WO2022127771A1 - 一种位相延迟装置及其制备方法、显示设备 - Google Patents

一种位相延迟装置及其制备方法、显示设备 Download PDF

Info

Publication number
WO2022127771A1
WO2022127771A1 PCT/CN2021/137784 CN2021137784W WO2022127771A1 WO 2022127771 A1 WO2022127771 A1 WO 2022127771A1 CN 2021137784 W CN2021137784 W CN 2021137784W WO 2022127771 A1 WO2022127771 A1 WO 2022127771A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal layer
layer
alignment
angle
Prior art date
Application number
PCT/CN2021/137784
Other languages
English (en)
French (fr)
Inventor
赵文卿
Original Assignee
北京瑞波科技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京瑞波科技术有限公司 filed Critical 北京瑞波科技术有限公司
Publication of WO2022127771A1 publication Critical patent/WO2022127771A1/zh
Priority to US18/200,729 priority Critical patent/US11927782B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133636Birefringent elements, e.g. for optical compensation with twisted orientation, e.g. comprising helically oriented LC-molecules or a plurality of twisted birefringent sublayers

Definitions

  • the present specification relates to the field of display technology, and in particular, to a phase retardation device, a preparation method thereof, and a display device.
  • OLED Organic Light Emitting Diode
  • OLED display panels Inside the OLED display panel, in order to solve the problem of contrast ratio caused by the reflection of natural light by the metal inside the OLED display panel, the OLED display can use a phase retardation device (such as a circular polarizer) to control this reflection.
  • a phase retardation device such as a circular polarizer
  • the circular polarizer can be composed of a linear polarizer and two superimposed wave plates, and the two superimposed wave plates can be a half-wave plate and a quarter-wave plate respectively. Therefore, the angle between the fast axis of the quarter wave plate and the linear polarizer is different from the angle between the fast axis of the half wave plate and the linear polarizer.
  • the purpose of the embodiments of this specification is to provide a phase retardation device, a preparation method thereof, and a display device to solve the problems of low preparation efficiency and poor device benignity in the preparation of phase retardation devices in the prior art.
  • the embodiments of this specification provide a phase retardation device, the phase retardation device includes: a linear polarizing layer, a first alignment layer, a first liquid crystal layer and a second liquid crystal layer; the linear polarizing layer is located at a side, for converting the received light into linearly polarized light; the first alignment layer is located on the side of the linearly polarized layer away from the light source, and is used for adjusting the alignment of the first liquid crystal layer based on a preset alignment angle.
  • the liquid crystal is aligned; the first liquid crystal layer is located on the side of the first alignment layer away from the light source, and is used for converting the linearly polarized light into elliptically polarized light; the second liquid crystal layer is located on the side of the first alignment layer.
  • the second liquid crystal layer includes a first sub-section, a second sub-section and a third sub-section, the first sub-section and the first liquid crystal layer Adjacent, the liquid crystal alignment angle of the first subsection is the same as the liquid crystal alignment angle of the first liquid crystal layer, the second subsection is a helical structure with a preset helical angle, and the liquid crystal alignment angle of the third subsection
  • the alignment angle is determined by the preset alignment angle and the preset helical angle
  • the second liquid crystal layer is used to convert the elliptically polarized light into circularly polarized light through the helical structure of the second sub-section.
  • the phase retardation of the first liquid crystal layer is a first preset value
  • the phase retardation of the second liquid crystal layer is a second preset determined based on the first preset value and the preset compensation value. set value.
  • the phase retardation device further includes a second alignment layer, the second alignment layer is located between the first liquid crystal layer and the second liquid crystal layer, for the liquid crystal in the first sub-section
  • the second alignment layer is located between the first liquid crystal layer and the second liquid crystal layer, for the liquid crystal in the first sub-section
  • the liquid crystal of the first sub-section is aligned based on the preset alignment angle.
  • the phase retardation device further includes a refractive film layer, the refractive film layer is adjacent to the third sub-section in the second liquid crystal layer, and is used for adjusting the viewing angle corresponding to the circularly polarized light.
  • N X is the refractive index in the direction of the retardation axis of the refracting film layer
  • NY is the leading phase of the refracting film layer.
  • the refractive index in the axial direction, N Z is the refractive index in the thickness direction of the refractive film layer.
  • the first liquid crystal layer and the second liquid crystal layer include reactive polymer liquid crystals.
  • an embodiment of this specification provides a display device, where the display device includes the phase delay device described in the first aspect.
  • an embodiment of this specification provides a method for preparing a phase delay device, the method is suitable for including the display device described in the second aspect, and the method includes:
  • the helical angle of the second sub-section of the second liquid crystal layer corresponding to the preset alignment angle is determined, so that the elliptically polarized light is in the second sub-section. Under the action of the helical structure, it is converted into circularly polarized light that meets the preset light conversion requirements.
  • the phase retardation device further includes a second alignment layer, and in the preset correspondence relationship between the alignment angle and the helical angle, the second position of the second liquid crystal layer corresponding to the preset alignment angle is determined.
  • the helix angle of the subsection also include:
  • the liquid crystal of the first sub-portion of the second liquid crystal layer is Align.
  • the method before the determining the helical angle of the second sub-portion of the second liquid crystal layer corresponding to the preset alignment angle based on the preset correspondence between the alignment angle and the helical angle, the method further includes:
  • a liquid crystal layer with an anchoring energy greater than a preset anchoring energy is used as the first liquid crystal layer.
  • an embodiment of the present invention provides an electronic device, including a processor, a memory, and a computer program stored on the memory and executable on the processor, when the computer program is executed by the processor.
  • an embodiment of the present invention provides a computer-readable storage medium, characterized in that, a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the phase delay provided in the foregoing embodiment is implemented The steps of the method of making the device.
  • the embodiments of this specification provide a phase retardation device, a preparation method thereof, and a display device.
  • the phase retardation device includes: a linear polarization layer, a first alignment layer, and a first liquid crystal layer. and a second liquid crystal layer, the linear polarizing layer is located on one side of the light source, and is used to convert the received light into linearly polarized light, and the first alignment layer is located on the side of the linear polarizing layer away from the light source, and is used to align the light source based on the preset alignment angle.
  • the liquid crystal of the first liquid crystal layer is aligned, the first liquid crystal layer is located on the side of the first alignment layer away from the light source, and is used for converting linearly polarized light into elliptically polarized light, and the second liquid crystal layer is located in the first liquid crystal layer away from the first
  • the second liquid crystal layer includes a first subsection, a second subsection and a third subsection, the first subsection is adjacent to the first liquid crystal layer, and the liquid crystal alignment angle of the first subsection is the same as that of the first liquid crystal layer.
  • the liquid crystal alignment angles of the layers are the same, the second subsection is a helical structure with a preset helical angle, the liquid crystal alignment angle of the third subsection is determined by the preset alignment angle and the preset helical angle, and the second liquid crystal layer is used to pass the second liquid crystal layer.
  • the helical structure of the subsections converts elliptically polarized light to circularly polarized light.
  • the second liquid crystal layer in the phase retardation device includes the second sub-section having a helical structure
  • the first liquid crystal layer only needs to be aligned once through the first alignment layer
  • the natural light emitted by the light source can be converted into circularly polarized light through the second sub-section in the second liquid crystal layer. Due to the small number of alignment operations, the problem of low production efficiency caused by multiple alignments can be avoided, and the device can also be improved. benign rate.
  • FIG. 1 is a schematic structural diagram 1 of a phase delay device provided in an embodiment of the present specification
  • FIG. 2 is a second structural schematic diagram of a phase delay device provided by an embodiment of the present specification
  • FIG. 3 is a third structural schematic diagram of a phase delay device provided in an embodiment of the present specification.
  • FIG. 4 is a schematic structural diagram of a display device according to an embodiment of the present specification.
  • FIG. 5 is a schematic flowchart 1 of a phase delay device provided by an embodiment of the present specification.
  • FIG. 6 is a second schematic flowchart of the phase delay device provided by the embodiment of the present specification.
  • FIG. 7 is a schematic structural diagram of an electronic device of the present invention.
  • the embodiments of this specification provide a phase delay device, a preparation method thereof, and a display device.
  • FIG. 1 is a schematic structural diagram 1 of a phase retardation device provided by an embodiment of the present specification.
  • the phase retardation device includes: a linear polarizing layer 200, a first alignment layer 300, a first liquid crystal layer 400 and a second liquid crystal layer 500;
  • the linear polarizing layer 200 is located on one side of the light source 100 for converting the received light into linear polarized light.
  • the light source 100 may be any light source 100 capable of emitting natural light, and the linear polarizing layer 200 may include any device capable of converting the natural light emitted by the light source 100 into linearly polarized light, such as a linear polarizer, a wire grid polarizer, and the like.
  • the first alignment layer 300 may be located on the side of the linear polarizing layer 200 away from the light source 100 for aligning the liquid crystal of the first liquid crystal layer 400 based on a preset alignment angle.
  • the preset alignment angle may be the angle between the liquid crystal alignment direction of the first liquid crystal layer 400 and the fast axis of the linear polarizing layer 200 , and the preset alignment angle may be any angle within the preset angle range.
  • the alignment angle for example, the preset angle range can be 5° ⁇ 20°, and the preset alignment angle can be 14°, that is, the first alignment layer 300 can align the liquid crystal of the first liquid crystal layer 400 based on 14°, so that the The angle between the optical axis of a liquid crystal layer 400 and the fast axis of the linear polarizing layer 200 is 14°.
  • a photo-alignment method when performing the alignment of the first alignment layer 300, a photo-alignment method may be used, and in addition to the above, there may also be an alignment method such as rubbing alignment, which may vary according to different actual application scenarios.
  • the alignment process of the first alignment layer 300 is not specifically limited.
  • the first liquid crystal layer 400 may be located on a side of the first alignment layer 300 away from the light source 100 for converting linearly polarized light into elliptically polarized light. Since the liquid crystals in the first liquid crystal layer 400 are aligned in the first alignment layer 300 based on the preset alignment angle, the liquid crystals in the first liquid crystal layer 400 will be aligned in the direction corresponding to the preset alignment angle after coating. After the first alignment layer 300 is fabricated, the first liquid crystal layer 400 may be coated, and then the first liquid crystal layer 400 may be cured by UV light curing.
  • the liquid crystal in the first liquid crystal layer 400 Since the liquid crystal in the first liquid crystal layer 400 does not rotate, the liquid crystal in the first liquid crystal layer 400 goes from the top (ie, the side adjacent to the first alignment layer 300 ) to the bottom (ie, the side opposite to the second liquid crystal layer 500 ). adjacent side) has only one orientation direction.
  • the second liquid crystal layer 500 may be located on a side of the first liquid crystal layer 400 away from the first alignment layer 300 , and the second liquid crystal layer 500 may include a first subsection 501 , a second subsection 502 and a third subsection 503 .
  • the first sub-section 501 may be the side of the second liquid crystal layer 500 adjacent to the first liquid crystal layer 400 , that is, as shown in FIG. 1 , the first sub-section 501 may be the top of the second liquid crystal layer 500 , the second The subsection 502 may be the inside of the second liquid crystal layer 500 , and the third subsection 503 may be the bottom of the second liquid crystal layer 500 .
  • liquid crystal materials used in the first liquid crystal layer 400 and the second liquid crystal layer 500 may be conventional reactive liquid crystals or negatively distributed reactive liquid crystals, which may vary according to the actual application scenarios. The embodiment does not specifically limit this.
  • the first subsection 501 may be adjacent to the first liquid crystal layer 400 , and the liquid crystal alignment angle of the first subsection 501 is the same as that of the first liquid crystal layer 400 . Since the first liquid crystal layer 400 is aligned through the first alignment layer 300 , the anchoring energy used for aligning the first liquid crystal layer 400 can pass through the first liquid crystal layer 400 and reach the first subsurface of the second liquid crystal layer 500 Therefore, under the action of the anchoring energy, the liquid crystal alignment angle of the first sub-portion 501 can be the same as the liquid crystal alignment angle of the first liquid crystal layer 400, that is, the liquid crystal alignment angle of the first sub-portion 501 can be the preset alignment angle.
  • the second sub-section 502 may be a helical structure with a preset helix angle, wherein the preset helix angle may be a helix angle determined according to actual alignment requirements, for example, the helix angle may be 80° ⁇ 90°.
  • the rotation direction of the helical structure of the second sub-section 502 may be a top-down rotation direction, that is, the rotation direction of the second sub-section 502 is the same as the rotation direction of the optical axis of the first liquid crystal layer 400 relative to the optical axis of the linear polarizing layer 200 .
  • the liquid crystal alignment angle of the third sub-section 503 can be determined by a preset alignment angle and a preset helical angle. For example, if the preset alignment angle is 14° and the helical angle is 80° ⁇ 90°, the liquid crystal alignment of the third sub-section 503 The angle may be from 94° to 104°.
  • the second liquid crystal layer 500 may be used to convert elliptically polarized light to circularly polarized light through the helical structure of the second sub-section 502 .
  • the light source 100 emits natural light, it can be converted into linearly polarized light through the linear polarizing layer 200 , and the linearly polarized light can be converted into elliptically polarized light under the action of the first liquid crystal layer 400 .
  • the helical structure of 502 converts elliptically polarized light to circularly polarized light.
  • the effect of wide band can be achieved, and the natural light emitted by the light source 100 can be converted through the spiral structure of the second sub-section 502 of the second liquid crystal layer 500 without aligning the second liquid crystal layer 500
  • the preparation process is simple, and the production efficiency can be improved, that is, the preparation efficiency and benign rate of the phase retardation device can be improved.
  • An embodiment of the present invention provides a phase retardation device.
  • the phase retardation device includes: a linear polarizing layer, a first alignment layer, a first liquid crystal layer and a second liquid crystal layer.
