) (Polyamide M8I), Poly (2-methyloctamethylenenaphthalamide) (Polyamide M8N), Polytrimethylhexamethylene terephthalamide (Polyamide TMHT), Polytrimethylhexamethyleneisophthalamide (Polyamide TMHI), Polytrimethylhexamethylenenaphthal Ramide (polyamide TMHN), polydecamethylene terephthalamide (polyamide 10T), polydecamethylene isophthalamide (polyamide 10I), polydecamethylene naphthalamide (polyamide 10N), polyundecamethylene terephthalamide (polyamide 11T), Polyundecamethylene isophthalamide (polyamide 11I), polyundecamethylene naphthalamide (polyamide 11N), polydodecamethylene terephthalamide (polyamide 12T), polydodecamethylene isophthalamide (polyamide 12I), polydodecamethylene naphthalamide (Polyamide 12N), polyamide MXD6 (PAMXD6) and the like are examples.
 芳香族ジカルボン酸としては、例えば、炭素数8~20の芳香族ジカルボン酸が挙げられ、より具体的には、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸等が挙げられる。これら芳香族ジカルボン酸は、1種単独であってもよく、2種以上の組み合わせであってもよい。また、上述した芳香族ジカルボン酸は、無置換であってもよく、種々の置換基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の炭素数1~4のアルキル基等)で置換されていてもよい。 Examples of the aromatic dicarboxylic acid include aromatic dicarboxylic acids having 8 to 20 carbon atoms, and more specifically, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, and 2-methylterephthalic acid. , 5-Methylisophthalic acid, 5-sodiumsulfoisophthalic acid and the like. These aromatic dicarboxylic acids may be used alone or in combination of two or more. Further, the above-mentioned aromatic dicarboxylic acid may be unsubstituted, and various substituents (for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl) may be used. It may be substituted with an alkyl group having 1 to 4 carbon atoms such as a group).
 一方、芳香族ジカルボン酸以外のジカルボン酸(非芳香族ジカルボン酸)としては、例えば、炭素数3~20の直鎖状又は分岐状の脂肪族ジカルボン酸、脂環構造の炭素数が3~10である脂環族ジカルボン酸等が挙げられる。これら芳香族ジカルボン酸以外のジカルボン酸は、1種単独であってもよく、2種以上の組み合わせであってもよい。 On the other hand, examples of the dicarboxylic acid (non-aromatic dicarboxylic acid) other than the aromatic dicarboxylic acid include a linear or branched aliphatic dicarboxylic acid having 3 to 20 carbon atoms and an alicyclic structure having 3 to 10 carbon atoms. Examples thereof include alicyclic dicarboxylic acids. The dicarboxylic acids other than these aromatic dicarboxylic acids may be used alone or in combination of two or more.
 炭素数3~20の直鎖状又は分岐状の脂肪族ジカルボン酸としては、例えば、マロン酸、ジメチルマロン酸、コハク酸、2,2-ジメチルコハク酸、2,3-ジメチルグルタル酸、2,2-ジエチルコハク酸、2,3-ジエチルグルタル酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸、ジグリコール酸等が挙げられる。 Examples of the linear or branched aliphatic dicarboxylic acid having 3 to 20 carbon atoms include malonic acid, dimethylmalonic acid, succinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethylglutaric acid, 2, 2-diethylsuccinic acid, 2,3-diethylglutaric acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, suberic acid, azelaic acid, sevacinic acid, Examples thereof include dodecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, octadecanedioic acid, eicosandioic acid, diglycolic acid and the like.
 脂環構造の炭素数が3~10である脂環族ジカルボン酸としては、例えば、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,3-シクロペンタンジカルボン酸等が挙げられる。なお、脂環族ジカルボン酸には、トランス体及びシス体の幾何異性体が存在する。例えば、原料モノマーとしての1,4-シクロヘキサンジカルボン酸としては、トランス体及びシス体のいずれか一方を用いてもよく、トランス体及びシス体を種々の比率で含む混合物を用いてもよい。また、上述した脂環族ジカルボン酸は、無置換であってもよく、種々の置換基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の炭素数1~4のアルキル基等)で置換されていてもよい。 Examples of the alicyclic dicarboxylic acid having an alicyclic structure having 3 to 10 carbon atoms include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and 1,3-cyclopentanedicarboxylic acid. .. The alicyclic dicarboxylic acid contains trans and cis geometric isomers. For example, as the 1,4-cyclohexanedicarboxylic acid as the raw material monomer, either a trans form or a cis form may be used, or a mixture containing the trans form and the cis form in various ratios may be used. Further, the alicyclic dicarboxylic acid described above may be unsubstituted and may have various substituents (eg, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-. It may be substituted with an alkyl group having 1 to 4 carbon atoms such as a butyl group).
 芳香族ジアミンとしては、例えば、メタキシリレンジアミン、オルトキシリレンジアミン、パラキシリレンジアミン等が挙げられる。これら芳香族ジアミンは、1種単独であってもよく、2種以上の組み合わせであってもよい。 Examples of the aromatic diamine include metaxylylenediamine, orthoxylylenediamine, paraxylylenediamine and the like. These aromatic diamines may be used alone or in combination of two or more.
 一方、芳香族ジアミン以外のジアミン(非芳香族ジアミン)としては、例えば、直鎖状又は分岐状の脂肪族ジアミン、脂環族ジアミン等が挙げられる。これら芳香族ジアミン以外のジアミンは、1種単独であってもよく、2種以上の組み合わせであってもよい。 On the other hand, examples of diamines other than aromatic diamines (non-aromatic diamines) include linear or branched aliphatic diamines and alicyclic diamines. Diamines other than these aromatic diamines may be used alone or in combination of two or more.
 直鎖状脂肪族ジアミンとしては、例えば、エチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン(ノナンジアミン)、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、トリデカメチレンジアミン等が挙げられる。 Examples of the linear aliphatic diamine include ethylenediamine, propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine (nonanediamine), decamethylenediamine, and undecamethylene. Examples thereof include diamine, dodecamethylenediamine and tridecamethylenediamine.
 分岐状脂肪族ジアミンとしては、例えば、2-メチルペンタメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2-メチルオクタメチレンジアミン、2,4-ジメチルオクタメチレンジアミン等が挙げられる。 Examples of the branched aliphatic diamine include 2-methylpentamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2-methyloctamethylenediamine, 2,4-dimethyloctamethylenediamine and the like.
 脂環族ジアミンとしては、例えば、1,4-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,3-シクロペンタンジアミン等が挙げられる。 Examples of the alicyclic diamine include 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, 1,3-cyclopentanediamine and the like.
 これらの中でも、芳香族ジアミン以外のジアミン(非芳香族ジアミン)としては、炭素数7~12のジアミンが好ましい。これら炭素数7~12のジアミンを単量体として用いることで、得られる半芳香族ポリアミド樹脂(A1)の溶融時の安定性、ひいては成形性をより向上させることができる。同様の観点から、芳香族ジアミン以外のジアミン(非芳香族ジアミン)としては、1,9-ノナンジアミン及び1,10-デカメチレンジアミンがより好ましく、1,9-ノナンジアミンが更に好ましい。 Among these, as the diamine other than the aromatic diamine (non-aromatic diamine), a diamine having 7 to 12 carbon atoms is preferable. By using these diamines having 7 to 12 carbon atoms as a monomer, the stability of the obtained semi-aromatic polyamide resin (A1) at the time of melting and, by extension, the moldability can be further improved. From the same viewpoint, as the diamine other than the aromatic diamine (non-aromatic diamine), 1,9-nonanediamine and 1,10-decamethylenediamine are more preferable, and 1,9-nonanediamine is further preferable.
 そして、半芳香族ポリアミド樹脂(A1)としては、耐熱性や耐衝撃性をより効果的に向上させる観点から、芳香族ジカルボン酸を少なくとも含むジカルボン酸と非芳香族ジアミンとの重縮合物が好ましい。 The semi-aromatic polyamide resin (A1) is preferably a polycondensate of a dicarboxylic acid containing at least an aromatic dicarboxylic acid and a non-aromatic diamine from the viewpoint of more effectively improving heat resistance and impact resistance. ..
 上記の重縮合物においては、ジカルボン酸における芳香族ジカルボン酸の比率が、50mol%以上であることが好ましく、60mol%以上であることがより好ましく、70mol%以上であることが更に好ましい。これにより、ガラス転移温度を高め、耐衝撃性をより一層効果的に向上させることができる。 In the above polycondensate, the ratio of the aromatic dicarboxylic acid to the dicarboxylic acid is preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more. As a result, the glass transition temperature can be increased and the impact resistance can be further effectively improved.
 また、上記の重縮合物においては、成形性及び耐熱性のバランスの観点から、非芳香族ジアミンにおける炭素数7~12のジアミンの比率が、20mol%以上であることが好ましく、30mol%以上であることがより好ましく、40mol%以上であることが更に好ましく、45mol%以上であることが特に好ましい。 Further, in the above polycondensate, the ratio of the diamine having 7 to 12 carbon atoms in the non-aromatic diamine is preferably 20 mol% or more, preferably 30 mol% or more, from the viewpoint of the balance between moldability and heat resistance. It is more preferably 40 mol% or more, and particularly preferably 45 mol% or more.
 半芳香族ポリアミド樹脂(A1)は、融点が280℃以下であることが好ましい。これにより、樹脂組成物の調製の際、変性ポリオレフィン(B2)の反応速度が過度に上昇するのを抑え、大幅な粘度上昇、ひいては成形性の悪化をより効果的に抑制することができる。 The semi-aromatic polyamide resin (A1) preferably has a melting point of 280 ° C. or lower. As a result, when preparing the resin composition, it is possible to suppress an excessive increase in the reaction rate of the modified polyolefin (B2), and more effectively suppress a significant increase in viscosity and eventually deterioration of moldability.
 半芳香族ポリアミド樹脂(A1)の製造方法としては、例えば、以下の種々の方法が挙げられる。
(1)ジカルボン酸及びジアミンの水溶液又は水の懸濁液を加熱し、溶融状態を維持したまま重合させる方法(熱溶融重合法)
(2)熱溶融重合法で得られたポリアミドをその融点以下の温度で固体状態を維持したまま、重合度を上昇させる方法(熱溶融重合・固相重合法)、
(3)ジカルボン酸及びジアミンの水溶液又は水の懸濁液を加熱し、プレポリマーを析出させる方法(プレポリマー法)
(4)ジカルボン酸及びジアミンの水溶液又は水の懸濁液を加熱して析出したプレポリマーを、更にニーダー等の押出機で再び溶融して、重合度を上昇させる方法(プレポリマー・押出重合法)
(5)ジカルボン酸及びジアミンの水溶液又は水の懸濁液を加熱して析出したプレポリマーをその融点以下の温度で固体状態を維持したまま、重合度を上昇させる方法(プレポリマー・固相重合法)
(6)ジカルボン酸及びジアミン又はその混合物を、固体状態を維持したまま重合させる方法(固相重合法)
(7)ジカルボン酸と等価なジカルボン酸ハライド成分とジアミン成分とを用いて重合させる方法(溶液法)
