WO2022130679A1 - Optical arithmetic device and method for manufacturing optical arithmetic device - Google Patents

Optical arithmetic device and method for manufacturing optical arithmetic device Download PDF

Info

Publication number
WO2022130679A1
WO2022130679A1 PCT/JP2021/028551 JP2021028551W WO2022130679A1 WO 2022130679 A1 WO2022130679 A1 WO 2022130679A1 JP 2021028551 W JP2021028551 W JP 2021028551W WO 2022130679 A1 WO2022130679 A1 WO 2022130679A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
planar
substrate
arithmetic unit
diffraction element
Prior art date
Application number
PCT/JP2021/028551
Other languages
French (fr)
Japanese (ja)
Inventor
裕幸 山岸
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to US18/256,211 priority Critical patent/US20240019615A1/en
Priority to JP2022569702A priority patent/JPWO2022130679A1/ja
Publication of WO2022130679A1 publication Critical patent/WO2022130679A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06EOPTICAL COMPUTING DEVICES; COMPUTING DEVICES USING OTHER RADIATIONS WITH SIMILAR PROPERTIES
    • G06E3/00Devices not provided for in group G06E1/00, e.g. for processing analogue or hybrid data

Definitions

  • the present invention relates to an optical arithmetic unit including a plurality of planar optical diffraction elements. Further, the present invention relates to a method for manufacturing such an optical arithmetic unit.
  • Patent Document 1 discloses a technique for fixing each of a plurality of optical elements (specifically, a lens) arranged side by side to a cylindrical holder (specifically, a lens holder).
  • a planar optical diffraction element having a plurality of microcells whose thickness or refractive index is individually set is known.
  • an optical calculation device in which such planar optical diffraction elements are arranged on the optical path of signal light, it is possible to perform complicated optical calculation at high speed with low power consumption.
  • a plurality of planar optical diffraction elements constituting an optical arithmetic unit are fixed to a cylindrical holder by diverting the technique described in Patent Document 1, the following problems occur.
  • each planar optical diffractive element is fixed to the inner surface of the holder over the entire circumference, it is unavoidable that distortion or stress is generated in each planar optical diffractive element when the holder is distorted.
  • strain or stress is generated in each planar optical diffractive element, it becomes difficult or impossible for the planar optical diffractive element to perform the desired calculation. As a result, it becomes difficult or impossible for these planar optical diffractometers to perform the desired calculation as a whole.
  • One aspect of the present invention has been made in view of the above problems, and an object thereof is to realize an optical arithmetic unit that can easily maintain an arithmetic function even if the environmental temperature changes.
  • the optical arithmetic apparatus includes a substrate and a group of optical diffractive elements including a plurality of planar optical diffractive elements, and each of them belongs to the group of optical diffractive elements.
  • the planar optical diffraction element is composed of a plurality of microcells whose thickness or refractive index is set independently of each other, and is fixed to the substrate.
  • the method for manufacturing an optical arithmetic apparatus is the above-mentioned method for manufacturing an optical arithmetic apparatus, wherein each planar optical diffraction element belonging to the optical diffraction element group is used. It includes a process of forming all at once.
  • FIG. 1 It is a perspective view which shows the structure of the optical arithmetic unit which concerns on 1st Embodiment of this invention. It is a perspective view which shows the specific example of the planar optical diffraction element provided in the optical arithmetic unit shown in FIG. It is a perspective view which shows the structure of the optical arithmetic unit which concerns on 2nd Embodiment of this invention. It is a perspective view which shows the structure of the optical arithmetic unit which concerns on 3rd Embodiment of this invention. It is a perspective view which shows the structure of the optical arithmetic unit which concerns on 4th Embodiment of this invention.
  • FIG. 1 is a perspective view showing the configuration of the optical arithmetic unit 1.
  • the optical arithmetic unit 1 includes an optical diffraction element group 11 and a substrate 12.
  • the optical diffraction element group 11 is composed of a plurality of (four in this embodiment) planar optical diffraction elements 11a1 to 11a4.
  • planar optical diffraction elements 11a1 to 11a4 a plate-shaped member having a square planar view shape, which is made of resin, is used.
  • substrate 12 a plate-shaped member having a rectangular plan view shape, which is made of glass, is used as the substrate 12.
  • the end faces of the planar optical diffraction elements 11a1 to 11a4 are directly fixed to the main surface of the substrate 12 so that the incident surface and the exit surface intersect the main surface of the substrate 12 (orthogonally in the present embodiment), respectively. ing.
  • the signal light is incident on the optical arithmetic unit 1
  • the signal lights having different phases transmitted through the microcells interfere with each other, so that a predetermined optical calculation is performed.
  • the “microcell” refers to, for example, a cell having a cell size of less than 10 ⁇ m.
  • the "cell size” refers to the square root of the area of the cell.
  • the cell size is the length of one side of the cell.
  • the lower limit of the cell size is not particularly limited, but is, for example, 1 nm.
  • the planar optical diffraction elements 11a1 to 11a4 are arranged in a straight line on the optical path of the signal light input to the optical arithmetic unit 1. Therefore, the signal light input to the optical calculation device 1 is the first planar optical diffraction element 11a1, the second planar optical diffraction element 11a2, the third planar optical diffraction element 11a3, and the fourth planar surface. It passes through the light diffractive element 11a4 in this order.
  • the first optical calculation by the first planar optical diffraction element 11a1, the second optical calculation by the second planar optical diffraction element 11a2, and the third planar optical diffraction element 11a3 The third optical calculation by the fourth optical diffraction element 11a4 and the fourth optical calculation by the fourth planar optical diffraction element 11a4 are executed in this order.
  • the optical arithmetic unit 1 may include a plate-shaped cover 15 (indicated by a dotted line in FIG. 1) arranged so as to face the substrate 12.
  • the cover 15 is supported by at least three columns (not shown in FIG. 1), one end of which is fixed to the upper surface of the substrate 12 and the other end of which is fixed to the lower surface of the cover 15.
  • the cover 15 is supported by a side wall (not shown in FIG. 1) that surrounds the optical diffraction element group 11 from all sides, with one end fixed to the upper surface of the substrate 12 and the other end fixed to the lower surface of the cover 15.
  • the height of the column or the side wall is set sufficiently high so that the lower surface of the cover 15 does not come into contact with the upper end surface of each planar optical diffraction element 11ai.
  • the upper surface of the substrate 12 refers to the main surface of the two main surfaces of the substrate 12 to which the planar optical diffraction elements 11a1 to 11a4 are fixed.
  • the lower surface of the cover 15 refers to the main surface of the two main surfaces of the cover 15 facing the main surface of the substrate 12.
  • the upper end surface of the planar optical diffraction element 11ai refers to an end surface facing the end surface fixed to the upper surface of the substrate 12 among the four end surfaces of the planar optical diffraction element 11ai.
  • FIG. 2 is a perspective view of the planar optical diffraction element 11ai according to this specific example.
  • the planar optical diffraction element 11ai has an effective region of a square having a side of 1.0 mm. This effective region is composed of 100 ⁇ 100 microcells arranged in a matrix. Each microcell is composed of a square columnar pillar having a square bottom surface with a side of 1 ⁇ m formed on a base having a thickness of 100 ⁇ m. The height of each pillar is 0 nm, 100 nm, 200 nm, ... It is decided to be a value.
  • the pillar is provided only on one main surface of the base, but the present invention is not limited to this. That is, pillars may be provided on both main surfaces of the base.
  • the planar optical diffraction element 11a1 having pillars provided only on one main surface of the base can be arranged so that the pillar forming surface becomes the incident surface of the signal light in the optical calculation device 1. It can also be arranged so that the forming surface becomes the emitting surface of the signal light.
  • one pillar forming surface becomes an incident surface of signal light and the other pillar forming surface becomes an incident surface of signal light in the optical calculation device 1. It can be arranged so as to be an exit surface.
  • the thickness of the microcell (that is, the microcell is configured so that the phase change amount of the light transmitted through each microcell becomes the desired value.
  • the height of the pillar to be used) is set, but the present invention is not limited to this.
  • the refractive index of the microcell may be set so that the amount of phase change of the light transmitted through each microcell becomes the desired value.
  • the setting of the refractive index of each microcell may be realized by selecting the material of the microcell, or by selecting the type and / or amount of the additive to be added to the material of the microcell. It may be realized.
  • the refractive index of the microcell may be set by controlling the degree of polymerization of the resin.
  • the optical arithmetic unit 1 includes a substrate 12 and an optical diffraction element group 11 including a plurality of planar optical diffraction elements 11a1 to 11a4.
  • Each planar optical diffractive element 11ai belonging to the optical diffractive element group 11 is composed of a plurality of microcells whose thickness or refractive index is set independently of each other, and the incident surface and the emitted surface thereof are the main surface of the substrate 12. It is fixed to the substrate 12 so as to intersect.
  • each planar optical diffraction element 11ai only a part (one end face) of the outer circumferences (four end faces) of each planar optical diffraction element 11ai is fixed to the substrate 12, and the remaining part (three end faces) is fixed to the substrate 12. It's free. Therefore, as compared with the case where the entire outer circumference of each planar optical diffraction element 11ai is fixed to the inner surface of the cylindrical holder by diverting the technique described in Patent Document 1, strain or stress due to a change in environmental temperature Is less likely to occur in each planar optical diffraction element 11ai. Therefore, it is possible to realize the optical arithmetic unit 1 which can easily maintain the arithmetic function even if the environmental temperature changes.
  • the optical arithmetic unit 1 may further include a cover 15 facing the substrate 12 and supported so as not to come into contact with each planar optical diffraction element 11ai belonging to the optical diffraction element group 11.
  • each planar optical diffraction element 11ai can be protected from impacts and vibrations that may be applied to each planar optical diffraction element 11ai from the outside of the optical arithmetic unit 1.
  • each planar optical diffraction element 11ai can be protected from foreign matter that may fly to the optical arithmetic unit 1.
  • the optical diffraction element group 11 may include a planar optical diffraction element in which a plurality of pillars whose heights are set independently of each other are formed on both sides.
  • a planar optical diffractive element having pillars formed on both sides it is possible to form a cell having a larger amount of phase change (that is, a thicker one) than a planar optical diffractive element having pillars formed on one side. .. Therefore, the degree of freedom of optical calculation that can be performed by the planar optical diffractive element having the pillars formed on both sides is the optical calculation that can be performed by the planar optical diffractive element having the pillars formed on one side. It is higher than the degree of freedom. Therefore, by including the planar optical diffraction element in which the pillars are formed on both sides in the optical diffraction element group 11, the degree of freedom of optical calculation that can be executed by the optical arithmetic unit 1 can be increased.
  • a manufacturing method including a step of collectively forming each planar optical diffraction element 11ai belonging to the optical diffraction element group 11 can be adopted.
  • each planar optical diffractive element 11ai is formed separately, and the relative positional relationship of each planar optical diffractive element 11ai is desired.
  • the adjustment step of adjusting the position and orientation of each planar optical diffraction element 11ai can be omitted so as to be related. Therefore, according to such a manufacturing method, the relative positional relationship of each planar optical diffraction element 11ai can be easily maintained in the desired relationship.
  • the step of collectively forming each planar optical diffraction element 11ai belonging to the optical diffraction element group 11 can be realized by, for example, a nanoimprint method or a stereolithography method.
  • the stereolithography method is sometimes called a liquid phase stereolithography method.
  • FIG. 3 is a perspective view showing the configuration of the optical arithmetic unit 2.
  • the optical arithmetic unit 2 includes an optical diffraction element group 21, a substrate 22, and a prism 23.
  • the optical diffraction element group 21 is composed of a plurality of (four in this embodiment) planar optical diffraction elements 21a1 to 21a4.
  • planar optical diffraction elements 21a1 to 21a4 a plate-shaped member having a square planar view shape, which is made of resin, is used.
  • the substrate 22 a plate-shaped member having a rectangular plan view shape, which is made of glass, is used.
  • the prism 23 a right-angled prism having two reflecting surfaces 23a and 23b orthogonal to each other is used.
  • the first planar optical diffractive element 21a1 and the second planar optical diffractive element 21a2 are provided so that the incident surface and the emitted surface intersect the main surface of the substrate 22 (orthogonally in the present embodiment), respectively.
  • the end face is directly fixed to the main surface of the substrate 22.
  • the third planar optical diffractive element 21a3 is subjected to the substrate via the second planar optical diffractive element 21a2 so that the incident surface and the exit surface intersect the main surface of the substrate 22 (orthogonally in the present embodiment). It is indirectly fixed to the main surface of 22.
  • the fourth planar optical diffractive element 21a4 is subjected to the substrate via the first planar optical diffractive element 21a1 so that the incident surface and the exit surface intersect the main surface of the substrate 22 (orthogonally in the present embodiment). It is indirectly fixed to the main surface of 22.
  • the signal lights having different phases transmitted through the microcells interfere with each other, so that a predetermined optical calculation is performed. Since the specific example of each planar optical diffraction element 21ai is the same as the specific example of each planar optical diffraction element 11ai provided in the optical arithmetic unit 1 according to the first embodiment, the description thereof will be omitted here.
  • the first planar optical diffraction element 21a1 and the second planar optical diffraction element 21a2 are arranged side by side in a straight line on the optical path of the signal light input to the optical arithmetic unit 2. There is. Therefore, the signal light input to the optical calculation device 2 passes through the first planar optical diffraction element 21a1 and the second planar optical diffraction element 21a2 in this order.
  • the first reflecting surface 23a of the prism 23 is arranged on the optical path of the signal light that has passed through the second planar optical diffraction element 21a2.
  • the first reflecting surface 23a of the prism 23 allows the signal light that has passed through the second planar light diffractive element 21a2 to intersect the main surface of the substrate 22 in the traveling direction (orthogonally in the present embodiment). Reflects to change 90 °.
  • the second reflecting surface 23b of the prism 23 is arranged on the optical path of the signal light reflected by the first reflecting surface 23a of the prism 23.
  • the second reflecting surface 23b of the prism 23 is a surface where the signal light reflected by the first reflecting surface 23a of the prism 23 intersects the main surface of the substrate 22 in the traveling direction (orthogonally in the present embodiment). It reflects so as to change it by 90 °.
  • the prism 23 reflects the signal light that has passed through the second planar light diffractive element 21a2 via the first reflecting surface 23a and the second reflecting surface 23b in the direction opposite to the traveling direction of the signal light. do.
  • the third planar optical diffraction element 21a3 and the fourth planar optical diffraction element 21a4 are arranged side by side in a straight line. Has been done. Therefore, the signal light reflected by the second reflecting surface 23b of the prism 23 passes through the third planar optical diffraction element 21a3 and the fourth planar optical diffraction element 21a4 in this order.
  • the first optical calculation by the first planar optical diffraction element 21a1, the second optical calculation by the second planar optical diffraction element 21a2, and the third planar optical diffraction element 21a3 The third optical calculation by the fourth optical diffraction element 21a4 and the fourth optical calculation by the fourth planar optical diffraction element 21a4 are executed in this order.
  • the optical arithmetic unit 2 further includes a prism 23 that functions as an optical element that folds back the optical path of the signal light in the plane intersecting the main surface of the substrate 22.
  • the optical diffractive element group 21 is provided in the optical path before folding and is directly fixed to the substrate 12, and is provided in the optical path after folding and via the planar optical diffractive element 21a1,21a2. Includes planar optical diffractive elements 21a4 and 21a3 indirectly fixed to the substrate 12.
  • the mounting density when the planar optical diffraction elements 21a1,21a2, 21a3, 21a4 are mounted on the substrate 22 can be increased. Therefore, according to the optical arithmetic unit 2, the size of the substrate 22 can be reduced as compared with the optical arithmetic unit 1.
  • FIG. 4 is a perspective view showing the configuration of the optical arithmetic unit 3.
  • the optical arithmetic unit 3 includes an optical diffraction element group 31, a substrate 32, a prism 33, and a mirror 34.
  • the optical diffraction element group 31 is composed of a plurality of (four in this embodiment) planar optical diffraction elements 31a1 to 31a4.
  • a plate-shaped member having a square planar view shape, which is made of resin is used as the planar optical diffraction elements 31a1 to 31a4.
  • the substrate 32 a plate-shaped member having a rectangular plan view shape, which is made of glass, is used.
  • the prism 33 a right-angled prism having two reflecting surfaces 33a and 33b orthogonal to each other is used.
  • the end faces of the planar optical diffraction elements 31a1 to 31a4 are directly fixed to the main surface of the substrate 32 so that the incident surface and the exit surface intersect the main surface of the substrate 32 (orthogonally in the present embodiment), respectively. ing.