  • the linear polarizing layer is located on one side of the light source and is used to The light is converted into linearly polarized light
  • the first alignment layer is located on the side of the linearly polarized layer away from the light source, and is used to align the liquid crystal of the first liquid crystal layer based on a preset alignment angle
  • the first liquid crystal layer is located in the first alignment layer away from the light source.
  • the second liquid crystal layer is located on the side of the first liquid crystal layer away from the first alignment layer, and the second liquid crystal layer includes a first subsection and a second subsection and the third subsection, the first subsection is adjacent to the first liquid crystal layer, the liquid crystal alignment angle of the first subsection is the same as the liquid crystal alignment angle of the first liquid crystal layer, and the second subsection is a helical structure with a preset helical angle , the liquid crystal alignment angle of the third sub-section is determined by a preset alignment angle and a preset helical angle, and the second liquid crystal layer is used to convert elliptically polarized light into circularly polarized light through the helical structure of the second sub-section.
  • the second liquid crystal layer in the phase retardation device includes the second sub-portion having a helical structure
  • the first liquid crystal layer only needs to be aligned once through the first alignment layer, and the The natural light emitted by the light source can be converted into circularly polarized light through the second sub-section in the second liquid crystal layer. Due to the small number of alignment operations, the problem of low production efficiency caused by multiple alignments can be avoided, and the device can also be improved. benign rate.
  • Embodiments of the present invention provide yet another phase delay device.
  • the phase delay device includes all the functional units of the phase delay device of the above-mentioned first embodiment, and on its basis, it is improved, and the improvements are as follows:
  • the phase retardation of the first liquid crystal layer 400 may be a first preset value. Wherein, for different optical wavebands, different first preset values can be selected as the phase retardation of the first liquid crystal layer 400 . For example, for the 550 nm band of green light, the phase retardation of the first liquid crystal layer 400 may be 190 nm (ie, 190 nm may be selected as the first preset value).
  • the phase retardation amount of the second liquid crystal layer 500 may be the second preset value determined based on the first preset value and the preset compensation value, for example, the second preset wave value may be the first preset value and the preset compensation value If the preset compensation value is any compensation value within the preset compensation range (such as 85% to 100%), then any compensation value can be selected from the preset compensation range to determine the second preset compensation value. If it can be assumed that the first preset value is 190 nm and the preset compensation value is 95%, the corresponding second preset value can be 190 nm*95%. In addition, there may be various methods for determining the second preset value, which are not specifically limited in this embodiment of the present invention. After the second preset value is determined, the phase retardation of the second liquid crystal layer 500 can be determined, so as to perform broadband compensation for the phase retardation of the first liquid crystal layer 400 based on the phase retardation.
  • the phase retardation device may further include a second alignment layer 600 , and the second alignment layer 600 may be located between the first liquid crystal layer 400 and the second liquid crystal layer 500 for liquid crystal alignment in the first sub-section 501
  • the liquid crystal of the first sub-section 501 is aligned based on the preset alignment angle.
  • the liquid crystal alignment angle of the first sub-section 501 may be different from that of the first liquid crystal layer 400.
  • the benign rate of the phase retardation device can be determined by arranging the second alignment layer 600 between the first liquid crystal layer 400 and the second liquid crystal layer 500 to adjust the first alignment of the second liquid crystal layer 500 to the second alignment layer 600 based on a preset alignment angle.
  • the liquid crystals of the subsections 501 are aligned so that the alignment angle of the liquid crystals of the first subsection 501 is the same as the alignment angle of the liquid crystals of the first liquid crystal layer 400 .
  • the phase retardation device may further include a refractive film layer 700 adjacent to the third sub-section 503 in the second liquid crystal layer 500 for adjusting the viewing angle corresponding to the circularly polarized light to achieve wide The effect of perspective.
  • the first liquid crystal layer 400 and the second liquid crystal layer 500 may include reactive polymer liquid crystals (Reactive Mesogen, RM), and photo-alignment molecules may be doped in the RM to simplify the alignment process and improve production efficiency.
  • RM reactive polymer liquid crystals
  • photo-alignment molecules may be doped in the RM to simplify the alignment process and improve production efficiency.
  • a mixture of RM and alignment molecules can be coated on a substrate (such as a flexible ultra-wave substrate) and cured with polarized ultraviolet light to complete the alignment and fabrication of the first liquid crystal layer 400 and the second liquid crystal layer 500 production.
  • the light source 100 After the light source 100 emits natural light, it can be converted into linearly polarized light through the linear polarizing layer 200 , and the linearly polarized light can be converted into elliptically polarized light under the action of the first liquid crystal layer 400 .
  • the helical structure of the part 502 converts the elliptically polarized light into circularly polarized light, and finally the viewing angle corresponding to the circularly polarized light can be adjusted through the refractive film layer 700 to achieve the effect of wide viewing angle.
  • the liquid crystal of the first sub-section 501 can also be aligned by the second alignment layer 600 based on the preset alignment angle, so as to It is ensured that the alignment angle of the liquid crystal of the first sub-section 501 is the same as the alignment angle of the liquid crystal of the first liquid crystal layer 400, thereby improving the benign rate of the phase retardation device.
  • An embodiment of the present invention provides a phase retardation device.
  • the phase retardation device includes: a linear polarizing layer, a first alignment layer, a first liquid crystal layer and a second liquid crystal layer.
  • the linear polarizing layer is located on one side of the light source and is used to The light is converted into linearly polarized light
  • the first alignment layer is located on the side of the linearly polarized layer away from the light source, and is used to align the liquid crystal of the first liquid crystal layer based on a preset alignment angle
  • the first liquid crystal layer is located in the first alignment layer away from the light source.
  • the second liquid crystal layer is located on the side of the first liquid crystal layer away from the first alignment layer, and the second liquid crystal layer includes a first subsection and a second subsection and the third subsection, the first subsection is adjacent to the first liquid crystal layer, the liquid crystal alignment angle of the first subsection is the same as the liquid crystal alignment angle of the first liquid crystal layer, and the second subsection is a helical structure with a preset helical angle , the liquid crystal alignment angle of the third sub-section is determined by a preset alignment angle and a preset helical angle, and the second liquid crystal layer is used to convert elliptically polarized light into circularly polarized light through the helical structure of the second sub-section.
  • the second liquid crystal layer in the phase retardation device includes the second sub-section having a helical structure
  • the first liquid crystal layer only needs to be aligned once through the first alignment layer
  • the natural light emitted by the light source can be converted into circularly polarized light through the second sub-section in the second liquid crystal layer. Due to the small number of alignment operations, the problem of low production efficiency caused by multiple alignments can be avoided, and the device can also be improved. benign rate.
  • An embodiment of the present invention provides a display device, and the display device may include at least one phase delay device as described in the first and second embodiments, wherein:
  • the linear polarizing layer 200 is located on one side of the light source, and is used to convert the received light into linear polarized light.
  • the first alignment layer 300 is located on the side of the linear polarizing layer 200 away from the light source, and is used to align the liquid crystal of the first liquid crystal layer 400 based on a preset alignment angle.
  • the first liquid crystal layer 400 is located on the side of the first alignment layer 300 away from the light source, and is used for converting linearly polarized light into elliptically polarized light.
  • the second liquid crystal layer 500 is located on the side of the first liquid crystal layer 400 away from the first alignment layer 300.
  • the second liquid crystal layer 500 includes a first subsection, a second subsection and a third subsection.
  • the first subsection and the first subsection The liquid crystal layers 400 are adjacent, the liquid crystal alignment angle of the first subsection is the same as the liquid crystal alignment angle of the first liquid crystal layer 400, the second subsection is a helical structure with a predetermined helical angle, and the liquid crystal alignment angle of the third subsection is determined by the predetermined liquid crystal alignment angle.
  • the second liquid crystal layer 500 is used to convert elliptically polarized light into circularly polarized light through the helical structure of the second sub-section.
  • the display device may include a glass cover plate, a phase retardation device, a touch panel layer, a display layer (eg, an OLED display layer), and a protective layer (eg, a backside protective layer) that are adjacent in sequence.
  • a display layer eg, an OLED display layer
  • a protective layer eg, a backside protective layer
  • the glass cover plate may be adjacent to the linear polarizing layer 200 in the phase retardation device, and the touch panel layer may be adjacent to the refractive film layer 700 in the phase retardation device.
  • An embodiment of the present specification provides a display device, the display device includes a phase retardation device, the phase retardation device includes: a linear polarizing layer, a first alignment layer, a first liquid crystal layer and a second liquid crystal layer, the linear polarizing layer is located on the light source. One side is used to convert the received light into linearly polarized light, the first alignment layer is located on the side of the linearly polarized layer away from the light source, and is used to align the liquid crystals of the first liquid crystal layer based on a preset alignment angle.
  • the layer is located on the side of the first alignment layer away from the light source for converting linearly polarized light into elliptically polarized light
  • the second liquid crystal layer is located on the side of the first alignment layer away from the first alignment layer
  • the second liquid crystal layer includes the first liquid crystal layer.
  • a subsection, a second subsection and a third subsection the first subsection is adjacent to the first liquid crystal layer, the liquid crystal alignment angle of the first subsection is the same as that of the first liquid crystal layer, and the second subsection is A helical structure with a preset helical angle, the liquid crystal alignment angle of the third subsection is determined by the preset alignment angle and the preset helical angle, and the second liquid crystal layer is used to convert elliptically polarized light into a circle through the helical structure of the second subsection polarized light.
  • the second liquid crystal layer in the phase retardation device includes the second sub-section having a helical structure
  • the first liquid crystal layer only needs to be aligned once through the first alignment layer
  • the natural light emitted by the light source can be converted into circularly polarized light through the second sub-section in the second liquid crystal layer. Due to the small number of alignment operations, the problem of low production efficiency caused by multiple alignments can be avoided, and the device can also be improved. benign rate.
  • phase delay device provided by an embodiment of the present invention.
  • an embodiment of the present invention also provides a preparation method of a phase delay device.
  • the execution body of the method may be an electronic device.
  • the electronic device can be used to prepare the phase delay device as described in the first and second embodiments.
  • the method may specifically include the following steps:
  • the liquid crystal of the first liquid crystal layer is aligned based on a preset alignment angle in the first alignment layer.
  • the light conversion requirement can be used to determine whether the alignment angle of the third sub-portion of the second liquid crystal layer satisfies the preset angle range.
  • the preset correspondence between the alignment angle and the helix angle may be determined based on the historical alignment angle, the historical helix angle, and the light conversion requirement, and the preset corresponding relationship between the alignment angle and the helix angle may be determined based on the preset correspondence between the alignment angle and the helix angle.
  • the helix angle of the second subsection of the second liquid crystal layer may be determined based on the historical alignment angle, the historical helix angle, and the light conversion requirement, and the preset corresponding relationship between the alignment angle and the helix angle may be determined based on the preset correspondence between the alignment angle and the helix angle.
  • the embodiments of this specification provide a method for preparing a phase retardation device, the phase retardation device comprising: a linear polarizing layer, a first alignment layer, a first liquid crystal layer and a second liquid crystal layer, the linear polarizing layer is located on one side of the light source, and the In order to convert the received light into linearly polarized light, the first alignment layer is located on the side of the linearly polarized layer away from the light source, and is used to align the liquid crystal of the first liquid crystal layer based on a preset alignment angle, and the first liquid crystal layer is located on the first The side of the alignment layer away from the light source is used to convert linearly polarized light into elliptically polarized light, the second liquid crystal layer is located on the side of the first liquid crystal layer away from the first alignment layer, and the second liquid crystal layer includes a first subsection, The second subsection and the third subsection, the first subsection is adjacent to the first liquid crystal layer, the liquid crystal alignment angle of the first subsection is the same as the liquid crystal alignment angle of the
  • the second liquid crystal layer in the phase retardation device includes the second sub-section having a helical structure
  • the first liquid crystal layer only needs to be aligned once through the first alignment layer
  • the natural light emitted by the light source can be converted into circularly polarized light through the second sub-section in the second liquid crystal layer. Due to the small number of alignment operations, the problem of low production efficiency caused by multiple alignments can be avoided, and the device can also be improved. benign rate.
  • an embodiment of the present invention also provides a method for preparing a phase delay device.
  • the execution body of the method may be an electronic device, and the electronic device may It is used to prepare the phase delay device as in the above-mentioned embodiment 1 and embodiment 2.
  • the method may specifically include the following steps:
  • the liquid crystal of the first liquid crystal layer is aligned based on a preset alignment angle in the first alignment layer.
  • the alignment angle of the liquid crystal of the first sub-portion of the second liquid crystal layer may be different from the alignment angle of the first liquid crystal layer due to factors such as insufficient anchoring energy or operational deviation.
  • the liquid crystal alignment angle of the first sub-section of the layer is detected, so that the liquid crystal alignment angle of the first sub-section is the same as the preset alignment angle, that is, after S604, S606 or S608 can be continued.