Examples of the method for producing the semi-aromatic polyamide resin (A1) include the following various methods.
(1) A method in which an aqueous solution of a dicarboxylic acid and a diamine or a suspension of water is heated and polymerized while maintaining a molten state (thermal melt polymerization method).
(2) A method of increasing the degree of polymerization of a polyamide obtained by a hot melt polymerization method while maintaining a solid state at a temperature below its melting point (hot melt polymerization / solid phase polymerization method).
(3) A method of heating an aqueous solution of a dicarboxylic acid and a diamine or a suspension of water to precipitate a prepolymer (prepolymer method).
(4) A method of increasing the degree of polymerization by further melting the prepolymer precipitated by heating an aqueous solution of a dicarboxylic acid and a diamine or a suspension of water with an extruder such as a kneader (prepolymer / extrusion polymerization method). )
(5) A method of increasing the degree of polymerization of a prepolymer precipitated by heating an aqueous solution of a dicarboxylic acid and a diamine or a suspension of water while maintaining a solid state at a temperature below its melting point (prepolymer / solid phase weight). legal)
(6) A method of polymerizing a dicarboxylic acid and a diamine or a mixture thereof while maintaining a solid state (solid phase polymerization method).
(7) Method of polymerizing using a dicarboxylic acid halide component equivalent to a dicarboxylic acid and a diamine component (solution method)
 これらの中でも、半芳香族ポリアミド樹脂(A1)の製造方法としては、得られるポリアミド樹脂の色調に優れるため、(1)熱溶融重合法、又は(2)熱溶融重合・固相重合法が好ましい。なお、重合形態としては、バッチ式でも連続式でもよい。また、重合装置としては、特に限定されるものではなく、公知の装置、例えば、オートクレーブ型反応器、タンブラー型反応器、ニーダー等の押出機型反応器等が挙げられる。 Among these, as a method for producing the semi-aromatic polyamide resin (A1), (1) Fused Deposition Modeling Method or (2) Fused Deposition Modeling / Solid Phase Polymerization Method is preferable because the obtained polyamide resin has an excellent color tone. .. The polymerization form may be a batch type or a continuous type. The polymerization apparatus is not particularly limited, and examples thereof include known apparatus such as an autoclave type reactor, a tumbler type reactor, and an extruder type reactor such as a kneader.
 ジカルボン酸の添加量mol及びジアミンの添加mol量は、高分子量化のため、同程度であることが好ましい。重合反応中のジアミンの反応系外への逃散分もmol比においては考慮して、ジカルボン酸全体の添加mol量に対する、ジアミン全体の添加mol量の比は(ジアミン/ジカルボン酸)、0.90以上であることが好ましく、0.95以上であることがより好ましく、0.98以上であることが更に好ましく、また、1.20以下であることが好ましく、1.10以下であることがより好ましく、1.05以下であることが更に好ましい。 The amount of added mol of dicarboxylic acid and the amount of added mol of diamine are preferably about the same in order to increase the molecular weight. Considering the amount of diamine escaping to the outside of the reaction system during the polymerization reaction in the mol ratio, the ratio of the amount of added mol of diamine to the total amount of added mol of dicarboxylic acid is 0.90 (diamine / dicarboxylic acid). The above is preferable, 0.95 or more is more preferable, 0.98 or more is further preferable, 1.20 or less is preferable, and 1.10 or less is more preferable. It is preferably 1.05 or less, and more preferably 1.05 or less.
 ジカルボン酸及びジアミンからポリアミド樹脂を重合する際には、分子量調節のために、公知の末端封止剤を用いることができる。末端封止剤としては、例えば、モノカルボン酸、モノアミン、無水フタル酸等の酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類等が挙げられ、熱安定性の観点で、モノカルボン酸、モノアミンが好ましい。末端封止剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 When polymerizing a polyamide resin from a dicarboxylic acid and a diamine, a known end-capping agent can be used for adjusting the molecular weight. Examples of the terminal encapsulant include acid anhydrides such as monocarboxylic acid, monoamine and phthalic anhydride, monoisocyanate, monoacid halides, monoesters and monoalcohols, and examples thereof include monoalcohols and the like from the viewpoint of thermal stability. , Monocarboxylic acid and monoamine are preferred. The terminal encapsulant may be used alone or in combination of two or more.
(ポリオレフィン(B))
 上記樹脂組成物は、ポリオレフィン(B)を含有し、また、当該ポリオレフィン(B)は、上述の通り、未変性ポリオレフィン(B1)及び変性ポリオレフィン(B2)を含む。ポリオレフィン(B)として少なくとも変性ポリオレフィン(B2)を用いることで、半芳香族ポリアミド樹脂(A1)の連続相の中にポリオレフィン(B)のドメインが分散する傾向を高めることができる。更に、ポリオレフィン(B)として未変性ポリオレフィン(B1)を併用することで、粘度の適正化を図ることができる。未変性ポリオレフィン(B1)及び変性ポリオレフィン(B2)は、それぞれ、1種単独であってもよく、2種以上の組み合わせであってもよい。
(Polyolefin (B))
The resin composition contains a polyolefin (B), and the polyolefin (B) contains an unmodified polyolefin (B1) and a modified polyolefin (B2) as described above. By using at least the modified polyolefin (B2) as the polyolefin (B), it is possible to increase the tendency of the domain of the polyolefin (B) to be dispersed in the continuous phase of the semi-aromatic polyamide resin (A1). Further, by using the unmodified polyolefin (B1) in combination as the polyolefin (B), the viscosity can be optimized. The unmodified polyolefin (B1) and the modified polyolefin (B2) may be used alone or in combination of two or more.
 未変性ポリオレフィン(B1)としては、例えば、エチレン単独重合体;エチレン-プロピレン共重合体、エチレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-1-オクテン共重合体、エチレン-4-メチル-1-ペンテン共重合体等のエチレン-α-オレフィン共重合体;プロピレン単独重合体;プロピレン-1-ブテン共重合体等のプロピレン-α-オレフィン共重合体;α-オレフィン同士の共重合体;α-オレフィンと共重合可能なα-オレフィン以外の単量体とα-オレフィンとの共重合体;スチレン-エチレン/ブチレン-スチレン共重合体、スチレン-プロピレン/ブチレン-スチレン共重合体;等が挙げられる。上記α-オレフィンとしては、例えば、プロピレン、1-ブテン、イソブチレン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-ヘキサデセン、1-オクタデセン、4-メチル-1-ペンテン等の炭素数3~20のα-オレフィン等が挙げられる。上記のα-オレフィンと共重合可能なα-オレフィン以外の単量体としては、例えば、酢酸ビニル、マレイン酸、ビニルアルコール、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、アクリル酸メチル、アクリル酸エチル等が挙げられる。これらの中でも、未変性ポリオレフィン(B1)としては、エチレン単独重合体、エチレン-α-オレフィン共重合体、プロピレン単独重合体;プロピレン-α-オレフィン共重合体がより好ましい。 Examples of the unmodified polyolefin (B1) include ethylene homopolymers; ethylene-propylene copolymers, ethylene-1-butene copolymers, ethylene-1-hexene copolymers, and ethylene-1-octene copolymers. Ethylene-α-olefin copolymer such as ethylene-4-methyl-1-pentene copolymer; propylene homopolymer; propylene-α-olefin copolymer such as propylene-1-butene copolymer; α-olefin Polymers of each other; Polymers of monomers other than α-olefins that can be copolymerized with α-olefins and α-olefins; styrene-ethylene / butylene-styrene copolymers, styrene-propylene / butylene-styrene Copolymer; etc. Examples of the α-olefin include propylene, 1-butene, isobutylene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, 1-octadecene, 4 Examples thereof include α-olefins having 3 to 20 carbon atoms such as -methyl-1-pentene. Examples of the monomer other than the α-olefin copolymerizable with the above α-olefin include vinyl acetate, maleic acid, vinyl alcohol, methacrylic acid, methyl methacrylate, ethyl methacrylate, methyl acrylate, and ethyl acrylate. And so on. Among these, as the unmodified polyolefin (B1), an ethylene homopolymer, an ethylene-α-olefin copolymer, a propylene homopolymer; and a propylene-α-olefin copolymer are more preferable.
 変性ポリオレフィン(B2)は、未変性のポリオレフィンを変性させたものであり、より具体的には、酸変性ポリオレフィン、エポキシ変性ポリオレフィン、グリシジル変性ポリオレフィン等が挙げられる。特に、変性ポリオレフィン(B2)としては、酸変性ポリオレフィンが好ましい。なお、酸変性ポリオレフィンは、ポリオレフィンを不飽和カルボン酸又はその酸無水物等により酸変性したものである。不飽和カルボン酸又はその酸無水物の具体例としては、マレイン酸、フマル酸、イタコン酸、アクリル酸、メタクリル酸、シス-4-シクロヘキセン-1,2-ジカルボン酸、無水マレイン酸、無水イタコン酸、シス-4-シクロヘキセン-1,2-無水ジカルボン酸等が挙げられる。特に、不飽和カルボン酸又はその酸無水物としては、無水マレイン酸又は無水イタコン酸が好ましく、無水マレイン酸がより好ましい。なお、不飽和カルボン酸又はその酸無水物の代わりに、酸アミド、酸エステル等の誘導体を用いることもできる。 The modified polyolefin (B2) is a modified version of an unmodified polyolefin, and more specific examples thereof include acid-modified polyolefin, epoxy-modified polyolefin, and glycidyl-modified polyolefin. In particular, as the modified polyolefin (B2), an acid-modified polyolefin is preferable. The acid-modified polyolefin is an acid-modified polyolefin with an unsaturated carboxylic acid or an acid anhydride thereof. Specific examples of unsaturated carboxylic acid or acid anhydride thereof include maleic acid, fumaric acid, itaconic acid, acrylic acid, methacrylic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, maleic anhydride, and itaconic anhydride. , Sis-4-cyclohexene-1,2-dicarboxylic acid anhydride and the like. In particular, as the unsaturated carboxylic acid or its acid anhydride, maleic anhydride or itaconic anhydride is preferable, and maleic anhydride is more preferable. Derivatives such as acid amides and acid esters can also be used in place of unsaturated carboxylic acids or acid anhydrides thereof.
 変性ポリオレフィン(B2)の変性前のポリオレフィンの具体例としては、未変性ポリオレフィン(B1)について既述したものと同様である。但し、変性ポリオレフィン(B2)を構成するポリオレフィンとしては、エチレン単独重合体、エチレン-α-オレフィン共重合体、プロピレン単独重合体;プロピレン-α-オレフィン共重合体がより好ましい。 Specific examples of the polyolefin before modification of the modified polyolefin (B2) are the same as those described above for the unmodified polyolefin (B1). However, as the polyolefin constituting the modified polyolefin (B2), an ethylene homopolymer, an ethylene-α-olefin copolymer, a propylene homopolymer; and a propylene-α-olefin copolymer are more preferable.