  • the signal lights having different phases transmitted through the microcells interfere with each other, so that a predetermined optical calculation is performed.
  • the first planar optical diffraction element 31a1 is arranged on the optical path of the signal light input to the optical arithmetic unit 3. Therefore, the signal light input to the optical arithmetic unit 3 passes through the first planar optical diffraction element 31a1.
  • the first reflecting surface 33a of the prism 33 is arranged on the optical path of the signal light that has passed through the first planar optical diffraction element 31a1.
  • the first reflecting surface 33a of the prism 33 reflects the signal light that has passed through the first planar light diffractive element 31a1 so as to change its traveling direction by 90 ° in a plane parallel to the main surface of the substrate 32. ..
  • the second reflecting surface 33b of the prism 33 is arranged on the optical path of the signal light reflected by the first reflecting surface 33a of the prism 33.
  • the second reflecting surface 33b of the prism 33 is a part of the signal light reflected by the first reflecting surface 33a of the prism 33, and the traveling direction thereof is further 90 ° in a plane parallel to the main surface of the substrate 32. It reflects to change. Further, the second reflecting surface 33b of the prism 33 transmits a part of the signal light reflected by the first reflecting surface 33a of the prism 33.
  • a second planar optical diffraction element 31a2 is arranged on the optical path of the signal light reflected by the second reflecting surface 33b of the prism 33. Therefore, the signal light reflected by the second reflecting surface 33b of the prism 33 passes through the second planar optical diffraction element 31a2. Therefore, in the optical calculation device 3, the first optical calculation by the first planar optical diffraction element 31a1 and the second optical calculation by the second planar optical diffraction element 31a2 are executed in this order.
  • a mirror 34 is arranged on the optical path of the signal light transmitted through the second reflecting surface 33b of the prism 33.
  • the mirror 34 reflects the signal light transmitted through the second reflecting surface 33b of the prism 33 so as to change its traveling direction by 90 ° in a plane parallel to the main surface of the substrate 32.
  • the third planar optical diffraction element 31a3 and the fourth planar optical diffraction element 31a4 are arranged side by side in a straight line. Therefore, the signal light reflected by the mirror 34 passes through the third planar optical diffraction element 31a3 and the fourth planar optical diffraction element 31a4 in this order.
  • the first optical calculation by the first planar optical diffraction element 31a1, the third optical calculation by the third planar optical diffraction element 31a3, and the fourth planar optical diffraction is executed in this order.
  • the optical calculation device 3 is a prism 33 that functions as an optical element that branches the optical path of the signal light into the first optical path (optical path A in FIG. 4) and the second optical path (optical path B in FIG. 4). And a mirror 34.
  • the optical diffractive element group 31 includes a planar optical diffractive element 31a2 provided on the first optical path and planar optical diffractive elements 31a3 and 31a4 provided on the second optical path.
  • one optical path can be branched into two optical paths A and B, and a separate optical calculation can be performed in each of the optical paths A and B. That is, according to the optical calculation device 3, a plurality of (two in this embodiment) optical calculation can be executed at the same time.
  • FIG. 5 is a perspective view showing the configuration of the optical arithmetic unit 4.
  • the optical arithmetic unit 4 includes an optical diffraction element group 41, a substrate 42, and a mirror 43.
  • the optical diffraction element group 41 is composed of a plurality of (six in this embodiment) planar optical diffraction elements 41a1 to 41a6.
  • planar optical diffraction elements 41a1 to 41a6 a plate-shaped member having a square planar view shape, which is made of resin, is used.
  • the substrate 42 a plate-shaped member having a rectangular plan view shape, which is made of glass, is used as the substrate 42.
  • the mirror 43 is configured to be rotatable about an axis orthogonal to the main surface of the substrate 42 as a rotation axis.
  • the mirror 43 is rotatably fixed to the substrate 42 by inserting the columnar protrusion 43a protruding from the end surface of the mirror 43 into the columnar hole formed on the upper surface of the substrate 42. Illustrate.
  • the end faces of the planar optical diffraction elements 41a1 to 41a6 are directly fixed to the main surface of the substrate 42 so that the incident surface and the exit surface intersect the main surface of the substrate 42 (orthogonally in the present embodiment), respectively. ing.
  • the signal lights having different phases transmitted through the microcells interfere with each other, so that a predetermined optical calculation is performed.
  • the first planar optical diffraction element 41a1 and the second planar optical diffraction element 41a2 are arranged side by side in a straight line on the optical path of the signal light input to the optical arithmetic unit 4. There is. Therefore, the signal light input to the optical calculation device 4 passes through the first planar optical diffraction element 41a1 and the second planar optical diffraction element 41a2 in this order.
  • a mirror 43 is arranged on the optical path of the signal light that has passed through the second planar optical diffraction element 41a2.
  • the mirror 43 can have its reflective surface oriented in a first direction and its reflective surface oriented in a second direction.
  • the third planar optical diffractive element 41a3 and the fourth planar optical diffractive element 41a4 are on the optical path of the signal light reflected by the mirror 43. And are arranged side by side in a straight line. Therefore, the signal light reflected by the mirror 43 passes through the third planar optical diffraction element 41a3 and the fourth planar optical diffraction element 41a4 in this order. Therefore, in this case, in the optical calculation device 4, the first optical calculation by the first planar optical diffraction element 41a1, the second optical calculation by the second planar optical diffraction element 41a2, and the third planar light. The third optical calculation by the diffractive element 41a3 and the fourth optical calculation by the fourth planar optical diffractive element 41a4 are executed in this order.
  • the fifth planar optical diffractive element 41a5 and the sixth planar optical diffractive element 41a6 are on the optical path of the signal light reflected by the mirror 43. And are arranged side by side in a straight line. Therefore, the signal light reflected by the mirror 43 passes through the fifth planar optical diffraction element 41a5 and the sixth planar optical diffraction element 41a6 in this order. Therefore, in this case, in the optical calculation device 4, the first optical calculation by the first planar optical diffraction element 41a1, the second optical calculation by the second planar optical diffraction element 41a2, and the fifth planar light. The fifth optical calculation by the diffractive element 41a5 and the sixth optical calculation by the sixth planar optical diffractive element 41a6 are executed in this order.
  • the optical calculation device 4 is an optical element that guides the optical path of the signal light to the first optical path (optical path A in FIG. 5) or the second optical path (optical path B in FIG. 5), and is a signal light. It is provided with a mirror 43 in which the optical path for guiding the light path functions as a variable optical element.
  • the optical diffraction element group 41 includes planar optical diffraction elements 41a3 and 41a4 provided on the first optical path and planar optical diffraction elements 41a5 and 41a6 provided on the second optical path.
  • the user can select either the optical path A or the optical path B. Therefore, according to the optical calculation device 4, any of a plurality of (two in this embodiment) optical calculation can be executed, and the user selects which optical calculation is to be executed. Can be done.
  • FIG. 6 is a perspective view showing the configuration of the optical arithmetic unit 5.
  • the optical arithmetic unit 5 includes an optical diffraction element group 51, a substrate 52, and a mirror 53.
  • the optical diffraction element group 51 is composed of a plurality of (six in this embodiment) planar optical diffraction elements 51a1 to 51a6.
  • planar optical diffraction elements 51a1 to 51a6 a plate-shaped member having a square planar view shape, which is made of resin, is used.
  • the substrate 52 a plate-shaped member having a rectangular plan view shape, which is made of glass, is used.
  • the end faces of the planar optical diffraction elements 51a1 to 51a6 are directly fixed to the main surface of the substrate 52 so that the incident surface and the exit surface intersect the main surface of the substrate 52 (orthogonally in the present embodiment), respectively. ing.
  • the signal lights having different phases transmitted through the microcells interfere with each other, so that a predetermined optical calculation is performed.
  • the first planar optical diffraction element 51a1 and the second planar optical diffraction element 51a2 are arranged side by side in a straight line on the optical path of the signal light input to the optical arithmetic unit 5. There is. Therefore, the signal light input to the optical calculation device 5 passes through the first planar optical diffraction element 51a1 and the second planar optical diffraction element 51a2 in this order.
  • a mirror 53 is arranged on the optical path of the signal light that has passed through the second planar optical diffraction element 51a2.
  • the mirror 53 can be fixed to the substrate 52 so that its reflective surface faces the first direction, as shown by the solid line in FIG. 6 (1), or as shown by the dotted line in FIG. 6 (2). In addition, it can be fixed to the substrate 52 so that the reflecting surface faces the second direction.
  • the third planar light diffractive element 51a3 and the fourth are on the optical path of the signal light reflected by the mirror 53.
  • the planar optical diffraction elements 51a4 of the above are arranged side by side in a straight line. Therefore, the signal light reflected by the mirror 53 passes through the third planar optical diffraction element 51a3 and the fourth planar optical diffraction element 51a4 in this order.
  • the optical calculation device 5 the first optical calculation by the first planar optical diffraction element 51a1, the second optical calculation by the second planar optical diffraction element 51a2, and the third planar light
  • the third optical calculation by the diffractive element 51a3 and the fourth optical calculation by the fourth planar optical diffractive element 51a4 are executed in this order.
  • the fifth planar optical diffraction element 51a5 and the sixth are on the optical path of the signal light reflected by the mirror 53.
  • the planar optical diffraction elements 51a6 of the above are arranged side by side in a straight line. Therefore, the signal light reflected by the mirror 53 passes through the fifth planar optical diffraction element 51a5 and the sixth planar optical diffraction element 51a6 in this order. Therefore, in this case, in the optical calculation device 5, the first optical calculation by the first planar optical diffraction element 51a1, the second optical calculation by the second planar optical diffraction element 51a2, and the fifth planar light.
  • the fifth optical calculation by the diffractive element 51a5 and the sixth optical calculation by the sixth planar optical diffractive element 51a6 are executed in this order.
  • the optical calculation device 5 is an optical element that guides the optical path of the signal light to the first optical path (optical path A in FIG. 6) or the second optical path (optical path B in FIG. 6), and is a signal light. It is provided with a mirror 53 in which the optical path for guiding the light path functions as an invariant optical element.
  • the optical diffraction element group 51 includes planar optical diffraction elements 51a3 and 51a4 provided on the first optical path, and planar optical diffraction elements 51a5 and 51a6 provided on the second optical path.
  • the manufacturer can select either the optical path A or the optical path B. Therefore, according to the optical calculation device 5, any one of a plurality of (two in this embodiment) optical calculation can be executed, and the manufacturer selects which optical calculation is to be executed. Can be done.
  • FIG. 7 is a perspective view showing the configuration of the optical arithmetic unit 6.
  • the optical arithmetic unit 6 includes an optical diffraction element group 61 and a substrate 62.
  • the optical diffraction element group 61 is composed of a plurality of (two in this embodiment) planar optical diffraction elements 61a1 to 61a2.
  • planar optical diffraction elements 61a1 to 61a2 a plate-shaped member having a square planar view shape, which is made of resin, is used.
  • the substrate 62 a plate-shaped member having a rectangular plan view shape, which is made of glass, is used as the substrate 62.
  • the first planar optical diffraction element 61a1 is fixed to the substrate 62 so that its emission surface is in surface contact with one main surface of the substrate 62.
  • the second planar optical diffraction element 62a2 is fixed to the substrate 62 so that its incident surface is in surface contact with the other main surface of the substrate 62.
  • the microcell is composed of pillars
  • the pillar of the first planar optical diffusing element 61a1 is provided, for example, on the incident surface side of the first planar optical diffusing element 61a1 and the second planar optical diffusing element 61a2.
  • the pillar is provided, for example, on the exit surface side of the second planar optical diffraction element 61a2.
  • the first planar optical diffraction element 61a1 and the second planar optical diffraction element 61a2 are arranged side by side in a straight line on the optical path of the signal light input to the optical arithmetic unit 5. There is. Therefore, the signal light input to the optical calculation device 6 passes through the first planar optical diffraction element 61a1 and the second planar optical diffraction element 61a2 in this order. Therefore, in the optical calculation device 6, the first optical calculation by the first planar optical diffraction element 61a1 and the second optical calculation by the second planar optical diffraction element 61a2 are executed in this order.
  • the optical arithmetic unit 6 includes a substrate 62 and an optical diffraction element group 61 including a plurality of planar optical diffraction elements 61a1 to 61a2.
  • Each planar optical diffractive element 61ai belonging to the optical diffractive element group 61 is composed of a plurality of microcells whose thicknesses or refractive indexes are set independently of each other.
  • the first planar optical diffraction element 61a1 is fixed to the substrate 62 so that its emission surface is in surface contact with one main surface of the substrate 62.
  • the second planar optical diffraction element 61a2 is fixed to the substrate 62 so that its incident surface is in surface contact with the other main surface of the substrate 62.
  • each planar optical diffraction element 61ai has its emission surface or the entire incident surface fixed to the substrate 62. Therefore, as compared with the case where the entire outer circumference of each planar optical diffraction element 61ai is fixed to the inner surface of the cylindrical holder by diverting the technique described in Patent Document 1, strain or stress due to a change in environmental temperature Is less likely to occur in each planar optical diffraction element 61ai. Therefore, it is possible to realize the optical arithmetic unit 6 which can easily maintain the arithmetic function even if the environmental temperature changes.
  • FIG. 8 is a perspective view showing the structure of such an optical arithmetic unit 6A.
  • the optical arithmetic unit 6A has four optical arithmetic units 6 arranged on the substrate 63.
  • the end surface of the substrate 62 is directly on the main surface of the substrate 63 so that the main surface of the substrate 62 intersects the main surface of the substrate 63 (orthogonally in the present embodiment). It is fixed.
  • the calculation function of the optical calculation device 6A which is an aggregate of the optical calculation devices 6, even if the environmental temperature changes.
  • the optical arithmetic apparatus includes a substrate and a group of optical diffraction elements including a plurality of planar optical diffraction elements, and the optical diffraction element group includes the optical diffraction element group.
  • Each planar optical diffractive element to which it belongs is composed of a plurality of microcells whose thickness or refractive index is set independently of each other, and is fixed to the substrate.
  • each planar optical diffraction element belonging to the optical diffraction element group is the same.
  • the entrance surface and the exit surface are fixed to the substrate so as to intersect the main surface of the substrate.
  • the optical path of the signal light is folded back in the plane intersecting with the main surface of the substrate.
  • the optical diffractive element group is further provided with an optical element, and the optical diffractive element group is provided on one of the optical paths before and after the folding, and is provided on the other of the planar optical diffractive element directly fixed to the substrate and the optical path before and after the folding.
  • a configuration is adopted that includes a planar optical diffractive element indirectly fixed to the substrate via a planar optical diffractive element directly fixed to the substrate.
  • the optical diffraction element group is provided on the first optical path.
  • a configuration is adopted that includes a planar optical diffractive element and a planar optical diffractive element provided on a second optical path different from the first optical path.
  • the optical path of the signal light is the first optical path and the second optical path.
  • a configuration is adopted in which an optical element for branching to and is further provided.
  • the signal light is directed to the first optical path or the second optical path.
  • a configuration is adopted in which the optical element for guiding is further provided with an optical element in which the optical path for guiding the signal light is variable.
  • the signal light is directed to the first optical path or the second optical path.
  • a configuration is adopted in which the optical element for guiding is further provided with an optical element in which the optical path for guiding the signal light is invariant.
  • the cover faces the substrate. Therefore, a configuration is adopted in which a cover supported so as not to come into contact with each planar optical diffractive element belonging to the optical diffractive element group is further provided.
  • the light diffraction element group has an emission surface of one of the main substrates.
  • the optical diffraction element group includes the optical diffraction element group.
  • a configuration is adopted in which a plurality of pillars whose heights are set independently of each other include a planar optical diffractometer formed on both sides.
  • the method for manufacturing an optical calculation device according to the eleventh aspect of the present invention is a method for manufacturing an optical calculation device according to any one of the above-mentioned first to tenth aspects.
  • the present invention includes a step of collectively forming each planar optical diffractive element belonging to the optical diffractive element group.
  • Optical logic unit 111,21,31,41,51,61 Optical diffraction element group 11ai, 21ai, 31ai, 41ai, 51ai, 61ai Planar optical diffraction element 12,22 , 32, 42, 52, 62, 63 Substrate 23, 33 Prism (optical element) 34,43,53 Mirror (optical element) 15 cover