  • the liquid crystal in the first sub-portion of the second liquid crystal layer may be aligned based on the second alignment layer and a preset alignment angle, so that the first sub-section of the second liquid crystal layer is aligned.
  • Part of the liquid crystal alignment angle is the same as the preset alignment angle.
  • the liquid crystal layer with the anchoring energy greater than the preset anchoring energy is used as the first liquid crystal layer.
  • the anchoring energy may be a force for restricting the alignment direction of the liquid crystal molecules.
  • the first anchoring energy corresponding to the first liquid crystal layer at this time can be obtained, and the first anchoring energy can be used as the preset anchoring energy , and then determine the liquid crystal layer with the anchoring energy greater than the preset anchoring energy as the first liquid crystal layer to ensure that the liquid crystal alignment angle of the first liquid crystal layer is the same as the liquid crystal alignment angle of the first subsection.
  • the above-mentioned determination method of the preset anchoring energy is an optional and achievable determination method.
  • various determination methods which may be different according to different actual application scenarios. This embodiment of the invention does not specifically limit this.
  • the embodiments of this specification provide a method for preparing a phase retardation device, the phase retardation device comprising: a linear polarizing layer, a first alignment layer, a first liquid crystal layer and a second liquid crystal layer, the linear polarizing layer is located on one side of the light source, and the In order to convert the received light into linearly polarized light, the first alignment layer is located on the side of the linearly polarized layer away from the light source, and is used to align the liquid crystal of the first liquid crystal layer based on a preset alignment angle, and the first liquid crystal layer is located on the first The side of the alignment layer away from the light source is used to convert linearly polarized light into elliptically polarized light, the second liquid crystal layer is located on the side of the first liquid crystal layer away from the first alignment layer, and the second liquid crystal layer includes a first subsection, The second subsection and the third subsection, the first subsection is adjacent to the first liquid crystal layer, the liquid crystal alignment angle of the first subsection is the same as the liquid crystal alignment angle of the
  • the second liquid crystal layer in the phase retardation device includes the second sub-section having a helical structure
  • the first liquid crystal layer only needs to be aligned once through the first alignment layer
  • the natural light emitted by the light source can be converted into circularly polarized light through the second sub-section in the second liquid crystal layer. Due to the small number of alignment operations, the problem of low production efficiency caused by multiple alignments can be avoided, and the device can also be improved. benign rate.
  • FIG. 7 is a schematic diagram of a hardware structure of an electronic device implementing Embodiment 4 and Embodiment 5 of the present invention.
  • the electronic device 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710, and Power supply 711 and other components.
  • a radio frequency unit 701 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710, and Power supply 711 and other components.
  • the structure of the electronic device shown in FIG. 7 does not constitute a limitation on the electronic device, and the electronic device may include more or less components than the one shown, or combine some components, or different components layout.
  • the electronic device includes but is not limited to a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal,
  • the processor 710 is configured to: align the liquid crystal of the first liquid crystal layer in the first alignment layer based on a preset alignment angle; Corresponding to the helical angle of the second sub-section of the second liquid crystal layer, so that the elliptically polarized light is converted into circularly polarized light that meets preset light conversion requirements under the action of the helical structure of the second sub-section.
  • the processor 710 is further configured to: acquire the liquid crystal alignment angle of the first sub-portion of the second liquid crystal layer; when it is detected that the liquid crystal alignment angle is different from the preset alignment angle, in the The second alignment layer, based on the preset alignment angle, aligns the liquid crystal in the first sub-portion of the second liquid crystal layer.
  • the processor 710 is further configured to: acquire the liquid crystal alignment angle of the first sub-portion of the second liquid crystal layer; and in the case where it is detected that the liquid crystal alignment angle is different from the preset alignment angle A liquid crystal layer with energy greater than a preset anchoring energy is used as the first liquid crystal layer.
  • An embodiment of the present invention provides an electronic device for preparing a phase retardation device, the phase retardation device comprising: a linear polarizing layer, a first alignment layer, a first liquid crystal layer and a second liquid crystal layer, and the linear polarizing layer is located at the light source
  • the side of the linear polarization layer is used to convert the received light into linearly polarized light.
  • the first alignment layer is located on the side of the linearly polarized layer away from the light source, and is used to align the liquid crystal of the first liquid crystal layer based on a preset alignment angle.
  • the liquid crystal layer is located on the side of the first alignment layer away from the light source for converting linearly polarized light into elliptically polarized light
  • the second liquid crystal layer is located on the side of the first alignment layer away from the first alignment layer
  • the second liquid crystal layer includes The first subsection, the second subsection and the third subsection, the first subsection is adjacent to the first liquid crystal layer, the liquid crystal alignment angle of the first subsection is the same as the liquid crystal alignment angle of the first liquid crystal layer, and the second subsection is a helical structure with a preset helical angle, the liquid crystal alignment angle of the third subsection is determined by the preset alignment angle and the preset helical angle, and the second liquid crystal layer is used to convert the elliptically polarized light into elliptically polarized light through the helical structure of the second subsection.
  • the second liquid crystal layer in the phase retardation device includes the second sub-section having a helical structure
  • the first liquid crystal layer only needs to be aligned once through the first alignment layer
  • the natural light emitted by the light source can be converted into circularly polarized light through the second sub-section in the second liquid crystal layer. Due to the small number of alignment operations, the problem of low production efficiency caused by multiple alignments can be avoided, and the device can also be improved. benign rate.
  • the radio frequency unit 701 can be used for receiving and sending signals during sending and receiving of information or during a call. Specifically, after receiving the downlink data from the base station, it is processed by the processor 710; The uplink data is sent to the base station.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 701 can also communicate with the network and other devices through a wireless communication system.
  • the electronic device provides the user with wireless broadband Internet access through the network module 702, such as helping the user to send and receive emails, browse web pages, access streaming media, and the like.
  • the audio output unit 703 may convert audio data received by the radio frequency unit 701 or the network module 702 or stored in the memory 709 into audio signals and output as sound. Also, the audio output unit 703 may also provide audio output related to a specific function performed by the electronic device 700 (eg, call signal reception sound, message reception sound, etc.).
  • the audio output unit 703 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 704 is used to receive audio or video signals.
  • the input unit 704 may include a graphics processor (Graphics Processing Unit, GPU) 7041 and a microphone 7042, and the graphics processor 7041 is used for still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode data is processed.
  • the processed image frames may be displayed on the display unit 706 .
  • the image frames processed by the graphics processor 7041 may be stored in the memory 709 (or other storage medium) or transmitted via the radio frequency unit 701 or the network module 702 .
  • the microphone 7042 can receive sound and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be transmitted to a mobile communication base station via the radio frequency unit 701 for output in the case of a telephone call mode.
  • the electronic device 700 also includes at least one sensor 705, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 7061 according to the brightness of the ambient light, and the proximity sensor can turn off the display panel 7061 and the display panel 7061 when the electronic device 700 is moved to the ear. / or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes), and can detect the magnitude and direction of gravity when stationary, and can be used to identify the posture of electronic devices (such as horizontal and vertical screen switching, related games , magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; the sensor 705 may also include a fingerprint sensor, a pressure sensor, an iris sensor, a molecular sensor, a gyroscope, a barometer, a hygrometer, a thermometer, Infrared sensors, etc., are not repeated here.
  • the display unit 706 is used to display information input by the user or information provided to the user.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a Liquid Crystal Display (LCD), an Organic Light-Emitting Diode (OLED), or the like.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the user input unit 707 may be used to receive input numerical or character information, and generate key signal input related to user settings and function control of the electronic device.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072 .
  • the touch panel 7071 also referred to as a touch screen, can collect touch operations by the user on or near it (such as the user's finger, stylus, etc., any suitable object or attachment on or near the touch panel 7071). operate).
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it to the touch controller.
  • the touch panel 7071 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 707 may also include other input devices 7072 .
  • other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the touch panel 7071 can be covered on the display panel 7061.
  • the touch panel 7071 detects a touch operation on or near it, it transmits it to the processor 710 to determine the type of the touch event, and then the processor 710 determines the type of the touch event according to the touch
  • the type of event provides a corresponding visual output on display panel 7061.
  • the touch panel 7071 and the display panel 7061 are used as two independent components to realize the input and output functions of the electronic device, but in some embodiments, the touch panel 7071 and the display panel 7061 may be integrated
  • the implementation of the input and output functions of the electronic device is not specifically limited here.
  • the interface unit 708 is an interface for connecting an external device to the electronic device 700 .
  • external devices may include wired or wireless headset ports, external power (or battery charger) ports, wired or wireless data ports, memory card ports, ports for connecting devices with identification modules, audio input/output (I/O) ports, video I/O ports, headphone ports, and more.
  • the interface unit 708 may be used to receive input from external devices (eg, data information, power, etc.) and transmit the received input to one or more elements within the electronic device 700 or may be used between the electronic device 700 and the external Transfer data between devices.
  • the memory 709 may be used to store software programs as well as various data.
  • the memory 709 may mainly include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of the mobile phone (such as audio data, phone book, etc.), etc.
  • memory 709 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 710 is the control center of the electronic device, using various interfaces and lines to connect various parts of the entire electronic device, by running or executing the software programs and/or modules stored in the memory 709, and calling the data stored in the memory 709. , perform various functions of electronic equipment and process data, so as to monitor electronic equipment as a whole.
  • the processor 710 may include one or more processing units; preferably, the processor 710 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs, etc., and the modem
  • the processor mainly handles wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 710.
  • the electronic device 700 may also include a power supply 711 (such as a battery) for supplying power to various components.
  • a power supply 711 (such as a battery) for supplying power to various components.
  • the power supply 711 may be logically connected to the processor 710 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system and other functions.
  • an embodiment of the present invention further provides an electronic device, including a processor 710, a memory 709, and a computer program stored in the memory 709 and running on the processor 710, when the computer program is executed by the processor 710 .
  • an electronic device including a processor 710, a memory 709, and a computer program stored in the memory 709 and running on the processor 710, when the computer program is executed by the processor 710 .
  • Embodiments of the present invention further provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, each process of the foregoing power supply method embodiments can be achieved, and the same technical effect can be achieved , in order to avoid repetition, it will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM), magnetic disk or optical disk and so on.
  • An embodiment of the present invention provides a computer-readable storage medium for preparing a phase retardation device, the phase retardation device comprising: a linear polarizing layer, a first alignment layer, a first liquid crystal layer and a second liquid crystal layer, and the linear polarizing layer is located at the light source
  • the side of the linear polarization layer is used to convert the received light into linearly polarized light.
  • the first alignment layer is located on the side of the linearly polarized layer away from the light source, and is used to align the liquid crystal of the first liquid crystal layer based on a preset alignment angle.
  • the liquid crystal layer is located on the side of the first alignment layer away from the light source for converting linearly polarized light into elliptically polarized light
  • the second liquid crystal layer is located on the side of the first alignment layer away from the first alignment layer
  • the second liquid crystal layer includes The first subsection, the second subsection and the third subsection, the first subsection is adjacent to the first liquid crystal layer, the liquid crystal alignment angle of the first subsection is the same as the liquid crystal alignment angle of the first liquid crystal layer, and the second subsection is a helical structure with a preset helical angle, the liquid crystal alignment angle of the third subsection is determined by the preset alignment angle and the preset helical angle, and the second liquid crystal layer is used to convert the elliptically polarized light into elliptically polarized light through the helical structure of the second subsection.
  • the second liquid crystal layer in the phase retardation device includes the second sub-section having a helical structure
  • the first liquid crystal layer only needs to be aligned once through the first alignment layer
  • the natural light emitted by the light source can be converted into circularly polarized light through the second sub-section in the second liquid crystal layer. Due to the small number of alignment operations, the problem of low production efficiency caused by multiple alignments can be avoided, and the device can also be improved. benign rate.
  • embodiments of the present invention may be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-persistent memory in computer readable media, random access memory (RAM) and/or non-volatile memory, such as read only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
  • RAM random access memory
  • ROM read only memory
  • flash RAM flash memory
  • Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape-disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.
  • embodiments of the present invention may be provided as a method, system or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