 上記樹脂組成物においては、ポリオレフィン(B)の平均酸価が、0.1mgKOH/g以上、3.0mgKOH/g以下であることが好ましい。ポリオレフィン(B)の平均酸価が0.1mgKOH/g以上であれば、適度に粘度が高まり、また、非連続相のドメイン径の過度な粗大化を抑えて、耐衝撃性を効果的に向上させることができる。また、ポリオレフィン(B)の平均酸価が3.0mgKOH/g以下であれば、過度な粘度上昇を抑えて、良好な成形性をより確実に保持するとともに、非連続相のドメイン径を適度に保って、耐衝撃性の悪化をより効果的に抑制することができる。同様の観点から、ポリオレフィン(B)の平均酸価は、0.3mgKOH/g以上であることがより好ましく、0.5mgKOH/g以上であることが更に好ましく、また、2.0mgKOH/g以下であることがより好ましく、1.6mgKOH/g以下であることが更に好ましい。
 なお、ポリオレフィン(B)の平均酸価は、以下のようにして算出することができる。例えば、未変性ポリオレフィン(B1)(酸価は0mgKOH/g)をa質量部、酸価がx(mgKOH/g)の第1の変性ポリオレフィン(B2)をb質量部、及び酸価がy(mgKOH/g)の第2の変性ポリオレフィン(B3)をc質量部用いる場合、ポリオレフィン(B)の平均酸価(mgKOH/g)は、(xb+yc)/(a+b+c)として算出することができる。
In the above resin composition, the average acid value of the polyolefin (B) is preferably 0.1 mgKOH / g or more and 3.0 mgKOH / g or less. When the average acid value of the polyolefin (B) is 0.1 mgKOH / g or more, the viscosity is appropriately increased, and the domain diameter of the discontinuous phase is suppressed from being excessively coarsened to effectively improve the impact resistance. Can be made to. Further, when the average acid value of the polyolefin (B) is 3.0 mgKOH / g or less, an excessive increase in viscosity is suppressed, good moldability is more reliably maintained, and the domain diameter of the discontinuous phase is appropriately adjusted. It can be maintained and the deterioration of impact resistance can be suppressed more effectively. From the same viewpoint, the average acid value of the polyolefin (B) is more preferably 0.3 mgKOH / g or more, further preferably 0.5 mgKOH / g or more, and 2.0 mgKOH / g or less. It is more preferably present, and further preferably 1.6 mgKOH / g or less.
The average acid value of the polyolefin (B) can be calculated as follows. For example, the unmodified polyolefin (B1) (acid value is 0 mgKOH / g) is a part by mass, the first modified polyolefin (B2) having an acid value of x (mgKOH / g) is b by mass, and the acid value is y ( When the second modified polyolefin (B3) of mgKOH / g) is used in c parts by mass, the average acid value (mgKOH / g) of the polyolefin (B) can be calculated as (xb + yc) / (a + b + c).
 上記樹脂組成物においては、未変性ポリオレフィン(B1)のポリオレフィン(B)に対する質量比(B1/B)が、0.75以上1.00未満であることが好ましい。上記質量比(B1/B)が0.75以上であれば、過度な粘度上昇を抑えて、特に高温環境下での良好な成形性をより確実に保持するとともに、非連続相のドメイン径を適度に保って、耐衝撃性の悪化をより効果的に抑制することができる。一方、上記質量比(B1/B)は、非連続相のドメイン径の過度な粗大化の抑制、ひいては耐衝撃性の効果的な向上の観点から、0.95以下であることがより好ましく、0.92以下であることが更に好ましい。 In the above resin composition, the mass ratio (B1 / B) of the unmodified polyolefin (B1) to the polyolefin (B) is preferably 0.75 or more and less than 1.00. When the mass ratio (B1 / B) is 0.75 or more, an excessive increase in viscosity is suppressed, good moldability is more reliably maintained especially in a high temperature environment, and the domain diameter of the discontinuous phase is increased. It can be kept moderate and the deterioration of impact resistance can be suppressed more effectively. On the other hand, the mass ratio (B1 / B) is more preferably 0.95 or less from the viewpoint of suppressing excessive coarsening of the domain diameter of the discontinuous phase and, by extension, effectively improving the impact resistance. It is more preferably 0.92 or less.
 また、上記樹脂組成物においては、ポリアミド樹脂(A)のポリオレフィン(B)に対する質量比(A/B)が、1.0以上であることが好ましい。上記質量比(A/B)が1.0以上であれば、所定の海島構造をより確実に形成することができる。同様の観点、及び非連続相のドメイン径を適度に小さくする観点から、上記質量比(A/B)は、1.0超であることがより好ましく、1.2以上であることが更に好ましく、1.5以上であることが一層好ましい。
 また、上記樹脂組成物においては、ポリアミド樹脂(A)のポリオレフィン(B)に対する質量比(A/B)が、4.0以下であることが好ましい。上記質量比(A/B)が4.0以下であれば、非連続相のドメイン径を適度に大きくすることができる。同様の観点から、上記質量比(A/B)は、3.0以下であることがより好ましく、2.5以下であることが更に好ましく、2.0以下であることが一層好ましい。
Further, in the above resin composition, the mass ratio (A / B) of the polyamide resin (A) to the polyolefin (B) is preferably 1.0 or more. When the mass ratio (A / B) is 1.0 or more, a predetermined sea-island structure can be formed more reliably. From the same viewpoint and from the viewpoint of appropriately reducing the domain diameter of the discontinuous phase, the mass ratio (A / B) is more preferably 1.0 or more, and further preferably 1.2 or more. , 1.5 or more is more preferable.
Further, in the above resin composition, the mass ratio (A / B) of the polyamide resin (A) to the polyolefin (B) is preferably 4.0 or less. When the mass ratio (A / B) is 4.0 or less, the domain diameter of the discontinuous phase can be appropriately increased. From the same viewpoint, the mass ratio (A / B) is more preferably 3.0 or less, further preferably 2.5 or less, and even more preferably 2.0 or less.
(その他の成分)
 上記樹脂組成物は、上述したもののほか、目的を損なわない範囲で、通常配合される各種添加剤、例えば流動改善剤、相溶化剤、架橋用添加剤、有機溶媒、重合開始剤、重合禁止剤、連鎖移動剤、光安定剤、結晶核剤・離型剤、滑剤、酸化防止剤、難燃剤、耐光剤及び耐候剤等を目的に応じて適量含有することができる。
(Other ingredients)
In addition to the above-mentioned resin compositions, the above resin compositions include various additives that are usually blended, such as flow improvers, compatibilizers, cross-linking additives, organic solvents, polymerization initiators, and polymerization inhibitors, as long as they do not impair the purpose. , Chain transfer agent, light stabilizer, crystal nucleating agent / mold release agent, lubricant, antioxidant, flame retardant, light resistant agent, weather resistant agent and the like can be contained in an appropriate amount depending on the purpose.
 上記樹脂組成物の調製方法は、特に限定されず、例えば、常法に従って、上述した成分を配合して混練することにより、本実施形態の樹脂組成物を得ることができる。なお、配合及び混練に際しては、全ての成分を一度に配合して混練してもよく、2段階又は3段階等の多段階に分けて各成分を配合して混練してもよい。なお、混練に際しては、ロール、インターナルミキサー、バンバリーローター等の混練機を用いることができる。 The method for preparing the resin composition is not particularly limited, and for example, the resin composition of the present embodiment can be obtained by blending and kneading the above-mentioned components according to a conventional method. In addition, at the time of blending and kneading, all the components may be blended and kneaded at one time, or each component may be blended and kneaded in multiple stages such as two steps or three steps. For kneading, a kneading machine such as a roll, an internal mixer, or a Banbury rotor can be used.
(炭素繊維)
 本実施形態の複合体は、炭素繊維を含む。これにより、軽量ながら高い剛性が得られる。炭素繊維は、連続繊維及び/又は不連続繊維を含むことができる。なお、本明細書において、連続繊維とは、長さが5cm以上の繊維を指し、単繊維だけでなくシート状に縫合された繊維も含むものとする。また、本明細書において、不連続繊維とは、連続繊維以外の強化繊維を指す。
(Carbon fiber)
The complex of this embodiment contains carbon fibers. As a result, high rigidity can be obtained while being lightweight. Carbon fibers can include continuous fibers and / or discontinuous fibers. In the present specification, the continuous fiber refers to a fiber having a length of 5 cm or more, and includes not only a single fiber but also a fiber sewn into a sheet shape. Further, in the present specification, the discontinuous fiber refers to a reinforcing fiber other than the continuous fiber.
 炭素繊維は、連続繊維及び0.05cm以上の長繊維からなる群から選択されることが好ましく、連続繊維がより好ましい。また、炭素繊維の繊維長は、1cm以上であることがより好ましい。炭素繊維は、耐衝撃強度の観点では、連続繊維であることが最も好ましい。なお、炭素繊維の長さが短いほど、耐衝撃強度の向上効果は小さくなるが、その一方でより幅広い成形法に対応できるようになるというメリットがある。 The carbon fiber is preferably selected from the group consisting of continuous fiber and long fiber of 0.05 cm or more, and continuous fiber is more preferable. Further, the fiber length of the carbon fiber is more preferably 1 cm or more. The carbon fiber is most preferably a continuous fiber from the viewpoint of impact resistance. The shorter the length of the carbon fiber, the smaller the effect of improving the impact resistance, but on the other hand, there is an advantage that it can be applied to a wider range of molding methods.
 なお、本実施形態の複合体は、炭素繊維以外のその他の繊維を含んでいてもよい。かかるその他の繊維として、例えば、ガラス繊維、ガラスミルドファイバー、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維、有機繊維などが挙げられる。 The composite of the present embodiment may contain other fibers other than carbon fibers. Such other fibers include, for example, glass fiber, glass milled fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone fiber, metal fiber. , Organic fiber and the like.
 本実施形態の複合体を製造する方法は、特に限定されないが、本実施形態の複合体は、後述する炭素繊維複合体の製造方法により、好適に製造することができる。 The method for producing the composite of the present embodiment is not particularly limited, but the composite of the present embodiment can be suitably produced by the method for producing a carbon fiber composite described later.
<炭素繊維複合体の製造方法>
 本発明の一実施形態の炭素繊維複合体の製造方法(以下、「本実施形態の製造方法」と称することがある。)は、炭素繊維と、樹脂組成物からなるマトリックス部とを含む炭素繊維複合体の製造方法であって、
 ポリアミド樹脂(A)及びポリオレフィン(B)を含む樹脂組成物から、厚みが10μm以上500μm以下であるシートを形成する、シート形成工程と、
 前記シートと炭素繊維とを接触させて、炭素繊維と、前記樹脂組成物からなるマトリックス部とを含む炭素繊維複合体を得る、複合体取得工程とを、備え、
 前記ポリアミド樹脂(A)は、半芳香族ポリアミド樹脂(A1)のみを含み、前記ポリオレフィン(B)は、未変性ポリオレフィン(B1)及び変性ポリオレフィン(B2)を含む、ことを特徴とする。
 かかる本実施形態の製造方法によれば、高い耐衝撃性を有し且つ成形性に優れる炭素繊維複合体を製造することができる。
<Manufacturing method of carbon fiber composite>
