WO2022130591A1 - Vehicle side step and method for manufacturing same - Google Patents

Vehicle side step and method for manufacturing same Download PDF

Info

Publication number
WO2022130591A1
WO2022130591A1 PCT/JP2020/047272 JP2020047272W WO2022130591A1 WO 2022130591 A1 WO2022130591 A1 WO 2022130591A1 JP 2020047272 W JP2020047272 W JP 2020047272W WO 2022130591 A1 WO2022130591 A1 WO 2022130591A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
layer
group
epoxy resin
metal
Prior art date
Application number
PCT/JP2020/047272
Other languages
French (fr)
Japanese (ja)
Inventor
信行 高橋
正広 佐藤
和男 大谷
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to PCT/JP2020/047272 priority Critical patent/WO2022130591A1/en
Priority to JP2022569638A priority patent/JP7480865B2/en
Publication of WO2022130591A1 publication Critical patent/WO2022130591A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R3/00Arrangements of steps or ladders facilitating access to or on the vehicle, e.g. running-boards

Definitions

  • This disclosure relates to a vehicle side step provided on the side of the vehicle body and a method for manufacturing the same.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2019-151209
  • the fastening portion on the outer side in the vehicle width direction projects downward from the lower surface of the step plate
  • the fastening portion on the inner side in the vehicle width direction is inside in the vehicle width direction from the step surface on which the foot is placed when getting on and off the step plate. It is said that it is configured to protrude upward from the step surface.
  • the side step is composed of a step plate made of a metal member and a cover made of a resin member attached to both ends of the step plate in the vehicle front-rear direction, but the joining method thereof is not particularly disclosed. ..
  • the metal member is required to satisfy the strength (eg, rigidity) required for the side step. It is desired that the resin member and the resin member are more firmly bonded to each other.
  • the present disclosure has been made in view of the above-mentioned technical background, and an object thereof is to provide a vehicle side step provided with a metal member and a resin member and having a high joint strength between the two members, and a method for manufacturing the same.
  • This disclosure includes the following aspects.
  • a metal member in which one or a plurality of resin coating layers are laminated on at least a part of the surface of the metal base material is bonded to the surface of the metal member on the resin coating layer side of the metal base material. Equipped with a resin member, At least one layer of the resin coating layer is a modified polyolefin layer formed from a resin composition containing a modified polyolefin, and the modified polyolefin layer is composed of a maleic anhydride-modified polyolefin, a bifunctional epoxy resin, and a bifunctional phenol compound.
  • Side step for vehicles a layer containing a reactant 1, a layer containing a reaction product 2 of a maleic anhydride-modified polyolefin and a thermoplastic epoxy resin, and a layer containing a mixture of a polyolefin and a thermoplastic epoxy resin.
  • reaction product 2 is formed by reacting a thermoplastic epoxy resin produced by a double addition reaction of a bifunctional epoxy resin and a bifunctional phenol compound with a maleic anhydride-modified polyolefin. side step.
  • the resin coating layer is composed of a plurality of layers including the modified polyolefin layer and a layer other than the modified polyolefin layer, and at least one layer other than the modified polyolefin layer is a resin containing a thermoplastic epoxy resin.
  • curable resin is at least one selected from the group consisting of urethane resin, epoxy resin, vinyl ester resin and unsaturated polyester resin.
  • a functional group-containing layer laminated in contact with the metal base material and the resin coating layer is provided between the metal base material and the resin coating layer.
  • An amino group derived from the silane coupling agent is an amino group derived from the silane coupling agent.
  • a glycidyl compound, an amino compound, an isocyanate compound, a (meth) acryloyl group and a glycidyl group are added to a mercapto group derived from a silane coupling agent.
  • a functional group produced by the reaction of at least one selected from the group consisting of a compound having a (meth) acryloyl group and a compound having an amino group (4) A thiol compound to a (meth) acryloyl group derived from a silane coupling agent.
  • a glycidyl group derived from a silane coupling agent is reacted with at least one selected from the group consisting of a compound having an amino group and a (meth) acryloyl group, an amino compound, and a thiol compound.
  • the surface of the metal base material is subjected to at least one surface treatment selected from the group consisting of blast treatment, polishing treatment, etching treatment and chemical conversion treatment, and the resin coating layer is the metal base material.
  • the vehicle side step according to any one of items 1 to 7 above, which is laminated on the surface-treated surface of the above item.
  • the resin member includes a base resin member and a surface resin member.
  • the lower surface of the metal member in the vehicle height direction is joined to the upper surface of the base resin member in the vehicle height direction.
  • a part of the upper surface of the metal member in the vehicle height direction is joined to the lower surface of the surface resin member in the vehicle height direction, and the other part of the upper surface of the metal member in the vehicle height direction is exposed.
  • the vehicle side step according to any one of 1 to 8.
  • the metal base material is made of an extruded aluminum material of an A6000 alloy, and has the characteristics of a tensile strength of 180 MPa or more and a Young's modulus of 60 GPa or more. Side step for vehicles.
  • the resin member is bonded to the surface of the metal member on the resin coating layer side, and at least one layer of the resin coating layer is modified from a resin composition containing a modified polyolefin. It is a polyolefin layer, and the modified polyolefin layer contains a layer containing a reaction product 1 of a maleic anhydride-modified polyolefin, a bifunctional epoxy resin and a bifunctional phenol compound, and a reaction product 2 of a maleic anhydride-modified polyolefin and a thermoplastic epoxy resin. Since it is at least one selected from the group consisting of a layer containing the layer and a layer containing a mixture of the polyolefin and the thermoplastic epoxy resin, the bonding strength between the metal member and the resin member is high.
  • FIG. 1 is a left side view showing a vehicle to which the vehicle side step according to the embodiment of the present disclosure is applied.
  • FIG. 2 is a perspective view showing the relationship between the vehicle side step shown in FIG. 1 and each stay.
  • FIG. 3 is a plan view of the vehicle side step shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the line AA'of FIG.
  • FIG. 5A is a schematic cross-sectional view showing a state in which a resin coating layer is formed on a surface-treated surface of a metal base material in a metal member.
  • FIG. 1 is a left side view showing a vehicle to which the vehicle side step according to the embodiment of the present disclosure is applied.
  • FIG. 2 is a perspective view showing the relationship between the vehicle side step shown in FIG. 1 and each stay.
  • FIG. 3 is a plan view of the vehicle side step shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the line AA'of FIG.
  • FIG. 5A is
  • FIG. 5B is a schematic cross-sectional view showing a state in which a functional group-containing layer is formed on a surface-treated surface of a metal base material and a resin coating layer is formed on the surface-treated surface of the metal member.
  • FIG. 6 is a schematic cross-sectional view of a state in which a metal member and a resin member are joined.
  • FIG. 7 is a schematic cross-sectional view of a state in which a metal member and a resin member are joined via an adhesive layer.
  • FIG. 8 is an SEM photograph of the boehmite film.
  • metal is meant to include both pure metals consisting of a single metal element and alloys of pure metals mixed with one or more other elements. Used.
  • aluminum includes pure metals of aluminum and alloys thereof.
  • bonding means connecting objects to each other, and adhesion is a subordinate concept thereof, and through organic materials such as tapes and adhesives (curable resin, thermoplastic resin, etc.), It means that two adherends (those to be bonded) are put into a bonded state.
  • FIG. 1 is a left side view showing a vehicle to which the vehicle side step according to the embodiment of the present disclosure is applied.
  • the vehicle side step 10 according to the embodiment of the present disclosure is the lower side of the doors 12 and 12 in a vehicle having a high riding position represented by a truck or a sports utility vehicle (SUV). It is installed in the vehicle and is used as a foothold for boarding.
  • SUV sports utility vehicle
  • FIG. 2 is a perspective view showing the relationship between the vehicle side step 10 shown in FIG. 1 and each stay 14 for attaching the vehicle side step 10 to the vehicle body.
  • the vehicle side step 10 is fixed to the vehicle body via a stay 14 (for example, a substantially L-shaped member obtained by press-molding a steel plate) shown in FIG.
  • the fixing method may be a method using bolts and nuts, or may be welding.
  • FIG. 3 is a plan view of the vehicle side step 10 shown in FIG. 2, and FIG. 4 is a cross-sectional view taken along the line AA'of FIG.
  • the vehicle side step 10 has a flat plate-shaped base resin plate 10a and a metal plate having a plurality of protrusions in this order from the lower side in the vehicle height direction (lower side of the paper surface in FIG. 4). It is provided with 10b and a surface resin plate 10c having a plurality of holes for the convex portion to penetrate.
  • the metal plate 10b is sandwiched between the two resin plates (base resin plate 10a and surface resin plate 10c), whereby these three plates 10a are sandwiched between the two resin plates (base resin plate 10a and surface resin plate 10c). It has a sandwich structure in which 10b and 10c are integrated.
  • the joining status of the plates in this sandwich structure is as follows. That is, as shown in FIG. 4, the upper surface of the base resin plate 10a in the vehicle height direction and the lower surface of the metal plate 10b in the vehicle height direction are joined. Further, a part of the upper surface of the metal plate 10b in the vehicle height direction (the upper surface of the non-convex portion) and the lower surface of the surface resin plate 10c in the vehicle height direction are joined. Further, a part of the side surface of the metal plate 10b and the surface for partitioning the hole portion of the surface resin plate 10c are joined. Due to such a joining state, the upper portion of the convex portion of the metal plate 10b protrudes from the hole portion of the surface resin plate 10c, so that the upper surface of the convex portion of the metal plate 10b is exposed.
  • the vehicle side step 10 shown in FIGS. 3 and 4 includes the resin plate 10a, the metal plate 10b, and the resin plate 10c in this order from the lower side in the vehicle height direction to the upper side.
  • the present embodiment is not limited to such an embodiment. That is, although not shown in the present embodiment, the metal plate, the resin plate, and the metal plate may be used as constituent elements in this order from the lower side in the vehicle height direction to the upper side. In this case, the metal plate and the resin plate in FIGS. 3 and 4 are interchanged, and the resin plate is sandwiched between the two metal plates to form a sandwich structure in which these three plates are integrated.
  • the vehicle side step 10 shown above is connected to the vehicle body via a stay on one side of the longitudinal edge portion thereof, and is used as a scaffold. At that time, if the bonding strength between the base resin plate 10a and the metal plate 10b and / or the bonding strength between the metal plate 10b and the surface resin plate 10c is not sufficient, at least one of the resin plates 10a and 10c is an adjacent metal. It peels off from the plate 10b, and the vehicle side step 10 cannot guarantee the desired durability.
  • a specific resin coating layer is interposed between the base resin plate 10a and the metal plate 10b and / or between the metal plate 10b and the surface resin plate 10c. , The bonding strength between the base resin plate 10a and the metal plate 10b, and / or the bonding strength between the metal plate 10b and the surface resin plate 10c can be sufficiently ensured.
  • each member of the vehicle side step 10 shown in FIGS. 1 to 4 and the manufacturing method thereof will be described in detail.
  • the metal plate 10b is also referred to as “metal member 1”
  • each resin plate (base resin plate 10a, surface resin plate 10c) is also referred to as "resin member 8".
  • the metal member 1 As shown in FIGS. 5A and 5B, the metal member 1 (metal plate 10b) has a metal base material 2 and a one-layer or a plurality of resin coating layers 4 laminated on the surface of the metal base material 2. is doing.
  • the resin coating layer 4 is laminated on the surface-treated surface of the metal substrate 2, and at least one layer of the resin coating layer 4 is formed from a resin composition containing a modified polyolefin.
  • the modified polyolefin layer 4a is formed from a resin composition containing a modified polyolefin.
  • the resin coating layer 4 is formed on the surface of the metal base material 2 with excellent bondability, and exhibits excellent bondability with polyolefin. As a result, the metal base material 2 is provided with excellent adhesiveness (bondability via the resin coating layer 4) to the resin member 8 containing polyolefin. Therefore, it can be said that the resin coating layer 4 is a primer layer arranged on the joint surface of the metal base material 2.
  • the primer layer is interposed between the metal base material 2 and the resin member 8 when the metal member 1 and the resin member 8 are joined, and the adhesiveness of the metal base material 2 to the resin member 8 ( It means that it is a layer that improves the bondability) via the resin coating layer 4.
  • the metal member 1 capable of maintaining excellent adhesiveness to the resin member even when stored for a long period of several months.
  • the resin coating layer 4 may be directly laminated on the surface of the surface-treated portion 2a of the metal substrate 2.
  • the functional group-containing layer 3 is provided on the surface of the surface-treated portion 2a of the metal base material 2, and further, the resin is provided on the surface of the functional group-containing layer 3.
  • the coating layer 4 may be formed. That is, the functional group-containing layer 3 may be arranged between the surface-treated portion 2a of the metal base material 2 and the resin coating layer 4.
  • the surface-treated surface of the metal base material 2 is a surface to be joined with at least the resin member 8 on the surface of the metal member 1 (metal base material 2), that is, the metal member 1 (base material 2). 2) At least the contact portion with the resin member 8 on the surface, specifically, the entire lower surface of the metal plate 10b in the vehicle height direction and the vehicle of the metal plate 10b in the vehicle side step 10 shown in FIG.
  • Metal base material 2 examples include aluminum, iron, and stainless steel. Of these, aluminum is particularly preferably used from the viewpoint of light weight and ease of processing. In the following, the case where aluminum is applied will be described in detail.
  • the type of the aluminum material of the metal base material 2 is not limited, and for example, the aluminum content is 50% by mass or more, and specifically, the aluminum material.
  • the aluminum material is preferably an A6000 series alloy (eg, A6061, A6N01, A6063, A6082, A6110), an A5000 series alloy, an A1000 series alloy, an A3000 series alloy, or the like, and the aluminum material has a high deformation energy absorption rate.
  • A6N01 alloy which is a highly ductile aluminum alloy, is more preferable.
  • the metal base material 2 is made of an extruded aluminum material of an A6000 alloy and has characteristics of a tensile strength of 180 MPa or more and a Young's modulus of 60 GPa or more.
  • the metal base material since the metal base material has high tensile strength (high strength) and high Young's modulus (high rigidity), it is possible to reduce the thickness of the metal plate 10b of the vehicle side step 10, and therefore, the vehicle. Contributes to weight reduction of the side step 10 for use.
  • the upper limit of the tensile strength is not limited, and is, for example, 450 MPa.
  • the upper limit of Young's modulus is not limited, and is, for example, 80 GPa.
  • the metal base material 2 may be an aluminum die-cast material, a cast material, a forged material, or the like.
  • the metal base material 2 is made of extruded aluminum, it is preferable that the metal base material 2 is manufactured by the following method.
  • a step of continuously casting a casting rod by supplying a molten metal of an aluminum material having predetermined characteristics to a continuous casting apparatus, a step of homogenizing the casting rod, and a step of homogenizing the casting rod are performed.
  • the extruded material is cut to a predetermined length, and the cut end surfaces are subjected to predetermined processing such as face cutting and deburring to obtain a metal base material 2 made of the extruded material.
  • a surface-treated portion 2a is formed on at least the surface to be joined to the resin member 8 in the metal substrate 2 of FIGS. 5A and 5B.
  • the surface treatment portion 2a is regarded as a part of the metal base material 2.
  • Examples of the surface treatment include cleaning / degreasing treatment with a solvent, blast treatment, polishing treatment, plasma treatment, laser treatment, etching treatment, and chemical conversion treatment, and surface treatment for generating hydroxyl groups on the surface of the metal substrate 2. Is preferable. These surface treatments may be performed with only one type or two or more types. As a specific method for these surface treatments, known methods can be used.
  • the surface treatment removes contaminants on the surface of the metal base material 2 and / or forms fine irregularities on the surface of the metal base material 2 for the purpose of anchoring effect to roughen the surface.
  • the bondability between the surface of the metal base material 2 and the resin coating layer 4 can be improved, and as a result, the adhesiveness between the metal member 1 and the resin member 8 to be bonded (resin coating layer 4) can be improved. It is also possible to improve the bondability through.
  • the surface treatment at least one selected from the group consisting of blast treatment, polishing treatment, etching treatment and chemical conversion treatment is preferable.
  • cleaning / degreasing treatment examples include degreasing the surface of the metal base material 2 with an organic solvent such as acetone or toluene.
  • the cleaning / degreasing treatment is preferably performed before other surface treatments.
  • blast processing examples include shot blasting and sand blasting.
  • polishing treatment examples include buffing using a polishing cloth, roll polishing using polishing paper (sandpaper), and electrolytic polishing.
  • Plasma treatment uses a high-voltage power supply to inject a plasma beam emitted from a rod called an electrode onto the surface of a material to first clean the foreign matter or oil film on the surface and then put energy into the gas according to the material. This is a method of exciting surface molecules.
  • the plasma treatment include atmospheric pressure plasma treatment capable of imparting a hydroxyl group or other polar groups to the surface.
  • Laser treatment is a technique for rapidly heating and cooling only the surface layer by laser irradiation to improve the surface properties of a material, and is an effective method for roughening the surface.
  • a known laser treatment technique can be used as the laser treatment.
  • etching treatment examples include a chemical etching treatment such as an alkali method, a phosphoric acid-sulfuric acid method, a fluoride method, a chromic acid-sulfuric acid method, and a salt iron method, and an electrochemical etching treatment such as an electrolytic etching method. ..
  • the etching treatment is preferably an alkaline method using an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide as an etching solution, and more preferably a caustic soda method using an aqueous solution of sodium hydroxide.
  • the alkaline method can be carried out, for example, by immersing the metal substrate 2 in an aqueous solution of sodium hydroxide or potassium hydroxide having a concentration of 3 to 20% by mass at 20 to 70 ° C. for 1 to 15 minutes.
  • a chelating agent, an oxidizing agent, a phosphate or the like may be added to the etching solution. After soaking, it is preferable to neutralize (de-smut) with a 5 to 20% by mass nitric acid aqueous solution, wash with water, and dry.
  • the chemical conversion treatment mainly forms a chemical conversion film on the surface of the metal base material 2 as a surface treatment portion 2a.
  • Examples of the chemical conversion treatment include boehmite treatment and zirconium treatment.
  • the chemical conversion treatment is preferably boehmite treatment.
  • a boehmite film is formed on the surface of the metal base material 2 by treating the metal base material 2 with hot water.
  • Ammonia, triethanolamine or the like may be added to water as a reaction accelerator.
  • a film of a zirconium compound is formed on the surface of the metal base material 2 by immersing the metal base material 2 in a zirconium salt-containing liquid such as zirconium phosphate.
  • the metal substrate 2 is immersed in a chemical agent for zirconium treatment (for example, "Pearl Coat 3762” manufactured by Nihon Parkerizing Co., Ltd., "Pearl Coat 3796", etc.) at 45 to 70 ° C. for 0.5 to 3 minutes. It is preferable to do this.
  • the zirconium treatment is preferably performed after the etching treatment by the caustic soda method.
  • the metal base material 2 is aluminum, it is preferable that the metal base material 2 is subjected to at least one surface treatment selected from an etching treatment and a boehmite treatment.
  • a one-layer or a plurality of functional group-containing layers 3 laminated in contact with the metal base material 2 and the resin coating layer 4 may be provided between the metal base material 2 and the resin coating layer 4.
  • the functional group-containing layer 3 reacts with the hydroxyl group on the surface of the metal base material 2 and the functional group contained in the resin constituting the resin coating layer 4, respectively, to form a chemical bond.
  • the adhesiveness between the surface of the metal base material 2 and the resin coating layer 4 can be improved, and as a result, the adhesiveness between the metal member 1 and the resin member 8 to be bonded (resin coating layer) can be improved. Bondability via 4) can also be improved.
  • the functional group-containing layer 3 may be formed by treating the surface of the metal base material 2 with at least one selected from the group consisting of the following (1') to (7'). preferable.
  • Combination of at least one and a silane coupling agent having a mercapto group (4')
  • a combination of at least one selected from the group consisting of compounds, amino compounds and thiol compounds and a silane coupling agent having a glycidyl group (6') isocyanate compound (7') thiol compound.
  • the functional group-containing layer 3 preferably contains the functional group introduced by the above treatment, and specifically, preferably contains at least one functional group selected from the group consisting of the following (1) to (7). .. (1) At least one functional group derived from the silane coupling agent and selected from the group consisting of a glycidyl group, an amino group, a (meth) acryloyl group and a mercapto group (2) An amino group derived from the silane coupling agent.
  • a glycidyl compound, an amino compound, an isocyanate compound, a (meth) acryloyl group and a glycidyl group are added to a mercapto group derived from a silane coupling agent.
  • a functional group produced by the reaction of at least one selected from the group consisting of a compound having a (meth) acryloyl group and a compound having an amino group (4) A thiol compound to a (meth) acryloyl group derived from a silane coupling agent.
  • a glycidyl group derived from a silane coupling agent is reacted with at least one selected from the group consisting of a compound having an amino group and a (meth) acryloyl group, an amino compound, and a thiol compound.
  • the above-mentioned surface treatment portion 2a can be provided on the surface of the metal base material 2.
  • the anchor effect due to the fine irregularities of the surface treatment portion 2a and the functional group of the functional group-containing layer 3 react with each of the hydroxyl group on the surface of the metal substrate 2 and the functional group of the resin constituting the resin coating layer 4. Due to the synergistic effect with the formed chemical bond, the adhesiveness between the surface of the metal base material 2 and the resin coating layer 4 and the adhesiveness between the metal member 1 and the resin member 8 to be bonded (via the resin coating layer 4). Bondability) can be further improved.
  • the method for forming the functional group-containing layer 3 using a silane coupling agent, an isocyanate compound, a thiol compound, or the like is not particularly limited, and examples thereof include a spray coating method and a dipping method.
  • the metal base material 2 is immersed in a solution of a silane coupling agent having a concentration of 5 to 50% by mass at room temperature to 100 ° C. for 1 minute to 5 days, and then immersed at room temperature to 100 ° C. for 1 minute to 5 minutes.
  • the functional group-containing layer 3 can be formed by drying for a time.
  • silane coupling agent for example, a known one used for surface treatment of glass fiber or the like can be used.
  • a silanol group generated by hydrolyzing a silane coupling agent or a silanol group of an oligomer product formed by condensing a silanol group reacts with a hydroxyl group existing on the surface of the metal substrate 2 to bond to the resin.
  • a functional group based on the structure of the silane coupling agent that can be chemically bonded to the coating layer 4 can be imparted (introduced) to the metal substrate 2.
  • the silane coupling agent is not particularly limited, and for example, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane and N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane.
  • the isocyanate compound is a functional group based on the structure of an isocyanate compound that can be chemically bonded to the resin coating layer 4 by reacting and bonding an isocyanato group in the isocyanate compound with a hydroxyl group existing on the surface of the metal substrate 2. It can be applied (introduced) to the metal base material 2.
  • the isocyanate compound is not particularly limited, and is, for example, a polyfunctional isocyanate such as diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), isophorone diisocyanate (IPDI); and 2-isosia.
  • MDI diphenylmethane diisocyanate
  • HDI hexamethylene diisocyanate
  • TDI tolylene diisocyanate
  • IPDI isophorone diisocyanate
  • 2-isosia for example, “Karenzu MOI (registered trademark)” manufactured by Showa Denko Co., Ltd.
  • 2-isocyanatoethyl acrylate for example, "Karenzu AOI (registered trademark)” manufactured by Showa Denko Co., Ltd. "," AOI-VM (registered).
  • Examples thereof include isocyanate compounds having a radically reactive group such as ”)”) and 1,1- (bisacryloyloxyethyl) ethyl isocyanate (for example, "Karenzu BEI (registered trademark)” manufactured by Showa Denko Co., Ltd.).
  • the thiol compound is a functional group based on the structure of the thiol compound that can be chemically bonded to the resin coating layer 4 by reacting and bonding the mercapto group in the thiol compound with the hydroxyl group existing on the surface of the metal substrate 2. It can be applied (introduced) to the metal base material 2.
  • the thiol compound is not particularly limited, and is, for example, pentaerythritol tetrakis (3-mercaptopropionate) (for example, "QX40” manufactured by Mitsubishi Chemical Co., Ltd., “QE-340M” manufactured by Toray Fine Chemical Co., Ltd.). , Ether-based first-class thiol (for example, “Cup Cure 3-800” manufactured by Cognis), 1,4-bis (3-mercaptobutyryloxy) butane (for example, "Karensu MT (registered) manufactured by Showa Denko KK).
  • pentaerythritol tetrakis (3-mercaptopropionate) for example, "QX40” manufactured by Mitsubishi Chemical Co., Ltd., "QE-340M” manufactured by Toray Fine Chemical Co., Ltd.
  • Ether-based first-class thiol for example, "Cup Cure 3-800” manufactured by Cognis
  • a resin coating layer 4 is laminated on the metal base material 2.
  • the resin coating layer 4 may be one layer or may be composed of a plurality of layers.
  • Modified polyolefin layer 4a At least one layer of the resin coating layer 4 is a modified polyolefin layer 4a formed from a resin composition containing a modified polyolefin. Since the resin coating layer 4 contains the modified polyolefin layer 4a, the metal member 1 can exhibit excellent adhesiveness to the resin member 8 (bondability via the resin coating layer 4).
  • the resin coating layer 4 was composed of a plurality of layers including a modified polyolefin layer 4a and a layer other than the modified polyolefin layer 4a, and the layer other than the modified polyolefin layer 4a was formed from a resin composition containing a thermoplastic epoxy resin. It may be at least one selected from the curable resin layer 4c formed from the thermoplastic epoxy resin layer 4b and the resin composition containing the curable resin.
  • the resin coating layer 4 is composed of a plurality of layers, it is preferable that the essential modified polyolefin layer 4a is laminated so as to be the outermost surface on the opposite side to the metal base material 2.
  • the modified polyolefin layer 4a is obtained by subjecting a bifunctional epoxy resin and a bifunctional phenol compound to a double addition reaction in the presence of a maleic anhydride-modified polyolefin, and at the same time, reacting with maleic anhydride in the maleic anhydride-modified polyolefin skeleton.
  • a reaction product obtained by reacting a thermoplastic epoxy resin produced by a double addition reaction of a bifunctional epoxy resin and a bifunctional phenol compound with a layer containing the reaction product 1 and maleic anhydride in a maleic anhydride-modified polyolefin skeleton. It is preferably at least one selected from the group consisting of a layer containing 2 and a layer containing a mixture of a thermoplastic epoxy resin and a polyolefin.
  • reaction product 1 can be obtained by subjecting a bifunctional epoxy resin and a bifunctional phenol compound to a double addition reaction in the presence of a catalyst in a solution of maleic anhydride-modified polyolefin. At this time, the maleic anhydride-modified polyolefin also reacts with the bifunctional epoxy resin, the bifunctional phenol compound, and the thermoplastic epoxy resin produced from the bifunctional epoxy resin and the bifunctional phenol compound described later in the section of the reactant 2. it is conceivable that.
  • the maleic anhydride-modified polyolefin is obtained by grafting maleic anhydride on the polyolefin, and examples thereof include maleic anhydride-modified polyethylene and maleic anhydride-modified polypropylene.
  • Specific examples of the maleic anhydride-modified polyolefin include Kayaku Akzo Corporation's Kayabrid 002PP, 002PP-NW, 003PP, 003PP-NW, and Mitsubishi Chemical Corporation's Modic series.
  • SCONA TPPP2112GA, TPPP8112GA, or TPPP9212GA manufactured by BYK may be used in combination with maleic anhydride-modified polyolefin as a polypropylene additive functionalized with maleic anhydride.
  • bifunctional epoxy resin examples include a bisphenol type epoxy resin and a biphenyl type epoxy resin.
  • the bifunctional epoxy resin may be used alone or in combination of two or more.
  • Specific examples of the bifunctional epoxy resin include "jER (registered trademark) 828”, “jER (registered trademark) 834", “jER (registered trademark) 1001", and “jER (registered trademark)” manufactured by Mitsubishi Chemical Corporation. 1004 ”,“ jER® 1007 ”, and“ jER® YX-4000 ”.
  • bifunctional phenol compound examples include bisphenol and biphenol.
  • the bifunctional phenol compound may be used alone or in combination of two or more.
  • Examples of the combination of the bifunctional phenol compound include bisphenol A type epoxy resin and bisphenol A; bisphenol A type epoxy resin and bisphenol F; biphenyl type epoxy resin and 4,4'-biphenol; and "WPE190" manufactured by Nagase ChemteX Corporation. "And” EX-991L ".
  • a tertiary amine such as triethylamine, 2,4,6-tris (dimethylaminomethyl) phenol
  • a phosphorus-based compound such as triphenylphosphine are preferable.
  • the reaction product 2 can be obtained by reacting a thermoplastic epoxy resin produced by a double addition reaction of a bifunctional epoxy resin and a bifunctional phenol compound with a maleic anhydride-modified polyolefin.
  • a maleic anhydride-modified polyolefin the bifunctional epoxy resin, and the bifunctional phenol compound used in this reaction, the same ones as those used for producing the reactant 1 can be used.
  • thermoplastic epoxy resin used for producing the reaction product 2 is a resin also called a field-polymerized phenoxy resin, a field-curable phenoxy resin, a field-curable epoxy resin, or the like, and a bifunctional epoxy resin and a bifunctional phenol compound are catalysts.
  • a thermoplastic structure that is, a linear polymer structure is formed.
  • the linear polymer means a polymer that does not contain a crosslinked structure in the polymer molecule and is one-dimensional linear.
  • the thermoplastic epoxy resin has thermoplasticity unlike the curable resin that constitutes a three-dimensional network with a crosslinked structure.
  • the total amount of the bifunctional epoxy resin and the bifunctional phenol compound used in producing the reactant 1 or the reactant 2 is preferably 5 to 100 parts by mass with respect to 100 parts by mass of the maleic anhydride-modified polyolefin. It is more preferably 5 to 60 parts by mass, further preferably 10 to 30 parts by mass.
  • the reaction that occurs when the reactant 1 and the reactant 2 are obtained is the reaction between the maleic anhydride-modified polyolefin and the bifunctional epoxy resin, the reaction between the maleic anhydride-modified polyolefin and the bifunctional phenol compound, and the maleic anhydride.
  • Specifics based on a wide variety of reactions such as the reaction of connecting epoxies, the reaction of the epoxy group at the end of the thermoplastic epoxy resin with maleic anhydride, and the reaction of the secondary hydroxyl group in the skeleton of the thermoplastic epoxy resin with maleic anhydride. It is also not possible to comprehensively express the aspect. Therefore, it can be said that it is impossible or impractical to directly specify the modified polyolefin obtained as the reactant 1 or the reactant 2 by the structure or the property.
  • the mixture of the thermoplastic epoxy resin and the polyolefin can be obtained by mixing the same thermoplastic epoxy resin as that used for producing the above-mentioned reaction product 2 and the polyolefin by a conventional method.
  • the polyolefin used for the resin member 8 can be used.
  • the polyolefin is not particularly limited and may be a general synthetic resin. Examples of the polyolefin include polyethylene and polypropylene.
  • the resin coating layer 4 is laminated on the surface of the metal base material 2. As described above, the resin coating layer 4 may be laminated on the surface of the metal base material 2 which has not been surface-treated, or may be laminated on the surface of the metal base material 2 which has been surface-treated. .. The resin coating layer 4 may be laminated on the surface of the functional group-containing layer 3.
  • Thermoplastic epoxy resin layer 4b A resin composition in which the resin coating layer 4 is composed of a plurality of layers including a modified polyolefin layer 4a and a layer other than the modified polyolefin layer 4a, and at least one layer of the layers other than the modified polyolefin layer 4a is a resin composition containing a thermoplastic epoxy resin. It can be composed of a thermoplastic epoxy resin layer 4b formed from.
  • the resin composition containing the thermoplastic epoxy resin preferably contains 40% by mass or more of the thermoplastic epoxy resin, and more preferably 70% by mass or more.
  • thermoplastic epoxy resin Similar to the thermoplastic epoxy resin used for producing the reactant 2, the thermoplastic epoxy resin has a thermoplastic structure, that is, a thermoplastic structure, that is, a double-addition reaction between the bifunctional epoxy resin and the bifunctional phenol compound in the presence of a catalyst. It is a resin that forms a linear polymer structure, and has thermoplasticity unlike curable resins that form a three-dimensional network with a crosslinked structure. Due to these characteristics, the thermoplastic epoxy resin has excellent bondability with the metal substrate 2 and with excellent bondability with the modified polyolefin layer 4a by in-situ polymerization. Layer 4b can be formed. Therefore, when the metal member 1 is manufactured, it is preferable to form the thermoplastic epoxy resin layer 4b by subjecting a composition containing a monomer of the thermoplastic epoxy resin to a double addition reaction on the surface of the lower layer.
  • the heavy addition reaction of the composition containing the monomer of the thermoplastic epoxy resin is carried out on the surface of the functional group-containing layer 3 as the lower layer.
  • the resin coating layer 4 including the thermoplastic epoxy resin layer 4b formed in such an embodiment is excellent in bondability with the metal base material 2 and also with excellent bondability with the resin member 8 described later.
  • the method for forming the thermoplastic epoxy resin layer 4b using the composition containing the monomer of the thermoplastic epoxy resin is not particularly limited, and examples thereof include a spray coating method and a dipping method.
  • the composition containing the monomer of the thermoplastic epoxy resin may contain a solvent in order to sufficiently proceed the double addition reaction of the thermoplastic epoxy resin and form a desired resin coating layer, and if necessary, a colorant or the like may be contained. May contain the additive of.
  • the monomer of the thermoplastic epoxy resin is the main component among the components other than the solvent of the composition.
  • the main component means that the content of the monomer of the thermoplastic epoxy resin is 50 to 100% by mass.
  • the content of the monomer of the thermoplastic epoxy resin is preferably 60% by mass or more, more preferably 80% by mass or more.
  • the monomer for obtaining the thermoplastic epoxy resin is preferably a combination of a bifunctional epoxy resin and a bifunctional phenolic compound.
  • the double addition reaction is preferably carried out by heating at a temperature of 120 to 200 ° C. for 5 to 90 minutes, although it depends on the type of the reaction compound and the like.
  • the thermoplastic epoxy resin layer can be formed by coating the composition, volatilizing the solvent as appropriate, and then heating to carry out the double addition reaction.
  • the resin coating layer 4 is composed of a plurality of layers including a modified polyolefin layer 4a and a layer other than the modified polyolefin layer 4a, and the layer other than the modified polyolefin layer 4a is cured by forming from a resin composition containing a curable resin. It can also be composed of the sex resin layer 4c.
  • the resin composition containing the curable resin may contain a solvent and, if necessary, an additive such as a colorant in order to sufficiently proceed the curing reaction of the curable resin and form a desired resin coating layer. You may go out.
  • the curable resin is the main component among the components other than the solvent of the resin composition.
  • the main component means that the content of the curable resin is 40 to 100% by mass.
  • the content of the curable resin is preferably 60% by mass or more, more preferably 70% by mass or more, and most preferably 80% by mass or more.
  • curable resin examples include urethane resin, epoxy resin, vinyl ester resin, and unsaturated polyester resin.
  • the curable resin layer 4c may be formed of one of these resins, or may be formed by mixing two or more of them.
  • the curable resin layer 4c may be composed of a plurality of layers, and each layer may be formed of a resin composition containing different types of curable resin.
  • the method for forming the curable resin layer 4c using the composition containing the monomer of the curable resin is not particularly limited, and examples thereof include a spray coating method and a dipping method.
  • the curable resin means a resin that is cross-linked and cured, and is not limited to the thermosetting type, but also includes a room temperature curing type and a photocuring type.
  • the photo-curing type can be cured in a short time by irradiation with visible light or ultraviolet rays.
  • the photo-curing type may be used in combination with the heat-curing type and / or the room temperature curing type.
  • Examples of the photocurable type include vinyl ester resins such as "Lipoxy (registered trademark) LC-760" and “Lipoxy (registered trademark) LC-720" manufactured by Showa Denko KK.
  • Urethane resin is a resin usually obtained by the reaction of the isocyanato group of an isocyanate compound with the hydroxyl group of a polyol compound, and is defined in ASTM D16 as "a paint containing 10% by weight or more of a vehicle non-volatile component polyisocyanate".
  • the urethane resin corresponding to the above is preferable.
  • the urethane resin may be a one-component type or a two-component type.
  • Examples of the one-component urethane resin include oil-modified type (cured by oxidative polymerization of unsaturated fatty acid group), moisture-curable type (cured by reaction between isocyanato group and water in air), and block type (cured by reaction between isocyanato group and water in air).
  • Examples thereof include a lacquer type (a type in which a solvent is volatilized and cured by drying) and a lacquer type (a type in which a blocking agent is dissociated by heating and regenerated by reacting with an isocyanato group and a hydroxyl group to be cured).
  • a moisture-curable one-component urethane resin is preferably used from the viewpoint of ease of handling.
  • Specific examples of the moisture-curable one-component urethane resin include "UM-50P" manufactured by Showa Denko KK.
  • Examples of the two-component urethane resin include a catalyst-curable type (a catalyst-curable group in which an isocyanato group reacts with water in the air to cure in the presence of a catalyst) and a polyol-curable type (isocyanato group and a hydroxyl group of a polyol compound). Those that cure by reaction) can be mentioned.
  • a catalyst-curable type a catalyst-curable group in which an isocyanato group reacts with water in the air to cure in the presence of a catalyst
  • a polyol-curable type isocyanato group and a hydroxyl group of a polyol compound
  • polyol compound in the polyol curing type examples include polyester polyols and polyether polyol-phenol resins.
  • Examples of the isocyanate compound having an isocyanato group in the polyol-cured type include aliphatic isocyanates such as hexamethylene diisocyanate (HDI), tetramethylene diisocyanate, and dimerate diisocyanate; 2,4- or 2,6-tolylene diisocyanate (TDI). Or a mixture thereof, aromatic isocyanates such as p-phenylenediisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate (MDI) or a polynuclear mixture thereof, Polymeric MDI; and alicyclic isocyanates such as isophorone diisocyanate (IPDI).
  • HDI hexamethylene diisocyanate
  • TDI dimerate diisocyanate
  • TDI 2,4- or 2,6-tolylene diisocyanate
  • aromatic isocyanates such as p-phenylenediisocyanate,
  • the compounding ratio of the polyol compound and the isocyanate compound in the polyol-curable two-component urethane resin is preferably in the range of 0.7 to 1.5 in the molar equivalent ratio of the hydroxyl group / isocyanato group.
  • Examples of the urethanization catalyst used in the two-component urethane resin include triethylenediamine, tetramethylguanidine, N, N, N', N'-tetramethylhexane-1,6-diamine, dimethyletheramine, N, N.
  • the epoxy resin is a resin having at least two epoxy groups in one molecule.
  • the prepolymer before curing of the epoxy resin include ether-based bisphenol-type epoxy resin, novolak-type epoxy resin, polyphenol-type epoxy resin, aliphatic-type epoxy resin, ester-based aromatic epoxy resin, and cyclic aliphatic epoxy resin. And ether ester type epoxy resin.
  • bisphenol A type epoxy resin is preferably used.
  • the epoxy resin may be used alone or in combination of two or more.
  • bisphenol A type epoxy resin examples include “jER (registered trademark) 828” and “jER (registered trademark) 1001" manufactured by Mitsubishi Chemical Corporation.
  • novolak type epoxy resin examples include "DEN (registered trademark) 438 (registered trademark)” manufactured by The Dow Chemical Company.
  • Examples of the curing agent used for the epoxy resin include aliphatic amines, aromatic amines, acid anhydrides, phenol resins, thiols, imidazoles, and cationic catalysts.
  • the curing agent in combination with long-chain aliphatic amines and / and thiols, a resin coating layer 4 having a large elongation rate and excellent impact resistance can be formed.
  • thiols include the same compounds as those exemplified as the thiol compounds for forming the functional group-containing layer 3.
  • pentaerythritol tetrakis (3-mercaptobutyrate) for example, "Karensu MT (registered trademark) PE1" manufactured by Showa Denko KK) is preferable from the viewpoint of elongation rate and impact resistance of the resin coating layer 4.
  • the vinyl ester resin is obtained by dissolving a vinyl ester compound in a polymerizable monomer (for example, styrene).
  • the vinyl ester resin is also generally referred to as an epoxy (meth) acrylate resin, but in the present disclosure, the vinyl ester resin also includes a urethane (meth) acrylate resin.
  • vinyl ester resin for example, those described in "Polyester Resin Handbook” (Nikkan Kogyo Shimbun, published in 1988), “Paint Glossary” (Japan Society of Color Material, published in 1993), etc. can be used. can.
  • Specific examples of the vinyl ester resin include “Lipoxy (registered trademark) R-802", “Lipoxy (registered trademark) R-804", and “Lipoxy (registered trademark) R-806" manufactured by Showa Denko KK. Can be mentioned.
  • the urethane (meth) acrylate resin is, for example, radical polymerization obtained by reacting an isocyanate compound with a polyol compound and then reacting with a hydroxyl group-containing (meth) acrylic monomer (and, if necessary, a hydroxyl group-containing allyl ether monomer).
  • examples include sex-unsaturated radical-containing oligomers.
  • Specific examples of the urethane (meth) acrylate resin include "Lipoxy (registered trademark) R-6545" manufactured by Showa Denko KK.
  • Vinyl ester resin can be cured by radical polymerization by heating in the presence of a catalyst such as an organic peroxide.
  • organic peroxides examples include ketone peroxides, peroxyketals, hydroperoxides, diallyl peroxides, diacyl peroxides, peroxyesters, and peroxydicarbonates. By combining these organic peroxides with a cobalt metal salt or the like, curing at room temperature is also possible.
  • cobalt metal salt examples include cobalt naphthenate, cobalt octylate, and cobalt hydroxide. Among these, cobalt naphthenate and cobalt octylate are preferable.
  • the unsaturated polyester resin dissolves a condensation product (unsaturated polyester) of an esterification reaction between a polyol compound and an unsaturated polybasic acid (and, if necessary, a saturated polybasic acid) in a polymerizable monomer (for example, styrene). It was done.
  • unsaturated polyester resin for example, those described in "Polyester Resin Handbook” (Nikkan Kogyo Shimbun, published in 1988), “Paint Glossary” (Japan Society of Color Material, published in 1993), etc. shall be used. Can be done. Specific examples of the unsaturated polyester resin include “Rigolac (registered trademark)” manufactured by Showa Denko KK.
  • the unsaturated polyester resin can be cured by radical polymerization by heating in the presence of a catalyst similar to the vinyl ester resin.
  • FIG. 6 is a schematic cross-sectional view of a state in which a metal member and a resin member are joined, and is a diagram showing, for example, regions B and C in FIG. In the area B and FIG. 6 of FIG. 4, the metal member 1 and the resin member 8 have the same positional relationship in the vertical direction of the paper surface, but in the area C and FIG. 6 of FIG. 4, the metal member 1 And the resin member 8 have an opposite positional relationship in the vertical direction of the paper surface. As shown in FIG.
  • the surface 4s of the metal base material 2 of the metal member 1 (that is, the metal plate 10b) on the resin coating layer 4 side and the resin member 8 (that is, the resin plates 10a and 10c) are joined.
  • the resin coating layer 4 is a primer layer of the metal base material 2 as described above. Specifically, the surface 4s on the resin coating layer 4 side arranged on the contact surface of the metal base material 2 included in the metal member 1 and the resin member 8 are joined so as to be in direct contact with each other.
  • the vehicle side step 10 in which the metal member 1 and the resin member 8 are bonded with high bonding strength is used. Can be manufactured.
  • the thickness (dry thickness) of the resin coating layer 4 depends on the type of resin of the resin member 8 and the bonding area, but is a viewpoint of obtaining excellent bonding property with the resin member 8 on the surface 4s on the resin coating layer 4 side. Therefore, it is preferably 1 ⁇ m to 10 mm, more preferably 2 ⁇ m to 8 mm, and further preferably 3 ⁇ m to 5 mm.
  • the thickness of the resin coating layer 4 is the total thickness of each layer.
  • the metal member 1 and the carbon fiber reinforced resin member (CFRP member) as the resin member 8 are joined and integrated, the metal member 1 and the glass fiber reinforced resin member (GFRP member) as the resin member 8 are joined and integrated.
  • the thickness of the resin coating layer 4 is preferably 0.1 to 10 mm, more preferably 0.2 to 8 mm, and even more preferably 0.5 to 5 mm in the case of joining and integrating the resins.
  • the resin member 8 contains polyolefin.
  • the polyolefin is not particularly limited, and examples thereof include polyethylene and polypropylene.
  • Polypropylene is generally a highly rigid homopolymer obtained by polymerizing only propylene, a highly transparent and flexible random polymer copolymerized with a small amount of ethylene, and a rubber component (EPR) uniformly and finely dispersed in the homopolymer or random polymer. It is classified as a block copolymer with high impact resistance.
  • Polypropylene may contain homopolymers, random polymers, or block copolymers, or mixtures thereof.
  • Polypropylene may be a high-strength type containing talc, glass fiber, or carbon fiber. Examples of the talc-containing polypropylene include TRC104N, which is a trade name manufactured by SunAllomer Ltd.
  • glass fiber-containing polypropylene examples include product name PP-GF40-01 F02 manufactured by Daicel FineChem Co., Ltd.
  • carbon fiber-containing polypropylene examples include product name PP-CF40-11 F008 manufactured by Daicel FineChem Co., Ltd.
  • Glass fiber-containing polypropylene is a type of glass fiber reinforced resin (GFRP), and carbon fiber-containing polypropylene is a type of carbon fiber reinforced resin (CFRP).
  • the resin containing reinforcing fibers such as glass fiber and carbon fiber may be in the form of a molded body such as a sheet molding compound (SMC) or a bulk molding compound (BMC).
  • SMC is a sheet-shaped molded body obtained by impregnating reinforcing fibers such as glass fiber and carbon fiber with a resin composition in which polypropylene, a low shrinkage agent, a filler and the like are mixed.
  • Examples of the method for manufacturing the side step 10 for a vehicle include a method in which a metal member 1 and a resin member 8 are separately manufactured and joined (adhered) to be integrated.
  • the bonding (adhesion) between the metal member 1 and the resin member 8 is performed by at least one method selected from the group consisting of an ultrasonic welding method, a vibration welding method, an electromagnetic induction method, a high frequency method, a laser method, and a hot pressing method. It can be carried out.
  • a method for manufacturing the side step 10 for a vehicle a method of forming the resin member 8 and at the same time joining the metal member 1 and the resin member 8 to integrate them is preferable.
  • the resin member 8 is molded by a method such as an injection molding method (including an insert molding method), a transfer molding method, a press molding method, a filament winding molding method, or a hand lay-up molding method
  • the metal member 1 By joining the resin member 8 to the surface 4s on the resin coating layer 4 side of the above, the metal member 1 and the resin member 8 can be integrated to obtain the vehicle side step 10. In this case, the number of manufacturing steps of the vehicle side step 10 can be reduced.
  • the metal member 1 is arranged in an injection molding mold, and the resin is molded by an injection device (not shown). By injecting into the cavity, the resin member 8 is molded, and at the same time, the metal member 1 and the resin member 8 are joined.
  • the surface 4s on the resin coating layer 4 side of the metal member 1 and the resin member 8 may be joined and integrated via the adhesive layer 7.
  • the adhesive of the adhesive layer 7 is appropriately selected depending on the type of resin of the resin member 8, and for example, known adhesives such as epoxy resin-based, urethane resin-based, and vinyl ester resin-based adhesives may be used. can.
  • the vehicle side step 10 is thermally deformed due to the difference in the coefficient of thermal expansion between the metal base material 2 and the resin member 8 in the process of cooling to room temperature after joining (bonding). May be done.
  • the thickness of the adhesive layer 7 is such that the resin coating layer 4 and the adhesive are formed as a portion having a large elongation rate between the metal base material 2 and the resin member 8. It is desirable that the total thickness with the layer 7 is 4 ⁇ m or more.
  • the above-mentioned total thickness can be determined in consideration of physical properties such as the elongation rate of the resin coating layer 4 and the adhesive layer 7 in the temperature change at the time of joining (the temperature change from the heating temperature at the time of joining to room temperature cooling). preferable.
  • the preferable upper limit of the total thickness of the resin coating layer 4 and the adhesive layer 7 is 10 mm.
  • the layer involved in the joining between the metal member 1 and the resin member 8 is referred to as a joining layer, and the thickness thereof is referred to as the thickness of the joining layer.
  • the adhesive layer 7 is formed on the surface 4s on the resin coating layer 4 side of the metal member 1, both the resin coating layer 4 and the adhesive layer 7 are bonding layers, and the resin coating layer 4 and the adhesive layer are formed.
  • the total thickness of 7 is the thickness of the bonding layer.
  • the adhesive layer 7 is not formed on the surface 4s on the resin coating layer 4 side of the metal member 1, the resin coating layer 4 is the bonding layer, and the thickness of the resin coating layer 4 is the thickness of the bonding layer. ..
  • At least one layer of the resin coating layer 4 is a layer derived from a film formed on a base material different from the metal base material 2. At least one layer of the film is the modified polyolefin layer 4a described above.
  • the film may have one layer or may be composed of a plurality of layers.
  • the film is composed of a plurality of layers including the above-mentioned modified polyolefin layer 4a and the layer other than the above-mentioned modified polyolefin layer 4a, and the layers other than the above-mentioned modified polyolefin layer 4a are formed of the above-mentioned thermoplastic epoxy resin layer 4b and the above-mentioned curing. It may be at least one selected from the sex resin layer 4c.
  • the modified polyolefin layer 4a of the film is bonded to the resin member 8, and the layers other than the modified polyolefin layer 4a of the film are bonded to the metal base material 2 or the functional group-containing layer 3 having or not having a surface treatment. ..
  • the film can be produced, for example, by the following procedure.
  • Reactant 2 obtained by reacting a thermoplastic epoxy resin produced by a double addition reaction of a bifunctional epoxy resin and a bifunctional phenol compound with maleic anhydride in a maleic anhydride-modified polyolefin skeleton, or (3) A film precursor composition 1 containing a mixture of a thermoplastic epoxy resin and a polyolefin and, if necessary, a solvent is prepared.
  • the reactant 1, the reactant 2, and the mixture of the thermoplastic epoxy resin and the polyolefin are the same as those described for the modified polyolefin layer 4a.
  • the film precursor composition 1 is applied, sprayed, or extruded and laminated on a release film or release paper having a release coating such as a silicone type so as to form a film having a thickness of 1 ⁇ m to 10 mm after drying. ..
  • the coating can be performed using a bar coater, a roll coater, or the like.
  • the spraying can be performed using a spray coater or the like.
  • Extrusion stacking can be performed using a single-screw or twin-screw extruder.
  • the film can be formed on the release film or the release paper by leaving it in an environment of room temperature to 40 ° C. to volatilize the solvent.
  • the release film or the release paper may be used for handling the film as a carrier (support) of the film, or the film may be peeled off from the release film or the release paper to obtain a self-standing film.
  • the modified polyolefin layer 4a of the film contains a reactant (for example, a bifunctional epoxy resin, a bifunctional phenol compound, a maleic anhydride-modified polyolefin, etc.) as a constituent unit of the reactant 1, the reactant 2, or the thermoplastic epoxy resin. It may be contained in a completely reacted state, or some of them may be contained in an unreacted state. In the latter case, when the metal base material 2 or the resin member 8 and the film (resin coating layer 4) are bonded, the unreacted components may be further reacted. With the reaction of the unreacted components, the bonding strength between the film (resin coating layer 4) and the metal base material 2 or the resin member 8 may be increased.
  • a reactant for example, a bifunctional epoxy resin, a bifunctional phenol compound, a maleic anhydride-modified polyolefin, etc.
  • a film composed of a plurality of layers including a modified polyolefin layer 4a and a layer other than the modified polyolefin layer 4a can be produced, for example, by the following procedure.
  • the precursor composition 2 is prepared.
  • the resin composition containing the thermoplastic epoxy resin and the composition containing the monomer of the thermoplastic epoxy resin are the same as those described for the thermoplastic epoxy resin layer 4b.
  • the resin composition containing the curable resin is the same as that described for the curable resin layer 4c.
  • the film precursor composition 2 is applied, sprayed, or extruded and laminated on a release film or release paper having a release coating such as a silicone type so as to form a film having a thickness of 1 ⁇ m to 10 mm after drying. ..
  • the thermoplastic epoxy is left to stand in an environment of room temperature to 40 ° C. to volatilize the solvent, heat it to proceed with the double addition reaction or the curing reaction, or irradiate it with visible light or ultraviolet rays to proceed with the curing reaction.
  • the resin layer 4b or the curable resin layer 4c is formed on the release film or the release paper.
  • modified polyolefin layer 4a By forming the modified polyolefin layer 4a on these layers by the above procedure, a film composed of a plurality of layers including the modified polyolefin layer 4a and layers other than the modified polyolefin layer 4a can be obtained. ..
  • a component for example, a bifunctional epoxy resin, a bifunctional phenol compound, a polyol, an isocyanate compound, etc.
  • a component which is a constituent unit of these resins, completely reacts with the thermoplastic epoxy resin layer 4b or the curable resin layer 4c of the film. It may be contained in an unreacted state, or a part thereof may be contained in an unreacted state. In the latter case, when the metal base material 2 and the film are bonded, the unreacted components may be further reacted. With the reaction of the unreacted components, the bonding strength between the film and the metal substrate 2 may be increased.
  • the metal member 1 in which the resin coating layer 4 is laminated on the metal base material 2 can be produced.
  • the metal base material 2 may have the above-mentioned surface treatment and / or the functional group-containing layer 3 as needed, and a resin coating layer is formed by arranging a film on these and applying pressure and heating. 4 may be laminated.
  • the layer other than the modified polyolefin layer 4a has or does not have a surface treatment as a metal substrate 2 or a functional group. It is laminated so as to be in contact with the content layer 3.
  • the vehicle side step 10 By joining (adhering) and integrating the metal member 1 and the resin member 8 thus obtained, the vehicle side step 10 can be manufactured.
  • the bonding (adhesion) between the metal member 1 and the resin member 8 is performed by at least one method selected from the group consisting of an ultrasonic welding method, a vibration welding method, an electromagnetic induction method, a high frequency method, a laser method, and a hot pressing method. It can be carried out.
  • the metal member 1 and the resin member 8 may be joined (bonded) and integrated to form the vehicle side step 10.
  • a film is sandwiched between the metal base material 2 and the resin member 8, and at least one method selected from the group consisting of an ultrasonic welding method, a vibration welding method, an electromagnetic induction method, a high frequency method, a laser method, and a hot pressing method.
  • the side step 10 for a vehicle can also be manufactured by joining (adhering) the metal base material 2 and the resin member 8 via the resin coating layer 4 (derived from the film) and integrating them. In this case, the metal member 1 and the vehicle side step 10 are manufactured at the same time.
  • the metal substrate 2 has a surface treatment and / or a functional group-containing layer 3
  • the film is arranged so as to be in contact with the surface-treated surface of the metal substrate 2 or the functional group-containing layer 3.
  • Examplementation test example 1 The aluminum plate was formed by hot extrusion, the extruded aluminum plate was cut into a length of 45 mm, a width of 18 mm, and a thickness of 1.5 mm, and the surface thereof was smoothed by mechanical cutting.
  • the material of the aluminum plate is A6063 aluminum alloy, specifically, Si: 0.45% by mass, Fe: 0.21% by mass, Cu: 0.05% by mass, Mg: 0.75% by mass, Cr: It had a chemical component of 0.05% by mass and the balance was Al and unavoidable impurities.
  • the tensile strength of the aluminum plate was 240 MPa, and its Young's modulus was 68 GPa.
  • the aluminum plate was immersed in a sodium hydroxide aqueous solution having a concentration of 5% by mass for 1.5 minutes, neutralized with a nitric acid aqueous solution having a concentration of 5% by mass, washed with water, and dried to perform an etching treatment.
  • the etched aluminum plate was boiled in pure water for 10 minutes and then baked at 250 ° C. for 10 minutes to perform boehmite treatment to form a boehmite film on the surface of the aluminum plate.
  • the aluminum plate after the boehmite treatment was prepared by dissolving 2 g of 3-aminopropyltrimethoxysilane (“KBM-903” manufactured by Shinetsu Silicone Co., Ltd .; a silane coupling agent) in 1000 g of industrial ethanol in a silane cup at 70 ° C. After immersing in the ring agent-containing solution for 20 minutes, the aluminum plate was taken out and dried to form the functional group-containing layer 3 on the surface of the boehmite film.
  • KBM-903 3-aminopropyltrimethoxysilane manufactured by Shinetsu Silicone Co., Ltd .
  • silane coupling agent 1000 g of industrial ethanol in a silane cup at 70 ° C.
  • Polypropylene resin (PP resin) containing talc (TRC104N manufactured by Sun Aroma Co., Ltd.) (to be joined) is applied to the surface 4s on the resin coating layer 4 side of the metal member 1 by an injection molding machine (SE100V manufactured by Sumitomo Heavy Industries, Ltd .; cylinder temperature).
  • the resin member 8 was bonded to the metal member 1 by injection molding at 200 ° C., a tool temperature of 30 ° C., an injection speed of 50 mm / sec, and a peak / holding pressure of 195/175 [MPa / MPa]).
  • a test piece for tensile test (PP resin, 10 mm ⁇ 45 mm ⁇ 3 mm, joint length 5 mm) (metal member 1-resin member 8 joint body) conforming to ISO19095 was produced.
  • Examplementation test example 2> (surface treatment) The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm ⁇ 45 mm, thickness 1.5 mm A6063).
  • thermoplastic epoxy resin composition Obtained by dissolving 100 g of a bifunctional epoxy resin (jER® 1001 manufactured by Mitsubishi Chemical Corporation), 24 g of bisphenol A, and 0.4 g of triethylamine on the surface of the functional group-containing layer 3 in 250 g of acetone.
  • the obtained thermoplastic epoxy resin composition was applied by a spray method so that the thickness after drying was 30 ⁇ m. After volatilizing the solvent by leaving it in the air at room temperature for 30 minutes, it is left in a furnace at 150 ° C. for 30 minutes for a heavy addition reaction, and then allowed to cool to room temperature to allow the first resin coating layer (1st layer).
  • a thermoplastic epoxy resin layer 4b) was formed.
  • Example 1 The same operation as in Example 1 was performed on the surface 4s on the resin coating layer 4 side of the second layer (modified polyolefin layer 4a) of the metal member 1 to perform a tensile test test piece (metal member 1-resin member 8 bonded body). ) was produced.
  • the joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 1.
  • Examplementation test example 3> (surface treatment) As the metal base material 2, an iron plate having a thickness of 18 mm ⁇ 45 mm and a thickness of 1.5 mm was sanded using # 100 sandpaper to form fine irregularities on the surface of the iron plate.
  • a tensile test test piece (metal member 1-resin member 8 bonded body) was prepared by performing the same operation as in Example 1 on the surface 4s on the resin coating layer 4 side of the metal member 1.
  • the joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 1.
  • Examplementation test example 4 (surface treatment) The aluminum plate used in Example 1 was immersed in a 5% by mass sodium hydroxide aqueous solution for 1.5 minutes, neutralized with a 5% by mass nitric acid aqueous solution, washed with water, and dried. Etching treatment was performed.
  • a tensile test test piece (metal member 1-resin member 8 bonded body) was prepared by performing the same operation as in Example 1 on the surface 4s on the resin coating layer 4 side of the metal member 1.
  • the joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 1.
  • Example 2 The same injection molding operation as in Example 1 was performed without providing the functional group-containing layer 3 and the resin coating layer 4 on the surface of the boehmite film of the aluminum plate. However, the PP resin did not bond to the surface of the boehmite film, and it was not possible to produce a metal member-resin member bonded body.
  • Example 1 The same operation as in Example 1 was performed on the surface of the metal member on the resin coating layer side to prepare a test piece for tensile test (metal member-resin member joint).
  • the joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 1.
  • Examplementation test example 5> (surface treatment) The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm ⁇ 45 mm, thickness 1.5 mm A6063).
  • the aluminum plate treated with boehmite was prepared by dissolving 2 g of 3-glycidoxypropyltrimethoxysilane (“KBM-403” manufactured by Shinetsu Silicone Co., Ltd .; a silane coupling agent) in 1000 g of industrial ethanol at 70 ° C. After immersing in the silane coupling agent-containing solution for 20 minutes, the aluminum plate was taken out and dried to form the functional group-containing layer 3 on the surface of the boehmite film.
  • KBM-403 3-glycidoxypropyltrimethoxysilane manufactured by Shinetsu Silicone Co., Ltd .
  • silane coupling agent 1000 g of industrial ethanol
  • Polypropylene resin (PP resin) containing glass fibers (pp-GF40-01 F02 manufactured by Daicel FineChem Co., Ltd.) (to be bonded) was applied to the surface 4s on the resin coating layer 4 side of the metal member 1 under the same conditions as in Test Example 1.
  • a test piece for tensile test (metal member 1-resin member 8 bonded body) was produced by injection molding.
  • the joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 2.
  • Examplementation test example 6> (surface treatment) The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm ⁇ 45 mm, thickness 1.5 mm A6063).
  • Example 5 The same operation as in Example 5 was performed on the surface 4s on the resin coating layer 4 side of the second layer (modified polyolefin layer 4a) of the metal member 1 to perform a tensile test test piece (metal member 1-resin member 8 bonded body). ) was produced.
  • the joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 2.
  • Examplementation Test Example 7 (surface treatment) As the metal base material 2, an aluminum plate (A6063) having a thickness of 18 mm ⁇ 45 mm and a thickness of 1.5 mm was subjected to the same sanding treatment as in Example 3 to form fine irregularities on the surface of the aluminum plate.
  • Example 5 The same operation as in Example 5 was performed on the surface 4s on the resin coating layer 4 side of the metal member 1 to prepare a test piece for a tensile test (metal member 1-resin member 8 bonded body).
  • the joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 2.
  • Example 5 The same injection molding operation as in Example 5 was performed without providing the functional group-containing layer 3 and the resin coating layer 4 on the surface of the boehmite film of the aluminum plate. However, the PP resin did not bond to the surface of the boehmite film, and it was not possible to produce a metal member-resin member bonded body.
  • Example 5 The same operation as in Example 5 was performed on the surface of the metal member on the resin coating layer side to prepare a test piece for tensile test (metal member-resin member joint).
  • the joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 2.
  • Examplementation Test Example 8> (surface treatment) The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm ⁇ 45 mm, thickness 1.5 mm A6063).
  • a polypropylene resin (PP resin) containing carbon fibers (pp-GF40-01 F008 manufactured by Daicel FineChem Co., Ltd.) (to be bonded) was applied to the surface 4s on the resin coating layer 4 side of the metal member 1 under the same conditions as in Test Example 1.
  • a test piece for tensile test (metal member 1-resin member 8 bonded body) was prepared by injection molding. The joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 3.
  • Examplementation test example 9> (surface treatment) The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm ⁇ 45 mm, thickness 1.5 mm A6063).
  • Example 8 The same operation as in Example 8 was performed on the surface 4s on the resin coating layer 4 side of the second layer (modified polyolefin layer 4a) of the metal member 1 to perform a tensile test test piece (metal member 1-resin member 8 bonded body). ) was produced.
  • the joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 3.
  • Examplementation Test Example 10> (surface treatment) The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm ⁇ 45 mm, thickness 1.5 mm A6063).
  • Example 8 The same operation as in Example 8 was performed on the surface 4s on the resin coating layer 4 side of the metal member 1 to prepare a test piece for a tensile test (metal member 1-resin member 8 bonded body).
  • the joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 3.
  • Examplementation Test Example 11 (surface treatment) As the metal base material 2, a martensitic stainless steel (SUS403) steel sheet having a thickness of 18 mm ⁇ 45 mm and a thickness of 1.5 mm was sanded by the same operation as in Test Example 3 to form fine irregularities on the surface of the stainless steel sheet. ..
  • thermoplastic epoxy resin composition was applied by a spray method so that the thickness after drying was 30 ⁇ m. After volatilizing the solvent by leaving it in the air at room temperature for 30 minutes, it is left in a furnace at 150 ° C. for 30 minutes for a heavy addition reaction, and then allowed to cool to room temperature to allow the first resin coating layer (1st layer). A thermoplastic epoxy resin layer 4b) was formed.
  • Example 8 The same operation as in Example 8 was performed on the surface 4s on the resin coating layer 4 side of the metal member 1 to prepare a test piece for a tensile test (metal member 1-resin member 8 bonded body).
  • the joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 3.
  • Example 8 The same injection molding operation as in Example 8 was performed without providing the functional group-containing layer 3 and the resin coating layer 4 on the surface of the boehmite film of the aluminum plate. However, the PP resin did not bond to the surface of the boehmite film, and it was not possible to produce a metal member-resin member bonded body.
  • Example 8 The same operation as in Example 8 was performed on the surface of the metal member on the resin coating layer side to prepare a test piece for a tensile test (metal member-resin member joint).
  • the joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 3.
  • the present disclosure can be used for a vehicle side step provided under the door of a vehicle having a high boarding position and used as a footrest when boarding, and a method for manufacturing the same.
  • Metal member 2 Metal base material 2a: Surface treatment part 3: Functional group-containing layer 4: Resin coating layer (primer layer) 4a: Modified polyolefin layer 4b: Thermoplastic epoxy resin layer 4c: Curable resin layer 4s: Resin coating layer surface 7: Adhesive layer 8: Resin member 10: Vehicle side step (metal member-resin member joint) 10a: Base resin plate 10b: Metal plate 10c: Surface resin plate 12: Door 14: Stay

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a vehicle side step that is equipped with a metal member and a resin member and has high bonding strength between the two members. Also provided is a method for manufacturing the vehicle side step. This vehicle side step comprises: a metal member 1 with one or more resin coating layers 4 laminated on at least a portion of the surface of a metal base material 2; and a resin member 8 that is bonded to the resin coating layer 4-side surface 4s of the metal member 1. At least one of the resin coating layers 4 is a modified polyolefin layer formed from a resin composition containing a modified polyolefin, and the modified polyolefin layer is at least one selected from the group consisting of a layer containing a reaction product 1 of a maleic anhydride-modified polyolefin, a bifunctional epoxy resin, and a bifunctional phenolic compound, a layer containing a reaction product 2 of a maleic anhydride-modified polyolefin and a thermoplastic epoxy resin, and a layer containing a mixture of a polyolefin and a thermoplastic epoxy resin.