本说明书实施例公开了一种位相延迟装置及其制备方法、显示设备,所述位相延迟装置包括:线性偏振层、第一配向层、第一液晶层和第二液晶层;所述线性偏振层位于光源的一侧;所述第一配向层位于所述线性偏振层远离所述光源的一侧;所述第一液晶层位于所述第一配向层中远离所述光源的一侧;所述第二液晶层位于所述第一液晶层中远离所述第一配向层的一侧,所述第二液晶层包括第一子部分、第二子部分和第三子部分,所述第一子部分与所述第一液晶层相邻,所述第一子部分的液晶配向角度与所述第一液晶层的液晶配向角度相同,所述第二子部分为具有预设螺旋角度的螺旋结构,所述第三子部分的液晶配向角度由所述预设配向角度和所述预设螺旋角度确定。

Description

一种位相延迟装置及其制备方法、显示设备 技术领域
本说明书涉及显示技术领域,尤其涉及一种位相延迟装置及其制备方法、显示设备。
背景技术
随着有机发光二极管(Organic Light Emitting Diode,OLED)技术的迅速发展,越来越多的如手机、平板电脑等电子设备开始采用OLED显示面板。在OLED显示面板内部,为解决由于OLED显示面板内部的金属对自然光的反射导致的对比度的问题,OLED显示器可以使用位相延迟装置(如圆偏光片)来控制这种反射。
圆偏光片可以由线性偏振片和两个叠加波片组成,两个叠加的波片可以分别为一个二分之一波片和一个四分之一波片,由于圆偏光片需具备宽波段的表现,所以,四分之一波片与线性偏振片的快轴夹角,与二分之一波片与线性偏振片的快轴夹角不同。
所以,在制备圆偏光片时,需要分别对二分之一波片和四分之一波片基于不同的配向角度进行一次配向(即需要进行至少2次配向),由于配向工艺的复杂度高,所以多次配向会导致位相延迟装置的制备效率低,装置良性率差。
发明内容
本说明书实施例的目的是提供一种位相延迟装置及其制备方法、显示设备,以解决现有技术中存在的在制备位相延迟装置时存在的制备效率低、装置良性率差的问题。
为解决上述技术问题,本说明书实施例是这样实现的:
第一方面,本说明书实施例提供的一种位相延迟装置,该位相延迟装置包括:线性偏振层、第一配向层、第一液晶层和第二液晶层;所述线性偏振层位 于光源的一侧,用于将接收到的光线转换为线性偏振光;所述第一配向层位于所述线性偏振层远离所述光源的一侧,用于基于预设配向角度对所述第一液晶层的液晶进行配向;所述第一液晶层位于所述第一配向层中远离所述光源的一侧,用于将所述线性偏振光转换为椭圆偏振光;所述第二液晶层位于所述第一液晶层中远离所述第一配向层的一侧,所述第二液晶层包括第一子部分、第二子部分和第三子部分,所述第一子部分与所述第一液晶层相邻,所述第一子部分的液晶配向角度与所述第一液晶层的液晶配向角度相同,所述第二子部分为具有预设螺旋角度的螺旋结构,所述第三子部分的液晶配向角度由所述预设配向角度和所述预设螺旋角度确定,所述第二液晶层用于通过所述第二子部分的螺旋结构将所述椭圆偏振光转换为圆偏振光。
可选地,所述第一液晶层的位相延迟量为第一预设值,所述第二液晶层的位相延迟量为基于所述第一预设值和预设补偿值确定的第二预设值。
可选地,所述位相延迟装置还包括第二配向层,所述第二配向层位于所述第一液晶层和所述第二液晶层之间,用于在所述第一子部分的液晶配向角度与所述第一液晶层的液晶配向角度不同时,基于所述预设配向角度对所述第一子部分的液晶进行配向。
可选地,所述位相延迟装置还包括折射膜层,所述折射膜层与所述第二液晶层中的第三子部分相邻,用于调整所述圆偏振光对应的视角。
可选地,所述折射膜层的折射率满足N Z>N X=N Y,N X为所述折射膜层的滞后相轴方向的折射率,N Y为所述折射膜层的超前相轴方向的折射率,N Z为所述折射膜层的厚度方向的折射率。
可选地,所述第一液晶层和所述第二液晶层包括反应型聚合物液晶。
第二方面,本说明书实施例提供了显示设备,该显示设备包括上述第一方面所述的位相延迟装置。
第三方面,本说明书实施例提供了一种位相延迟装置的制备方法,该方法适用于包含第二方面所述显示设备,所述方法包括:
在第一配向层基于预设配向角度,对第一液晶层的液晶进行配向;
基于配向角度与螺旋角度的预设对应关系,确定与所述预设配向角度对应的所述第二液晶层的第二子部分的螺旋角度,以使椭圆偏振光在所述第二子部分的螺旋结构的作用下,转换为满足预设光转换需求的圆偏振光。
可选地,所述位相延迟装置还包括第二配向层,在所述基于配向角度与螺旋角度的预设对应关系,确定与所述预设配向角度对应的所述第二液晶层的第二子部分的螺旋角度之前,还包括:
获取所述第二液晶层的第一子部分的液晶配向角度;
在检测到所述液晶配向角度与所述预设配向角度不同的情况下,在所述第二配向层,基于所述预设配向角度,对所述第二液晶层的第一子部分的液晶进行配向。
可选地,在所述基于配向角度与螺旋角度的预设对应关系,确定与所述预设配向角度对应的所述第二液晶层的第二子部分的螺旋角度之前,还包括:
获取所述第二液晶层的第一子部分的液晶配向角度;
在检测到所述液晶配向角度与所述预设配向角度不同的情况下,将锚定能大于预设锚定能的液晶层作为所述第一液晶层。
第四方面,本发明实施例提供一种电子设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述实施例提供的位相延迟装置的制备方法的步骤。
第五方面,本发明实施例提供一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现上述实施例提供的位相延迟装置的制备方法的步骤。
由以上本说明书实施例提供的技术方案可见,本说明书实施例提供了一种位相延迟装置及其制备方法、显示设备,该位相延迟装置包括:线性偏振层、第一配向层、第一液晶层和第二液晶层,线性偏振层位于光源的一侧,用于将接收到的光线转换为线性偏振光,第一配向层位于线性偏振层远离光源的一侧, 用于基于预设配向角度对第一液晶层的液晶进行配向,第一液晶层位于第一配向层中远离光源的一侧,用于将线性偏振光转换为椭圆偏振光,第二液晶层位于第一液晶层中远离第一配向层的一侧,第二液晶层包括第一子部分、第二子部分和第三子部分,第一子部分与第一液晶层相邻,第一子部分的液晶配向角度与第一液晶层的液晶配向角度相同,第二子部分为具有预设螺旋角度的螺旋结构,第三子部分的液晶配向角度由预设配向角度和预设螺旋角度确定,第二液晶层用于通过第二子部分的螺旋结构将椭圆偏振光转换为圆偏振光。这样,由于该位相延迟装置中的第二液晶层包括具有螺旋结构的第二子部分,所以,在制备该位相延迟装置时,只需要通过第一配向层对第一液晶层进行一次配向,就可以通过第二液晶层中的第二子部分,将光源发出的自然光转换为圆偏振光,由于配向操作次数少,所以可以避免多次配向导致的制备效率低的问题,同时也可以提高装置的良性率。
附图说明
为了更清楚地说明本说明书实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本说明书实施例提供的位相延迟装置的结构示意图一;
图2为本说明书实施例提供的位相延迟装置的结构示意图二;
图3为本说明书实施例提供的位相延迟装置的结构示意图三;
图4为本说明书实施例提供的显示设备的结构示意图;
图5为本说明书实施例提供的位相延迟装置的流程示意图一;
图6为本说明书实施例提供的位相延迟装置的流程示意图二;
图7为本发明一种电子设备的结构示意图。
具体实施方式
本说明书实施例提供一种位相延迟装置及其制备方法、显示设备。
为了使本技术领域的人员更好地理解本说明书中的技术方案,下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本说明书保护的范围。
实施例一
图1为本说明书实施例提供的位相延迟装置的结构示意图一,该位相延迟装置包括:线性偏振层200、第一配向层300、第一液晶层400和第二液晶层500;
线性偏振层200位于光源100的一侧,用于将接收到的光线转换为线性偏振光。光源100可以是任意能够发出自然光的光源100,线性偏振层200可以包括任意能够将光源100发出的自然光转换为线性偏振光的装置,如线性偏振片、线栅起偏器等。
第一配向层300可以位于线性偏振层200远离光源100的一侧,用于基于预设配向角度对第一液晶层400的液晶进行配向。其中,如图2所示,预设配向角度可以是第一液晶层400的液晶排列方向与线性偏振层200的快轴之间的夹角,预设配向角度可以为预设角度范围内的任意配向角度,如预设角度范围可以为5°~20°,预设配向角度可以为14°,即第一配向层300可以基于14°,对第一液晶层400的液晶进行配向,以使第一液晶层400的光轴与线性偏振层200的快轴之间的夹角为14°。
其中,在进行第一配向层300的配向时,可以采用光配向方式,除以之外,还可以有摩擦配向等配向方式,可以根据实际应用场景的不同而有所不同,本发明实施例对第一配向层300的配向工艺不做具体的限定。
第一液晶层400可以位于第一配向层300中远离光源100的一侧,用于将 线性偏振光转换为椭圆偏振光。由于在第一配向层300基于预设配向角度对第一液晶层400的液晶进行了配向,所以,第一液晶层400的液晶在涂布后会按照预设配向角度对应的方向进行排列。第一配向层300制作完成后,可以对第一液晶层400进行涂布,然后可以使用UV光固化对第一液晶层400进行固化工艺。
由于第一液晶层400内的液晶不存在旋转,所以,第一液晶层400内的液晶从顶部(即与第一配向层300相邻的一侧)到底部(即与第二液晶层500相邻的一侧)只有一种配向方向。
第二液晶层500可以位于第一液晶层400中远离第一配向层300的一侧,第二液晶层500可以包括第一子部分501、第二子部分502和第三子部分503。其中,第一子部分501可以为第二液晶层500与第一液晶层400相邻的一侧,即如图1所示,第一子部分501可以为第二液晶层500的顶部,第二子部分502可以为第二液晶层500的内部,第三子部分503可以为第二液晶层500的底部。
其中,第一液晶层400和第二液晶层500采用的液晶材料可以是常规的反应型液晶,也可以采用负性分布的反应型液晶,可以根据实际应用场景的不同而有所不同,本发明实施例对此不做具体限定。
第一子部分501可以与第一液晶层400相邻,第一子部分501的液晶配向角度与第一液晶层400的液晶配向角度相同。由于通过第一配向层300对第一液晶层400进行配向时,用于对第一液晶层400进行配向的锚定能可以穿过第一液晶层400,到达第二液晶层500的第一子部分501,所以,在锚定能的作用下,第一子部分501的液晶配向角度可以与第一液晶层400的液晶配向角度相同,即第一子部分501的液晶配向角度可以为预设配向角度。
第二子部分502可以为具有预设螺旋角度的螺旋结构,其中,预设螺旋角度可以为根据实际配向需求确定的螺旋角度,如螺旋角度可以为80°~90°。第二子部分502的螺旋结构的旋转方向可以是自上而下的旋转方向,即第二子部分502的旋转方向与第一液晶层400的光轴相对线性偏振层200光轴的旋转 方向相同。
其中,为实现第二子部分502的螺旋结构,可以通过对向列相液晶添加手性剂来达成,除此之外还可以有多种实现方式,本发明实施例对此不做具体限定。
第三子部分503的液晶配向角度可以由预设配向角度和预设螺旋角度确定,例如,预设配向角度为14°,螺旋角度为80°~90°,则第三子部分503的液晶配向角度可以为94°~104°。
第二液晶层500可以用于通过第二子部分502的螺旋结构将椭圆偏振光转换为圆偏振光。光源100在发出自然光后,可以经由线性偏振层200转换为线性偏振光,线性偏振光可以在第一液晶层400的作用下转换为椭圆偏振光,在通过第二液晶层500的第二子部分502的螺旋结构,将椭圆偏振光转换为圆偏振光。通过一次配向操作,就可以实现宽波段的效果,而不需要对第二液晶层500进行配向,就可以通过第二液晶层500的第二子部分502的螺旋结构,将光源100发出的自然光转换为圆偏振光,制备工序简单,可以提高生产效率,即可以提高位相延迟装置的制备效率以及良性率。