The method for producing a carbon fiber composite according to an embodiment of the present invention (hereinafter, may be referred to as "the production method for the present embodiment") is a carbon fiber containing carbon fibers and a matrix portion composed of a resin composition. It is a method for manufacturing a complex.
A sheet forming step of forming a sheet having a thickness of 10 μm or more and 500 μm or less from the resin composition containing the polyamide resin (A) and the polyolefin (B).
A composite acquisition step of contacting the sheet with the carbon fibers to obtain a carbon fiber composite containing the carbon fibers and a matrix portion made of the resin composition is provided.
The polyamide resin (A) contains only a semi-aromatic polyamide resin (A1), and the polyolefin (B) contains an unmodified polyolefin (B1) and a modified polyolefin (B2).
According to the manufacturing method of the present embodiment, it is possible to manufacture a carbon fiber composite having high impact resistance and excellent moldability.
 なお、本実施形態の製造方法は、上述した工程以外の工程(例えば、後述する架橋工程など)を適宜備えていてもよい。 The manufacturing method of the present embodiment may appropriately include steps other than the above-mentioned steps (for example, a cross-linking step described later).
(シート形成工程)
 シート形成工程では、ポリアミド樹脂(A)及びポリオレフィン(B)を含む樹脂組成物から、厚みが10μm以上500μm以下であるシートを形成する。なお、上記ポリアミド樹脂(A)は、半芳香族ポリアミド樹脂(A1)のみを含み、上記ポリオレフィン(B)は、未変性ポリオレフィン(B1)及び変性ポリオレフィン(B2)を含む。そして、本シート形成工程では、ポリアミド樹脂(A)(半芳香族ポリアミド樹脂(A1))の連続相と、ポリオレフィン(B)の非連続相とによる海島構造を有するシートを形成することができる。
(Sheet forming process)
In the sheet forming step, a sheet having a thickness of 10 μm or more and 500 μm or less is formed from the resin composition containing the polyamide resin (A) and the polyolefin (B). The polyamide resin (A) contains only a semi-aromatic polyamide resin (A1), and the polyolefin (B) contains an unmodified polyolefin (B1) and a modified polyolefin (B2). Then, in this sheet forming step, a sheet having a sea-island structure can be formed by the continuous phase of the polyamide resin (A) (semi-aromatic polyamide resin (A1)) and the discontinuous phase of the polyolefin (B).
 シート形成工程では、特に限定されることなく、本実施形態の複合体に関して既述した内容を適宜選択することにより、所定の海島構造を形成することが好ましい。 The sheet forming step is not particularly limited, and it is preferable to form a predetermined sea-island structure by appropriately selecting the contents described above for the complex of the present embodiment.
 なお、シート形成工程で用いる樹脂組成物には、半芳香族ポリアミド樹脂(A1)及びポリオレフィン(B)以外の成分、例えば、流動改善剤、相溶化剤、架橋用添加剤、有機溶媒、重合開始剤、重合禁止剤、連鎖移動剤、光安定剤、結晶核剤・離型剤、滑剤、酸化防止剤、難燃剤、耐光剤及び耐候剤等を目的に応じて適宜配合することができる。 The resin composition used in the sheet forming step includes components other than the semi-aromatic polyamide resin (A1) and the polyolefin (B), for example, a flow improver, a compatibilizer, a cross-linking additive, an organic solvent, and polymerization initiation. Agents, polymerization inhibitors, chain transfer agents, light stabilizers, crystal nucleating agents / mold release agents, lubricants, antioxidants, flame retardants, light resistant agents, weather resistant agents and the like can be appropriately blended according to the purpose.
 また、シート形成工程で用いる樹脂組成物は、JIS K 7199に準拠し、温度300℃、せん断速度12.16s-1により測定した粘度(300℃粘度)が、900Pa・s以上4000Pa・s以下であることが好ましい。この理由は、既述した通りである。そして、シート形成工程では、特に限定されることなく、本実施形態の複合体に関して既述した内容を適宜選択することにより、300℃粘度を調整することが好ましい。 The resin composition used in the sheet forming step conforms to JIS K 7199 and has a viscosity (300 ° C. viscosity) measured at a temperature of 300 ° C. and a shear rate of 12.16s -1 at 900 Pa · s or more and 4000 Pa · s or less. It is preferable to have. The reason for this is as described above. The sheet forming step is not particularly limited, and it is preferable to adjust the viscosity at 300 ° C. by appropriately selecting the contents described above for the complex of the present embodiment.
 シート形成工程で形成するシートは、厚みが10μm以上500μm以下である。シート形成工程では、上述した樹脂組成物を原料として用いるので、高い成形性をもって所定の薄さ(500μm以下)で作製することができる。 The thickness of the sheet formed in the sheet forming step is 10 μm or more and 500 μm or less. Since the above-mentioned resin composition is used as a raw material in the sheet forming step, it can be produced with a predetermined thinness (500 μm or less) with high moldability.
 シート形成工程では、例えば、上述した樹脂組成物を溶融させ、押出成形によりシート状に成形することができる(溶融押出成形)。溶融押出成形では、例えば、上述した樹脂組成物を、加熱溶融させ、ギアポンプやフィルターを通して、Tダイなどのダイスに供給する。次いで、ダイスに供給された溶融物をシート状に押し出し、冷却ロールなどを用いて適宜冷却固化することで、シートを得ることができる。 In the sheet forming step, for example, the above-mentioned resin composition can be melted and molded into a sheet by extrusion molding (melt extrusion molding). In melt extrusion molding, for example, the above-mentioned resin composition is heated and melted and supplied to a die such as a T-die through a gear pump or a filter. Next, the melt supplied to the die is extruded into a sheet and appropriately cooled and solidified using a cooling roll or the like to obtain a sheet.
(複合体取得工程)
 複合体取得工程では、シート形成工程で形成したシートと炭素繊維とを接触させて、炭素繊維と、樹脂組成物からなるマトリックス部とを含む炭素繊維複合体を得る。なお、炭素繊維については、既述した通りである。
(Complex acquisition process)
In the composite acquisition step, the sheet formed in the sheet forming step and the carbon fiber are brought into contact with each other to obtain a carbon fiber composite containing the carbon fiber and the matrix portion made of the resin composition. The carbon fibers are as described above.
 上記シートと炭素繊維とを接触させる形態は、シートと炭素繊維とが直接接触さえすればよく、特に制限されることはないが、例えば、以下の(a)~(e)が挙げられる。
 (a)シートと炭素繊維とを直接又は間接的に貼り合わせる形態。
 (b)一対のシートで炭素繊維を直接若しくは間接的に挟む方法、又は一対の炭素繊維でシートを直接若しくは間接的に挟む形態。
 (c)シートと炭素繊維とを(交互に)複数積層する形態。
 (d)シートに含まれる半芳香族ポリアミド樹脂(A1)の融点以上の温度で当該シートを加熱した後、溶融したシートに炭素繊維を含浸させる形態。
 (e)シートと炭素繊維とを貼り合わせた(若しくは接触して配置した)後に、半芳香族ポリアミド樹脂(A1)の融点以上に加熱して、炭素繊維を含浸させる形態。
The form in which the sheet and the carbon fiber are brought into contact with each other is not particularly limited as long as the sheet and the carbon fiber are in direct contact with each other, and examples thereof include the following (a) to (e).
(A) A form in which a sheet and carbon fiber are directly or indirectly bonded to each other.
(B) A method in which carbon fibers are directly or indirectly sandwiched between a pair of sheets, or a form in which sheets are directly or indirectly sandwiched between a pair of carbon fibers.
(C) A form in which a plurality of sheets and carbon fibers are (alternately) laminated.
(D) A form in which the sheet is heated at a temperature equal to or higher than the melting point of the semi-aromatic polyamide resin (A1) contained in the sheet, and then the molten sheet is impregnated with carbon fibers.
(E) A form in which a sheet and carbon fibers are bonded (or placed in contact with each other) and then heated to a temperature equal to or higher than the melting point of the semi-aromatic polyamide resin (A1) to be impregnated with the carbon fibers.
 複合体取得工程においては、必要により、オス型・メス型等の金属製等の型を使用してもよく、また、上記シートと炭素繊維とを、型内で接触させてもよい。そのため、上記(a)~(e)はいずれも、型内で行ってもよい。また、上記(a)~(e)において、シートと炭素繊維との、貼り合わせ、挟持、又は積層する場合には、必要により、公知のバインダーや、半芳香族ポリアミド樹脂(A1)、ポリオレフィン(B)を有機溶媒に溶解した溶液を、バインダーとして使用してもよい。 In the complex acquisition step, if necessary, a metal mold such as a male mold or a female mold may be used, or the above sheet and carbon fiber may be brought into contact with each other in the mold. Therefore, any of the above (a) to (e) may be performed in the mold. Further, in the above (a) to (e), when the sheet and the carbon fiber are bonded, sandwiched, or laminated, a known binder, a semi-aromatic polyamide resin (A1), or a polyolefin (A1) may be used, if necessary. A solution in which B) is dissolved in an organic solvent may be used as a binder.
 シートに対する炭素繊維の配向方向は、特に限定されない。また、シートと炭素繊維とを接触させる際のシート数及び炭素繊維の数も、特に限定されず、適宜選択することができる。 The orientation direction of the carbon fibers with respect to the sheet is not particularly limited. Further, the number of sheets and the number of carbon fibers when the sheets and carbon fibers are brought into contact with each other are not particularly limited and can be appropriately selected.
 上記シートと炭素繊維とを接触させる際の条件は、特に制限されず、上記接触させる態様に合わせて、シート温度、雰囲気、接触圧力などの条件を適宜設定することができる。 The conditions for contacting the sheet with the carbon fiber are not particularly limited, and conditions such as the sheet temperature, atmosphere, and contact pressure can be appropriately set according to the contact mode.
(架橋工程)
 なお、本実施形態の製法は、更に、ポリオレフィン(B)を架橋する架橋工程を、上記シート形成工程開始から上記複合体取得工程の完了までの間に備えることが好ましい。かかるポリオレフィン(B)の架橋により、得られる複合体の耐衝撃性をより一層向上させることができる。架橋工程は、シート形成工程の開始から、複合体取得工程の完了までの間であれば、いつでも行うことができる。
(Crosslinking process)
In the production method of the present embodiment, it is preferable that the cross-linking step of cross-linking the polyolefin (B) is further provided between the start of the sheet forming step and the completion of the complex acquisition step. By cross-linking the polyolefin (B), the impact resistance of the obtained complex can be further improved. The cross-linking step can be performed at any time from the start of the sheet forming step to the completion of the complex acquisition step.