Abstract

The present invention realizes an optical arithmetic device that makes it easy to maintain a relative positional relationship between planar optical diffraction elements in a prescribed relationship. This optical arithmetic device (1) is provided with a substrate (12) and a plurality of planar optical diffraction elements (11a1–11a4), wherein each of the planar optical diffraction elements (11a1–11a4) is secured to the substrate (12) and is formed from a plurality of microcells each having the thickness or refractive index set independently.

Description

光演算装置、及び、光演算装置の製造方法Optical arithmetic unit and manufacturing method of optical arithmetic unit
 本発明は、複数の平面状光回折素子を含む光演算装置に関する。また、そのような光演算装置の製造方法に関する。 The present invention relates to an optical arithmetic unit including a plurality of planar optical diffraction elements. Further, the present invention relates to a method for manufacturing such an optical arithmetic unit.
 特許文献1には、並んで配置された複数の光学素子(具体的にはレンズ)の各々を筒状のホルダ(具体的にはレンズホルダ)に固定する技術が開示されている。 Patent Document 1 discloses a technique for fixing each of a plurality of optical elements (specifically, a lens) arranged side by side to a cylindrical holder (specifically, a lens holder).
特表2018-527829号公報Japanese Patent Publication No. 2018-527829
 光演算機能を有する光学素子として、厚み又は屈折率が個別に設定された複数のマイクロセルを有する平面状光回折素子が知られている。このような平面状光回折素子が信号光の光路上に並んだ光演算装置を用いれば、複雑な光演算を少ない消費電力で高速に実行することが可能である。しかしながら、光演算装置を構成する複数の平面状光回折素子を、特許文献1に記載の技術を流用して筒状のホルダに固定すると、以下のような問題を生じる。 As an optical element having an optical calculation function, a planar optical diffraction element having a plurality of microcells whose thickness or refractive index is individually set is known. By using an optical calculation device in which such planar optical diffraction elements are arranged on the optical path of signal light, it is possible to perform complicated optical calculation at high speed with low power consumption. However, when a plurality of planar optical diffraction elements constituting an optical arithmetic unit are fixed to a cylindrical holder by diverting the technique described in Patent Document 1, the following problems occur.
 すなわち、環境温度が変化すると、熱膨張又は熱収縮によってホルダに歪みが生じる。各平面状光回折素子は、全周に亘ってホルダの内側面に固定されているので、ホルダに歪みが生じると、各平面状光回折素子に歪み又は応力が生じることが避け難い。そして、各平面状光回折素子に歪み又は応力が生じると、その平面状光回折素子に所期の演算を行わせることが困難又は不可能になる。その結果、これらの平面状光回折素子に全体として所期の演算を行わせることが困難又は不可能になる。 That is, when the environmental temperature changes, the holder is distorted due to thermal expansion or contraction. Since each planar optical diffractive element is fixed to the inner surface of the holder over the entire circumference, it is unavoidable that distortion or stress is generated in each planar optical diffractive element when the holder is distorted. When strain or stress is generated in each planar optical diffractive element, it becomes difficult or impossible for the planar optical diffractive element to perform the desired calculation. As a result, it becomes difficult or impossible for these planar optical diffractometers to perform the desired calculation as a whole.
 本発明の一態様は、上記の問題に鑑みてなされたものであり、環境温度が変化しても演算機能を維持することが容易な光演算装置を実現することを目的とする。 One aspect of the present invention has been made in view of the above problems, and an object thereof is to realize an optical arithmetic unit that can easily maintain an arithmetic function even if the environmental temperature changes.
 上記の課題を解決するために、本発明の一態様に係る光演算装置は、基板と、複数の平面状光回折素子を含む光回折素子群と、を備え、前記光回折素子群に属する各平面状光回折素子は、厚み又は屈折率が互いに独立に設定された複数のマイクロセルにより構成されており、前記基板に固定されている。 In order to solve the above-mentioned problems, the optical arithmetic apparatus according to one aspect of the present invention includes a substrate and a group of optical diffractive elements including a plurality of planar optical diffractive elements, and each of them belongs to the group of optical diffractive elements. The planar optical diffraction element is composed of a plurality of microcells whose thickness or refractive index is set independently of each other, and is fixed to the substrate.
 上記の課題を解決するために、本発明の一態様に係る光演算装置の製造方法は、上述した光演算装置の製造方法であって、前記光回折素子群に属する各平面状光回折素子を一括して形成する工程を含んでいる。 In order to solve the above-mentioned problems, the method for manufacturing an optical arithmetic apparatus according to one aspect of the present invention is the above-mentioned method for manufacturing an optical arithmetic apparatus, wherein each planar optical diffraction element belonging to the optical diffraction element group is used. It includes a process of forming all at once.
 本発明の一態様によれば、環境温度が変化しても演算機能を維持することが容易な光演算装置を実現することができる。 According to one aspect of the present invention, it is possible to realize an optical arithmetic unit that can easily maintain the arithmetic function even if the environmental temperature changes.
本発明の第1の実施形態に係る光演算装置の構成を示す斜視図である。It is a perspective view which shows the structure of the optical arithmetic unit which concerns on 1st Embodiment of this invention. 図1に示す光演算装置が備える平面状光回折素子の具体例を示す斜視図である。It is a perspective view which shows the specific example of the planar optical diffraction element provided in the optical arithmetic unit shown in FIG. 本発明の第2の実施形態に係る光演算装置の構成を示す斜視図である。It is a perspective view which shows the structure of the optical arithmetic unit which concerns on 2nd Embodiment of this invention. 本発明の第3の実施形態に係る光演算装置の構成を示す斜視図である。It is a perspective view which shows the structure of the optical arithmetic unit which concerns on 3rd Embodiment of this invention. 本発明の第4の実施形態に係る光演算装置の構成を示す斜視図である。It is a perspective view which shows the structure of the optical arithmetic unit which concerns on 4th Embodiment of this invention. 本発明の第5の実施形態に係る光演算装置の構成を示す斜視図である。It is a perspective view which shows the structure of the optical arithmetic unit which concerns on 5th Embodiment of this invention. 本発明の第6の実施形態に係る光演算装置の構成を示す斜視図である。It is a perspective view which shows the structure of the optical arithmetic unit which concerns on 6th Embodiment of this invention. 本発明の第6の実施形態に係る光演算装置の変形例を示す斜視図である。It is a perspective view which shows the modification of the optical arithmetic unit which concerns on 6th Embodiment of this invention.
 〔第1の実施形態〕
 (光演算装置の構成)
 本発明の第1の実施形態に係る光演算装置1の構成について、図1を参照して説明する。図1は、光演算装置1の構成を示す斜視図である。
[First Embodiment]
(Configuration of optical logic unit)
The configuration of the optical arithmetic unit 1 according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a perspective view showing the configuration of the optical arithmetic unit 1.
 光演算装置1は、光回折素子群11と、基板12と、を備えている。光回折素子群11は、複数の(本実施形態においては4つの)平面状光回折素子11a1~11a4により構成されている。本実施形態においては、平面状光回折素子11a1~11a4として、樹脂により構成された、平面視形状が正方形の板状の部材を用いている。また、本実施形態においては、基板12として、ガラスにより構成された、平面視形状が長方形の板状の部材を用いている。 The optical arithmetic unit 1 includes an optical diffraction element group 11 and a substrate 12. The optical diffraction element group 11 is composed of a plurality of (four in this embodiment) planar optical diffraction elements 11a1 to 11a4. In the present embodiment, as the planar optical diffraction elements 11a1 to 11a4, a plate-shaped member having a square planar view shape, which is made of resin, is used. Further, in the present embodiment, as the substrate 12, a plate-shaped member having a rectangular plan view shape, which is made of glass, is used.
 平面状光回折素子11a1~11a4は、それぞれ、その入射面及び出射面が基板12の主面と交わる(本実施形態においては直交する)ように、その端面が基板12の主面に直接固定されている。 The end faces of the planar optical diffraction elements 11a1 to 11a4 are directly fixed to the main surface of the substrate 12 so that the incident surface and the exit surface intersect the main surface of the substrate 12 (orthogonally in the present embodiment), respectively. ing.
 各平面状光回折素子11ai(i=1,2,…,4)は、厚み又は屈折率が互いに独立に設定された複数のマイクロセルにより構成されている。光演算装置1に信号光が入射すると、各マイクロセルを透過した位相の異なる信号光が相互に干渉することによって、予め定められた光演算が行われる。なお、本明細書において、「マイクロセル」とは、例えば、セルサイズが10μm未満のセルのことを指す。また、本明細書において、「セルサイズ」とは、セルの面積の平方根のことを指す。例えば、マイクロセルの平面視形状が正方形である場合、セルサイズとは、セルの一辺の長さである。セルサイズの下限は、特に限定されないが、例えば1nmである。 Each planar optical diffraction element 11ai (i = 1, 2, ..., 4) is composed of a plurality of microcells whose thickness or refractive index is set independently of each other. When the signal light is incident on the optical arithmetic unit 1, the signal lights having different phases transmitted through the microcells interfere with each other, so that a predetermined optical calculation is performed. In the present specification, the “microcell” refers to, for example, a cell having a cell size of less than 10 μm. Further, in the present specification, the "cell size" refers to the square root of the area of the cell. For example, when the plan view shape of the microcell is square, the cell size is the length of one side of the cell. The lower limit of the cell size is not particularly limited, but is, for example, 1 nm.
 本実施形態において、平面状光回折素子11a1~11a4は、光演算装置1に入力される信号光の光路上に一直線に並んで配置されている。このため、光演算装置1に入力された信号光は、第1の平面状光回折素子11a1、第2の平面状光回折素子11a2、第3の平面状光回折素子11a3、及び第4の平面状光回折素子11a4をこの順に通過する。したがって、光演算装置1においては、第1の平面状光回折素子11a1による第1の光演算、第2の平面状光回折素子11a2による第2の光演算、第3の平面状光回折素子11a3による第3の光演算、及び、第4の平面状光回折素子11a4による第4の光演算がこの順に実行される。 In the present embodiment, the planar optical diffraction elements 11a1 to 11a4 are arranged in a straight line on the optical path of the signal light input to the optical arithmetic unit 1. Therefore, the signal light input to the optical calculation device 1 is the first planar optical diffraction element 11a1, the second planar optical diffraction element 11a2, the third planar optical diffraction element 11a3, and the fourth planar surface. It passes through the light diffractive element 11a4 in this order. Therefore, in the optical calculation device 1, the first optical calculation by the first planar optical diffraction element 11a1, the second optical calculation by the second planar optical diffraction element 11a2, and the third planar optical diffraction element 11a3 The third optical calculation by the fourth optical diffraction element 11a4 and the fourth optical calculation by the fourth planar optical diffraction element 11a4 are executed in this order.
 なお、光演算装置1は、基板12と対向するように配置された板状のカバー15(図1において点線にて付記)を備えていてもよい。例えば、カバー15は、一端が基板12の上面に固定され、他端がカバー15の下面に固定された、少なくとも3本の支柱(図1において不図示)により支持される。或いは、カバー15は、一端が基板12の上面に固定され、他端がカバー15の下面に固定された、光回折素子群11を四方から取り囲む側壁(図1において不図示)により支持される。支柱又は側壁の高さは、カバー15の下面が各平面状光回折素子11aiの上端面に接触しないよう、十分に高く設定される。 The optical arithmetic unit 1 may include a plate-shaped cover 15 (indicated by a dotted line in FIG. 1) arranged so as to face the substrate 12. For example, the cover 15 is supported by at least three columns (not shown in FIG. 1), one end of which is fixed to the upper surface of the substrate 12 and the other end of which is fixed to the lower surface of the cover 15. Alternatively, the cover 15 is supported by a side wall (not shown in FIG. 1) that surrounds the optical diffraction element group 11 from all sides, with one end fixed to the upper surface of the substrate 12 and the other end fixed to the lower surface of the cover 15. The height of the column or the side wall is set sufficiently high so that the lower surface of the cover 15 does not come into contact with the upper end surface of each planar optical diffraction element 11ai.
 ここで、基板12の上面とは、基板12の2つの主面のうち、平面状光回折素子11a1~11a4が固定されている方の主面のことを指す。また、カバー15の下面とは、カバー15の2つの主面のうち、基板12の主面に対向する方の主面のことを指す。また、平面状光回折素子11aiの上端面とは、平面状光回折素子11aiの4つの端面のうち、基板12の上面に固定される端面と対向する端面のことを指す。カバー15を側壁により支持する構成を採用した場合、基板12、カバー15、及び側壁により囲まれた空間に、マッチングオイルなどの液体、或いは、窒素ガスなどの気体を封入することも可能である。 Here, the upper surface of the substrate 12 refers to the main surface of the two main surfaces of the substrate 12 to which the planar optical diffraction elements 11a1 to 11a4 are fixed. Further, the lower surface of the cover 15 refers to the main surface of the two main surfaces of the cover 15 facing the main surface of the substrate 12. Further, the upper end surface of the planar optical diffraction element 11ai refers to an end surface facing the end surface fixed to the upper surface of the substrate 12 among the four end surfaces of the planar optical diffraction element 11ai. When the structure in which the cover 15 is supported by the side wall is adopted, it is possible to enclose a liquid such as matching oil or a gas such as nitrogen gas in the space surrounded by the substrate 12, the cover 15, and the side wall.
 (平面状光回折素子の具体例)
 光演算装置1が備える各平面状光回折素子11aiの具体例について、図2を参照して説明する。図2は、本具体例に係る平面状光回折素子11aiの斜視図である。
(Specific example of planar optical diffraction element)
A specific example of each planar optical diffraction element 11ai included in the optical arithmetic unit 1 will be described with reference to FIG. FIG. 2 is a perspective view of the planar optical diffraction element 11ai according to this specific example.
 本具体例に係る平面状光回折素子11aiは、一辺1.0mmの正方形の有効領域を有している。この有効領域は、マトリックス状に配置された100×100個のマイクロセルにより構成されている。各マイクロセルは、厚さ100μmのベース上に形成された、1辺1μmの正方形の底面を有する四角柱状のピラーにより構成されている。各ピラーの高さは、0nm、100nm、200nm、…、1100nm、1200nm(100nmステップ13段階)の何れかであり、そのピラーにより構成されるマイクロセルを透過する光の位相変化量が所期の値になるように決められている。 The planar optical diffraction element 11ai according to this specific example has an effective region of a square having a side of 1.0 mm. This effective region is composed of 100 × 100 microcells arranged in a matrix. Each microcell is composed of a square columnar pillar having a square bottom surface with a side of 1 μm formed on a base having a thickness of 100 μm. The height of each pillar is 0 nm, 100 nm, 200 nm, ... It is decided to be a value.
 なお、本具体例に係る平面状光回折素子11aiにおいては、ベースの一方の主面にのみピラーを設けているが、本発明はこれに限定されるものではない。すなわち、ベースの両方の主面にピラーを設けてもよい。なお、ベースの一方の主面にのみピラーが設けられた平面状光回折素子11a1は、光演算装置1において、ピラー形成面が信号光の入射面となるように配置することもできるし、ピラー形成面が信号光の出射面となるように配置することもできる。一方、ベースの両方の主面にピラーが設けられた平面状光回折素子11a1は、光演算装置1において、一方のピラー形成面が信号光の入射面となり、他方のピラー形成面が信号光の出射面となるように配置することができる。 In the planar optical diffraction element 11ai according to the specific example, the pillar is provided only on one main surface of the base, but the present invention is not limited to this. That is, pillars may be provided on both main surfaces of the base. The planar optical diffraction element 11a1 having pillars provided only on one main surface of the base can be arranged so that the pillar forming surface becomes the incident surface of the signal light in the optical calculation device 1. It can also be arranged so that the forming surface becomes the emitting surface of the signal light. On the other hand, in the planar optical diffraction element 11a1 in which pillars are provided on both main surfaces of the base, one pillar forming surface becomes an incident surface of signal light and the other pillar forming surface becomes an incident surface of signal light in the optical calculation device 1. It can be arranged so as to be an exit surface.
 なお、本具体例に係る平面状光回折素子11aiにおいては、各マイクロセルを透過する光の位相変化量が所期の値となるように、そのマイクロセルの厚み(すなわち、そのマイクロセルを構成するピラーの高さ)を設定しているが、本発明はこれに限定されるものではない。例えば、各マイクロセルを透過する光の位相変化量が所期の値となるように、そのマイクロセルの屈折率を設定してもよい。この場合、各マイクロセルの屈折率の設定は、そのマイクロセルの材料を選択することにより実現してもよし、そのマイクロセルの材料に添加する添加剤の種類及び/又は量を選択することにより実現してもよい。また、各マイクロセルが樹脂(高分子)により構成されている場合には、その樹脂の重合の度合いを制御することによって、そのマイクロセルの屈折率を設定してもよい。 In the planar optical diffraction element 11ai according to this specific example, the thickness of the microcell (that is, the microcell is configured so that the phase change amount of the light transmitted through each microcell becomes the desired value. The height of the pillar to be used) is set, but the present invention is not limited to this. For example, the refractive index of the microcell may be set so that the amount of phase change of the light transmitted through each microcell becomes the desired value. In this case, the setting of the refractive index of each microcell may be realized by selecting the material of the microcell, or by selecting the type and / or amount of the additive to be added to the material of the microcell. It may be realized. Further, when each microcell is composed of a resin (polymer), the refractive index of the microcell may be set by controlling the degree of polymerization of the resin.
 (光演算装置の効果)
 以上のように、光演算装置1は、基板12と、複数の平面状光回折素子11a1~11a4を含む光回折素子群11と、を備えている。光回折素子群11に属する各平面状光回折素子11aiは、厚み又は屈折率が互いに独立に設定された複数のマイクロセルにより構成されており、その入射面及び出射面が基板12の主面と交わるように基板12に固定されている。
(Effect of optical logic unit)
As described above, the optical arithmetic unit 1 includes a substrate 12 and an optical diffraction element group 11 including a plurality of planar optical diffraction elements 11a1 to 11a4. Each planar optical diffractive element 11ai belonging to the optical diffractive element group 11 is composed of a plurality of microcells whose thickness or refractive index is set independently of each other, and the incident surface and the emitted surface thereof are the main surface of the substrate 12. It is fixed to the substrate 12 so as to intersect.