本发明实施例提供一种位相延迟装置,该位相延迟装置包括:线性偏振层、第一配向层、第一液晶层和第二液晶层,线性偏振层位于光源的一侧,用于将接收到的光线转换为线性偏振光,第一配向层位于线性偏振层远离光源的一侧,用于基于预设配向角度对第一液晶层的液晶进行配向,第一液晶层位于第一配向层中远离光源的一侧,用于将线性偏振光转换为椭圆偏振光,第二液晶层位于第一液晶层中远离第一配向层的一侧,第二液晶层包括第一子部分、第二子部分和第三子部分,第一子部分与第一液晶层相邻,第一子部分的液晶配向角度与第一液晶层的液晶配向角度相同,第二子部分为具有预设螺旋角度的螺旋结构,第三子部分的液晶配向角度由预设配向角度和预设螺旋角度确定,第二液晶层用于通过第二子部分的螺旋结构将椭圆偏振光转换为圆偏振光。这样,由于该位相延迟装置中的第二液晶层包括具有螺旋结构的第二子部分,所以, 在制备该位相延迟装置时,只需要通过第一配向层对第一液晶层进行一次配向,就可以通过第二液晶层中的第二子部分,将光源发出的自然光转换为圆偏振光,由于配向操作次数少,所以可以避免多次配向导致的制备效率低的问题,同时也可以提高装置的良性率。
实施例二
本发明实施例提供又一种位相延迟装置。该位相延迟装置包含了上述实施例一的位相延迟装置的全部功能单元,并在其基础上,对其进行了改进,改进内容如下:
第一液晶层400的位相延迟量可以为第一预设值。其中,对于不同的光波段,可以选取不同的第一预设值作为第一液晶层400的位相延迟量。例如,对于绿光550nm波段,第一液晶层400的位相延迟量可以为190nm(即可以选取190nm作为第一预设值)。
第二液晶层500的位相延迟量可以为基于第一预设值和预设补偿值确定的第二预设值,例如,第二预设波值可以为第一预设值与预设补偿值的乘积,假设预设补偿值为预设补偿范围(如85%~100%)内的任意一个补偿值,那么,可以从预设补偿范围中选取任意一个补偿值,用以确定第二预设值,如可以假设第一预设值为190nm,预设补偿值为95%,则对应的第二预设值可以为190nm*95%。此外,第二预设值的确定方法可以有多种,本发明实施例对此不做具体限定。在确定了第二预设值后,可以确定第二液晶层500的位相延迟量,以基于该位相延迟量对第一液晶层400进行位相延迟量的宽波段补偿。
如图3所示,位相延迟装置还可以包括第二配向层600,第二配向层600可以位于第一液晶层400和第二液晶层500之间,用于在第一子部分501的液晶配向角度与第一液晶层400的液晶配向角度不同时,基于预设配向角度对第一子部分501的液晶进行配向。由于在实际操作中,由于存在第一配向层300的锚定能不够强等因素,可能会导致第一子部分501的液晶配向角度与第一液 晶层400的液晶配向角度不同,所以,为提高位相延迟装置的良性率,可以在第一液晶层400和第二液晶层500之间布置第二配向层600,以在第二配向层600基于预设配向角度对第二液晶层500的第一子部分501的液晶进行配向,使第一子部分501的液晶配向角度与第一液晶层400的液晶配向角度相同。
如图3所示,位相延迟装置还可以包括折射膜层700,折射膜层700与第二液晶层500中的第三子部分503相邻,用于调整圆偏振光对应的视角,以实现广视角的效果。
折射膜层700的折射率可以满足N Z>N X=N Y,其中,N X为折射膜层的滞后相轴方向的折射率,N Y为折射膜层的超前相轴方向的折射率,N Z为折射膜层的厚度方向的折射率,例如,折射膜层700可以为Posi-C层。
第一液晶层400和第二液晶层500可以包括反应型聚合物液晶(Reactive Mesogen,RM),可以在RM中参杂光配向分子,简化配向的过程,提高生产效率。例如,可以在基材(如柔性超波基材)上涂布RM和配向分子的混合物,用偏振的紫外光进行固化,以完成第一液晶层400的配向和制作,以及第二液晶层500的制作。
光源100在发出自然光后,可以经由线性偏振层200转换为线性偏振光,线性偏振光可以在第一液晶层400的作用下,转换为椭圆偏振光,在通过第二液晶层500的第二子部分502的螺旋结构,将椭圆偏振光转换为圆偏振光,最后可以经由折射膜层700,调整圆偏振光对应的视角,以实现广视角的效果。其中,如果第一子部分501的液晶配向角度与第一液晶层400的液晶配向角度不同,还可以通过第二配向层600基于预设配向角度,对第一子部分501的液晶进行配向,以保证第一子部分501的液晶配向角度与第一液晶层400的液晶配向角度相同,提高位相延迟装置的良性率。
本发明实施例提供一种位相延迟装置,该位相延迟装置包括:线性偏振层、第一配向层、第一液晶层和第二液晶层,线性偏振层位于光源的一侧,用于将接收到的光线转换为线性偏振光,第一配向层位于线性偏振层远离光源的一侧, 用于基于预设配向角度对第一液晶层的液晶进行配向,第一液晶层位于第一配向层中远离光源的一侧,用于将线性偏振光转换为椭圆偏振光,第二液晶层位于第一液晶层中远离第一配向层的一侧,第二液晶层包括第一子部分、第二子部分和第三子部分,第一子部分与第一液晶层相邻,第一子部分的液晶配向角度与第一液晶层的液晶配向角度相同,第二子部分为具有预设螺旋角度的螺旋结构,第三子部分的液晶配向角度由预设配向角度和预设螺旋角度确定,第二液晶层用于通过第二子部分的螺旋结构将椭圆偏振光转换为圆偏振光。这样,由于该位相延迟装置中的第二液晶层包括具有螺旋结构的第二子部分,所以,在制备该位相延迟装置时,只需要通过第一配向层对第一液晶层进行一次配向,就可以通过第二液晶层中的第二子部分,将光源发出的自然光转换为圆偏振光,由于配向操作次数少,所以可以避免多次配向导致的制备效率低的问题,同时也可以提高装置的良性率。
实施例三
本发明实施例提供一种显示设备,该显示设备中可以包含至少一个如上述实施例一和实施例二中的位相延迟装置,其中:
线性偏振层200位于光源的一侧,用于将接收到的光线转换为线性偏振光。
第一配向层300位于线性偏振层200远离光源的一侧,用于基于预设配向角度对第一液晶层400的液晶进行配向。
第一液晶层400位于第一配向层300中远离光源的一侧,用于将线性偏振光转换为椭圆偏振光。
第二液晶层500位于第一液晶层400中远离第一配向层300的一侧,地二液晶层500包括第一子部分、第二子部分和第三子部分,第一子部分与第一液晶层400相邻,第一子部分的液晶配向角度与第一液晶层400的液晶配向角度相同,第二子部分为具有预设螺旋角度的螺旋结构,第三子部分的液晶配向角度由预设配向角度和预设螺旋角度确定,地二液晶层500用于通过第二子部分 的螺旋结构将椭圆偏振光转换为圆偏振光。
如图4所示,显示设备可以包括依次相邻的玻璃盖板、位相延迟装置、触控面板层、显示层(如OLED显示层),以及保护层(如背面保护层)。
其中,玻璃盖板可以与位相延迟装置中的线性偏振层200相邻,触控面板层可以与位相延迟装置中的折射膜层700相邻。
本说明书实施例提供了一种显示设备,该显示设备包括相位延迟装置,该位相延迟装置包括:线性偏振层、第一配向层、第一液晶层和第二液晶层,线性偏振层位于光源的一侧,用于将接收到的光线转换为线性偏振光,第一配向层位于线性偏振层远离光源的一侧,用于基于预设配向角度对第一液晶层的液晶进行配向,第一液晶层位于第一配向层中远离光源的一侧,用于将线性偏振光转换为椭圆偏振光,第二液晶层位于第一液晶层中远离第一配向层的一侧,第二液晶层包括第一子部分、第二子部分和第三子部分,第一子部分与第一液晶层相邻,第一子部分的液晶配向角度与第一液晶层的液晶配向角度相同,第二子部分为具有预设螺旋角度的螺旋结构,第三子部分的液晶配向角度由预设配向角度和预设螺旋角度确定,第二液晶层用于通过第二子部分的螺旋结构将椭圆偏振光转换为圆偏振光。这样,由于该位相延迟装置中的第二液晶层包括具有螺旋结构的第二子部分,所以,在制备该位相延迟装置时,只需要通过第一配向层对第一液晶层进行一次配向,就可以通过第二液晶层中的第二子部分,将光源发出的自然光转换为圆偏振光,由于配向操作次数少,所以可以避免多次配向导致的制备效率低的问题,同时也可以提高装置的良性率。
实施例四
以上为本发明实施例提供的一种位相延迟装置,基于该位相延迟装置的功能及其组成结构,本发明实施例还提供一种位相延迟装置的制备方法,该方法的执行主体可以为电子设备,该电子设备可以用于制备如上述实施例一和实施例二中的位相延迟装置。如图5所示,该方法具体可以包括以下步骤:
在S502中,在第一配向层基于预设配向角度,对第一液晶层的液晶进行配向。
在S504中,基于配向角度与螺旋角度的预设对应关系,确定与预设配向角度对应的第二液晶层的第二子部分的螺旋角度,以使椭圆偏振光在第二子部分的螺旋结构的作用下,转换为满足预设光转换需求的圆偏振光。
其中,光转换需求可以用于判断第二液晶层的第三子部分的配向角度是否满足预设角度范围。
在实施中,可以基于历史配向角度、历史螺旋角度以及光转换需求,确定配向角度与螺旋角度的预设对应关系,在基于配向角度与螺旋角度的预设对应关系,确定与预设配向角度对应的第二液晶层的第二子部分的螺旋角度。
其中,配向角度与螺旋角度的预设对应关系的确定方法可以有多种,可以根据实际应用场景的不同而有所不同,本发明实施例对此不做具体限定。
本说明书实施例提供了一种位相延迟装置的制备方法,该位相延迟装置包括:线性偏振层、第一配向层、第一液晶层和第二液晶层,线性偏振层位于光源的一侧,用于将接收到的光线转换为线性偏振光,第一配向层位于线性偏振层远离光源的一侧,用于基于预设配向角度对第一液晶层的液晶进行配向,第一液晶层位于第一配向层中远离光源的一侧,用于将线性偏振光转换为椭圆偏振光,第二液晶层位于第一液晶层中远离第一配向层的一侧,第二液晶层包括第一子部分、第二子部分和第三子部分,第一子部分与第一液晶层相邻,第一子部分的液晶配向角度与第一液晶层的液晶配向角度相同,第二子部分为具有预设螺旋角度的螺旋结构,第三子部分的液晶配向角度由预设配向角度和预设螺旋角度确定,第二液晶层用于通过第二子部分的螺旋结构将椭圆偏振光转换为圆偏振光。这样,由于该位相延迟装置中的第二液晶层包括具有螺旋结构的第二子部分,所以,在制备该位相延迟装置时,只需要通过第一配向层对第一液晶层进行一次配向,就可以通过第二液晶层中的第二子部分,将光源发出的自然光转换为圆偏振光,由于配向操作次数少,所以可以避免多次配向导致的 制备效率低的问题,同时也可以提高装置的良性率。
实施例五
基于上述实施例一和实施例二提供的位相延迟装置的功能及其组成结构,本发明实施例还提供一种位相延迟装置的制备方法,该方法的执行主体可以为电子设备,该电子设备可以用于制备如上述实施例一和实施例二中的位相延迟装置。如图6所示,该方法具体可以包括以下步骤:
在S602中,在第一配向层基于预设配向角度,对第一液晶层的液晶进行配向。
在S604中,获取第二液晶层的第一子部分的液晶配向角度。
由于在实际操作中,可能存在由于锚定能不够或操作偏差等因素,导致第二液晶层的第一子部分的液晶配向角度与第一液晶层的配向角度不同,所以,可以对第二液晶层的第一子部分的液晶配向角度进行检测,以使第一子部分的液晶配向角度与预设配向角度相同,即在S604后,可以继续执行S606或S608。
在S606中,在检测到液晶配向角度与预设配向角度不同的情况下,在第二配向层,基于预设配向角度,对第二液晶层的第一子部分的液晶进行配向。
在实施中,在位相延迟装置还包括第二配向层的情况下,可以基于第二配向层,基于预设配向角度,对第二液晶层的第一子部分的液晶进行配向,使第一子部分的液晶配向角度与预设配向角度相同。
在S608中,在检测到液晶配向角度与预设配向角度不同的情况下,将锚定能大于预设锚定能的液晶层作为第一液晶层。