Description

車両用サイドステップ及びその製造方法Vehicle side steps and their manufacturing methods
 本開示は、車体側部に設けられる車両用サイドステップ及びその製造方法に関する。 This disclosure relates to a vehicle side step provided on the side of the vehicle body and a method for manufacturing the same.
 トラックやスポーツ・ユーティリティー・ビークル(SUV)に代表されるように、乗車位置の高い車両においては、ドアの下側に、乗車する際の足置き場としてサイドステップが設けられている。 As typified by trucks and sport utility vehicles (SUVs), vehicles with high riding positions are provided with side steps under the door as a foothold for boarding.
 例えば、特許文献1(特開2019-151209号公報)には、サイドステップ上へのビスの頭部の露出を防止した上で、車両の乗降性と最低地上高とを高い次元で両立することを目的とした車両のサイドステップの構造が開示されている。特許文献1では、特に、車幅方向外側の締結部が、ステッププレートの下面から下方に向かい突出し、車幅方向内側の締結部が、ステッププレートの乗降時に足を掛けるステップ面より車幅方向内側で、ステップ面より上方に突出するように構成する、とされている。 For example, in Patent Document 1 (Japanese Unexamined Patent Publication No. 2019-151209), it is necessary to prevent the head of the screw from being exposed on the side step and to achieve both the ease of getting on and off the vehicle and the minimum ground clearance at a high level. The structure of the side step of the vehicle for the purpose of is disclosed. In Patent Document 1, in particular, the fastening portion on the outer side in the vehicle width direction projects downward from the lower surface of the step plate, and the fastening portion on the inner side in the vehicle width direction is inside in the vehicle width direction from the step surface on which the foot is placed when getting on and off the step plate. It is said that it is configured to protrude upward from the step surface.
特開2019-151209号公報Japanese Unexamined Patent Publication No. 2019-151209
 特許文献1では、サイドステップが金属部材からなるステッププレートとステッププレートの車両前後方向両端に装着された樹脂部材からなるカバーとにより構成されているが、これらの接合方法については特に開示されていない。 In Patent Document 1, the side step is composed of a step plate made of a metal member and a cover made of a resin member attached to both ends of the step plate in the vehicle front-rear direction, but the joining method thereof is not particularly disclosed. ..
 また、近年、車両の軽量化を図るために、サイドステップにおいて樹脂部材の割合を高くする傾向にあることに鑑みれば、サイドステップに要求される強度(例:剛性)を満足させるべく、金属部材と樹脂部材とがより強固に接合されていることが望まれる。 Further, in view of the recent tendency to increase the proportion of the resin member in the side step in order to reduce the weight of the vehicle, the metal member is required to satisfy the strength (eg, rigidity) required for the side step. It is desired that the resin member and the resin member are more firmly bonded to each other.
 本開示は、上述した技術背景に鑑みてなされたもので、その目的は、金属部材と樹脂部材を備えるとともに両部材の接合強度が高い車両用サイドステップ及びその製造方法を提供することにある。 The present disclosure has been made in view of the above-mentioned technical background, and an object thereof is to provide a vehicle side step provided with a metal member and a resin member and having a high joint strength between the two members, and a method for manufacturing the same.
 本開示は以下の態様を包含する。 This disclosure includes the following aspects.
 [1] 金属基材の少なくとも一部の表面に1層又は複数層の樹脂コーティング層が積層された金属部材と、前記金属部材の前記金属基材の前記樹脂コーティング層側の面に接合された樹脂部材とを備え、
 前記樹脂コーティング層の少なくとも1層が、変性ポリオレフィンを含む樹脂組成物から形成された変性ポリオレフィン層であり、前記変性ポリオレフィン層は、無水マレイン酸変性ポリオレフィンと2官能エポキシ樹脂と2官能フェノール化合物との反応物1を含む層、無水マレイン酸変性ポリオレフィンと熱可塑性エポキシ樹脂との反応物2を含む層、及びポリオレフィンと熱可塑性エポキシ樹脂との混合物を含む層からなる群より選ばれる少なくとも1種である車両用サイドステップ。
[1] A metal member in which one or a plurality of resin coating layers are laminated on at least a part of the surface of the metal base material is bonded to the surface of the metal member on the resin coating layer side of the metal base material. Equipped with a resin member,
At least one layer of the resin coating layer is a modified polyolefin layer formed from a resin composition containing a modified polyolefin, and the modified polyolefin layer is composed of a maleic anhydride-modified polyolefin, a bifunctional epoxy resin, and a bifunctional phenol compound. At least one selected from the group consisting of a layer containing a reactant 1, a layer containing a reaction product 2 of a maleic anhydride-modified polyolefin and a thermoplastic epoxy resin, and a layer containing a mixture of a polyolefin and a thermoplastic epoxy resin. Side step for vehicles.
 [2] 前記反応物1が、無水マレイン酸変性ポリオレフィンを含む溶液中で、2官能エポキシ樹脂と2官能フェノール化合物を重付加反応させてなる、前項1に記載の車両用サイドステップ。 [2] The vehicle side step according to item 1 above, wherein the reaction product 1 is subjected to a double addition reaction between a bifunctional epoxy resin and a bifunctional phenol compound in a solution containing maleic anhydride-modified polyolefin.
 [3] 前記反応物2が、2官能エポキシ樹脂と2官能フェノール化合物の重付加反応により生成した熱可塑性エポキシ樹脂と、無水マレイン酸変性ポリオレフィンとを反応させてなる、前項1に記載の車両用サイドステップ。 [3] The vehicle use according to item 1 above, wherein the reaction product 2 is formed by reacting a thermoplastic epoxy resin produced by a double addition reaction of a bifunctional epoxy resin and a bifunctional phenol compound with a maleic anhydride-modified polyolefin. side step.
 [4] 前記混合物が、ポリプロピレンと熱可塑性エポキシ樹脂との混合物である、前項1に記載の車両用サイドステップ。 [4] The vehicle side step according to item 1 above, wherein the mixture is a mixture of polypropylene and a thermoplastic epoxy resin.
 [5] 前記樹脂コーティング層が、前記変性ポリオレフィン層と、前記変性ポリオレフィン層以外の層とを含む複数層からなり、前記変性ポリオレフィン層以外の層の少なくとも1層が、熱可塑性エポキシ樹脂を含む樹脂組成物から形成された熱可塑性エポキシ樹脂層及び硬化性樹脂を含む樹脂組成物から形成された硬化性樹脂層から選ばれる少なくとも1種である、前項1から4のいずれか1つに記載の車両用サイドステップ。 [5] The resin coating layer is composed of a plurality of layers including the modified polyolefin layer and a layer other than the modified polyolefin layer, and at least one layer other than the modified polyolefin layer is a resin containing a thermoplastic epoxy resin. The vehicle according to any one of 1 to 4 above, which is at least one selected from a thermoplastic epoxy resin layer formed from a composition and a curable resin layer formed from a resin composition containing a curable resin. For side steps.
 [6] 前記硬化性樹脂が、ウレタン樹脂、エポキシ樹脂、ビニルエステル樹脂及び不飽和ポリエステル樹脂からなる群より選ばれる少なくとも1種である、前項5に記載の車両用サイドステップ。 [6] The vehicle side step according to item 5 above, wherein the curable resin is at least one selected from the group consisting of urethane resin, epoxy resin, vinyl ester resin and unsaturated polyester resin.
 [7] 前記金属基材と前記樹脂コーティング層との間に、前記金属基材と前記樹脂コーティング層に接して積層された官能基含有層を有し、
 前記官能基含有層が、下記(1)から(7)からなる群より選ばれる少なくとも1つの官能基を含む、前項1から6のいずれか1つに記載の車両用サイドステップ。
(1)シランカップリング剤由来であって、グリシジル基、アミノ基、(メタ)アクリロイル基及びメルカプト基からなる群より選ばれる少なくとも1つの官能基
(2)シランカップリング剤由来のアミノ基に、グリシジル化合物及びチオール化合物から選ばれる少なくとも1種が反応して生成した官能基
(3)シランカップリング剤由来のメルカプト基に、グリシジル化合物、アミノ化合物、イソシアネート化合物、(メタ)アクリロイル基及びグリシジル基を有する化合物、並びに(メタ)アクリロイル基及びアミノ基を有する化合物からなる群より選ばれる少なくとも1種が反応して生成した官能基
(4)シランカップリング剤由来の(メタ)アクリロイル基に、チオール化合物が反応して生成した官能基
(5)シランカップリング剤由来のグリシジル基に、アミノ基及び(メタ)アクリロイル基を有する化合物、アミノ化合物、及びチオール化合物からなる群より選ばれる少なくとも1種が反応して生成した官能基
(6)イソシアネート化合物由来のイソシアナト基
(7)チオール化合物由来のメルカプト基
[7] A functional group-containing layer laminated in contact with the metal base material and the resin coating layer is provided between the metal base material and the resin coating layer.
The vehicle side step according to any one of the above items 1 to 6, wherein the functional group-containing layer contains at least one functional group selected from the group consisting of the following (1) to (7).
(1) At least one functional group derived from the silane coupling agent and selected from the group consisting of a glycidyl group, an amino group, a (meth) acryloyl group and a mercapto group (2) An amino group derived from the silane coupling agent. A functional group generated by the reaction of at least one selected from a glycidyl compound and a thiol compound (3) A glycidyl compound, an amino compound, an isocyanate compound, a (meth) acryloyl group and a glycidyl group are added to a mercapto group derived from a silane coupling agent. A functional group produced by the reaction of at least one selected from the group consisting of a compound having a (meth) acryloyl group and a compound having an amino group (4) A thiol compound to a (meth) acryloyl group derived from a silane coupling agent. (5) A glycidyl group derived from a silane coupling agent is reacted with at least one selected from the group consisting of a compound having an amino group and a (meth) acryloyl group, an amino compound, and a thiol compound. (6) Isocyanato group derived from isocyanate compound (7) Mercapto group derived from thiol compound
 [8] 前記金属基材の表面に、ブラスト処理、研磨処理、エッチング処理及び化成処理からなる群より選ばれる少なくとも1種の表面処理が施されており、前記樹脂コーティング層は、前記金属基材の前記表面処理された面の上に積層されている、前項1から7のいずれか1つに記載の車両用サイドステップ。 [8] The surface of the metal base material is subjected to at least one surface treatment selected from the group consisting of blast treatment, polishing treatment, etching treatment and chemical conversion treatment, and the resin coating layer is the metal base material. The vehicle side step according to any one of items 1 to 7 above, which is laminated on the surface-treated surface of the above item.
 [9] 前記樹脂部材として、ベース樹脂部材と表面樹脂部材とを含み、
 前記ベース樹脂部材の車高方向上側表面に前記金属部材の車高方向下側表面が接合され、
 前記金属部材の車高方向上側表面の一部に前記表面樹脂部材の車高方向下側表面が接合されているとともに、前記金属部材の車高方向上側表面の他部が露出されている、前項1から8のいずれか1つに記載の車両用サイドステップ。
[9] The resin member includes a base resin member and a surface resin member.
The lower surface of the metal member in the vehicle height direction is joined to the upper surface of the base resin member in the vehicle height direction.
A part of the upper surface of the metal member in the vehicle height direction is joined to the lower surface of the surface resin member in the vehicle height direction, and the other part of the upper surface of the metal member in the vehicle height direction is exposed. The vehicle side step according to any one of 1 to 8.
 [10] 前記金属部材として金属プレートを含む、前項1から9のいずれか1つに記載の車両用サイドステップ。

[10] The vehicle side step according to any one of items 1 to 9 above, which includes a metal plate as the metal member.