 このため、光演算装置1においては、各平面状光回折素子11aiの外周(4つの端面)のうち、一部分(1つの端面)のみが基板12に固定され、残りの部分(3つの端面)は自由である。したがって、特許文献1に記載の技術を流用して筒状のホルダの内側面に各平面状光回折素子11aiの外周全体を固定する場合と比較して、環境温度の変化に起因する歪又は応力が各平面状光回折素子11aiに生じ難くなる。このため、環境温度が変化しても演算機能を維持することが容易な光演算装置1を実現することができる。 Therefore, in the optical arithmetic unit 1, only a part (one end face) of the outer circumferences (four end faces) of each planar optical diffraction element 11ai is fixed to the substrate 12, and the remaining part (three end faces) is fixed to the substrate 12. It's free. Therefore, as compared with the case where the entire outer circumference of each planar optical diffraction element 11ai is fixed to the inner surface of the cylindrical holder by diverting the technique described in Patent Document 1, strain or stress due to a change in environmental temperature Is less likely to occur in each planar optical diffraction element 11ai. Therefore, it is possible to realize the optical arithmetic unit 1 which can easily maintain the arithmetic function even if the environmental temperature changes.
 また、光演算装置1は、基板12と対向するカバー15であって、光回折素子群11に属する各平面状光回折素子11aiと接触しないように支持されたカバー15を更に備え得る。 Further, the optical arithmetic unit 1 may further include a cover 15 facing the substrate 12 and supported so as not to come into contact with each planar optical diffraction element 11ai belonging to the optical diffraction element group 11.
 この場合、光演算装置1によれば、光演算装置1の外部から各平面状光回折素子11aiに加わり得る衝撃や振動などから各平面状光回折素子11aiを保護することができる。また、光演算装置1に飛来し得る異物から各平面状光回折素子11aiを保護することができる。 In this case, according to the optical arithmetic unit 1, each planar optical diffraction element 11ai can be protected from impacts and vibrations that may be applied to each planar optical diffraction element 11ai from the outside of the optical arithmetic unit 1. In addition, each planar optical diffraction element 11ai can be protected from foreign matter that may fly to the optical arithmetic unit 1.
 また、光回折素子群11は、高さが互いに独立に設定された複数のピラーが両面に形成された平面状光回折素子を含み得る。 Further, the optical diffraction element group 11 may include a planar optical diffraction element in which a plurality of pillars whose heights are set independently of each other are formed on both sides.
 ピラーが両面に形成された平面状光回折素子においては、ピラーが片面に形成された平面状光回折素子よりも位相変化量が大きい(すなわち、厚みの厚い)セルを形成することが可能である。したがって、ピラーが両面に形成された平面状光回折素子に実行させることが可能な光演算の自由度は、ピラーが片面に形成された平面状光回折素子に実行させることが可能な光演算の自由度よりも高くなる。したがって、ピラーが両面に形成された平面状光回折素子を光回折素子群11に含めることで、光演算装置1に実行させることが可能な光演算の自由度を高めることができる。 In a planar optical diffractive element having pillars formed on both sides, it is possible to form a cell having a larger amount of phase change (that is, a thicker one) than a planar optical diffractive element having pillars formed on one side. .. Therefore, the degree of freedom of optical calculation that can be performed by the planar optical diffractive element having the pillars formed on both sides is the optical calculation that can be performed by the planar optical diffractive element having the pillars formed on one side. It is higher than the degree of freedom. Therefore, by including the planar optical diffraction element in which the pillars are formed on both sides in the optical diffraction element group 11, the degree of freedom of optical calculation that can be executed by the optical arithmetic unit 1 can be increased.
 また、光演算装置1の製造方法としては、光回折素子群11に属する各平面状光回折素子11aiを一括して形成する工程を含む製造方法を採用することができる。 Further, as the manufacturing method of the optical arithmetic unit 1, a manufacturing method including a step of collectively forming each planar optical diffraction element 11ai belonging to the optical diffraction element group 11 can be adopted.
 このような製造方法を採用した場合、各平面状光回折素子11aiを別個に形成する場合に必要になる調整工程であって、各平面状光回折素子11aiの相対的な位置関係が所期の関係になるように、各平面状光回折素子11aiの位置及び向きを調整する調整工程を省略することができる。したがって、このような製造方法によれば、各平面状光回折素子11aiの相対的な位置関係を所期の関係に容易に維持することができる。 When such a manufacturing method is adopted, it is an adjustment step required when each planar optical diffractive element 11ai is formed separately, and the relative positional relationship of each planar optical diffractive element 11ai is desired. The adjustment step of adjusting the position and orientation of each planar optical diffraction element 11ai can be omitted so as to be related. Therefore, according to such a manufacturing method, the relative positional relationship of each planar optical diffraction element 11ai can be easily maintained in the desired relationship.
 なお、光回折素子群11に属する各平面状光回折素子11aiを一括して形成する工程は、例えば、ナノインプリント法又は光造形法により実現することが可能である。なお、光造形法は、液相光重合法とよばれることもある。 The step of collectively forming each planar optical diffraction element 11ai belonging to the optical diffraction element group 11 can be realized by, for example, a nanoimprint method or a stereolithography method. The stereolithography method is sometimes called a liquid phase stereolithography method.
 〔第2の実施形態〕
 (光演算装置の構成)
 本発明の第2の実施形態に係る光演算装置2の構成について、図3を参照して説明する。図3は、光演算装置2の構成を示す斜視図である。
[Second Embodiment]
(Configuration of optical logic unit)
The configuration of the optical arithmetic unit 2 according to the second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a perspective view showing the configuration of the optical arithmetic unit 2.
 光演算装置2は、光回折素子群21と、基板22と、プリズム23と、を備えている。光回折素子群21は、複数の(本実施形態においては4つの)平面状光回折素子21a1~21a4により構成されている。本実施形態においては、平面状光回折素子21a1~21a4として、樹脂により構成された、平面視形状が正方形の板状の部材を用いている。また、本実施形態においては、基板22として、ガラスにより構成された、平面視形状が長方形の板状の部材を用いている。また、本実施形態においては、プリズム23として、互いに直交する2つの反射面23a,23bを有する直角プリズムを用いている。 The optical arithmetic unit 2 includes an optical diffraction element group 21, a substrate 22, and a prism 23. The optical diffraction element group 21 is composed of a plurality of (four in this embodiment) planar optical diffraction elements 21a1 to 21a4. In the present embodiment, as the planar optical diffraction elements 21a1 to 21a4, a plate-shaped member having a square planar view shape, which is made of resin, is used. Further, in the present embodiment, as the substrate 22, a plate-shaped member having a rectangular plan view shape, which is made of glass, is used. Further, in the present embodiment, as the prism 23, a right-angled prism having two reflecting surfaces 23a and 23b orthogonal to each other is used.
 第1の平面状光回折素子21a1及び第2の平面状光回折素子21a2は、それぞれ、その入射面及び出射面が基板22の主面と交わる(本実施形態においては直交する)ように、その端面が基板22の主面に直接固定されている。第3の平面状光回折素子21a3は、その入射面及び出射面が基板22の主面と交わる(本実施形態においては直交する)ように、第2の平面状光回折素子21a2を介して基板22の主面に間接固定されている。第4の平面状光回折素子21a4は、その入射面及び出射面が基板22の主面と交わる(本実施形態においては直交する)ように、第1の平面状光回折素子21a1を介して基板22の主面に間接固定されている。 The first planar optical diffractive element 21a1 and the second planar optical diffractive element 21a2 are provided so that the incident surface and the emitted surface intersect the main surface of the substrate 22 (orthogonally in the present embodiment), respectively. The end face is directly fixed to the main surface of the substrate 22. The third planar optical diffractive element 21a3 is subjected to the substrate via the second planar optical diffractive element 21a2 so that the incident surface and the exit surface intersect the main surface of the substrate 22 (orthogonally in the present embodiment). It is indirectly fixed to the main surface of 22. The fourth planar optical diffractive element 21a4 is subjected to the substrate via the first planar optical diffractive element 21a1 so that the incident surface and the exit surface intersect the main surface of the substrate 22 (orthogonally in the present embodiment). It is indirectly fixed to the main surface of 22.
 各平面状光回折素子21ai(i=1,2,3,4)は、厚み又は屈折率が互いに独立に設定された複数のマイクロセルにより構成されている。光演算装置2に信号光が入射すると、各マイクロセルを透過した位相の異なる信号光が相互に干渉することによって、予め定められた光演算が行われる。各平面状光回折素子21aiの具体例は、第1の実施形態に係る光演算装置1が備える各平面状光回折素子11aiの具体例と同様であるため、ここではその説明を省略する。 Each planar optical diffraction element 21ai (i = 1, 2, 3, 4) is composed of a plurality of microcells whose thickness or refractive index is set independently of each other. When the signal light is incident on the optical arithmetic unit 2, the signal lights having different phases transmitted through the microcells interfere with each other, so that a predetermined optical calculation is performed. Since the specific example of each planar optical diffraction element 21ai is the same as the specific example of each planar optical diffraction element 11ai provided in the optical arithmetic unit 1 according to the first embodiment, the description thereof will be omitted here.
 本実施形態において、光演算装置2に入力される信号光の光路上には、第1の平面状光回折素子21a1と第2の平面状光回折素子21a2とが、一直線に並んで配置されている。このため、光演算装置2に入力された信号光は、第1の平面状光回折素子21a1と第2の平面状光回折素子21a2とを、この順に通過する。第2の平面状光回折素子21a2を通過した信号光の光路上には、プリズム23の第1の反射面23aが配置されている。プリズム23の第1の反射面23aは、第2の平面状光回折素子21a2を通過した信号光を、その進行方向を基板22の主面と交わる(本実施形態においては直交する)面内において90°変化させるように反射する。プリズム23の第1の反射面23aにて反射された信号光の光路上には、プリズム23の第2の反射面23bが配置されている。プリズム23の第2の反射面23bは、プリズム23の第1の反射面23aにて反射された信号光を、その進行方向を基板22の主面と交わる(本実施形態においては直交する)面内において更に90°変化させるように反射する。すなわち、プリズム23は、第1の反射面23a及び第2の反射面23bを介して、第2の平面状光回折素子21a2を通過した信号光を、この信号光の進行方向と反対方向に反射する。プリズム23の第2の反射面23bにて反射された信号光の光路上には、第3の平面状光回折素子21a3と第4の平面状光回折素子21a4とが、一直線上に並んで配置されている。このため、プリズム23の第2の反射面23bにて反射された信号光は、第3の平面状光回折素子21a3と第4の平面状光回折素子21a4とを、この順に通過する。したがって、光演算装置2においては、第1の平面状光回折素子21a1による第1の光演算、第2の平面状光回折素子21a2による第2の光演算、第3の平面状光回折素子21a3による第3の光演算、及び、第4の平面状光回折素子21a4による第4の光演算がこの順に実行される。 In the present embodiment, the first planar optical diffraction element 21a1 and the second planar optical diffraction element 21a2 are arranged side by side in a straight line on the optical path of the signal light input to the optical arithmetic unit 2. There is. Therefore, the signal light input to the optical calculation device 2 passes through the first planar optical diffraction element 21a1 and the second planar optical diffraction element 21a2 in this order. The first reflecting surface 23a of the prism 23 is arranged on the optical path of the signal light that has passed through the second planar optical diffraction element 21a2. The first reflecting surface 23a of the prism 23 allows the signal light that has passed through the second planar light diffractive element 21a2 to intersect the main surface of the substrate 22 in the traveling direction (orthogonally in the present embodiment). Reflects to change 90 °. The second reflecting surface 23b of the prism 23 is arranged on the optical path of the signal light reflected by the first reflecting surface 23a of the prism 23. The second reflecting surface 23b of the prism 23 is a surface where the signal light reflected by the first reflecting surface 23a of the prism 23 intersects the main surface of the substrate 22 in the traveling direction (orthogonally in the present embodiment). It reflects so as to change it by 90 °. That is, the prism 23 reflects the signal light that has passed through the second planar light diffractive element 21a2 via the first reflecting surface 23a and the second reflecting surface 23b in the direction opposite to the traveling direction of the signal light. do. On the optical path of the signal light reflected by the second reflecting surface 23b of the prism 23, the third planar optical diffraction element 21a3 and the fourth planar optical diffraction element 21a4 are arranged side by side in a straight line. Has been done. Therefore, the signal light reflected by the second reflecting surface 23b of the prism 23 passes through the third planar optical diffraction element 21a3 and the fourth planar optical diffraction element 21a4 in this order. Therefore, in the optical calculation device 2, the first optical calculation by the first planar optical diffraction element 21a1, the second optical calculation by the second planar optical diffraction element 21a2, and the third planar optical diffraction element 21a3 The third optical calculation by the fourth optical diffraction element 21a4 and the fourth optical calculation by the fourth planar optical diffraction element 21a4 are executed in this order.
 (光演算装置の効果)
 以上のように、光演算装置2は、基板22の主面と交わる面内において信号光の光路を折り返す光学素子として機能するプリズム23を更に備えている。光回折素子群21は、折り返し前の光路に設けられ、基板12に直接固定された平面状光回折素子21a1,21a2と、折り返し後の光路に設けられ、平面状光回折素子21a1,21a2を介して基板12に間接固定された平面状光回折素子21a4,21a3と、を含んでいる。
(Effect of optical logic unit)
As described above, the optical arithmetic unit 2 further includes a prism 23 that functions as an optical element that folds back the optical path of the signal light in the plane intersecting the main surface of the substrate 22. The optical diffractive element group 21 is provided in the optical path before folding and is directly fixed to the substrate 12, and is provided in the optical path after folding and via the planar optical diffractive element 21a1,21a2. Includes planar optical diffractive elements 21a4 and 21a3 indirectly fixed to the substrate 12.
 このため、光演算装置2によれば、平面状光回折素子21a1,21a2,21a3,21a4を基板22に実装する場合の実装密度を高めることができる。したがって、光演算装置2によれば、光演算装置1と比較して、基板22のサイズを小型化することができる。 Therefore, according to the optical arithmetic unit 2, the mounting density when the planar optical diffraction elements 21a1,21a2, 21a3, 21a4 are mounted on the substrate 22 can be increased. Therefore, according to the optical arithmetic unit 2, the size of the substrate 22 can be reduced as compared with the optical arithmetic unit 1.
 〔第3の実施形態〕
 (光演算装置の構成)
 本発明の第3の実施形態に係る光演算装置3の構成について、図4を参照して説明する。図4は、光演算装置3の構成を示す斜視図である。
[Third Embodiment]
(Configuration of optical logic unit)
The configuration of the optical arithmetic unit 3 according to the third embodiment of the present invention will be described with reference to FIG. FIG. 4 is a perspective view showing the configuration of the optical arithmetic unit 3.
 光演算装置3は、光回折素子群31と、基板32と、プリズム33と、ミラー34と、を備えている。光回折素子群31は、複数の(本実施形態においては4つの)平面状光回折素子31a1~31a4により構成されている。本実施形態においては、平面状光回折素子31a1~31a4として、樹脂により構成された、平面視形状が正方形の板状の部材を用いている。また、本実施形態においては、基板32として、ガラスにより構成された、平面視形状が長方形の板状の部材を用いている。また、本実施形態においては、プリズム33として、互いに直交する2つの反射面33a,33bを有する直角プリズムを用いている。 The optical arithmetic unit 3 includes an optical diffraction element group 31, a substrate 32, a prism 33, and a mirror 34. The optical diffraction element group 31 is composed of a plurality of (four in this embodiment) planar optical diffraction elements 31a1 to 31a4. In the present embodiment, as the planar optical diffraction elements 31a1 to 31a4, a plate-shaped member having a square planar view shape, which is made of resin, is used. Further, in the present embodiment, as the substrate 32, a plate-shaped member having a rectangular plan view shape, which is made of glass, is used. Further, in the present embodiment, as the prism 33, a right-angled prism having two reflecting surfaces 33a and 33b orthogonal to each other is used.
 平面状光回折素子31a1~31a4は、それぞれ、その入射面及び出射面が基板32の主面と交わる(本実施形態においては直交する)ように、その端面が基板32の主面に直接固定されている。 The end faces of the planar optical diffraction elements 31a1 to 31a4 are directly fixed to the main surface of the substrate 32 so that the incident surface and the exit surface intersect the main surface of the substrate 32 (orthogonally in the present embodiment), respectively. ing.
 各平面状光回折素子31ai(i=1,2,3,4)は、厚み又は屈折率が互いに独立に設定された複数のマイクロセルにより構成されている。光演算装置3に信号光が入射すると、各マイクロセルを透過した位相の異なる信号光が相互に干渉することによって、予め定められた光演算が行われる。各平面状光回折素子31aiの具体例は、第1の実施形態に係る光演算装置1が備える各平面状光回折素子11ai(i=1,2,3,4)の具体例と同様であるため、ここではその説明を省略する。 Each planar optical diffraction element 31ai (i = 1, 2, 3, 4) is composed of a plurality of microcells whose thickness or refractive index is set independently of each other. When the signal light is incident on the optical arithmetic unit 3, the signal lights having different phases transmitted through the microcells interfere with each other, so that a predetermined optical calculation is performed. The specific example of each planar optical diffraction element 31ai is the same as the specific example of each planar optical diffraction element 11ai (i = 1, 2, 3, 4) included in the optical arithmetic unit 1 according to the first embodiment. Therefore, the description thereof is omitted here.
 本実施形態において、光演算装置3に入力される信号光の光路上には、第1の平面状光回折素子31a1が配置されている。このため、光演算装置3に入力された信号光は、第1の平面状光回折素子31a1を通過する。第1の平面状光回折素子31a1を通過した信号光の光路上には、プリズム33の第1の反射面33aが配置されている。プリズム33の第1の反射面33aは、第1の平面状光回折素子31a1を通過した信号光を、その進行方向を基板32の主面に平行な面内において90°変化させるように反射する。プリズム33の第1の反射面33aに反射された信号光の光路上には、プリズム33の第2の反射面33bが配置されている。プリズム33の第2の反射面33bは、プリズム33の第1の反射面33aにて反射された信号光の一部を、その進行方向を基板32の主面に平行な面内において更に90°変化させるように反射する。また、プリズム33の第2の反射面33bは、プリズム33の第1の反射面33aにて反射された信号光の一部を、透過させる。 In the present embodiment, the first planar optical diffraction element 31a1 is arranged on the optical path of the signal light input to the optical arithmetic unit 3. Therefore, the signal light input to the optical arithmetic unit 3 passes through the first planar optical diffraction element 31a1. The first reflecting surface 33a of the prism 33 is arranged on the optical path of the signal light that has passed through the first planar optical diffraction element 31a1. The first reflecting surface 33a of the prism 33 reflects the signal light that has passed through the first planar light diffractive element 31a1 so as to change its traveling direction by 90 ° in a plane parallel to the main surface of the substrate 32. .. The second reflecting surface 33b of the prism 33 is arranged on the optical path of the signal light reflected by the first reflecting surface 33a of the prism 33. The second reflecting surface 33b of the prism 33 is a part of the signal light reflected by the first reflecting surface 33a of the prism 33, and the traveling direction thereof is further 90 ° in a plane parallel to the main surface of the substrate 32. It reflects to change. Further, the second reflecting surface 33b of the prism 33 transmits a part of the signal light reflected by the first reflecting surface 33a of the prism 33.