其中,锚定能可以为用于限制液晶分子的配向方向的作用力。
在实施中,在检测到液晶配向角度与预设配向角度不同的情况下,可以获取此时第一液晶层对应的第一锚定能,并将该第一锚定能作为预设锚定能,然后将锚定能大于该预设锚定能的液晶层确定为第一液晶层,以保证第一液晶层的液晶配向角度与第一子部分的液晶配向角度相同。
此外,上述预设锚定能的确定方法是一种可选地、可实现的确定方法,在实际应用场景中,还可以多种确定方法,可以根据实际应用场景的不同而有所不同,本发明实施例对此不做具体限定。
在S610中,基于配向角度与螺旋角度的预设对应关系,确定与预设配向角度对应的第二液晶层的第二子部分的螺旋角度,以使椭圆偏振光在第二子部分的螺旋结构的作用下,转换为满足预设光转换需求的圆偏振光。
本说明书实施例提供了一种位相延迟装置的制备方法,该位相延迟装置包括:线性偏振层、第一配向层、第一液晶层和第二液晶层,线性偏振层位于光源的一侧,用于将接收到的光线转换为线性偏振光,第一配向层位于线性偏振层远离光源的一侧,用于基于预设配向角度对第一液晶层的液晶进行配向,第一液晶层位于第一配向层中远离光源的一侧,用于将线性偏振光转换为椭圆偏振光,第二液晶层位于第一液晶层中远离第一配向层的一侧,第二液晶层包括第一子部分、第二子部分和第三子部分,第一子部分与第一液晶层相邻,第一子部分的液晶配向角度与第一液晶层的液晶配向角度相同,第二子部分为具有预设螺旋角度的螺旋结构,第三子部分的液晶配向角度由预设配向角度和预设螺旋角度确定,第二液晶层用于通过第二子部分的螺旋结构将椭圆偏振光转换为圆偏振光。这样,由于该位相延迟装置中的第二液晶层包括具有螺旋结构的第二子部分,所以,在制备该位相延迟装置时,只需要通过第一配向层对第一液晶层进行一次配向,就可以通过第二液晶层中的第二子部分,将光源发出的自然光转换为圆偏振光,由于配向操作次数少,所以可以避免多次配向导致的制备效率低的问题,同时也可以提高装置的良性率。
实施例六
图7为实现本发明实施例四和实施例五的一种电子设备的硬件结构示意图,
该电子设备700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接 口单元708、存储器709、处理器710、以及电源711等部件。本领域技术人员可以理解,图7中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,电子设备包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器710,用于:在第一配向层基于预设配向角度,对第一液晶层的液晶进行配向;基于配向角度与螺旋角度的预设对应关系,确定与所述预设配向角度对应的所述第二液晶层的第二子部分的螺旋角度,以使椭圆偏振光在所述第二子部分的螺旋结构的作用下,转换为满足预设光转换需求的圆偏振光。
此外,处理器710,还用于:获取所述第二液晶层的第一子部分的液晶配向角度;在检测到所述液晶配向角度与所述预设配向角度不同的情况下,在所述第二配向层,基于所述预设配向角度,对所述第二液晶层的第一子部分的液晶进行配向。
另外,处理器710,还用于:获取所述第二液晶层的第一子部分的液晶配向角度;在检测到所述液晶配向角度与所述预设配向角度不同的情况下,将锚定能大于预设锚定能的液晶层作为所述第一液晶层。
本发明实施例提供一种电子设备,该电子设备用于制备相位延迟装置,该位相延迟装置包括:线性偏振层、第一配向层、第一液晶层和第二液晶层,线性偏振层位于光源的一侧,用于将接收到的光线转换为线性偏振光,第一配向层位于线性偏振层远离光源的一侧,用于基于预设配向角度对第一液晶层的液晶进行配向,第一液晶层位于第一配向层中远离光源的一侧,用于将线性偏振光转换为椭圆偏振光,第二液晶层位于第一液晶层中远离第一配向层的一侧,第二液晶层包括第一子部分、第二子部分和第三子部分,第一子部分与第一液晶层相邻,第一子部分的液晶配向角度与第一液晶层的液晶配向角度相同,第二子部分为具有预设螺旋角度的螺旋结构,第三子部分的液晶配向角度由预设 配向角度和预设螺旋角度确定,第二液晶层用于通过第二子部分的螺旋结构将椭圆偏振光转换为圆偏振光。这样,由于该位相延迟装置中的第二液晶层包括具有螺旋结构的第二子部分,所以,在制备该位相延迟装置时,只需要通过第一配向层对第一液晶层进行一次配向,就可以通过第二液晶层中的第二子部分,将光源发出的自然光转换为圆偏振光,由于配向操作次数少,所以可以避免多次配向导致的制备效率低的问题,同时也可以提高装置的良性率。
应理解的是,本发明实施例中,射频单元701可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器710处理;另外,将上行的数据发送给基站。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元701还可以通过无线通信系统与网络和其他设备通信。
电子设备通过网络模块702为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元703可以将射频单元701或网络模块702接收的或者在存储器709中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元703还可以提供与电子设备700执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元703包括扬声器、蜂鸣器以及受话器等。
输入单元704用于接收音频或视频信号。输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元706上。经图形处理器7041处理后的图像帧可以存储在存储器709(或其它存储介质)中或者经由射频单元701或网络模块702进行发送。麦克风7042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元701发送到移动通信基站的格式输出。
电子设备700还包括至少一种传感器705,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板7061的亮度,接近传感器可在电子设备700移动到耳边时,关闭显示面板7061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别电子设备姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器705还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元706用于显示由用户输入的信息或提供给用户的信息。显示单元706可包括显示面板7061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板7061。
用户输入单元707可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板7071上或在触控面板7071附近的操作)。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器710,接收处理器710发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板7071。除了触控面板7071,用户输入单元707还可以包括其他输入设备7072。具体地,其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板7071可覆盖在显示面板7061上,当触控面板7071检测到在其上或附近的触摸操作后,传送给处理器710以确定触摸事件的类型,随后处理器710根据触摸事件的类型在显示面板7061上提供相应的视觉输出。虽然在图7中,触控面板7071与显示面板7061是作为两个独立的部件来实现电子设备的输入和输出功能,但是在某些实施例中,可以将触控面板7071与显示面板7061集成而实现电子设备的输入和输出功能,具体此处不做限定。
接口单元708为外部装置与电子设备700连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元708可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到电子设备700内的一个或多个元件或者可以用于在电子设备700和外部装置之间传输数据。
存储器709可用于存储软件程序以及各种数据。存储器709可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器710是电子设备的控制中心,利用各种接口和线路连接整个电子设备的各个部分,通过运行或执行存储在存储器709内的软件程序和/或模块,以及调用存储在存储器709内的数据,执行电子设备的各种功能和处理数据,从而对电子设备进行整体监控。处理器710可包括一个或多个处理单元;优选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
电子设备700还可以包括给各个部件供电的电源711(比如电池),优选的,电源711可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
优选的,本发明实施例还提供一种电子设备,包括处理器710,存储器709,存储在存储器709上并可在所述处理器710上运行的计算机程序,该计算机程序被处理器710执行时实现上述供电方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
实施例七
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述供电方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本发明实施例提供一种计算机可读存储介质,用于制备相位延迟装置,该位相延迟装置包括:线性偏振层、第一配向层、第一液晶层和第二液晶层,线性偏振层位于光源的一侧,用于将接收到的光线转换为线性偏振光,第一配向层位于线性偏振层远离光源的一侧,用于基于预设配向角度对第一液晶层的液晶进行配向,第一液晶层位于第一配向层中远离光源的一侧,用于将线性偏振光转换为椭圆偏振光,第二液晶层位于第一液晶层中远离第一配向层的一侧,第二液晶层包括第一子部分、第二子部分和第三子部分,第一子部分与第一液晶层相邻,第一子部分的液晶配向角度与第一液晶层的液晶配向角度相同,第二子部分为具有预设螺旋角度的螺旋结构,第三子部分的液晶配向角度由预设配向角度和预设螺旋角度确定,第二液晶层用于通过第二子部分的螺旋结构将椭圆偏振光转换为圆偏振光。这样,由于该位相延迟装置中的第二液晶层包括具有螺旋结构的第二子部分,所以,在制备该位相延迟装置时,只需要通过第 一配向层对第一液晶层进行一次配向,就可以通过第二液晶层中的第二子部分,将光源发出的自然光转换为圆偏振光,由于配向操作次数少,所以可以避免多次配向导致的制备效率低的问题,同时也可以提高装置的良性率。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM) 和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本发明的实施例可提供为方法、系统或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本发明的实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (10)