 [11] 前記金属基材は、A6000系合金のアルミニウム押出材からなり、且つ、引張強度が180MPa以上及びヤング率が60GPa以上の特性を有している前項1から10のいずれか1つに記載の車両用サイドステップ。 [11] The metal base material is made of an extruded aluminum material of an A6000 alloy, and has the characteristics of a tensile strength of 180 MPa or more and a Young's modulus of 60 GPa or more. Side step for vehicles.
 [12] 前項1から11のいずれか1つに記載の車両用サイドステップの製造方法であって、射出成形法、トランスファ成形法、プレス成形法、フィラメントワインディング成形法又はハンドレイアップ成形法により樹脂部材を成形する際に、金属部材の樹脂コーティング層側の面に樹脂部材を接合する車両用サイドステップの製造方法。 [12] The method for manufacturing a side step for a vehicle according to any one of the above items 1 to 11, wherein the resin is manufactured by an injection molding method, a transfer molding method, a press molding method, a filament winding molding method, or a hand lay-up molding method. A method for manufacturing a side step for a vehicle, in which a resin member is joined to a surface of a metal member on the resin coating layer side when the member is molded.
 本開示の車両用サイドステップにおいては、樹脂部材が、金属部材の樹脂コーティング層側の面に接合されるとともに、樹脂コーティング層の少なくとも1層が、変性ポリオレフィンを含む樹脂組成物から形成された変性ポリオレフィン層であり、変性ポリオレフィン層が、無水マレイン酸変性ポリオレフィンと2官能エポキシ樹脂と2官能フェノール化合物との反応物1を含む層、無水マレイン酸変性ポリオレフィンと熱可塑性エポキシ樹脂との反応物2を含む層、及びポリオレフィンと熱可塑性エポキシ樹脂との混合物を含む層からなる群より選ばれる少なくとも1種であるので、金属部材と樹脂部材との接合強度が高い。 In the vehicle side step of the present disclosure, the resin member is bonded to the surface of the metal member on the resin coating layer side, and at least one layer of the resin coating layer is modified from a resin composition containing a modified polyolefin. It is a polyolefin layer, and the modified polyolefin layer contains a layer containing a reaction product 1 of a maleic anhydride-modified polyolefin, a bifunctional epoxy resin and a bifunctional phenol compound, and a reaction product 2 of a maleic anhydride-modified polyolefin and a thermoplastic epoxy resin. Since it is at least one selected from the group consisting of a layer containing the layer and a layer containing a mixture of the polyolefin and the thermoplastic epoxy resin, the bonding strength between the metal member and the resin member is high.
図1は、本開示の一実施形態に係る車両用サイドステップが適用された車両を示す左側面図である。FIG. 1 is a left side view showing a vehicle to which the vehicle side step according to the embodiment of the present disclosure is applied. 図2は、図1に示す車両用サイドステップと各ステーとの関係を示す斜視図である。FIG. 2 is a perspective view showing the relationship between the vehicle side step shown in FIG. 1 and each stay. 図3は、図2に示す車両用サイドステップの平面図である。FIG. 3 is a plan view of the vehicle side step shown in FIG. 図4は、図3のA-A´断面図である。FIG. 4 is a cross-sectional view taken along the line AA'of FIG. 図5Aは、金属部材において、金属基材の表面処理された面に樹脂コーティング層が形成された状態を示す概略断面図である。FIG. 5A is a schematic cross-sectional view showing a state in which a resin coating layer is formed on a surface-treated surface of a metal base material in a metal member. 図5Bは、金属部材において、金属基材の表面処理された面に官能基含有層が形成され、その上に樹脂コーティング層が形成された状態を示す概略断面図である。FIG. 5B is a schematic cross-sectional view showing a state in which a functional group-containing layer is formed on a surface-treated surface of a metal base material and a resin coating layer is formed on the surface-treated surface of the metal member. 図6は、金属部材と樹脂部材が接合された状態の概略断面図である。FIG. 6 is a schematic cross-sectional view of a state in which a metal member and a resin member are joined. 図7は、金属部材と樹脂部材が接着剤層を介して接合された状態の概略断面図である。FIG. 7 is a schematic cross-sectional view of a state in which a metal member and a resin member are joined via an adhesive layer. 図8は、ベーマイト皮膜のSEM写真である。FIG. 8 is an SEM photograph of the boehmite film.
 次に、本開示の実施形態について図面を参照して以下に説明する。 Next, the embodiments of the present disclosure will be described below with reference to the drawings.
 本開示において、文中に特に明示した場合を除き、「金属」の語は単一の金属元素からなる純金属と、純金属に1種類以上の他元素を混ぜた合金との双方を含む意味で用いられる。例えば、「アルミニウム」の語は、アルミニウムの純金属及びその合金を含む。 In the present disclosure, unless otherwise specified in the text, the term "metal" is meant to include both pure metals consisting of a single metal element and alloys of pure metals mixed with one or more other elements. Used. For example, the term "aluminum" includes pure metals of aluminum and alloys thereof.
 本開示において、接合とは、物と物を繋ぎ合わせることを意味し、接着とはその下位概念であり、テープ、接着剤などの有機材料(硬化性樹脂、熱可塑性樹脂など)を介して、2つの被着材(接着しようとするもの)を接合状態にすることを意味する。 In the present disclosure, bonding means connecting objects to each other, and adhesion is a subordinate concept thereof, and through organic materials such as tapes and adhesives (curable resin, thermoplastic resin, etc.), It means that two adherends (those to be bonded) are put into a bonded state.
 図1は、本開示の一実施形態に係る車両用サイドステップが適用された車両を示す左側面図である。同図に示すように、本開示の一実施形態に係る車両用サイドステップ10は、トラックやスポーツ・ユーティリティー・ビークル(SUV)に代表される乗車位置の高い車両において、ドア12、12の下側に設けられ、乗車する際の足置き場として使用されるものである。 FIG. 1 is a left side view showing a vehicle to which the vehicle side step according to the embodiment of the present disclosure is applied. As shown in the figure, the vehicle side step 10 according to the embodiment of the present disclosure is the lower side of the doors 12 and 12 in a vehicle having a high riding position represented by a truck or a sports utility vehicle (SUV). It is installed in the vehicle and is used as a foothold for boarding.
 図2は、図1に示す車両用サイドステップ10と、車両用サイドステップ10を車体に取り付けるための各ステー14との関係を示す斜視図である。車両用サイドステップ10は、図2に示すステー14(例えば、鋼板をプレス成形して得た略L字状の部材)を介して車体に固定される。その固定方法は、ボルトとナットとを使用した方法であってもよいし、溶接であってもよい。 FIG. 2 is a perspective view showing the relationship between the vehicle side step 10 shown in FIG. 1 and each stay 14 for attaching the vehicle side step 10 to the vehicle body. The vehicle side step 10 is fixed to the vehicle body via a stay 14 (for example, a substantially L-shaped member obtained by press-molding a steel plate) shown in FIG. The fixing method may be a method using bolts and nuts, or may be welding.
 図3は、図2に示す車両用サイドステップ10の平面図であり、図4は、図3のA-A´断面図である。これらの図に示すように、車両用サイドステップ10は、車高方向の下側(図4における紙面の下側)から順に、平板状のベース樹脂プレート10aと、複数の凸部を有する金属プレート10bと、上記凸部が貫通するための複数の穴部を有する表面樹脂プレート10cとを備えている。このような構成要素からなることを前提に、車両用サイドステップ10は、2つの樹脂プレート(ベース樹脂プレート10aと表面樹脂プレート10c)の間に金属プレート10bを挟み込むことで、これら3つのプレート10a、10b、10cが一体化されたサンドイッチ構造となっている。 FIG. 3 is a plan view of the vehicle side step 10 shown in FIG. 2, and FIG. 4 is a cross-sectional view taken along the line AA'of FIG. As shown in these figures, the vehicle side step 10 has a flat plate-shaped base resin plate 10a and a metal plate having a plurality of protrusions in this order from the lower side in the vehicle height direction (lower side of the paper surface in FIG. 4). It is provided with 10b and a surface resin plate 10c having a plurality of holes for the convex portion to penetrate. On the premise that the vehicle side step 10 is composed of such components, the metal plate 10b is sandwiched between the two resin plates (base resin plate 10a and surface resin plate 10c), whereby these three plates 10a are sandwiched between the two resin plates (base resin plate 10a and surface resin plate 10c). It has a sandwich structure in which 10b and 10c are integrated.
 このサンドイッチ構造におけるプレート同士の接合状況は以下のとおりである。即ち、図4に示すように、ベース樹脂プレート10aの車高方向上側表面と、金属プレート10bの車高方向下側表面とが接合されている。また、金属プレート10bの車高方向上側表面の一部(凸部でない部分の上側表面)と、表面樹脂プレート10cの車高方向下側表面とが接合されている。さらに、金属プレート10bの側部表面の一部と、表面樹脂プレート10cの穴部を区画する表面とが接合されている。このような接合状態により、金属プレート10bの凸部の上部が表面樹脂プレート10cの穴部から突出することで、金属プレート10bの凸部の上側表面が露出されている。 The joining status of the plates in this sandwich structure is as follows. That is, as shown in FIG. 4, the upper surface of the base resin plate 10a in the vehicle height direction and the lower surface of the metal plate 10b in the vehicle height direction are joined. Further, a part of the upper surface of the metal plate 10b in the vehicle height direction (the upper surface of the non-convex portion) and the lower surface of the surface resin plate 10c in the vehicle height direction are joined. Further, a part of the side surface of the metal plate 10b and the surface for partitioning the hole portion of the surface resin plate 10c are joined. Due to such a joining state, the upper portion of the convex portion of the metal plate 10b protrudes from the hole portion of the surface resin plate 10c, so that the upper surface of the convex portion of the metal plate 10b is exposed.
 なお、図3、図4に示す車両用サイドステップ10は、上述のとおり、車高方向下側から上側に向かって順に、樹脂プレート10a、金属プレート10b、及び樹脂プレート10cを構成要素としているが、本実施形態はこのような形態に限られない。即ち、本実施形態には、図示しないが、車高方向下側から上側に向かって順に、金属プレート、樹脂プレート、及び金属プレートを構成要素としてもよい。この場合は、図3、図4における金属プレートと樹脂プレートとが入れ替わった構造となり、2つの金属プレートの間に樹脂プレートを挟み込むことで、これら3つのプレートが一体化されたサンドイッチ構造となる。 As described above, the vehicle side step 10 shown in FIGS. 3 and 4 includes the resin plate 10a, the metal plate 10b, and the resin plate 10c in this order from the lower side in the vehicle height direction to the upper side. , The present embodiment is not limited to such an embodiment. That is, although not shown in the present embodiment, the metal plate, the resin plate, and the metal plate may be used as constituent elements in this order from the lower side in the vehicle height direction to the upper side. In this case, the metal plate and the resin plate in FIGS. 3 and 4 are interchanged, and the resin plate is sandwiched between the two metal plates to form a sandwich structure in which these three plates are integrated.
 このように、異種材料(樹脂と金属)からなる部材をサンドイッチ構造として軽量化を図ることを前提に、車高方向上側に、それらのうちの一方を他方から突出されることで、足場としてのサイドステップに凹凸を加えて乗降の際の滑りを抑制することができる。 In this way, on the premise that members made of different materials (resin and metal) are used as a sandwich structure to reduce weight, one of them is projected upward in the vehicle height direction from the other to serve as a scaffold. It is possible to suppress slippage when getting on and off by adding unevenness to the side steps.
 以上に示す車両用サイドステップ10は、その長手方向縁部の一方側で、上述のとおり、ステーを介して車体と連結され、足場として使用される。その際、ベース樹脂プレート10aと金属プレート10bとの接合強度、及び/又は金属プレート10bと表面樹脂プレート10cとの接合強度が十分でないと、樹脂プレート10a、10cの少なくともいずれかが、隣接する金属プレート10bから剥がれ、車両用サイドステップ10が所望の耐久性を担保することができない。しかしながら、本実施形態の車両用サイドステップ10では、ベース樹脂プレート10aと金属プレート10bとの間、及び/又は金属プレート10bと表面樹脂プレート10cと間に、特定の樹脂コーティング層を介在させることで、ベース樹脂プレート10aと金属プレート10bとの接合強度、及び/又は金属プレート10bと表面樹脂プレート10cとの接合強度を十分に担保することができる。 The vehicle side step 10 shown above is connected to the vehicle body via a stay on one side of the longitudinal edge portion thereof, and is used as a scaffold. At that time, if the bonding strength between the base resin plate 10a and the metal plate 10b and / or the bonding strength between the metal plate 10b and the surface resin plate 10c is not sufficient, at least one of the resin plates 10a and 10c is an adjacent metal. It peels off from the plate 10b, and the vehicle side step 10 cannot guarantee the desired durability. However, in the vehicle side step 10 of the present embodiment, a specific resin coating layer is interposed between the base resin plate 10a and the metal plate 10b and / or between the metal plate 10b and the surface resin plate 10c. , The bonding strength between the base resin plate 10a and the metal plate 10b, and / or the bonding strength between the metal plate 10b and the surface resin plate 10c can be sufficiently ensured.
 次に、図1~図4に示す車両用サイドステップ10の各部材の構成及びその製造方法について詳細に説明する。なお以下では、金属プレート10bを「金属部材1」とも記載し、各樹脂プレート(ベース樹脂プレート10a、表面樹脂プレート10c)を「樹脂部材8」とも記載する。 Next, the configuration of each member of the vehicle side step 10 shown in FIGS. 1 to 4 and the manufacturing method thereof will be described in detail. In the following, the metal plate 10b is also referred to as "metal member 1", and each resin plate (base resin plate 10a, surface resin plate 10c) is also referred to as "resin member 8".
 [金属部材1]
 金属部材1(金属プレート10b)は、図5A及び図5Bに示すように、金属基材2と、金属基材2の表面上に積層された1層又は複数層の樹脂コーティング層4とを有している。
[Metal member 1]
As shown in FIGS. 5A and 5B, the metal member 1 (metal plate 10b) has a metal base material 2 and a one-layer or a plurality of resin coating layers 4 laminated on the surface of the metal base material 2. is doing.
 図5A及び図5Bにおいて、樹脂コーティング層4は、金属基材2の表面処理された面上に積層されており、樹脂コーティング層4の少なくとも1層は、変性ポリオレフィンを含む樹脂組成物から形成された変性ポリオレフィン層4aである。 In FIGS. 5A and 5B, the resin coating layer 4 is laminated on the surface-treated surface of the metal substrate 2, and at least one layer of the resin coating layer 4 is formed from a resin composition containing a modified polyolefin. The modified polyolefin layer 4a.
 樹脂コーティング層4は、金属基材2の表面に優れた接合性で形成され、ポリオレフィンとも優れた接合性を発揮するものである。これにより、金属基材2に、ポリオレフィンを含む樹脂部材8に対する優れた接着性(樹脂コーティング層4を介した接合性)が付与される。したがって、樹脂コーティング層4は金属基材2の接合面の上に配置されたプライマー層であるともいえる。 The resin coating layer 4 is formed on the surface of the metal base material 2 with excellent bondability, and exhibits excellent bondability with polyolefin. As a result, the metal base material 2 is provided with excellent adhesiveness (bondability via the resin coating layer 4) to the resin member 8 containing polyolefin. Therefore, it can be said that the resin coating layer 4 is a primer layer arranged on the joint surface of the metal base material 2.
 本開示において、プライマー層とは、金属部材1と樹脂部材8が接合される際に、金属基材2と樹脂部材8との間に介在し、金属基材2の樹脂部材8に対する接着性(樹脂コーティング層4を介した接合性)を向上させる層であることを意味する。 In the present disclosure, the primer layer is interposed between the metal base material 2 and the resin member 8 when the metal member 1 and the resin member 8 are joined, and the adhesiveness of the metal base material 2 to the resin member 8 ( It means that it is a layer that improves the bondability) via the resin coating layer 4.
 また、樹脂コーティング層4により金属基材2の表面が保護されるため、金属基材2の表面への汚れの付着、酸化などの変質を抑制することができる。そのため、数ヶ月間の長期にわたって保管した場合であっても、樹脂部材に対する優れた接着性を維持することができる金属部材1を得ることができる。 Further, since the surface of the metal base material 2 is protected by the resin coating layer 4, deterioration such as adhesion of dirt to the surface of the metal base material 2 and oxidation can be suppressed. Therefore, it is possible to obtain the metal member 1 capable of maintaining excellent adhesiveness to the resin member even when stored for a long period of several months.
 一実施形態では、図5Aに示すように、金属部材1において、樹脂コーティング層4は金属基材2の表面処理部2aの表面に直接積層されていてもよい。別の実施形態では、図5Bに示すように、金属部材1において、金属基材2の表面処理部2aの表面に官能基含有層3が設けられ、さらに、官能基含有層3の表面に樹脂コーティング層4が形成されてもよい。すなわち、官能基含有層3が金属基材2の表面処理部2aと樹脂コーティング層4との間に配置されてもよい。 In one embodiment, as shown in FIG. 5A, in the metal member 1, the resin coating layer 4 may be directly laminated on the surface of the surface-treated portion 2a of the metal substrate 2. In another embodiment, as shown in FIG. 5B, in the metal member 1, the functional group-containing layer 3 is provided on the surface of the surface-treated portion 2a of the metal base material 2, and further, the resin is provided on the surface of the functional group-containing layer 3. The coating layer 4 may be formed. That is, the functional group-containing layer 3 may be arranged between the surface-treated portion 2a of the metal base material 2 and the resin coating layer 4.
 金属基材2の表面処理された面は、図4に示すように、金属部材1(金属基材2)の表面における少なくとも樹脂部材8との接合予定面であり、即ち金属部材1(基材2)の表面における少なくとも樹脂部材8との接触部であり、具体的には、図4に示す車両用サイドステップ10における、金属プレート10bの車高方向下側表面全体と、金属プレート10bの車高方向上側表面のうち凸部ではない部分の上側表面と、金属プレート10bの側部表面のうち表面樹脂プレート10cの穴部から車高方向上側に突出しない側部表面と、である。 As shown in FIG. 4, the surface-treated surface of the metal base material 2 is a surface to be joined with at least the resin member 8 on the surface of the metal member 1 (metal base material 2), that is, the metal member 1 (base material 2). 2) At least the contact portion with the resin member 8 on the surface, specifically, the entire lower surface of the metal plate 10b in the vehicle height direction and the vehicle of the metal plate 10b in the vehicle side step 10 shown in FIG. The upper surface of the upper surface in the high direction, which is not a convex portion, and the side surface of the side surface of the metal plate 10b, which does not protrude upward in the vehicle height direction from the hole portion of the surface resin plate 10c.
 <金属基材2>
 金属基材2の金属種としては、アルミニウム、鉄、及びステンレス鋼が挙げられる。これらのうち、軽量性及び加工容易性等の観点から、アルミニウムが特に好適に用いられる。以下では、アルミニウムを適用した場合について詳述する。
<Metal base material 2>
Examples of the metal type of the metal base material 2 include aluminum, iron, and stainless steel. Of these, aluminum is particularly preferably used from the viewpoint of light weight and ease of processing. In the following, the case where aluminum is applied will be described in detail.
 金属基材2にアルミニウムを適用する場合において、金属基材2のアルミニウム材料の種類は限定されるものではなく、例えばアルミニウム含有量が50質量%以上のものであり、具体的には、アルミニウム材料は、A6000系合金(例:A6061、A6N01、A6063、A6082、A6110)、A5000系合金、A1000系合金、A3000系合金などであることが好ましく、更に、アルミニウム材料は、変形のエネルギー吸収率の高い高延性のアルミニウム合金であるA6N01合金であることがより好ましい。 When aluminum is applied to the metal base material 2, the type of the aluminum material of the metal base material 2 is not limited, and for example, the aluminum content is 50% by mass or more, and specifically, the aluminum material. Is preferably an A6000 series alloy (eg, A6061, A6N01, A6063, A6082, A6110), an A5000 series alloy, an A1000 series alloy, an A3000 series alloy, or the like, and the aluminum material has a high deformation energy absorption rate. A6N01 alloy, which is a highly ductile aluminum alloy, is more preferable.
 金属基材2は、A6000系合金のアルミニウム押出材からなるものであり、且つ引張強度が180MPa以上及びヤング率が60GPa以上の特性を有していることが好ましい。この場合、金属基材が高い引張強度(高強度)及び高いヤング率(高剛性)を有しているので、車両用サイドステップ10の金属プレート10bの薄肉化を図ることができ、そのため、車両用サイドステップ10の軽量化に寄与する。引張強度の上限は限定されるものではなく、例えば450MPaである。ヤング率の上限は限定されるものではなく、例えば80GPaである。ただし仕様によっては、金属基材2はアルミニウムのダイカスト材、鋳造材、鍛造材等であってもよい。 It is preferable that the metal base material 2 is made of an extruded aluminum material of an A6000 alloy and has characteristics of a tensile strength of 180 MPa or more and a Young's modulus of 60 GPa or more. In this case, since the metal base material has high tensile strength (high strength) and high Young's modulus (high rigidity), it is possible to reduce the thickness of the metal plate 10b of the vehicle side step 10, and therefore, the vehicle. Contributes to weight reduction of the side step 10 for use. The upper limit of the tensile strength is not limited, and is, for example, 450 MPa. The upper limit of Young's modulus is not limited, and is, for example, 80 GPa. However, depending on the specifications, the metal base material 2 may be an aluminum die-cast material, a cast material, a forged material, or the like.
 金属基材2がアルミニウム押出材からなる場合、金属基材2は次の方法で製造されることが好ましい。 When the metal base material 2 is made of extruded aluminum, it is preferable that the metal base material 2 is manufactured by the following method.
 金属基材2の好ましい製造方法では、所定の特性を有するアルミニウム材料の溶湯を連続鋳造装置に供給することにより鋳造棒を連続鋳造する工程と、鋳造棒を均質化処理する工程と、鋳造棒を所定の長さに切断することにより押出加工素材としてのビレットを得る工程と、ビレットを外径面削する工程と、ビレットを熱間押出加工することにより所定の横断面形状の押出材を形成する工程とをこの記載の順に行う。次いで、押出材を所定の長さに切断し、切断した両端面に、面削加工、バリ取り加工等の所定の加工を施すことにより、押出材からなる金属基材2が得られる。 In a preferable manufacturing method of the metal base material 2, a step of continuously casting a casting rod by supplying a molten metal of an aluminum material having predetermined characteristics to a continuous casting apparatus, a step of homogenizing the casting rod, and a step of homogenizing the casting rod are performed. A step of obtaining a billet as an extruded material by cutting to a predetermined length, a step of grinding the outer diameter of the billet, and a step of hot-extruding the billet to form an extruded material having a predetermined cross-sectional shape. The steps are performed in the order described in this description. Next, the extruded material is cut to a predetermined length, and the cut end surfaces are subjected to predetermined processing such as face cutting and deburring to obtain a metal base material 2 made of the extruded material.
 〔表面処理(部)〕
 金属部材1を製造する際、樹脂コーティング層4を形成する前に、金属基材2の表面処理を施すことが好ましい。図5A及び図5Bの金属基材2における少なくとも樹脂部材8との接合予定面には表面処理部2aが形成されている。なお、表面処理部2aは金属基材2の一部とみなす。
[Surface treatment (part)]
When manufacturing the metal member 1, it is preferable to perform a surface treatment on the metal base material 2 before forming the resin coating layer 4. A surface-treated portion 2a is formed on at least the surface to be joined to the resin member 8 in the metal substrate 2 of FIGS. 5A and 5B. The surface treatment portion 2a is regarded as a part of the metal base material 2.
 表面処理としては、例えば、溶剤等による洗浄・脱脂処理、ブラスト処理、研磨処理、プラズマ処理、レーザー処理、エッチング処理、及び化成処理が挙げられ、金属基材2の表面に水酸基を生じさせる表面処理であることが好ましい。これらの表面処理は、1種のみであってもよく、2種以上を施してもよい。これらの表面処理の具体的な方法としては、公知の方法を用いることができる。 Examples of the surface treatment include cleaning / degreasing treatment with a solvent, blast treatment, polishing treatment, plasma treatment, laser treatment, etching treatment, and chemical conversion treatment, and surface treatment for generating hydroxyl groups on the surface of the metal substrate 2. Is preferable. These surface treatments may be performed with only one type or two or more types. As a specific method for these surface treatments, known methods can be used.
 表面処理は、金属基材2の表面の汚染物を除去、及び/又はアンカー効果を目的として金属基材2の表面に微細な凹凸を形成して粗面化させるものである。これにより、金属基材2の表面と、樹脂コーティング層4との接合性を向上させることができ、その結果、金属部材1と接合対象である樹脂部材8との接着性(樹脂コーティング層4を介した接合性)を向上させることもできる。このような観点からは、表面処理としては、ブラスト処理、研磨処理、エッチング処理及び化成処理からなる群より選ばれる少なくとも1種が好ましい。 The surface treatment removes contaminants on the surface of the metal base material 2 and / or forms fine irregularities on the surface of the metal base material 2 for the purpose of anchoring effect to roughen the surface. As a result, the bondability between the surface of the metal base material 2 and the resin coating layer 4 can be improved, and as a result, the adhesiveness between the metal member 1 and the resin member 8 to be bonded (resin coating layer 4) can be improved. It is also possible to improve the bondability through. From this point of view, as the surface treatment, at least one selected from the group consisting of blast treatment, polishing treatment, etching treatment and chemical conversion treatment is preferable.
 (洗浄・脱脂処理)
 溶剤等による洗浄・脱脂処理としては、例えば、金属基材2の表面を、アセトン、トルエン等の有機溶剤を用いて脱脂することが挙げられる。洗浄・脱脂処理は、他の表面処理の前に行うことが好ましい。
(Washing / degreasing treatment)
Examples of the cleaning / degreasing treatment with a solvent include degreasing the surface of the metal base material 2 with an organic solvent such as acetone or toluene. The cleaning / degreasing treatment is preferably performed before other surface treatments.
 (ブラスト処理)
 ブラスト処理としては、例えば、ショットブラスト、及びサンドブラストが挙げられる。
(Blast processing)
Examples of the blasting process include shot blasting and sand blasting.
 (研磨処理)
 研磨処理としては、例えば、研磨布を用いたバフ研磨、研磨紙(サンドペーパー)を用いたロール研磨、及び電解研磨が挙げられる。
(Polishing process)
Examples of the polishing treatment include buffing using a polishing cloth, roll polishing using polishing paper (sandpaper), and electrolytic polishing.
 (プラズマ処理)
 プラズマ処理とは、高圧電源を用いて、電極と呼ばれるロッドから出るプラズマビームを材料表面に入射させることで、表面に存在する異物又は油膜を先ず洗浄し、素材に応じたガスにエネルギーを投入することで表面分子を励起する方法である。プラズマ処理としては、例えば、表面に水酸基又はその他の極性基を付与することができる大気圧プラズマ処理が挙げられる。
(Plasma processing)
Plasma treatment uses a high-voltage power supply to inject a plasma beam emitted from a rod called an electrode onto the surface of a material to first clean the foreign matter or oil film on the surface and then put energy into the gas according to the material. This is a method of exciting surface molecules. Examples of the plasma treatment include atmospheric pressure plasma treatment capable of imparting a hydroxyl group or other polar groups to the surface.
 (レーザー処理)
 レーザー処理とは、レーザー照射によって表面層のみを急速に加熱及び冷却して、材料の表面特性を改善する技術であり、表面の粗面化に有効な方法である。レーザー処理として、公知のレーザー処理技術を使用することができる。
(Laser processing)
Laser treatment is a technique for rapidly heating and cooling only the surface layer by laser irradiation to improve the surface properties of a material, and is an effective method for roughening the surface. As the laser treatment, a known laser treatment technique can be used.
 (エッチング処理)
 エッチング処理としては、例えば、アルカリ法、リン酸-硫酸法、フッ化物法、クロム酸-硫酸法、塩鉄法などの化学的エッチング処理、及び電解エッチング法などの電気化学的エッチング処理が挙げられる。
(Etching process)
Examples of the etching treatment include a chemical etching treatment such as an alkali method, a phosphoric acid-sulfuric acid method, a fluoride method, a chromic acid-sulfuric acid method, and a salt iron method, and an electrochemical etching treatment such as an electrolytic etching method. ..
 金属基材2がアルミニウムである場合、エッチング処理は、エッチング液として水酸化ナトリウム水溶液又は水酸化カリウム水溶液を用いたアルカリ法が好ましく、水酸化ナトリウム水溶液を用いた苛性ソーダ法がより好ましい。アルカリ法は、例えば、金属基材2を濃度3~20質量%の水酸化ナトリウム又は水酸化カリウムの水溶液に、20~70℃で1~15分間浸漬させることにより行うことができる。添加剤として、キレート剤、酸化剤、リン酸塩等をエッチング液中に添加してもよい。浸漬後、5~20質量%の硝酸水溶液等で中和(脱スマット)し、水洗、乾燥を行うことが好ましい。 When the metal base material 2 is aluminum, the etching treatment is preferably an alkaline method using an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide as an etching solution, and more preferably a caustic soda method using an aqueous solution of sodium hydroxide. The alkaline method can be carried out, for example, by immersing the metal substrate 2 in an aqueous solution of sodium hydroxide or potassium hydroxide having a concentration of 3 to 20% by mass at 20 to 70 ° C. for 1 to 15 minutes. As an additive, a chelating agent, an oxidizing agent, a phosphate or the like may be added to the etching solution. After soaking, it is preferable to neutralize (de-smut) with a 5 to 20% by mass nitric acid aqueous solution, wash with water, and dry.
 (化成処理)
 化成処理とは、主として金属基材2の表面に、表面処理部2aとして化成皮膜を形成するものである。化成処理としては、例えば、ベーマイト処理、及びジルコニウム処理が挙げられる。金属基材2がアルミニウムである場合、化成処理はベーマイト処理であることが好ましい。
(Chemical conversion processing)
The chemical conversion treatment mainly forms a chemical conversion film on the surface of the metal base material 2 as a surface treatment portion 2a. Examples of the chemical conversion treatment include boehmite treatment and zirconium treatment. When the metal base material 2 is aluminum, the chemical conversion treatment is preferably boehmite treatment.
 ベーマイト処理では、金属基材2を熱水処理することにより、金属基材2の表面にベーマイト皮膜が形成される。反応促進剤として、アンモニア、トリエタノールアミンなどを水に添加してもよい。例えば、金属基材2を、濃度0.1~5.0質量%でトリエタノールアミンを含む90~100℃の熱水中に3秒~5分間浸漬して行うことが好ましい。 In the boehmite treatment, a boehmite film is formed on the surface of the metal base material 2 by treating the metal base material 2 with hot water. Ammonia, triethanolamine or the like may be added to water as a reaction accelerator. For example, it is preferable to immerse the metal substrate 2 in hot water at 90 to 100 ° C. containing triethanolamine at a concentration of 0.1 to 5.0% by mass for 3 seconds to 5 minutes.
 ジルコニウム処理では、金属基材2を、例えば、リン酸ジルコニウムなどのジルコニウム塩含有液に浸漬することにより、金属基材2の表面にジルコニウム化合物の皮膜が形成される。金属基材2を、ジルコニウム処理用の化成剤(例えば、日本パーカライジング株式会社製「パールコート3762」、同「パールコート3796」など)の45~70℃の液中に0.5~3分間浸漬して行うことが好ましい。ジルコニウム処理は、苛性ソーダ法によるエッチング処理後に行うことが好ましい。 In the zirconium treatment, a film of a zirconium compound is formed on the surface of the metal base material 2 by immersing the metal base material 2 in a zirconium salt-containing liquid such as zirconium phosphate. The metal substrate 2 is immersed in a chemical agent for zirconium treatment (for example, "Pearl Coat 3762" manufactured by Nihon Parkerizing Co., Ltd., "Pearl Coat 3796", etc.) at 45 to 70 ° C. for 0.5 to 3 minutes. It is preferable to do this. The zirconium treatment is preferably performed after the etching treatment by the caustic soda method.
 金属基材2がアルミニウムである場合、金属基材2にエッチング処理及びベーマイト処理から選ばれる少なくとも1種の表面処理が施されていることが好ましい。 When the metal base material 2 is aluminum, it is preferable that the metal base material 2 is subjected to at least one surface treatment selected from an etching treatment and a boehmite treatment.
 <官能基含有層3>
 図5Bに示すように、金属基材2と樹脂コーティング層4との間に、金属基材2と樹脂コーティング層4に接して積層された一層又は複数層の官能基含有層3を設けることもできる。官能基含有層3を設ける場合、官能基含有層3が有する官能基が、金属基材2の表面の水酸基及び樹脂コーティング層4を構成する樹脂が有する官能基と、それぞれ反応して化学結合を形成することにより、金属基材2の表面と、樹脂コーティング層4との接着性を向上させることができ、その結果、金属部材1と接合対象である樹脂部材8との接着性(樹脂コーティング層4を介した接合性)も向上させることができる。
<Functional group-containing layer 3>
As shown in FIG. 5B, a one-layer or a plurality of functional group-containing layers 3 laminated in contact with the metal base material 2 and the resin coating layer 4 may be provided between the metal base material 2 and the resin coating layer 4. can. When the functional group-containing layer 3 is provided, the functional group contained in the functional group-containing layer 3 reacts with the hydroxyl group on the surface of the metal base material 2 and the functional group contained in the resin constituting the resin coating layer 4, respectively, to form a chemical bond. By forming the metal base material 2, the adhesiveness between the surface of the metal base material 2 and the resin coating layer 4 can be improved, and as a result, the adhesiveness between the metal member 1 and the resin member 8 to be bonded (resin coating layer) can be improved. Bondability via 4) can also be improved.
 〔処理〕
 官能基含有層3は、金属基材2の表面を、下記(1’)~(7’)からなる群より選ばれる少なくとも1つを用いて処理することにより、形成されたものであることが好ましい。
(1’)グリシジル基、アミノ基及びメルカプト基からなる群より選ばれる少なくとも1つの官能基を含有するシランカップリング剤
(2’)グリシジル化合物及びチオール化合物から選ばれる少なくとも1種と、アミノ基を有するシランカップリング剤の組み合わせ
(3’)グリシジル化合物、アミノ化合物、イソシアネート化合物、(メタ)アクリロイル基及びグリシジル基を有する化合物、並びに(メタ)アクリロイル基及びアミノ基を有する化合物からなる群より選ばれる少なくとも1種と、メルカプト基を有するシランカップリング剤の組み合わせ
(4’)チオール化合物と、(メタ)アクリロイル基を有するシランカップリング剤の組み合わせ
(5’)アミノ基及び(メタ)アクリロイル基を有する化合物、アミノ化合物、及びチオール化合物からなる群より選ばれる少なくとも1種と、グリシジル基を有するシランカップリング剤の組み合わせ
(6’)イソシアネート化合物
(7’)チオール化合物
〔process〕
The functional group-containing layer 3 may be formed by treating the surface of the metal base material 2 with at least one selected from the group consisting of the following (1') to (7'). preferable.
(1') Silane coupling agent containing at least one functional group selected from the group consisting of a glycidyl group, an amino group and a mercapto group (2') At least one selected from a glycidyl compound and a thiol compound, and an amino group. Combination of silane coupling agent having (3') Selected from the group consisting of a glycidyl compound, an amino compound, an isocyanate compound, a compound having a (meth) acryloyl group and a glycidyl group, and a compound having a (meth) acryloyl group and an amino group. Combination of at least one and a silane coupling agent having a mercapto group (4') A combination of a thiol compound and a silane coupling agent having a (meth) acryloyl group (5') having an amino group and a (meth) acryloyl group. A combination of at least one selected from the group consisting of compounds, amino compounds and thiol compounds and a silane coupling agent having a glycidyl group (6') isocyanate compound (7') thiol compound.
 〔官能基〕
 官能基含有層3は、前記処理により導入された官能基を含むことが好ましく、具体的には、下記(1)~(7)からなる群より選ばれる少なくとも1つの官能基を含むことが好ましい。
(1)シランカップリング剤由来であって、グリシジル基、アミノ基、(メタ)アクリロイル基及びメルカプト基からなる群より選ばれる少なくとも1つの官能基
(2)シランカップリング剤由来のアミノ基に、グリシジル化合物及びチオール化合物から選ばれる少なくとも1種が反応して生成した官能基
(3)シランカップリング剤由来のメルカプト基に、グリシジル化合物、アミノ化合物、イソシアネート化合物、(メタ)アクリロイル基及びグリシジル基を有する化合物、並びに(メタ)アクリロイル基及びアミノ基を有する化合物からなる群より選ばれる少なくとも1種が反応して生成した官能基
(4)シランカップリング剤由来の(メタ)アクリロイル基に、チオール化合物が反応して生成した官能基
(5)シランカップリング剤由来のグリシジル基に、アミノ基及び(メタ)アクリロイル基を有する化合物、アミノ化合物、及びチオール化合物からなる群より選ばれる少なくとも1種が反応して生成した官能基
(6)イソシアネート化合物由来のイソシアナト基
(7)チオール化合物由来のメルカプト基
[Functional group]
The functional group-containing layer 3 preferably contains the functional group introduced by the above treatment, and specifically, preferably contains at least one functional group selected from the group consisting of the following (1) to (7). ..
(1) At least one functional group derived from the silane coupling agent and selected from the group consisting of a glycidyl group, an amino group, a (meth) acryloyl group and a mercapto group (2) An amino group derived from the silane coupling agent. A functional group generated by the reaction of at least one selected from a glycidyl compound and a thiol compound (3) A glycidyl compound, an amino compound, an isocyanate compound, a (meth) acryloyl group and a glycidyl group are added to a mercapto group derived from a silane coupling agent. A functional group produced by the reaction of at least one selected from the group consisting of a compound having a (meth) acryloyl group and a compound having an amino group (4) A thiol compound to a (meth) acryloyl group derived from a silane coupling agent. (5) A glycidyl group derived from a silane coupling agent is reacted with at least one selected from the group consisting of a compound having an amino group and a (meth) acryloyl group, an amino compound, and a thiol compound. (6) Isocyanato group derived from isocyanate compound (7) Mercapto group derived from thiol compound