 プリズム33の第2の反射面33bにて反射された信号光の光路上には、第2の平面状光回折素子31a2が配置されている。このため、プリズム33の第2の反射面33bにて反射された信号光は、第2の平面状光回折素子31a2を通過する。したがって、光演算装置3においては、第1の平面状光回折素子31a1による第1の光演算、及び、第2の平面状光回折素子31a2による第2の光演算が、この順に実行される。 A second planar optical diffraction element 31a2 is arranged on the optical path of the signal light reflected by the second reflecting surface 33b of the prism 33. Therefore, the signal light reflected by the second reflecting surface 33b of the prism 33 passes through the second planar optical diffraction element 31a2. Therefore, in the optical calculation device 3, the first optical calculation by the first planar optical diffraction element 31a1 and the second optical calculation by the second planar optical diffraction element 31a2 are executed in this order.
 プリズム33の第2の反射面33bを透過した信号光の光路上には、ミラー34が配置されている。ミラー34は、プリズム33の第2の反射面33bを透過した信号光を、その進行方向を基板32の主面に平行な面内において90°変化させるように反射する。ミラー34に反射された信号光の光路上には、第3の平面状光回折素子31a3と第4の平面状光回折素子31a4とが、一直線上に並んで配置されている。このため、ミラー34に反射された信号光は、第3の平面状光回折素子31a3と第4の平面状光回折素子31a4とを、この順に通過する。したがって、光演算装置3においては、第1の平面状光回折素子31a1による第1の光演算、第3の平面状光回折素子31a3による第3の光演算、及び、第4の平面状光回折素子31a4による第4の光演算がこの順に実行される。 A mirror 34 is arranged on the optical path of the signal light transmitted through the second reflecting surface 33b of the prism 33. The mirror 34 reflects the signal light transmitted through the second reflecting surface 33b of the prism 33 so as to change its traveling direction by 90 ° in a plane parallel to the main surface of the substrate 32. On the optical path of the signal light reflected by the mirror 34, the third planar optical diffraction element 31a3 and the fourth planar optical diffraction element 31a4 are arranged side by side in a straight line. Therefore, the signal light reflected by the mirror 34 passes through the third planar optical diffraction element 31a3 and the fourth planar optical diffraction element 31a4 in this order. Therefore, in the optical calculation device 3, the first optical calculation by the first planar optical diffraction element 31a1, the third optical calculation by the third planar optical diffraction element 31a3, and the fourth planar optical diffraction The fourth optical calculation by the element 31a4 is executed in this order.
 (光演算装置の効果)
 以上のように、光演算装置3は、信号光の光路を第1の光路(図4における光路A)と第2の光路(図4における光路B)とに分岐させる光学素子として機能するプリズム33及びミラー34を備えている。光回折素子群31は、第1の光路上に設けられた平面状光回折素子31a2と、第2の光路上に設けられた平面状光回折素子31a3,31a4と、を含んでいる。
(Effect of optical logic unit)
As described above, the optical calculation device 3 is a prism 33 that functions as an optical element that branches the optical path of the signal light into the first optical path (optical path A in FIG. 4) and the second optical path (optical path B in FIG. 4). And a mirror 34. The optical diffractive element group 31 includes a planar optical diffractive element 31a2 provided on the first optical path and planar optical diffractive elements 31a3 and 31a4 provided on the second optical path.
 このため、光演算装置3によれば、1つの光路を2つの光路A,Bに分岐させ、光路A,Bの各々において別個の光演算を行うことができる。すなわち、光演算装置3によれば、複数の(本実施形態においては2つの)光演算を同時に実行することができる。 Therefore, according to the optical calculation device 3, one optical path can be branched into two optical paths A and B, and a separate optical calculation can be performed in each of the optical paths A and B. That is, according to the optical calculation device 3, a plurality of (two in this embodiment) optical calculation can be executed at the same time.
 〔第4の実施形態〕
 (光演算装置の構成)
 本発明の第4の実施形態に係る光演算装置4の構成について、図5を参照して説明する。図5は、光演算装置4の構成を示す斜視図である。
[Fourth Embodiment]
(Configuration of optical logic unit)
The configuration of the optical arithmetic unit 4 according to the fourth embodiment of the present invention will be described with reference to FIG. FIG. 5 is a perspective view showing the configuration of the optical arithmetic unit 4.
 光演算装置4は、光回折素子群41と、基板42と、ミラー43と、を備えている。光回折素子群41は、複数の(本実施形態においては6つの)平面状光回折素子41a1~41a6により構成されている。本実施形態においては、平面状光回折素子41a1~41a6として、樹脂により構成された、平面視形状が正方形の板状の部材を用いている。また、本実施形態においては、基板42として、ガラスにより構成された、平面視形状が長方形の板状の部材を用いている。また、本実施形態において、ミラー43は、基板42の主面と直交する軸を回転軸として回転可能に構成されている。図5においては、ミラー43の端面から突出した円柱状の突起43aを、基板42の上面に形成された円柱状の穴に挿入することで、ミラー43を基板42に回転可能に固定する構成を例示している。 The optical arithmetic unit 4 includes an optical diffraction element group 41, a substrate 42, and a mirror 43. The optical diffraction element group 41 is composed of a plurality of (six in this embodiment) planar optical diffraction elements 41a1 to 41a6. In the present embodiment, as the planar optical diffraction elements 41a1 to 41a6, a plate-shaped member having a square planar view shape, which is made of resin, is used. Further, in the present embodiment, as the substrate 42, a plate-shaped member having a rectangular plan view shape, which is made of glass, is used. Further, in the present embodiment, the mirror 43 is configured to be rotatable about an axis orthogonal to the main surface of the substrate 42 as a rotation axis. In FIG. 5, the mirror 43 is rotatably fixed to the substrate 42 by inserting the columnar protrusion 43a protruding from the end surface of the mirror 43 into the columnar hole formed on the upper surface of the substrate 42. Illustrate.
 平面状光回折素子41a1~41a6は、それぞれ、その入射面及び出射面が基板42の主面と交わる(本実施形態においては直交する)ように、その端面が基板42の主面に直接固定されている。 The end faces of the planar optical diffraction elements 41a1 to 41a6 are directly fixed to the main surface of the substrate 42 so that the incident surface and the exit surface intersect the main surface of the substrate 42 (orthogonally in the present embodiment), respectively. ing.
 各平面状光回折素子41ai(i=1,2,…,6)は、厚み又は屈折率が互いに独立に設定された複数のマイクロセルにより構成されている。光演算装置4に信号光が入射すると、各マイクロセルを透過した位相の異なる信号光が相互に干渉することによって、予め定められた光演算が行われる。各平面状光回折素子41aiの具体例は、第1の実施形態に係る光演算装置1が備える各平面状光回折素子11ai(i=1,2,3,4)の具体例と同様であるため、ここではその説明を省略する。 Each planar optical diffraction element 41ai (i = 1, 2, ..., 6) is composed of a plurality of microcells whose thickness or refractive index is set independently of each other. When the signal light is incident on the optical arithmetic unit 4, the signal lights having different phases transmitted through the microcells interfere with each other, so that a predetermined optical calculation is performed. The specific example of each planar optical diffraction element 41ai is the same as the specific example of each planar optical diffraction element 11ai (i = 1, 2, 3, 4) included in the optical arithmetic unit 1 according to the first embodiment. Therefore, the description thereof is omitted here.
 本実施形態において、光演算装置4に入力される信号光の光路上には、第1の平面状光回折素子41a1と第2の平面状光回折素子41a2とが、一直線に並んで配置されている。このため、光演算装置4に入力された信号光は、第1の平面状光回折素子41a1と第2の平面状光回折素子41a2とを、この順に通過する。第2の平面状光回折素子41a2を通過した信号光の光路上には、ミラー43が配置されている。ミラー43は、その反射面を第1の方向に向けること、及び、その反射面を第2の方向に向けることが可能である。 In the present embodiment, the first planar optical diffraction element 41a1 and the second planar optical diffraction element 41a2 are arranged side by side in a straight line on the optical path of the signal light input to the optical arithmetic unit 4. There is. Therefore, the signal light input to the optical calculation device 4 passes through the first planar optical diffraction element 41a1 and the second planar optical diffraction element 41a2 in this order. A mirror 43 is arranged on the optical path of the signal light that has passed through the second planar optical diffraction element 41a2. The mirror 43 can have its reflective surface oriented in a first direction and its reflective surface oriented in a second direction.
 ミラー43の反射面が第1の方向を向いている場合、ミラー43にて反射された信号光の光路上には、第3の平面状光回折素子41a3と第4の平面状光回折素子41a4とが、一直線上に並んで配置されている。このため、ミラー43にて反射された信号光は、第3の平面状光回折素子41a3と第4の平面状光回折素子41a4とを、この順に通過する。したがって、この場合、光演算装置4においては、第1の平面状光回折素子41a1による第1の光演算、第2の平面状光回折素子41a2による第2の光演算、第3の平面状光回折素子41a3による第3の光演算、及び、第4の平面状光回折素子41a4による第4の光演算がこの順に実行される。 When the reflecting surface of the mirror 43 faces the first direction, the third planar optical diffractive element 41a3 and the fourth planar optical diffractive element 41a4 are on the optical path of the signal light reflected by the mirror 43. And are arranged side by side in a straight line. Therefore, the signal light reflected by the mirror 43 passes through the third planar optical diffraction element 41a3 and the fourth planar optical diffraction element 41a4 in this order. Therefore, in this case, in the optical calculation device 4, the first optical calculation by the first planar optical diffraction element 41a1, the second optical calculation by the second planar optical diffraction element 41a2, and the third planar light. The third optical calculation by the diffractive element 41a3 and the fourth optical calculation by the fourth planar optical diffractive element 41a4 are executed in this order.
 ミラー43の反射面が第2の方向を向いている場合、ミラー43にて反射された信号光の光路上には、第5の平面状光回折素子41a5と第6の平面状光回折素子41a6とが、一直線上に並んで配置されている。このため、ミラー43にて反射された信号光は、第5の平面状光回折素子41a5と第6の平面状光回折素子41a6とを、この順に通過する。したがって、この場合、光演算装置4においては、第1の平面状光回折素子41a1による第1の光演算、第2の平面状光回折素子41a2による第2の光演算、第5の平面状光回折素子41a5による第5の光演算、及び、第6の平面状光回折素子41a6による第6の光演算がこの順に実行される。 When the reflecting surface of the mirror 43 faces the second direction, the fifth planar optical diffractive element 41a5 and the sixth planar optical diffractive element 41a6 are on the optical path of the signal light reflected by the mirror 43. And are arranged side by side in a straight line. Therefore, the signal light reflected by the mirror 43 passes through the fifth planar optical diffraction element 41a5 and the sixth planar optical diffraction element 41a6 in this order. Therefore, in this case, in the optical calculation device 4, the first optical calculation by the first planar optical diffraction element 41a1, the second optical calculation by the second planar optical diffraction element 41a2, and the fifth planar light. The fifth optical calculation by the diffractive element 41a5 and the sixth optical calculation by the sixth planar optical diffractive element 41a6 are executed in this order.
 (光演算装置の効果)
 以上のように、光演算装置4は、信号光の光路を第1の光路(図5における光路A)又は第2の光路(図5における光路B)へと導く光学素子であって、信号光を導く光路が可変な光学素子として機能するミラー43を備えている。光回折素子群41は、第1の光路上に設けられた平面状光回折素子41a3,41a4と、第2の光路上に設けられた平面状光回折素子41a5,41a6と、を含んでいる。
(Effect of optical logic unit)
As described above, the optical calculation device 4 is an optical element that guides the optical path of the signal light to the first optical path (optical path A in FIG. 5) or the second optical path (optical path B in FIG. 5), and is a signal light. It is provided with a mirror 43 in which the optical path for guiding the light path functions as a variable optical element. The optical diffraction element group 41 includes planar optical diffraction elements 41a3 and 41a4 provided on the first optical path and planar optical diffraction elements 41a5 and 41a6 provided on the second optical path.
 このため、光演算装置4によれば、使用者が光路A,Bの何れかを選択することができる。したがって、光演算装置4によれば、複数の(本実施形態においては2つの)光演算の何れかを実行することができ、且つ、何れの光演算を実行するかを使用者が選択することができる。 Therefore, according to the optical calculation device 4, the user can select either the optical path A or the optical path B. Therefore, according to the optical calculation device 4, any of a plurality of (two in this embodiment) optical calculation can be executed, and the user selects which optical calculation is to be executed. Can be done.
 〔第5の実施形態〕
 (光演算装置の構成)
 本発明の第5の実施形態に係る光演算装置5の構成について、図6を参照して説明する。図6は、光演算装置5の構成を示す斜視図である。
[Fifth Embodiment]
(Configuration of optical logic unit)
The configuration of the optical arithmetic unit 5 according to the fifth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a perspective view showing the configuration of the optical arithmetic unit 5.
 光演算装置5は、光回折素子群51と、基板52と、ミラー53と、を備えている。光回折素子群51は、複数の(本実施形態においては6つの)平面状光回折素子51a1~51a6により構成されている。本実施形態においては、平面状光回折素子51a1~51a6として、樹脂により構成された、平面視形状が正方形の板状の部材を用いている。また、本実施形態においては、基板52として、ガラスにより構成された、平面視形状が長方形の板状の部材を用いている。 The optical arithmetic unit 5 includes an optical diffraction element group 51, a substrate 52, and a mirror 53. The optical diffraction element group 51 is composed of a plurality of (six in this embodiment) planar optical diffraction elements 51a1 to 51a6. In the present embodiment, as the planar optical diffraction elements 51a1 to 51a6, a plate-shaped member having a square planar view shape, which is made of resin, is used. Further, in the present embodiment, as the substrate 52, a plate-shaped member having a rectangular plan view shape, which is made of glass, is used.
 平面状光回折素子51a1~51a6は、それぞれ、その入射面及び出射面が基板52の主面と交わる(本実施形態においては直交する)ように、その端面が基板52の主面に直接固定されている。 The end faces of the planar optical diffraction elements 51a1 to 51a6 are directly fixed to the main surface of the substrate 52 so that the incident surface and the exit surface intersect the main surface of the substrate 52 (orthogonally in the present embodiment), respectively. ing.
 各平面状光回折素子51ai(i=1,2,…,6)は、厚み又は屈折率が互いに独立に設定された複数のマイクロセルにより構成されている。光演算装置5に信号光が入射すると、各マイクロセルを透過した位相の異なる信号光が相互に干渉することによって、予め定められた光演算が行われる。各平面状光回折素子51aiの具体例は、第1の実施形態に係る光演算装置1が備える各平面状光回折素子11ai(i=1,2,3,4)の具体例と同様であるため、ここではその説明を省略する。 Each planar optical diffraction element 51ai (i = 1, 2, ..., 6) is composed of a plurality of microcells whose thickness or refractive index is set independently of each other. When the signal light is incident on the optical arithmetic unit 5, the signal lights having different phases transmitted through the microcells interfere with each other, so that a predetermined optical calculation is performed. The specific example of each planar optical diffraction element 51ai is the same as the specific example of each planar optical diffraction element 11ai (i = 1, 2, 3, 4) included in the optical arithmetic unit 1 according to the first embodiment. Therefore, the description thereof is omitted here.
 本実施形態において、光演算装置5に入力される信号光の光路上には、第1の平面状光回折素子51a1と第2の平面状光回折素子51a2とが、一直線に並んで配置されている。このため、光演算装置5に入力された信号光は、第1の平面状光回折素子51a1と第2の平面状光回折素子51a2とを、この順に通過する。第2の平面状光回折素子51a2を通過した信号光の光路上には、ミラー53が配置されている。ミラー53は、(1)図6に実線で示したように、その反射面が第1の方向を向くように基板52に固定することもできるし、(2)図6に点線で示したように、その反射面が第2の方向を向くように基板52に固定することもできる。 In the present embodiment, the first planar optical diffraction element 51a1 and the second planar optical diffraction element 51a2 are arranged side by side in a straight line on the optical path of the signal light input to the optical arithmetic unit 5. There is. Therefore, the signal light input to the optical calculation device 5 passes through the first planar optical diffraction element 51a1 and the second planar optical diffraction element 51a2 in this order. A mirror 53 is arranged on the optical path of the signal light that has passed through the second planar optical diffraction element 51a2. The mirror 53 can be fixed to the substrate 52 so that its reflective surface faces the first direction, as shown by the solid line in FIG. 6 (1), or as shown by the dotted line in FIG. 6 (2). In addition, it can be fixed to the substrate 52 so that the reflecting surface faces the second direction.
 反射面が第1の方向を向くようにミラー53が基板52に固定されている場合、ミラー53にて反射された信号光の光路上には、第3の平面状光回折素子51a3と第4の平面状光回折素子51a4とが、一直線上に並んで配置されている。このため、ミラー53にて反射された信号光は、第3の平面状光回折素子51a3と第4の平面状光回折素子51a4とを、この順に通過する。したがって、この場合、光演算装置5においては、第1の平面状光回折素子51a1による第1の光演算、第2の平面状光回折素子51a2による第2の光演算、第3の平面状光回折素子51a3による第3の光演算、及び、第4の平面状光回折素子51a4による第4の光演算がこの順に実行される。 When the mirror 53 is fixed to the substrate 52 so that the reflecting surface faces the first direction, the third planar light diffractive element 51a3 and the fourth are on the optical path of the signal light reflected by the mirror 53. The planar optical diffraction elements 51a4 of the above are arranged side by side in a straight line. Therefore, the signal light reflected by the mirror 53 passes through the third planar optical diffraction element 51a3 and the fourth planar optical diffraction element 51a4 in this order. Therefore, in this case, in the optical calculation device 5, the first optical calculation by the first planar optical diffraction element 51a1, the second optical calculation by the second planar optical diffraction element 51a2, and the third planar light The third optical calculation by the diffractive element 51a3 and the fourth optical calculation by the fourth planar optical diffractive element 51a4 are executed in this order.
 反射面が第2の方向を向くようにミラー53が基板52に固定されている場合、ミラー53にて反射された信号光の光路上には、第5の平面状光回折素子51a5と第6の平面状光回折素子51a6とが、一直線上に並んで配置されている。このため、ミラー53にて反射された信号光は、第5の平面状光回折素子51a5と第6の平面状光回折素子51a6とを、この順に通過する。したがって、この場合、光演算装置5においては、第1の平面状光回折素子51a1による第1の光演算、第2の平面状光回折素子51a2による第2の光演算、第5の平面状光回折素子51a5による第5の光演算、及び、第6の平面状光回折素子51a6による第6の光演算がこの順に実行される。 When the mirror 53 is fixed to the substrate 52 so that the reflecting surface faces the second direction, the fifth planar optical diffraction element 51a5 and the sixth are on the optical path of the signal light reflected by the mirror 53. The planar optical diffraction elements 51a6 of the above are arranged side by side in a straight line. Therefore, the signal light reflected by the mirror 53 passes through the fifth planar optical diffraction element 51a5 and the sixth planar optical diffraction element 51a6 in this order. Therefore, in this case, in the optical calculation device 5, the first optical calculation by the first planar optical diffraction element 51a1, the second optical calculation by the second planar optical diffraction element 51a2, and the fifth planar light. The fifth optical calculation by the diffractive element 51a5 and the sixth optical calculation by the sixth planar optical diffractive element 51a6 are executed in this order.