 上記架橋工程における架橋は、電子線架橋、化学架橋、電磁波架橋、及び熱架橋からなる群より選択される1種以上であることが好ましい。 The cross-linking in the above-mentioned cross-linking step is preferably one or more selected from the group consisting of electron beam cross-linking, chemical cross-linking, electromagnetic cross-linking, and thermal cross-linking.
 電子線架橋は、公知の方法により、行うことができる。ポリオレフィン(B)に対して電子線を照射すると、当該ポリオレフィン(B)を構成する高分子鎖の一部が切断されてラジカルが発生する。そして、当該ラジカルが、高分子鎖の他の部位に再結合することにより、架橋構造が形成される。このような電子線架橋に用いられる電子線は、電子銃などから放出される所定のエネルギーをもつ電子からなる。電子源である電子銃には、熱電子銃、電界放出電子銃、ショットキー電子銃などがある。電子線架橋が可能な限り、電子線の種類、強度、電子源などは問わない。  Electron beam cross-linking can be performed by a known method. When the polyolefin (B) is irradiated with an electron beam, a part of the polymer chain constituting the polyolefin (B) is cleaved to generate radicals. Then, the radical is recombined with other sites of the polymer chain to form a crosslinked structure. The electron beam used for such electron beam cross-linking is composed of electrons having a predetermined energy emitted from an electron gun or the like. Electron guns that are electron sources include thermal electron guns, field emission electron guns, and shotkey electron guns. As long as electron beam cross-linking is possible, the type, strength, electron source, etc. of the electron beam do not matter. The
 電子線の照射における吸収線量は、20~600kGyであることが好ましく、50~500kGyであることがより好ましい。吸収線量が600kGy以下であれば、半芳香族ポリアミド樹脂(A1)の高分子鎖を切断することなくポリオレフィン(B)の高分子鎖を切断し、また、吸収線量が20kGy以上であれば、ポリオレフィン(B)の高分子鎖を切断し易くなる。また、電子線の吸収線量を上記範囲にすることにより、架橋率又は分子量を適切な範囲内に調節して、非連続相の形状変化を抑制又は防止し易くすることができる。 The absorbed dose in the irradiation of the electron beam is preferably 20 to 600 kGy, more preferably 50 to 500 kGy. If the absorbed dose is 600 kGy or less, the polymer chain of the polyolefin (B) is cut without cutting the polymer chain of the semi-aromatic polyamide resin (A1), and if the absorbed dose is 20 kGy or more, the polyolefin is cut. It becomes easy to cut the polymer chain of (B). Further, by setting the absorbed dose of the electron beam within the above range, the cross-linking rate or the molecular weight can be adjusted within an appropriate range, and it is possible to easily suppress or prevent the shape change of the discontinuous phase.
 電子線の照射は、酸素雰囲気下で行うと、発生したラジカルが失活する場合があるため、窒素やアルゴン等の不活性ガス雰囲気下で行うことが好ましい。 When the electron beam is irradiated in an oxygen atmosphere, the generated radicals may be inactivated, so it is preferable to perform the electron beam irradiation in an inert gas atmosphere such as nitrogen or argon.
 なお、電子線の照射を行った場合などにおける、ポリオレフィン(B)が架橋されたか否かの確認は、例えば、ポリオレフィン(B)の粘度変化を測定することによって行うことができ、或いは、GPC(ゲル浸透クロマトグラフィー)を用いて行うことができる。 It should be noted that it is possible to confirm whether or not the polyolefin (B) is crosslinked when irradiated with an electron beam, for example, by measuring the change in the viscosity of the polyolefin (B), or by GPC ( It can be performed using gel permeation chromatography).
 化学架橋は、特に限定されず、公知の方法により行うことができる。化学架橋は、化学架橋剤の存在下で、光照射又は加熱などによって架橋反応を行う方法、又はシラン架橋法が好ましい。当該シラン架橋法は、カップリング剤、ラジカル開始剤及び有機錫化合物等の触媒存在下で、水と接触させることによってポリオレフィン(B)の分子鎖間にシラノール結合による架橋が形成されるものである。 The chemical cross-linking is not particularly limited and can be carried out by a known method. The chemical cross-linking is preferably a method of carrying out a cross-linking reaction by light irradiation or heating in the presence of a chemical cross-linking agent, or a silane cross-linking method. In the silane cross-linking method, cross-linking due to silanol bonds is formed between the molecular chains of the polyolefin (B) by contacting with water in the presence of a catalyst such as a coupling agent, a radical initiator and an organic tin compound. ..
 例えば、化学架橋は、化学架橋剤、及び必要により配合される架橋助剤、活性化剤又は触媒を用いて行うことが好ましい。上記化学架橋剤としては、例えば、アルキルフェノールホルムアルデヒド等のフェノール樹脂、ビニルトリメトキシシラン若しくはビニルトリエトキシシランといったビニルアルコキシシラン等のシランカップリング剤が挙げられる。また、上記架橋助剤としては、例えば、硫黄、p-ジニトロソベンゼン、ジビニルベンゼン、1,3-ジフェニルグアニジン、塩化第一錫・無水物、塩化第一錫・二水和物、塩化第二鉄等が挙げられる。また、上記活性化剤としては、例えば、塩素化パラフィン、塩素化ポリエチレン、若しくはクロロスルフォン化ポリエチレン等のハロゲン供与体、酸化鉄、酸化チタン、酸化マグネシウム、二酸化珪素、酸化亜鉛、又はラジカル開始剤等が挙げられる。上記ラジカル開始剤としては、例えば、ジクミルパーオキサイド等の有機過酸化物が挙げられる。また、上記触媒としては、ジブチル錫ラウレート等の有機錫化合物が挙げられる。 For example, chemical cross-linking is preferably carried out using a chemical cross-linking agent and a cross-linking aid, an activator or a catalyst compounded as necessary. Examples of the chemical cross-linking agent include a phenol resin such as alkylphenol formaldehyde, and a silane coupling agent such as vinylalkoxysilane such as vinyltrimethoxysilane or vinyltriethoxysilane. Examples of the cross-linking aid include sulfur, p-dinitrosobenzene, divinylbenzene, 1,3-diphenylguanidine, stannous chloride / anhydrous, stannous chloride / dihydrate, and second chloride. Examples include iron. Examples of the activator include halogen donors such as chlorinated paraffin, chlorinated polyethylene, and chlorosulphonized polyethylene, iron oxide, titanium oxide, magnesium oxide, silicon dioxide, zinc oxide, and radical initiators. Can be mentioned. Examples of the radical initiator include organic peroxides such as dicumyl peroxide. Further, examples of the catalyst include organic tin compounds such as dibutyl tin laurate.
 電磁波架橋は、特に限定されず、公知の方法により行うことができる。電磁波架橋に使用する電磁波は、紫外線、可視光線、α線、β線、γ線、陽子線、重イオン線、又は中性子線等の電離放射線を使用することができる。これらの中でも、電磁波としては、シートの劣化の観点から、紫外線が好ましい。電磁波架橋では、電磁波開始剤の存在下で電磁波を照射することにより、ポリオレフィン(B)を架橋することが好ましい。例えば、電磁波架橋は、電磁波開始剤(例えば、紫外線開始剤)、及び電磁波架橋剤(例えば、紫外線架橋剤)、並びに必要に応じて配合される電磁波吸収材(例えば、紫外線吸収剤)を用いて行うことが好ましい。上記電磁波架橋剤としては、ベンゾフェノン類、メラミン化合物等の紫外線架橋剤が挙げられる。上記電磁波開始剤としては、ベンゾイン系光開始剤等が挙げられる。上記電磁波吸収剤としては、トリアジン系紫外線吸収剤(TINUVINシリーズ)、ヒンダードアミン系紫外線吸収剤(HALS)等が挙げられる。 The electromagnetic wave cross-linking is not particularly limited and can be performed by a known method. As the electromagnetic wave used for electromagnetic wave bridging, ionizing radiation such as ultraviolet rays, visible rays, α rays, β rays, γ rays, proton rays, heavy ion rays, and neutron rays can be used. Among these, as the electromagnetic wave, ultraviolet rays are preferable from the viewpoint of deterioration of the sheet. In electromagnetic wave cross-linking, it is preferable to cross-link the polyolefin (B) by irradiating the electromagnetic wave in the presence of an electromagnetic wave initiator. For example, electromagnetic wave cross-linking uses an electromagnetic wave initiator (for example, an ultraviolet wave initiator), an electromagnetic wave cross-linking agent (for example, an ultraviolet wave cross-linking agent), and an electromagnetic wave absorber compounded as necessary (for example, an ultraviolet wave absorber). It is preferable to do it. Examples of the electromagnetic wave cross-linking agent include ultraviolet cross-linking agents such as benzophenones and melamine compounds. Examples of the electromagnetic wave initiator include benzoin-based photoinitiators. Examples of the electromagnetic wave absorber include triazine-based ultraviolet absorbers (TINUVIN series) and hindered amine-based ultraviolet absorbers (HALS).
 上記紫外線の光源は、特に限定されず、照射する波長(例えば、200~450nmの範囲)を考慮して適宜設定することができる。例えば、高圧水銀ランプ、低圧水銀ランプ、キセノンランプ、水銀キセノンランプ、メタルハライドランプ、紫外線レーザー光源等の光源を挙げることができる。また、紫外線を照射する際には、必要に応じて波長フィルターを用いて、特定の波長の光を照射してもよい。 The light source of the above ultraviolet rays is not particularly limited, and can be appropriately set in consideration of the wavelength to be irradiated (for example, in the range of 200 to 450 nm). For example, a light source such as a high-pressure mercury lamp, a low-pressure mercury lamp, a xenon lamp, a mercury xenon lamp, a metal halide lamp, or an ultraviolet laser light source can be mentioned. Further, when irradiating with ultraviolet rays, light of a specific wavelength may be irradiated by using a wavelength filter, if necessary.
 熱架橋は、特に限定されず、公知の方法により行うことができる。熱架橋では、熱架橋剤の存在下で熱処理を行うことにより、ポリオレフィン(B)を架橋することが好ましい。上該熱架橋剤としては、ヒドロパーオキシド類等の有機過酸化物、オキシム系化合物、トリアリルシアヌレート又はトリアリルイソシアヌレート等のアゾ系化合物が挙げられる。  Thermal cross-linking is not particularly limited and can be performed by a known method. In thermal cross-linking, it is preferable to cross-link the polyolefin (B) by performing a heat treatment in the presence of a thermal cross-linking agent. Examples of the thermal cross-linking agent include organic peroxides such as hydroperoxides, oxime compounds, and azo compounds such as triallyl cyanurate or triallyl isocyanurate. The
 上述した化学架橋剤、架橋助剤、活性化剤、触媒、電磁波開始剤、電磁波架橋剤、電磁波吸収剤及び熱架橋剤は、本明細書において「架橋用添加剤」と総称する。 The above-mentioned chemical cross-linking agent, cross-linking aid, activator, catalyst, electromagnetic wave initiator, electromagnetic wave cross-linking agent, electromagnetic wave absorber and thermal cross-linking agent are collectively referred to as "cross-linking additive" in the present specification.