 金属基材2に官能基含有層3を形成する前に、金属基材2の表面に上述した表面処理部2aを設けることもできる。表面処理部2aの微細な凹凸によるアンカー効果と、官能基含有層3が有する官能基が金属基材2の表面の水酸基及び樹脂コーティング層4を構成する樹脂が有する官能基のそれぞれと反応して形成する化学結合との相乗効果によって、金属基材2の表面と樹脂コーティング層4との接着性、及び金属部材1と接合対象である樹脂部材8との接着性(樹脂コーティング層4を介した接合性)を更に向上させることもできる。 Before forming the functional group-containing layer 3 on the metal base material 2, the above-mentioned surface treatment portion 2a can be provided on the surface of the metal base material 2. The anchor effect due to the fine irregularities of the surface treatment portion 2a and the functional group of the functional group-containing layer 3 react with each of the hydroxyl group on the surface of the metal substrate 2 and the functional group of the resin constituting the resin coating layer 4. Due to the synergistic effect with the formed chemical bond, the adhesiveness between the surface of the metal base material 2 and the resin coating layer 4 and the adhesiveness between the metal member 1 and the resin member 8 to be bonded (via the resin coating layer 4). Bondability) can be further improved.
 シランカップリング剤、イソシアネート化合物、チオール化合物などを用いて官能基含有層3を形成する方法は、特に限定されるものではなく、例えば、スプレー塗布法、及び浸漬法が挙げられる。具体的には、金属基材2を、濃度5~50質量%のシランカップリング剤等の常温~100℃の溶液中に1分~5日間浸漬した後、常温~100℃で1分~5時間乾燥させることにより官能基含有層3を形成することができる。 The method for forming the functional group-containing layer 3 using a silane coupling agent, an isocyanate compound, a thiol compound, or the like is not particularly limited, and examples thereof include a spray coating method and a dipping method. Specifically, the metal base material 2 is immersed in a solution of a silane coupling agent having a concentration of 5 to 50% by mass at room temperature to 100 ° C. for 1 minute to 5 days, and then immersed at room temperature to 100 ° C. for 1 minute to 5 minutes. The functional group-containing layer 3 can be formed by drying for a time.
 〔シランカップリング剤〕
 シランカップリング剤としては、例えば、ガラス繊維の表面処理等に用いられる公知のものを使用することができる。シランカップリング剤を加水分解させて生成したシラノール基、又はシラノール基が縮合して生成したオリゴマー化物のシラノール基が、金属基材2の表面に存在する水酸基と反応して結合することにより、樹脂コーティング層4と化学結合可能なシランカップリング剤の構造に基づく官能基を、金属基材2に対して付与する(導入する)ことができる。
〔Silane coupling agent〕
As the silane coupling agent, for example, a known one used for surface treatment of glass fiber or the like can be used. A silanol group generated by hydrolyzing a silane coupling agent or a silanol group of an oligomer product formed by condensing a silanol group reacts with a hydroxyl group existing on the surface of the metal substrate 2 to bond to the resin. A functional group based on the structure of the silane coupling agent that can be chemically bonded to the coating layer 4 can be imparted (introduced) to the metal substrate 2.
 シランカップリング剤としては、特に限定されるものではなく、例えば、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシランなどのアミノ基を有するシランカップリング剤;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ基を有するシランカップリング剤;3-メルカプトプロピルメチルジメトキシシラン、3-イソシアナトプロピルトリエトキシシラン、ジチオールトリアジンプロピルトリエトキシシラン等のメルカプト基又はイソシアナト基を有するシランカップリング剤;ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等のビニル基を有するシランカップリング剤;3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノプロピルトリメトキシシランの塩酸塩、トリス(トリメトキシシリルプロピル)イソシアヌレート、及び3-ウレイドプロピルトリアルコキシシランが挙げられる。シランカップリング剤は、単独で用いてもよく、2種以上を併用してもよい。 The silane coupling agent is not particularly limited, and for example, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane and N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane. , N-2- (Aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane and other silane coupling agents with amino groups; 2- (3,4) -Epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxy Silane coupling agent having an epoxy group such as silane; silane coupling agent having a mercapto group or isocianato group such as 3-mercaptopropylmethyldimethoxysilane, 3-isosyanatopropyltriethoxysilane, dithioltriazinepropyltriethoxysilane; vinyl Trimethoxysilane, Vinyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltri Silane coupling agent having a vinyl group such as ethoxysilane, 3-acryloxypropyltrimethoxysilane; 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyl Examples thereof include trimethoxysilane, N- (vinylbenzyl) -2-aminopropyltrimethoxysilane hydrochloride, tris (trimethoxysilylpropyl) isocyanurate, and 3-ureidopropyltrialkoxysilane. The silane coupling agent may be used alone or in combination of two or more.
 〔イソシアネート化合物〕
 イソシアネート化合物は、イソシアネート化合物中のイソシアナト基が、金属基材2の表面に存在する水酸基と反応して結合することにより、樹脂コーティング層4と化学結合可能なイソシアネート化合物の構造に基づく官能基を、金属基材2に対して付与する(導入する)ことができる。
[Isocyanate compound]
The isocyanate compound is a functional group based on the structure of an isocyanate compound that can be chemically bonded to the resin coating layer 4 by reacting and bonding an isocyanato group in the isocyanate compound with a hydroxyl group existing on the surface of the metal substrate 2. It can be applied (introduced) to the metal base material 2.
 イソシアネート化合物としては、特に限定されるものではなく、例えば、ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、イソホロンジイソシアネート(IPDI)などの多官能イソシアネート;及び2-イソシアナトエチルメタクリレート(例えば、昭和電工株式会社製「カレンズMOI(登録商標)」)、2-イソシアナトエチルアクリレート(例えば、昭和電工株式会社製「カレンズAOI(登録商標)」、「AOI-VM(登録商標)」)、1,1-(ビスアクリロイルオキシエチル)エチルイソシアネート(例えば、昭和電工株式会社製「カレンズBEI(登録商標)」)などのラジカル反応性基を有するイソシアネート化合物が挙げられる。 The isocyanate compound is not particularly limited, and is, for example, a polyfunctional isocyanate such as diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), isophorone diisocyanate (IPDI); and 2-isosia. Natoethyl methacrylate (for example, "Karenzu MOI (registered trademark)" manufactured by Showa Denko Co., Ltd.), 2-isocyanatoethyl acrylate (for example, "Karenzu AOI (registered trademark)" manufactured by Showa Denko Co., Ltd. "," AOI-VM (registered). Examples thereof include isocyanate compounds having a radically reactive group such as ")") and 1,1- (bisacryloyloxyethyl) ethyl isocyanate (for example, "Karenzu BEI (registered trademark)" manufactured by Showa Denko Co., Ltd.).
 〔チオール化合物〕
 チオール化合物は、チオール化合物中のメルカプト基が、金属基材2の表面に存在する水酸基と反応して結合することにより、樹脂コーティング層4と化学結合可能なチオール化合物の構造に基づく官能基を、金属基材2に対して付与する(導入する)ことができる。
[Thiol compound]
The thiol compound is a functional group based on the structure of the thiol compound that can be chemically bonded to the resin coating layer 4 by reacting and bonding the mercapto group in the thiol compound with the hydroxyl group existing on the surface of the metal substrate 2. It can be applied (introduced) to the metal base material 2.
 チオール化合物としては、特に限定されるものではなく、例えば、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(例えば、三菱ケミカル株式会社製「QX40」、東レ・ファインケミカル株式会社製「QE-340M」)、エーテル系一級チオール(例えば、コグニス(Cognis)社製「カップキュア3-800」)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン(例えば、昭和電工株式会社製「カレンズMT(登録商標)BD1」)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(例えば、昭和電工株式会社製「カレンズMT(登録商標)PE1」)、及び1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(例えば、昭和電工株式会社製「カレンズMT(登録商標)NR1」)が挙げられる。 The thiol compound is not particularly limited, and is, for example, pentaerythritol tetrakis (3-mercaptopropionate) (for example, "QX40" manufactured by Mitsubishi Chemical Co., Ltd., "QE-340M" manufactured by Toray Fine Chemical Co., Ltd.). , Ether-based first-class thiol (for example, "Cup Cure 3-800" manufactured by Cognis), 1,4-bis (3-mercaptobutyryloxy) butane (for example, "Karensu MT (registered) manufactured by Showa Denko KK). BD1 "), pentaerythritol tetrakis (3-mercaptobutyrate) (for example," Karens MT (registered trademark) PE1 "manufactured by Showa Denko KK), and 1,3,5-tris (3-mercaptobutyloxyethyl). )-1,3,5-Triazine-2,4,6 (1H, 3H, 5H) -Torion (for example, "Karensu MT (registered trademark) NR1" manufactured by Showa Denko KK).
 <樹脂コーティング層4>
 金属基材2の上には樹脂コーティング層4が積層されている。樹脂コーティング層4は1層であってもよく、複数層で構成されてもよい。
<Resin coating layer 4>
A resin coating layer 4 is laminated on the metal base material 2. The resin coating layer 4 may be one layer or may be composed of a plurality of layers.
 〔変性ポリオレフィン層4a〕
 樹脂コーティング層4の少なくとも1層は、変性ポリオレフィンを含む樹脂組成物から形成された変性ポリオレフィン層4aである。樹脂コーティング層4が変性ポリオレフィン層4aを含むことにより、金属部材1は樹脂部材8との優れた接着性(樹脂コーティング層4を介した接合性)を示すことができる。
[Modified polyolefin layer 4a]
At least one layer of the resin coating layer 4 is a modified polyolefin layer 4a formed from a resin composition containing a modified polyolefin. Since the resin coating layer 4 contains the modified polyolefin layer 4a, the metal member 1 can exhibit excellent adhesiveness to the resin member 8 (bondability via the resin coating layer 4).
 樹脂コーティング層4を、変性ポリオレフィン層4aと、変性ポリオレフィン層4a以外の層とを含む複数層で構成し、変性ポリオレフィン層4a以外の層を、熱可塑性エポキシ樹脂を含む樹脂組成物から形成された熱可塑性エポキシ樹脂層4b及び硬化性樹脂を含む樹脂組成物から形成された硬化性樹脂層4cから選ばれる少なくとも1種とすることもできる。 The resin coating layer 4 was composed of a plurality of layers including a modified polyolefin layer 4a and a layer other than the modified polyolefin layer 4a, and the layer other than the modified polyolefin layer 4a was formed from a resin composition containing a thermoplastic epoxy resin. It may be at least one selected from the curable resin layer 4c formed from the thermoplastic epoxy resin layer 4b and the resin composition containing the curable resin.
 樹脂コーティング層4が複数層から構成される場合、必須となる変性ポリオレフィン層4aが、金属基材2と反対側の最表面となるように積層されることが好ましい。 When the resin coating layer 4 is composed of a plurality of layers, it is preferable that the essential modified polyolefin layer 4a is laminated so as to be the outermost surface on the opposite side to the metal base material 2.
 変性ポリオレフィン層4aは、無水マレイン酸変性ポリオレフィンの存在下で、2官能エポキシ樹脂と2官能フェノール化合物を重付加反応させると同時に、無水マレイン酸変性ポリオレフィン骨格中の無水マレイン酸にも反応させて得た反応物1を含む層、2官能エポキシ樹脂と2官能フェノール化合物の重付加反応により生成した熱可塑性エポキシ樹脂と、無水マレイン酸変性ポリオレフィン骨格中の無水マレイン酸とを反応させて得た反応物2を含む層、及び熱可塑性エポキシ樹脂とポリオレフィンとの混合物を含む層からなる群より選ばれる少なくとも1種であることが好ましい。 The modified polyolefin layer 4a is obtained by subjecting a bifunctional epoxy resin and a bifunctional phenol compound to a double addition reaction in the presence of a maleic anhydride-modified polyolefin, and at the same time, reacting with maleic anhydride in the maleic anhydride-modified polyolefin skeleton. A reaction product obtained by reacting a thermoplastic epoxy resin produced by a double addition reaction of a bifunctional epoxy resin and a bifunctional phenol compound with a layer containing the reaction product 1 and maleic anhydride in a maleic anhydride-modified polyolefin skeleton. It is preferably at least one selected from the group consisting of a layer containing 2 and a layer containing a mixture of a thermoplastic epoxy resin and a polyolefin.
 (反応物1)
 反応物1は、無水マレイン酸変性ポリオレフィンの溶液中で、2官能エポキシ樹脂と2官能フェノール化合物とを触媒存在下で重付加反応させることで得ることができる。このとき、無水マレイン酸変性ポリオレフィンは、2官能エポキシ樹脂、2官能フェノール化合物、及び反応物2の項にて後述する2官能エポキシ樹脂と2官能フェノール化合物から生成した熱可塑性エポキシ樹脂とも反応するものと考えられる。
(Reactant 1)
The reaction product 1 can be obtained by subjecting a bifunctional epoxy resin and a bifunctional phenol compound to a double addition reaction in the presence of a catalyst in a solution of maleic anhydride-modified polyolefin. At this time, the maleic anhydride-modified polyolefin also reacts with the bifunctional epoxy resin, the bifunctional phenol compound, and the thermoplastic epoxy resin produced from the bifunctional epoxy resin and the bifunctional phenol compound described later in the section of the reactant 2. it is conceivable that.
 (無水マレイン酸変性ポリオレフィン)
 無水マレイン酸変性ポリオレフィンは、無水マレイン酸をポリオレフィンにグラフトしたものであり、例えば、無水マレイン酸変性ポリエチレン、及び無水マレイン酸変性ポリプロピレンが挙げられる。無水マレイン酸変性ポリオレフィンとしては、具体的には、化薬アクゾ社製カヤブリッド002PP、002PP-NW、003PP、003PP-NW、及び三菱ケミカル株式会社製Modicシリーズが挙げられる。無水マレイン酸で機能化させたポリプロピレン添加剤としてBYK社製SCONA TPPP2112GA、TPPP8112GA、又はTPPP9212GAを無水マレイン酸変性ポリオレフィンと併用してもよい。
(Maleic anhydride-modified polyolefin)
The maleic anhydride-modified polyolefin is obtained by grafting maleic anhydride on the polyolefin, and examples thereof include maleic anhydride-modified polyethylene and maleic anhydride-modified polypropylene. Specific examples of the maleic anhydride-modified polyolefin include Kayaku Akzo Corporation's Kayabrid 002PP, 002PP-NW, 003PP, 003PP-NW, and Mitsubishi Chemical Corporation's Modic series. SCONA TPPP2112GA, TPPP8112GA, or TPPP9212GA manufactured by BYK may be used in combination with maleic anhydride-modified polyolefin as a polypropylene additive functionalized with maleic anhydride.
 (2官能エポキシ樹脂)
 2官能エポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂、及びビフェニル型エポキシ樹脂が挙げられる。2官能エポキシ樹脂は、単独で用いてもよく、2種以上を併用してもよい。2官能エポキシ樹脂としては、具体的には、三菱ケミカル株式会社製「jER(登録商標)828」、「jER(登録商標)834」、「jER(登録商標)1001」、「jER(登録商標)1004」、「jER(登録商標)1007」、及び「jER(登録商標)YX-4000」が挙げられる。
(Bifunctional epoxy resin)
Examples of the bifunctional epoxy resin include a bisphenol type epoxy resin and a biphenyl type epoxy resin. The bifunctional epoxy resin may be used alone or in combination of two or more. Specific examples of the bifunctional epoxy resin include "jER (registered trademark) 828", "jER (registered trademark) 834", "jER (registered trademark) 1001", and "jER (registered trademark)" manufactured by Mitsubishi Chemical Corporation. 1004 ”,“ jER® 1007 ”, and“ jER® YX-4000 ”.
 (2官能フェノール化合物)
 2官能フェノール化合物としては、例えば、ビスフェノール、及びビフェノールが挙げられる。2官能フェノール化合物は、単独で用いてもよく、2種以上を併用してもよい。2官能フェノール化合物の組み合わせとしては、例えば、ビスフェノールA型エポキシ樹脂とビスフェノールA;ビスフェノールA型エポキシ樹脂とビスフェノールF;ビフェニル型エポキシ樹脂と4,4’-ビフェノール;及びナガセケムテックス株式会社製「WPE190」と「EX-991L」が挙げられる。
(Bifunctional phenol compound)
Examples of the bifunctional phenol compound include bisphenol and biphenol. The bifunctional phenol compound may be used alone or in combination of two or more. Examples of the combination of the bifunctional phenol compound include bisphenol A type epoxy resin and bisphenol A; bisphenol A type epoxy resin and bisphenol F; biphenyl type epoxy resin and 4,4'-biphenol; and "WPE190" manufactured by Nagase ChemteX Corporation. "And" EX-991L ".
 熱可塑性エポキシ樹脂の重付加反応用触媒としては、例えば、トリエチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノールなどの3級アミン;及びトリフェニルホスフィンなどのリン系化合物が好ましい。 As the catalyst for the double addition reaction of the thermoplastic epoxy resin, for example, a tertiary amine such as triethylamine, 2,4,6-tris (dimethylaminomethyl) phenol; and a phosphorus-based compound such as triphenylphosphine are preferable.
 (反応物2)
 反応物2は、2官能エポキシ樹脂と2官能フェノール化合物の重付加反応により生成した熱可塑性エポキシ樹脂と、無水マレイン酸変性ポリオレフィンを反応させることで得ることができる。この反応で用いる無水マレイン酸変性ポリオレフィン、2官能エポキシ樹脂、及び2官能フェノール化合物としては、反応物1を生成するときと同じものを用いることができる。
(Reactant 2)
The reaction product 2 can be obtained by reacting a thermoplastic epoxy resin produced by a double addition reaction of a bifunctional epoxy resin and a bifunctional phenol compound with a maleic anhydride-modified polyolefin. As the maleic anhydride-modified polyolefin, the bifunctional epoxy resin, and the bifunctional phenol compound used in this reaction, the same ones as those used for producing the reactant 1 can be used.
 (熱可塑性エポキシ樹脂)
 反応物2の製造に使用する熱可塑性エポキシ樹脂は、現場重合型フェノキシ樹脂、現場硬化型フェノキシ樹脂、現場硬化型エポキシ樹脂などとも呼ばれる樹脂であり、2官能エポキシ樹脂と2官能フェノール化合物とが触媒存在下で重付加反応することにより、熱可塑構造、すなわち、リニアポリマー構造を形成する。ここで、リニアポリマーとは、ポリマー分子中に架橋構造を含まず、1次元の直鎖状であるポリマーを意味する。熱可塑性エポキシ樹脂は、架橋構造による3次元ネットワークを構成する硬化性樹脂とは異なり、熱可塑性を有する。
(Thermoplastic epoxy resin)
The thermoplastic epoxy resin used for producing the reaction product 2 is a resin also called a field-polymerized phenoxy resin, a field-curable phenoxy resin, a field-curable epoxy resin, or the like, and a bifunctional epoxy resin and a bifunctional phenol compound are catalysts. By the double addition reaction in the presence, a thermoplastic structure, that is, a linear polymer structure is formed. Here, the linear polymer means a polymer that does not contain a crosslinked structure in the polymer molecule and is one-dimensional linear. The thermoplastic epoxy resin has thermoplasticity unlike the curable resin that constitutes a three-dimensional network with a crosslinked structure.
 反応物1又は反応物2を製造する際に使用する2官能エポキシ樹脂と2官能フェノール化合物の合計量は、無水マレイン酸変性ポリオレフィン100質量部に対して、5~100量部であることが好ましく、5~60質量部であることがより好ましく、10~30質量部であることが更に好ましい。 The total amount of the bifunctional epoxy resin and the bifunctional phenol compound used in producing the reactant 1 or the reactant 2 is preferably 5 to 100 parts by mass with respect to 100 parts by mass of the maleic anhydride-modified polyolefin. It is more preferably 5 to 60 parts by mass, further preferably 10 to 30 parts by mass.
 なお、反応物1及び反応物2を得る際に生じる反応の仕方は、無水マレイン酸変性ポリオレフィンと2官能エポキシ樹脂の反応、無水マレイン酸変性ポリオレフィンと2官能フェノール化合物の反応、無水マレイン酸間をエポキシが繋ぐ反応、熱可塑性エポキシ樹脂末端のエポキシ基と無水マレイン酸の反応、熱可塑性エポキシ樹脂骨格中の二級の水酸基と無水マレイン酸の反応など、多岐にわたり、かつ、その組み合わせに基づく具体的態様を包括的に表現することもできない。よって、反応物1又は反応物2として得られる変性ポリオレフィンを構造又は特性により直接特定することは不可能又は非実際的といえる。 The reaction that occurs when the reactant 1 and the reactant 2 are obtained is the reaction between the maleic anhydride-modified polyolefin and the bifunctional epoxy resin, the reaction between the maleic anhydride-modified polyolefin and the bifunctional phenol compound, and the maleic anhydride. Specifics based on a wide variety of reactions such as the reaction of connecting epoxies, the reaction of the epoxy group at the end of the thermoplastic epoxy resin with maleic anhydride, and the reaction of the secondary hydroxyl group in the skeleton of the thermoplastic epoxy resin with maleic anhydride. It is also not possible to comprehensively express the aspect. Therefore, it can be said that it is impossible or impractical to directly specify the modified polyolefin obtained as the reactant 1 or the reactant 2 by the structure or the property.
 熱可塑性エポキシ樹脂とポリオレフィンとの混合物は、前述した反応物2の製造に使用したものと同様の熱可塑性エポキシ樹脂と、ポリオレフィンとを常法により混合して得ることができる。 The mixture of the thermoplastic epoxy resin and the polyolefin can be obtained by mixing the same thermoplastic epoxy resin as that used for producing the above-mentioned reaction product 2 and the polyolefin by a conventional method.
 (ポリオレフィン)
 混合物の形成に使用するポリオレフィンとしては、樹脂部材8に使用されるポリオレフィンを使用することができる。ポリオレフィンは、特に限定されるものではなく、一般的な合成樹脂であってよい。ポリオレフィンとしては、例えば、ポリエチレン、及びポリプロピレンが挙げられる。
(Polyolefin)
As the polyolefin used for forming the mixture, the polyolefin used for the resin member 8 can be used. The polyolefin is not particularly limited and may be a general synthetic resin. Examples of the polyolefin include polyethylene and polypropylene.
 樹脂コーティング層4は、金属基材2の表面上に積層される。上述したように、樹脂コーティング層4は、表面処理が施されていない金属基材2の表面に積層されていてもよく、表面処理を施した金属基材2の表面に積層されていてもよい。樹脂コーティング層4は、官能基含有層3の表面に積層されていてもよい。 The resin coating layer 4 is laminated on the surface of the metal base material 2. As described above, the resin coating layer 4 may be laminated on the surface of the metal base material 2 which has not been surface-treated, or may be laminated on the surface of the metal base material 2 which has been surface-treated. .. The resin coating layer 4 may be laminated on the surface of the functional group-containing layer 3.
 〔熱可塑性エポキシ樹脂層4b〕
 樹脂コーティング層4を、変性ポリオレフィン層4aと、変性ポリオレフィン層4a以外の層とを含む複数層で構成し、変性ポリオレフィン層4a以外の層の少なくとも1層を、熱可塑性エポキシ樹脂を含む樹脂組成物から形成された熱可塑性エポキシ樹脂層4bで構成することができる。
[Thermoplastic epoxy resin layer 4b]
A resin composition in which the resin coating layer 4 is composed of a plurality of layers including a modified polyolefin layer 4a and a layer other than the modified polyolefin layer 4a, and at least one layer of the layers other than the modified polyolefin layer 4a is a resin composition containing a thermoplastic epoxy resin. It can be composed of a thermoplastic epoxy resin layer 4b formed from.
 熱可塑性エポキシ樹脂を含む樹脂組成物は、熱可塑性エポキシ樹脂を40質量%以上含むことが好ましく、70質量%以上含むことがより好ましい。 The resin composition containing the thermoplastic epoxy resin preferably contains 40% by mass or more of the thermoplastic epoxy resin, and more preferably 70% by mass or more.
 (熱可塑性エポキシ樹脂)
 熱可塑性エポキシ樹脂は、反応物2の製造に使用する熱可塑性エポキシ樹脂と同様に、2官能エポキシ樹脂と2官能フェノール化合物とが触媒存在下で重付加反応することにより、熱可塑構造、すなわち、リニアポリマー構造を形成する樹脂であり、架橋構造による3次元ネットワークを構成する硬化性樹脂とは異なり、熱可塑性を有する。熱可塑性エポキシ樹脂は、このような特徴を有していることにより、現場重合によって、金属基材2との接合性に優れ、かつ、変性ポリオレフィン層4aとの接合性に優れた熱可塑性エポキシ樹脂層4bを形成することができる。したがって、金属部材1を製造する際に、下層の表面上で、熱可塑性エポキシ樹脂のモノマーを含む組成物を重付加反応させることにより、熱可塑性エポキシ樹脂層4bを形成することが好ましい。
(Thermoplastic epoxy resin)
Similar to the thermoplastic epoxy resin used for producing the reactant 2, the thermoplastic epoxy resin has a thermoplastic structure, that is, a thermoplastic structure, that is, a double-addition reaction between the bifunctional epoxy resin and the bifunctional phenol compound in the presence of a catalyst. It is a resin that forms a linear polymer structure, and has thermoplasticity unlike curable resins that form a three-dimensional network with a crosslinked structure. Due to these characteristics, the thermoplastic epoxy resin has excellent bondability with the metal substrate 2 and with excellent bondability with the modified polyolefin layer 4a by in-situ polymerization. Layer 4b can be formed. Therefore, when the metal member 1 is manufactured, it is preferable to form the thermoplastic epoxy resin layer 4b by subjecting a composition containing a monomer of the thermoplastic epoxy resin to a double addition reaction on the surface of the lower layer.
 熱可塑性エポキシ樹脂のモノマーを含む組成物の重付加反応は、下層として官能基含有層3の表面上で行うことが好ましい。このような態様で形成された熱可塑性エポキシ樹脂層4bを含む樹脂コーティング層4は、金属基材2との接合性に優れ、かつ、後述する樹脂部材8との接合性に優れる。 It is preferable that the heavy addition reaction of the composition containing the monomer of the thermoplastic epoxy resin is carried out on the surface of the functional group-containing layer 3 as the lower layer. The resin coating layer 4 including the thermoplastic epoxy resin layer 4b formed in such an embodiment is excellent in bondability with the metal base material 2 and also with excellent bondability with the resin member 8 described later.
 熱可塑性エポキシ樹脂のモノマーを含む組成物を用いて熱可塑性エポキシ樹脂層4bを形成する方法は、特に限定されるものではなく、例えば、スプレー塗布法、及び浸漬法が挙げられる。 The method for forming the thermoplastic epoxy resin layer 4b using the composition containing the monomer of the thermoplastic epoxy resin is not particularly limited, and examples thereof include a spray coating method and a dipping method.
 熱可塑性エポキシ樹脂のモノマーを含む組成物は、熱可塑性エポキシ樹脂の重付加反応を十分に進行させ、所望の樹脂コーティング層を形成させるために、溶剤を含んでもよく、必要に応じて着色剤などの添加剤を含んでいてもよい。この場合、組成物の溶剤以外の成分中、熱可塑性エポキシ樹脂のモノマーが主成分であることが好ましい。主成分とは、熱可塑性エポキシ樹脂のモノマーの含有率が50~100質量%であることを意味する。熱可塑性エポキシ樹脂のモノマーの含有率は、好ましくは60質量%以上、より好ましくは80質量%以上である。 The composition containing the monomer of the thermoplastic epoxy resin may contain a solvent in order to sufficiently proceed the double addition reaction of the thermoplastic epoxy resin and form a desired resin coating layer, and if necessary, a colorant or the like may be contained. May contain the additive of. In this case, it is preferable that the monomer of the thermoplastic epoxy resin is the main component among the components other than the solvent of the composition. The main component means that the content of the monomer of the thermoplastic epoxy resin is 50 to 100% by mass. The content of the monomer of the thermoplastic epoxy resin is preferably 60% by mass or more, more preferably 80% by mass or more.
 熱可塑性エポキシ樹脂を得るためのモノマーは、2官能エポキシ樹脂と2官能フェノール性化合物との組み合わせが好ましい。 The monomer for obtaining the thermoplastic epoxy resin is preferably a combination of a bifunctional epoxy resin and a bifunctional phenolic compound.
 重付加反応は、反応化合物の種類などにもよるが、温度120~200℃で、5~90分間加熱して行うことが好ましい。具体的には、組成物をコーティングした後、適宜溶剤を揮発させ、その後、加熱して重付加反応を行うことにより、熱可塑性エポキシ樹脂層を形成することができる。 The double addition reaction is preferably carried out by heating at a temperature of 120 to 200 ° C. for 5 to 90 minutes, although it depends on the type of the reaction compound and the like. Specifically, the thermoplastic epoxy resin layer can be formed by coating the composition, volatilizing the solvent as appropriate, and then heating to carry out the double addition reaction.
 〔硬化性樹脂層4c〕
 樹脂コーティング層4を、変性ポリオレフィン層4aと、変性ポリオレフィン層4a以外の層とを含む複数層で構成し、変性ポリオレフィン層4a以外の層を、硬化性樹脂を含む樹脂組成物から形成された硬化性樹脂層4cで構成することもできる。
[Curable resin layer 4c]
The resin coating layer 4 is composed of a plurality of layers including a modified polyolefin layer 4a and a layer other than the modified polyolefin layer 4a, and the layer other than the modified polyolefin layer 4a is cured by forming from a resin composition containing a curable resin. It can also be composed of the sex resin layer 4c.
 硬化性樹脂を含む樹脂組成物は、硬化性樹脂の硬化反応を十分に進行させ、所望の樹脂コーティング層を形成させるため、溶剤を含んでもよく、必要に応じて着色剤などの添加剤を含んでいてもよい。この場合、樹脂組成物の溶剤以外の成分中、硬化性樹脂が主成分であることが好ましい。主成分とは、硬化性樹脂の含有率が40~100質量%であることを意味する。硬化性樹脂の含有率は、好ましくは60質量%以上、より好ましくは70質量%以上、最も好ましくは80質量%以上である。 The resin composition containing the curable resin may contain a solvent and, if necessary, an additive such as a colorant in order to sufficiently proceed the curing reaction of the curable resin and form a desired resin coating layer. You may go out. In this case, it is preferable that the curable resin is the main component among the components other than the solvent of the resin composition. The main component means that the content of the curable resin is 40 to 100% by mass. The content of the curable resin is preferably 60% by mass or more, more preferably 70% by mass or more, and most preferably 80% by mass or more.
 硬化性樹脂としては、例えば、ウレタン樹脂、エポキシ樹脂、ビニルエステル樹脂、及び不飽和ポリエステル樹脂が挙げられる。 Examples of the curable resin include urethane resin, epoxy resin, vinyl ester resin, and unsaturated polyester resin.
 硬化性樹脂層4cは、これらの樹脂のうちの1種で形成されていてもよく、2種以上が混合されて形成されていてもよい。硬化性樹脂層4cを複数層で構成し、各層を異なる種類の硬化性樹脂を含む樹脂組成物で形成することもできる。 The curable resin layer 4c may be formed of one of these resins, or may be formed by mixing two or more of them. The curable resin layer 4c may be composed of a plurality of layers, and each layer may be formed of a resin composition containing different types of curable resin.
 硬化性樹脂のモノマーを含む組成物を用いて硬化性樹脂層4cを形成する方法は、特に限定されるものではなく、例えば、スプレー塗布法、及び浸漬法が挙げられる。 The method for forming the curable resin layer 4c using the composition containing the monomer of the curable resin is not particularly limited, and examples thereof include a spray coating method and a dipping method.
 本開示において、硬化性樹脂とは架橋硬化する樹脂を意味し、加熱硬化タイプに限られず、常温硬化タイプ及び光硬化タイプも包含される。光硬化タイプは、可視光又は紫外線の照射によって短時間での硬化も可能である。光硬化タイプを、加熱硬化タイプ及び/又は常温硬化タイプと併用してもよい。光硬化タイプとしては、例えば、昭和電工株式会社製「リポキシ(登録商標)LC-760」、「リポキシ(登録商標)LC-720」などのビニルエステル樹脂が挙げられる。 In the present disclosure, the curable resin means a resin that is cross-linked and cured, and is not limited to the thermosetting type, but also includes a room temperature curing type and a photocuring type. The photo-curing type can be cured in a short time by irradiation with visible light or ultraviolet rays. The photo-curing type may be used in combination with the heat-curing type and / or the room temperature curing type. Examples of the photocurable type include vinyl ester resins such as "Lipoxy (registered trademark) LC-760" and "Lipoxy (registered trademark) LC-720" manufactured by Showa Denko KK.
 (ウレタン樹脂)
 ウレタン樹脂は、通常、イソシアネート化合物のイソシアナト基とポリオール化合物の水酸基との反応によって得られる樹脂であり、ASTM D16において、「ビヒクル不揮発成分10重量%以上のポリイソシアネートを含む塗料」と定義されるものに該当するウレタン樹脂が好ましい。ウレタン樹脂は、一液型であってもよく、二液型であってもよい。
(Urethane resin)
Urethane resin is a resin usually obtained by the reaction of the isocyanato group of an isocyanate compound with the hydroxyl group of a polyol compound, and is defined in ASTM D16 as "a paint containing 10% by weight or more of a vehicle non-volatile component polyisocyanate". The urethane resin corresponding to the above is preferable. The urethane resin may be a one-component type or a two-component type.
 一液型ウレタン樹脂としては、例えば、油変性型(不飽和脂肪酸基の酸化重合により硬化するもの)、湿気硬化型(イソシアナト基と空気中の水との反応により硬化するもの)、ブロック型(ブロック剤が加熱により解離し再生したイソシアナト基と水酸基が反応して硬化するもの)、及びラッカー型(溶剤が揮発して乾燥することにより硬化するもの)が挙げられる。これらの中でも、取り扱い容易性の観点から、湿気硬化型一液ウレタン樹脂が好適に用いられる。湿気硬化型一液ウレタン樹脂としては、具体的には、昭和電工株式会社製「UM-50P」が挙げられる。 Examples of the one-component urethane resin include oil-modified type (cured by oxidative polymerization of unsaturated fatty acid group), moisture-curable type (cured by reaction between isocyanato group and water in air), and block type (cured by reaction between isocyanato group and water in air). Examples thereof include a lacquer type (a type in which a solvent is volatilized and cured by drying) and a lacquer type (a type in which a blocking agent is dissociated by heating and regenerated by reacting with an isocyanato group and a hydroxyl group to be cured). Among these, a moisture-curable one-component urethane resin is preferably used from the viewpoint of ease of handling. Specific examples of the moisture-curable one-component urethane resin include "UM-50P" manufactured by Showa Denko KK.
 二液型ウレタン樹脂としては、例えば、触媒硬化型(イソシアナト基と空気中の水等とが触媒存在下で反応して硬化するもの)、及びポリオール硬化型(イソシアナト基とポリオール化合物の水酸基との反応により硬化するもの)が挙げられる。 Examples of the two-component urethane resin include a catalyst-curable type (a catalyst-curable group in which an isocyanato group reacts with water in the air to cure in the presence of a catalyst) and a polyol-curable type (isocyanato group and a hydroxyl group of a polyol compound). Those that cure by reaction) can be mentioned.
 ポリオール硬化型におけるポリオール化合物としては、例えば、ポリエステルポリオール、及びポリエーテルポリオール-フェノール樹脂が挙げられる。 Examples of the polyol compound in the polyol curing type include polyester polyols and polyether polyol-phenol resins.
 ポリオール硬化型におけるイソシアナト基を有するイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート(HDI)、テトラメチレンジイソシアネート、ダイマー酸ジイソシアネートなどの脂肪族イソシアネート;2,4-若しくは2,6-トリレンジイソシアネート(TDI)又はその混合物、p-フェニレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート(MDI)又はその多核体混合物であるポリメリックMDIなどの芳香族イソシアネート;及びイソホロンジイソシアネート(IPDI)などの脂環族イソシアネートが挙げられる。 Examples of the isocyanate compound having an isocyanato group in the polyol-cured type include aliphatic isocyanates such as hexamethylene diisocyanate (HDI), tetramethylene diisocyanate, and dimerate diisocyanate; 2,4- or 2,6-tolylene diisocyanate (TDI). Or a mixture thereof, aromatic isocyanates such as p-phenylenediisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate (MDI) or a polynuclear mixture thereof, Polymeric MDI; and alicyclic isocyanates such as isophorone diisocyanate (IPDI).
 ポリオール硬化型の二液型ウレタン樹脂におけるポリオール化合物とイソシアネート化合物の配合比は、水酸基/イソシアナト基のモル当量比が0.7~1.5の範囲であることが好ましい。 The compounding ratio of the polyol compound and the isocyanate compound in the polyol-curable two-component urethane resin is preferably in the range of 0.7 to 1.5 in the molar equivalent ratio of the hydroxyl group / isocyanato group.
 二液型ウレタン樹脂において使用されるウレタン化触媒としては、例えば、トリエチレンジアミン、テトラメチルグアニジン、N,N,N’,N’-テトラメチルヘキサン-1,6-ジアミン、ジメチルエーテルアミン、N,N,N’,N’’,N’’-ペンタメチルジプロピレン-トリアミン、N-メチルモルフォリン、ビス(2-ジメチルアミノエチル)エーテル、ジメチルアミノエトキシエタノール、トリエチルアミンなどのアミン系触媒;及びジブチルスズジアセテート、ジブチルスズジラウレート、ジブチルスズチオカルボキシレート、ジブチルスズジマレートなどの有機スズ系触媒が挙げられる。 Examples of the urethanization catalyst used in the two-component urethane resin include triethylenediamine, tetramethylguanidine, N, N, N', N'-tetramethylhexane-1,6-diamine, dimethyletheramine, N, N. , N', N'', N''-pentamethyldipropylene-triamine, N-methylmorpholin, bis (2-dimethylaminoethyl) ether, dimethylaminoethoxyethanol, amine-based catalysts such as triethylamine; and dibutyltindi Examples thereof include organic tin-based catalysts such as acetate, dibutyltin dilaurate, dibutyltinthiocarboxylate, and dibutyltin zimarate.
 ポリオール硬化型においては、一般に、ポリオール化合物100質量部に対して、ウレタン化触媒が0.01~10質量部配合されることが好ましい。 In the polyol curing type, it is generally preferable to add 0.01 to 10 parts by mass of the urethanization catalyst with respect to 100 parts by mass of the polyol compound.
 (エポキシ樹脂)
 エポキシ樹脂は、1分子中に少なくとも2個のエポキシ基を有する樹脂である。エポキシ樹脂の硬化前のプレポリマーとしては、例えば、エーテル系ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ポリフェノール型エポキシ樹脂、脂肪族型エポキシ樹脂、エステル系の芳香族エポキシ樹脂、環状脂肪族エポキシ樹脂、及びエーテル・エステル系エポキシ樹脂が挙げられる。これらの中でも、ビスフェノールA型エポキシ樹脂が好適に用いられる。エポキシ樹脂は、単独で用いてもよく、2種以上を併用してもよい。