 (光演算装置の効果)
 以上のように、光演算装置5は、信号光の光路を第1の光路(図6における光路A)又は第2の光路(図6における光路B)へと導く光学素子であって、信号光を導く光路が不変な光学素子として機能するミラー53を備えている。光回折素子群51は、第1の光路上に設けられた平面状光回折素子51a3,51a4と、第2の光路上に設けられた平面状光回折素子51a5,51a6と、を含んでいる。
(Effect of optical logic unit)
As described above, the optical calculation device 5 is an optical element that guides the optical path of the signal light to the first optical path (optical path A in FIG. 6) or the second optical path (optical path B in FIG. 6), and is a signal light. It is provided with a mirror 53 in which the optical path for guiding the light path functions as an invariant optical element. The optical diffraction element group 51 includes planar optical diffraction elements 51a3 and 51a4 provided on the first optical path, and planar optical diffraction elements 51a5 and 51a6 provided on the second optical path.
 このため、光演算装置5によれば、製造者が光路A,Bの何れかを選択することができる。したがって、光演算装置5によれば、複数の(本実施形態においては2つの)光演算の何れかを実行することができ、且つ、何れの光演算を実行するかを製造者が選択することができる。 Therefore, according to the optical calculation device 5, the manufacturer can select either the optical path A or the optical path B. Therefore, according to the optical calculation device 5, any one of a plurality of (two in this embodiment) optical calculation can be executed, and the manufacturer selects which optical calculation is to be executed. Can be done.
 〔第6の実施形態〕
 (光演算装置の構成)
 本発明の第6の実施形態に係る光演算装置6の構成について、図7を参照して説明する。図7は、光演算装置6の構成を示す斜視図である。
[Sixth Embodiment]
(Configuration of optical logic unit)
The configuration of the optical arithmetic unit 6 according to the sixth embodiment of the present invention will be described with reference to FIG. 7. FIG. 7 is a perspective view showing the configuration of the optical arithmetic unit 6.
 光演算装置6は、光回折素子群61と、基板62と、を備えている。光回折素子群61は、複数の(本実施形態においては2つの)平面状光回折素子61a1~61a2により構成されている。本実施形態においては、平面状光回折素子61a1~61a2として、樹脂により構成された、平面視形状が正方形の板状の部材を用いている。また、本実施形態においては、基板62として、ガラスにより構成された、平面視形状が長方形の板状の部材を用いている。 The optical arithmetic unit 6 includes an optical diffraction element group 61 and a substrate 62. The optical diffraction element group 61 is composed of a plurality of (two in this embodiment) planar optical diffraction elements 61a1 to 61a2. In the present embodiment, as the planar optical diffraction elements 61a1 to 61a2, a plate-shaped member having a square planar view shape, which is made of resin, is used. Further, in the present embodiment, as the substrate 62, a plate-shaped member having a rectangular plan view shape, which is made of glass, is used.
 第1の平面状光回折素子61a1は、その出射面が基板62の一方の主面と面接触するように、基板62に固定されている。一方、第2の平面状光回折素子62a2は、その入射面が基板62の他方の主面と面接触するように、基板62に固定されている。 The first planar optical diffraction element 61a1 is fixed to the substrate 62 so that its emission surface is in surface contact with one main surface of the substrate 62. On the other hand, the second planar optical diffraction element 62a2 is fixed to the substrate 62 so that its incident surface is in surface contact with the other main surface of the substrate 62.
 各平面状光回折素子61ai(i=1,2)は、厚み又は屈折率が互いに独立に設定された複数のマイクロセルにより構成されている。マイクロセルをピラーにより構成する場合、第1の平面状光回折素子61a1のピラーは、例えば、第1の平面状光回折素子61a1の入射面側に設けられ、第2の平面状光回折素子61a2のピラーは、例えば、第2の平面状光回折素子61a2の出射面側に設けられる。光演算装置6に信号光が入射すると、各マイクロセルを透過した位相の異なる信号光が相互に干渉することによって、予め定められた光演算が行われる。各平面状光回折素子61aiの具体例は、第1の実施形態に係る光演算装置1が備える各平面状光回折素子11ai(i=1,2,3,4)の具体例と同様であるため、ここではその説明を省略する。 Each planar optical diffraction element 61ai (i = 1, 2) is composed of a plurality of microcells whose thicknesses or refractive indexes are set independently of each other. When the microcell is composed of pillars, the pillar of the first planar optical diffusing element 61a1 is provided, for example, on the incident surface side of the first planar optical diffusing element 61a1 and the second planar optical diffusing element 61a2. The pillar is provided, for example, on the exit surface side of the second planar optical diffraction element 61a2. When the signal light is incident on the optical arithmetic unit 6, the signal lights having different phases transmitted through the microcells interfere with each other, so that a predetermined optical calculation is performed. The specific example of each planar optical diffraction element 61ai is the same as the specific example of each planar optical diffraction element 11ai (i = 1, 2, 3, 4) included in the optical arithmetic unit 1 according to the first embodiment. Therefore, the description thereof is omitted here.
 本実施形態において、光演算装置5に入力される信号光の光路上には、第1の平面状光回折素子61a1と第2の平面状光回折素子61a2とが、一直線に並んで配置されている。このため、光演算装置6に入力された信号光は、第1の平面状光回折素子61a1と第2の平面状光回折素子61a2とを、この順に通過する。したがって、光演算装置6においては、第1の平面状光回折素子61a1による第1の光演算、及び、第2の平面状光回折素子61a2による第2の光演算がこの順に実行される。 In the present embodiment, the first planar optical diffraction element 61a1 and the second planar optical diffraction element 61a2 are arranged side by side in a straight line on the optical path of the signal light input to the optical arithmetic unit 5. There is. Therefore, the signal light input to the optical calculation device 6 passes through the first planar optical diffraction element 61a1 and the second planar optical diffraction element 61a2 in this order. Therefore, in the optical calculation device 6, the first optical calculation by the first planar optical diffraction element 61a1 and the second optical calculation by the second planar optical diffraction element 61a2 are executed in this order.
 (光演算装置の効果)
 以上のように、光演算装置6は、基板62と、複数の平面状光回折素子61a1~61a2を含む光回折素子群61と、を備えている。光回折素子群61に属する各平面状光回折素子61aiは、厚み又は屈折率が互いに独立に設定された複数のマイクロセルにより構成されている。第1の平面状光回折素子61a1は、その出射面が基板62の一方の主面と面接触するように基板62に固定されている。第2の平面状光回折素子61a2は、その入射面が基板62の他方の主面と面接触するように基板62に固定されている。
(Effect of optical logic unit)
As described above, the optical arithmetic unit 6 includes a substrate 62 and an optical diffraction element group 61 including a plurality of planar optical diffraction elements 61a1 to 61a2. Each planar optical diffractive element 61ai belonging to the optical diffractive element group 61 is composed of a plurality of microcells whose thicknesses or refractive indexes are set independently of each other. The first planar optical diffraction element 61a1 is fixed to the substrate 62 so that its emission surface is in surface contact with one main surface of the substrate 62. The second planar optical diffraction element 61a2 is fixed to the substrate 62 so that its incident surface is in surface contact with the other main surface of the substrate 62.
 このため、光演算装置6においては、各平面状光回折素子61aiは、出射面又は入射面全体が基板62に固定されている。したがって、特許文献1に記載の技術を流用して筒状のホルダの内側面に各平面状光回折素子61aiの外周全体を固定する場合と比較して、環境温度の変化に起因する歪又は応力が各平面状光回折素子61aiに生じ難くなる。このため、環境温度が変化しても演算機能を維持することが容易な光演算装置6を実現することができる。 Therefore, in the optical arithmetic unit 6, each planar optical diffraction element 61ai has its emission surface or the entire incident surface fixed to the substrate 62. Therefore, as compared with the case where the entire outer circumference of each planar optical diffraction element 61ai is fixed to the inner surface of the cylindrical holder by diverting the technique described in Patent Document 1, strain or stress due to a change in environmental temperature Is less likely to occur in each planar optical diffraction element 61ai. Therefore, it is possible to realize the optical arithmetic unit 6 which can easily maintain the arithmetic function even if the environmental temperature changes.
 (光演算装置の変形例)
 光演算装置6を複数備えた光演算装置を実現することも可能である。図8は、このような光演算装置6Aの構造を示す斜視図である。
(Modification example of optical arithmetic unit)
It is also possible to realize an optical arithmetic unit including a plurality of optical arithmetic units 6. FIG. 8 is a perspective view showing the structure of such an optical arithmetic unit 6A.
 光演算装置6Aは、4つの光演算装置6を基板63上に配置したものである。光演算装置6Aにおいて、各光演算装置6は、基板62の主面が基板63の主面と交わる(本実施形態においては直交する)ように、基板62の端面が基板63の主面に直接固定されている。上述したように、各光演算装置6について、環境温度が変化しても演算機能を維持することが容易になる。その結果、光演算装置6の集合体である光演算装置6Aについても、環境温度が変化しても演算機能を維持することが容易になる。 The optical arithmetic unit 6A has four optical arithmetic units 6 arranged on the substrate 63. In the optical arithmetic unit 6A, in each optical arithmetic unit 6, the end surface of the substrate 62 is directly on the main surface of the substrate 63 so that the main surface of the substrate 62 intersects the main surface of the substrate 63 (orthogonally in the present embodiment). It is fixed. As described above, it becomes easy to maintain the arithmetic function of each optical arithmetic unit 6 even if the environmental temperature changes. As a result, it becomes easy to maintain the calculation function of the optical calculation device 6A, which is an aggregate of the optical calculation devices 6, even if the environmental temperature changes.
 〔まとめ〕
 上記の課題を解決するために、本発明の第1の態様に係る光演算装置は、基板と、複数の平面状光回折素子を含む光回折素子群と、を備え、前記光回折素子群に属する各平面状光回折素子は、厚み又は屈折率が互いに独立に設定された複数のマイクロセルにより構成されており、前記基板に固定されている。
〔summary〕
In order to solve the above-mentioned problems, the optical arithmetic apparatus according to the first aspect of the present invention includes a substrate and a group of optical diffraction elements including a plurality of planar optical diffraction elements, and the optical diffraction element group includes the optical diffraction element group. Each planar optical diffractive element to which it belongs is composed of a plurality of microcells whose thickness or refractive index is set independently of each other, and is fixed to the substrate.
 また、本発明の第2の態様に係る光演算装置においては、上述した第1の態様に係る光演算装置の構成に加えて、前記光回折素子群に属する各平面状光回折素子は、その入射面及び出射面が前記基板の主面と交わるように前記基板に固定されている。 Further, in the optical arithmetic device according to the second aspect of the present invention, in addition to the configuration of the optical arithmetic apparatus according to the first aspect described above, each planar optical diffraction element belonging to the optical diffraction element group is the same. The entrance surface and the exit surface are fixed to the substrate so as to intersect the main surface of the substrate.
 また、本発明の第3の態様に係る光演算装置においては、上述した第2の態様に係る光演算装置の構成に加えて、前記基板の主面と交わる面内において信号光の光路を折り返す光学素子を更に備えており、前記光回折素子群は、折り返し前後の光路の一方に設けられ、前記基板に直接固定された平面状光回折素子と、折り返し前後の光路の他方に設けられ、前記基板に直接固定された平面状光回折素子を介して前記基板に間接固定された平面状光回折素子と、を含んでいる、構成が採用されている。 Further, in the optical arithmetic apparatus according to the third aspect of the present invention, in addition to the configuration of the optical arithmetic apparatus according to the second aspect described above, the optical path of the signal light is folded back in the plane intersecting with the main surface of the substrate. The optical diffractive element group is further provided with an optical element, and the optical diffractive element group is provided on one of the optical paths before and after the folding, and is provided on the other of the planar optical diffractive element directly fixed to the substrate and the optical path before and after the folding. A configuration is adopted that includes a planar optical diffractive element indirectly fixed to the substrate via a planar optical diffractive element directly fixed to the substrate.
 また、本発明の第4の態様に係る光演算装置においては、上述した第2の態様に係る光演算装置の構成に加えて、前記光回折素子群は、第1の光路上に設けられた平面状光回折素子と、前記第1の光路とは異なる第2の光路上に設けられた平面状光回折素子と、を含んでいる、構成が採用されている。 Further, in the optical arithmetic apparatus according to the fourth aspect of the present invention, in addition to the configuration of the optical arithmetic apparatus according to the second aspect described above, the optical diffraction element group is provided on the first optical path. A configuration is adopted that includes a planar optical diffractive element and a planar optical diffractive element provided on a second optical path different from the first optical path.
 また、本発明の第5の態様に係る光演算装置においては、上述した第4の態様に係る光演算装置の構成に加えて、信号光の光路を前記第1の光路と前記第2の光路とに分岐させる光学素子を更に備えている、という構成が採用されている。 Further, in the optical arithmetic unit according to the fifth aspect of the present invention, in addition to the configuration of the optical arithmetic unit according to the fourth aspect described above, the optical path of the signal light is the first optical path and the second optical path. A configuration is adopted in which an optical element for branching to and is further provided.
 また、本発明の第6の態様に係る光演算装置においては、上述した第4の態様に係る光演算装置の構成に加えて、信号光を前記第1の光路又は前記第2の光路へと導く光学素子であって、前記信号光を導く光路が可変な光学素子を更に備えている、という構成が採用されている。 Further, in the optical calculation device according to the sixth aspect of the present invention, in addition to the configuration of the optical calculation device according to the fourth aspect described above, the signal light is directed to the first optical path or the second optical path. A configuration is adopted in which the optical element for guiding is further provided with an optical element in which the optical path for guiding the signal light is variable.
 また、本発明の第7の態様に係る光演算装置においては、上述した第4の態様に係る光演算装置の構成に加えて、信号光を前記第1の光路又は前記第2の光路へと導く光学素子であって、前記信号光を導く光路が不変な光学素子を更に備えている、という構成が採用されている。 Further, in the optical calculation device according to the seventh aspect of the present invention, in addition to the configuration of the optical calculation device according to the fourth aspect described above, the signal light is directed to the first optical path or the second optical path. A configuration is adopted in which the optical element for guiding is further provided with an optical element in which the optical path for guiding the signal light is invariant.
 また、本発明の第8の態様に係る光演算装置においては、上述した第1の態様~第7の態様の何れかに係る光演算装置の構成に加えて、前記基板と対向するカバーであって、前記光回折素子群に属する各平面状光回折素子と接触しないように支持されたカバーを更に備えている、という構成が採用されている。 Further, in the optical arithmetic unit according to the eighth aspect of the present invention, in addition to the configuration of the optical arithmetic unit according to any one of the first to seventh aspects described above, the cover faces the substrate. Therefore, a configuration is adopted in which a cover supported so as not to come into contact with each planar optical diffractive element belonging to the optical diffractive element group is further provided.
 また、本発明の第9の態様に係る光演算装置は、上述した第1の態様に係る光演算装置の構成に加えて、前記光回折素子群は、その出射面が前記基板の一方の主面と面接触するように前記基板に固定された第1の平面状光回折素子と、その入射面が前記基板の他方の主面と面接触するように前記基板に固定された第2の平面状光回折素子と、を含んでいる。 Further, in the optical arithmetic apparatus according to the ninth aspect of the present invention, in addition to the configuration of the optical arithmetic apparatus according to the first aspect described above, the light diffraction element group has an emission surface of one of the main substrates. A first planar optical diffractive element fixed to the substrate so as to be in surface contact with a surface, and a second plane fixed to the substrate so that its incident surface is in surface contact with the other main surface of the substrate. It includes a light diffracting element.
 また、本発明の第10の態様に係る光演算装置は、上述した第1の態様~第9の態様の何れか一態様に係る光演算装置の構成に加えて、前記光回折素子群は、高さが互いに独立に設定された複数のピラーが両面に形成された平面状光回折素子を含んでいる、構成が採用されている。 Further, in the optical arithmetic unit according to the tenth aspect of the present invention, in addition to the configuration of the optical arithmetic unit according to any one of the first to ninth aspects described above, the optical diffraction element group includes the optical diffraction element group. A configuration is adopted in which a plurality of pillars whose heights are set independently of each other include a planar optical diffractometer formed on both sides.
 上記の課題を解決するために、本発明の第11の態様に係る光演算装置の製造方法は、上述した第1の態様~第10の態様の何れか一態様に係る光演算装置の製造方法であって、前記光回折素子群に属する各平面状光回折素子を一括して形成する工程を含んでいる。 In order to solve the above-mentioned problems, the method for manufacturing an optical calculation device according to the eleventh aspect of the present invention is a method for manufacturing an optical calculation device according to any one of the above-mentioned first to tenth aspects. The present invention includes a step of collectively forming each planar optical diffractive element belonging to the optical diffractive element group.
 〔付記事項〕
 本発明は、上述した実施形態に限定されるものでなく、請求項に示した範囲で種々の変更が可能であり、上述した実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。
[Additional notes]
The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims, and the present invention can be obtained by appropriately combining the technical means disclosed in the above-mentioned embodiments. The form is also included in the technical scope of the present invention.
  1,2,3,4,5,6,6A                光演算装置
  11,21,31,41,51,61             光回折素子群
  11ai,21ai,31ai,41ai,51ai,61ai 平面状光回折素子
  12,22,32,42,52,62,63          基板
  23,33                         プリズム(光学素子)
  34,43,53                      ミラー(光学素子)
  15                            カバー
1,2,3,4,5,6A Optical logic unit 111,21,31,41,51,61 Optical diffraction element group 11ai, 21ai, 31ai, 41ai, 51ai, 61ai Planar optical diffraction element 12,22 , 32, 42, 52, 62, 63 Substrate 23, 33 Prism (optical element)
34,43,53 Mirror (optical element)
15 cover