 本実施形態の製造方法において架橋工程を行うタイミングは、シート形成工程の開始、即ち、シート形成工程の開始直後から、複合体取得工程の完了までの間であれば、特に制限されることはない。なお、「シート形成工程の開始から架橋工程を施す」とは、半芳香族ポリアミド樹脂(A1)及びポリオレフィン(B)(例えば、少なくとも半芳香族ポリアミド樹脂(A1)とポリオレフィン(B)とを混合した樹脂組成物等)をシート化するシート形成工程において、ポリオレフィン(B)の非連続相が形成された直後から当該非連続相中のポリオレフィン(B)を架橋することをいう。また、架橋工程は、その他の各工程と同時並行して行ってもよく、或いは、各工程後に行ってもよい。また、「複合体取得工程の完了までの間に架橋工程を施す」とは、文字通り、複合体取得工程が完全に完了するまで、ポリオレフィン(B)を架橋することをいう。従って、複合体取得工程の際に、架橋工程を施す形態(例えば、シート及び炭素繊維の成形と、ポリオレフィン(B)の架橋工程とを併せて行う場合)、並びに、シート及び炭素繊維の成形を複数回行う形態(例えば、炭素繊維複合体を複数積層する場合)は、いずれも該当する。熱などの外部刺激をシートに対して与える前に、当該シート中の非連続相を構成するポリオレフィン(B)を架橋することで、非連続相の形状が最終製品までより維持されやすくなる。 In the production method of the present embodiment, the timing of performing the crosslinking step is not particularly limited as long as it is between the start of the sheet forming step, that is, immediately after the start of the sheet forming step and the completion of the complex acquisition step. .. In addition, "performing the crosslinking step from the start of the sheet forming step" means that the semi-aromatic polyamide resin (A1) and the polyolefin (B) (for example, at least the semi-aromatic polyamide resin (A1) and the polyolefin (B) are mixed. In the sheet forming step of forming a sheet of the obtained resin composition, etc.), it means that the polyolefin (B) in the discontinuous phase is crosslinked immediately after the discontinuous phase of the polyolefin (B) is formed. Further, the cross-linking step may be performed in parallel with each of the other steps, or may be performed after each step. Further, "performing a cross-linking step until the completion of the complex acquisition step" literally means cross-linking the polyolefin (B) until the complex acquisition step is completely completed. Therefore, in the form of performing the cross-linking step in the composite acquisition step (for example, when the molding of the sheet and the carbon fiber and the cross-linking step of the polyolefin (B) are performed in combination), and the molding of the sheet and the carbon fiber are performed. Any of the forms performed a plurality of times (for example, when a plurality of carbon fiber composites are laminated) is applicable. By cross-linking the polyolefin (B) constituting the discontinuous phase in the sheet before applying an external stimulus such as heat to the sheet, the shape of the discontinuous phase can be more easily maintained until the final product.
 そして、架橋工程は、上記シート形成工程中、上記複合体取得工程中、又は、上記シート形成工程と上記炭素繊維複合体取得工程との間に施されることが好ましい。 The cross-linking step is preferably performed during the sheet forming step, the composite acquisition step, or between the sheet forming step and the carbon fiber composite acquisition step.
 シート及び炭素繊維を成形する前、即ち、シートに対して熱などの外部刺激を与える前に、非連続相を構成するポリオレフィン(B)を架橋することにより、非連続相の形状がより維持されやすくなる。また、架橋工程が上記いずれかの工程中に施されると、製造効率が向上する。 By cross-linking the polyolefin (B) constituting the discontinuous phase before molding the sheet and carbon fibers, that is, before applying an external stimulus such as heat to the sheet, the shape of the discontinuous phase is further maintained. It will be easier. Further, if the cross-linking step is performed during any of the above steps, the manufacturing efficiency is improved.
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
(樹脂組成物の調製)
 キャピログラフ(株式会社東洋精機製作所製、「キャピログラフ1D」)を用い、表1に示す配合処方の樹脂組成物について、JIS K 7199に準拠し、温度300℃、せん断速度12.16s-1による粘度(300℃粘度)を測定した。結果を表1に示す。
(Preparation of resin composition)
Using a capillograph (manufactured by Toyo Seiki Seisakusho Co., Ltd., "Capillograph 1D"), the resin composition having the formulation shown in Table 1 is based on JIS K 7199 and has a viscosity at a temperature of 300 ° C. and a shear rate of 12.16s -1 . 300 ° C. viscosity) was measured. The results are shown in Table 1.
 また、粘度測定時に得られた樹脂組成物からなるストランドの表面の外観について、目視にて、下記の基準に従って評価した。結果を表1に示す。かかる評価結果は、成形性の指標となる。また、通常、ストランド外観が不良であると、シート成形性も不良となる傾向にある。
 A:表面全体が滑らかである。
 B:表面に低頻度の荒れが観察される。
 C:表面全体に荒れ又は凹凸が観察される。
In addition, the appearance of the surface of the strand made of the resin composition obtained at the time of viscosity measurement was visually evaluated according to the following criteria. The results are shown in Table 1. The evaluation result is an index of moldability. Further, usually, when the appearance of the strand is poor, the sheet formability tends to be poor.
A: The entire surface is smooth.
B: Infrequent roughness is observed on the surface.
C: Roughness or unevenness is observed on the entire surface.
 また、上記樹脂組成物について、ミクロトームを用いて平滑化したのち、原子間力顕微鏡(AFM)(株式会社島津製作所製、「SPM-9700HT」)にて、30μm×30μmの画像を取得し、海島構造(連続相及び非連続相)の有無を確認した。結果を表1に示す。更に、海島構造が確認された例においては、上記画像から観察される全ての非連続相(ドメイン)について、円相当径(同一面積の円の径)の平均値を算出し、ドメイン径を求めた。結果を表1に示す。 Further, after smoothing the above resin composition using a microtome, an image of 30 μm × 30 μm was acquired by an atomic force microscope (AFM) (manufactured by Shimadzu Corporation, “SPM-9700HT”), and Kaijima. The presence or absence of the structure (continuous phase and discontinuous phase) was confirmed. The results are shown in Table 1. Furthermore, in the example in which the sea-island structure was confirmed, the average value of the circle-equivalent diameter (diameter of a circle of the same area) was calculated for all the discontinuous phases (domains) observed from the above image, and the domain diameter was obtained. rice field. The results are shown in Table 1.
 比較例1-5の樹脂組成物について、Tダイシート成形装置により、シートの成形を試みた。しかしながら、比較例1においては、成形中に大幅な増粘現象が発生し、樹脂塊や穴あきが多数発生したため、シートを成形することができなかった。また、比較例5においては、ポリオレフィンが連続相として形成され、シート成形時に樹脂が脈動しやすく、所定の厚みを有するシートを成形することができなかった。
 一方、実施例4,5及び11並びに比較例6の樹脂組成物について、Tダイシート成形装置により、厚み60μmのシートを成形した。次いで、このシートの上下に一方向開繊糸(炭素繊維、連続繊維)を配置し、プレス機(小平製作所社製)を用い、温度280℃、圧力1MPaの条件で熱プレスすることでコンポジットプリプレグ(炭素繊維複合体)を作製した。このコンポジットプリプレグを、0°、90°方向に交互に20層積層し、温度300℃、圧力5MPaの条件で熱プレスを行い、サイズ160mm×160mm、厚み2.0mmの積層体を得た。この積層体を用い、ISO6603-2:2000に準拠して、衝撃吸収エネルギーを測定した。結果を表1に示す。なお、衝撃吸収エネルギーが60.0J以上であれば、耐衝撃性が良好とみなすことができる。
For the resin composition of Comparative Example 1-5, an attempt was made to form a sheet by using a T-die sheet forming apparatus. However, in Comparative Example 1, a large thickening phenomenon occurred during molding, and a large number of resin lumps and holes were generated, so that the sheet could not be molded. Further, in Comparative Example 5, the polyolefin was formed as a continuous phase, the resin was easily pulsated during sheet molding, and a sheet having a predetermined thickness could not be molded.
On the other hand, for the resin compositions of Examples 4, 5 and 11 and Comparative Example 6, a sheet having a thickness of 60 μm was molded by a T-die sheet molding apparatus. Next, unidirectional open fibers (carbon fiber, continuous fiber) are placed above and below this sheet, and a composite prepreg is hot-pressed under the conditions of a temperature of 280 ° C. and a pressure of 1 MPa using a press machine (manufactured by Kodaira Seisakusho Co., Ltd.). (Carbon fiber composite) was prepared. Twenty layers of this composite prepreg were alternately laminated in the 0 ° and 90 ° directions and hot-pressed under the conditions of a temperature of 300 ° C. and a pressure of 5 MPa to obtain a laminate having a size of 160 mm × 160 mm and a thickness of 2.0 mm. Using this laminate, the shock absorption energy was measured according to ISO6603-2: 2000. The results are shown in Table 1. If the impact absorption energy is 60.0 J or more, it can be considered that the impact resistance is good.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
*1 半芳香族ポリアミド樹脂・・・クラレ株式会社製、ポリアミド9T、融点:265℃
*2 未変性ポリオレフィン・・・三井化学株式会社製「DF640」、酸価:0mgKOH/g
*3 変性ポリオレフィン1・・・三井化学株式会社製「MH7020」、酸価:11mgKOH/g
*4 変性ポリオレフィン2・・・三井化学株式会社製「MH7010」、酸価:5.5mgKOH/g
*5 酸化防止剤・・・BASF社製「IRGANOX1098」
* 1 Semi-aromatic polyamide resin: manufactured by Kuraray Co., Ltd., polyamide 9T, melting point: 265 ° C.
* 2 Unmodified polyolefin: "DF640" manufactured by Mitsui Chemicals, Inc., acid value: 0 mgKOH / g
* 3 Modified polyolefin 1 ... "MH7020" manufactured by Mitsui Chemicals, Inc., acid value: 11 mgKOH / g
* 4 Modified polyolefin 2 ... "MH7010" manufactured by Mitsui Chemicals, Inc., acid value: 5.5 mgKOH / g
* 5 Antioxidant: "IRGANOX1098" manufactured by BASF
 表1より、実施例では、樹脂組成物からなるストランドの外観が良好である上、適度な300℃粘度を有するため、成形性に優れることが分かる。更に、実施例では、樹脂組成物が、半芳香族ポリアミド樹脂を含むとともに、適度な大きさの非連続相(ポリオレフィンのドメイン)が分散形成されていることから、高い耐衝撃性を発揮することができることも分かる。 From Table 1, it can be seen that in the examples, the appearance of the strands made of the resin composition is good and the viscosity is appropriate at 300 ° C., so that the moldability is excellent. Further, in the examples, since the resin composition contains a semi-aromatic polyamide resin and a discontinuous phase (polyolefin domain) having an appropriate size is dispersed and formed, it exhibits high impact resistance. You can also see that it can be done.
 本発明によれば、半芳香族ポリアミド樹脂を用いつつも、高い耐衝撃性を有し且つ成形性に優れる炭素繊維複合体を提供することができる。
 また、本発明によれば、半芳香族ポリアミド樹脂を用いつつも、高い耐衝撃性を有し且つ成形性に優れる炭素繊維複合体の製造方法を提供することができる。
 