(Epoxy resin)
The epoxy resin is a resin having at least two epoxy groups in one molecule. Examples of the prepolymer before curing of the epoxy resin include ether-based bisphenol-type epoxy resin, novolak-type epoxy resin, polyphenol-type epoxy resin, aliphatic-type epoxy resin, ester-based aromatic epoxy resin, and cyclic aliphatic epoxy resin. And ether ester type epoxy resin. Among these, bisphenol A type epoxy resin is preferably used. The epoxy resin may be used alone or in combination of two or more.
 ビスフェノールA型エポキシ樹脂としては、具体的には、三菱ケミカル株式会社製「jER(登録商標)828」、及び「jER(登録商標)1001」が挙げられる。 Specific examples of the bisphenol A type epoxy resin include "jER (registered trademark) 828" and "jER (registered trademark) 1001" manufactured by Mitsubishi Chemical Corporation.
 ノボラック型エポキシ樹脂としては、具体的には、ザ・ダウ・ケミカル・カンパニー製「D.E.N.(登録商標)438(登録商標)」が挙げられる。 Specific examples of the novolak type epoxy resin include "DEN (registered trademark) 438 (registered trademark)" manufactured by The Dow Chemical Company.
 エポキシ樹脂に使用される硬化剤としては、例えば、脂肪族アミン、芳香族アミン、酸無水物、フェノール樹脂、チオール類、イミダゾール類、及びカチオン触媒が挙げられる。硬化剤を長鎖脂肪族アミン又は/及びチオール類と併用することにより、伸び率が大きく、耐衝撃性に優れる樹脂コーティング層4を形成することができる。 Examples of the curing agent used for the epoxy resin include aliphatic amines, aromatic amines, acid anhydrides, phenol resins, thiols, imidazoles, and cationic catalysts. By using the curing agent in combination with long-chain aliphatic amines and / and thiols, a resin coating layer 4 having a large elongation rate and excellent impact resistance can be formed.
 チオール類の具体例としては、官能基含有層3を形成するためのチオール化合物として例示したものと同じ化合物が挙げられる。これらの中でも、樹脂コーティング層4の伸び率及び耐衝撃性の観点から、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(例えば、昭和電工株式会社製「カレンズMT(登録商標)PE1」)が好ましい。 Specific examples of the thiols include the same compounds as those exemplified as the thiol compounds for forming the functional group-containing layer 3. Among these, pentaerythritol tetrakis (3-mercaptobutyrate) (for example, "Karensu MT (registered trademark) PE1" manufactured by Showa Denko KK) is preferable from the viewpoint of elongation rate and impact resistance of the resin coating layer 4.
 (ビニルエステル樹脂)
 ビニルエステル樹脂は、ビニルエステル化合物を重合性モノマー(例えば、スチレン)に溶解したものである。ビニルエステル樹脂は、一般にエポキシ(メタ)アクリレート樹脂とも呼ばれるが、本開示において、ビニルエステル樹脂にはウレタン(メタ)アクリレート樹脂も包含される。
(Vinyl ester resin)
The vinyl ester resin is obtained by dissolving a vinyl ester compound in a polymerizable monomer (for example, styrene). The vinyl ester resin is also generally referred to as an epoxy (meth) acrylate resin, but in the present disclosure, the vinyl ester resin also includes a urethane (meth) acrylate resin.
 ビニルエステル樹脂としては、例えば、「ポリエステル樹脂ハンドブック」(日刊工業新聞社、1988年発行)、「塗料用語辞典」(色材協会、1993年発行)などに記載されているものを使用することができる。ビニルエステル樹脂としては、具体的には、昭和電工株式会社製「リポキシ(登録商標)R-802」、「リポキシ(登録商標)R-804」、及び「リポキシ(登録商標)R-806」が挙げられる。 As the vinyl ester resin, for example, those described in "Polyester Resin Handbook" (Nikkan Kogyo Shimbun, published in 1988), "Paint Glossary" (Japan Society of Color Material, published in 1993), etc. can be used. can. Specific examples of the vinyl ester resin include "Lipoxy (registered trademark) R-802", "Lipoxy (registered trademark) R-804", and "Lipoxy (registered trademark) R-806" manufactured by Showa Denko KK. Can be mentioned.
 ウレタン(メタ)アクリレート樹脂としては、例えば、イソシアネート化合物とポリオール化合物とを反応させた後、水酸基含有(メタ)アクリルモノマー(及び必要に応じて水酸基含有アリルエーテルモノマー)を反応させて得られるラジカル重合性不飽和基含有オリゴマーが挙げられる。ウレタン(メタ)アクリレート樹脂としては、具体的には、昭和電工株式会社製「リポキシ(登録商標)R-6545」が挙げられる。 The urethane (meth) acrylate resin is, for example, radical polymerization obtained by reacting an isocyanate compound with a polyol compound and then reacting with a hydroxyl group-containing (meth) acrylic monomer (and, if necessary, a hydroxyl group-containing allyl ether monomer). Examples include sex-unsaturated radical-containing oligomers. Specific examples of the urethane (meth) acrylate resin include "Lipoxy (registered trademark) R-6545" manufactured by Showa Denko KK.
 ビニルエステル樹脂は、有機過酸化物などの触媒存在下での加熱によるラジカル重合で硬化させることができる。 Vinyl ester resin can be cured by radical polymerization by heating in the presence of a catalyst such as an organic peroxide.
 有機過酸化物としては、例えば、ケトンパーオキサイド類、パーオキシケタール類、ハイドロパーオキサイド類、ジアリルパーオキサイド類、ジアシルパーオキサイド類、パーオキシエステル類、及びパーオキシジカーボネート類が挙げられる。これらの有機過酸化物をコバルト金属塩などと組み合わせることにより、常温での硬化も可能となる。 Examples of organic peroxides include ketone peroxides, peroxyketals, hydroperoxides, diallyl peroxides, diacyl peroxides, peroxyesters, and peroxydicarbonates. By combining these organic peroxides with a cobalt metal salt or the like, curing at room temperature is also possible.
 コバルト金属塩としては、例えば、ナフテン酸コバルト、オクチル酸コバルト、及び水酸化コバルトが挙げられる。これらの中でも、ナフテン酸コバルト及びオクチル酸コバルトが好ましい。 Examples of the cobalt metal salt include cobalt naphthenate, cobalt octylate, and cobalt hydroxide. Among these, cobalt naphthenate and cobalt octylate are preferable.
 (不飽和ポリエステル樹脂)
 不飽和ポリエステル樹脂は、ポリオール化合物と不飽和多塩基酸(及び必要に応じて飽和多塩基酸)とのエステル化反応による縮合生成物(不飽和ポリエステル)を重合性モノマー(例えば、スチレン)に溶解したものである。
(Unsaturated polyester resin)
The unsaturated polyester resin dissolves a condensation product (unsaturated polyester) of an esterification reaction between a polyol compound and an unsaturated polybasic acid (and, if necessary, a saturated polybasic acid) in a polymerizable monomer (for example, styrene). It was done.
 不飽和ポリエステル樹脂としては、例えば、「ポリエステル樹脂ハンドブック」(日刊工業新聞社、1988年発行)、「塗料用語辞典」(色材協会、1993年発行)などに記載されているものを使用することができる。不飽和ポリエステル樹脂としては、具体的には、昭和電工株式会社製「リゴラック(登録商標)」が挙げられる。 As the unsaturated polyester resin, for example, those described in "Polyester Resin Handbook" (Nikkan Kogyo Shimbun, published in 1988), "Paint Glossary" (Japan Society of Color Material, published in 1993), etc. shall be used. Can be done. Specific examples of the unsaturated polyester resin include "Rigolac (registered trademark)" manufactured by Showa Denko KK.
 不飽和ポリエステル樹脂は、ビニルエステル樹脂と同様の触媒存在下での加熱によるラジカル重合で硬化させることができる。 The unsaturated polyester resin can be cured by radical polymerization by heating in the presence of a catalyst similar to the vinyl ester resin.
 [車両用サイドステップ10(金属部材-樹脂部材接合体)]
 図6は、金属部材と樹脂部材が接合された状態の概略断面図であり、例えば図4の領域B、Cを示す図である。なお、図4の領域Bと図6とでは、金属部材1と樹脂部材8とが紙面の上下方向において同じ位置関係となっているが、図4の領域Cと図6とでは、金属部材1と樹脂部材8とが紙面の上下方向において逆の位置関係となっている。図6に示すように、車両用サイドステップ10では、金属部材1(即ち金属プレート10b)の金属基材2の樹脂コーティング層4側の面4sと樹脂部材8(即ち樹脂プレート10a、10c)とが接合されている。なお、樹脂コーティング層4は上述したように金属基材2のプライマー層である。具体的には、金属部材1に含まれる金属基材2の接触面に配置された樹脂コーティング層4側の面4sと樹脂部材8とが直接接するようにして接合されている。
[Vehicle side step 10 (metal member-resin member joint)]
FIG. 6 is a schematic cross-sectional view of a state in which a metal member and a resin member are joined, and is a diagram showing, for example, regions B and C in FIG. In the area B and FIG. 6 of FIG. 4, the metal member 1 and the resin member 8 have the same positional relationship in the vertical direction of the paper surface, but in the area C and FIG. 6 of FIG. 4, the metal member 1 And the resin member 8 have an opposite positional relationship in the vertical direction of the paper surface. As shown in FIG. 6, in the vehicle side step 10, the surface 4s of the metal base material 2 of the metal member 1 (that is, the metal plate 10b) on the resin coating layer 4 side and the resin member 8 (that is, the resin plates 10a and 10c) Are joined. The resin coating layer 4 is a primer layer of the metal base material 2 as described above. Specifically, the surface 4s on the resin coating layer 4 side arranged on the contact surface of the metal base material 2 included in the metal member 1 and the resin member 8 are joined so as to be in direct contact with each other.
 上述したように、樹脂コーティング層4側の面4sは、樹脂部材8との接合性に優れているため、金属部材1と樹脂部材8とが高い接合強度で接合された車両用サイドステップ10を製造することができる。 As described above, since the surface 4s on the resin coating layer 4 side has excellent bondability with the resin member 8, the vehicle side step 10 in which the metal member 1 and the resin member 8 are bonded with high bonding strength is used. Can be manufactured.
 樹脂コーティング層4の厚さ(乾燥厚さ)は、樹脂部材8の樹脂の種類及び接合面積にもよるが、樹脂コーティング層4側の面4sにおける樹脂部材8との優れた接合性を得る観点から、1μm~10mmであることが好ましく、より好ましくは2μm~8mm、さらに好ましくは3μm~5mmである。樹脂コーティング層4が複数層の場合、樹脂コーティング層4の厚さ(乾燥後の厚さ)は、各層の合計の厚さである。 The thickness (dry thickness) of the resin coating layer 4 depends on the type of resin of the resin member 8 and the bonding area, but is a viewpoint of obtaining excellent bonding property with the resin member 8 on the surface 4s on the resin coating layer 4 side. Therefore, it is preferably 1 μm to 10 mm, more preferably 2 μm to 8 mm, and further preferably 3 μm to 5 mm. When the resin coating layer 4 is a plurality of layers, the thickness of the resin coating layer 4 (thickness after drying) is the total thickness of each layer.
 具体的には、金属部材1と樹脂部材8としての炭素繊維強化樹脂部材(CFRP部材)とを接合一体化する場合、金属部材1と樹脂部材8としてのガラス繊維強化樹脂部材(GFRP部材)とを接合一体化する場合などでは、樹脂コーティング層4の厚さは0.1~10mmであることが好ましく、より好ましくは0.2~8mm、さらに好ましくは0.5~5mmである。 Specifically, when the metal member 1 and the carbon fiber reinforced resin member (CFRP member) as the resin member 8 are joined and integrated, the metal member 1 and the glass fiber reinforced resin member (GFRP member) as the resin member 8 are joined and integrated. The thickness of the resin coating layer 4 is preferably 0.1 to 10 mm, more preferably 0.2 to 8 mm, and even more preferably 0.5 to 5 mm in the case of joining and integrating the resins.
 [樹脂部材8]
 樹脂部材8はポリオレフィンを含む。ポリオレフィンは、特に限定されるものではなく、例えば、ポリエチレン、及びポリプロピレンが挙げられる。
[Resin member 8]
The resin member 8 contains polyolefin. The polyolefin is not particularly limited, and examples thereof include polyethylene and polypropylene.
 ポリプロピレンは、一般に、プロピレンのみを重合した剛性が高いホモポリマー、少量のエチレンを共重合した透明性が高く柔軟なランダムポリマー、及びゴム成分(EPR)がホモポリマー又はランダムポリマーに均一微細に分散している耐衝撃性が高いブロックコポリマーに分類される。ポリプロピレンは、ホモポリマー、ランダムポリマー、若しくはブロックコポリマー、又はこれらの混合物を含んでもよい。ポリプロピレンは、タルク、ガラス繊維、又は炭素繊維を含有する高強度タイプであってもよい。タルク含有ポリプロピレンとしては、例えば、サンアロマー株式会社製商品名TRC104Nが挙げられる。ガラス繊維含有ポリプロピレンとしては、例えば、ダイセルミライズ株式会社製商品名PP-GF40-01 F02が挙げられる。炭素繊維含有ポリプロピレンとしては、例えば、ダイセルミライズ株式会社製商品名PP-CF40-11 F008が挙げられる。 Polypropylene is generally a highly rigid homopolymer obtained by polymerizing only propylene, a highly transparent and flexible random polymer copolymerized with a small amount of ethylene, and a rubber component (EPR) uniformly and finely dispersed in the homopolymer or random polymer. It is classified as a block copolymer with high impact resistance. Polypropylene may contain homopolymers, random polymers, or block copolymers, or mixtures thereof. Polypropylene may be a high-strength type containing talc, glass fiber, or carbon fiber. Examples of the talc-containing polypropylene include TRC104N, which is a trade name manufactured by SunAllomer Ltd. Examples of the glass fiber-containing polypropylene include product name PP-GF40-01 F02 manufactured by Daicel FineChem Co., Ltd. Examples of the carbon fiber-containing polypropylene include product name PP-CF40-11 F008 manufactured by Daicel FineChem Co., Ltd.
 ガラス繊維含有ポリプロピレンはガラス繊維強化樹脂(GFRP)の一種であり、炭素繊維含有ポリプロピレンは炭素繊維強化樹脂(CFRP)の一種である。ガラス繊維、炭素繊維などの補強繊維を含む樹脂は、シートモールディングコンパウンド(SMC)、バルクモールディングコンパウンド(BMC)などの成形体の形態であってもよい。SMCとは、ポリプロピレン、低収縮剤、充填剤などを混合した樹脂組成物を、ガラス繊維、炭素繊維などの補強繊維に含浸させることによって得られるシート状成形体である。 Glass fiber-containing polypropylene is a type of glass fiber reinforced resin (GFRP), and carbon fiber-containing polypropylene is a type of carbon fiber reinforced resin (CFRP). The resin containing reinforcing fibers such as glass fiber and carbon fiber may be in the form of a molded body such as a sheet molding compound (SMC) or a bulk molding compound (BMC). SMC is a sheet-shaped molded body obtained by impregnating reinforcing fibers such as glass fiber and carbon fiber with a resin composition in which polypropylene, a low shrinkage agent, a filler and the like are mixed.
 車両用サイドステップ10の製造方法としては、金属部材1と樹脂部材8とをそれぞれ別個に作製したものを接合(接着)して一体化させる方法が挙げられる。金属部材1と樹脂部材8との接合(接着)は、超音波溶着法、振動溶着法、電磁誘導法、高周波法、レーザー法、及び熱プレス法からなる群より選ばれる少なくとも1種の方法で行うことができる。 Examples of the method for manufacturing the side step 10 for a vehicle include a method in which a metal member 1 and a resin member 8 are separately manufactured and joined (adhered) to be integrated. The bonding (adhesion) between the metal member 1 and the resin member 8 is performed by at least one method selected from the group consisting of an ultrasonic welding method, a vibration welding method, an electromagnetic induction method, a high frequency method, a laser method, and a hot pressing method. It can be carried out.
 車両用サイドステップ10の製造方法として、樹脂部材8を成形するのと同時に、金属部材1と樹脂部材8を接合することで一体化する方法が好ましい。具体的には、射出成形法(インサート成形法を含む)、トランスファ成形法、プレス成形法、フィラメントワインディング成形法、ハンドレイアップ成形法等の方法で樹脂部材8を成形する際に、金属部材1の樹脂コーティング層4側の面4sに樹脂部材8を接合することにより、金属部材1と樹脂部材8とを一体化させて、車両用サイドステップ10を得ることができる。この場合、車両用サイドステップ10の製造工程数を削減することができる。 As a method for manufacturing the side step 10 for a vehicle, a method of forming the resin member 8 and at the same time joining the metal member 1 and the resin member 8 to integrate them is preferable. Specifically, when the resin member 8 is molded by a method such as an injection molding method (including an insert molding method), a transfer molding method, a press molding method, a filament winding molding method, or a hand lay-up molding method, the metal member 1 By joining the resin member 8 to the surface 4s on the resin coating layer 4 side of the above, the metal member 1 and the resin member 8 can be integrated to obtain the vehicle side step 10. In this case, the number of manufacturing steps of the vehicle side step 10 can be reduced.
 具体的には、図示しないが、樹脂部材8を例えば射出成形法により成形する場合では、射出成形用金型内に金属部材1を配置し、射出装置(図示せず)により樹脂を金型のキャビティーに射出することにより、樹脂部材8が成形され、これと同時に金属部材1と樹脂部材8が接合される。 Specifically, although not shown, when the resin member 8 is molded by, for example, an injection molding method, the metal member 1 is arranged in an injection molding mold, and the resin is molded by an injection device (not shown). By injecting into the cavity, the resin member 8 is molded, and at the same time, the metal member 1 and the resin member 8 are joined.
 次に、別の実施形態について以下説明する。 Next, another embodiment will be described below.
 図7に示すように、車両用サイドステップ10は、金属部材1の樹脂コーティング層4側の面4sと樹脂部材8とが接着剤層7を介して接合されて一体化していてもよい。 As shown in FIG. 7, in the vehicle side step 10, the surface 4s on the resin coating layer 4 side of the metal member 1 and the resin member 8 may be joined and integrated via the adhesive layer 7.
 このように、樹脂部材8の樹脂の種類によっては、接着剤を用いることにより、金属部材1と樹脂部材8とがより高い接合強度で接合されたサイドステップを得ることができる。 As described above, depending on the type of resin of the resin member 8, by using an adhesive, it is possible to obtain a side step in which the metal member 1 and the resin member 8 are joined with a higher joining strength.
 接着剤層7の接着剤としては、樹脂部材8の樹脂の種類に応じて適宜選択されるが、例えば、エポキシ樹脂系、ウレタン樹脂系、ビニルエステル樹脂系等の公知の接着剤を用いることができる。 The adhesive of the adhesive layer 7 is appropriately selected depending on the type of resin of the resin member 8, and for example, known adhesives such as epoxy resin-based, urethane resin-based, and vinyl ester resin-based adhesives may be used. can.
 接合(接着)時の加熱温度によっては、接合(接着)後に室温に冷却する過程で、金属基材2と樹脂部材8との熱膨張係数の差に起因して車両用サイドステップ10が熱変形する場合がある。このような熱変形を抑制緩和する観点から、接着剤層7の厚さは、金属基材2と樹脂部材8との間に伸び率の大きい特性を有する部分として、樹脂コーティング層4と接着剤層7との合計厚さが4μm以上とすることが望ましい。上述の合計厚さは、接合時の温度変化(接合時の加熱温度から室温冷却までの温度変化)における樹脂コーティング層4及び接着剤層7の伸び率などの物性を考慮して決定することが好ましい。樹脂コーティング層4と接着剤層7との合計厚さの好ましい上限は10mmである。 Depending on the heating temperature at the time of joining (bonding), the vehicle side step 10 is thermally deformed due to the difference in the coefficient of thermal expansion between the metal base material 2 and the resin member 8 in the process of cooling to room temperature after joining (bonding). May be done. From the viewpoint of suppressing and alleviating such thermal deformation, the thickness of the adhesive layer 7 is such that the resin coating layer 4 and the adhesive are formed as a portion having a large elongation rate between the metal base material 2 and the resin member 8. It is desirable that the total thickness with the layer 7 is 4 μm or more. The above-mentioned total thickness can be determined in consideration of physical properties such as the elongation rate of the resin coating layer 4 and the adhesive layer 7 in the temperature change at the time of joining (the temperature change from the heating temperature at the time of joining to room temperature cooling). preferable. The preferable upper limit of the total thickness of the resin coating layer 4 and the adhesive layer 7 is 10 mm.
 本開示において、金属部材1と樹脂部材8との接合に関与する層を接合層といい、その厚さを接合層の厚さという。金属部材1の樹脂コーティング層4側の面4sに接着剤層7が形成されている場合は、樹脂コーティング層4及び接着剤層7の両方が接合層であり、樹脂コーティング層4及び接着剤層7の合計厚さが接合層の厚さである。金属部材1の樹脂コーティング層4側の面4sに接着剤層7が形成されていない場合は、樹脂コーティング層4が接合層であり、樹脂コーティング層4の厚さが接合層の厚さである。 In the present disclosure, the layer involved in the joining between the metal member 1 and the resin member 8 is referred to as a joining layer, and the thickness thereof is referred to as the thickness of the joining layer. When the adhesive layer 7 is formed on the surface 4s on the resin coating layer 4 side of the metal member 1, both the resin coating layer 4 and the adhesive layer 7 are bonding layers, and the resin coating layer 4 and the adhesive layer are formed. The total thickness of 7 is the thickness of the bonding layer. When the adhesive layer 7 is not formed on the surface 4s on the resin coating layer 4 side of the metal member 1, the resin coating layer 4 is the bonding layer, and the thickness of the resin coating layer 4 is the thickness of the bonding layer. ..
 別の実施形態において、樹脂コーティング層4の少なくとも1層は、金属基材2とは別の基材の上で形成されたフィルムに由来する層である。フィルムの少なくとも1層は、上記の変性ポリオレフィン層4aである。 In another embodiment, at least one layer of the resin coating layer 4 is a layer derived from a film formed on a base material different from the metal base material 2. At least one layer of the film is the modified polyolefin layer 4a described above.
 フィルムは1層であってもよく、複数層で構成されてもよい。フィルムを、上記の変性ポリオレフィン層4aと、当該変性ポリオレフィン層4a以外の層とを含む複数層で構成し、当該変性ポリオレフィン層4a以外の層を、上記の熱可塑性エポキシ樹脂層4b及び上記の硬化性樹脂層4cから選ばれる少なくとも1種とすることもできる。この場合、フィルムの変性ポリオレフィン層4aが樹脂部材8に接合され、フィルムの変性ポリオレフィン層4a以外の層が、表面処理を有する若しくは有さない金属基材2又は官能基含有層3に接合される。 The film may have one layer or may be composed of a plurality of layers. The film is composed of a plurality of layers including the above-mentioned modified polyolefin layer 4a and the layer other than the above-mentioned modified polyolefin layer 4a, and the layers other than the above-mentioned modified polyolefin layer 4a are formed of the above-mentioned thermoplastic epoxy resin layer 4b and the above-mentioned curing. It may be at least one selected from the sex resin layer 4c. In this case, the modified polyolefin layer 4a of the film is bonded to the resin member 8, and the layers other than the modified polyolefin layer 4a of the film are bonded to the metal base material 2 or the functional group-containing layer 3 having or not having a surface treatment. ..
 フィルムは、例えば、以下の手順で作製することができる。(1)無水マレイン酸変性ポリオレフィンの存在下で、2官能エポキシ樹脂と2官能フェノール化合物を重付加反応させると同時に、無水マレイン酸変性ポリオレフィン骨格中の無水マレイン酸にも反応させて得た反応物1、(2)2官能エポキシ樹脂と2官能フェノール化合物の重付加反応により生成した熱可塑性エポキシ樹脂と、無水マレイン酸変性ポリオレフィン骨格中の無水マレイン酸とを反応させて得た反応物2、又は(3)熱可塑性エポキシ樹脂とポリオレフィンとの混合物と、必要に応じて溶剤とを含むフィルム前駆組成物1を用意する。反応物1、反応物2、及び熱可塑性エポキシ樹脂とポリオレフィンとの混合物は、変性ポリオレフィン層4aについて説明したものと同じである。フィルム前駆組成物1を、シリコーン系などの剥離コーティングを有する離型フィルム又は離型紙の上に、乾燥後の厚さが1μm~10mmのフィルム状になるように、塗布、噴霧、又は押出積層する。塗布は、バーコーター、ロールコーターなどを用いて行うことができる。噴霧は、スプレーコーターなどを用いて行うことができる。押出積層は、単軸又は2軸押出装置を用いて行うことができる。その後、室温~40℃の環境下で放置し溶剤を揮発させることにより、フィルムを離型フィルム又は離型紙の上に形成することできる。フィルムを形成した後に、離型フィルム又は離型紙をフィルムのキャリア(支持体)としてフィルムの取り扱いに利用してもよく、フィルムを離型フィルム又は離型紙から剥がして自立フィルムを得てもよい。 The film can be produced, for example, by the following procedure. (1) A reaction product obtained by subjecting a bifunctional epoxy resin and a bifunctional phenol compound to a double addition reaction in the presence of a maleic anhydride-modified polyolefin and at the same time reacting with maleic anhydride in the maleic anhydride-modified polyolefin skeleton. 1, (2) Reactant 2 obtained by reacting a thermoplastic epoxy resin produced by a double addition reaction of a bifunctional epoxy resin and a bifunctional phenol compound with maleic anhydride in a maleic anhydride-modified polyolefin skeleton, or (3) A film precursor composition 1 containing a mixture of a thermoplastic epoxy resin and a polyolefin and, if necessary, a solvent is prepared. The reactant 1, the reactant 2, and the mixture of the thermoplastic epoxy resin and the polyolefin are the same as those described for the modified polyolefin layer 4a. The film precursor composition 1 is applied, sprayed, or extruded and laminated on a release film or release paper having a release coating such as a silicone type so as to form a film having a thickness of 1 μm to 10 mm after drying. .. The coating can be performed using a bar coater, a roll coater, or the like. The spraying can be performed using a spray coater or the like. Extrusion stacking can be performed using a single-screw or twin-screw extruder. Then, the film can be formed on the release film or the release paper by leaving it in an environment of room temperature to 40 ° C. to volatilize the solvent. After forming the film, the release film or the release paper may be used for handling the film as a carrier (support) of the film, or the film may be peeled off from the release film or the release paper to obtain a self-standing film.
 フィルムの変性ポリオレフィン層4aには、反応物1、反応物2、又は熱可塑性エポキシ樹脂の構成単位となる成分(例えば、2官能エポキシ樹脂、2官能フェノール化合物、無水マレイン酸変性ポリオレフィンなど)が、完全に反応した状態で含まれてもよく、それらの一部が未反応の状態で含まれてもよい。後者の場合、金属基材2又は樹脂部材8とフィルム(樹脂コーティング層4)を接合する際に、未反応の成分を更に反応させてもよい。この未反応の成分の反応に伴って、フィルム(樹脂コーティング層4)と金属基材2又は樹脂部材8との接合強度を高めることができる場合がある。 The modified polyolefin layer 4a of the film contains a reactant (for example, a bifunctional epoxy resin, a bifunctional phenol compound, a maleic anhydride-modified polyolefin, etc.) as a constituent unit of the reactant 1, the reactant 2, or the thermoplastic epoxy resin. It may be contained in a completely reacted state, or some of them may be contained in an unreacted state. In the latter case, when the metal base material 2 or the resin member 8 and the film (resin coating layer 4) are bonded, the unreacted components may be further reacted. With the reaction of the unreacted components, the bonding strength between the film (resin coating layer 4) and the metal base material 2 or the resin member 8 may be increased.
 変性ポリオレフィン層4aと、当該変性ポリオレフィン層4a以外の層とを含む複数層で構成されるフィルムは、例えば、以下の手順で作製することができる。(1a)熱可塑性エポキシ樹脂を含む樹脂組成物、(1b)熱可塑性エポキシ樹脂のモノマーを含む組成物、又は(2)硬化性樹脂を含む樹脂組成物と、必要に応じて溶剤とを含むフィルム前駆組成物2を用意する。熱可塑性エポキシ樹脂を含む樹脂組成物、及び熱可塑性エポキシ樹脂のモノマーを含む組成物は、熱可塑性エポキシ樹脂層4bについて説明したものと同じである。硬化性樹脂を含む樹脂組成物は、硬化性樹脂層4cについて説明したものと同じである。フィルム前駆組成物2を、シリコーン系などの剥離コーティングを有する離型フィルム又は離型紙の上に、乾燥後の厚さが1μm~10mmのフィルム状になるように、塗布、噴霧、又は押出積層する。その後、室温~40℃の環境下で放置し溶剤を揮発させる、加熱して重付加反応又は硬化反応を進行させる、又は可視光若しくは紫外線を照射して硬化反応を進行させることにより、熱可塑性エポキシ樹脂層4b又は硬化性樹脂層4cを離型フィルム又は離型紙の上に形成する。これらの層の上に、上述の手順で変性ポリオレフィン層4aを形成することにより、変性ポリオレフィン層4aと、当該変性ポリオレフィン層4a以外の層とを含む複数層で構成されるフィルムを得ることができる。 A film composed of a plurality of layers including a modified polyolefin layer 4a and a layer other than the modified polyolefin layer 4a can be produced, for example, by the following procedure. A film containing (1a) a resin composition containing a thermoplastic epoxy resin, (1b) a composition containing a monomer of a thermoplastic epoxy resin, or (2) a resin composition containing a curable resin and, if necessary, a solvent. The precursor composition 2 is prepared. The resin composition containing the thermoplastic epoxy resin and the composition containing the monomer of the thermoplastic epoxy resin are the same as those described for the thermoplastic epoxy resin layer 4b. The resin composition containing the curable resin is the same as that described for the curable resin layer 4c. The film precursor composition 2 is applied, sprayed, or extruded and laminated on a release film or release paper having a release coating such as a silicone type so as to form a film having a thickness of 1 μm to 10 mm after drying. .. Then, the thermoplastic epoxy is left to stand in an environment of room temperature to 40 ° C. to volatilize the solvent, heat it to proceed with the double addition reaction or the curing reaction, or irradiate it with visible light or ultraviolet rays to proceed with the curing reaction. The resin layer 4b or the curable resin layer 4c is formed on the release film or the release paper. By forming the modified polyolefin layer 4a on these layers by the above procedure, a film composed of a plurality of layers including the modified polyolefin layer 4a and layers other than the modified polyolefin layer 4a can be obtained. ..
 フィルムの熱可塑性エポキシ樹脂層4b又は硬化性樹脂層4cには、これらの樹脂の構成単位となる成分(例えば、2官能エポキシ樹脂、2官能フェノール化合物、ポリオール、イソシアネート化合物など)が、完全に反応した状態で含まれてもよく、その一部が未反応の状態で含まれてもよい。後者の場合、金属基材2とフィルムを接合する際に、未反応の成分を更に反応させてもよい。この未反応の成分の反応に伴って、フィルムと金属基材2との接合強度を高めることができる場合がある。 A component (for example, a bifunctional epoxy resin, a bifunctional phenol compound, a polyol, an isocyanate compound, etc.), which is a constituent unit of these resins, completely reacts with the thermoplastic epoxy resin layer 4b or the curable resin layer 4c of the film. It may be contained in an unreacted state, or a part thereof may be contained in an unreacted state. In the latter case, when the metal base material 2 and the film are bonded, the unreacted components may be further reacted. With the reaction of the unreacted components, the bonding strength between the film and the metal substrate 2 may be increased.
 フィルムを金属基材2の上に配置し、加圧及び加熱することにより、金属基材2の上に樹脂コーティング層4が積層された金属部材1を作製することができる。金属基材2は、必要に応じて、上記の表面処理及び/又は官能基含有層3を有してもよく、これらの上にフィルムを配置して、加圧及び加熱することにより樹脂コーティング層4を積層してもよい。変性ポリオレフィン層4aと、当該変性ポリオレフィン層4a以外の層とを含む複数層で構成されるフィルムは、変性ポリオレフィン層4a以外の層が、表面処理を有する若しくは有さない金属基材2又は官能基含有層3に接触するように積層される。 By arranging the film on the metal base material 2, pressurizing and heating it, the metal member 1 in which the resin coating layer 4 is laminated on the metal base material 2 can be produced. The metal base material 2 may have the above-mentioned surface treatment and / or the functional group-containing layer 3 as needed, and a resin coating layer is formed by arranging a film on these and applying pressure and heating. 4 may be laminated. In a film composed of a plurality of layers including a modified polyolefin layer 4a and a layer other than the modified polyolefin layer 4a, the layer other than the modified polyolefin layer 4a has or does not have a surface treatment as a metal substrate 2 or a functional group. It is laminated so as to be in contact with the content layer 3.
 このようにして得られた金属部材1と樹脂部材8とを接合(接着)して一体化させることにより、車両用サイドステップ10を製造することができる。金属部材1と樹脂部材8との接合(接着)は、超音波溶着法、振動溶着法、電磁誘導法、高周波法、レーザー法、及び熱プレス法からなる群より選ばれる少なくとも1種の方法で行うことができる。 By joining (adhering) and integrating the metal member 1 and the resin member 8 thus obtained, the vehicle side step 10 can be manufactured. The bonding (adhesion) between the metal member 1 and the resin member 8 is performed by at least one method selected from the group consisting of an ultrasonic welding method, a vibration welding method, an electromagnetic induction method, a high frequency method, a laser method, and a hot pressing method. It can be carried out.
 金属部材1の樹脂コーティング層4(フィルムに由来)の上に、射出成形法(インサート成形法を含む)、トランスファ成形法、プレス成形法、フィラメントワインディング成形法、ハンドレイアップ成形法等の方法で樹脂部材8を成形することにより、金属部材1と樹脂部材8を接合(接着)して一体化させることにより、車両用サイドステップ10を成形してもよい。 On the resin coating layer 4 (derived from the film) of the metal member 1, by an injection molding method (including an insert molding method), a transfer molding method, a press molding method, a filament winding molding method, a hand lay-up molding method, or the like. By molding the resin member 8, the metal member 1 and the resin member 8 may be joined (bonded) and integrated to form the vehicle side step 10.
 金属基材2と樹脂部材8との間にフィルムを挟み、超音波溶着法、振動溶着法、電磁誘導法、高周波法、レーザー法、及び熱プレス法からなる群より選ばれる少なくとも1種の方法で、金属基材2と樹脂部材8とを樹脂コーティング層4(フィルムに由来)を介して接合(接着)して一体化させることにより、車両用サイドステップ10を製造することもできる。この場合、金属部材1の作製と車両用サイドステップ10の製造が同時に行われる。金属基材2が表面処理及び/又は官能基含有層3を有する場合、フィルムは金属基材2の表面処理面又は官能基含有層3と接触するように配置される。 A film is sandwiched between the metal base material 2 and the resin member 8, and at least one method selected from the group consisting of an ultrasonic welding method, a vibration welding method, an electromagnetic induction method, a high frequency method, a laser method, and a hot pressing method. The side step 10 for a vehicle can also be manufactured by joining (adhering) the metal base material 2 and the resin member 8 via the resin coating layer 4 (derived from the film) and integrating them. In this case, the metal member 1 and the vehicle side step 10 are manufactured at the same time. When the metal substrate 2 has a surface treatment and / or a functional group-containing layer 3, the film is arranged so as to be in contact with the surface-treated surface of the metal substrate 2 or the functional group-containing layer 3.
 本発明のいくつかの実施形態について説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で様々に変更可能である。 Although some embodiments of the present invention have been described, the present invention is not limited to the above-described embodiments and can be variously modified without departing from the gist of the present invention.
 本発明に関連した実施試験例及び比較試験例を以下に示す。ただし、本発明は下記実施試験例に限定されるものではない。 The implementation test examples and comparative test examples related to the present invention are shown below. However, the present invention is not limited to the following implementation test examples.
 <製造例1>
 フラスコに無水マレイン酸変性ポリプロピレン(三菱ケミカル株式会社製Modic(登録商標)ER321P):5g、キシレン:95gを仕込み、撹拌しながら125℃に昇温して溶解した。次に、2官能エポキシ樹脂(三菱ケミカル株式会社製jER(登録商標)1001:ビスフェノールAとエピクロロヒドリンの重縮合物):1.01g、ビスフェノールA:0.24g、2,4,6-トリス(ジメチルアミノメチル)フェノール:0.006gをフラスコ中に投入し、125℃で30分間撹拌し、熱可塑性エポキシ樹脂、2官能エポキシ樹脂及び2官能フェノール化合物で変性した無水マレイン酸変性ポリプロピレン:変性PP-1を得た。
<Manufacturing example 1>
Maleic anhydride-modified polypropylene (Modic® ER321P manufactured by Mitsubishi Chemical Corporation): 5 g and xylene: 95 g were placed in a flask and dissolved by raising the temperature to 125 ° C. with stirring. Next, a bifunctional epoxy resin (jER (registered trademark) 1001: bisphenol A and epichlorohydrin polycondensate manufactured by Mitsubishi Chemical Co., Ltd.): 1.01 g, bisphenol A: 0.24 g, 2,4,6- Tris (dimethylaminomethyl) phenol: 0.006 g was put into a flask, stirred at 125 ° C. for 30 minutes, and modified with a thermoplastic epoxy resin, a bifunctional epoxy resin and a bifunctional phenol compound, and maleic anhydride-modified polypropylene: modified. Obtained PP-1.
 <製造例2>
 フラスコに無水マレイン酸変性ポリプロピレン(三菱ケミカル株式会社製Modic(登録商標)ER321P):5g、キシレン:95gを仕込み、撹拌しながら125℃に昇温して溶解した。次に、2官能エポキシ樹脂(三菱ケミカル株式会社製jER(登録商標)1004:0.49g、ビスフェノールA:0.06g、2,4,6-トリス(ジメチルアミノメチル)フェノール):0.003gをフラスコ中に投入し、125℃で30分間撹拌し、熱可塑性エポキシ樹脂、2官能エポキシ樹脂及び2官能フェノール化合物で変性した無水マレイン酸変性ポリプロピレン:変性PP-2を得た。
<Manufacturing example 2>
Maleic anhydride-modified polypropylene (Modic® ER321P manufactured by Mitsubishi Chemical Corporation): 5 g and xylene: 95 g were placed in a flask and dissolved by raising the temperature to 125 ° C. with stirring. Next, a bifunctional epoxy resin (jER (registered trademark) 1004: 0.49 g manufactured by Mitsubishi Chemical Co., Ltd., bisphenol A: 0.06 g, 2,4,6-tris (dimethylaminomethyl) phenol): 0.003 g was added. It was put into a flask and stirred at 125 ° C. for 30 minutes to obtain a maleic anhydride-modified polypropylene modified with a thermoplastic epoxy resin, a bifunctional epoxy resin and a bifunctional phenol compound: modified PP-2.
 <製造例3>
 フラスコにキシレン:95g、2官能エポキシ樹脂(三菱ケミカル株式会社製jER1007):1.20g、ビスフェノールA:0.066g、2,4,6-トリス(ジメチルアミノメチル)フェノール:0.003gを仕込み、125℃で30分間撹拌し反応して熱可塑性エポキシ樹脂溶液を得た。次に、フラスコに無水マレイン酸変性ポリプロピレン(三菱ケミカル株式会社製Modic(登録商標)ER321P):5gを投入して溶解し、熱可塑性エポキシ樹脂(20質量%)で変性した無水マレイン酸変性ポリプロピレン:変性PP-3を得た。