  1. 一种位相延迟装置,其中,所述位相延迟装置包括:线性偏振层、第一配向层、第一液晶层和第二液晶层;
    所述线性偏振层位于光源的一侧,用于将接收到的光线转换为线性偏振光;
    所述第一配向层位于所述线性偏振层远离所述光源的一侧,用于基于预设配向角度对所述第一液晶层的液晶进行配向;
    所述第一液晶层位于所述第一配向层中远离所述光源的一侧,用于将所述线性偏振光转换为椭圆偏振光;
    所述第二液晶层位于所述第一液晶层中远离所述第一配向层的一侧,所述第二液晶层包括第一子部分、第二子部分和第三子部分,所述第一子部分与所述第一液晶层相邻,所述第一子部分的液晶配向角度与所述第一液晶层的液晶配向角度相同,所述第二子部分为具有预设螺旋角度的螺旋结构,所述第三子部分的液晶配向角度由所述预设配向角度和所述预设螺旋角度确定,所述第二液晶层用于通过所述第二子部分的螺旋结构将所述椭圆偏振光转换为圆偏振光。
  2. 根据权利要求1所述的位相延迟装置,其中,所述第一液晶层的位相延迟量为第一预设值,所述第二液晶层的位相延迟量为基于所述第一预设值和预设补偿值确定的第二预设值。
  3. 根据权利要求1所述的位相延迟装置,其中,所述位相延迟装置还包括第二配向层,所述第二配向层位于所述第一液晶层和所述第二液晶层之间,用于在所述第一子部分的液晶配向角度与所述第一液晶层的液晶配向角度不同时,基于所述预设配向角度对所述第一子部分的液晶进行配向。
  4. 根据权利要求1所述的位相延迟装置,其中,所述位相延迟装置还包括折射膜层,所述折射膜层与所述第二液晶层中的第三子部分相邻,用于调整所述圆偏振光对应的视角。
  5. 根据权利要求4所述的位相延迟装置,其中,所述折射膜层的折射率满足N Z>N X=N Y,其中,N X为所述折射膜层的滞后相轴方向的折射率,N Y为所述折射膜层的超前相轴方向的折射率,N Z为所述折射膜层的厚度方向的折射率。
  6. 根据权利要求1所述的位相延迟装置,其中,所述第一液晶层和所述第二液晶层包括反应型聚合物液晶。
  7. 一种显示设备,其中,所述显示设备包括上述权利要求1-6任一项所述的位相延迟装置。
  8. 一种位相延迟装置的制备方法,其中,所述方法应用于如权利要求1-6任一项所述的位相延迟装置,所述方法包括:
    在第一配向层基于预设配向角度,对第一液晶层的液晶进行配向;
    基于配向角度与螺旋角度的预设对应关系,确定与所述预设配向角度对应的所述第二液晶层的第二子部分的螺旋角度,以使椭圆偏振光在所述第二子部分的螺旋结构的作用下,转换为满足预设光转换需求的圆偏振光。
  9. 根据权利要求8所述的方法,其中,所述位相延迟装置还包括第二配向层,在所述基于配向角度与螺旋角度的预设对应关系,确定与所述预设配向角度对应的所述第二液晶层的第二子部分的螺旋角度之前,还包括:
    获取所述第二液晶层的第一子部分的液晶配向角度;
    在检测到所述液晶配向角度与所述预设配向角度不同的情况下,在所述第二配向层,基于所述预设配向角度,对所述第二液晶层的第一子部分的液晶进行配向。
  10. 根据权利要求8所述的方法,其中,在所述基于配向角度与螺旋角度的预设对应关系,确定与所述预设配向角度对应的所述第二液晶层的第二子部分的螺旋角度之前,还包括:
    获取所述第二液晶层的第一子部分的液晶配向角度;
    在检测到所述液晶配向角度与所述预设配向角度不同的情况下,将锚定能大于预设锚定能的液晶层作为所述第一液晶层。
PCT/CN2021/137784 2020-12-16 2021-12-14 一种位相延迟装置及其制备方法、显示设备 WO2022127771A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/200,729 US11927782B2 (en) 2020-12-16 2023-05-23 Phase retardation device, preparation method therefor, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011493604.6 2020-12-16
CN202011493604.6A CN112230478B (zh) 2020-12-16 2020-12-16 一种位相延迟装置及其制备方法、显示设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/200,729 Continuation US11927782B2 (en) 2020-12-16 2023-05-23 Phase retardation device, preparation method therefor, and display apparatus