 
According to the present invention, it is possible to provide a carbon fiber composite having high impact resistance and excellent moldability while using a semi-aromatic polyamide resin.
Further, according to the present invention, it is possible to provide a method for producing a carbon fiber composite having high impact resistance and excellent moldability while using a semi-aromatic polyamide resin.

Claims (6)

  1.  炭素繊維と、樹脂組成物からなるマトリックス部とを含む炭素繊維複合体であって、
     前記樹脂組成物が、ポリアミド樹脂(A)の連続相と、ポリオレフィン(B)の非連続相とによる海島構造を有し、
     前記ポリアミド樹脂(A)は、半芳香族ポリアミド樹脂(A1)のみを含み、
     前記ポリオレフィン(B)は、未変性ポリオレフィン(B1)及び変性ポリオレフィン(B2)を含み、
     前記樹脂組成物が、JIS K 7199に準拠し、温度300℃、せん断速度12.16s-1により測定した粘度が、900Pa・s以上4000Pa・s以下である、ことを特徴とする、炭素繊維複合体。
    A carbon fiber composite containing carbon fibers and a matrix portion composed of a resin composition.
    The resin composition has a sea-island structure consisting of a continuous phase of the polyamide resin (A) and a discontinuous phase of the polyolefin (B).
    The polyamide resin (A) contains only the semi-aromatic polyamide resin (A1), and contains only the semi-aromatic polyamide resin (A1).
    The polyolefin (B) contains an unmodified polyolefin (B1) and a modified polyolefin (B2).
    The carbon fiber composite is characterized in that the resin composition conforms to JIS K 7199 and has a viscosity measured at a temperature of 300 ° C. and a shear rate of 12.16s -1 of 900 Pa · s or more and 4000 Pa · s or less. body.
  2.  前記半芳香族ポリアミド樹脂(A1)の融点が280℃以下である、請求項1に記載の炭素繊維複合体。 The carbon fiber composite according to claim 1, wherein the semi-aromatic polyamide resin (A1) has a melting point of 280 ° C. or lower.
  3.  前記樹脂組成物において、前記ポリアミド樹脂(A)の、前記ポリオレフィン(B)に対する質量比が、1.0以上4.0以下である、請求項1又は2に記載の炭素繊維複合体。 The carbon fiber composite according to claim 1 or 2, wherein in the resin composition, the mass ratio of the polyamide resin (A) to the polyolefin (B) is 1.0 or more and 4.0 or less.
  4.  前記樹脂組成物において、前記未変性ポリオレフィン(B1)の、前記ポリオレフィン(B)に対する質量比が、0.75以上1.00未満である、請求項1~3のいずれかに記載の炭素繊維複合体。 The carbon fiber composite according to any one of claims 1 to 3, wherein in the resin composition, the mass ratio of the unmodified polyolefin (B1) to the polyolefin (B) is 0.75 or more and less than 1.00. body.
  5.  炭素繊維と、樹脂組成物からなるマトリックス部とを含む炭素繊維複合体の製造方法であって、
     ポリアミド樹脂(A)及びポリオレフィン(B)を含む樹脂組成物から、厚みが10μm以上500μm以下であるシートを形成する、シート形成工程と、
     前記シートと炭素繊維とを接触させて、炭素繊維と、前記樹脂組成物からなるマトリックス部とを含む炭素繊維複合体を得る、複合体取得工程とを、備え、
     前記ポリアミド樹脂(A)は、半芳香族ポリアミド樹脂(A1)のみを含み、前記ポリオレフィン(B)は、未変性ポリオレフィン(B1)及び変性ポリオレフィン(B2)を含む、ことを特徴とする、炭素繊維複合体の製造方法。
    A method for producing a carbon fiber composite containing carbon fibers and a matrix portion composed of a resin composition.
    A sheet forming step of forming a sheet having a thickness of 10 μm or more and 500 μm or less from the resin composition containing the polyamide resin (A) and the polyolefin (B).
    A composite acquisition step of contacting the sheet with the carbon fibers to obtain a carbon fiber composite containing the carbon fibers and a matrix portion made of the resin composition is provided.
    The polyamide resin (A) contains only a semi-aromatic polyamide resin (A1), and the polyolefin (B) contains an unmodified polyolefin (B1) and a modified polyolefin (B2). Method for producing the complex.
  6.  更に、前記ポリオレフィン(B)を架橋する架橋工程を、前記シート形成工程開始から前記複合体取得工程の完了までの間に備える、請求項5に記載の炭素繊維複合体の製造方法。 The method for producing a carbon fiber composite according to claim 5, further comprising a cross-linking step for cross-linking the polyolefin (B) between the start of the sheet forming step and the completion of the composite acquisition step.
PCT/JP2021/035704 2020-12-18 2021-09-28 Carbon fiber composite, and method for manufacturing carbon fiber composite WO2022130728A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-210393 2020-12-18
JP2020210393A JP2022097040A (en) 2020-12-18 2020-12-18 Carbon fiber composite and method for producing carbon fiber composite