<Manufacturing example 3>
The flask was charged with xylene: 95 g, bifunctional epoxy resin (jER1007 manufactured by Mitsubishi Chemical Co., Ltd.): 1.20 g, bisphenol A: 0.066 g, 2,4,6-tris (dimethylaminomethyl) phenol: 0.003 g. The mixture was stirred at 125 ° C. for 30 minutes and reacted to obtain a thermoplastic epoxy resin solution. Next, 5 g of maleic anhydride-modified polypropylene (Modic® ER321P manufactured by Mitsubishi Chemical Corporation): 5 g was put into a flask and dissolved, and the maleic anhydride-modified polypropylene modified with a thermoplastic epoxy resin (20% by mass): Modified PP-3 was obtained.
 <実施試験例1>
 アルミニウム板を熱間押出により成形し、押出成形されたアルミニウム板を長さ45mm、幅18mm、厚さ1.5mmに切断し、その表面を機械切削加工により平滑にした。
<Implementation test example 1>
The aluminum plate was formed by hot extrusion, the extruded aluminum plate was cut into a length of 45 mm, a width of 18 mm, and a thickness of 1.5 mm, and the surface thereof was smoothed by mechanical cutting.
 アルミニウム板の材料はA6063アルミニウム合金であり、具体的には、Si:0.45質量%、Fe:0.21質量%、Cu:0.05質量%、Mg:0.75質量%、Cr:0.05質量%、残部がAl及び不可避不純物からなる化学成分を有するものであった。アルミニウム板の引張強度は240MPaであり、そのヤング率は68GPaであった。 The material of the aluminum plate is A6063 aluminum alloy, specifically, Si: 0.45% by mass, Fe: 0.21% by mass, Cu: 0.05% by mass, Mg: 0.75% by mass, Cr: It had a chemical component of 0.05% by mass and the balance was Al and unavoidable impurities. The tensile strength of the aluminum plate was 240 MPa, and its Young's modulus was 68 GPa.
 (表面処理)
 アルミニウム板を、濃度5質量%の水酸化ナトリウム水溶液中に1.5分間浸漬した後、濃度5質量%の硝酸水溶液で中和し、水洗、乾燥を行うことにより、エッチング処理を行った。次いで、エッチング処理後のアルミニウム板を、純水中で10分間煮沸した後、250℃で10分間ベーキングすることによって、ベーマイト処理を行ってアルミニウム板の表面にベーマイト皮膜を形成した。
(surface treatment)
The aluminum plate was immersed in a sodium hydroxide aqueous solution having a concentration of 5% by mass for 1.5 minutes, neutralized with a nitric acid aqueous solution having a concentration of 5% by mass, washed with water, and dried to perform an etching treatment. Next, the etched aluminum plate was boiled in pure water for 10 minutes and then baked at 250 ° C. for 10 minutes to perform boehmite treatment to form a boehmite film on the surface of the aluminum plate.
 ベーマイト処理後のアルミニウム板の表面を、SEM写真(走査電子顕微鏡写真、45°傾斜観察)により観察したところ、図8に示すように、ヒゲ状の凹凸を表面に有するベーマイト皮膜が形成されていることが確認された。 When the surface of the aluminum plate after the boehmite treatment was observed by SEM photography (scanning electron micrograph, 45 ° tilt observation), as shown in FIG. 8, a boehmite film having whisker-like irregularities on the surface was formed. It was confirmed that.
 (官能基含有層3)
 次に、ベーマイト処理後のアルミニウム板を、3-アミノプロピルトリメトキシシラン(信越シリコーン株式会社製「KBM-903」;シランカップリング剤)2gを工業用エタノール1000gに溶解させた70℃のシランカップリング剤含有溶液中に20分間浸漬した後、アルミニウム板を取り出して乾燥させ、ベーマイト皮膜の表面に、官能基含有層3を形成した。
(Functional group-containing layer 3)
Next, the aluminum plate after the boehmite treatment was prepared by dissolving 2 g of 3-aminopropyltrimethoxysilane (“KBM-903” manufactured by Shinetsu Silicone Co., Ltd .; a silane coupling agent) in 1000 g of industrial ethanol in a silane cup at 70 ° C. After immersing in the ring agent-containing solution for 20 minutes, the aluminum plate was taken out and dried to form the functional group-containing layer 3 on the surface of the boehmite film.
 (樹脂コーティング層4)
 次に、製造例1で得た変性PP-1を、官能基含有層3の表面に塗布し、キシレンを揮発させ、150℃で30分間保持して、官能基含有層3の表面に、厚さ30μmの変性PP-1の樹脂コーティング層4が形成された金属部材1を作製した。
(Resin coating layer 4)
Next, the modified PP-1 obtained in Production Example 1 was applied to the surface of the functional group-containing layer 3, xylene was volatilized, and the mixture was held at 150 ° C. for 30 minutes to thicken the surface of the functional group-containing layer 3. A metal member 1 on which the resin coating layer 4 of the modified PP-1 having a thickness of 30 μm was formed was produced.
 金属部材1の樹脂コーティング層4側の面4sに、タルク入りポリプロピレン樹脂(PP樹脂)(サンアロマー株式会社製TRC104N)(接合対象)を、射出成形機(住友重機械工業株式会社製SE100V;シリンダー温度200℃、ツール温度30℃、インジェクションスピード50mm/sec、ピーク/ホールディング圧力195/175[MPa/MPa])にて射出成形することにより、金属部材1に樹脂部材8を接合した。これにより、ISO19095に準拠した引張試験用試験片(PP樹脂、10mm×45mm×3mm、接合部長さ5mm)(金属部材1-樹脂部材8接合体)を作製した。 Polypropylene resin (PP resin) containing talc (TRC104N manufactured by Sun Aroma Co., Ltd.) (to be joined) is applied to the surface 4s on the resin coating layer 4 side of the metal member 1 by an injection molding machine (SE100V manufactured by Sumitomo Heavy Industries, Ltd .; cylinder temperature). The resin member 8 was bonded to the metal member 1 by injection molding at 200 ° C., a tool temperature of 30 ° C., an injection speed of 50 mm / sec, and a peak / holding pressure of 195/175 [MPa / MPa]). As a result, a test piece for tensile test (PP resin, 10 mm × 45 mm × 3 mm, joint length 5 mm) (metal member 1-resin member 8 joint body) conforming to ISO19095 was produced.
 〔接着性評価〕
 作製した試験片(金属部材1-樹脂部材8接合体)について、常温で1日間放置後、ISO19095 1-4に準拠して、引張試験機(株式会社島津製作所製万能試験機オートグラフ「AG-IS」;ロードセル10kN、引張速度10mm/min、温度23℃、50%RH)にて、引張剪断接合強度試験を行い、接合強度を測定した。測定結果を表1に示す。
[Adhesion evaluation]
After leaving the prepared test piece (metal member 1-resin member 8 bonded body) at room temperature for 1 day, a tensile tester (Universal Testing Machine Autograph "AG-" manufactured by Shimadzu Corporation) is compliant with ISO19095 1-4. IS ”; load cell 10 kN, tensile speed 10 mm / min, temperature 23 ° C., 50% RH), a tensile shear joint strength test was performed, and the joint strength was measured. The measurement results are shown in Table 1.
 <実施試験例2>
 (表面処理)
 実施試験例1と同様の操作を行い、アルミニウム板(18mm×45mm、厚さ1.5mmのA6063)の表面に、ヒゲ状の凹凸を表面に有するベーマイト皮膜を形成した。
<Implementation test example 2>
(surface treatment)
The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm × 45 mm, thickness 1.5 mm A6063).
 (官能基含有層3)
 次に、実施試験例1と同様の操作を行い、ベーマイト皮膜の表面に、官能基含有層3を形成した。
(Functional group-containing layer 3)
Next, the same operation as in Example 1 was carried out to form the functional group-containing layer 3 on the surface of the boehmite film.
 (樹脂コーティング層4:1層目)
 官能基含有層3の表面に、2官能エポキシ樹脂(三菱ケミカル株式会社製jER(登録商標)1001):100g、ビスフェノールA:24g、及びトリエチルアミン:0.4gを、アセトン250g中に溶解して得られた熱可塑性エポキシ樹脂組成物を、乾燥後の厚さが30μmになるようにスプレー法にて塗布した。空気中に常温で30分間放置することによって溶剤を揮発させた後、150℃の炉中に30分間放置して重付加反応を行い、常温まで放冷して、1層目の樹脂コーティング層(熱可塑性エポキシ樹脂層4b)を形成した。
(Resin coating layer 4: 1st layer)
Obtained by dissolving 100 g of a bifunctional epoxy resin (jER® 1001 manufactured by Mitsubishi Chemical Corporation), 24 g of bisphenol A, and 0.4 g of triethylamine on the surface of the functional group-containing layer 3 in 250 g of acetone. The obtained thermoplastic epoxy resin composition was applied by a spray method so that the thickness after drying was 30 μm. After volatilizing the solvent by leaving it in the air at room temperature for 30 minutes, it is left in a furnace at 150 ° C. for 30 minutes for a heavy addition reaction, and then allowed to cool to room temperature to allow the first resin coating layer (1st layer). A thermoplastic epoxy resin layer 4b) was formed.
 (樹脂コーティング層4:2層目)
 次に、製造例2で得た変性PP-2を、熱可塑性エポキシ樹脂層4bの表面に塗布し、キシレンを揮発させ150℃で30分間保持して、熱可塑性エポキシ樹脂層4bの表面に、厚さ30μmの変性PP-2の樹脂コーティング層(変性ポリオレフィン層4a)が形成された金属部材1を作製した。
(Resin coating layer 4: 2nd layer)
Next, the modified PP-2 obtained in Production Example 2 was applied to the surface of the thermoplastic epoxy resin layer 4b to volatilize xylene and held at 150 ° C. for 30 minutes to apply the modified PP-2 to the surface of the thermoplastic epoxy resin layer 4b. A metal member 1 on which a resin-coated layer (modified polyolefin layer 4a) of modified PP-2 having a thickness of 30 μm was formed was produced.
 金属部材1の2層目(変性ポリオレフィン層4a)の樹脂コーティング層4側の面4sに、実施試験例1と同様の操作を行い、引張試験用試験片(金属部材1-樹脂部材8接合体)を作製した。その試験片について、実施試験例1と同じ手法で接合強度を測定した。測定結果を表1に示す。 The same operation as in Example 1 was performed on the surface 4s on the resin coating layer 4 side of the second layer (modified polyolefin layer 4a) of the metal member 1 to perform a tensile test test piece (metal member 1-resin member 8 bonded body). ) Was produced. The joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 1.
 <実施試験例3>
 (表面処理)
 金属基材2として、18mm×45mm、厚さ1.5mmの鉄板に対し、#100のサンドペーパーを使用してサンディング処理を行い、鉄板の表面に微細な凹凸を形成した。
<Implementation test example 3>
(surface treatment)
As the metal base material 2, an iron plate having a thickness of 18 mm × 45 mm and a thickness of 1.5 mm was sanded using # 100 sandpaper to form fine irregularities on the surface of the iron plate.
 (樹脂コーティング層4:1層目)
 鉄板の凹凸表面に実施試験例2と同様の操作を行い、1層目の樹脂コーティング層(熱可塑性エポキシ樹脂層4b)を形成した。
(Resin coating layer 4: 1st layer)
The same operation as in Example 2 was performed on the uneven surface of the iron plate to form the first resin coating layer (thermoplastic epoxy resin layer 4b).
 (樹脂コーティング層4:2層目)
 次に、実施試験例2と同様の操作を行い、熱可塑性エポキシ樹脂層4bの表面に、厚さ40μmの変性PP-2の樹脂コーティング層(変性ポリオレフィン層4a)が形成された金属部材1を作製した。
(Resin coating layer 4: 2nd layer)
Next, the same operation as in Example 2 was performed to form the metal member 1 on which the resin coating layer (modified polyolefin layer 4a) of modified PP-2 having a thickness of 40 μm was formed on the surface of the thermoplastic epoxy resin layer 4b. Made.
 金属部材1の樹脂コーティング層4側の面4sに、実施試験例1と同様の操作を行い、引張試験用試験片(金属部材1-樹脂部材8接合体)を作製した。その試験片について、実施試験例1と同じ手法で接合強度を測定した。測定結果を表1に示す。 A tensile test test piece (metal member 1-resin member 8 bonded body) was prepared by performing the same operation as in Example 1 on the surface 4s on the resin coating layer 4 side of the metal member 1. The joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 1.
 <実施試験例4>
 (表面処理)
 実施試験例1で用いたアルミニウム板を、濃度5質量%の水酸化ナトリウム水溶液中に1.5分間浸漬した後、濃度5質量%の硝酸水溶液で中和し、水洗、乾燥を行うことにより、エッチング処理を行った。
<Implementation test example 4>
(surface treatment)
The aluminum plate used in Example 1 was immersed in a 5% by mass sodium hydroxide aqueous solution for 1.5 minutes, neutralized with a 5% by mass nitric acid aqueous solution, washed with water, and dried. Etching treatment was performed.
 (官能基含有層3)
 次に、実施試験例1と同様の操作を行い、エッチング処理後のアルミニウム板の表面に、官能基含有層3を形成した。
(Functional group-containing layer 3)
Next, the same operation as in Example 1 was carried out to form the functional group-containing layer 3 on the surface of the aluminum plate after the etching treatment.
 (樹脂コーティング層4)
 実施試験例1と同様の操作を行い、官能基含有層3の表面に、樹脂コーティング層4を形成して金属部材1を作製した。
(Resin coating layer 4)
The same operation as in Example 1 was carried out to form the resin coating layer 4 on the surface of the functional group-containing layer 3 to prepare the metal member 1.
 金属部材1の樹脂コーティング層4側の面4sに、実施試験例1と同様の操作を行い、引張試験用試験片(金属部材1-樹脂部材8接合体)を作製した。その試験片について、実施試験例1と同じ手法で接合強度を測定した。測定結果を表1に示す。 A tensile test test piece (metal member 1-resin member 8 bonded body) was prepared by performing the same operation as in Example 1 on the surface 4s on the resin coating layer 4 side of the metal member 1. The joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 1.
 <比較試験例1>
 (表面処理)
 実施試験例1と同様の操作を行い、アルミニウム板(18mm×45mm、厚さ1.5mmのA6063)の表面に、ヒゲ状の凹凸を表面に有するベーマイト皮膜を形成した。
<Comparative test example 1>
(surface treatment)
The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm × 45 mm, thickness 1.5 mm A6063).
 アルミニウム板のベーマイト皮膜の表面に、官能基含有層3及び樹脂コーティング層4を設けることなく、実施試験例1と同様の射出成形操作を行った。しかし、PP樹脂は、ベーマイト皮膜の表面に接合せず、金属部材-樹脂部材接合体を作製することはできなかった。 The same injection molding operation as in Example 1 was performed without providing the functional group-containing layer 3 and the resin coating layer 4 on the surface of the boehmite film of the aluminum plate. However, the PP resin did not bond to the surface of the boehmite film, and it was not possible to produce a metal member-resin member bonded body.
 <比較試験例2>
 (表面処理)
 実施試験例1と同様の操作を行い、アルミニウム板(18mm×45mm、厚さ1.5mmのA6063)の表面に、ヒゲ状の凹凸を表面に有するベーマイト皮膜を形成した。
<Comparative test example 2>
(surface treatment)
The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm × 45 mm, thickness 1.5 mm A6063).
 (官能基含有層3)
 次に、実施試験例1と同様の操作を行い、ベーマイト皮膜の表面に、官能基含有層3を形成した。
(Functional group-containing layer 3)
Next, the same operation as in Example 1 was carried out to form the functional group-containing layer 3 on the surface of the boehmite film.
 (樹脂コーティング層)
 次に、無水マレイン酸変性ポリプロピレン(三菱ケミカル株式会社製Modic(登録商標)ER321P):5gをキシレン:95gに溶解した溶液を、官能基含有層3の表面に塗布し、キシレンを揮発させ、150℃で30分間保持して、官能基含有層の表面に、厚さ30μmの無水マレイン酸変性ポリプロピレン層が形成された金属部材を作製した。
(Resin coating layer)
Next, a solution prepared by dissolving 5 g of maleic anhydride-modified polypropylene (Modic® ER321P manufactured by Mitsubishi Chemical Corporation) in 95 g of xylene was applied to the surface of the functional group-containing layer 3 to volatilize xylene, and 150 It was held at ° C. for 30 minutes to prepare a metal member having a maleic anhydride-modified polypropylene layer having a thickness of 30 μm formed on the surface of the functional group-containing layer.
 金属部材の樹脂コーティング層側の表面に、実施試験例1と同様の操作を行い、引張試験用試験片(金属部材-樹脂部材接合体)を作製した。その試験片について、実施試験例1と同じ手法で接合強度を測定した。測定結果を表1に示す。 The same operation as in Example 1 was performed on the surface of the metal member on the resin coating layer side to prepare a test piece for tensile test (metal member-resin member joint). The joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <実施試験例5>
 (表面処理)
 実施試験例1と同様の操作を行い、アルミニウム板(18mm×45mm、厚さ1.5mmのA6063)の表面に、ヒゲ状の凹凸を表面に有するベーマイト皮膜を形成した。
<Implementation test example 5>
(surface treatment)
The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm × 45 mm, thickness 1.5 mm A6063).
 (官能基含有層3)
 次に、ベーマイト処理後のアルミニウム板を、3-グリシドキシプロピルトリメトキシシラン(信越シリコーン株式会社製「KBM-403」;シランカップリング剤)2gを工業用エタノール1000gに溶解させた70℃のシランカップリング剤含有溶液中に20分間浸漬した後、アルミニウム板を取り出して乾燥させ、ベーマイト皮膜の表面に、官能基含有層3を形成した。
(Functional group-containing layer 3)
Next, the aluminum plate treated with boehmite was prepared by dissolving 2 g of 3-glycidoxypropyltrimethoxysilane (“KBM-403” manufactured by Shinetsu Silicone Co., Ltd .; a silane coupling agent) in 1000 g of industrial ethanol at 70 ° C. After immersing in the silane coupling agent-containing solution for 20 minutes, the aluminum plate was taken out and dried to form the functional group-containing layer 3 on the surface of the boehmite film.
 (樹脂コーティング層4)
 次に、製造例3で得た変性PP-3を、官能基含有層3の表面に塗布し、キシレンを揮発させ、150℃で30分間保持して、官能基含有層3の表面に、厚さ30μmの変性PP-3の樹脂コーティング層4が形成された金属部材1を作製した。
(Resin coating layer 4)
Next, the modified PP-3 obtained in Production Example 3 was applied to the surface of the functional group-containing layer 3, xylene was volatilized, and the mixture was held at 150 ° C. for 30 minutes to thicken the surface of the functional group-containing layer 3. A metal member 1 on which the resin coating layer 4 of the modified PP-3 having a thickness of 30 μm was formed was produced.
 金属部材1の樹脂コーティング層4側の面4sに、ガラス繊維入りポリプロピレン樹脂(PP樹脂)(ダイセルミライズ株式会社製pp-GF40-01 F02)(接合対象)を、実施試験例1と同様の条件で射出成形して、引張試験用試験片(金属部材1-樹脂部材8接合体)を作製した。その試験片について、実施試験例1と同じ手法で接合強度を測定した。測定結果を表2に示す。 Polypropylene resin (PP resin) containing glass fibers (pp-GF40-01 F02 manufactured by Daicel FineChem Co., Ltd.) (to be bonded) was applied to the surface 4s on the resin coating layer 4 side of the metal member 1 under the same conditions as in Test Example 1. A test piece for tensile test (metal member 1-resin member 8 bonded body) was produced by injection molding. The joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 2.
 <実施試験例6>
 (表面処理)
 実施試験例1と同様の操作を行い、アルミニウム板(18mm×45mm、厚さ1.5mmのA6063)の表面に、ヒゲ状の凹凸を表面に有するベーマイト皮膜を形成した。
<Implementation test example 6>
(surface treatment)
The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm × 45 mm, thickness 1.5 mm A6063).
 (官能基含有層3)
 次に、実施試験例5と同様の操作を行い、ベーマイト皮膜の表面に、官能基含有層3を形成した。
(Functional group-containing layer 3)
Next, the same operation as in Example 5 was carried out to form the functional group-containing layer 3 on the surface of the boehmite film.
 (樹脂コーティング層4:1層目)
 官能基含有層3の表面に、エポキシ樹脂を三菱ケミカル株式会社製jER(登録商標)1004に変更した他は実施試験例2と同様の操作を行い、1層目の樹脂コーティング層(熱可塑性エポキシ樹脂層4b)を形成した。
(Resin coating layer 4: 1st layer)
The same operation as in Example 2 was performed except that the epoxy resin was changed to jER® 1004 manufactured by Mitsubishi Chemical Co., Ltd. on the surface of the functional group-containing layer 3, and the first resin coating layer (thermoplastic epoxy) was performed. A resin layer 4b) was formed.
 (樹脂コーティング層4:2層目)
 次に、実施試験例2と同様の操作を行い、熱可塑性エポキシ樹脂層4bの表面に、厚さ30μmの変性PP-2の樹脂コーティング層(変性ポリオレフィン層4a)が形成された金属部材1を作製した。
(Resin coating layer 4: 2nd layer)
Next, the same operation as in Example 2 was carried out to form the metal member 1 having the modified PP-2 resin coating layer (modified polyolefin layer 4a) having a thickness of 30 μm formed on the surface of the thermoplastic epoxy resin layer 4b. Made.
 金属部材1の2層目(変性ポリオレフィン層4a)の樹脂コーティング層4側の面4sに、実施試験例5と同様の操作を行い、引張試験用試験片(金属部材1-樹脂部材8接合体)を作製した。その試験片について、実施試験例1と同じ手法で接合強度を測定した。測定結果を表2に示す。 The same operation as in Example 5 was performed on the surface 4s on the resin coating layer 4 side of the second layer (modified polyolefin layer 4a) of the metal member 1 to perform a tensile test test piece (metal member 1-resin member 8 bonded body). ) Was produced. The joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 2.
 <実施試験例7>
 (表面処理)
 金属基材2として、18mm×45mm、厚さ1.5mmのアルミニウム板(A6063)に対し、実施試験例3と同様のサンディング処理を行い、アルミニウム板の表面に微細な凹凸を形成した。
<Implementation Test Example 7>
(surface treatment)
As the metal base material 2, an aluminum plate (A6063) having a thickness of 18 mm × 45 mm and a thickness of 1.5 mm was subjected to the same sanding treatment as in Example 3 to form fine irregularities on the surface of the aluminum plate.
 (官能基含有層3)
 次に、実施試験例1と同様の操作を行い、サンディング処理後のアルミニウム板の表面に、官能基含有層3を形成した。
(Functional group-containing layer 3)
Next, the same operation as in Example 1 was carried out to form the functional group-containing layer 3 on the surface of the aluminum plate after the sanding treatment.
 (樹脂コーティング層4:1層目)
 実施試験例6と同様の操作を行い、1層目の樹脂コーティング層(熱可塑性エポキシ樹脂層4b)を形成した。
(Resin coating layer 4: 1st layer)
The same operation as in Example 6 was performed to form the first resin coating layer (thermoplastic epoxy resin layer 4b).
 (樹脂コーティング層4:2層目)
 次に、実施試験例2と同様の操作を行い、熱可塑性エポキシ樹脂層4bの表面に、厚さ40μmの変性PP-2の樹脂コーティング層(変性ポリオレフィン層4a)が形成された金属部材1を作製した。
(Resin coating layer 4: 2nd layer)
Next, the same operation as in Example 2 was carried out to form the metal member 1 on which the resin coating layer (modified polyolefin layer 4a) of modified PP-2 having a thickness of 40 μm was formed on the surface of the thermoplastic epoxy resin layer 4b. Made.
 金属部材1の樹脂コーティング層4側の面4sに、実施試験例5と同様の操作を行い、引張試験用試験片(金属部材1-樹脂部材8接合体)を作製した。その試験片について、実施試験例1と同じ手法で接合強度を測定した。測定結果を表2に示す。 The same operation as in Example 5 was performed on the surface 4s on the resin coating layer 4 side of the metal member 1 to prepare a test piece for a tensile test (metal member 1-resin member 8 bonded body). The joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 2.
 <比較試験例3>
 (表面処理)
 実施試験例1と同様の操作を行い、アルミニウム板(18mm×45mm、厚さ1.5mmのA6063)の表面に、ヒゲ状の凹凸を表面に有するベーマイト皮膜を形成した。
<Comparative test example 3>
(surface treatment)
The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm × 45 mm, thickness 1.5 mm A6063).
 アルミニウム板のベーマイト皮膜の表面に、官能基含有層3及び樹脂コーティング層4を設けることなく、実施試験例5と同様の射出成形操作を行った。しかし、PP樹脂は、ベーマイト皮膜の表面に接合せず、金属部材-樹脂部材接合体を作製することはできなかった。 The same injection molding operation as in Example 5 was performed without providing the functional group-containing layer 3 and the resin coating layer 4 on the surface of the boehmite film of the aluminum plate. However, the PP resin did not bond to the surface of the boehmite film, and it was not possible to produce a metal member-resin member bonded body.
 <比較試験例4>
 (表面処理)
 実施試験例1と同様の操作を行い、アルミニウム板(18mm×45mm、厚さ1.5mmのA6063)の表面に、ヒゲ状の凹凸を表面に有するベーマイト皮膜を形成した。
<Comparative test example 4>
(surface treatment)
The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm × 45 mm, thickness 1.5 mm A6063).
 (官能基含有層3)
 次に、実施試験例1と同様の操作を行い、ベーマイト皮膜の表面に、官能基含有層3を形成した。
(Functional group-containing layer 3)
Next, the same operation as in Example 1 was carried out to form the functional group-containing layer 3 on the surface of the boehmite film.
 (樹脂コーティング層)
 次に、比較試験例2と同様の操作を行い、官能基含有層3の表面に、厚さ30μmの無水マレイン酸変性ポリプロピレン層が形成された金属部材を作製した。
(Resin coating layer)
Next, the same operation as in Comparative Test Example 2 was carried out to prepare a metal member having a maleic anhydride-modified polypropylene layer having a thickness of 30 μm formed on the surface of the functional group-containing layer 3.
 金属部材の樹脂コーティング層側の表面に、実施試験例5と同様の操作を行い、引張試験用試験片(金属部材-樹脂部材接合体)を作製した。その試験片について、実施試験例1と同じ手法で接合強度を測定した。測定結果を表2に示す。 The same operation as in Example 5 was performed on the surface of the metal member on the resin coating layer side to prepare a test piece for tensile test (metal member-resin member joint). The joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <実施試験例8>
 (表面処理)
 実施試験例1と同様の操作を行い、アルミニウム板(18mm×45mm、厚さ1.5mmのA6063)の表面に、ヒゲ状の凹凸を表面に有するベーマイト皮膜を形成した。
<Implementation Test Example 8>
(surface treatment)
The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm × 45 mm, thickness 1.5 mm A6063).
 (官能基含有層3)
 次に、実施試験例1と同様の操作を行い、ベーマイト皮膜の表面に、官能基含有層3を形成した。
(Functional group-containing layer 3)
Next, the same operation as in Example 1 was carried out to form the functional group-containing layer 3 on the surface of the boehmite film.
 (樹脂コーティング層4)
 次に、実施試験例5と同様の操作を行い、官能基含有層3の表面に、厚さ30μmの変性PP-3の樹脂コーティング層4が形成された金属部材1を作製した。
(Resin coating layer 4)
Next, the same operation as in Example 5 was carried out to prepare a metal member 1 having a resin coating layer 4 of modified PP-3 having a thickness of 30 μm formed on the surface of the functional group-containing layer 3.
 金属部材1の樹脂コーティング層4側の面4sに、炭素繊維入りポリプロピレン樹脂(PP樹脂)(ダイセルミライズ株式会社製pp-GF40-01 F008)(接合対象)を、実施試験例1と同様の条件で射出成形して、引張試験用試験片(金属部材1-樹脂部材8接合体)を作成した。その試験片について、実施試験例1と同じ手法で接合強度を測定した。測定結果を表3に示す。 A polypropylene resin (PP resin) containing carbon fibers (pp-GF40-01 F008 manufactured by Daicel FineChem Co., Ltd.) (to be bonded) was applied to the surface 4s on the resin coating layer 4 side of the metal member 1 under the same conditions as in Test Example 1. A test piece for tensile test (metal member 1-resin member 8 bonded body) was prepared by injection molding. The joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 3.
 <実施試験例9>
 (表面処理)
 実施試験例1と同様の操作を行い、アルミニウム板(18mm×45mm、厚さ1.5mmのA6063)の表面に、ヒゲ状の凹凸を表面に有するベーマイト皮膜を形成した。
<Implementation test example 9>
(surface treatment)
The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm × 45 mm, thickness 1.5 mm A6063).
 (官能基含有層3)
 次に、実施試験例1と同様の操作を行い、ベーマイト皮膜の表面に、官能基含有層3を形成した。
(Functional group-containing layer 3)
Next, the same operation as in Example 1 was carried out to form the functional group-containing layer 3 on the surface of the boehmite film.
 (樹脂コーティング層4:1層目)
 官能基含有層3の表面に、エポキシ樹脂を三菱ケミカル株式会社製jER(登録商標)1007に変更した他は実施試験例2と同様の操作を行い、1層目の樹脂コーティング層(熱可塑性エポキシ樹脂層4b)を形成した。
(Resin coating layer 4: 1st layer)
The same operation as in Example 2 was performed except that the epoxy resin was changed to jER® 1007 manufactured by Mitsubishi Chemical Co., Ltd. on the surface of the functional group-containing layer 3, and the first resin coating layer (thermoplastic epoxy) was performed. The resin layer 4b) was formed.
 (樹脂コーティング層4:2層目)
 次に、実施試験例2と同様の操作を行い、熱可塑性エポキシ樹脂層4bの表面に、厚さ30μmの変性PP-2の樹脂コーティング層(変性ポリオレフィン層4a)が形成された金属部材1を作製した。
(Resin coating layer 4: 2nd layer)
Next, the same operation as in Example 2 was carried out to form the metal member 1 having the modified PP-2 resin coating layer (modified polyolefin layer 4a) having a thickness of 30 μm formed on the surface of the thermoplastic epoxy resin layer 4b. Made.
 金属部材1の2層目(変性ポリオレフィン層4a)の樹脂コーティング層4側の面4sに、実施試験例8と同様の操作を行い、引張試験用試験片(金属部材1-樹脂部材8接合体)を作製した。その試験片について、実施試験例1と同じ手法で接合強度を測定した。測定結果を表3に示す。 The same operation as in Example 8 was performed on the surface 4s on the resin coating layer 4 side of the second layer (modified polyolefin layer 4a) of the metal member 1 to perform a tensile test test piece (metal member 1-resin member 8 bonded body). ) Was produced. The joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 3.
 <実施試験例10>
 (表面処理)
 実施試験例1と同様の操作を行い、アルミニウム板(18mm×45mm、厚さ1.5mmのA6063)の表面に、ヒゲ状の凹凸を表面に有するベーマイト皮膜を形成した。
<Implementation Test Example 10>
(surface treatment)
The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm × 45 mm, thickness 1.5 mm A6063).
 (官能基含有層3)
 次に、実施試験例1と同様の操作を行い、ベーマイト皮膜の表面に、シランカップリング剤由来の官能基を導入した。更に、2-イソシアナトエチルメタクリレート(昭和電工株式会社製カレンズMOI(登録商標)):1.2g、2,4,6-トリス(ジメチルアミノメチル)フェノール(DMP-30):0.05gをトルエン150g中に溶解した溶液に70℃で5分間浸漬した後に引き揚げて乾燥した。このようにして、化学結合可能な官能基を三次元方向に延ばした官能基含有層3を形成した。
(Functional group-containing layer 3)
Next, the same operation as in Example 1 was carried out to introduce a functional group derived from a silane coupling agent onto the surface of the boehmite film. Further, 2-isocyanatoethyl methacrylate (Carens MOI (registered trademark) manufactured by Showa Denko KK): 1.2 g, 2,4,6-tris (dimethylaminomethyl) phenol (DMP-30): 0.05 g in toluene It was immersed in a solution dissolved in 150 g at 70 ° C. for 5 minutes, then withdrawn and dried. In this way, the functional group-containing layer 3 in which the chemically bondable functional group was extended in the three-dimensional direction was formed.
 (樹脂コーティング層4)
 次に、実施試験例1と同様の操作を行い、官能基含有層3の表面に、厚さ30μmの変性PP-1の樹脂コーティング層4が形成された金属部材1を作製した。
(Resin coating layer 4)
Next, the same operation as in Example 1 was carried out to prepare a metal member 1 having a resin coating layer 4 of modified PP-1 having a thickness of 30 μm formed on the surface of the functional group-containing layer 3.
 金属部材1の樹脂コーティング層4側の面4sに、実施試験例8と同様の操作を行い、引張試験用試験片(金属部材1-樹脂部材8接合体)を作製した。その試験片について、実施試験例1と同じ手法で接合強度を測定した。測定結果を表3に示す。 The same operation as in Example 8 was performed on the surface 4s on the resin coating layer 4 side of the metal member 1 to prepare a test piece for a tensile test (metal member 1-resin member 8 bonded body). The joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 3.
 <実施試験例11>
 (表面処理)
 金属基材2として、18mm×45mm、厚さ1.5mmのマルテンサイト系ステンレス(SUS403)鋼板に実施試験例3と同様の操作でサンディング処理を行い、ステンレス鋼板の表面に微細な凹凸を形成した。
<Implementation Test Example 11>
(surface treatment)
As the metal base material 2, a martensitic stainless steel (SUS403) steel sheet having a thickness of 18 mm × 45 mm and a thickness of 1.5 mm was sanded by the same operation as in Test Example 3 to form fine irregularities on the surface of the stainless steel sheet. ..
 (官能基含有層3)
 次に、実施試験例1と同様の操作を行い、サンディング処理後のステンレス鋼板の表面に、官能基含有層3を形成した。
(Functional group-containing layer 3)
Next, the same operation as in Example 1 was carried out to form the functional group-containing layer 3 on the surface of the stainless steel sheet after the sanding treatment.
 (樹脂コーティング層4:1層目)
 官能基含有層4の表面に、エポキシ樹脂(三菱ケミカル株式会社製jER(登録商標)1007):100g、ビスフェノールA:5.6g、及びトリエチルアミン:0.4gを、アセトン196g中に溶解して得られた熱可塑性エポキシ樹脂組成物を、乾燥後の厚さが30μmになるようにスプレー法にて塗布した。空気中に常温で30分間放置することによって溶剤を揮発させた後、150℃の炉中に30分間放置して重付加反応を行い、常温まで放冷して、1層目の樹脂コーティング層(熱可塑性エポキシ樹脂層4b)を形成した。
(Resin coating layer 4: 1st layer)
Epoxy resin (jER® 1007 manufactured by Mitsubishi Chemical Corporation): 100 g, bisphenol A: 5.6 g, and triethylamine: 0.4 g were dissolved in 196 g of acetone on the surface of the functional group-containing layer 4. The obtained thermoplastic epoxy resin composition was applied by a spray method so that the thickness after drying was 30 μm. After volatilizing the solvent by leaving it in the air at room temperature for 30 minutes, it is left in a furnace at 150 ° C. for 30 minutes for a heavy addition reaction, and then allowed to cool to room temperature to allow the first resin coating layer (1st layer). A thermoplastic epoxy resin layer 4b) was formed.
 (樹脂コーティング層4:2層目)
 次に、実施試験例2と同様の操作を行い、熱可塑性エポキシ樹脂層4bの表面に、厚さ40μmの変性PP-2の樹脂コーティング層(変性ポリオレフィン層4a)が形成された金属部材1を作製した。
(Resin coating layer 4: 2nd layer)
Next, the same operation as in Example 2 was carried out to form the metal member 1 on which the resin coating layer (modified polyolefin layer 4a) of modified PP-2 having a thickness of 40 μm was formed on the surface of the thermoplastic epoxy resin layer 4b. Made.
 金属部材1の樹脂コーティング層4側の面4sに、実施試験例8と同様の操作を行い、引張試験用試験片(金属部材1-樹脂部材8接合体)を作製した。その試験片について、実施試験例1と同じ手法で接合強度を測定した。測定結果を表3に示す。 The same operation as in Example 8 was performed on the surface 4s on the resin coating layer 4 side of the metal member 1 to prepare a test piece for a tensile test (metal member 1-resin member 8 bonded body). The joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 3.
 <比較試験例5>
 (表面処理)
 実施試験例1と同様の操作を行い、アルミニウム板(18mm×45mm、厚さ1.5mmのA6063)の表面に、ヒゲ状の凹凸を表面に有するベーマイト皮膜を形成した。
<Comparative test example 5>
(surface treatment)
The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm × 45 mm, thickness 1.5 mm A6063).
 アルミニウム板のベーマイト皮膜の表面に、官能基含有層3及び樹脂コーティング層4を設けることなく、実施試験例8と同様の射出成形操作を行った。しかし、PP樹脂は、ベーマイト皮膜の表面に接合せず、金属部材-樹脂部材接合体を作製することはできなかった。 The same injection molding operation as in Example 8 was performed without providing the functional group-containing layer 3 and the resin coating layer 4 on the surface of the boehmite film of the aluminum plate. However, the PP resin did not bond to the surface of the boehmite film, and it was not possible to produce a metal member-resin member bonded body.
 <比較試験例6>
 (表面処理)
 実施試験例1と同様の操作を行い、アルミニウム板(18mm×45mm、厚さ1.5mmのA6063)の表面に、ヒゲ状の凹凸を表面に有するベーマイト皮膜を形成した。
<Comparative test example 6>
(surface treatment)
The same operation as in Example 1 was carried out to form a boehmite film having whisker-like irregularities on the surface of an aluminum plate (18 mm × 45 mm, thickness 1.5 mm A6063).
 (官能基含有層3)
 次に、実施試験例1と同様の操作を行い、ベーマイト皮膜の表面に、官能基含有層3を形成した。
(Functional group-containing layer 3)
Next, the same operation as in Example 1 was carried out to form the functional group-containing layer 3 on the surface of the boehmite film.
 (樹脂コーティング層)
 次に、比較試験例2と同様の操作を行い、官能基含有層3の表面に、厚さ30μmの無水マレイン酸変性ポリプロピレン層が形成された金属部材を作製した。
(Resin coating layer)
Next, the same operation as in Comparative Test Example 2 was carried out to prepare a metal member having a maleic anhydride-modified polypropylene layer having a thickness of 30 μm formed on the surface of the functional group-containing layer 3.
 金属部材の樹脂コーティング層側の表面に、実施試験例8と同様の操作を行い、引張試験用試験片(金属部材-樹脂部材接合体)を作製した。その試験片について、実施試験例1と同じ手法で接合強度を測定した。測定結果を表3に示す。 The same operation as in Example 8 was performed on the surface of the metal member on the resin coating layer side to prepare a test piece for a tensile test (metal member-resin member joint). The joint strength of the test piece was measured by the same method as in Test Example 1. The measurement results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3の評価結果から分かるように、実施試験例1~11の金属部材-樹脂部材接合体はいずれも高い接合強度を有していた。 As can be seen from the evaluation results in Tables 1 to 3, the metal member-resin member joints of Example 1 to 11 all had high joint strength.
 したがって、本開示によれば、金属部材と樹脂部材とが強固に接合された車両用サイドステップを製造することができる。 Therefore, according to the present disclosure, it is possible to manufacture a vehicle side step in which a metal member and a resin member are firmly joined.
 本開示は、乗車位置の高い車両のドアの下側に設けられ、乗車する際の足置き場として用いられる車両用サイドステップ及びその製造方法に利用可能である。 The present disclosure can be used for a vehicle side step provided under the door of a vehicle having a high boarding position and used as a footrest when boarding, and a method for manufacturing the same.
 1:金属部材
 2:金属基材
 2a:表面処理部
 3:官能基含有層
 4:樹脂コーティング層(プライマー層)
 4a:変性ポリオレフィン層
 4b:熱可塑性エポキシ樹脂層
 4c:硬化性樹脂層
 4s:樹脂コーティング層の面
 7:接着剤層
 8:樹脂部材
 10:車両用サイドステップ(金属部材-樹脂部材接合体)
 10a:ベース樹脂プレート
 10b:金属プレート
 10c:表面樹脂プレート
 12:ドア
 14:ステー
1: Metal member 2: Metal base material 2a: Surface treatment part 3: Functional group-containing layer 4: Resin coating layer (primer layer)
4a: Modified polyolefin layer 4b: Thermoplastic epoxy resin layer 4c: Curable resin layer 4s: Resin coating layer surface 7: Adhesive layer 8: Resin member 10: Vehicle side step (metal member-resin member joint)
10a: Base resin plate 10b: Metal plate 10c: Surface resin plate 12: Door 14: Stay