Claims (11)

  1.  基板と、複数の平面状光回折素子を含む光回折素子群と、を備え、
     前記光回折素子群に属する各平面状光回折素子は、厚み又は屈折率が互いに独立に設定された複数のマイクロセルにより構成されており、前記基板に固定されている、
    ことを特徴とする光演算装置。
    A substrate and a group of optical diffractive elements including a plurality of planar optical diffractive elements are provided.
    Each planar optical diffractive element belonging to the optical diffractive element group is composed of a plurality of microcells whose thickness or refractive index is set independently of each other, and is fixed to the substrate.
    An optical logic unit characterized by this.
  2.  前記光回折素子群に属する各平面状光回折素子は、その入射面及び出射面が前記基板の主面と交わるように前記基板に固定されている、
    ことを特徴とする請求項1に記載の光演算装置。
    Each planar optical diffractive element belonging to the optical diffractive element group is fixed to the substrate so that its incident surface and exit surface intersect with the main surface of the substrate.
    The optical arithmetic unit according to claim 1.
  3.  前記基板の主面と交わる面内において信号光の光路を折り返す光学素子を更に備えており、
     前記光回折素子群は、折り返し前後の光路の一方に設けられ、前記基板に直接固定された平面状光回折素子と、折り返し前後の光路の他方に設けられ、前記基板に直接固定された平面状光回折素子を介して前記基板に間接固定された平面状光回折素子と、を含んでいる、
    ことを特徴とする請求項2に記載の光演算装置。
    Further, an optical element that folds back the optical path of the signal light in the surface intersecting the main surface of the substrate is provided.
    The optical diffractive element group is provided in one of the optical paths before and after folding and is directly fixed to the substrate, and the planar optical diffractive element is provided in the other of the optical paths before and after folding and is directly fixed to the substrate. Includes a planar optical diffractive element indirectly fixed to the substrate via an optical diffractive element.
    The optical arithmetic unit according to claim 2.
  4.  前記光回折素子群は、第1の光路上に設けられた平面状光回折素子と、前記第1の光路とは異なる第2の光路上に設けられた平面状光回折素子と、を含んでいる、
    ことを特徴とする請求項2に記載の光演算装置。
    The optical diffractive element group includes a planar optical diffractive element provided on the first optical path and a planar optical diffractive element provided on a second optical path different from the first optical path. Yes,
    The optical arithmetic unit according to claim 2.
  5.  信号光の光路を前記第1の光路と前記第2の光路とに分岐させる光学素子を更に備えている、
    ことを特徴とする請求項4に記載の光演算装置。
    Further, an optical element for branching the optical path of the signal light into the first optical path and the second optical path is provided.
    The optical arithmetic unit according to claim 4.
  6.  信号光を前記第1の光路又は前記第2の光路へと導く光学素子であって、前記信号光を導く光路が可変な光学素子を更に備えている、
    ことを特徴とする請求項4に記載の光演算装置。
    An optical element that guides signal light to the first optical path or the second optical path, further comprising an optical element having a variable optical path for guiding the signal light.
    The optical arithmetic unit according to claim 4.
  7.  信号光を前記第1の光路又は前記第2の光路へと導く光学素子であって、信号光を導く光路が不変な光学素子を更に備えている、
    ことを特徴とする請求項4に記載の光演算装置。
    An optical element that guides signal light to the first optical path or the second optical path, further comprising an optical element whose optical path for guiding signal light is invariant.
    The optical arithmetic unit according to claim 4.
  8.  前記基板と対向するカバーであって、前記光回折素子群に属する各平面状光回折素子と接触しないように支持されたカバーを更に備えている、
    ことを特徴とする請求項1~7の何れか一項に記載の光演算装置。
    A cover facing the substrate and supported so as not to come into contact with each planar optical diffractive element belonging to the optical diffractive element group is further provided.
    The optical arithmetic unit according to any one of claims 1 to 7.
  9.  前記光回折素子群は、その出射面が前記基板の一方の主面と面接触するように前記基板に固定された第1の平面状光回折素子と、その入射面が前記基板の他方の主面と面接触するように前記基板に固定された第2の平面状光回折素子と、を含んでいる、
    ことを特徴とする請求項1に記載の光演算装置。
    The group of optical diffractive elements includes a first planar optical diffractive element fixed to the substrate so that its emission surface is in surface contact with one main surface of the substrate, and its incident surface is the other main surface of the substrate. 2.
    The optical arithmetic unit according to claim 1.
  10.  前記光回折素子群は、高さが互いに独立に設定された複数のピラーが両面に形成された平面状光回折素子を含んでいる、
    ことを特徴とする請求項1~9の何れか一項に記載の光演算装置。
    The group of optical diffractive elements includes a planar optical diffractive element in which a plurality of pillars whose heights are set independently of each other are formed on both sides.
    The optical arithmetic unit according to any one of claims 1 to 9.
  11.  請求項1~10の何れか一項に記載の光演算装置の製造方法であって、
     前記光回折素子群に属する各平面状光回折素子を一括して形成する工程を含んでいる、ことを特徴とする光演算装置の製造方法。
    The method for manufacturing an optical arithmetic unit according to any one of claims 1 to 10.
    A method for manufacturing an optical arithmetic unit, which comprises a step of collectively forming each planar optical diffraction element belonging to the optical diffraction element group.
PCT/JP2021/028551 2020-12-16 2021-08-02 Optical arithmetic device and method for manufacturing optical arithmetic device WO2022130679A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/256,211 US20240019615A1 (en) 2020-12-16 2021-08-02 Optical arithmetic device and method for manufacturing optical arithmetic device
JP2022569702A JPWO2022130679A1 (en) 2020-12-16 2021-08-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020208661 2020-12-16
JP2020-208661 2020-12-16