Publications (1)

Publication Number Publication Date
WO2022130728A1 true WO2022130728A1 (en) 2022-06-23

Family

ID=82059013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035704 WO2022130728A1 (en) 2020-12-18 2021-09-28 Carbon fiber composite, and method for manufacturing carbon fiber composite

Country Status (2)

Country Link
JP (1) JP2022097040A (en)
WO (1) WO2022130728A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335553A (en) * 1998-05-26 1999-12-07 Mitsui Chem Inc Thermoplastic resin composition and molded article
JP2015059221A (en) * 2013-09-20 2015-03-30 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG Molding material based on partially aromatic copolyamide
WO2019054109A1 (en) * 2017-09-12 2019-03-21 宇部興産株式会社 Polyamide resin composition, and polyamide resin composition for rotation molding and rotation molded article using same
WO2019208826A1 (en) * 2018-04-27 2019-10-31 株式会社ブリヂストン Reinforcement fiber composite resin, composite prepreg and laminate
WO2020100999A1 (en) * 2018-11-14 2020-05-22 株式会社ブリヂストン Method for manufacturing fiber-reinforced composite resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335553A (en) * 1998-05-26 1999-12-07 Mitsui Chem Inc Thermoplastic resin composition and molded article
JP2015059221A (en) * 2013-09-20 2015-03-30 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG Molding material based on partially aromatic copolyamide
WO2019054109A1 (en) * 2017-09-12 2019-03-21 宇部興産株式会社 Polyamide resin composition, and polyamide resin composition for rotation molding and rotation molded article using same
WO2019208826A1 (en) * 2018-04-27 2019-10-31 株式会社ブリヂストン Reinforcement fiber composite resin, composite prepreg and laminate
WO2020100999A1 (en) * 2018-11-14 2020-05-22 株式会社ブリヂストン Method for manufacturing fiber-reinforced composite resin

Also Published As

Publication number Publication date
JP2022097040A (en) 2022-06-30

Similar Documents

Publication Publication Date Title
JP2017008332A (en) Carbon fiber-reinforced resin composition and molded article obtained therefrom
JP6360068B2 (en) Heat aging resistant ethylene vinyl acetate copolymer composition and process for producing the same
CN1812881A (en) A metal-polyamide/polyethylene-metal laminate
JP6121995B2 (en) Method for producing heat-stabilized polyamide-filled acrylate polymer
EP1896514B1 (en) Ethylene/alkyl acrylate copolymers and compounds and vulcanizates thereof
JPH05500236A (en) Butyl rubber composition with improved adhesion to polyester
JP2016512277A (en) Inner liner for pneumatic tire assembly
WO2022130728A1 (en) Carbon fiber composite, and method for manufacturing carbon fiber composite
EP3652248A1 (en) High strength polyvinylidene fluoride based sized reinforcing fibers
JP2001280555A (en) Multi-layered hose for cooling system of automobile
JP6019895B2 (en) Propylene resin composition and molded article thereof
JPWO2019159861A1 (en) Laminated tube
WO2020100916A1 (en) Reinforced fiber composite resin production method
WO2020100999A1 (en) Method for manufacturing fiber-reinforced composite resin
JP2015206012A (en) carbon fiber prepreg and laminate
JP2885919B2 (en) Modified propylene ethylene copolymer and method for producing the same
KR20080039391A (en) Ethylene/alkyl acrylate copolymers, compounds and vulcanizates thereof
JP2017110031A (en) Acid-modified polyolefin, thermoplastic resin composition, adhesive and laminate
JPWO2018180332A1 (en) Filler reinforced resin structure
JP6317931B2 (en) Acid-modified polyolefin resin composition and laminate using the same
JP2003074753A (en) Cross-linked polyethylene pipe
JP2021046536A (en) Polyvinylchloride-based carbon fiber reinforced composite material
KR20240053615A (en) polyamide resin composition
JP2006137850A (en) Modified propylene-based polymer and method for producing the same
JPH05318681A (en) Resin laminated matter for which modified propylene polymer is used

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906093

Country of ref document: EP

Kind code of ref document: A1