Claims (12)

  1.  金属基材の少なくとも一部の表面に1層又は複数層の樹脂コーティング層が積層された金属部材と、前記金属部材の前記金属基材の前記樹脂コーティング層側の面に接合された樹脂部材とを備え、
     前記樹脂コーティング層の少なくとも1層が、変性ポリオレフィンを含む樹脂組成物から形成された変性ポリオレフィン層であり、前記変性ポリオレフィン層は、無水マレイン酸変性ポリオレフィンと2官能エポキシ樹脂と2官能フェノール化合物との反応物1を含む層、無水マレイン酸変性ポリオレフィンと熱可塑性エポキシ樹脂との反応物2を含む層、及びポリオレフィンと熱可塑性エポキシ樹脂との混合物を含む層からなる群より選ばれる少なくとも1種である車両用サイドステップ。
    A metal member in which one or more resin coating layers are laminated on at least a part of the surface of the metal substrate, and a resin member bonded to the surface of the metal member on the resin coating layer side of the metal substrate. Equipped with
    At least one layer of the resin coating layer is a modified polyolefin layer formed from a resin composition containing a modified polyolefin, and the modified polyolefin layer is composed of a maleic anhydride-modified polyolefin, a bifunctional epoxy resin, and a bifunctional phenol compound. At least one selected from the group consisting of a layer containing a reactant 1, a layer containing a reaction product 2 of a maleic anhydride-modified polyolefin and a thermoplastic epoxy resin, and a layer containing a mixture of a polyolefin and a thermoplastic epoxy resin. Side step for vehicles.
  2.  前記反応物1が、無水マレイン酸変性ポリオレフィンを含む溶液中で、2官能エポキシ樹脂と2官能フェノール化合物を重付加反応させてなる、請求項1に記載の車両用サイドステップ。 The vehicle side step according to claim 1, wherein the reaction product 1 is formed by subjecting a bifunctional epoxy resin and a bifunctional phenol compound to a double addition reaction in a solution containing maleic anhydride-modified polyolefin.
  3.  前記反応物2が、2官能エポキシ樹脂と2官能フェノール化合物の重付加反応により生成した熱可塑性エポキシ樹脂と、無水マレイン酸変性ポリオレフィンとを反応させてなる、請求項1に記載の車両用サイドステップ。 The vehicle side step according to claim 1, wherein the reaction product 2 is formed by reacting a thermoplastic epoxy resin produced by a double addition reaction of a bifunctional epoxy resin and a bifunctional phenol compound with a maleic anhydride-modified polyolefin. ..
  4.  前記混合物が、ポリプロピレンと熱可塑性エポキシ樹脂との混合物である、請求項1に記載の車両用サイドステップ。 The vehicle side step according to claim 1, wherein the mixture is a mixture of polypropylene and a thermoplastic epoxy resin.
  5.  前記樹脂コーティング層が、前記変性ポリオレフィン層と、前記変性ポリオレフィン層以外の層とを含む複数層からなり、前記変性ポリオレフィン層以外の層の少なくとも1層が、熱可塑性エポキシ樹脂を含む樹脂組成物から形成された熱可塑性エポキシ樹脂層及び硬化性樹脂を含む樹脂組成物から形成された硬化性樹脂層から選ばれる少なくとも1種である、請求項1から4のいずれか一項に記載の車両用サイドステップ。 The resin coating layer is composed of a plurality of layers including the modified polyolefin layer and a layer other than the modified polyolefin layer, and at least one layer of the layer other than the modified polyolefin layer is made of a resin composition containing a thermoplastic epoxy resin. The vehicle side according to any one of claims 1 to 4, which is at least one selected from the formed thermoplastic epoxy resin layer and the curable resin layer formed from the resin composition containing the curable resin. Step.
  6.  前記硬化性樹脂が、ウレタン樹脂、エポキシ樹脂、ビニルエステル樹脂及び不飽和ポリエステル樹脂からなる群より選ばれる少なくとも1種である、請求項5に記載の車両用サイドステップ。 The vehicle side step according to claim 5, wherein the curable resin is at least one selected from the group consisting of urethane resin, epoxy resin, vinyl ester resin and unsaturated polyester resin.
  7.  前記金属基材と前記樹脂コーティング層との間に、前記金属基材と前記樹脂コーティング層に接して積層された官能基含有層を有し、
     前記官能基含有層が、下記(1)から(7)からなる群より選ばれる少なくとも1つの官能基を含む、請求項1から6のいずれか一項に記載の車両用サイドステップ。
    (1)シランカップリング剤由来であって、グリシジル基、アミノ基、(メタ)アクリロイル基及びメルカプト基からなる群より選ばれる少なくとも1つの官能基
    (2)シランカップリング剤由来のアミノ基に、グリシジル化合物及びチオール化合物から選ばれる少なくとも1種が反応して生成した官能基
    (3)シランカップリング剤由来のメルカプト基に、グリシジル化合物、アミノ化合物、イソシアネート化合物、(メタ)アクリロイル基及びグリシジル基を有する化合物、並びに(メタ)アクリロイル基及びアミノ基を有する化合物からなる群より選ばれる少なくとも1種が反応して生成した官能基
    (4)シランカップリング剤由来の(メタ)アクリロイル基に、チオール化合物が反応して生成した官能基
    (5)シランカップリング剤由来のグリシジル基に、アミノ基及び(メタ)アクリロイル基を有する化合物、アミノ化合物、及びチオール化合物からなる群より選ばれる少なくとも1種が反応して生成した官能基
    (6)イソシアネート化合物由来のイソシアナト基
    (7)チオール化合物由来のメルカプト基
    A functional group-containing layer laminated in contact with the metal base material and the resin coating layer is provided between the metal base material and the resin coating layer.
    The vehicle side step according to any one of claims 1 to 6, wherein the functional group-containing layer contains at least one functional group selected from the group consisting of the following (1) to (7).
    (1) At least one functional group derived from the silane coupling agent and selected from the group consisting of a glycidyl group, an amino group, a (meth) acryloyl group and a mercapto group (2) An amino group derived from the silane coupling agent. A functional group generated by the reaction of at least one selected from a glycidyl compound and a thiol compound (3) A glycidyl compound, an amino compound, an isocyanate compound, a (meth) acryloyl group and a glycidyl group are added to a mercapto group derived from a silane coupling agent. A functional group produced by the reaction of at least one selected from the group consisting of a compound having a (meth) acryloyl group and a compound having a (meth) acryloyl group and a (meth) acryloyl group derived from a silane coupling agent. (5) A glycidyl group derived from a silane coupling agent is reacted with at least one selected from the group consisting of a compound having an amino group and a (meth) acryloyl group, an amino compound, and a thiol compound. (6) Isocyanato group derived from isocyanate compound (7) Mercapto group derived from thiol compound
  8.  前記金属基材の表面に、ブラスト処理、研磨処理、エッチング処理及び化成処理からなる群より選ばれる少なくとも1種の表面処理が施されており、前記樹脂コーティング層は、前記金属基材の前記表面処理された面の上に積層されている、請求項1から7のいずれか一項に記載の車両用サイドステップ。 The surface of the metal substrate is subjected to at least one surface treatment selected from the group consisting of blast treatment, polishing treatment, etching treatment and chemical conversion treatment, and the resin coating layer is the surface of the metal substrate. The vehicle side step according to any one of claims 1 to 7, which is laminated on the treated surface.
  9.  前記樹脂部材として、ベース樹脂部材と表面樹脂部材とを含み、
     前記ベース樹脂部材の車高方向上側表面に前記金属部材の車高方向下側表面が接合され、
     前記金属部材の車高方向上側表面の一部に前記表面樹脂部材の車高方向下側表面が接合されているとともに、前記金属部材の車高方向上側表面の他部が露出されている、請求項1から8のいずれか一項に記載の車両用サイドステップ。
    The resin member includes a base resin member and a surface resin member.
    The lower surface of the metal member in the vehicle height direction is joined to the upper surface of the base resin member in the vehicle height direction.
    A claim that the lower surface of the surface resin member in the vehicle height is joined to a part of the upper surface of the metal member in the vehicle height direction, and the other part of the upper surface of the metal member in the vehicle height direction is exposed. The vehicle side step according to any one of Items 1 to 8.
  10.  前記金属部材として金属プレートを含む、請求項1から9のいずれか一項に記載の車両用サイドステップ。 The vehicle side step according to any one of claims 1 to 9, which includes a metal plate as the metal member.
  11.  前記金属基材は、A6000系合金のアルミニウム押出材からなり、且つ、引張強度が180MPa以上及びヤング率が60GPa以上の特性を有している請求項1から10のいずれか一項に記載の車両用サイドステップ。 The vehicle according to any one of claims 1 to 10, wherein the metal base material is made of an extruded aluminum material of an A6000 series alloy and has characteristics of a tensile strength of 180 MPa or more and a Young's modulus of 60 GPa or more. For side steps.
  12.  請求項1から11のいずれか一項に記載の車両用サイドステップの製造方法であって、射出成形法、トランスファ成形法、プレス成形法、フィラメントワインディング成形法又はハンドレイアップ成形法により樹脂部材を成形する際に、金属部材の樹脂コーティング層側の面に樹脂部材を接合する車両用サイドステップの製造方法。 The method for manufacturing a side step for a vehicle according to any one of claims 1 to 11, wherein the resin member is formed by an injection molding method, a transfer molding method, a press molding method, a filament winding molding method, or a hand lay-up molding method. A method for manufacturing a side step for a vehicle, in which a resin member is joined to a surface of a metal member on the resin coating layer side during molding.
PCT/JP2020/047272 2020-12-17 2020-12-17 Vehicle side step and method for manufacturing same WO2022130591A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/047272 WO2022130591A1 (en) 2020-12-17 2020-12-17 Vehicle side step and method for manufacturing same
JP2022569638A JP7480865B2 (en) 2020-12-17 2020-12-17 Vehicle side step and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/047272 WO2022130591A1 (en) 2020-12-17 2020-12-17 Vehicle side step and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2022130591A1 true WO2022130591A1 (en) 2022-06-23