Publications (1)

Publication Number Publication Date
WO2022127771A1 true WO2022127771A1 (zh) 2022-06-23

Family

ID=74124184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137784 WO2022127771A1 (zh) 2020-12-16 2021-12-14 一种位相延迟装置及其制备方法、显示设备

Country Status (3)

Country Link
US (1) US11927782B2 (zh)
CN (1) CN112230478B (zh)
WO (1) WO2022127771A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116381988A (zh) * 2023-03-16 2023-07-04 成都瑞波科材料科技有限公司 光学膜及其制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112230478B (zh) 2020-12-16 2021-02-19 北京瑞波科技术有限公司 一种位相延迟装置及其制备方法、显示设备
CN112285977B (zh) * 2020-12-28 2021-03-02 北京瑞波科技术有限公司 一种位相延迟装置及其制备方法、显示设备
CN112505820B (zh) * 2021-02-07 2021-06-01 北京瑞波科技术有限公司 一种位相延迟装置及其制备方法、显示设备
CN116931325B (zh) * 2023-07-26 2024-05-28 成都瑞波科材料科技有限公司 曲面补偿膜及曲面补偿膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101206328A (zh) * 2006-12-22 2008-06-25 台湾薄膜电晶体液晶显示器产业协会 光学膜及其制法以及应用此光学膜的基板结构与显示面板
US20130107173A1 (en) * 2011-10-27 2013-05-02 Fujifilm Corporation Photochromic polarizing plate and shutter polarizing plate
CN211979379U (zh) * 2020-04-09 2020-11-20 京东方科技集团股份有限公司 液晶显示面板和显示装置
CN112230478A (zh) * 2020-12-16 2021-01-15 北京瑞波科技术有限公司 一种位相延迟装置及其制备方法、显示设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360715B1 (ko) * 2006-03-29 2014-02-07 스미또모 가가꾸 가부시끼가이샤 필름 및 필름의 제조 방법, 그리고 그 이용
US9298041B2 (en) * 2007-04-16 2016-03-29 North Carolina State University Multi-twist retarders for broadband polarization transformation and related fabrication methods
JP2013235272A (ja) * 2012-05-10 2013-11-21 Samsung Electronics Co Ltd 多層型光学フィルム、その製造方法及び表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101206328A (zh) * 2006-12-22 2008-06-25 台湾薄膜电晶体液晶显示器产业协会 光学膜及其制法以及应用此光学膜的基板结构与显示面板
US20130107173A1 (en) * 2011-10-27 2013-05-02 Fujifilm Corporation Photochromic polarizing plate and shutter polarizing plate
CN211979379U (zh) * 2020-04-09 2020-11-20 京东方科技集团股份有限公司 液晶显示面板和显示装置
CN112230478A (zh) * 2020-12-16 2021-01-15 北京瑞波科技术有限公司 一种位相延迟装置及其制备方法、显示设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116381988A (zh) * 2023-03-16 2023-07-04 成都瑞波科材料科技有限公司 光学膜及其制造方法

Also Published As

Publication number Publication date
CN112230478A (zh) 2021-01-15
CN112230478B (zh) 2021-02-19
US20230288621A1 (en) 2023-09-14
US11927782B2 (en) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2022127771A1 (zh) 一种位相延迟装置及其制备方法、显示设备
WO2022166404A1 (zh) 一种位相延迟装置及其制备方法、显示设备
US11868539B2 (en) Display control method and apparatus
US10983687B2 (en) Flexible display apparatus and display method thereof
US9563279B2 (en) Flexible apparatus and control method thereof
US20180347968A1 (en) Flexible apparatus and method for controlling operation thereof
WO2022143116A1 (zh) 一种位相延迟装置及其制备方法、显示设备
WO2020114279A1 (zh) 债权凭证转移方法、装置、电子设备及存储介质
TWI529462B (zh) 具有降低漏光之液晶顯示器
WO2019233302A1 (zh) 触摸屏、触控压力检测方法及终端
WO2021017705A1 (zh) 界面显示方法及终端设备
WO2021196894A1 (zh) 电子设备、交互方法及装置
US20150201263A1 (en) Electronic device having ear jack assembly and method of operation the same
CN110837319B (zh) 一种可视角度调节方法及电子设备
WO2020151523A1 (zh) 调节终端设备的屏幕位置的方法及终端设备
WO2021017720A1 (zh) 信息认证方法、电子设备及网络侧设备
WO2021057242A1 (zh) 显示控制方法及电子设备
CN111060086A (zh) 一种导航装置及电子设备
JP5089856B2 (ja) 携帯端末装置、表示制御方法、表示制御プログラム及び記録媒体
EP4040229A1 (en) Liquid crystal display panel and liquid display device
WO2022199407A1 (zh) 一种专用计算能力配置方法及装置
CN115757665A (zh) 坐标转换方法、装置、计算机设备及存储介质
CN115374975A (zh) 含气量预测方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905700

Country of ref document: EP

Kind code of ref document: A1