Publications (1)

Publication Number Publication Date
WO2022130679A1 true WO2022130679A1 (en) 2022-06-23

Family

ID=82057530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028551 WO2022130679A1 (en) 2020-12-16 2021-08-02 Optical arithmetic device and method for manufacturing optical arithmetic device

Country Status (3)

Country Link
US (1) US20240019615A1 (en)
JP (1) JPWO2022130679A1 (en)
WO (1) WO2022130679A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068604A (en) * 2001-08-23 2003-03-07 Nikon Corp Illumination optical equipment and aligner using the illumination optical equipment
JP2006085071A (en) * 2004-09-17 2006-03-30 Fuji Photo Film Co Ltd Multi-beam exposure device
JP2018163353A (en) * 2014-02-21 2018-10-18 Agc株式会社 Glass substrate for light guide and video display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068604A (en) * 2001-08-23 2003-03-07 Nikon Corp Illumination optical equipment and aligner using the illumination optical equipment
JP2006085071A (en) * 2004-09-17 2006-03-30 Fuji Photo Film Co Ltd Multi-beam exposure device
JP2018163353A (en) * 2014-02-21 2018-10-18 Agc株式会社 Glass substrate for light guide and video display device

Also Published As

Publication number Publication date
US20240019615A1 (en) 2024-01-18
JPWO2022130679A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
Khorasaninejad et al. Metalenses: Versatile multifunctional photonic components
JP2021509736A (en) Methods for processing optical waveguides
US4140362A (en) Forming focusing diffraction gratings for integrated optics
JP3522117B2 (en) Self-guided optical circuit
JP5094697B2 (en) Adjustable resolving power interference lithography system
US20100020671A9 (en) Phase correction element and optical head device
KR20020014984A (en) Exposure apparatus, method for manufacturing thereof, method for exposing and method for manufacturing microdevice
JP2008130805A (en) External resonator wavelength variable light source
US20090128908A1 (en) Polarization Split Element and Production Method Thereof, and Optical Pickup, Optical Device, Optical Isolator and Polarizing Hologram Provided with the Polarization Split Element
Tang et al. Dynamic augmented reality display by layer‐folded metasurface via electrical‐driven liquid crystal
CN114265130A (en) Transflective light regulation device based on all-dielectric super-surface and working method thereof
EP3365721B1 (en) Chromatic phase plate
Tian et al. Nanoscale noncoplanar beam splitters with tunable split ratio
WO2022130679A1 (en) Optical arithmetic device and method for manufacturing optical arithmetic device
JP2013216785A (en) Mounting structure for optical component, wavelength-selective device, and method for manufacturing mounting structure for optical device
Chen Effect of the number of zones in a one-dimensional plasmonic zone plate lens: simulation and experiment
JP5566501B2 (en) In particular, the optical system of a microlithography projection exposure apparatus
JP5759430B2 (en) Wavelength selective switch
US20080253265A1 (en) Optical head apparatus
JP3412706B2 (en) Optical multiplexer / demultiplexer
JP6182988B2 (en) Spectroscopic device and wavelength selective switch
US9442253B2 (en) Optical shuffling
JP5032753B2 (en) Optical component assembly and optical device
JP4530884B2 (en) Optical pickup device and optical disk drive device using the same
WO2022085247A1 (en) Liquid crystal optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906045

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569702

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18256211

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906045

Country of ref document: EP

Kind code of ref document: A1