Family

ID=82057474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047272 WO2022130591A1 (en) 2020-12-17 2020-12-17 Vehicle side step and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP7480865B2 (en)
WO (1) WO2022130591A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110742A (en) * 2009-11-25 2011-06-09 Kaneka Corp Modified polyolefin resin composition laminated with substrate paper and release film and method of producing the same
JP2014193540A (en) * 2013-03-28 2014-10-09 Dainippon Printing Co Ltd Decorative sheet and decorative material using the same
JP2018172576A (en) * 2017-03-31 2018-11-08 ユニチカ株式会社 Acid-modified polyolefin resin aqueous dispersion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110742A (en) * 2009-11-25 2011-06-09 Kaneka Corp Modified polyolefin resin composition laminated with substrate paper and release film and method of producing the same
JP2014193540A (en) * 2013-03-28 2014-10-09 Dainippon Printing Co Ltd Decorative sheet and decorative material using the same
JP2018172576A (en) * 2017-03-31 2018-11-08 ユニチカ株式会社 Acid-modified polyolefin resin aqueous dispersion

Also Published As

Publication number Publication date
JPWO2022130591A1 (en) 2022-06-23
JP7480865B2 (en) 2024-05-10

Similar Documents

Publication Publication Date Title
JP6918973B2 (en) Composite laminate and its manufacturing method, and metal resin bonded body and its manufacturing method
JP7358792B2 (en) Electronic board housing and its manufacturing method
JP6919075B2 (en) Composite laminates and metal-polyolefin conjugates
JP7273365B2 (en) Crush box and its manufacturing method
JP6964808B2 (en) Composite laminate, its manufacturing method, and metal resin joint
WO2022130833A1 (en) Method for manufacturing metallic member-resin member bonded body, and film
WO2022130591A1 (en) Vehicle side step and method for manufacturing same
JP7322535B2 (en) Automobile back door and manufacturing method thereof
JP6919076B1 (en) Composite laminates and metal-resin joints
WO2022130586A1 (en) Automotive side door and production method therefor
JP2022097168A (en) Vehicular scuff plate and manufacturing method for the same
WO2022130590A1 (en) Back door for automobiles, and method for manufacturing same
JP2022096404A (en) Cross member for roof, roof structure, and manufacturing method for the same
JP2022095441A (en) Pillar for vehicle body of automobile and method for manufacturing the same
JP2022096062A (en) Top cover of battery case and method for manufacturing the same
JP2022095443A (en) Vehicular steering hanger and manufacturing method for the same
JP2022094779A (en) Crash box and manufacturing method for the same
JP2022096454A (en) Radiator and manufacturing method thereof
JP2020197204A (en) Compressor housing and manufacturing method thereof
JP2022094785A (en) Electronic board housing and method for manufacturing the same
JP7242984B2 (en) Portable information terminal housing and manufacturing method thereof
JP6967676B2 (en) Bonds and materials with primers
JP6923706B1 (en) Primer material and conjugate
JP2022133962A (en) On-board camera and method for manufacturing the same
JP2022133953A (en) On-board motor and method for manufacturing the same, and electric compressor including on-board motor and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569638

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965978

Country of ref document: EP

Kind code of ref document: A1